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SUMMARY

Fibre metal laminates (FMLs) were developed and refined for their superior crack growth
resistance and critical damage size that complimented the damage tolerance design phi-
losophy utilized in the aerospace sector. Robust damage tolerance tools have been de-
veloped for FMLs. However, they tend to focus on the evolution of an isolated crack.
There is also a risk that they will be invalidated overtime as a result of the occurrence
of multiple cracks within one structure (one form of widespread fatigue damage). To
combat another failure due to widespread fatigue damage, the airworthiness regulations
were revised to include the concept of a Limit of Validity (LOV) of the damage toler-
ance analyses. Consequently, it is crucial to examine fatigue crack growth (FCG) in FMLs
containing Multiple-site Damage (MSD) cracks despite their superior damage tolerance
merits.

The focus of this thesis therefore is to analyse MSD crack growth in FML structures.
Mechanically fastened FML joints are potentially weak structural designs that are sus-
ceptible to MSD due to the stress rising contributors such as secondary bending, pin
loading and open holes subjected to bypass loading. In this thesis, predictive models
were developed to address several key mechanisms that affect FCG in FML joints con-
taining MSD, and validated with corresponding experimental work. Then the predictive
models were systematically integrated and implemented for FML joints.

It was identified that the nature of fatigue in FMLs led to the load redistribution
mechanism as the key factor to be modelled in predicting MSD growth in FMLs. The
structural stiffness reductions caused by the presence of multiple cracks resulted in load
redistribution from the other cracks to the single crack to be analysed, exacerbating the
total stress intensity factor (SIF) experienced at the tips of the single crack, increasing the
crack growth rate (CGR). The load redistribution mechanism was first substantiated by
investigating FCG in FMLs containing discretely notched layers. The prediction model
fairly captured the load redistribution mechanism by idealizing the notches in the metal
layers as removals of metal strips. The crack acceleration over a major portion of the
crack propagation was well predicted with the model; however, the surge in CGR over
roughly 3 mm crack length prior to the link-up was underestimated since the plasticity
interaction was not accounted for.

The capability of modelling the load redistribution mechanism allows the states of
multiple cracks to be analysed one by one. It was found that the load redistribution
could not be symmetric for every crack and non-symmetric crack configurations there-
fore developed in FMLs with finite width. Hence, non-symmetric crack growth in FMLs
was also investigated in this work. It was also found that both crack tip non-symmetry
and delamination shape non-symmetry affected the crack growth in the metal layers.
The model for non-symmetric crack growth in FMLs was validated with experimental
data. Good correlation was observed.

The model for MSD growth in FML panels sequentially analyses each crack state.
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The other cracks are idealized as removals of metal strips when analyzing the state of a
single crack. This non-physical idealization of the cracks led to consistently conservative
prediction results in comparison with the test data. Nevertheless, the prediction model
provided good predictions of the evolution of MSD configurations. Additionally, it was
proven that a very non-conservative predicted fatigue life could be obtained if the load
redistribution mechanism was not considered.

The effects of pin loading on FCG in FMLs were also investigated. The test data
showed very rapid growth of the crack in the vicinity of the pin loading. The CGR de-
creased with increasing crack length. The model applied the principle of superposition
to split the non-symmetric tension-pin loading into simpler tensile loading and a pair of
point loads acting on the crack flanks. The SIFs for the simpler loading cases were de-
rived and superposed to obtain the total SIF as a result of the tension-pin loading. The
predicted CGR and equivalent delamination shape correlated with the measurements
very well, but the model failed to predict the crack path and the measured delamination
shape which were trivial issues for this work.

The relevance and applicability of the developed models in this thesis for predicting
the MSD behaviour in mechanically fastened FML joints was examined. The predicted
results captured the trends of the measured CGR in FML joints containing MSD cracks,
although there were some discrepancies. The discrepancies are mainly due to the two
major shortcomings of the model which are neglecting the load redistribution over mul-
tiple fastener rows and neglecting the effects of secondary bending stresses.



SAMENVATTING

Vezelmetaallaminaten (fibre metal laminates, FMLs) zijn ontwikkeld en verfijnd van-
wege de superieure scheurgroeiweerstand en kritische scheurlengte, die de schade to-
lerantie filosofie die in de luchtvaart sector gebruikt wordt complementeren. Er zijn ro-
buuste schade tolerantie modellen ontwikkeld voor FMLs; echter, deze modellen richten
zich op de evolutie van een geïsoleerde scheur. Het risico bestaat dat deze modellen on-
geldig worden door het bestaan van meerdere scheuren in een constructie (één van de
vormen van verspreide vermoeiingsschade). Om nog een ongeval als resultaat van ver-
spreide vermoeiingsschade te voorkomen zijn de luchtwaardigheidsregelementen aan-
gepast om een geldigheidslimiet (limit of validity, LOV) op te nemen voor schade tole-
rantie analyses. Als gevolg hiervan is het essentieel dat vermoeiingsscheurgroei (fatigue
crack growth, FCG) in FMLs met meerdere schade locaties (muliple-site damage, MSD)
wordt onderzocht, ondanks hun superieure schade tolerantie eigenschappen.

Dit proefschrift richt zich op de analyse van MSD scheurgroei in FML constructies.
Mechanische verbindingen in FML constructies zijn potentiele zwakke punten in het
ontwerp, die vatbaar zijn voor MSD door de spannings-verhogende bijdragen zoals se-
cundaire buiging, penbelasting en open gaten belast met omloopbelasting. In dit proef-
schrift zijn voorspellende modellen ontwikkeld die een aantal sleutelmechanismen be-
handelen die invloed hebben op FCG in FML verbindingen met MSD. Deze modellen
zijn ook gevalideerd met experimenteel werk. De voorspellende modellen zijn hierna
systematisch geïntegreerd en toegepast op FML verbindingen.

Er werd geïdentificeerd dat de aard van vermoeiing in FMLs er toe leidde dat het
krachtherverdelingsmechanisme de beslissende factor bleek te zijn voor het modeleren
van MSD groei in FMLs. De constructieve stijfheidsvermindering als gevolg van meer-
dere scheuren zorgde ervoor dat de spanningsintensiteitsfactor (stress intensity factor,
SIF) aan de scheurtip van een enkele scheur werd overschat, omdat de krachtherver-
deling van de andere scheuren naar de geanalyseerde scheur niet werd meegenomen.
Dit resulteerde in een hogere scheursnelheid (crack growth rate, CGR). Het krachther-
verdelingsmechanisme werd voor het eerst onderbouwd door onderzoek naar FCG in
FMLs met discreet gekerfde lagen. Het voorspellingsmodel benaderde het krachtherver-
delingsmechanisme redelijk door de kerven in de metaallagen te idealiseren als verwij-
derde stroken metaal. De scheurversnelling van een groot deel van de scheurpropaga-
tie werd goed voorspeld door het model. Echter, de abrupte versnelling in CGR tijdens
ongeveer 3 mm scheurlengte vlak voor de scheurhereniging werd onderschat omdat er
geen rekening werd gehouden met plasticiteitsinteractie.

Door het modeleren van het krachtherverdelingsmechanisme kan de situatie van
meerdere scheuren één voor één geanalyseerd worden. De krachtherverdeling kon niet
symmetrisch zijn voor iedere scheur en in FMLs met eindige breedte kwamen daardoor
asymmetrische scheurconfiguraties voor. Als gevolg is asymmetrische scheurgroei in
FMLs ook onderzocht in dit werk. Zowel scheur tip asymmetrie als delaminatievorm
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asymmetrie hebben invloed op de scheurgroei in de metaallagen. Het model voor asym-
metrische scheurgroei in FMLs is gevalideerd met experimentele data. Er werd een ge-
ode correlatie geobserveerd.

Het model voor MSD groei in FML panelen analyseert iedere scheurstaat opeenvol-
gend. De andere scheuren worden tijdens de analyse geïdealiseerd als verwijderde me-
taalstrips. Deze niet-fysische idealisatie van de scheuren leidt consequent tot conserva-
tieve voorspellingsresultaten in vergelijking met de testdata. Desondanks laat het voor-
spellingsmodel goede voorspellingen van de evolutie van de MSD configuraties zien.
Daarnaast is bewezen dat een zeer onconservatieve voorspelling van het vermoeiingsle-
ven verkregen wordt als het krachtherverdelingsmechanisme niet mee wordt genomen
in de analyse.

De effecten van penbelastingen op FCG in FMLs zijn ook onderzocht. De testdata
laten een zeer snelle scheurgroei zien in nabijheid van penbelasting. De CGR vertraagt
naarmate de scheurlengte langer wordt. Het model past het superpositieprincipe toe bij
het opsplitsen van asymmetrische trek-penbelasting in een eenvoudigere trekbelasting
en een paar puntbelastingen die aangrijpen op de scheurflank. De SIFs voor de een-
voudigere belastingscenario’s zijn afgeleid en gesuperpositioneerd om de totale SIF te
herleiden als resultaat van de trek-penbelasting. De voorspelde CGR en equivalente de-
laminatievorm laten een uitstekende overeenkomst zien met de metingen. Echter, het
model voorspelde niet het scheurpad en de gemeten delaminatievorm, maar dit waren
onbelangrijke factoren voor dit werk.

De relevantie en toepasbaarheid van de ontwikkelde modellen in dit proefschrift
voor het voorspellen van MSD gedrag in mechanisch verbonden FMLs is ook onder-
zocht. De voorspelde resultaten toonden de trend van gemeten CGR in FML verbindin-
gen met MSD scheuren, hoewel er enige discrepanties waren. De verschillen zijn voor-
namelijk toe te schrijven aan de twee grotere vereenvoudigingen van het model. Deze
zijn het verwaarlozen van de krachtherverdeling over meerdere bevestigingsrijen en het
negeren van spanningen als gevolg van secundaire buiging.
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NOMENCLATURE

LATIN SYMBOLS

a Half Crack or delamination length mm
∆a Crack increment mm
a0, as Initial crack length mm
a1∗, a2∗ Crack length measured from saw-cut tip mm
b(x) Delamination shape mm
∆b Delamination increment mm
Ccg , Cd Paris constants −
d Distance between crack center and the center of a panel mm
d f f Distance between the equivalent load of the far-field

load after decomposition and the center of a panel
mm

e eccentricity −
E Young’s modulus MPa
Ex , Ey Young’s modulus GPa
EF ML , El am Young’s modulus of an FML panel MPa
Em Young’s modulus of a metal layer MPa
E f , E f i br e Young’s modulus of a fibre layer MPa
Enotch Young’s modulus of the remaining material at the dis-

cretely notched area
MPa

f Frencequency H z
f f astener Fastener flexibility ???
f f pl ate Plate flexibility ???
Ftr ans f er Load transfer due to discretely notched layers N
Fpi n Pin load N
Fby pass Bypass load N
Fapp Applied load N
G Strain energy release rate K J/m2

Gx y Shear modulus GPa
Gmax Maximum strain energy release rate K J/m2

Gmi n Minimum strain energy release rate K J/m2

∆G Strain energy release rate range K J/m2

i imaginary unit −
i i th Bar element −
i i th crack −
j Number of interfaces −
K Stress intensity factor MPa

p
mm

K∞,K f f Stress intensity factor due to far-field applied load MPa
p

mm
Kbr Stress intensity factor due to bridging load MPa

p
mm
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p
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Ktot al Total stress intensity factor at the crack tip MPa

p
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MPa
p

mm

K j oi nt Stress intensity factor at a crack tip in a joint MPa
p

mm
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p
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Lr ow Row pitch mm
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N Fatigue life c ycle
∆N Fatigue life reduction c ycle
∆N Fatigue life interval c ycle
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Nmet al Fatigue life of MSD cracks in a metal panel c ycle
ncg , nd Paris constants −
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N
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R Stress ratio −
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t Thickness mm
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T 1, T 2, T 3 Load transferred by the 1st , 2nd , 3r d fastener rows mm
v, v∞, v f f Crack opening displacement due to far-field load mm



NOMENCLATURE xvii
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xl Position of left notch edge mm
xr Position of right notch edge mm
ZI Westergaard stress function −
z Complex number −

GREEK SYMBOLS

δ f Elongation of the fibre layers mm
δpp Shear deformation of the fibre layers mm
εy y Strain distribution ahead of crack tip mm/mm
εy y,notch Strain distribution ahead of crack tip in a laminate con-

taining notches
mm/mm

εy y,M(T ) Strain distribution ahead of crack tip in a M(T) laminate mm/mm
σappli ed Total applied stress in laminate MPa
σm,appl i ed ,σm Stress in the metal layers due to far-field applied load MPa
σm,cur Curing stress in the metal layers MPa
σ f ,appl i ed Far-field load in the fibre layers MPa
σnom Nominal stress MPa
σbendi ng Bending stress MPa
σwester g aar d Westergaard stress MPa
σwester g aar d ,M(T )Westergaard stress for M(T) specimen MPa
σy y Westergaard stress distribution ahead of crack tip MPa
σy y, f Westergaard stress distribution ahead of crack tip in a

panel with finite width
MPa

σy s Yield strength MPa
σnotch Stress at the discretely notched area MPa
β Correction factor −
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ϕ Thickness ratio −

SUBSCRIPT

1 the variable is related to crack tip 1
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2 the variable is related to crack tip 2
i 1 the variable is related to crack i
i 1 the variable is related to the crack tip 1 of crack i
i 2 the variable is related to the crack tip 2 of crack i
by pass the variable is related to bypass load
pi n,bear i ng the variable is related to a pair of pin bearing loads
pi n, f f the variable is related to the far-field load that equials a pin

bearing load

ACRONYMS

COD Crack Opening Displacement
DIC Digital Image Correlation
FML Fibre Metal Laminate
CLT Classic Lamiante Theory
MVF Metal Volume Fraction
LOV Limite of Validity
MSD Multiple-site Damage
WFD Widespread Fatigue Damage
FEM Finite Element Modelling
LEFM Linear Elastic Fracture Mechanics
SIF Stress Intensity Factor
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1
INTRODUCTION

New materials are always desirable to improve the performance of the aircraft while de-
creasing the structural weight. However, the adoption of new materials for new aircraft
structural design has to comply with strict airworthiness regulations which have a safety-
focused conservative attitude. The success of damage tolerant Fibre Metal Laminates (FMLs)
has been proven by their application as a fuselage skin materials on the Airbus A380 jumbo
passenger aircraft. However, new application can bring new challenges. The damage tol-
erant behaviour of FMLs are desirable for applications on narrow-body aircraft where
structures are thinner and the demands for fatigue life are higher. Furthermore, changes in
safety regulations and requirements are constantly raising the bar in terms of the needed
understanding and predictability of material performance. This thesis examines these
challenges in the context of multiple site damage of FML structures.

Parts of this chapter have been published in Proceedings of 28th ICAF [1].

1
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2 1. INTRODUCTION

1.1. FIBRE METAL LAMINATE

1.1.1. DAMAGE TOLERANT MATERIAL TECHNOLOGY
Fibre Metal Laminates (FMLs) are hybrid laminates comprising thin metallic sheets al-
ternately bonded to fibre reinforced prepreg layers. A typical FML layup is illustrated
in Fig. 1.1. The FML concept originally evolved from bonded metal laminates which ex-
hibited an improved damage tolerant behaviour over monolithic metal structures due to
their layered nature. Fatigue resistant fibre layers were later added to the bond line of
thin metal layers to further increase the resistance of the metal layers to fatigue cracking
[2].

Figure 1.1: Typical FML layup [3]

One of the main advantages of this hybrid material configuration is that it expresses
many of the desirable traits of its metal and composite constituent materials while si-
multaneously compensating for some of their disadvantages. Metals, particularly alu-
minium, have been widely applied as aircraft skin structures and their behaviour are
quite well understood. Metals are tolerant to design features in forms of fastener holes
and other cutouts due to their inherent ductility. They, however, are susceptible to fa-
tigue cracking. Composites, on the other hand, are brittle in nature, which makes them
susceptible to holes and cut-outs. In spite of their brittle nature, composites are rel-
atively insensitive to fatigue compared to metals [4]. The combination of metal con-
stituent and composite constituent in one laminate system leads to hybrid FML being
able to be machined and assembled in a similar manner as metals, and possessing su-
perior fatigue resistance in comparison with monolithic metals.

A key characteristic of FMLs is their damage tolerance behaviour: very high resis-
tance against fatigue crack growth and longer critical crack length as a result of signif-
icant residual strength in case of fatigue damage. The high growth resistance enables
longer inspection intervals while the longer critical crack length allows less sophisticated
and thus less costly inspection techniques to be applied to detect the damages in FMLs.
They are very desirable in the context of damage tolerance design philosophy utilised
in the aerospace sector, since the damage tolerance philosophy relies on detection and
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repair of damages to ensure the structural integrity and flight safety [5].

Their superior damage tolerance behaviour can be attributed to the bridging mecha-
nism offered by the intact fatigue resistant fibres in the wake of fatigue cracks. A schematic
illustration of the bridging mechanism is shown in Fig. 1.2. The intact bridging fibres act
as a secondary load path and restrain the crack opening in the metal layers. As a result,
load redistributes from the cracked metal layers to the bridging fibres. This load redis-
tribution reduces the stresses experienced at the crack tip in the metal layers and thus
the driving force for the crack. Moreover, the load redistribution also introduces cyclic
shear stresses at the interfaces between metal layers and fibre layers, resulting in delam-
ination growth at the interfaces. The delaminaton growth allows more delaminated fibre
length to deform in order to accommodate the crack opening in the metal layers without
over-straining the fibres, thus protecting the fibres from fracture [6].

Figure 1.2: Bridging mechanism

The development and continued refinement of FMLs and their variants has been
driven heavily by the improved damage tolerance via the fibre bridging mechanism. The
first generation of FML coming into being was ARALL in the early 1970s. ARALL con-
sisted of thin 2024-T3 layers bonded to aramid-epoxy composite layers alternately. AR-
ALL requires laminate stretching after cure to mitigate the poor compressive properties
of the aramid fibres, which limits its application in service [7]. Later in 1980s, glass fibres
were introduced in place of aramid fibres to FMLs, leading to the variant of FMLs well
known as Glare. The introduction of glass fibres alleviated the need for post-stretching
since the the stability of glass fibres in compression is superior to that of aramid fibres
[7]. Instead of dealing with unlimited mix of potential aluminium thicknesses and orien-
tations of S2-glass fibres embedded in an FM 94 adhesive system, several standard Glare
grades have been established and are summarised in Table 1.1. Glare has been success-
fully applied as a skin material in the upper fuselage structures on the wide-body Airbus
A380 due to its superior damage tolerance and slow crack growth rate.
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Table 1.1: Standard Glare grades [8]

Glare sub Alloy Metal thickness Prepreg Main beneficial
grade [mm] orientation characteristics

Glare 1 - 7475-T761 0.3-0.4 0/0 Fatigue, strength,
yield stress

Glare 2 A 2024-T3 0.2-0.5 0/0 fatigue, strength
B 2024-T3 0.2-0.5 90/90 fatigue, strength

Glare 3 - 2024-T3 0.2-0.5 0/90 fatigue, impact
Glare 4 A 2024-T3 0.2-0.5 0/90/0 fatigue, 0◦ strength

B 2024-T3 0.2-0.5 90/0/90 fatigue, 90◦ strength
Glare 5 - 2024-T3 0.2-0.5 0/90/90/0 impact
Glare 6 A 2024-T3 0.2-0.5 ±45 shear, off-axis

properties
B 2024-T3 0.2-0.5 ∓45 shear, off-axis

properties

1.1.2. ANALYSIS TOOLS FOR FMLS

During the course of developing the FML material technology, efforts have been made
to develop analysis tools to understand and characterise the fatigue behaviour of FMLs
with the aim to further explore the damage tolerance benefits of FMLs. These analysis
tools include analytical models for fatigue crack initiation prediction and fatigue crack
growth prediction [3, 6, 9, 10].

Prediction of fatigue crack initiation in FMLs is based upon the crack initiation be-
haviour of monolithic metal constituent material. The fibre bridging mechanism is not
present during the crack initiation phase in FMLs, the actual stress cycles in the metal
layers can be calculated using the Classical Laminate Theory (CLT) and S-N data for the
given monolithic metal can be used to determine the fatigue crack initiation life [9, 10].

The fibre bridging mechanism, on the other hand, is present during the crack growth
phase in FMLs, which has to be properly accounted for in order to be able to develop
damage tolerance tools with the capability of accurately predicting the crack growth in
the metal layers. Early crack growth prediction models for FMLs adopted phenomeno-
logical approaches by treating an FML as a bulk material analogous to the prediction
models for monolithic metals [11–15]. These empirical models could not adequately
capture the impact of the fibre bridging mechanism on the crack growth behaviour in
the metal layers [16], since they neglected the composite nature of FMLs.

A breakthrough was achieved in the development of the damage tolerance tools for
FMLs when the composite nature of FMLs were embraced: analysing the interaction be-
tween cracked metal layers and fibre layers, and simultaneously predicting the coupled
delamination growth at the metal/composite interfaces and crack growth in the metal
layers. Marissen obtained an analytical solution for ARALL FMLs based on the assump-
tions of a fixed elliptical delamination shape and a constant bridging stress distribution
along the delamination front [17]. These two major assumptions were later found in-
consistent, making it inappropriate for other FMLs. However, Marissen’s model already
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shed light on how the analysis of the coupled damage mechanisms in FMLs could be ap-
proached. Alderliesten further built on Marissen’s work by discretising the delamination
shape over the cracked metal layers into bar elements and implementing the displace-
ment compatibility between crack opening in the metal layers and bridging fibre defor-
mation at every bar elements, allowing a realistic bridging stress distribution and thus
the coupled delamination growth and crack growth to be calculated [3, 6]. Extensions
have been made based on Alderliesten’s model to further explore the damage tolerance
properties of FMLs, such as residual strength [18], variable amplitude loading [19–21],
and generalised laminate configurations subjected to tension and bending [7].

1.2. MOTIVATION FOR THIS WORK
The damage tolerance properties of FMLs and the corresponding well developed dam-
age tolerance analysis tools were presented in the previous section. Nevertheless, it is
crucial to develop an analytical model for predicting fatigue crack growth behaviour in
FMLs with multiple-site damage scenarios for the following reasons:

Load Transfer

Secondary Loads

BypassBearing Friction

Secondary Bending Interference

Figure 1.3: Stress components in a mechanically fastened joint [4]

First, although damage tolerance philosophy is recommended by the airworthiness
regulations for the design of primary aircraft structures, its compatibility with an indefi-
nite structural life is an identified deficiency. The philosophy continually ensures struc-
tural integrity through detection and repair of damages; however, it does not define a
limit of validity of the approach in terms of structural life. There is a risk that widespread
fatigue damage (WFD) within one structure arises over time. A classic example of the
occurrence of WFD is the Aloha Airline Flight 243 that suffered explosive decompression
as a result of sudden link-up of small fatigue cracks initiating from adjacent rivet holes
in a longitudinal lap joint [22]. In order to combat the possibility of the WFD failure
caused by crack growth at multiple sites within one structural element, i.e., multiple-site
damage (MSD) scenario, the airworthiness regulations were revised in 2010 to include
the definition of a Limit of Validity (LOV). The LOV is a period of structural life prior to
which WFD will not occur, placing limits on the damage tolerance philosophy [23, 24].
It is therefore crucial to examine MSD crack growth behaviour of fibre metal laminates
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even though they are every successful in the context of damage tolerance philosophy.
Second, MSD can potentially occur in FML structures, particularly mechanically fas-

tened FML joints. The ductility provided by the metal constituent in FMLs makes them
suitable for the application of mechanical joining techniques [4]. Relatively small FML
panels can be mechanically jointed together to form large scale fuselage skin structures.
Non-symmetric lap or butt joints, where secondary bending could occur, are normally
adopted due to the aerodynamic requirements of the fuselage. In Fig. 1.3, the stress com-
ponents in a non-symmetric mechanically fastened joint are illustrated. The stress rising
contributors like pin bearing, open hole subjected to bypass loading, deteriorated peak
tensile stress at the faying surface as a result of secondary bending, as well as fretting re-
sulting from friction, make such joints vulnerable to multiple crack initiations at fastener
hole edges or around hole edges in a critical fastener row.

σ
nom

+σ
bending

fastener hole

a

(a) Part through crack configuration in a thick laminate

σ
nom

+σ
bending

fastener hole

a

(b) Through thickness crack configuration in a thin laminate

Figure 1.4: Fatigue crack scenarios in FMLs

It is important to make a distinction between the crack configuration in thick jointed
laminates and that in thin jointed laminates. A schematic illustration of respective crack
configurations in a thick FML and a thin FML is shown in Fig. 1.4, the associated through-
thickness stress distributions resulting from superposed tensile stress and secondary
bending are also illustrated.

Thick laminates need to be used as a fuselage skin material for wide-body airplanes
where the pressurisation loads in the skin are higher than that of narrow-body airplanes,
for instance the application of Glare as fuselage skin on the Airbus 380. As shown in
Fig. 1.4(a), secondary bending results in through-thickness stress distribution. Although
secondary bending deteriorates the peak tensile stress at the faying metal layer, resulting
in the earliest crack initiation at this layer, the fibre layers provide a barrier which pre-
vents the crack from growing in the thickness direction. A crack has to initiate separately
in the next metal layer with less tensile stress while the remaining metal layers have sig-
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nificantly long crack free time as a result of the decreasing tensile stress. The crack free
metal layers, together with the intact fibre layers, provide the same bridging mechanism
as the fibre bridging. Depending on the number of crack free metal layers and the crack
free longevity, the bridging can be efficient enough to stop crack growth in the cracked
layers. In other words, the redundancy for the through-thickness crack is potentially so
high that a part-through crack configuration can only form in thick laminates. In this
case, the presence of part-through MSD cracks seems not a concern. Results from the
full-scale fatigue tests on Airbus 380 aircraft show few crack initiation sites and extremely
slow crack growth afterwards in the thick skin laminates, a number of cracks were ar-
rested after some growth due to the bridging mechanism [25].

The relatively lower pressurisation loads in a narrow-body airplane with smaller fuse-
lage diameter permits the use of thin laminates. In spite of the barrier to through-thickness
crack growth provided by the fibre layers in thin laminates, the redundancy for the through-
thickness crack growth can be low enough that all the metal layers are cracked (see
Fig. 1.4(b)). Multiple through-thickness cracks in one fastener row can grow with ac-
celerated rate in consequence of crack interaction.

The approach in this research will aim at analysing the MSD crack growth in thin
FMLs for the potential application of such damage tolerant laminates on narrow-body
airplanes.

Third, analytical damage tolerance models tend to analyse the crack growth behaviour
of isolated symmetric cracks in FMLs. The major limitation of these damage tolerance
tools for analysing MSD is that the crack interaction cannot be captured, leading to very
non-conservative predictions. Finite element modelling (FEM) is versatile and can be
adopted for analysing MSD problem in FMLs. However one has to keep in mind that
MSD in FMLs is a fatigue issue, which involves iteration of calculating the states of MSD
cracks. FEM can only be adopted at the expense of computational efficiency. There-
fore an analytical approach with high computational efficiency is sought in this work for
MSD crack growth prediction in FMLs.

1.3. OBJECTIVES OF THIS WORK
The objective of this work is to develop computationally efficient methodologies for pre-
dicting crack growth behaviour in FML joints containing MSD cracks. This objective is
met by achieving the following sub-objectives:

• Develop an analytical model that enables analysis of MSD crack growth behaviour
in flat FMLs subjected to far-field tension

• Develop a prediction model for fatigue crack growth behaviour in FMLs subjected
to tension and pin bearing

Far-field tension is present in the form of bypass loading in FML joints and pin bear-
ing is resulting from the load transfer from one jointed FML to another. These two are
the major loading components affecting MSD crack growth behaviour in FML joints.

Secondary bending is another significant influence on fatigue crack growth in FML
joints. The influence of secondary bending will be analysed qualitatively, not analyti-
cally incorporated into the prediction model. The reason is that analysing the effect of
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secondary bending on crack growth behaviour in FMLs leads to the employment of the
analytical model of Wilson [7], which could be a computationally consuming approach.
It is argued in this work that the effect of secondary bending on MSD crack growth be-
haviour in FMLs should be evaluated by employing correction factors in order to obtain
a fast and efficient estimation.

1.4. NATURE OF FATIGUE IN FMLS
MSD problem in monolithic metals has been extensively studied [26–33]. However, these
methods from open literature for monolithic metals are inappropriate to be applied for
FMLs as the fibre constituent leads to FMLs having different nature of fatigue crack
growth compared to their monolithic metal counterparts. The nature of fatigue in FMLs
is explained in comparison with that in monolithic metals to shed light on what impor-
tant aspects have to be considered in analysing MSD in FMLs.

As a result of their hybrid nature, FMLs have different fatigue behaviour compared
to monolithic metal. The fatigue resistant fibres which remain intact in the wake of fa-
tigue cracks in metal layers in FMLs act as a second load path and restrain the opening of
the cracks. Due to this bridging mechanism, the driving force for the crack is consider-
ably reduced and the crack growth in FMLs is quite slow in comparison with monolithic
metal. The bridging mechanism, however, is not effective in the crack initiation phase
for FMLs [9]. In addition, the cyclic stress in the metal layer of FMLs is a superposition
of the stress induced by the applied load and the curing stress [9, 10]. These two factors
result in a quite short initiation life for FMLs.

Fig. 1.5 shows the contributions of the initiation life and crack growth life to the total
fatigue life for FMLs and monolithic aluminium. The differences in contributions are
typical for FMLs and monolithic metals [9]. As a result of the very fast crack growth in
monolithic metal, the crack growth life only accounts for a very small part of its fatigue
life. On the contrary, the superior fatigue crack growth resistance of FMLs results in a
considerably long crack growth life which covers the main part of the total fatigue life.

N (initiation)

Glare 3-3/2-0.3

2024-T3

0 100000 200000 300000

N (crack growth)

Figure 1.5: Fatigue life comparison for FMLs and monolithic aluminium [9]

The difference in ratio of crack growth life to overall fatigue life for metals and FMLs
has implications on the fatigue behaviour of such materials in an MSD scenario. In order
to discuss these differences, the influence of MSD cracks will be divided into two cate-
gories: load redistribution effects and crack-tip interaction effects. Crack tip interaction



1.4. NATURE OF FATIGUE IN FMLS

1

9

N

a
s

N
metal N

FML
N

FML_single

with      MSD

without MSD
metal

FMLslink-up point 

0

a

∆ Ν

Figure 1.6: Schematic comparison of crack growth with MSD and without MSD for FMLs and metal

effects occur when the proximity of multiple crack tips results in an interaction of the
stress singularities in front of the crack tips. For two cracks approaching each other, this
tends to result in rapid fatigue propagation and ultimately linkup of the cracks. Load
redistribution effects occur due to a loss in component stiffness due to the presence of
multiple damages. These effects will be present over the entire range of damage sizes
and proximities (i.e., they are also present when crack-tip interaction effects are present),
although they are easier to describe for cracks sufficiently far that crack-tip interaction
effects are negligible. In such a case, the crack propagation of one crack will be increased
due to the increase in stress in the undamaged region of the component resulting from
other damaged regions.

The relative crack growth behaviour of metals and FMLs, with and without MSD, is
shown schematically in Fig. 1.6. The relatively rapid crack growth behaviour of the metal
implies that cracks in an MSD scenario will grow towards each other relatively quickly re-
sulting in early link-up. Crack link-up will rapidly increase the size of the primary crack,
resulting in a reduction of fatigue life. The reduction in crack growth life is thus heavily
influenced by crack-tip interaction effects. Conversely, the slower fatigue crack growth
rate in FMLs combined with the shorter crack initiation life means that a significant por-
tion of the MSD crack growth life in FMLs can occur well before the presence of crack-tip
interaction effects. During this time, the cumulative effects of load redistribution result-
ing from the presence of multiple damages can result in a significant reduction in fatigue
life (∆N ).
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1.5. THE ALDERLIESTEN CRACK GROWTH MODEL
This work will be based on the analytical model proposed by Alderliesten for predict-
ing isolated central cracks for FMLs, for the sake of conciseness and computational ef-
ficiency. The Alderliesten model is summarised here in order to provide a baseline and
to aid in explaining what modifications and extensions have to be made to analyse the
crack growth behaviour in FML joints containing complex MSD crack scenario, sub-
jected to complex loading system.

Using the Linear Elastic Fracture Mechanics (LEFM) together with the principles of
superposition and displacement compatibility, Alderliesten has successfully made the
prediction of coupled propagation of cracks in the metal layers and delaminations at
metal/composites interfaces [3, 6]. Both the crack extension and delamination exten-
sion are determined with LEFM methods. The stress intensity factor (Eq. 5.1) at the crack
tip is used to characterise the crack extension in the metal layers while the strain energy
release rate (Eq. 5.2) is applied to estimate the extension of delamination. For both crack
growth resistance and delamination extension resistance of FMLs, experimentally de-
termined Paris relations are applied to determine respective growth rates with the corre-
sponding stress intensity factor and strain energy release rate [3, 6].

Ktot al = K f f +Kbr (1.1)

The stress intensity factor, Ktot al , at the crack tip in an FML is calculated using the
principle of superposition, as expressed in Eq. 5.1. K f f is due to the stresses in the metal
layers comprising the stress resulting from the far-field applied stress and the tensile
residual stress resulting from the mismatch in thermal coefficients of the metal and fibre
constituents, while Kbr is due to the bridging stress distribution in the intact bridging
fibres in the wake of a through-thickness fatigue crack. Ktot al therefore is a function of
the bridging stress distribution. The strain energy release rate, G , is also a function of
the bridging stress distribution (see Eq. 5.2). The bridging stress distribution therefore
needs to be determined at first in order to resolve the crack extension and delamination
growth.

G = n f t f

2 j E f
(

nm tmEm

nm tmEm +n f t f E f
)(S f (x)+Sbr (x))2 (1.2)

The bridging stress distribution along the crack is resolved by implementing the dis-
placement compatibility between the crack opening in the metal layers and the defor-
mation of bridging fibres over delaminated length [3, 6]. Since the fibre layers are bonded
to the metal layers at the delamination front, the opening displacement of the fatigue
cracked metal layers should be identical to the deformation of the bridging fibres over
the delaminated length. See Eq. 5.3. The opening displacement of the cracked metal
layers, which is given on the left side of Eq. 5.3, consists of opening displacement , v f f ,
due to the stresses in the metal layers and closing displacement, vbr , due to the bridg-
ing stresses in the bridging fibres. On the right side of Eq. 5.3, the deformation of the
bridging fibres over the delaminated length includes elongation of the bridging fibre lay-
ers resulting from the bridging stresses, δ f , and shear deformation of the prepreg layers,
δpp .
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v f f (x)− vbr (x) = δpp (x)+δ f (x) (1.3)

For a central crack in an FML, the stress intensity factor, K f f and the crack opening
term v f f due to the far-field stress in the metal layers can be given with the monolithic
metal panel solutions, which are given by Alderliesten as Eq. 1.4 and Eq. 1.5 respectively.
σm represents the far-field stress in the metal layers, which can be calculated with the
CLT [9, 10]. Em represents the Young’s modulus of the metal. The coordinate x is illus-
trated in Fig. 1.7.

K f f =σm
p
πa (1.4)

v f f = 2
σm

Em

√
a2 −x2 (1.5)

While the stress intensity factor, Kbr , and the crack closing term, vbr , due to the
bridging stress distribution are expressed as integrals of the respective stress intensity
factor and crack opening due to symmetric point-loads (see Fig. 1.7) along the delami-
nation boundary.

Alderliesten approximates Kbr with the following equation:

Kbr =
∫ a

as

Kbr (xi )d xi (1.6)

with

Kbr (xi ) = 2Pp
πa

a√
a2 −x2

i +b2(xi )

(
1+ 1

2
(1+ν)

b2(xi )

a2 −x2
i +b2(xi )

)
(1.7)

while vbr is given as:

vbr =
∫ a

as

v(x, xi )d xi (1.8)

with v(x, xi ) denoting the crack opening at location x due to symmetric point-loads act-
ing at location xi (Fig. 1.7).
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Figure 1.7: Illustration of symmetric point-loads acting at the delamination boundary b(xi ) and at locations xi
[3]
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It becomes obvious that the displacement of the metal crack and the delaminated
length of the bridging fibres vary along the crack flank. Alderliesten evenly divides the
delamination shape into bar elements to implement Eq. 5.3 at each bar location for solv-
ing the bridging stress. Fig. 1.8 schematically illustrates the division of the delamination
shape. Moreover, the crack closing component, vbr , at one bar location is not only a
function of the bridging stress at the bar element location, but also affected by the bridg-
ing stress at each bar element (Eq. 1.8). As a result, the displacement compatibility has
to be implemented simultaneously for all the bar elements, forming a system of linear
equations which can be solved with linear algebra. The size of the matrix for the system
of linear equations is equal to the number of the bar elements.

Bar element i
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Figure 1.8: Discretization for calculating the bridging stress distribution [3]

Alderliesten implements the model in a numerical program. The overall structure of
the program is shown in Fig. 1.9. It is worth noting that Eqs. 1.4-1.8 are developed for
symmetric crack scenarios in FMLs.

1.6. ISSUES IN DIRECT EXTENDING THE ALDERLIESTEN MODEL

FOR MSD SCENARIOS
Based on the description in the preceding section, it is essential to calculate the bridging
stress distribution by simultaneously implementing the displacement compatibility at
all bar elements. In consequence, extending the Alderliesten model to simultaneously
solve all crack states of FMLs containing MSD scenarios faces several issues. To explain
these issues, an example of an MSD scenario in an FML is schematically illustrated in
Fig. 1.10.

The first issue is to calculate the crack opening displacements (CODs) for a row of
cracks depending on the configuration. For evenly spaced cracks subjected to far-field
tensile stress, the CODs are can be found in [34]. However, non-evenly spaced cracks are
more common in real structures, such as the illustrated case in Fig. 1.10, which can be
attributed to the fact that the boundary conditions for all the crack tips are not the same
in a real structure with a finite width. As a result, the growth behaviour of a crack tip
can differ from the rest, leading to non-evenly spaced cracks whose CODs are difficult
to derive. In addition, the crack closing displacement, vbr , at a bar element in one crack
due to the bridging stresses, such as the bar element i in Fig. 1.10, should be coupled with
the bridging stress distributions over all cracks. Derivation of an analytical equation for
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Figure 1.9: Flow diagram for the Alderliesten model (adapted from [3])

this vbr is extremely challenging.
The second issue is the computational efficiency of simultaneous prediction of the

bridging stress at all bar elements over multiple cracks. As in the example illustrated
in Fig. 1.10, the closing displacement, vbr , of bar element i should be a function of the
bridging stresses at all bar elements of Crack 1, Crack 2 and Crack 3. Thus a matrix whose
size could be around 3 times larger than that for one crack configuration needs to be
constructed in order to solve for the bridging stresses simultaneously. Depending on
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Figure 1.10: Discretization of delamination shapes for all cracks [1]

the number of cracks and the length of each crack of a generic MSD configuration in an
FML, the much larger matrix constructed to predict bridging stress distribution results
in computational inefficiency.

The third issue could be that the Alderliesten model cannot analyse the non-symmetric
crack opening and non-symmetric delamination shapes for two crack tips of an asym-
metric crack in an MSD scenario. The Alderliesten model has to be extended to incorpo-
rate the non-symmetry effects.

1.7. ALTERNATIVE APPROACH FOR PREDICTING CRACK GROWTH

IN FMLS WITH MSD SCENARIOS
In the face of the issues and limitation in direct extension of the Alderliesten model for
MSD crack growth in FMLs, a simplified MSD prediction approach for FMLs is an alter-
native, i.e., to solve each crack state by idealising the effect of other cracks in terms of
reduction in overall stiffness.

The overall stiffness of a structure is related to the material stiffness (Young’s modu-
lus) and geometric stiffness of the structure [35]. The material stiffness of a panel is an
inherent property which cannot be changed merely by the presence of a crack. How-
ever, the presence of a crack can decrease the geometric stiffness of a structure by re-
ducing the net sectional area, resulting in larger deformation under the same loading
condition as the remaining material has to carry the entire applied load. As a result, the
crack growth rate increases with the increasing crack length according to LEFM. In case
the cracked panel is reinforced by stiffeners which increase the effective stiffness of the
cracked panel, the deformation is restrained. The crack growth rate decreases when the
crack grow towards an adjacent stiffener as a result of the load redistribution from the
cracked skin to the stiffeners [35]. Another example is that the crack growth in FMLs is
much slower compared to that of a crack in a monolithic metal panel because the intact
bridging fibres partially compensate the geometric stiffness reduction in the metal layers
[8].

The reverse case of a cracked panel reinforced by stiffeners is the presence of adja-
cent cracks in the panel. In addition to one single crack in a monolithic metal panel,
the presence of collinear adjacent cracks prohibitively decreases the effective stiffness
of the panel as no other material could compensate the stiffness reductions. As a result,
the crack growth rate of the single metal crack prematurely soars up. By contrast, the
effect of the presence of adjacent MSD cracks on the growth behaviour of a single crack
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in FMLs is not as pronounced as in metal. This is attributed to the compensation made
by the intact fibres in the wake of MSD cracks to the stiffness reductions in metal layers.
Nevertheless, the presence of MSD cracks in FMLs still results in reductions in the ge-
ometric stiffness which lead to load redistribution from the locations of MSD cracks to
the single crack.

Modelling the effects of adjacent MSD cracks on a single crack in terms of load re-
distribution mechanism in FMLs permits solving the state of the single crack without
knowing all the crack opening of other cracks, and solves a relatively small matrix only
for the single crack every step. This process can be iterated until all crack states have
been calculated for a given MSD configuration.

One task arising in this alternative approach is to calculate the non-symmetry effects
on the crack growth behaviour of a non-symmetric crack in an FML: to derive K f f and
v f f solutions for an eccentric crack in the metal layer, obtain Kbr and vbr solutions for
a non-symmetric delamination shape with respect to the crack centre. A few more steps
are needed prior to being able to analyse MSD crack growth behaviour in FMLs.

1.8. THESIS OVERVIEW
Considering the objectives of this work and the alternative approach for MSD in FMLs,
an overview of its structure is given in Fig. 1.11. Each chapter will address one issue that
is needed to approach the objective of this work, they are summarised in the following:

Chapter 2 - Load redistribution mechanism. This chapter will describe the develop-
ment of an analytical model that captures the effects of load redistribution caused by re-
ductions in geometric stiffness on the crack growth behaviour in FMLs, verify whether or
not modelling the load redistribution mechanism is a feasible means of analysing crack
growth behaviour in FMLs containing multiple cracks.

Chapter 3 - COD and stress intensity factor solutions for eccentric cracks in metals.
Based on the Westergaard stress function for crack problem in metals, three solutions
will be developed in order to obtain the optimal COD solution and K solution for a non-
symmetric crack in a metal panel.

Chapter 4 - Non-symmetric crack growth in FMLs. The COD and K solution ob-
tained in Chapter 3 will be applied to calculate the states of non-symmetric cracks in the
metal layers due to the stress in the metal layers. A solution for calculating the stress
intensity factor and crack closing due to fibre bridging in non-symmetric delamination
shapes with respect to the crack centre will be developed to account for influence of
non-symmetric delamination shapes on the crack growth behaviour in the metal layers.

Chapter 5 - MSD in flat FMLs. An analytical model for MSD crack growth prediction
in FMLs subjected to far-field tensile loading will be developed based on the model in
Chapter 2 and the model in Chapter 4. The load redistribution mechanism and non-
symmetric growth behaviour in FMLs containing multiple cracks can be simultaneously
analysed.

Chapter 6 - Pin loading effects. In this chapter, the crack growth behaviour in FMLs
subjected to tension and pin loading will be analytically predicted.

Chapter 7 - MSD in FML joints. The fulfilment of this work’s objective will be eval-
uated. The output of a methodology based on the model in Chapter 5 and the model in
Chapter 6 for MSD in FML joints will be compared to test data. Areas where the method-
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Figure 1.11: Structure of this research

ology falls short will be specifically discussed. How the model can be further developed
to fulfil the objective will be described.

Chapter 8 - Discussion and conclusions. A detailed discussion on the assumptions
made in the development of this work and their consequences on the model output, the
overall performance of the models developed in this research and final conclusions will
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be provided in this chapter.
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2
PREDICTING THE INFLUENCE OF

DISCRETELY NOTCHED LAYERS ON

FATIGUE CRACK GROWTH IN FIBRE

METAL LAMINATES

This paper presents an analytical model for fatigue crack growth prediction in Fibre Metal
Laminates (FMLs) containing discretely notched layers. This model serves as a precur-
sor in the development of a simplified prediction methodology for modelling the effect of
load redistribution on a single crack in FMLs containing Multiple-site Damage (MSD) sce-
nario. The model mainly focuses on capturing the influence of load distribution around
discretely notched layers on the growth behaviour of an adjacent crack in an FML panel.
The utilised approach in the model is the use of linear elastic fracture mechanics (LEFM)
in conjunction with the principle of superposition and displacement compatibility. The
proposed model is also validated using experimental data.

This chapter has been published in Engineering Fracture Mechanics 145, 1-14 (2015) [1].
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2.1. INTRODUCTION
The design philosophies used to ensure the integrity of aircraft structures over their life-
time have evolved over time. Currently, the design philosophy known as damage tol-
erance is recommended by the airworthiness regulations for the design of primary air-
craft structures [2, 3]. Goranson defines damage tolerance as the ability of structure to
sustain anticipated loads in the presence of fatigue, corrosion or accidental damage until
such damage is detected, through inspections or malfunctions, and repaired [2]. Although
this definition is generally agreed upon, various interpretations on the implementation
of damage tolerance exist, particularly related to the determination of inspection inter-
vals for metallic and composite aircraft structures. For the case of metallic structures,
inspection intervals are set based upon a detection window defined as the service life
required for a damage to grow from a detectable size (based on inspection capabilities)
to a critical size (based on limit load carrying capability). Central to this is the concept
of slow-growth and the ability to predict damage growth behaviour. Conversely, a no-
growth approach is typically adopted in composite structures whereby damage growth
under service conditions is not permitted and inspection intervals are specified based
on the statistical likelihood of damage-causing events. This paper focuses on the slow-
growth interpretation most commonly adopted for metallic structures.

A flaw identified in the damage tolerance design philosophy is its compatibility with
an indefinite structural life. The philosophy focuses on detection and repair of damages
through continued maintenance; however, it does not define a limit to the validity of this
approach in terms of structural life. As damage tolerance analyses tend to focus on the
evolution of singular or isolated damage states, there is a risk that they will be invalidated
over time due to the occurrence of widespread fatigue damage within a structure. The
classic example of this occurring is the Aloha Airlines Flight 243 that on April 28, 1988
suffered explosive decompression in flight due to the sudden link-up of small fatigue
cracks at adjacent rivet holes in a longitudinal lap joint [4].

To combat the possibility of another failure due to widespread fatigue damage, the
aircraft regulatory authorities have revised the regulations in 2010 with new rules per-
taining to Ageing airplane safety widespread fatigue damage [5]. This revision included
the definition of a Limit of Validity (LOV) of the engineering data (including the damage
tolerance analyses) which support the continuing structural maintenance of an aircraft.
These new regulations effectively require the aircraft OEMs to establish a firm limit to the
operational life of a given aircraft type (within a given type certificate) that is substanti-
ated with test evidence and analysis. As a result, there is a renewed interest in robust
and efficient analysis methods for predicting Widespread Fatigue Damage (WFD) and
its effects.

Fibre Metal Laminates are a class of hybrid metal-composite materials that evolved
out of bonded metal laminate structures in the aerospace sector [6]. These materi-
als were developed and refined for their superior crack growth resistance and critical
damage size that complimented the damage tolerance design philosophy utilized in the
aerospace sector. This growth resistance enables longer inspection intervals while the
larger critical damage size enables the application of less sophisticated (and thus less
costly) inspection techniques. These properties led to the successful application of FMLs
as a fuselage skin material on the Airbus A380 passenger jet [6], and make FMLs a strong
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material candidate in future transport aircraft.
In light of the new LOV requirement placing limits on damage tolerance and the suc-

cess of FMLs in the context of damage tolerance, it is crucial to examine the WFD be-
haviour of FML structures. The open literature contains robust fatigue crack growth pre-
diction methodology that has been developed for constant amplitude loading by Alderli-
esten [7, 8], and subsequently refined for variable amplitude loading [9–11] and for part-
through cracks [12]. The robustness of these model even permits the prediction of FML
crack growth material based upon individual constituent material behaviour [13]. How-
ever, directly applying these models for predicting the WFD crack growth behaviour of
FMLs is cumbersome and computationally cost-ineffective due to a load redistribution
calculation that will be elaborated on further in Section 2. Thus, a simplified approach
for dealing with WFD prediction in FML structures is needed.

This paper presents and validates a precursor model for predicting the WFD be-
haviour of FML structures: crack growth adjacent to a discretely notched layers in an
FML panel. This model is developed with the intention of applying it to model the load
redistribution effects on a single crack in an FML panel containing WFD. Section 2.2 pro-
vides a brief description of the current state of the art of FML crack growth prediction and
highlights the difficulty in directly applying this approach for WFD and motivating the
proposed precursor model. Section 2.3 describes the development of the FML WFD pre-
cursor model while Section 2.4 presents an experimental program. Section 2.5 provides
the validation of the model using experimental data.

2.2. BACKGROUND: STATE OF THE ART IN FML CRACK GROWTH

PREDICTION

2.2.1. FATIGUE CRACK GROWTH BEHAVIOUR IN FMLS
Fatigue crack propagation in FMLs comprises crack growth in metal layers and delam-
ination at the interfaces between metal layers and prepreg layers [7, 8]. FMLs derive
their superior crack growth resistance due to the fibre bridging mechanism. Fig. 2.1 de-
picts this mechanism. The fatigue resistant fibres remain intact while fatigue cracks are
present in metal layers of FMLs and act as a secondary load path over the crack. Partial
load is transferred from the crack tip in the cracked metal layers into intact fibre lay-
ers. Consequently less stress is transferred around the crack tip in metal layers and the
corresponding stress intensity factors at the crack tips therefore are reduced. In addi-
tion, this bridging mechanism introduces cyclic shear stresses at the interfaces between
metal layers and fibre layers, which could induce delamination growth at the interfaces.

Alderliesten has developed an analytical model to predict the coupled crack prop-
agation in metal layers and delamination growth at the interface between metal layer
and fibre layer in FMLs, based on LEFM, superposition and displacement compatibility
[7, 8]. The overall approach of his model will be summarized here for a given initial crack
and delamination geometry. For a more in-depth review, please refer to [7, 8].

Crack extension in the metal layers is calculated using classical LEFM based on a
cyclic crack tip stress intensity factor (∆K ) and an experimentally derived Paris relation
for the crack growth resistance of the metallic material. The stress intensity factor at a
given load is decomposed into two terms using superposition. The first term, K∞, rep-
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Figure 2.1: Bridging Mechanism

resents the stress intensity factor in the cracked metal layers due to the far-field applied
load. The reduction in the stress intensity factor at the crack tip due to the fibre bridg-
ing mechanism,Kbr , can be superimposed onto the far-field case, resulting a total stress
intensity factor:

Ktot al = K∞+Kbr (2.1)

Extension of the interface delamination is similarly calculated using LEFM with an
experimentally derived Paris relation for the delamination growth resistance. Due to the
complexity of describing the stress state at an interface between two dissimilar materi-
als (and thus calculating K ), the Paris relation is described in terms of the strain energy
release rate, G . As G varies along the delamination front, according to the local bridging
stress state (Eq. 2.2), Alderliesten subdivides the delamination into columns perpendic-
ular to the crack and makes the assumption that delamination growth occurs only in this
direction. Propagation of the delamination within the crack growth direction is assumed
to be tied to the crack tip [14].

G = n f t f

2 j E f
(

nm tmEm

nm tmEm +n f t f E f
)(S f +Sbr )2 (2.2)

The extension of the metal fatigue crack and interface delamination can only be re-
solved once the bridging stress distribution is determined. Alderliesten calculates the
bridging stress distribution along the crack length for a given fatigue crack and delami-
nation geometry by applying displacement compatibility. Over the cracked region of the
FMLs, the crack opening in the metal layers ( as a result of crack opening due to the far-
field load, v∞, and crack closing due to the bridging stresses , vbr ) must be identical to
the elongation and deformation of the prepreg layers over the delaminated length, δ f ,
plus the shear deformation of the fibre layer, δbr .

v∞(x)− vbr (x) = δ f (x)+δpp (x) (2.3)

In this equation, vbr , δ f , and δbr all depend on the bridging stress distribution. This
equation can only be solved numerically with a square matrix whose size is consistent
with the number of even subdivision columns in the delamination shape [7, 8].
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2.2.2. CHALLENGES IN PREDICTING MSD GROWTH IN FMLS

From previous description of FMLs crack growth model, it becomes apparent that the
crack opening displacement of cracks in metal layers and using a matrix to numerically
calculate the bridging stress distribution are two essential elements in implementation
of displacement compatibility. To solve all crack states of FMLs containing MSD sce-
nario simultaneously with the Alderliesten crack growth model therefore faces these two
major challenges: 1) the crack opening displacement for each crack is very difficult to be
derived analytically. 2) Each crack has a matrix to be solved and these cracks are coupled
with each other. To solve bridging stress distributions for all cracks constructs a very
large matrix, depending on the number of cracks, which is computationally inefficient.
These two challenges make the use of FMLs crack growth model for MSD scenario prob-
lematic. Consequently, a simplified MSD prediction model for FMLs is an alternative,
i.e. to solve each crack state by idealising the effect of other cracks in terms of reduction
in overall stiffness.

The overall stiffness of a structure depends not only on the material stiffness (Young’s
modulus) but also geometric stiffness of the structure [15]. The presence of a crack in a
panel reduces geometric stiffness because of a reduction in the net sectional area. This
reduction in geometric stiffness results in an increase of the panel deformation because
the cracked panel continues to carry the entire applied load. In an unstiffened metal
panel, as no additional structural element compensates the reduction in geometric stiff-
ness, a crack in the panel easily gains high crack growth rate according to LEFM. On the
contrary, geometric stiffness reduction in cracked metal layers is compensated partially
by the intact fibres over the crack in FMLs. Thus the crack growth rate of a crack in FMLs
is almost stable for significant large portion of the crack growth life [6].

In the case of MSD scenario, the influences of multiple cracks adjacent on a single
crack can be divided into crack tip interaction effects and load redistribution effects.
Crack tip interaction effects are attributed to the interaction of the stress singularities in
front of two approaching crack tips, which result in rapid fatigue growth and link-up of
cracks. Load redistribution effects are attributed to the geometric stiffness reduction in
the presence of MSD cracks. These effects are present over the whole fatigue growth life.
Because the nature of slow crack growth behaviour in FMLs, a significant portion of MSD
crack growth life in FMLs can occur before crack tip interaction effects are present. Over
this period, the crack tip interaction effects can be neglected and the cumulative effects
of load redistribution can result in significant decrease in fatigue life of FMLs.

Modelling the effects of adjacent MSD cracks on a single crack as local reductions
in geometric stiffness in FMLs permits solving the single crack state without knowing all
the crack opening displacement of other cracks, and provides a more efficient numerical
solution that only one relatively small matrix for the single crack is solved every step. This
process can be iterated until all crack states have been calculated.

2.2.3. ANALOGY BETWEEN AN ADJACENT FATIGUE CRACK AND DISCRETELY

NOTCHED LAYERS

Since this precursor model is proposed with the intention of utilising it to model the
load redistribution effects on a single crack in an FML panel with MSD cracks, it mainly
focuses on modelling the effects of load redistribution caused by geometric stiffness re-
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(a) (b) (c)

Figure 2.2: Analogy between real MSD (a), removal of whold strips (b), removal of partial strips (c)

ductions on an adjacent crack growth in this paper. The geometric stiffness reduction
can be achieve by real MSD cracks or by removal of material ahead of the crack tip in
FMLs.

For a central crack with two other crack symmetrically located on both sides in an
FML panel, shown in Fig. 2.2(a), the effects of load redistribution caused by other two
cracks on the central crack growth change along fatigue loading. This is because the
adjacent cracks also grow under fatigue, making the validation of the proposed method
in terms of capturing load redistribution due to the stiffness reduction difficult with this
configuration.

Alternatively, the stiffness reductions at both sides of the central crack can be achieved
by removing material ahead of the crack tips. As shown in Fig. 2.2(b), two entire strips of
metal or fibre layers are symmetrically removed. This configuration also results in load
redistribution with stable reduction in geometric stiffness at the locations of the strips
under fatigue loading. However, removing the entire strip of metal layers in FMLs to
achieve fixed stiffness reduction is not practical from a manufacturing perspective. Be-
sides, differences in coefficient of thermal expansion between metal layers and fibre lay-
ers could also introduce other possible adverse effects during the high temperature and
high pressure curing cycle in an autoclave.

The stiffness reductions therefore are chosen to be achieved by discretely notched
layers. These artificial notches can be achieved by exclusive removal of partial strips of
metal layers or fibre layers, as depicted in Fig. 2.2(c). If partial metal strips are removed,
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the length of the artificial notch should be relatively long so that the stress concentra-
tions at the edges are as low as possible because no additional cracks at the notch edges
are desirable. The removal of fibre layers does not initiate any cracks at the notch edges.
These artificial notches simulate the reductions in geometric stiffness that can be cre-
ated by fatigue cracks, allowing the effect of stiffness reduction on a single fatigue crack
in FMLs via load redistribution methodology to be studied.
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Figure 2.3: Decomposition of load in FML

2.3. MODEL DEVELOPMENT
A central cracked FML panel with two artificial discretely notched layers symmetrically
located at both sides of the central crack is considered in this paper, as illustrated in
Fig. 2.2(c). The modelling relies on the principle of superposition and LEFM. The overall
stress intensity factor, Ktot al , for the central crack in this case can be determined by
superimposing the stress intensity factor due to bridging mechanism of fibres over the
crack, Kbr , and the stress intensity factor in cracked metal layer attributed to the far-
field applied load and load redistribution resulting from the presence of a notch in front,
Kr edi str i buti on . To aid in calculation of individual stress intensity factor term, the applied
far-field load in FML is also decomposed into two parts: load transmitted in intact fibres
over the crack, and load transmitted in remaining metal layers and fibre layers, which is
schematically illustrated in Fig. 2.3.

Ktot al = Kr edi str i buti on +Kbr (2.4)

The far-field applied stress in the laminate can be calculated if the applied load and
the configuration of the FML panel is known, see Eq. 2.5. The applied stress in metal
layer, σm,appl i ed , and in fibre layer, σ f ,appl i ed , can be calculated using the classic lami-
nate theory detailed in [16, 17].
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σappl i ed = Pappl i ed

nm tmW +n f t f W
(2.5)

where the subscript m refers to metal layer and f refers to fibre layer, n denotes the
number of specified layers, t represents thickness of each layer.

The far-field load transmitted by intact fibres over the crack, and by remaining metal
layers and fibre layers are given below:

P f ,1 =σ f ,appl i ed n f t f a (2.6)

Pm =σm,appl i ed nm tmW (2.7)

P f ,2 =σ f ,appl i ed n f t f (W −a) (2.8)

2.3.1. MODELLING LOAD REDISTRIBUTION DUE TO THE PRESENCE OF NOTCHES
The presence of notches in metal layers decreases the effective stiffness at the notched
area, which results in load transfer from the notched area to surrounding material, as
depicted in Fig. 2.4. This load transfer is characterized with the implementation of dis-
placement compatibility which is enforced by assuming an isostrain condition between
the artificial notched area and surrounding material. This compatibility condition is also
applied by Barsoum and Ravi Chandran in analysing stress intensity factors in layered
and functionally graded materials [18, 19]. The transferred load can vary as a function of
the crack length.

According to the classic laminate theory, the isostrain condition among intact metal
layers and fibre layers in FMLs must be valid. The stress distribution ahead of the crack
tip in metal layers can be characterised by the Westergaard stress distribution [20], it is
therefore assumed that the stress distribution ahead of the crack tip for the whole lami-
nate follows the same distribution in metal layers. Fig. 2.5 depicts the stress distribution
in the intact FML ahead of the crack tip, which is expressed as

σy y =
σwester g aar d√

1− (a/x)2
(2.9)

for a < x < xl and xr < x < W , where the value of σwester g aar d is still unknown due to
the fact that it is affected by Ftr ans f er r ed which is still not determined. Other quantities
mentioned in Eq. 2.9 are denoted in Fig. 2.5.

According to the assumption that the isostrain condition is also valid between the
discretely notched area and surrounding laminate, the stress distribution for xl < x <
xr is then given as Eq. 2.10. The stress distribution at the notch area is schematically
depicted in Fig. 2.5.

σnotch = Enotch

EF ML

σwester g aar d√
1− (a/x)2

(2.10)

with Enotch being the Young’s modulus of the remaining material at the notched area
andEF ML the Young’s modulus of the FML panel.
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Figure 2.4: Illustration of load redistribution due to notch

As shown in Fig. 2.5(a), when the crack tip is far away from the left edge of the arti-
ficial notch, the Westergaard stress distribution at the notch is smooth and the value is
low, the stress reduction due to reduction in the effective stiffness at the notch is there-
fore small, which means less load transfer between the two parts. However, when the
crack tip approaches the edge, due to the high stress value and steep gradient, the stress
reduction at the notch is higher resulting in higher load transferred to the crack tip, see
Fig. 2.5(b).

The applied far-field loads in the metal layers and fibre layers excluding the intact
fibres over the crack, shown in Fig. 2.5, are transmitted through the remaining material
at the crack plane, i.e. the intact FML and fibre layers at notched area. Based on the load
equilibrium, the applied far-field load is equal to the loads transmitted by the remaining
material at the crack plane which can be calculated by integrating the stress distribution
in Eqs. 2.9 and 2.10.

Pm +P f ,2 =
∫ xl

a
σy y tF ML dx +

∫ xr

xl

σnotch tnotch dx +
∫ W

xr

σy y tF ML dx (2.11)

where tF ML and tnotch represent thickness of the FML and total fibre layers at the artifi-
cial notch respectively.
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Figure 2.5: Illustration of stress distribution at cracked section

Substitute Eq. 2.9 and Eq. 2.10 into Eq. 2.11 and rewrite the equation forσwester g aar d :

σwester g aar d = Pm +P f ,2∫ xl
a

tF MLp
1−(a/x)2

dx +∫ xr
xl

Enotch
EF ML

tnotchp
1−(a/x)2

dx +∫ W
xr

tF MLp
1−(a/x)2

dx
(2.12)

The stress in metal layers is then determined in terms of σwester g aar d using the clas-
sic laminate theory [16, 17]. This stress, denoted as σm , is attributed to the applied far-
field load and the load redistribution caused by the notch. Based on the LEFM theory,
the corresponding stress intensity factor can be given

Kr edi str i buti on =σm
p
πa (2.13)

It has to be noticed that in the Alderliesten model, the Dixon correction factor is
implemented to account for the boundary condition. However, in the methodology
presented in this paper, the boundary effect has been taken into consideration using
the Westergaard stress distribution. The Dixon correction therefore should not be used
again.
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2.3.2. MODELLING LOAD REDISTRIBUTION DUE TO THE BRIDGING FIBRES

The intact fibres bridging the crack restrict the crack opening displacement resulting
from the applied far-field load and the redistributed load. Consequently, partial load in
metal layers is transferred into the intact fibres resulting in a reduction in stress intensity
factor at the crack tip. The calculation of the bridging stress σbr in the intact bridging
fibres follows the same displacement compatibility method used by Alderliesten [7, 8],
see Eq.(2.3). It is noteworthy that only the bridging stress in the bridging fibres is ac-
counted for when calculating the crack closing displacement, vbr , and corresponding
stress intensity factor, Kbr . For detailed calculation, one can refer to [7, 8].

2.3.3. CRACK GROWTH MODEL AND DELAMINATION GROWTH MODEL

Crack growth rate in metal layers can be estimated with the empirical Paris relation:

d a

d N
=Ccg (∆K )ncg (2.14)

values of material constants are Ccg = 2.17 ·10−12 and ncg = 2.94.
Similarly, delamination growth rate is estimated using the Paris relation based on the

strain energy release rate:

db

d N
=Cd (

√
Gmax −

√
Gmi n)nd (2.15)

where the material constants are derived from experimental data [8]. The values are
Cd = 0.05 and nd = 7.5.

2.4. TEST PROGRAM

2.4.1. MATERIAL AND SPECIMENS

The tested FMLs were Glare 3-3/2-0.4 panels. The lay-up for the tested Glare is defined as
[Al/0/90/Al/90/0/Al], where Al refers to a 2024-T3 aluminium layer, and 0 and 90 refer to
unidirectional prepreg layers and their orientation. The prepreg layer consists of S2-glass
fibres embedded in FM94 epoxy resin. The principle properties of Glare constituents are
given in Table 2.1.

Table 2.1: Material properties

Al Prepreg
Young’s modulus Ex [GPa] 72.4 48.9
Young’s modulus Ey [GPa] 72.4 5.5
Shear modulus Gx y [GPa] 27.6 5.55
Poisson’s ratio vx y 0.33 0.33
Poisson’s ratio vy x 0.33 0.0371
Thickness of single layer[mm] 0.4 0.133
Thermal expansion

22 ·10−6 6.1 ·10−6(0◦)
coefficient[1/°C] 26.2 ·10−6(90◦)
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Figure 2.6: Geometry for specimens with notches in Al layers (a), specimens with notches in prepreg layers (b)

With the intention to achieve different stiffness reduction at the location of the arti-
ficial notch, two kinds of discrete notches were manufactured in specimens: Glare pan-
els containing round-end slots exclusively in aluminium layers whose configuration is
schematically depicted in Fig. 2.6(a) with corresponding dimensions given as type 2 and
3 in Table 2.2, and Glare panels with circular notches exclusively in fibre layers whose
configuration is given in Fig. 2.6(b) and its dimensions are given as type 4 in Table 2.2.
3 layers of aluminium are removed for notch configuration depicted in Fig. 2.6(a) and
2 composites layers are removed for notch configuration in Fig. 2.6(b). Standard M(T)
Glare panels were also made to serve as baseline, type 1 in Table 2.2 denotes its specific
dimensions.

The M(T) specimens were made by laminating three intact layers of aluminium and
two cross-plies in between. For specimens with artificial notches in aluminium layers,
rectangular aluminium panels were cut at first. Then two holes were drilled at oppo-
site corners of the panels. Two pins were put in the holes to align and fix three alu-
minium panels when the artificial notches were milled. Once aluminium panels with
corresponding slots were ready, they were laminated with prepreg layers in which two
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pin holes were also made as in aluminium panels so that two pins could be used to align
the artificial notches in different layers during curing. For specimens with notches in fi-
bre layers, circular notches instead of slots were punched. As prepreg plies have very low
rigidity, it is difficult to cut slot notches using a punch whose head is circular. In addi-
tion, the influence of manufacturing slots or circular notches in fibre layers on stiffness
reduction is minor. Two pin holes were also made at opposite corners in both aluminium
layers and prepreg plies so that pins could also be applied to align notches in different
fibre layers during curing. After curing process, the panels were C-scanned to check
whether the notches in different layers were aligned.

The assembled 2024-T3 layers and prepreg layers were put into an autoclave to per-
form the curing process at a maximum temperature of 120 °C and maximum pressure of
6 bars. Each specimen was drilled a hole of 3 mm diameter with two saw-cuts of 1.5 mm
on both sides resulting in a total initial saw-cut length of 2a0 = 6 mm.

Table 2.2: Specimen configuration

Type W(mm) L(mm) 2a0(mm) Wnotch(mm) H(mm) S(mm)
1 140 300 6 - - -
2 140 300 6 8 16 26
3 140 300 6 4 12 26
4 140 300 6 8 8 26

2.4.2. FATIGUE TEST
Fatigue testing was conducted under constant amplitude fatigue loading conditions with
a maximum applied stress of 140 MPa, stress ratio of R = 0.05, and testing frequency of
10 H z. Testing was carried out on an MTS 810 servo hydraulic test frame containing
pin hole grips and an 250 kN load-cell (model 661. 22D-01). The test set-up is given
in Fig. 2.7. The test was stopped after a number of cycles and the maximum load was
applied so that the crack was fully open. Then the crack length was measured using a
monocular microscope with an precision of 0.1 mm. After both crack length and cor-
responding cycle number were recorded, the test was resumed. Each crack increment
was kept around 0.5 mm in order to get abundant test data and reduce testing scatter.
Crack growth rates were calculated using a 7-point incremental polynomial method rec-
ommended in the ASTM E647-00 [21] for processing crack growth measurements.

2.4.3. TEST FOR ISOSTRAIN MODEL VALIDATION
The stress distribution ahead of the crack tip, which is characterised with the Wester-
gaard stress distribution method, is of great interest in modelling the load redistribu-
tion. However, only the corresponding strain distribution can be obtained in a test envi-
ronment. The experimental strain measurement technique chosen for this study is the
Digital Image Correlation (DIC). The DIC method [22, 23] obtains the deformation field
on the surface of an specimen by tracking deformation of a random pattern in the im-
age of the specimen without deformation (source image) and the image of the deformed
specimen (target image). This deformation field can be post-processed to calculate the
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Figure 2.7: Test set-up

corresponding strain field on the surface of the test specimen. Using this method, it is
possible to easily visualise and quantify the crack tip strain field and the corresponding
influence of the notches present in the test specimens used in this study. All DIC strain
measurements presented in this paper were made using the VIC-3D™ DIC system of-
fered by Correlated Solutions.

DIC strain measurements were made for a M(T) specimen and a specimen with
notches of 8mm wide in aluminium layers. To measure the strain distribution in front
of the crack tip without interference by the bridging fibres, the cracks in both specimens
were made by saw-cut, as a result the fibres were also cut in the saw-cut region. The col-
lection of reference and loaded images for DIC processing was performed under static
loading conditions. To facilitate correlation of the images by the DIC system, a flat white
base coat of paint and an airbrushed speckle pattern of black paint were applied to the
measurement area. The subset size for image correlation is 21 ·21 pixels and the step is
5.

2.5. MODEL VALIDATION
The experimental data is utilised to validate the prediction methodology described. First,
the predicted strain distribution ahead of the crack tip is compared to that experimen-
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tally obtained using the DIC method. Second, the predicted crack growth rates are com-
pared with experimentally obtained results.

2.5.1. COMPARISON BETWEEN PREDICTED STRAIN DISTRIBUTION AND DIC
TEST RESULTS

For the M(T) specimen including fibres cut in the saw-cut region, the stress distribution
ahead of the crack tip can be characterised with Eq. 2.9. The load equilibrium between
the applied load and load transferred at the net section area is expressed as

Pappl i ed ,M(T ) = tF MLW
∫ W

a

σwester g aar d√
1− (a/x)2

dx (2.16)

which can be rearranged to solve σwester g aar d ,M(T ):

σwester g aar d ,M(T ) =
Pappl i ed ,M(T )

tF MLW
√

1− (2a/W )2
(2.17)

The strain distribution in front of the crack tip can then be calculated with Wester-
gaard stress divided by the Young’s modulus of the laminate:

εy y,M(T ) =
Pappl i ed ,M(T )

tF MLEF MLW
√

1− (2a/W )2
√

1− (a/x)2
(2.18)

The strain distribution in front of the crack tip of the notched specimen is given in
the same way

εy y,notch = 1

EF ML

√
1− (a/x)2

· Pappli ed ,notch∫ xl
a

tF MLp
1−(a/x)2

dx +∫ xr
xl

Enotch
EF ML

tnotchp
1−(a/x)2

dx +∫ W
xr

tF MLp
1−(a/x)2

dx

(2.19)

The predicted and measured strain distributions on both side of the central crack are
compared in Fig. 2.8. From Fig. 2.8(a), it can be seen that the predicted strain distribution
correlates with DIC measurement very well, which proves that using Westergaard stress
method to characterise the stress distribution ahead of a crack tip in a laminate is a valid
method.

Fig. 2.8(b) gives the strain distribution for the specimen containing notches in alu-
minium layers, the blue and red lines indicate the locations of the edges of right and left
side notches respectively. This misalignment is due to a manufacturing error. However,
the corresponding prediction for these two notch cases overlap with the prediction for
notch edges at 26mm and 34mm (the average locations of left and right side notch edges
with respect to crack centre). Since the strain distribution around the notch area is quite
smooth based on the prediction method, the influence of the locations of notches on
prediction results is therefore significantly small. The DIC measurements reveal smooth
variation of the strain distribution between the notch area and surrounding laminate,
which verifies the assumption that isostrain between these two areas. In addition, the
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DIC measurements show that the strain rises near the notch edges which are due to
stress concentration. However, the influence of this deviation of the measured strain
from the predicted strain based on neglecting the stress concentration at the notch area
upon the load redistribution is minor. The reason for that is due to the low Young’s mod-
ulus and very small thickness of the fibre layers at the notched area. Therefore, the as-
sumption of isostrain condition between the notch area and surrounding laminate, and
neglecting the stress concentration at notch edges are reasonably verified.

x [mm]

ey
y 

[-
]

0 10 20 30 40 50 60 70
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014
DIC (right side)
DIC (left side)
Prediction

a = 10mm
σapp = 100MPa

(a)

a = 10mm
σapp = 100MPa

x [mm]

ey
y 

[-
]

0 10 20 30 40 50 60 70
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014
DIC (right side)
DIC (left side)
Prediction

right notch

left notch

(b)

Figure 2.8: Strain distribution ahead of the crack tip in M(T) specimen (a), in notched specimen (b)

2.5.2. CRACK GROWTH RATES COMPARISON
Several predicted crack growth rates for Glare 3 with different notch configurations are
given together with corresponding experimental results. The crack growth rates are plot-
ted versus the crack length measured from the crack centre.

In Fig. 2.9, the crack growth rates for Glare 3 containing 8mm wide notches in alu-
minium layers or in fibre layers are given together with their corresponding prediction
results. The specific configurations of the specimens are given in Fig. 2.6 and corre-
sponding dimensions for the notches are give as Type 2 and Type 4 in Table 2.2 respec-
tively. The test result and prediction of the Alderliesten crack growth model for the M(T)
specimen (Type 1 in Table 2.2) are also given to highlight the effect of stiffness reduction
on crack growth rate. The grey area represents the location of the artificial notch. The
maximum applied stress level is 140MPa. The overall predicted crack growth rates cor-
relate quite well with the observed crack growth rates. As can be seen from Table 2.1, the
thickness and Young’s modulus of aluminium layer are much higher than fibre prepreg
layer, the reduction in effective stiffness caused by removal of aluminium layers is there-
fore higher than removal of fibre layers. Consequently, the specimen containing notches
in aluminium layers has higher initial crack growth rate and gains greater crack growth
rate with crack length. Whereas, due to a small stiffness reduction caused by removing
the fibre layers, the corresponding crack growth rate almost keeps identical to that of
the M(T) result over its most propagation and only accelerates a little when the crack tip
reaches the edge of the artificial notch.
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Figure 2.9: Comparison between predicted and experimental crack growth rate for Glare 3-3/2 with notches in
Al layers or fibre layers with σmax = 140MPa
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Figure 2.10: Crack growth rates for Glare 3-3/2 panels with different notches of 8mm and 4mm wide in Al layers
under σmax = 140MPa

The predictions were stopped when the crack tip reached the notch edge. The cor-
responding test on the specimen containing notches in aluminium layers also stopped
at this point, while the test on the specimen with notches in fibre layers was continued
after the crack exceeded the notch edge. From the test results shown in Fig. 2.9, the crack
grows much faster at the notch area in the comparison with the results for the M(T)
specimen in which the crack opening is always restrained by the bridging fibres. Even
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though the crack opening in the aluminium layer in the specimen containing notches
in fibre layers is constrained by the bridging fibres from the saw-cut to the notch edge,
the crack growth rate increases rapidly once the crack exceeds the notch edge, as can be
seen in Fig. 2.9. This proves that the bridging mechanism of fibres just behind the crack
tip plays a key role in reducing the corresponding stress intensity factor.

The initial discrepancy of the prediction can be attributed to the inaccuracy of pre-
sumed delamination size in the beginning. The initially calculated bridging stress and
delamination extension are sensitive to this initially assumed delamination size and the
subsequent calculation is also affected [7]. Then the calculation converges after a very
small crack extension.

The crack growth rates for specimens under maximum applied load of 140 MPa but
with notch width of 8mm and 4 mm in aluminium layers (Type 2 and Type 3 in Table 2.2)
are given together with the corresponding predicted results in Fig. 2.10. For both cases,
the crack accelerates when it approaches the edge of the artificial notch. The specimen
with wider notches which result in larger stiffness reductions has greater crack accelera-
tion, which is also captured by the prediction method.

For specimens with notched aluminium layers in Fig. 2.9 and Fig. 2.10, stress con-
centration occurs at the notch edges. Calculation of the notch root stress concentration
and corresponding plasticity beyonds the scope of this paper. However, the effects of
interaction between the stress singulatrity in front of the crack tip and notch root stress
concentration (or plasticity interacting) are present when the crack tip approaches the
notch edge. This interaction occurs only over a small portion of the crack size, which is
depicted in Fig. 2.9 and Fig. 2.10. For the major portion of the crack propagation, only
load redistribution effects are present. Neglecting the notch root stress concentration
results in larger load redistribution for the crack and larger stress intensity factors, re-
sulting in conservative prediction results.The division of these two portions is roughly
based on the experimental measurements given in Fig. 2.8(b)

2.6. DISCUSSION
In preceding sections, the validation shows that using the Westergaard stress distribution
adequately captured the stress state in front of the crack tip and the model described in
this paper gives a good prediction for each case. Especially, the proposed model esti-
mates the crack growth acceleration very well when the crack gets close to the edge of
the artificial notch. Still some aspects regarding the model’s limitation and its poten-
tial to be extended to address fatigue crack growth in FMLs containing MSD need to be
discussed.

2.6.1. LIMITATION OF THE PROPOSED MODEL

In the presented analytical model, the length of the artificial notch is ignored by assum-
ing no stress concentration at the edges of the artificial notches. So the proposed model
is a simplification of modelling a notch as a complete removal of a very long strip of ma-
terial. The DIC results indicate that there are stress concentrations at the artificial notch
edges. However, the influence of the stress concentration on the load redistribution in
the analytical model is minor. Neglecting the stress concentration at notch edges results
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in higher stress intensity factor and thus conservative prediction results. As a result, this
analytical model still provides good predictions.

Due to the fact that the precursor model is based on the Westergaard stress method,
it can only be extended to study the collinear cracks scenario in FMLs.

2.6.2. POTENTIAL OF EXTENDING THIS ANALYTICAL MODEL TO A MSD PRE-
DICTION MODEL IN FMLS

The model presented in this paper successfully captures the effect of load redistribu-
tion due to stiffness reduction, achieved by artificial notches, on the growth behaviour
of the adjacent crack. The crack growth accelerates when the crack tip approaches the
location of the stiffness reduction as more loads are redistributed to the crack tip. This
investigation approves the potential of idealising the effect of an adjacent crack on the
fatigue growth behaviour of a single crack as stiffness reduction when addressing fatigue
crack growth in FMLs containing MSD scenarios. However, it is noteworthy that the
stiffness reductions caused by cracks are becoming larger during fatigue loading. This
phenomenon is similar to the effect of a wider artificial notch on the growth behaviour
of the adjacent crack, which is illustrated in Fig. 2.10. This analytical model therefore has
the potentiality to be extended to a simplified model for MSD prediction in FMLs.

2.7. CONCLUSION
An analytical model for predicting crack acceleration due to discretely notched layers
based on linear elastic fracture mechanics (LEFM), the principle of superposition and
displacement compatibility has been presented. From the DIC investigation it is con-
cluded that the implementation of the Westergaard stress distribution is applicable. The
load redistribution around the artificial notch has been captured through applying the
Westergaard stress distribution and isostrain condition. Although the simplification of
modelling a notch as a complete removal of a long strip of aluminium or fibre material is
not a true physical representation of the problem, it still provided good predictions. Load
redistribution is adequately captured by the non-physical representation. The crack ac-
celeration can be attributed to the effect of this load redistribution on the adjacent crack.

This paper serves as the first step that intends to develop a simplified prediction
methodology for crack growth rates of MSD cracks in FMLs. It is concluded that cap-
turing the effect of load redistribution around an artificial notch on the fatigue growth
behaviour of an adjacent crack is a feasible way to study crack acceleration. It shows
promise for incorporating the load redistribution of adjacent cracks in an MSD scenario
for predicting fatigue crack grow behaviour of each crack in FMLs.

REFERENCES
[1] W. Wang, C. Rans, R. C. Alderliesten, and R. Benedictus, Predicting the influence of

discretely notched layers on fatigue crack growth in fibre metal laminates, Engineer-
ing Fracture Mechanics 145, 1 (2015).

[2] U. Goranson, Damage tolerance facts and fiction, in International conference on



2

40 REFERENCES

damage tolerance of aircraft structures (Delft University of Technology, Delft, the
Netherlands, 2007).

[3] B. Nesterenko and G. Nesterenko, Analysis of requirements on fatigue and damage
tolerance for civil transport airplanes, in 26th Symposium of the international com-
mittee on aeronautical fatigue, ICAF 2011, edited by J. Komorowski (Springer) pp.
39–59.

[4] W. Hendricks, The aloha airlines accident — a new era for aging aircraft, in Struc-
tural Integrity of Aging Airplanes, Springer Series in Computational Mechanics,
edited by S. N. Atluri, S. G. Sampath, and P. Tong (Springer Berlin Heidelberg, 1991)
Chap. 11, pp. 153–165.

[5] Federal register/vol. 77, no. 101, thursday may 24, 2012/ rules and regulations, .

[6] A. Vlot and J. W. Gunnink, Fibre Metal Laminates-An Introduction (Kluwer Aca-
demic Publisher, Dordrecht, The Netherlands, 2001).

[7] R. C. Alderliesten, Fatigue crack propagation and delamination growth in GLARE,
Ph.D. thesis, Delft University of Technology, Delft, the Netherlands (2005).

[8] R. C. Alderliesten, Analytical prediction model for fatigue crack propagation and de-
lamination growth in glare, International Journal of Fatigue 29, 628 (2007).

[9] S. Khan, Fatigue Crack and Delamination Growth in Fibre Metal Laminates under
Variable Amplitude Loading, Ph.D. thesis, Delft University of Technology, Delft, the
Netherlands (2013).

[10] S. U. Khan, R. C. Alderliesten, C. D. Rans, and R. Benedictus, Application of a mod-
ified wheeler model to predict fatigue crack growth in fibre metal laminates under
variable amplitude loading, Engineering Fracture Mechanics 77, 1400 (2010).

[11] S. U. Khan, R. C. Alderliesten, and R. Benedictus, Delamination in fiber metal lam-
inates (glare) during fatigue crack growth under variable amplitude loading, Inter-
national Journal of Fatigue 33, 1292 (2011).

[12] G. Wilson, Fatigue Crack Growth Prediction for generalized fiber metal laminates
and hybrid materials, Ph.D. thesis, Delft University of Technology, Delft, the Nether-
lands (2013).

[13] R. C. Alderliesten, C. Rans, and R. Benedictus, The applicability of magnesium
based fibre metal laminates in aerospace structures, Composites Science and Tech-
nology 68, 2983 (2008), nanocomposites - Processing, Characterization, Properties,
Applications and Modelling, selected papers from Nanocomposite Special Sympo-
sium of ACCM-5, with regular papers.

[14] R. C. Alderliesten, J. Schijve, and S. v. d. Zwaag, Application of the energy release rate
approach for delamination growth in glare, Engineering Fracture Mechanics 73, 697
(2006).

http://dx.doi.org/http://dx.doi.org/10.1016/j.compscitech.2008.06.017
http://dx.doi.org/http://dx.doi.org/10.1016/j.compscitech.2008.06.017


REFERENCES

2

41

[15] C. Rans, R. Rodi, and R. C. Alderliesten, Analytical prediction of mode i stress in-
tensity factors for cracked panels containing bonded stiffeners, Engineering Fracture
Mechanics 97, 12 (2013).

[16] J. J. Homan, Fatigue initiation in fibre metal laminates, International Journal of Fa-
tigue 28, 366 (2006).
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3
TOWARDS THE ANALYSIS OF

BUILT-UP STRUCTURES

CONTAINING ECCENTRIC CRACKS:
ANALYTICAL SOLUTIONS FOR

CRACK OPENING DISPLACEMENTS

OF ECCENTRIC CRACKS

In the context of the thin-walled metallic aerospace structures, the added resistance to
crack propagation offered by a built-up structure is desirable from a damage tolerance
standpoint. The analysis of fatigue cracking in such structures, however, is limited by the
lack of crack opening solutions. This paper develops analytical models that calculate crack
opening displacements (CODs) for a more general cracking scenario, i.e., non-symmetric
cracks. The proposed models are based on the Westergaard stress functions. It is then found
that the COD solution of one model is particularly useful. The potential significance of
the obtained solutions lies in analysing fatigue cracking in built-up structures containing
non-symmetric cracks. The crack opening solution is particularly useful in estimating the
load transfer between cracked body and intact bridging structures in built-up structures
using the principle of displacement compatibility.

This chapter is to be submitted to European Journal of Mechanics - A/Solids [1]
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3.1. INTRODUCTION
The damage tolerance design philosophy is currently recommended by airworthiness
regulations to ensure the aviation safety and the integrity of aircraft structures [2]. The
concept of slow growth and the ability to predict damage growth behaviour are essen-
tials in the implementation of damage tolerance for metallic structures [3]. Due to the
prevalence of thin-walled structures in aerospace applications and their sensitivity to
fatigue damage, the added resistance to crack propagation offered by the built-up struc-
tures is very desirable. The structural elements in built-up structures provide multiple
load paths, which could lead to load transfer from cracked elements to intact elements
in case of fatigue damage. This load transfer results in reduced driving force for the crack
to propagate in particular elements.

The damage tolerant built-up structures can be manufactured with two main differ-
ent joining techniques: traditional mechanical fastening and adhesive bonding. Ana-
lytical models have been developed based on fracture mechanics, the principle of su-
perposition and displacement compatibility to exploit the damage tolerance benefits of
built-up structures [3–7]. The superposition method of Poe [4] for riveted structures has
been adapted to analyse adhesively bonded stiffened panels [5, 6]. The treatment of ad-
hesive interface as discrete adhesive elements analogous to individual fasteners in these
models makes predicting crack growth in panels underneath bonded stiffeners difficult.
To overcome the difficulties posed by discretisation, Rans et al. [3] has developed a new
analytical model by breaking down a complex cracked stiffened panel into cracked com-
ponents on which different bonded stiffener conditions have influence. Alderliesten [7]
has also successfully described the crack growth behaviour in Fibre Metal Laminates by
treating the laminated material as an adhesively bonded built-up structure instead of as
a single material.

It is worth noting that the principle of displacement compatibility is of significance
in analysing the load redistribution in cracked built-up structures. Central to this prin-
ciple is to understand the deformation behaviour of cracked bodies in such structures.
The cracked elements deform in compliance with the structural deformation of intact el-
ements in a built-up structure under applied load, therefore load transfers from less stiff
cracked elements to other elements. The lack of analytical solutions for the deforma-
tion behaviour of eccentrically cracked panels hinders the analysis ability to estimate the
crack growth behaviour in complex built-up structures. This restraint is highlighted in
the course of analysing crack growth in hybrid Fibre Metal Laminates with Multiple-site
Damage scenario where non-symmetric cracks present [8]. The non-symmetric cracks
have non-symmetric crack opening displacements, resulting in non-symmetric load re-
distribution between the cracked metal layers and the intact bridging fibres. Under fa-
tigue loading, asymmetric delamination shapes are formed for two crack tips of a non-
symmetric crack at the metal/composites interface as a result of the asymmetric load
transfer. This asymmetric delamination growth affects the crack propagation behaviour
in the metal layers, and vice versa [8]. This non-symmetric crack growth behaviour in
built-up FMLs has to be studied.

Another solution to analysing the crack growth behaviour in built-up structures is
to adopt finite element modelling (FEM) techniques, such as the study by Zhang et al.
[9]. FEM techniques do provide a means to analyse crack opening and corresponding
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crack growth behaviour, however, FEM lacks the simplicity and flexibility compared to
the analytical models.

The goal of this paper is to obtain a better understanding of the deformation be-
haviour of eccentrically cracked panels. This paper proposes analytical models for cal-
culating the crack opening displacement of a non-symmetric crack in a metallic panel
based on the Westergaard stress function [10]. The Westergaard stress function is sim-
plified to provide solutions for crack opening displacement and stress-strain field in the
line of a non-symmetric crack. The stress intensity factor solutions arising from the sim-
plified Westergaard stress function are compared to the analytical results of Isida [11] to
show the validity of the proposed models. FEM is applied to validate the COD solutions
and stress-strain distributions ahead of crack tips calculated by the proposed models.
In Section 3.5, one simplified load transfer model for a laminated structure is given to
illustrate the usage of COD in analysing the cracking in built-up structures.

3.2. THE WESTERGAARD FUNCTION METHOD
The Westergaard function method is a very convenient methodology to characterise the
entire stress and strain fields for cracked body. The Westergaard functions can also be
simplified to their near-tip solutions, i.e., stress intensity factor (SIF) solutions which
provide the stress and strain distributions at the crack tip vicinities. In some instances,
however, it is desirable to know the entire stress-strain field ahead of the crack tip. Load
redistribution due to stiffness variation (either geometric or material stiffness) can be
resolved from such a stress-strain field, such as the analysis of crack growth behaviour in
a stiffened panel conducted by Rans [3].
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Figure 3.1: Illustration of stress distribution and crack opening in an infinite panel

The closed-form Westergaard solutions are strictly applicable to infinite plate crack
problems except for Mode III crack problems [12, 13]; nevertheless they can be modified
to provide meaningful solutions for a finite panel with a crack [3, 14, 15]. Barsoum et al.
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[14, 15] predict the stress intensity factor for cracks in finite width functionally graded
material containing layers with different stiffness using this method. With the same as-
sumption, Rans [3] predicts the crack growth in stiffened metallic panels.

The Westergaard function [10] for Mode I crack problem in infinite panel is given by

ZI (z) = σ√
1− (a/z)2

(3.1)

where z = x + i · y is a complex number indicating a location in the xy-coordinates plane
illustrated in Fig. 3.1, σ is far-field applied stress and a is half crack length. Then the
stresses can be given as [16]:

σx = Re ZI − y · ImZ
′
I −σ (3.2)

σy = Re ZI + y · ImZ
′
I (3.3)

τx y =−y ·Re Z
′
I (3.4)

The stress distribution ahead of the crack tip along the crack plane, i.e., along y = 0,
is of particular interest and can be expressed as

σy y = σ√
1− (a/x)2

(3.5)

where x is the distance from the crack centre.
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Figure 3.2: Comparison of correction factors for a central crack in finite panel

The corresponding crack opening displacement within the crack length (Fig. 3.1) is
given [12, 13]:

2v = 4σ

E

√
a2 −x2 (3.6)

and the stress intensity factor at the crack tip is expressed as

K =σpπa (3.7)
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For one central crack embedded in a finite panel, the stress ahead of the crack tip
along crack plane can be assumed to follow the Westergaard stress distribution [17]:

σy y, f =
σ ·β√

1− (a/x)2
(3.8)

here the introduction of the correction factor β is to account for the influence of the
finite width boundary condition. The correction factor β is a function of crack length
and panel width. This variable can be calculated using the load equilibrium between the
crack section and far-field. For a finite panel of width W , the load equilibrium can be
expressed as:

σ ·W = 2
∫ W /2

a

σ ·β√
1− (a/x)2

d x (3.9)

Solving the integral for a uniform stress state and rearranging for β:

β= 1√
1− (2a/W )2

(3.10)

and the corresponding crack opening displacement and stress intensity factor for a cen-
tral crack in a finite panel can be given as following respectively:

2v f =
4βσ

E

√
a2 −x2 (3.11)

K =βσpπa (3.12)

The correction factorβ is plotted in Fig. 3.2 against the ratio between the crack length
and specimen width. In order to show the validity of the solution from the simplified
Westergaard stress function, the obtained correction factor for SIF is compared to that
derived by Isida. see Fig.3.2. Good correlation can be observed.

It is worth noting that a finite panel with a central crack under Mode I loading pos-
sesses a symmetric axis passing through the crack centre in loading direction. The West-
ergaard stress distributions in front of two crack tips, crack opening displacement con-
figuration are symmetric with respect to this symmetric axis (or crack centre). Especially
it can be seen in Eqs. 3.8, 3.12, 3.11 that these variables are functions of the crack length a
which is measured from the crack centre, also the location of maximum crack opening,
to the crack tip.

The presence of an eccentric crack in a finite panel under Mode I loading elimi-
nates the symmetric condition possessed by a centrally cracked panel. As a result, the
COD configuration and the stress distributions (stress-strain fields) ahead of the non-
symmetric crack tips are expected to be asymmetric with respect to its crack centre. The
analysis of this non-symmetric deformation behaviour in an eccentrically cracked panel
is detailed in the following section.
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3.3. MODELS FOR CALCULATING COD OF A NON-SYMMETRIC

CRACK
The generalised approach for modelling the COD of a non-symmetric crack is as fol-
lows. First, it is assumed that the Westergaard stress distribution (Eq. 3.8) and associated
COD solution (Eq. 3.11) are applicable to both crack tips in the non-symmetric crack.
Due to the non-symmetry, a different magnitude of the Westergaard stress distribution
is expected in front of each crack tip as illustrated by the difference in σy y,1 and σy y,2

in Fig. 3.3. This difference can be captured by a difference in the β factor for each crack
tip. These β factors are obtained by integrating the Westergaard stress distribution and
equating it to the applied load.

In applying this generalised approach, assumptions need to be made regarding the
definition of crack length and the load distribution in the cracked panel. When defining
the half-crack lengths, one needs to keep in mind that the COD solution arising from the
Westergaard stress distribution describes a half crack with a maximum displacement at
the root of the crack (x = 0). Thus, the definition of the datum for measuring the crack
length artificially prescribes the point of maximum COD for the crack. Load redistri-
bution is also a key factor to consider. The presence of a crack changes the stiffness of
a panel and can cause load to be preferentially carried by one or the other sides of the
panel. This affects the load equilibrium expressed in Eq. 3.9. Three different cases were
considered which are all illustrated in Fig. 3.4.

In Model 1, the datum for the crack length definition is assumed to be in the centre
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of the crack (a1 = a2) and the resultant of the Westergaard stress distribution is assumed
to be equal to the applied load acting over the half-width of the panel defined from the
crack datum (i.e., no load redistribution in the panel). This is illustrated in Fig. 3.4(a).
A consequence of the assumed crack datum is that the maximum COD will occur in
the centre of the crack, and due to the difference in β for each crack tip, there will be a
discontinuity in COD at this point. Besides, the variation in SIF is a result of the reduction
of the net-section of the panel in the crack plane alone.

In Model 2, the presence of the discontinuity of COD in Model 1 is corrected. The
datum for the crack length definition is allowed to deviate from the centre of the crack
such that the COD of both cracks are equal at the crack datum. This is illustrated in
Fig. 3.4(b). Assumptions regarding the load distribution remain the same as in Model 1.

Finally, in Model 3, the possibility of load redistribution is examined. If the bound-
ary conditions for loading do not provide rotational constraint (i.e., a pin-clevis connec-
tion), the resultant load on either side of the crack will redistribute to maintain moment
equilibrium in the panel as illustrated in Fig. 3.4(c). This load redistribution case is con-
sidered in this model with the same crack datum definition procedure as Model 2.

The eccentricity convention [11] is used in this paper to define the location of a non-
symmetric crack. As illustrated in Fig. 3.3, the width of the panel is W and the total crack
length is denoted as 2a. Distance from crack centre to the centre of the panel is d . Then
the eccentricity, e, is defined as:

e = 2d/W (3.13)

The distances from crack tip 1 and 2 to their corresponding edges ahead (Fig. 3.3) can
be calculated:

L1 = W

2
(1−e)−a (3.14)

L2 = W

2
(1+e)−a (3.15)

Then the normalized crack length is given as:

λ= a

L1 +a
(3.16)

3.3.1. MODEL 1: SYMMETRIC CRACK LENGTHS DEFINITION AND LOAD EQUI-
LIBRIUM METHOD

As shown in Fig. 3.3, one eccentric crack is embedded in a panel under far-field tensile
loading. For this model, the crack length, a, is defined as the length from the crack centre
to the crack tip (a1 = a2 in Fig. 3.4(a)). The stress distributions in front of the crack tips
are then given as the Westergaard stress distribution respectively:

σy y,1 = σ ·β1√
1− (a/x1)2

(3.17)

σy y,2 = σ ·β2√
1− (a/x2)2

(3.18)

where x is the distance from the crack centre.
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Integrations of the stress distributions give the loads carried by the uncracked mate-
rial in front of the crack tips respectively:

P1 =
∫ w1

a
σy y,1d x1 · t (3.19)

P2 =
∫ w2

a
σy y,2d x2 · t (3.20)

where w1 = L1 +a and w2 = L2 +a and t denotes the thickness of the panel.
For this model, this load equilibrium between the crack section and far-field is im-

plemented in the following way:
P1 =σ ·w1 · t (3.21)

P2 =σ ·w2 · t (3.22)

This means of implementing load equilibrium assumes no load redistribution in two
half-width panels defined by the crack datum in this model. From Eqs. 3.17-3.22, the
correction factors β1 and β2 can be easily determined:

β1 = 1√
1− (a/w1)2

(3.23)

β2 = 1√
1− (a/w2)2

(3.24)

From the analysis in previous section, these two correction factors are also correction
factors for the stress intensity factors of the two crack tips respectively.

In Fig. 3.5, the calculated correction factors together with Isida’s results are plotted
against normalised crack length, λ, for several typical eccentricities to show the validity
of this model. For crack tip 1, the β1 curves calculated with the proposed Model 1 over-
lap with each other for all eccentricities. It can be observed that the predicted results
correlate well with Isida’s prediction results. However, the correction factors for crack tip
2 are underestimated for all eccentricities. Especially for eccentricities lager than 0.6, the
predicted results almost keep constant with crack length. This can be attributed to the
fact that the influence of the boundary ahead of crack tip 1 on crack tip 2 is neglected.

The crack opening displacements can be also calculated according to the Wester-
gaard method. The opening configuration of the half crack for tip 1 is given:

2v1 = 4β1σ

E

√
a2 −x2

1 (3.25)

and COD for crack tip 2 is given by:

2v2 = 4β2σ

E

√
a2 −x2

2 (3.26)

Then it becomes obvious that the calculated maximum crack opening displacements
at x1 = x2 = 0 are not identical for an eccentric crack, which violates the physics of this
crack problem. It is then concluded that Model 1 cannot be used to calculate the crack
opening displacement configuration for a non-symmetric crack. The analysis process
proves that the definition of crack datum at the crack centre can lead to the computed
displacement incompatibility. In other words, the maximum crack opening location is
not the crack centre for non-symmetric cracks.
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Figure 3.5: Correction factors comparison of Model 1

3.3.2. MODEL 2: NON-SYMMETRIC CRACK LENGTHS DEFINITION AND LOAD

EQUILIBRIUM METHOD
The definition of the crack length, a, in Model 1 leads to the displacement incompati-
bility at the location of crack centre. It is therefore reasonable to define the crack length
from the crack tip to the location of maximum crack opening displacement instead of
to the crack centre. The location of the maximum crack opening is still an unknown
parameter for a non-symmetric crack.

In this model, the total crack length is given as 2a and two crack lengths a1 and a2 are
the lengths between the location of maximum crack opening displacement and crack tip
1 and 2 respectively, resulting in non-symmetric crack lengths (see Fig. 3.4(b)). The sum
of the two crack lengths is equal to the total crack length:

a1 +a2 = 2a (3.27)

The Westergaard stress distributions in front of the crack tips are expressed as

σy y,1 = σ1√
1− (a1/x1)2

(3.28)

σy y,2 = σ2√
1− (a2/x2)2

(3.29)

where x1, x2 are from the maximum crack opening location (Fig. 3.4(b)) and σ1, σ2 are
to be determined.

In this case, the loads carried by the uncracked material in front of the crack tips can
be calculated in a similar way as Eqs. 3.19-3.20:

P1 =
∫ w1

a1

σy y,1d x1 · t (3.30)
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P2 =
∫ w2

a2

σy y,2d x2 · t (3.31)

but with w1 = L1 +a1 and w2 = L2 +a2, denoting that w1 and w2 are distances between
maximum crack opening location and two free edges respectively.

The load equilibrium is also implemented in a similar way as in Model 1:

P1 =σ ·w1 · t (3.32)

P2 =σ ·w2 · t (3.33)

It is notable that no load redistributes between the two half-width panels defined by the
crack datum in this model either. The crack datum definition in this model prescribes
two different half-width panels compared to Model 1.

Furthermore, the maximum crack opening displacement should be equal for the two
half cracks at x1 = x2 = 0, which can be expressed as:

4σ1

E

√
a2

1 −02 = 4σ2

E

√
a2

2 −02 (3.34)

All the unknown variables can be determined by solving the system of Eqs. 3.27-3.34
simultaneously in a numerical way as their analytical solutions are extremely difficult to
be derived.

Then the SIF solutions for the two crack tips can be expressed as following

K1 =σ1
p
πa1 (3.35)

K2 =σ2
p
πa2 (3.36)

In order to compare with Isida’s prediction, the correction factors are calculated as:

β1 = K1

σ
p
πa

= σ1
p
πa1

σ
p
πa

(3.37)

β2 = K2

σ
p
πa

= σ2
p
πa2

σ
p
πa

(3.38)

The comparison is given in Fig. 3.6. The predicted correction factors for crack tip 1
and 2 are both underestimated when crack length increases, especially for the prediction
of crack tip 1.

In fact, the implementation of the load equilibrium in these two models does not
consider the load redistribution due to the stiffness difference in both sides of an eccen-
trically cracked panel. The presence of a non-symmetric crack changes the stiffness of
a panel and the load is preferentially carried by the one or the other sides of the panel.
These effects of load redistribution are accounted for in Model 3.
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Figure 3.6: Correction factors comparison of Model 2

3.3.3. MODEL 3: LOAD EQUILIBRIUM AND MOMENT EQUILIBRIUM METHOD
The possibility of load redistribution is examined in this model. The stress distributions
in front of the crack tips are assumed as the same as in Model 2, i.e. Eqs. 3.28 and 3.29.
The definition of crack datum remains the same. Crack displacement compatibility at
maximum crack opening location is implemented as Eq. 3.34.

The loads carried by the material in front of crack tip 1 and crack tip 2 are given
as Eqs. 3.30 and 3.31, the implementation of load equilibrium is expressed in following
manner for this model:

P1 +P2 = Papp (3.39)

with Papp =σ ·w t being the total applied far-field load.
In addition, the load on either side of the crack, P1 and P2, redistributes to maintain

the moment equilibrium in the panel (Fig. 3.4(c)).
The location of the equivalent load P1 for the stress distribution in front of crack tip

1 is the centroid of the distribution shape in its own coordinates.

xc,1 =
∫ w1

a1
σy y,1x1d x1∫ w1

a1
σy y,1d x1

(3.40)

and the location of the equivalent load P2 is

xc,2 =
∫ w2

a2
σy y,2x2d x2∫ w2

a2
σy y,2d x2

(3.41)

Then the mathematical description of the moment equilibrium is given as:

P1d1 = P2d2 (3.42)

where d1 and d2 are distances from locations of P1 and P2 to the panel centre respectively
(Fig. 3.4(c)) and are expressed as:

d1 = a +d +xc,1 −a1 (3.43)
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Figure 3.7: Correction factors comparison of Model 3

d2 = a −d +xc,2 −a2 (3.44)

Numerically solving the system of these equations provides all the results. The cor-
rection factors are also given in the same manner as Eqs. 3.37 and 3.38. The comparison
for some typical eccentricities and normalised crack lengths is made in Fig. 3.7.

From the comparison in Fig. 3.7, it can be seen that the correlation for crack tip 1 is
very good for different eccentricities. For crack tip 2, the correction factors are underes-
timated for all the eccentricities. The error becomes larger as the crack length increases,
especially for λ > 0.6. However, crack tip 1 is much more critical than crack tip 2. Ac-
curate prediction of stress intensity factor for crack tip 1 is much more critical then. Be-
sides, the proposed Model 3 should provide sufficiently accurate prediction results for
practical structures in aircraft industry as the thin walled structures normally are very
wide. The possibility of the appearance of an extreme crack configuration with both
high eccentricity and high λ should be very low.

Table 3.1: Parameters used in FEA models

values
Young’s Modulus 72400[MPa]
Poission’s Ratio 0.33

Thickness 0.4[mm]
Width 200[mm]
Length 300[mm]
Stress 100[MPa]
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Figure 3.8: Mesh of the FEA model for an Al 2024-T3 panel with an eccentric crack

3.4. VERIFICATION

The near tip solutions of the Westergaard stress distributions, SIF results, for eccen-
tric cracks have been validated with the analytical results of Isida. This section veri-
fies the predicted deformation behaviour of eccentrically cracked panels from Model 2
and Model 3. The crack opening displacement and stress-strain field in front of crack
tips are of particular interest. Due to the fact that Model 1 is not able to predict a con-
tinuous crack opening displacement configuration for a non-symmetric crack, only the
crack opening displacements predicted by Model 2 and Model 3 are compared to FEM
results. The Westergaard stress distributions and stress intensity factor results predicted
by Model 2 and Model 3 are also compared to FEM results in order to present an intuitive
validation of the usage of the Westergaard method.

3.4.1. FINITE ELEMENT ANALYSIS

ABAQUS FEM analysis is applied to calculate crack opening displacement configura-
tions, stress distribution in front of two crack tips and stress intensity factors for cracks
in metal panels with finite width. The FEA results are used to verify the results derived
from the models proposed in Section 3.3.

The material properties of Al 2024-T3 were used to model the metal panels in ABAQUS
code package, see Table 3.1. The metal panels were modelled using 3-D shell planar.
Half-symmetry was applied, only upper half of the panels were modelled. The bottom
edge where the crack was defined was assigned the symmetry plane and the stress was
applied on the upper edge. Fig. 3.8 shows these details and the mesh of the structure and
refined mesh for the crack tip zone. Contour integral evaluation technique was applied
to calculate the stress intensity factors for the crack tips, the crack tip zones were meshed
using S8R5 elements. The rest of the structure used S8R elements. Table 3.1 summarizes
the parameters used in FEA models.
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3.4.2. COMPARISON
As the half-symmetry condition was applied in FEM modelling, so the crack opening
displacements predicted by Model 2 and Model 3 for a1 and a2 are given as following
respectively in order to conveniently make the comparison:

v1 = 2σ1

E

√
a2

1 −x2
1 (3.45)

v2 = 2σ2

E

√
a2

2 −x2
2 (3.46)

The studied case is an Al 2024−T 3 panel with the configuration and loading param-
eters given in Table 3.1. In Fig. 3.9, the crack opening displacements for a crack of 40 mm
with different eccentricities are given. x = 0 in the figure denotes crack tip 2 and x = 40
indicates crack tip 1. The dashed vertical lines denote the analytically calculated maxi-
mum crack opening locations in Fig. 3.9. As can be seen, the crack opening for the case
of e = 0.1 is almost the same as the central crack. Predictions from Model 2 and Model
3 for eccentricities of 0 and 0.1 correlate with FEA results very well. It is interesting that
the crack opening increases with increasing eccentricity for the same crack length. Both
models captures this phenomenon, but Model 3 provides better prediction results.
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Figure 3.9: COD comparison

The predicted stress distributions in front of crack tips are also compared to FEA
results. Only one case is studied to verify the assumption of the Westergaard stress dis-
tribution in front of crack tips, as shown in Fig. 3.10. The points highlighted with dashed
circulars is due to the singularity at the node of a transition from a triangular element
to a quadrilateral element (Fig. 3.8), i.e. a calculation error occurs at this node in front
of the crack tip. Nevertheless the overall trend of stress distributions are the same. Only
slight difference can be observed between Model 2 and Model 3.

Although the predicted correction factors for stress intensity factors are compared to
Isida’s results, the direct comparison between predicted stress intensity factors and FEA
results is given in Fig. 3.11.
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3.5. DISCUSSION
Based on the comparisons and modelling process, Model 3 is the most appropriate means
of modelling deformation behaviour in an eccentrically crack panel. The assumptions
regarding the stress distributions in front of eccentric crack tips and the definition of
crack datum for measuring crack length are reasonable. Furthermore, the COD solu-
tions and stress distributions in Model 3 have the potential to be extended to account
for load redistributions caused by stiffness variations in front of crack tips [8], such as
analysis of fatigue cracking in complex built-up structures with non-symmetric cracks.

3.5.1. A SIMPLIFIED EXAMPLE OF MODELLING LOAD TRANSFER IN A BUILD-
UP STRUCTURE

An example of modelling load transfer from the cracked body to intact components
in a build-up structure using Model 3 and the principle of displacement compatibility
is presented in order to illustrate the impact of non-symmetric crack configuration on
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Figure 3.12: Illustration of two crack cases
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Figure 3.13: Comparison of crack opening displace-
ments

the analysis of cracking in such complex structures. A very simple fibre metal laminate
(FML) made of one 2024-T3 aluminium layer in the middle and two layers of S-2 glass
fibres in loading direction bonded on both sides of the metal layer is used as a build-up
structure since the fatigue resistant fibres keep intact in the wake of a fatigue crack in the
middle metal layer, these intact fibres restrain the opening of the crack in the metal layer.
The generalised approach for calculating SIF in these structures can be found in [7, 18].
The properties of the materials used for this laminate is given in Table 3.2. Considering
the case that the laminate has been cured at a maximum pressure of 6 bars and a maxi-
mum temperature of 120 °C, and is under 100 MPa far-field applied stress, the stress in
metal layer, Sm , and stress in fibre layer, S f , can be calculated with the Classic Laminate
Theory [19], that is Sm = 151.9 MPa and S f = 21.95 MPa.

Table 3.2: Material properties

Al Prepreg
Young’s modulus Ex [GPa] 72.4 48.9
Young’s modulus Ey [GPa] 72.4 5.5
Shear modulus Gx y [GPa] 27.6 5.55
Poisson’s ratio vx y 0.33 0.33
Poisson’s ratio vy x 0.33 0.0371
Thickness of single layer[mm] 0.4 0.133
Width[mm] 200 200
Thermal expansion

22 ·10−6 6.1 ·10−6(0◦)
coefficient[1/°C] 26.2 ·10−6(90◦)

Two crack cases in the laminate are compared, one case with e = 0 and another one
with e = 0.5 (see Fig. 3.12). The total crack length, 2a, is 40 mm for both cases and they
have the same delamination shapes which is denoted as b(x) (see Eq. 3.47 and Fig. 3.14).
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The delamination shape is discretised into bar elements with width of 0.2mm for each
one (Fig. 3.14). At each bar element, the fibres restrain the opening of the crack, so the
displacement of the crack should be compatible with the fibre deformation [7, 18]. For
simplicity of illustration, this displacement compatibility is implemented between the
crack opening and the fibre elongation without considering shear deformation of fibre
prepreg for each bar element (see Eq. 3.48).

b(x) = 3

√
1− |x|

a
(3.47)

v f f (x)− vbr (x) = S f +Sbr (x)

E f
b(x) (3.48)

where x denotes the location of the middle point of a bar element, v f f is the crack open-
ing in the metal layer due to the far-field applied load, vbr is the crack closing due to
the bridging stress distribution, Sbr (x). The right side of Eq. 3.48 is the fibre elongation.
It then becomes obvious that Sbr is the resultant stress due to the load transfer from
cracked metal layer into the intact fibre layers [7, 18].

v f f (x) and the SIFs for two crack tips (K1, K2) can be calculated using Model 3 with
Sm in the metal layer (Fig. 3.13), the Westergaard stress function for two points loading
on Page 5.6 in [13] is used to calculate vbr (x). The equation can be solved for Sbr at each
middle point (xi in Fig. 3.14). The Westergaard method for two points loading can then
be used to calculate the resultant bridging stress intensity factor, Kbr , for each crack tip.
The detailed calculation method can be referred to [7, 18].

The calculated crack openings are presented in Fig. 3.13, where vtot al = v f f − vbr .
The obtained Sbr for each crack case is presented in Fig. 3.14 and corresponding SIFs
in Fig. 3.15. Case 2 (e = 0.5) has larger crack opening displacement compared to Case 1
which is a symmetric crack configuration. In such a built-up structure, the larger crack
opening displacement leads to larger bridging stress distribution in intact fibres espe-
cially for 0 < xi < 20 (larger load transfer). Even though the larger load transfer occurs
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for Case 2, the resultant SIF for crack tip 1 (Ktot al ,1) of Case 2 is still 17.3% higher than
Case 1. Besides, this larger load transfer between the cracked metal layer and intact fibre
layers could result in larger delamination under fatigue loading in reality, further reduc-
ing the load bearing capability of the structure.

3.6. CONCLUSION
This paper develops analytical models to investigate the deformation behaviour in ec-
centrically cracked panels. The Westergaard stress function is simplified to calculate the
opening displacement in the crack and the stress distributions ahead of two crack tips.
The stress intensity factor solutions arising from the proposed models are compared to
analytical results from Isida. Based on the validation, Model 3 is the best means of mod-
elling crack opening and stress intensity factor.

It is found that the crack length for a non-symmetric crack should be defined as the
length from the maximum crack opening location to the crack tip in the context of the
Westergaard stress distribution. The load on either side of a non-symmetric crack redis-
tributes, as a result of stiffness difference in the panel, to maintain the moment equi-
librium. The results from Model 3 are accurate for the critical crack tip while the stress
intensity factor for another tip is a bit underestimated for cracks with very high eccen-
tricity and length.

The deformation of eccentrically cracked panels obtained from this paper can be
very useful in analysing cracking behaviour in complex built-up structures, especially
for analysing fatigue problem. The significance of understanding the deformation be-
haviour in such panels is substantiated in analysing load transfer in an eccentrically
cracked laminated structure in this paper.
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4
ANALYTICAL PREDICTION MODEL

FOR NON-SYMMETRIC FATIGUE

CRACK GROWTH IN FIBRE METAL

LAMINATES

This paper proposes an analytical model for predicting the non-symmetric crack growth
and accompanying delamination growth in FMLs. The general approach of this model
applies Linear Elastic Fracture Mechanics, the principle of superposition, and displace-
ment compatibility based on the understanding of deformation behaviour in eccentri-
cally cracked metal panels. The non-symmetric crack growth behaviour of two crack tips
and accompanying asymmetric load transfer from the eccentrically cracked metal layers
to the intact bridging fibres are successfully predicted with the model. The predicted crack
growth rates and delamination evolution are compared to test data, good correlation is
observed.

This chapter is to be submitted to International Journal of Fatigue [1].
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4.1. INTRODUCTION
Fibre Metal Laminates (FMLs) are composed of alternative metallic layers and fibre-
reinforced polymer layers. The fatigue resistant fibre layers remain intact in the wake of
fatigue cracks in metal layers in FMLs under cyclic loading, restraining the crack open-
ing and acting as a second load path for the cracked metal layers. This bridging mecha-
nism, shown in Fig. 4.1, dramatically reduces the stress severity at the crack tip and thus
the crack growth in metal layers [2–4]. One variant of FMLs, Glare, has been success-
fully applied as fuselage skin material on Airbus A380. Its superior damage tolerance
in comparison with monolithic metal panels significantly contributes to the successful
application.

Alderliesten has studied symmetric crack growth in FMLs under Mode I fatigue load-
ing based on Linear Elastic Fracture Mechanics (LEFM) [3, 4]. The fatigue damage mech-
anisms in FMLs involve fatigue crack growth in the metal layers and accompanying de-
lamination at metal/composite interfaces. These two coupled damage mechanisms are
investigated by Alderliesten through applying the principle of superposition and esti-
mating the load transfer between the cracked metal layers and intact fibre layers with
the principle of displacement compatibility. The load transfer can be attributed to the
fact that the intact bridging fibres restrain the crack opening in the metal layers, which
reduces the stresses experienced at the crack tip and introduces interface delamination.
The Alderliesten model has been refined for variable amplitude loading [5–7] and for
part-through cracks [8].

Figure 4.1: Illustration of bridging mechanism [9]

One limitation of the Alderliesten model is that it can not be applied to analyse non-
symmetric crack cases in FMLs. However, non-symmetric fatigue crack cases can arise in
FMLs in practice for several reasons, such as the scatter of crack initiation at hole edges
and crack interaction in case of Multiple-site Damage (MSD) scenario [10] etc. One tip of
a non-symmetric crack can grow faster than the other tip under fatigue loading. There-
fore a prediction model is needed to extend the ability to analyse non-symmetric crack
growth behaviour in FML structures, which is required to meet the damage tolerance
requirement. In addition, another motivation for developing such a model is to anal-
yse MSD crack growth behaviour in FMLs [10, 11]. As a result of crack interaction in an
FML with MSD, a single crack may have asymmetric configuration involving crack tip
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asymmetry and delamination asymmetry (see Fig. 4.2). The ability to calculate the non-
symmetry effects on the states of a single crack, such as stress intensity factors and load
transfer between cracked metal layers and intact bridging fibres, in an FML is therefore
needed. The effects of adjacent MSD cracks on the state of the single crack in an FML
can be estimated with the load redistribution mechanism according to the philosophy
in [10, 11]. All crack states can be calculated by analysing each single crack in an FML
with MSD scenario [10, 11].

Many attempts to address non-symmetric crack growth in finite metallic structures
can be found in open literature [12–19], but no analytical prediction model for non-
symmetric crack growth in FMLs has been found in open literature. One obstacle for
developing such an analytical model is to understand the deformation behaviour of an
eccentrically cracked panel. The crack opening displacement of a non-symmetric crack
is of particular importance in analysing the load transfer between the cracked layers to
intact bridging fibres in an FML.

This paper proposes an analytical model for predicting the fatigue crack growth of
non-symmetric cracks in FMLs. The model is built upon the success of Alderliesten by
applying LEFM, the principles of superposition and displacement compatibility. The
implications of non-symmetry on fatigue cracking behaviour in FMLs are highlighted in
comparison with the symmetric crack scenario in Section 4.2. The model development
is detailed in Section 4.3 with focuses on the analysis of non-symmetry effects on stress
intensity factors and crack opening displacement, and on the analysis of non-symmetric
bridging calculation. Section 4.5 provides the validation of the proposed model with the
test program detailed in Section 4.4.

4.2. COMPARISON OF SYMMETRIC AND NON-SYMMETRIC CRACK

GROWTH BEHAVIOUR IN FMLS

In FMLs, fatigue crack growth in metal layers and delamination propagation at compos-
ite/metal interfaces take place simultaneously and interact with each other through the
bridging mechanism. The growth behaviour of the two crack tips is affected not only by
the free edge boundary conditions, but also the difference in delamination shapes for
the tips. A symmetric fatigue crack configuration in an FML means crack tip symmetry
(same boundary conditions) and delamination symmetry (no difference in delamination
shapes for two crack tips), illustrated in Fig. 4.2(a). A non-symmetric crack configuration
can be either delamination asymmetry (Fig. 4.2(b)), crack tip asymmetry (Fig. 4.2(c)), or
a combination of both (Fig. 4.2(d))

The effects of non-symmetry on the crack state and delamination growth of a non-
symmetric crack in an FML are discussed in comparison with the symmetric crack con-
figuration in the following subsections.

4.2.1. EFFECTS ON STRESS INTENSITY FACTORS OF TWO CRACK TIPS

The stress state at a crack tip in a metallic panel can be characterised with the stress in-
tensity factor experienced at the crack tip. According to Alderliesten [3, 4], the total stress
intensity factor of the crack tip (Ktot al ) in the metal layers of FMLs can be expressed
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Figure 4.2: Comparison of symmetric and non-symmetric crack configurations in FMLs

based on the principle of superposition:

Ktot al = K f f +Kbr (4.1)

in which K f f is the stress intensity factor due to far-field stresses in metal layers and Kbr

is due to the bridging stress in intact bridging fibres. In other words, the load transfer
from the cracked metal layer to the intact bridging fibres leads to a negative Kbr , resulting
in a smaller superposed stress intensity factor (Ktot al ) experienced at the crack tip.

For two symmetric crack tips, the influence of free edge boundary conditions are
the same, which leads to K f f ,1 = K f f ,2. This symmetry is valid for the crack cases in
Fig. 4.2(a) and Fig. 4.2(b). On the contrary, K f f ,1 6= K f f ,2 is valid for the cases of asym-
metric crack tips in Fig. 4.2(c) and Fig. 4.2(d) [10, 12].

The symmetric delamination shapes for the symmetric crack tips in Fig. 4.2(a) lead
to Kbr,1 = Kbr,2 according to the study of Alderliesten [3]. Even though the Kbr solution
for non-symmetric delamination shapes are unknown yet, Kbr,1 6= Kbr,2 is expected as
the difference in delaimination shapes can lead to non-symmetric bridging stress dis-
tribution along the crack. Despite the symmetric delamination shapes in Fig. 4.2(c),
Kbr,1 6= Kbr,2, as a result of non-symmetric crack opening displacement, which is ex-
plained in next subsections.

It is then obvious that Ktot al is only the same for two tips if there is both crack tip and
delamination symmetry. Either crack tip asymmetry or delamination asymmetry could
lead to different total stress intensity factors for two tips. Thus different crack growth
behaviour of two tips of a non-symmetric crack is expected in an FML. The proposed
model should be capable of analysing these phenomena.
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4.2.2. EFFECTS ON CRACK OPENING DISPLACEMENT
It is well known that a symmetric crack in a metal panel possesses a symmetric crack
opening displacement with respect to its crack centre under uniform tensile loading,
and that the maximum crack opening occurs at the crack centre. For an FML under
Mode I far-field loading, the stresses in the metal layers can be calculated with Classical
Laminate Theory (CLT). The symmetric crack opening displacement of a central crack
under applied load can then be determined [3, 4].

However, the crack opening of a non-symmetric crack in an FML under Model I
loading needs to be re-analysed. The study in [10] found that a non-symmetric crack
in a finite metallic panel has a larger crack opening displacement than a central crack
with the same length. In addition, the presence of a non-symmetric crack eliminates
the symmetry possessed by a centrally cracked panel, the crack opening contour of a
non-symmetric crack is asymmetric.

The difference in the crack opening displacements of a symmetric crack and a non-
symmetric crack in FMLs due to far-field stresses implies different bridging stress distri-
butions in the intact bridging fibres along the crack, which affects both the delamination
growth at the metal/composite interfaces and crack growth in the metal layers. The ef-
fects are discussed in detail in the next subsection.

4.2.3. EFFECTS ON LOAD TRANSFER FROM CRACKED METAL LAYERS TO BRIDG-
ING FIBRES

The intact fibres in the wake of fatigue cracks restrain the crack opening in the metal
layers in FMLs, which introduces load transfer from the cracked metal layers to the fibre
layers. The load transfer is achieved by shear at the metal/composite interfaces resulting
in interface delamination growth.

The load transfer between the two bonded substances is estimated by Alderliesten
using the principle of displacement compatibility, i.e., the sum of the crack opening due
to far-field load (v f f ) and crack closing due to the load transfer (vbr ) should be equal
to the deformation of fibre prepreg layers including shear deformation (δpp ) and fibre
elongation (δ f ) [3, 4]. See the following equation:

v f f (x)− vbr (x) = δpp (x)+δ f (x) (4.2)

where vbr and δ f are functions of bridging stress distribution in bridging fibres (Sbr (x))
and v f f and δpp are functions of far-field stresses in metal layers [3, 4].

The bridging stress distributions for a symmetric case and a non-symmetric case are
compared in Fig. 4.3 in order to illustrate how the difference in the crack opening dis-
placements of both crack scenarios affects the load transfer [10]. For the symmetric crack
case with symmetric delamination shapes, all the variables in Eq. 5.3 are symmetric with
respect to the crack centre, a symmetric bridging stress distribution in the bridging fibres
can be calculated with Eq. 5.3 [3]. Symmetric crack growth and symmetric delamination
growth in FMLs can be predicted as well with the approach in [3].

In contrast, the non-symmetric case with the same delamination shapes has asym-
metric v f f , see Fig. 4.3. A relatively larger crack opening for one crack tip than another
results in higher bridging stress according to the principle of displacement compatibil-
ity, as illustrated in Fig. 4.3. The higher bridging stress distribution indicates a larger
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Kbr for the corresponding crack tip. Meanwhile the higher bridging stress distribution
could promote larger delamination growth under fatigue loading, eventually resulting in
a non-symmetric delamination shape. It is notable that the resultant Kbr and K f f are
different, non-symmetric crack growth behaviours are therefore expected.

Based on the analysis, it can be argued that the crack tip asymmetry and delamina-
tion asymmetry interact with one another. A general crack configuration illustrated in
Fig. 4.2(d) could be expected. The proposed model should be able to deal with the influ-
ence of non-symmetry resulting from both crack tip non-symmetry and the difference
in delamination shapes.
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Figure 4.4: Decomposition of loads in FMLs system

4.3. MODEL DERIVATION
The general methodology that is based on LEFM, the principle of superposition and dis-
placement compatibility used in [3, 4] for analysing symmetric cracks in FMLs can also
be used for non-symmetric cracks. In comparison to symmetric cracks in FMLs, the
physically different crack growth behaviour of non-symmetric cracks resulting from the
asymmetric boundary conditions and difference in delamination shapes, however, need
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to be re-analysed. The core to this analysis is to calculate K f f and Kbr for each crack tip,
and to derive the asymmetric crack opening displacement and the corresponding load
transfer (Sbr ) which associates the crack growth and delamination growth.

In order to aid in calculating K f f and Kbr for each crack tip, the far-field applied load
is decomposed using the principle of superposition, see Fig. 4.4. The stresses carried by
metal layers, σm,app , and composite layers, σ f ,app , of an FML under total applied load
Ptot al or applied stress σl am can be calculated with CLT [9, 20]. Then the load transmit-
ted by the metal layers, Pm , and loads transmitted by fibres over the total crack length,
P f ,1, and the rest fibres, P f ,2, can be respectively expressed as:

Pm = nm tmσm,appW (4.3)

P f ,1 = n f t f σ f ,app 2a (4.4)

P f ,2 = n f t f σ f ,app (W −2a) (4.5)

where W is the width of the panel and 2a is the total crack length. The subscripts m and
f refer to metal layer and fibre layer respectively. n and t indicate the number of layers
and their thickness.

4.3.1. K f f CALCULATION
It is assumed that the stress distribution in front of a crack tip can be described with the
Westergaard stress distribution in FMLs [11]. Since the non-symmetry results in different
stress states at two crack tips of a non-symmetric crack, it is argued that the Westergaard
stress distributions ahead of the two crack tips are different [10]. The different stress
distributions are illustrated in Fig. 4.5(a).

The Westergaard stress distribution artificially defines a half crack length with a max-
imum opening displacement at the root [10]. In order to achieve a continuous crack
opening displacement for a non-symmetric crack calculated with two different Wester-
gaard stress distributions, two different crack lengths (a1, a2) are assumed, instead of



4

70 4. NON-SYMMETRIC CRACK GROWTH IN FMLS

using the half crack length a of a crack with the length of 2a (Eqs. 4.6- 4.7). This method
has been applied for calculating stress intensity factors and crack opening of an eccen-
tric crack in a metal strip and is explained in detail in [10]. Thus the corresponding stress
distributions in front of two crack tips in an eccentrically cracked FML can be given by:

σy y,1 = σ1√
1− (a1/x1)2

(4.6)

σy y,2 = σ2√
1− (a2/x2)2

(4.7)

where σ1 and σ2 are laminate stresses to be determined for the two crack tips. a1 and a2

are the assumed two crack lengths whose sum should be the total crack length (Eq. 4.8)
and the corresponding x1, x2 coordinates are illustrated in Fig. 4.5(a).

a1 +a2 = 2a (4.8)

Additionally, the crack opening at the root of two half crack lengths described with
the Westergaard stress distribution should be the same in order to fulfil the physics of
the crack problem, which is given analytically by [10]:

σ1S

Em
a1 = σ2S

Em
a2 (4.9)

where S is the stiffness matrix for calculating the stresses in metal layers and can be
calculated with CLT [9, 20].

At the cracked section of the panel, the loads carried by the intact materials are then
given by:

P1 =
∫ a1+L1

a1

σy y,1dx1 · tl am (4.10)

P2 =
∫ a2+L2

a2

σy y,2dx2 · tl am (4.11)

where L1 and L2 are the lengths of intact strips as illustrated in Fig. 4.5(a).
These two loads and the far-field load (Fig. 4.5(b)) should not only satisfy load equi-

librium but also moment equilibrium [10]:

P1 +P2 = Pm +P f ,2 (4.12)

(Pm +P f ,2)d f f +P1d1 = P2d2 (4.13)

with d f f , d1 and d2 being the distances between the corresponding equivalent loads
and the vertical symmetric line of the laminate panel as illustrated in Fig. 4.5(b). These
distances can be calculated based on their geometric relations.

The equivalent loads (P1, P2) of the Westergaard stress distributions (σy y,1, σy y,2)
illustrated in Fig. 4.5 should be located at their centroids, respectively (xc,1, xc,2) [10]:

xc,1 =
∫ a1+L1

a1
σy y,1x1dx1∫ w1

a1
σy y,1dx1

(4.14)
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xc,2 =
∫ a2+L2

a2
σy y,2x2dx2∫ w2

a2
σy y,2dx2

(4.15)

According to their geometrical relationship, d1 and d2 can be given by:

d1 = W

2
− (L1 +a1 −xc,1) (4.16)

d2 = W

2
− (L2 +a2 −xc,2) (4.17)

The location of the equivalent load of the far-field stress after decomposition can also
be calculated by:

d f f =
W

2
−

∫ L2
0 σl am xdx +∫ L2+2a

L2
ϕσm,app xdx +∫ W

L2+2a σl am xdx∫ L2
0 σl amdx +∫ L2+2a

L2
ϕσm,app dx +∫ W

L2+2a σl amdx
(4.18)

where ϕσm,app denotes that σm,app is recalculated based on the whole laminate thick-
ness, with ϕ being expressed as:

ϕ= nm tm

tl am
(4.19)

Solving the system of Eqs. 4.6- 4.18 provides the results for all the relevant unknown
parameters. Although an analytical solution is extremely hard to obtain, a numerical
solution can be computed.

The curing process for manufacturing FMLs causes thermal residual stresses in the
laminate due to the mismatched thermal expansion coefficients between the metal sheets
and fibre layers. The tensile thermal residual stress for metal layers (σm,cur ) is regarded
as far-field stress when the crack is present [3, 4]. It is therefore assumed in this paper
that the boundary condition has the same effects on the crack behaviour due to curing
stress in metal layers as on the stress intensity factor due to far-field applied stress. Then
the resultant stress intensity factors for the two crack tips can be expressed as:

K f f ,1 = (σ1S + σ1

σl am
σm,cur )

p
πa1 (4.20)

K f f ,2 = (σ2S + σ2

σl am
σm,cur )

p
πa2 (4.21)

4.3.2. CRACK OPENING DISPLACEMENT DERIVATION
The use of the Westergaard method provides the possibility of direct calculation of crack
opening displacement [21, 22]. For a non-symmetric crack, the crack opening is calcu-
lated with two Westergaard functions defining two half crack lengths that is illustrated in
Fig. 4.6 [10].

The crack opening displacements for the two half cracks (Fig. 4.6) due to the applied
far-field stress and curing stress can be given by:

v f f ,1 =
2(σ1S + σ1

σl am
σm,cur )

Em

√
a2

1 −x2
1 (4.22)
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v f f ,2 =
2(σ2S + σ2

σl am
σm,cur )

Em

√
a2

2 −x2
2 (4.23)

It is notable that the derived crack opening displacements are in local coordinates
(Fig. 4.6). They need to be mapped to a uniform coordinates with x = 0 located at the
crack centre in order to calculate the bridging stress distribution with the Westergaard
method, see Fig. 4.6. As the mapped COD cannot be expressed by one analytical equa-
tion, it is denoted as v f f (x) in this paper.

4.3.3. Sbr CALCULATION
It is believed that the same displacement compatibility between cracked metal layers
and intact bridging fibre layers used by Alderliesten for the symmetric crack configura-
tion [3, 4] can be used to calculate the bridging stress distribution for the non-symmetric
crack configuration. Consider a generic damage configuration, illustrated in Fig. 4.7,
where the delamination shape b(x) and crack opening v f f (x) are asymmetric with re-
spect to the crack centre. The dashed line in Fig. 4.7 represents a symmetric crack open-
ing given as a reference.

−5 0 5
0

2

4

6

i

x
i

x (mm)

b(
x)

 (
m

m
)

 

 

−5 0 5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

v ff(x
) 

(m
m

)

b(x)

sym COD

V
ff

Figure 4.7: Illustration of delamination bars and crack opening

Similar to the method in [8], the delamination shape is divided into bar elements.
Due to the known issue that the magnitude of the calculated Kbr is much more sensitive
to the bridging stresses in the bridging fibres very close to the crack tip than those in
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other elements, the elements next to the crack tips are refined by assigning gradually
smaller width, as shown in Fig. 4.7. Node xi is the centre point of i th bar element where
the bridging stress over width wi is approximated by Sbr (xi )wi with Sbr (xi ) being the
bridging stress at the node xi .

Eq. 5.3 can be used to calculate the Sbr distribution along the crack flank. v f f (x)
for any location x in a uniform coordinates with its origin at the crack centre has been
calculated in the preceding subsection. vbr (x) can be calculated with the equation as
follows:

vbr (x) = ∑
−a<xi<a

v(x, xi ) (4.24)

where v(x, xi ) denotes the crack opening at x due to a pair of point loads at xi of the i th
element (Fig. 4.7). For a cracked panel under a pair of point loads illustrated in Fig. 4.8,
the analytical solution has been provided by Tata et al. [22].

v(x, xi ) = 1

G(1+ v)
ImZ̄I − b(xi )

2G
ReZI (4.25)

where ZI and Z̄I are the Westergaad stress functions and b(xi ) is the delamination length
at xi , detailed information is given in Appendix B.
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The shear deformations of fibre layers for unidirectional plies and cross-ply layers
have been calculated in [4], however the stress in the metal layers, Sal in the equations
derived by Alderliesten, needs to be replaced by σ1S + σ1

σl am
σm,cur or σ2S + σ2

σl am
σm,cur

for each half crack (a1, a2).
The fibre elongation can be calculated by

δ f (x) = S f +Sbr

E
b(x) (4.26)

where S f is the sum of σ f ,app and σ f ,cur that is the curing stress in the fibre layers.
Due to the fact that vbr (x) is related to the bridging stresses at all the elements, Eq. 5.3

has to be solved for all the bar elements simultaneously. A numerical solution can there-
fore be obtained [4].

Sbr (x) = H−1Q (4.27)
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where

H = ∑
−a<xi<a

v(x, xi )

Sbr (xi )
+ b(x)

E f
(4.28)

Q = v f f (x)−δpp (x)− S f

E f
b(x) (4.29)

4.3.4. Kbr CALCULATION
The bridging stress is defined in this paper as the stress acting in the fibre layers. How-
ever, this bridging stress needs to be recalculated for the stress acting in each metal layer
in order to calculate the Kbr for each crack tip. The recalculation is given as [4]:

Sbr,m(x) = Sbr (x)
n f t f

nm tm
(4.30)

Then the stress intensity factor for each crack tip due to the bridging stress distribu-
tion can be calculated by:

Kbr,1 =
∑

−a<xi<a

Sbr,m(xi )w(xi )

2
p
πa

[√ a + z0

a − z0
+

√
a + z̄0

a − z̄0
−

αb(xi )
(−√

a + z0

a − z0

a · i

(a + z0)2 +
√

a + z̄0

a − z̄0

a · i

(a + z̄0)2

)]

Kbr,2 =
∑

−a<xi<a

Sbr,m(xi )w(xi )

2
p
πa

[√ a − z0

a + z0
+

√
a − z̄0

a + z̄0
−

αb(xi )
(√ a − z0

a + z0

a · i

(a − z0)2 −
√

a − z̄0

a + z̄0

a · i

(a − z̄0)2

)] (4.31)

4.3.5. CRACK GROWTH MODEL AND DELAMINATION GROWTH MODEL
The fatigue crack growth rate in metal is predicted with the Paris relation after the stress
intensity factor for each crack tip is obtained [4]:

d a

d N
=Ccg (Ke f f )ncg (4.32)

where Ccg and ncg are equation constants for Paris equation. For thin 2024−T 3 alu-
minium, the values are Ccg = 2.17 ·10−12 and ncg = 2.94. Ke f f is related to the range of
Ktot al and the stress ratio R [23]:

Ke f f = (0.55+0.33R +0.12R2)(1−R) ·∆Ktot al (4.33)

For delamination growth at the interface between metal layers and fibre layers, the
strain energy release rate G instead of K is employed as the driving force, simply because
it is easier to calculate G at the interface of dissimilar materials [3, 4]. The strain energy
release rate for each delamination column can be given in terms of stresses in bridging
fibres:
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G = n f t f

2 j E f
(

nm tmEm

nm tmEm +n f t f E f
)(S f (x)+Sbr (x))2 (4.34)

Then the interface delamination can also be calculated using the Paris relation [4]:

db

d N
=Cd (

√
Gmax −

√
Gmi n)nd (4.35)

with Cd and nd being the Paris parameters. For the fibre metal laminate Glare, the values
are Cd = 0.05 and nd = 7.5.

4.4. EXPERIMENTAL PROCEDURE

4.4.1. MATERIAL AND MANUFACTURING
The FML materials used for validation tests are composed of layers of S2-glass fibres re-
inforced FM94 epoxy resin prepreg and 2024-T3 aluminium, which is known as Glare.
The lay-up of the specimens is [Al/0/90/Al/90/0/Al] with 90 and 0 referring to the orien-
tation of the prepreg layers with respect to the rolling direction of the aluminium. Ta-
ble 4.1 provides the properties of the constituents.

Table 4.1: Material properties [11]

Al Prepreg
Young’s modulus Ex [GPa] 72.4 48.9
Young’s modulus Ey [GPa] 72.4 5.5
Shear modulus Gx y [GPa] 27.6 5.55
Poisson’s ratio vx y 0.33 0.33
Poisson’s ratio vy x 0.33 0.0371
Thickness of single layer[mm] 0.4 0.133
Thermal expansion

22 ·10−6 6.1 ·10−6(0◦)
coefficient[1/°C] 26.2 ·10−6(90◦)

The aluminium layers and cross-plies were stacked together according to the lay-up,
and then were put into an autoclave for curing. The curing process was carried out with
a maximum temperature of 120 °C and maximum pressure of 6 bars. Then the Glare
laminates were milled into the specimen size described in Fig. 4.9.

4.4.2. TEST MATRIX
In order to validate the proposed model for predicting non-symmetric fatigue crack growth
in FMLs, the specimen configuration with initial non-symmetric saw-cuts that is illus-
trated in Fig. 4.9 was adopted. A circular hole with radius of 1.5 mm was applied to ob-
tain saw-cuts from where the crack growth starts. The parameters of respective spec-
imen configurations are given in Table 4.2, which comprise the test matrix. That the
length of a saw-cut is equal to the hole radius means no initial saw-cut is applied at the
corresponding hole edge in order to get a delayed crack growth and corresponding de-
lamination growth. A symmetric crack configuration (sym-1) was tested as a reference
for comparison.
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Table 4.2: Test matrix

Specimen Shc (mm) a1,s (mm) a2,s (mm)
sym-1 0 3 3

asym-1 0 7 1.5
asym-2 30 3 3

4.4.3. FATIGUE TEST

The test set-up is shown in Fig. 4.10. A MTS 810 servo hydraulic test frame with a 250 kN
load-cell (model 661.22D-01) was used. The specimen was mounted on the test frame
with pin-hole grips such that no rotation constraints were applied. All the fatigue tests
were done under constant amplitude cyclic loading under force control. The maximum
applied stress level was 120 MPa, the stress ratio was R = 0.05 and the frequency was
f = 10 H z.

Cameras were used during the fatigue tests to take pictures which were post-processed
to obtain the crack length and delamination shape evolution. The test was suspended
after a certain number of fatigue cycles and the maximum stress was applied in order to
get the maximum displacement of the crack opening and maximum deformation of the
specimen. After that cameras took pictures of both sides of the specimen (see Fig. 4.10).
The test was then resumed. This process was iterated until enough crack lengths were
obtained in the specimen.

A strip of millimetre paper was bonded to the surface of the specimen facing a high
resolution camera. The pictures captured by this camera were post-processed with Im-
ageJ to obtain the crack lengths. The 7-point incremental polynomial method recom-
mended in the ASTM E647-00 [24] was applied to derive crack growth rates with the crack
lengths and corresponding cycles known.

The detection technique of the delamination shape adopted was the Digital Image
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Figure 4.10: Test set up

Correlation (DIC) method [25–27]. The DIC method is known for measuring the strain
distribution [25]. The DIC method obtains the deformation distribution by tracking the
displacement of the random speckle patterns in the image of a deformed specimen un-
der applied load and in the reference image of the specimen without any deformation.
This displacement distribution is then processed to acquire the strain field. Due to the
fact that the pieces of debonded aluminium carry negligible load while the bonded part
still bears much more load, the evident difference in the strain distribution measured
with DIC method between the delaminated part and bonded part makes the delamina-
tion front visible [26, 27].

In order to facilitate the correlation in the DIC method, the surface of the specimen
had been painted random airbrushed black speckles with white background base coat
of paint before the specimen was tested. The VIC-3D DIC system offered by Correlated
Solutions was used to make the strain measurements. Two DIC cameras took the ref-
erence image and deformed images during fatigue testing. The image correlation was
made with the subset size of 21 ·21 pixels and step of 5.

4.5. MODEL VALIDATION
The test data is used to validate the proposed model in this paper. Both the crack growth
rates and the delamination shapes from the test and prediction are compared.

First the predicted crack growth rates are compared to the test results of specimen
asym-1 (see Tabel. 4.2) in Fig. 4.11. The crack length is measured from the hole centre
to the crack tip respectively. As can be seen the prediction correlates well with test data.
The initial over prediction is due to the imprecise delamination shape assumed as input
for the model. However, this over prediction vanishes after several cycles. Due to the
non-symmetry, different crack lengths are obtained after fatigue test, this phenomenon
is also captured by the prediction model as can be seen from the final predicted and
tested crack lengths in Fig. 4.11.

Then the predicted and measured delamination shapes are compared for asym-1 in
Fig. 4.12. The delamination shapes obtained with the DIC method at the end of testing
are compared to the results obtained from etching the aluminium layers away to validate
the DIC method, and the corresponding prediction results are also presented in Fig. 4.12.
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Figure 4.11: comparison of crack growth rates for specimen asym-1

The predicted delamination shapes are compared to the DIC measurements during the
growth. Good correlation is observed.

The crack tip of a1 in asym-1 started growing at first from the saw-cut tip, another
crack initiated at the hole edge after a while. Therefore the delamination shape for a1
(b1) is lager than that for a2 (b2) in the beginning. The difference in the delamination
shapes decreases with fatigue life N until N is around 125500 cycles. Then the crack
lengths are long enough so that the boundary condition affects more the crack growth
and corresponding delamination growth. b1 is becoming bigger than b2 after this cycle
number. This phenomenon is discussed in detail in Section 4.6.
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Figure 4.12: Delamination evolution for asym-1

The symmetric crack configuration, sym-1, is a special case of non-symmetric crack
scenario. The prediction results together with test data for the symmetric case are given
in Fig. 4.13. The corresponding data for asym-2 is also presented to highlight the effects
of non-symmetric boundary condition on crack growth in FMLs. The crack length is
measured from the hole centre to the crack tip as well. The cracks initiate at the two
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saw-cut tips simultaneously for two cases. Symmetric Sym-1 has same crack growth be-
haviour for the two crack tips. For asym-2, the crack growth rates of the two crack tips
are the same for the crack length less than 10 mm where the boundary condition hardly
affects the crack growth. Then the effects of boundary condition prevail. The crack tip
relatively closer to the free edge grows faster than the other one.
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Figure 4.13: Comparison of crack growth rates for sym-1 and asym-2

4.6. DISCUSSION

4.6.1. THE CATCH-UP PHENOMENON FOR NON-SYMMETRIC CRACK GROWTH

IN FMLS
From Fig. 4.12 it can be seen that the size of delamination shape b2 catches up with b1
during the short crack growth where the boundary condition effects are limited. This
evolution of delamination damage interacts with the crack growth in metal layers. It can
also be seen that the crack length bridged by b2 also catches up with the crack length
bridged by b1 from Fig. 4.14 where the crack length measured from the saw-cut tip is
plotted against the crack growth life N . The predicted crack growth rates presented in
the same figure showed higher crack growth rate for a2∗ with smaller delamination b2
than a1∗ with lager delamination b1 in the beginning phase of the crack growth life.

As can be read from Table 4.3, the calculated far-field stress intensity factors for the
two crack tips are very close for the life period from N = 2000 to N = 33000. This is at-
tributed to the fact that the crack lengths are still small enough so that the boundary
condition effects are almost absent. Whereas the stress intensity factor due to bridging
for a2∗ is smaller, because the smaller delamination shape b2 provides smaller bridging
compared to the larger b1 for a1∗. This results in a higher total stress intensity factor for
a2∗ according to Eq. 4.1, resulting in a faster crack growth and accompanying delamina-
tion growth.

As can be seen in Fig. 4.14 a1∗ grows faster than a2∗ after the crack length exceeds
10 mm, where the effects of boundary conditions override the effects of the bridging
mechanism on the crack growth behaviour. The calculated stress intensity factors in
Table 4.3 further explain this.
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Table 4.3: Variation of stress intensity factors

N K f f ,1 K f f ,2 Kbr,1 Kbr,2

2000 702.96 703.24 237.95 227.74
33000 876.33 876.39 459.87 444.23

125500 1324.06 1318.76 848.61 843.67
174000 1622.4 1603.17 1089.86 1082.81
222600 2200.68 2085.52 1506.81 1468.67

4.6.2. IMPLEMENTATION OF THE PROPOSED MODEL FOR PREDICTING MSD
IN FMLS

The presented authors of this paper have already detailed a philosophy for predicting
multiple-site damage growth behaviour in FMLs in [10]. The philosophy requires the
ability to predict the crack interaction effects in terms of the load redistribution mecha-
nism, and the ability to predict the crack growth with asymmetric delamination shapes
and asymmetric boundary conditions for two crack tips in metal layers in FMLs. The
load redistribution mechanism in FMLs as a result of stiffness variation has been studied
with the precursor model proposed in [11], and the prediction model of non-symmetric
crack growth in FMLs is proposed in this paper. Since the model proposed in this paper
uses the Westergaard stress distributions to characterise the stress distribution ahead of
a crack tip, the load redistribution due to stiffness variation caused by the presence of
another crack can therefore be modelled [11]. These two models will be integrated to
predict the crack growth behaviour in FMLs with MSD scenario.

4.6.3. LIMITATIONS OF THE PROPOSED MODEL

From Fig. 4.13, it is observed that the predicted crack growth rate for the tip very close to
the free edge is a little over predicted at the last period of fatigue crack growth in asym-
2, while the prediction for the other tip relatively far away from the free edge ahead is
underestimated. This inaccuracy originates from the methodology used in Section 4.3
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to calculate the far-field stress induced stress intensity factors for two crack tips and
the asymmetric crack opening contour of a non-symmetric crack. The methodology is
based on the model proposed in [10], which anaylses the deformation behaviour in a
2-dimensional metallic panel damaged by an eccentric crack.

The model in [10] has assumed that the Westergaard stress distribution and associ-
ated crack opening solution are applicable to non-symmetric crack tips. And two half
crack lengths are defined as the lengths between the maximum crack opening location
and the crack tips respectively. These assumptions are valid for most eccentric crack sce-
narios. For a crack case with very high eccentricity and high ratio of the crack length to
the ligament length in front of the critical crack tip, the assumptions lead to inaccuracy
in the predicted stress intensity factors. The trend of the inaccuracy is already shown in
[10]. This calculation error could result in a cumulative error in terms of fatigue crack
growth life.

4.7. CONCLUSION
An analytical model has been developed to analyse the non-symmetric crack growth in
FMLs. The non-symmetric crack growth in the metal layers and induced non-symmetric
growth of delamination shapes at the composites/metal interfaces in FMLs were inves-
tigated in detail. The accuracy of the analytical model has been validated through com-
paring predictions with experimental data for several non-symmetric crack cases. Good
correlation is observed.

Both the stress intensity factor due to the far-field loading (K f f ) and the stress inten-
sity factor due to the bridging stress distributions (Kbr ) determine the non-symmetric
fatigue crack growth in metal layers of FMLs. Implementation of these two stress in-
tensity factor solutions requires analysis of two sorts of non-symmetries: crack tip non-
symmetry and delamination shape non-symmetry. For small cracks, the delamination
shape non-symmetry dominates the crack growth behaviour. When the crack length is
long enough, the free edge boundary conditions will prevail and the crack growth be-
haviour is then dominated by the crack tip non-symmetry.

The load redistribution from the cracked metal layers to the intact fibre layers can
only be solved on the condition of knowing the far-field loading induced crack opening
behaviour of the eccentrically cracked metal layers. The proposed model is capable of
analysing the deformation behaviour and calculating the bridging stress distribution of
arbitrary delamination shape for non-symmetric fatigue crack growth in FMLs. The pro-
posed model also provides the stress distribution in front of the crack tip, which can be
utilised to analyse the effects of load redistribution due to stiffness variation in front of
the crack tip on the crack state, such as the presence of other collinear cracks.
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5
ANALYTICAL PREDICTION MODEL

FOR FATIGUE CRACK GROWTH IN

FIBRE METAL LAMINATES WITH

MSD SCENARIO

This paper presents a theoretical and experimental study on Multiple-site Damage (MSD)
crack growth behaviour in Fibre Metal Laminates (FMLs). The prediction model is de-
veloped based on a simplified analysis of the effects of load redistribution on a single
crack in FMLs containing multiple cracks. Test results show that the crack growth acceler-
ates as cracks grow towards each other. The tests also show non-symmetric crack growth
behaviour and non-symmetric interfacial delamination propagation in case of multiple
cracks. The prediction model successfully captures the crack growth acceleration and non-
symmetric growth behaviour.

This chapter is to be submitted to International Journal of Fatigue [1].
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5.1. INTRODUCTION
FMLs are a family of hybrid laminates made of alternating composite layers and thin
metal sheets [2]. The FML concept is evolved out of bonded metal laminate structures by
adding fatigue resistant fibres in such laminates, to enhance the crack growth resistance
of the metal layers and allow a larger critical damage size. These merits of FML materials
enable longer inspection intervals and application of less sophisticated inspection tech-
niques to ensure structural integrity, which is very desirable in the context of the damage
tolerance philosophy used in the aerospace sector [3].

An identified deficiency of the damage tolerance philosophy, which relies on inspec-
tions, is its compatibility with an unbounded structural life. It has been realised that the
damage tolerance philosophy is not enough to secure flight safety for an indefinite life
as widespread fatigue damage (WFD) within one structural element can occur over time.
In 2010, the airworthiness regulations were revised to include the concept of Limit of Va-
lidity (LOV): a period of structural life prior to which WFD will not occur [4, 5]. The LOV
concept places limits on the damage tolerance philosophy with the intention to combat
WFD failure resulting from crack growth at multiple sites, i.e., the MSD scenario.

Consequently it is crucial to examine the MSD crack growth behaviour in FML ma-
terials, even though they are very successful in the context of the damage tolerance phi-
losophy. Several robust damage tolerance analyses of isolated crack growth in FMLs can
be found in open literature, including an analytical model for constant amplitude load-
ing by Alderliesten [6, 7] which has been refined for variable amplitude loading [8–10],
and for part-through crack configurations [11]. However, these well established dam-
age tolerance prediction models fail to characterise the crack growth behaviour in FMLs
containing multiple fatigue cracks and accompanying delamination shapes. Extending
these models for the MSD problem is also problematic and cumbersome due to the load
redistribution mechanism in FMLs, resulting from the simultaneous presence of multi-
ple cracks [3, 12].

Hybrid FMLs exhibit different MSD crack growth behaviour compared to monolithic
metal sheets, as shown in Fig. 5.1. Firstly, the growth behaviour of a single crack in an
FML is very stable over much longer crack growth life than in a monolithic metallic panel
(see Fig. 5.1), which is attributed to the fatigue resistant fibres remaining intact in the
wake of fatigue cracks in the metal layers and acting as a second load path. Then the
presence of other cracks in the FML causes local reductions in geometric stiffness at each
crack location. As a result, loads redistribute from the adjacent cracks to the single crack.
This load redistribution mechanism is present for the whole crack growth life and accel-
erates the crack growth rate, resulting in a significant life reduction. Whereas in metallic
panels the load redistribution mechanism makes only a tiny difference in terms of the
crack growth life due to the rapid growth behaviour. Therefore, the load redistribution
mechanism becomes essential in modelling crack growth behaviour in FMLs containing
MSD cracks [3, 12]. A precursor model that analyses the crack growth behaviour in FMLs
containing discretely notched layers has been developed by the present authors, with
the intention to develop a simplified prediction methodology for modelling the effects
of load redistribution on a single crack in an FMLs containing an MSD scenario [3].

The objective of this paper is to integrate two analytical models proposed by the
present authors to form another prediction model for analysing the MSD crack growth
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Figure 5.1: Fatigue nature of FMLs

behaviour in FMLs. Based upon the precursor model [3], this paper analyses the load
redistribution mechanism as a result of simultaneous presence of multiple cracks in
FMLs in a simplified manner. Additionally, the analytical model which addresses non-
symmetric crack tip growth and delamination growth in FMLs [13] will be integrated to
simultaneously analyse the asymmetric growth behaviour of multiple cracks. A system-
atical implementation of the two models will be provided in this paper. The validation
is completed by comparing prediction results against the test data of three specimens
containing MSD cracks.

5.2. BACKGROUND: STATE OF THE ART IN PREDICTING CRACK

GROWTH BEHAVIOUR FOR FMLS

5.2.1. FATIGUE CRACK GROWTH MODEL FOR FMLS

Fatigue crack propagation in FMLs consists of crack growth in the metal layers and de-
lamination growth at the metal/composite interfaces. As has been stated in the preced-
ing section, the fatigue resistant fibres remain intact in the wake of fatigue cracks in the
metal layers and bridge the cracks, leading to load transfer from the cracked metal layers
to the bridging fibres. This load transfer reduces the stresses experienced at the crack tip
in the metal layers, and as a result, the stress intensity factor at the crack tip is reduced.
Moreover, the load transfer introduces cyclic shear stresses at the interfaces between
metal layers and fibre layers, resulting in delamination growth at the interfaces.

Alderliesten has developed an analytical model to calculate the coupled crack growth
and delamination propagation using linear elastic fracture mechanics (LEFM) [6, 7]. Ac-
cording to him, the stress intensity factor at the crack tip which is used to characterise
crack growth in the metal layers can be decomposed into two components as expressed
in Eq. 5.1. The first term, K f f , refers to the stress intensity factor due to stresses in the
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metal layers due to far-field applied load. The second term, Kbr , refers to the stress in-
tensity factor due to the bridging mechanism, which should be superposed upon the
first term to derive the total stress intensity factor at the crack tip.

Ktot al = K f f +Kbr (5.1)

Whereas the strain energy release rate G is applied to characterise the delamination
propagation due to the complexity in calculating K at the interface between two dissim-
ilar materials. As expressed in Eq. 5.2, G varies against x along the crack. Alderliesten
subdivides the delamination shape into bar elements perpendicular to the crack and as-
sumes that the delamination grows only in this direction.

G = n f t f

2 j E f
(

nm tmEm

nm tmEm +n f t f E f
)(S f (x)+Sbr (x))2 (5.2)

It is noteworthy that both Ktot al and G depend on the bridging stress distribution
Sbr (x) along the delamination frontier [6, 7]. Alderliesten calculates Sbr (x) by imple-
menting the displacement compatibility between the crack opening and the fibre de-
formation over the delaminated length at each bar element simultaneously. The crack
opening in the metal layers (as a result of crack opening due to the far-field load, v f f (x),
and crack closing due to the bridging stresses, vbr (x),) must be identical to the elonga-
tion δ f (x) and shear deformation δpp (x) of the fibre layers.

v f f (x)− vbr (x) = δpp (x)+δ f (x) (5.3)

Eq. 5.3 can only be solved numerically with a square matrix whose size is identical to
the number of bar elements in the delamination shape [6, 7].

5.2.2. CHALLENGES IN EXTENDING THE MODEL FOR MSD SCENARIO
The description of the crack growth model for FMLs in the preceding subsection high-
lights the significance of calculating the crack opening in the cracked metal layers and
using a square matrix to implement the displacement compatibility in calculation of the
bridging stress distribution. In order to simultaneously solve all the crack states in an
FML containing MSD scenario with the Alderliesten model, one faces several challenges.
To explain these challenges, an example MSD scenario in an FML is illustrated in Fig. 5.2.

Bar element iw
i

D
el

amamm

ina
tttio

n bounnn y

Crack 1 Crack 2 Crack 3

Bar elements Bar elements Bar elements

Figure 5.2: Subdivision columns in the delamination shapes for all cracks

The first challenge is to calculate the crack opening displacement at a specific bar ele-
ment. Crack opening displacements for evenly spaced cracks can be derived [14]. How-
ever, the crack opening displacements of non-evenly spaced cracks, which frequently
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occur in reality, is vey challenging to derive. In addition, the crack closing term, vbr , in
Eq. 5.3 at the bar element i is not only effected by the bridging stresses over Crack 2, but
also by the the bridging stresses over Crack 1 and Crack 3. Therefore these cracks are
coupled in terms of the bridging mechanism, which makes the calculation challenging
as well.

Secondly, it is computationally inefficient. Each crack has a matrix to be solved and
these cracks are coupled with each other as explained above. A very large matrix then
has to be constructed in order to solve the bridging stress distributions for all the cracks.
The size of the matrix would depend on the number of the cracks and the length of each
crack.

These two challenges make the use of the Alderliesten model for MSD scenario cum-
bersome. Another limitation of the Alderliesten model is that it cannot predict non-
symmetric growth behaviour in FMLs [13]. However, as shown in Fig. 5.2, a non-symmetric
crack configuration can arise in case of MSD scenario as a result of crack interaction.
This non-symmetry comprises crack tip asymmetry and delamination asymmetry, which
has to be dealt with [13].

5.2.3. ALTERNATIVE METHODOLOGY FOR PREDICTING MSD CRACK GROWTH

In response to the challenges and limitation discussed above, an alternative methodol-
ogy has been proposed by the present authors to predict MSD crack growth behaviour
in FMLs. This alternative has two essential elements. The first one is to solve each crack
state by modelling the effects of other cracks as local reductions in geometric stiffness
[3]. The second one is to predict the non-symmetric growth behaviour [13]. These two
elements are briefly summarised here and the implementation of these elements for an
MSD scenario is given in the next section.

The effects of other cracks on a single crack in an FML can be separated into crack
tip interaction effects and load redistribution effects. Crack tip interaction effects are at-
tributed to the interaction of the stress singularities (plasticities) in front of the two crack
tips when they are in the vicinity of each other, which occurs for a small portion of fatigue
crack growth life before the link-up of cracks. Load redistribution effects are attributed
to the reductions in geometric stiffness caused by the presence of other cracks, which
is present over the whole fatigue crack growth life. The nature of slow crack growth be-
haviour in FMLs leads to modelling load redistribution effects being the key factor for
predicting MSD crack growth behaviour since the cumulative effects of load redistri-
bution can result in significant reduction in fatigue crack growth life (see Fig. 5.1) [12].
While the crack tip interaction effects are neglected since the growth rates of two nearby
crack tips are so rapid that the error in estimated fatigue life by ignoring these effects is
negligible.

This paper adopts the precursor model in [3] to estimate the load redistribution ef-
fects in a simplified manner. Other cracks are represented as removals of metal strips
when analysing the crack state of a single crack. This representation mimics the reduc-
tion in geometric stiffness caused by the crack in the metal layers. The effects of the
stiffness reduction is estimated by applying the isostrain condition between the repre-
sentations of the cracks and the surrounding laminate materials [3]. The reduced stiff-
ness of the laminate at the crack location in front of the single crack causes decrease in
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the stress transferred by the laminate as a result of isostrain condition, which could lead
to load transfer from the crack to the single crack, exacerbating the stress state of the
single crack.

The strain distribution, needed for implementing the isostrain condition, is derived
from the Westergaard stress distribution in front of the crack tip [3]. In order to model
the non-symmetric growth behaviour in FMLs, two different Westergaard stress distribu-
tions are assumed in front of the crack tips of a single crack instead of using the identical
Westergaard stress distribution for two crack tips [13]. The non-symmetric crack open-
ing displacement of the single crack arising from the two Westergaard stress functions
can also be calculated and used to implement the displacement compatibility expressed
in Eq. 5.3. A more generic algorithm for calculating bridging stress distribution proposed
in [13] can be used to account for the effects of non-symmetric delamination shapes for
the single crack.

With these two elements, the single crack state can be solved without knowing all the
crack opening displacements of other cracks, and a relatively small matrix is solved each
step with the calculated non-symmetric crack opening displacement of the single crack.
The implementation of the elements will be provided in next section. This process can
be iterated until all crack states have been calculated.

5.3. MODEL INTEGRATION AND IMPLEMENTATION

5.3.1. MODEL INTEGRATION

Two analytical models have been developed with the intention to address the load redis-
tribution mechanism, and non-symmetric crack growth and delamination propagation
behaviour in FMLs containing MSD scenario respectively. A systematic integration and
implementation of these two models enables analysis of the state of a single crack at
each step.

Consider a generic MSD crack configuration illustrated in Fig. 5.3. Crack i is the sin-
gle crack to be analysed and the other cracks are idealised as removals of metal strips.
The numbering of other cracks is illustrated in Fig. 5.3(a).

In front of the crack tips of the single crack i , two Westergaard stress distributions
should be assumed in order to account for the non-symmetry effects [13]. The load re-
distribution from the other cracks to the single crack is evaluated by implementing the
isostrain condition between the representations of the cracks and surrounding laminate
material. Consequently, the strain distributions derived from the Westergaard stress dis-
tributions in the laminate in front of two crack tips are continuous.

For crack tip i 1, the strain distribution in front is:

εy y,i 1 = εi 1/
√

1− (ai 1/xi 1)2 (5.4)

with the subscript i 1 denoting that every variable in Eq. 5.4 is associated with crack tip
i 1. εi 1 is an unknown parameter. xi 1 starts from the location of the maximum crack
opening displacement and the crack length ai 1 is also measured from the maximum
crack opening location to the crack tip (see Fig. 5.3(a)) [13, 15]. This maximum crack
opening displacement location is a parameter to be determined.
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Figure 5.3: Illustration of modelling load redistribution and non-symmetry effects

For crack tip i 2 , the strain distribution in front is expressed as:

εy y,i 2 = εi 2/
√

1− (ai 2/xi 2)2 (5.5)

with the subscript i 2 denotes that every variable in Eq. 5.5 is associated with crack tip i 2.
εi 2 is a unknown parameter as well. xi 2 is another local coordinates starting from the
location of the maximum crack opening displacement and the crack length ai 2 another
half crack length.

It is worth noting that two half crack lengths ai 1 and ai 2 are defined instead of using
an equal half crack length, a, in Eqs. 5.4 and 5.5. The definition of two different half
crack lengths is attributed to the fact that the Westergaard stress distribution artificially
defines a half crack length with the maximum crack opening at the root of the half crack
length. In order to obtain a continuous crack opening contour described by two different
Westergaard stress distributions, two half crack lengths are defined and the calculated
maximum crack opening displacements have to be identical [13].

The stiffness variations in front of the crack tips of the single crack lead to steps in
the stress distributions, see Fig. 5.3(a). At the uncracked parts between crack tips, both
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the metal layers and fibre layers transfer the load, whereas only fibres at the locations of
other cracks transfer the load. In consequence the stress distributions in front of the two
crack tips are described through multiplying the strain distributions in Eqs. 5.4 and 5.5
by the stiffness of each part in front of the crack tips respectively.

σy y,i 1 =



El am ·εi 1/
√

1− (ai 1/xi 1)2 =σi 1/
√

1− (ai 1/xi 1)2

for uncracked parts

E f i br e ·εi 1/
√

1− (ai 1/xi 1)2 = E f i br e /El am ·σi 1/
√

1− (ai 1/xi 1)2

for cracked parts

(5.6)

σy y,i 2 =



El am ·εi 2/
√

1− (ai 2/xi 2)2 =σi 2/
√

1− (ai 2/xi 2)2

for uncracked parts

E f i br e ·εi 2/
√

1− (ai 2/xi 2)2 = E f i br e /El am ·σi 2/
√

1− (ai 2/xi 2)2

for cracked parts

(5.7)

El am in the above equations represents the overall stiffness of the laminate and E f i br e

represents the stiffness of the fibre layers [3]. The reduced stress distributions at the
cracked parts indicate the load redistribution effects caused by the reductions in the ge-
ometric stiffness.

In Fig. 5.3(b), Pi 1 and Pi 2 are the integrations of the stress distributions ahead of the
crack tips respectively. They are the loads carried by the materials in front of the two
crack tips. Pi 1 and Pi 2 and the far-field load P f f ,i needs to maintain not only load equi-
librium but also moment equilibrium [13]:

Pi 1 +Pi 2 = P f f ,i (5.8)

Pi 1di 1 = Pi 2di 2 +P f f ,i di (5.9)

where di 1, di 2 and di are the distances between the locations of respective loads and the
symmetric line of the panel. They can be calculated using their geometrical relations
with the centroids of the respective stress distributions (xc,1, xc,2 in Fig. 5.3(b)) [13].

The model is an integration of the two analytical models proposed in [3, 13]. A system
of equations can be derived and solved for all the unknown variables. Detailed calcula-
tion of all the unknown variables in the above equations can be found in [3, 13]. Then
the stress intensity factors at the two crack tips, K f f ,i 1, K f f ,i 2 can be determined. The
effects of load redistribution and non-symmetry are taken into consideration when de-
riving these stress intensity factors. Meanwhile, a continuous asymmetric crack opening
contour v f f ,i for the single crack i can also be calculated. For detailed calculation, one
can refer to [3, 13].

In addition, two non-symmetric delamination shapes for the two crack tips also con-
tributes to the non-symmetric growth behaviour of the crack tips. The bridging stress
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Figure 5.4: Illustration of numerical implementation

distributions, Sbr,i (x), in the asymmetric delamination shapes over the non-symmetric
crack i with asymmetric crack opening contour can also be calculated with the generic
algorithm of implementing the displacement compatibility that is detailed in [13]. Then
the stress intensity factors due to the bridging mechanism, Kbr,i 1, Kbr,i 2 can be deter-
mined. The strain energy release rate Gi (x) for crack i can also be calculated with the
bridging stress distribution for crack i known. For detailed calculation, please refer to
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[13].
Eq. 5.1 needs to be applied to calculate the total stress intensity factors at the two

crack tips (Ktot al ,i 1, Ktot al ,i 2). The crack growth rates for the two tips can then be deter-
mined. So can the delemination growth rate, when Gi (x) is known.

i=1 i=2 i=3 a
i2

a
i1

b(x)
i2 b(x)

i1

x
crack i

Figure 5.5: MSD configuration definition

(a) crack state analysis for crack
i = 1

(b) crack state analysis for crack
i = 2

(c) crack state analysis for crack
i = 3

Figure 5.6: Illustration of crack state analysis loop

5.3.2. NUMERICAL IMPLEMENTATION PROCEDURE
Fatigue analysis itself is an iterative process. Fig. 5.4 gives an overview of the iterative
process for analysing MSD crack growth in FMLs. The methodology for analysing the
crack growth behaviour and delamination propagation behaviour in FMLs with multiple
cracks is implemented in a numerical program.

The required input variables are shown in Fig. 5.4. The material properties, load-
ing parameters and Paris constants are standard inputs of fatigue analysis for FMLs.
Apart from these inputs, the damage configuration input should be provided. For the
case of an MSD scenario, several cracks and their accompanying delamination shapes
are present simultaneously. A clear identification system of individual crack and corre-
sponding delamination shape has to be made. In Fig. 5.5, a three-crack configuration is
illustrated as an example. The cracks are numbered from left to right. For a single crack i ,
the associated crack lengths and delamination shapes are identified with the subscripts
shown in Fig. 5.5. The crack length is measured from the hole centre to the individual
crack tip. The crack location xi is the distance measured from the left boundary to the
hole centre of crack i . The crack lengths and crack locations should be the damage con-
figuration input. The initial delamination shapes for the crack tips are assumed [6, 7].

For a given MSD crack scenario, the state of a single crack can be calculated with the
proposed methodology in the preceding subsection. This calculation has to be repeated
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in order to calculate each crack state, which is the inner loop enclosed by the dashed box
in the analysing process illustrated in Fig. 5.4. A tangible illustration is given in Fig. 5.6
for a case of three cracks.

Knowing the total stress intensity factors of each crack tip and the strain energy re-
lease rate at the delamination over each crack, the crack growth rates and delamination
growth rates can be determined with the empirical Paris relations. After a small crack
increment and delamination increment, the state of each new crack configuration must
be reanalysed. This iterative process continues until two crack tips link-up or one crack
tip grows to the free edge.

5.4. EXPERIMENTAL TESTING
One variant of FMLs, Glare, was tested to obtain fatigue test data to validate the model.
Each specimen has a three-crack configuration, which is illustrated in Fig. 5.7. The mid-
dle crack is at the specimen centre with other two symmetrically located on both sides.
The symmetric condition for the middle crack results in symmetric crack growth be-
haviour of the crack. Apart from validating the present model, the test data of the mid-
dle crack will be compared to the prediction for an isolated central crack to highlight the
effects of load redistribution caused by the presence of other two cracks. The outer two
cracks depicted in Fig. 5.7 should possess non-symmetric crack growth behaviour. The
multiple cracks interact with each other under fatigue loading.

The used Glare comprised of 2024-T3 aluminium sheets and prepregs made of S-2
glass fibre reinforced FM 94 adhesive. Prepregs with different fibre orientations were
stacked together to make a fibre layer, Al layers and fibre layers were then piled up alter-
nately. Standard Glare3 and Glare4B were used [2], the lay-up of each laminate is given in
Table 5.1. The stacked laminates were cured in an autoclave with curing temperature of
120 °C and pressure of 6 bar. The cured laminate panels were milled into the specimen
dimensions given in Fig. 5.7. Three holes with a diameter of 3 mm were applied to each
panel. Two notches were cut on both side of each hole with hand saw in order to obtain
roughly simultaneous crack growth starting from the tips.

Table 5.1: Test matrix

specimen Glare grade Al layer fibre layer prepreg orientation applied load
number number in each fibre layer

1 Glare3 3 2 0/90 120 MPa
2 Glare4B 3 2 90/0/90 100 MPa
3 Glare4B 4 3 90/0/90 100 MPa

The test matrix comprises 3 panels whose configurations are given in Table 5.1. Spec-
imen 2 and 3 were under same loading but the metal volume fraction (MVF) of specimen
3 is lower than specimen 2 [2]. Due to the fact that the stiffness of Al is higher than that of
S-2 fibres, the presence of cracks in the metal layers of an FML with higher MVF results
in more reduction in stiffness.

Testing was carried out on an MTS 810 servo hydraulic test frame containing a pin-
hole clevis and a 250 kN load-cell (model 661. 22D-01). All the fatigue tests were con-
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Figure 5.7: MSD crack configuration

ducted under constant amplitude fatigue loading with a stress ratio of R = 0.05 and a fre-
quency of 10 H z. The respective maximum applied stresses are given in Table. 5.1. The
crack lengths were measured using a monocular microscope with a precision of 0.1 mm
while the fatigue test was suspended and maximum stress was applied, the correspond-
ing fatigue life was also recorded. The test resumed after the crack length measurement.
The fatigue test stopped when two crack tips linked up.

After fatigue tests, chemical etching was employed to remove the outer aluminium
layers to reveal the final delamination shapes. All crack lengths were processed with
a 7-point incremental polynomial method recommended in the ASTM E647-00 [16] to
obtain the crack growth rate.

5.5. RESULTS AND DISCUSSION

5.5.1. CRACK GROWTH BEHAVIOUR COMPARISON

The crack growth behaviour of all three tested specimens are used to compare against
the prediction results. Both crack growth rate comparisons and a-N comparisons are
given in Fig. 5.8, Fig. 5.9 and Fig. 5.10 for each specimen respectively.

For each specimen configuration, the predictions for an isolated central crack using
the Alderliesten model [6, 7] are also provided as dashed lines. The comparison between
the predicted growth rate of the isolated crack and that of the middle crack (a21, a22)
in the case of MSD highlights the increase in the crack growth rate due to the stiffness
reductions caused by multiple crack growths. The predicted growth rate without con-
sidering the effects of load redistribution for MSD scenario is highly inaccurate and the
cumulative error leads to over prediction of the fatigue life by a factor of about 1.8 (see
Fig. 5.8(b), Fig. 5.9(b), Fig. 5.10(b)).
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Figure 5.8: Comparison between prediction and measurements of Glare3-3/2-0.4 specimen
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Figure 5.9: Comparison between prediction and measurements of Glare4B-3/2-0.4 specimen

In the present prediction methodology, the load redistribution effects are accounted
for throughout the entire crack growth period. The predicted crack growth rates capture
the crack acceleration feature of interacting crack tips in FMLs (see Figs. 5.8(a), 5.9(a)
and 5.10(a)). However, the idealization of the cracks in modelling load redistribution
leads to over predicted results.

For the major portion of the crack growth and the major portion of the growth life,
two crack tips that grow towards each other are not close enough for the stress singu-
larities (plasticities) in front to interact. It is the load redistribution mechanism that in-
creases the crack growth rate. Whereas the effects of plasticity interaction present when
one crack tip is in the vicinity of another, resulting in dramatic increase in the crack
growth rate, shown in Fig. 5.9 and Fig. 5.10. The load redistribution effects are modelled
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Figure 5.10: Comparison between prediction and measurements of Glare4B-4/3-0.4 specimen

throughout the whole crack growth even in the presence of the plasticity interaction,
however the stress singularity interaction effects in the vicinity of two crack tips are ig-
nored.

The calculation of the size of plasticity in front of the crack tip and the stress sin-
gularity interaction is beyond the scope of this paper. Eq. 5.10 is merely used to pro-
vide an indication of the plastic zone size rp . The total stress intensity factor Ktot al for
a22 = 13 mm in specimen Gl ar e4B − 4/3− 0.4 and the yield strength σy s = 347 MPa
for the used aluminium are substituted into Eq. 5.10. The obtained plastic zone size is
1.1 mm. Neglecting the plasticity interaction effects therefore leads to underestimation
of the crack growth rate only over an estimated crack length of roughly 1 to 2 mm before
link-up of the crack tips (see Fig. 5.10(a)). It is worth noting that this plasticity interaction
only occurs over a rather small portion of crack length with rapid growth rate, resulting
in a minimum error in fatigue life prediction without considering this in the model.

rp = K 2
tot al

πσ2
y s

(5.10)

The deviations in predicted fatigue crack growth life and measured crack growth life
in a-N comparison figures are attributed to the over predicted crack growth rates. The
over prediction is a result of the idealisation of adjacent cracks as removal of strips of
metal layers when analysing the crack state of a single crack in the prediction model.
The idealisation is not a true physical representation of cracks in the proposed model,
which introduces more stiffness reduction and thus more load redistribution in mod-
elling than actual cracks do in a laminate. However, the load redistribution is adequately
captured by the non-physical representation. The over predicted crack growth rates lead
to conservative calculation results. Otherwise the fatigue growth life prediction could be
very non-conservative if the load redistribution effects are not considered, illustrated by
the predicted life of an isolated crack growing to the length where the link-up occurs for
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the tested MSD cracks (Fig. 5.8(b), Fig. 5.9(b), Fig. 5.10(b)).
The predicted crack growth life and the measured crack growth life for each specimen

are given in Table 5.2. The MVF, the ratio between the total thickness of metal layers and
the total thickness of the laminate, of each specimen, and the relative error between the
prediction and the measurement are also given. A consistent trend between the MVF
and the relative error can be observed: the relative error is smaller with lower MVF. This
can be attributed to the idealisation in the prediction model. The influence of other
cracks on a single crack is estimated by idealizing the cracks as negative stiffeners, which
artificially enlarges the reduction in stiffness caused by real cracks in the model. The
model tends to enhance the enlargement for FMLs with higher MVF, leading to more
conservative crack growth rate prediction and thus more error.

Table 5.2: Prediction accuracy vs MVF

specimen Glare grade MVF measured life predicted life relative error
1 Glare3-3/2-0.4 0.69 74000 51600 -30.3%
2 Glare4B-3/2-0.4 0.60 95500 70800 -25.9%
3 Glare4B-4/3-0.4 0.57 104000 83400 -19.8%

5.5.2. DELAMINATION COMPARISON
The proposed model also predicts the individual delamination shape evolution in an
FML containing MSD cracks. The comparison between prediction and measurement
is made for specimen 1 (see Table 5.1) in Fig. 5.11. The delamination measurements
were made after etching the outer aluminium layers of specimen 1 away. Due to the
symmetry, delaminations of crack tip 1, 2 and 3 are shown only. An very good correlation
can be observed in the comparison.
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Figure 5.11: Delamination comparison for specimen 1

Due to the interaction effects of crack tip 2 and crack tip 3, their delamination shapes
are larger than the delamination for crack tip 1. The good correlation between calculated
and measured non-symmetric delamination shapes for crack tip 1 and crack tip 2 of
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the single crack indicates high accuracy of the predicted non-symmetry effects by the
proposed model.

5.6. CONCLUSION
A new prediction methodology for MSD growth in FMLs has been developed based on
other two models proposed by the present authors. The proposed model in this pa-
per analyses both crack interaction in terms of load redistribution mechanism and non-
symmetric growth behaviour of multiple cracks in FMLs. The load redistribution result-
ing from the presence of multiple cracks is modelled by idealising the cracks as removals
of metal strips and applying the isostrain condition at the crack locations. The non-
symmetry effects are modelled by applying two different Westergaard stress distribu-
tions in front of two tips of a single crack that is being analysed. These two mechanisms
have to be simultaneously solved to obtain the state of a single crack, which is iterated
to determine all crack states sequentially.

Based on the analysis and results obtained in this paper, the following remarks can
be made:

1. The nature of fatigue crack growth in FMLs leads to the significance of modelling
load redistribution in analysing MSD scenarios in FMLs. Neglecting the interac-
tion of stress singularities in the vicinity of two crack tips results in a negligible
error in terms of fatigue growth life. However, not considering the load redistri-
bution mechanism for MSD scenario could result in a very non-conservative pre-
dicted fatigue life.

2. The non-physical representation of cracks leads to conservative prediction results.
However, it adequately captures the crack growth acceleration in the case of MSD
cracks in FMLs.

3. The non-physical idealisation of cracks as removal of metal strips in modelling the
load redistribution mechanism exaggerates the stiffness reduction caused by the
actual cracks. Therefore the predicted results are more accurate for FMLs with
lower MVF since the exaggeration is less (Table 5.2).

4. In addition to the non-symmetric free boundary edges and crack configurations
in front of two tips of a crack, the asymmetric delamination shapes for two crack
tips also contribute to the non-symmetric crack growth behaviour.

5. The non-symmetric crack lengths and delamination shapes are well predicted by
the proposed model.

6. The presence of fatigue resistant fibres in FMLs alleviates the stiffness reduction
due to the co-existence of multiple cracks compared to monolithic metals.
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6
PREDICTION METHODOLOGY FOR

FATIGUE CRACK GROWTH

BEHAVIOUR IN FIBRE METAL

LAMINATES SUBJECTED TO

TENSION AND PIN LOADING

Fibre Metal Laminates (FMLs) are a hybrid metal-composite laminate technology known
for their superior resistance to fatigue crack growth compared to monolithic metals. This
crack growth behaviour has been the subject of many studies, resulting in numerous em-
pirical and analytical models to describe the complex damage growth phenomenon in
the material. This study builds upon the analytical Alderliesten crack growth prediction
methodology for FMLs, extending it from a tension loaded plate to a case of a combined
tension-pin loaded plate. This new loading case is a more representative case to utilise for
predicting fatigue crack growth behaviour in mechanically fastened joints. Development
of the model extension and validation through experimental testing are detailed within
this paper.

This chapter is under review at the Composite Structures [1].
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6.1. INTRODUCTION
Fibre Metal Laminates (FMLs) are a material technology known for their superior fa-
tigue crack growth behaviour. This favourable behaviour is a result of the fibre bridging
mechanism whereby the intact fibre layers provide an alternative load path around the
cracked metal layers, reducing stress in front of the crack tip (see Fig. 6.1).

Although the basic concept of fibre bridging is simple to understand, it proved to
be a complex phenomenon to capture effectively in crack growth prediction models for
FMLs. Early attempts at predicting fatigue crack growth took a phenomenological ap-
proach, treating an FML as a bulk material and developing empirical β correction fac-
tors to represent the contribution of the fibre bridging mechanism. These β corrections
were then used to correct the standard stress intensity factor solutions used in the Linear
Elastic Fracture Mechanics approaches for crack growth prediction in monolithic mate-
rials [2–4]. Additional phenomenological approaches based on treating FMLs as a bulk
material include the compliance method of Takamatsu [5], bridging stress linearization
approach of Cox [6], and the equivalent crack length approach of Guo and Wu [7]. Al-
though these models achieved some limited success, the bridging mechanism could not
be adequately captured with this bulk material approach [8].

Figure 6.1: Illustration of typical FML concept

Greater success was achieved by embracing the composite nature of FMLs and at-
tempting to analytically describe the interplay between the metal and fibre layers. Maris-
sen [9] investigated the influence of bridging stress on the growth of the interface delam-
ination between cracked metal layers and intact fibre layers. The opening of the crack in
the metal layers is dependent on the compliance, and thus size, of this delaminated re-
gion. Alderliesten [10, 11] further built on this work by formulating an analytical fracture
mechanics model that captured the load redistribution of the fibre bridging mechanism
by enforcing compatibility between the crack opening displacement in the metal layers
and elongation of the delaminated region of the fibre layers. With the bridging stress de-
termined, growth of the interface delamination under the driving force of the bridging
stress could be predicted, and growth of the crack through superposition of the far-field
and bridging stress intensity factors in the metal could be achieved. This analytical ap-
proach, referred to in this paper as the Alderliesten model, has been the backbone of
continued effort in extending crack growth prediction capabilities in FMLs with exten-
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sions to account for residual strength [12], variable amplitude loading [13–15], general-
ized laminate configurations [16, 17], and more recently multiple site damage [18, 19].

It is worth noting that mechanically fastened joints are potentially vulnerable struc-
tures in consequence of secondary bending, stress concentration at fastener holes and
pin bearing effects as load transfers from one substance to another via the joint. The
structural behaviour of mechanically fastened FML joints has therefore drawn particular
attention. In open literature, the neutral line model developed by Schijve [20] has been
extended by de Rijk for calculating the load transfer and secondary bending stresses in
FML joints [21]. The progressive damage behaviour in pin loaded FMLs has been investi-
gated by Frizzell et al. [22, 23] and the bearing strength of FMLs has also been extensively
studied [24–26].

Apart from the static behaviour of FML joints, another issue associated with me-
chanically fastened FML joints is the fatigue crack growth in the metal layers and the
delamination propagation at metal-composite interfaces under fatigue loading. Even
though extensive analytical models have been developed for predicting the crack growth
behaviour in flat FML panels subjected to tensile loading [10, 11, 15, 16], the influence of
pin loading on the crack growth behaviour in FMLs has not been fully studied. There is
a risk that multiple cracks are present simultaneously in the critical row of an FML joint,
which is crucial to examine in light of the introduction of Limit of Validity (LOV) to the
airworthiness regulations that defines a fatigue life free of Widespread Fatigue Damage
[19, 27, 28]. The analysis of pin loading effects on the crack growth behaviour in FMLs
becomes indispensable for the analysis of MSD crack growth behaviour in FML joints.

This paper aims to develop an analytical model capable of predicting the growth be-
haviour of an isolated crack in a mechanically fastened FML joint where the pin loading
effects are present. This model is developed with the intention to further incorporate it
into an analysis frame which can eventually analyse the MSD growth behaviour in FML
joints. The development of this model is based on the findings of an experimental in-
vestigation of pin loading effects on the crack growth behaviour in FMLs [29] and the
success of an analytical model by Alderliesten for analysing the damage growth in FMLs
subjected to pure far-field loading. Firstly the test procedure and test results are briefly
summarized in Section 6.2, and then the model development is detailed in Section 6.3.
The analytical model will be validated against the test data in Section 6.4.

6.2. REMARKS REGARDING TEST RESULTS
The principle of superposition is normally applied to calculate the stress intensity factor
for a crack in a metallic panel subjected to tension-pin loading by splitting the loading
case into simpler loading cases and summing the stress intensity factors for simpler split
loading cases together [30]. The crack growth mechanism in FMLs, however, differs from
that of monolithic metallic panels because of the fibre bridging. The bridging mecha-
nism is accounted for using the principle of superposition in the Alderliesten model. The
total stress intensity factor at the crack tip in an FML is a superposition of the far-field
stress intensity factor and the bridging stress intensity factor [10, 11]. The calculation
of the stress intensity factor, K j oi nt , at the crack tip in an FML subjected to tension-pin
loading therefore have more complications.

An experimental investigation into the effects of pin loading on the fatigue crack
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growth behaviour in FMLs has been carried out by the current authors [29]. These exper-
iments were conducted to achieve two objectives. The first objective was to observe the
fatigue damage mechanism in FMLs subjected to tension-pin loading. The second ob-
jective was to verify that the principle of superposition can be used to calculate the stress
intensity factor, K j oi nt , at a crack tip in an FML plate subjected to tension-pin loading.
This calculation can be conducted by decomposing the complex tension-pin loading
acting on a cracked FML into simpler loading states for which total stress intensity fac-
tors can be determined, superposing the calculated total stress intensity factors. The
calculation of the total stress intensity factor at a crack tip in an FML plate subjected to a
simpler loading case follows the same basic approach as the Alderliesten model [10, 11].

Glare3-3/2-0.4 Glare3-7/6-0.4

(a) Lateral view of the joint
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Figure 6.2: Symmetric FML joint configurations

The joint configuration chosen for this study is a symmetric double shear joint illus-
trated in Fig. 6.2. This configuration avoids secondary bending effects in the joint that
were not taken into account in the present model development. The test configuration
thus permits a more accurate validation of the performance of the model.

The basic joint configuration tested comprised of outer plates of Glare3-3/2-0.4 and
an inner plate of Glare3-7/6-0.4 (Fig. 6.2(a)). Two variations of this configuration were
adopted: a type with one pin (Fig. 6.2(b)), and another type with two pins (Fig. 6.2(c)).

In the joint with one pin illustrated in Fig. 6.2(b), the load transfers from the middle
plate to the specimens through the only pin. The crack in the specimen therefore sub-
jects to pin loading and far-field loading. In addition to the loading cases for the cracked
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Figure 6.3: Relation of the loading cases for the two types of joints

specimen in this type of joint, the additional pin in another joint shown in Fig. 6.2(c)
introduces bypass loading to the crack. A small degree of plastic deformation at the fas-
tener holes of both pins was found following fatigue testing. This deformation was due
to the high pin bearing load in Type 2 joint. The plastic deformation and fatigue crack
growth from the additional pin hole in the specimens in Type 2 joint indicate an approx-
imately equal load transfer by the two pins [29, 31].

A comparison of the loading cases for the cracks of interest in each of the specimens
in the two types of joints is given in Fig. 6.3. The maximum bypass loading Fby pass and
pin loading Fpi n are equal to 5 kN with an applied stress ratio of 0.05 and a frequency of
10 H z. A detailed description of the test is given in [29].
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Figure 6.4: Illustration of superposition

The stress intensity factor ranges for the loading cases illustrated in Fig. 6.3 have been
calculated based on the measured crack growth rates of the cracks in the two joint types.
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The calculation was accomplished using the empirical Paris relation for the metal sheet
used and the stress intensity factor ranges have been plotted versus crack length, a, in
Fig. 6.4(a). For the given bypass load, the stress intensity factor ranges for only a small
crack increment were calculated with the Alderliesten model [10, 11]. The stable crack
growth behaviour of FMLs was then exploited to extrapolate the data for a larger crack
length range.

The superposition data in Fig. 6.4(b) is obtained by superposing the stress intensity
factor range for the loading case of the specimen in Type 1 joint upon the stress intensity
factor range for the bypass loading. Good correlation between the superposed results
and results for Type 2 joint in Fig. 6.4(b) can be observed. Therefore, the superposition
relation of the stress intensity factor ranges for the loading cases illustrated in Fig. 6.3 is
also valid, which is expressed by the following equation:

∆Kpi n+by pass =∆Kpi n +∆Kby pass (6.1)

Since the stress ratios for all the tested configurations are the same and the maximum
stress intensity factor and the stress intensity factor range have a linear relation, Eq. 6.1
can be reformulated, in terms of maximum stress intensity factors, as follows:

Kpi n+by pass = Kpi n +Kby pass (6.2)

The test data verifies that the total stress intensity factors for each of the simpler load-
ing cases acting on a cracked FML can be superposed to get the stress intensity factor of
the crack in the FML subjected to a complexly compound loading system comprising
the simpler loading cases. Then the key to the problem is how to derive the total stress
intensity factor for each simpler loading case acting on a cracked FML, i.e., calculation
of Kpi n and Kby pass in Eq. 6.2.

6.3. MODEL DEVELOPMENT

6.3.1. STATE OF THE ART IN FML CRACK GROWTH PREDICTION
Fatigue crack growth of the metal layers in an FML is accompanied by delamination
propagation at the metal/composite interfaces. The fibres in the wake of fatigue cracks
within the metal layers remain intact and bridge the crack opening. This bridging mech-
anism reduces the stress transferred at the crack tip, which could improve crack growth
resistance in the metal layers. Meanwhile, the bridging mechanism introduces cyclic
shear stresses at the metal/composites interfaces, which could result in delamination
growth [10, 11].

Alderliesten has developed an analytical model to predict the coupled crack growth
and delamination propagation in FMLs under far-field applied fatigue loading [10, 11].
Both the crack growth and delamination growth are characterized using classical LEFM
approaches. A summary of the methodology of his model is provided in this work. The
reader is referred to [10, 11] for a more detailed review.

In the context of LEFM, the stress state at the crack tip in the metal layers is char-
acterized by stress intensity factors. The total stress intensity factor, Ktot al , at the crack
tip in the metal layers in FMLs for a given load can be decomposed into two terms using
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superposition:

Ktot al = K f f +Kbr (6.3)

where K f f is due to the stresses in the metal layers resulting from the far-field applied
load and Kbr is due to the bridging mechanism.

The strain energy release rate, G , is employed to characterize the complex stress state
at a metal/composites interface, which is given as:

G = n f t f

2 j E f
(

nm tmEm

nm tmEm +n f t f E f
)(S f +Sbr (x))2 (6.4)

For the metallic material used, Ktot al and an empirical Paris relation can be em-
ployed to calculate the crack extension in the metal layers. Similarly, G and an empirical
Paris relation for the resistance of the delamination growth can be employed to calcu-
late the delamination propagation. However, the calculation of Kbr and G can only be
implemented once the bridging stress distribution, Sbr (x), is determined [10, 11].

Alderliesten calculates Sbr (x) by employing the displacement compatibility between
the metal layers and fibre layers over the delaminated length, which is expressed in
Eq. 6.5. The crack opening displacement in the metal layers which comprises a crack
opening term v f f (x) due to applied load and a crack closing term vbr (x) due to bridging
mechanism should be equal to the elongation of the delaminated fibre layers δ f (x) and
deformation due to shear δpp (x).

v f f (x)− vbr (x) = δ f (x)+δpp (x) (6.5)

Each term in Eq. 6.5 varies along the delamination front. Alderliesten divides the
delamination shape into bar elements. At x of each bar element location, Eq. 6.5 needs to
be implemented. A numerical matrix therefore has to be applied to simultaneously solve
for the displacement compatibility at every discretized element along the delamination
shape.

6.3.2. PREDICTION MODEL INCORPORATES PIN LOADING EFFECTS
The Alderliesten model has already provided the solution for calculating Kby pass since
the bypass loading can be treated as far-field load. Based on the experimental findings,
it can be argued that the overall stress intensity factor Kpi n for a crack in an FML sub-
jected to both pin loading and far-field loading, a non-symmetric loading case, can be
estimated by decomposing the loading cases, calculating the total stress intensity factor
for each loading case, and summing the total stress intensity factor of each loading case
as illustrated in Fig. 6.5.

Therefore the estimation of Kpi n can be expressed by the following:

Kpi n = 0.5(Kpi n,bear i ng +Kpi n, f f ) (6.6)

Again Kpi n, f f can be calculated with the Alderliesten model. At this point, there is
only one unknown variable Kpi n,bear i ng . It is noteworthy that the calculation of Kpi n,bear i ng

should also involve calculating the stress intensity factor resulting from the bridging
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Figure 6.5: Estimation of total stress intensity factor for asymmetric pin loading case in FMLs

mechanism. In view of the computational cost when individually implementing dis-
placement compatibility for each simpler loading case of a given crack and delamina-
tion configuration, a succinct approach incorporating the analysis of pin loading effects
needs to be developed for FMLs.

Analogous to the approach adopted by Alderliesten, the overall stress intensity fac-
tor K j oi nt for a cracked FML subjected a tension-pin loading system as illustrated on the
left in Fig. 6.3 can be decomposed into two terms using the principle of superposition.
As expressed in Eq. 6.7, Kapp refers to the stress intensity factor due to the applied loads
such as the far-field applied load, pin bearing load and the bypass load. Kbr refers to
the stress intensity factor due to the bridging mechanism. When calculating the bridg-
ing stress distribution by implementing displacement compatibility, the crack opening
displacement should be comprise of all of the opening terms resulting from the applied
loads.

K j oi nt = Kapp +Kbr (6.7)

The superposition relation for the complex loading cases illustrated in Fig. 6.3 and
Fig. 6.5 can be still used. Kapp can also be decomposed into terms due to the corre-
sponding simpler loading cases, as expressed in Eq. 6.8. K ∗

pi n,bear i ng denotes the stress

intensity factor in the metal layers resulting from a pair of pin loads, Fpi n , acting on the
crack flanks and K ∗

pi n, f f denotes the stress intensity factor in the metal layers due to the

far-field load, Fpi n , see Fig. 6.5. K ∗
by pass refers to the stress intensity factor due to far-field

bypass loading which is illustrated in Fig. 6.3. The calculation of K ∗
pi n, f f and K ∗

by pass can

be carried out according to the approach adopted by Alderliesten [10, 11].

Kapp = 0.5 ·K ∗
pi n,bear i ng +0.5 ·K ∗

pi n, f f +K ∗
by pass (6.8)
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6.3.3. K ∗
pi n,bear i ng DUE TO PIN LOADING

The load applied by a fastener to the jointed panels occurs through a pin bearing sce-
nario. Since the metal layers in FMLs are thicker and stiffer than fibre layers, it is as-
sumed for this work that the metal layers bear all of the load applied by the fastener and
that the cut fibres along the fastener hole do not carry any load. The intact fibres in the
wake of the fatigue cracks in the metal layers restrict the crack opening induced by the
pin loading.

x

y P

P

-a ab

2v(x,0)

Figure 6.6: A pair of point loads acting on crack flanks

The pin loads applied by the fastener to the hole edges in the metal layers are re-
garded as point loads in this paper [32]. Fig. 6.6 illustrates a pair of point loads acting
on the edges of a crack in a metal panel with P as a point load per unit thickness. For a
given pin load in the laminate, Fpi n , the value of the point load for a metal layer can be
calculated with the following equation:

P = Fpi n

nm tm
(6.9)

where nm is the number of metal layers and tm is the thickness of each metal layer.
The stress intensity factors for the two crack tips subjected to the loading case illus-

trated in Fig. 6.6 can be written as [32]:

Ka = Pp
πa

p
a2 −b2

a −b
(6.10)

K−a = Pp
πa

p
a2 −b2

a +b
(6.11)

and the corresponding crack opening is given as:

2 · v(x,0) = 4P

πE
cosh−1 a2 −bx

a|x −b| (6.12)

For the case in which the point loads act at the centre of the crack, Eq. 6.10, Eq. 6.11
and Eq. 6.12 can be rewritten concisely with b = 0. The stress intensity factors for the
two crack tips are equal and the crack opening contour is symmetric with respect to the
centre of the crack.
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Then K ∗
pi n,bear i ng due to a pair of bearing loads can be calculated by substituting

Eq. 6.9 and b = 0 into either Eq. 6.10 or Eq. 6.11:

K ∗
pi n,bear i ng = Fpi n

nm tm
p
πa

(6.13)

and the corresponding crack opening displacement is given as:

2 · vpi n,bear i ng (x) = 4P

πE
cosh−1 a

x
(6.14)

6.3.4. IMPLEMENTATION OF DISPLACEMENT COMPATIBILITY
In view of the computational cost when individually implementing displacement com-
patibility for each loading case, the total crack opening displacement resulting from
different loading cases can be calculated and the displacement compatibility between
cracked metal layers and bridging fibres over delaminated length can only be imple-
mented once.

The displacement compatibility is expressed by Eq. 6.15. The sum of 0.5vpi n,bear i ng (x)
and 0.5vpi n, f f (x) is an equivalent crack opening as a result of the asymmetric loading
illustrated in Fig. 6.5 in the metal layers. vby pass (x) denotes the crack opening due to
bypass loading. The crack opening in the metal layers as a result of the applied loads
and crack closing, vbr , due to the bridging stress distribution in the bridging fibres must
equal the elongation of the fibre layers over the delaminated length, δ f (x), plus the de-
formation in the fibre layers due to shear at the delamination front δpp (x).

0.5vpi n,bear i ng (x)+0.5vpi n, f f (x)+ vby pass (x)− vbr (x) = δ f (x)+δpp (x) (6.15)

vpi n, f f (x) and vby pass (x) can be derived by treating the loads as far-field loads. The
stresses in the metal layers resulting from these far-field loads can be calculated us-
ing Classic Laminate Theory [33, 34]. For the detailed calculation of these variables in
Eq. 6.15, please refer to the work of Alderliesten [10, 11].

Solving for the displacement compatibility expressed in Eq. 6.15 simultaneously for
all of the bar elements provides the bridging stress distribution, Sbr (x). Once this bridg-
ing stress distribution is known, Kbr and the strain energy release rate G along the de-
lamination front can be calculated [10, 11].

6.3.5. CRACK GROWTH MODEL AND DELAMINATION GROWTH MODEL
Once the overall stress intensity factor at the crack tip for a crack subjected to pin load-
ing and far-field loading is estimated, the crack growth rate can be calculated using an
empirical Paris relation for the metallic material employed in an FML.

d a/d N =Ccg (∆Ke f f )ncg (6.16)

where Ccg and ncg are Paris constants. For the tested FML Glare, Ccg = 2.17∗10−12 and
ncg = 2.94.

Knowing the bridging stress distribution Sbr (x) along the delamination shape, the
strain energy release rate at the composite/metal interface can be calculated with Eq. 6.4.
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And the delamination growth rate at each discretized element can be similarly calculated
using a Paris relation:

db/d N =Cd (
√

Gmax −
√

Gmi n)nd (6.17)

where Cd and nd are Paris constants. For Glare, Cd = 0.05 and nd = 7.5.

6.4. VALIDATION AND DISCUSSION
This model is validated through comparing the predicted crack growth results with the
measurements of the two tested joint types. The crack growth rates are plotted against
the crack length in Fig. 6.7 for both loading cases. It can be observed that the prediction
results correlate with the measurements very well.
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Figure 6.7: Crack growth rates comparison for two loading cases

As can be seen in Fig.6.7, the crack growth rates of both loading cases decrease dra-
matically with increasing crack length in the vicinity of the fastener hole. This is because
the driving force induced by pin loading decreases exponentially as the crack length in-
creases (Eq. 6.13). Without bypass loading, the crack growth driven by pin loading stops
around 10 mm. For another loading case, the crack growth becomes very stable when
the crack tip is away from the fastener hole, which is consistent with the stable crack
growth results of FMLs under uniform far-field loading [10, 11].

The delamination shape of the specimen in Type 1 joint is obtained by etching the
outer aluminium layers away following fatigue testing and is shown in Fig. 6.8(a). Mini-
mal delamination is noted at the hole perimeter due to the small scale plastic deforma-
tion of the metal layers resulting from the high bearing load. As shown in Fig. 6.8(a), the
delamination shape inclines to the direction of pin loading and so does the crack path.
This non-symmetry, compared to a Mode I cracking scenario in an FML under uniform
far-field loading, is neglected in this paper. The crack length, a, and the delamination
length, b, are measured as depicted in Fig. 6.8(a).

In order to get a closed analytical solution in the prediction model, the non-symmetric
loading of a pin load and its corresponding far-field load is treated as half of the super-
position of two symmetric loading cases, which is illustrated in Fig. 6.5. Therefore the
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Figure 6.8: Delamination comparison for the specimen in Type 1 joint

prediction model analyses a Mode I crack growth with symmetric delamination shapes
with respect to the crack path. The predicted delamination length is plotted against the
measured delamination length along the crack flank in Fig. 6.8(b). The overall predic-
tion correlates very well with the measurements with the exception of the delamination
length in the vicinity of the pin hole which was over-predicted. Based on Eq. 6.15 for
displacement compatibility, the delaminated length of the bridging fibres is of signifi-
cance. Consequently, the analytical model in this paper predicts a symmetric delami-
nation shape which is equivalent to the measured delamination shape in terms of the
bridging mechanism.

6.5. CONCLUSION
An analytical model incorporating the analysis of the effects that pin loading has on the
fatigue crack growth behaviour in FMLs has been presented and validated in this pa-
per. It has been demonstrated that the total stress intensity factor in the metal layers of
an FML due to external applied loading cases can be calculated by summing the stress
intensity factors for each of the simpler loading cases together. Furthermore, the total
crack opening displacement due to external loading cases can be derived in the same
manner. The displacement compatibility between the crack opening and the deforma-
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tion of the delaminated fibre layer can then be used to calculate the load transferred
between the cracked metal layers and the intact bridging fibres and thus the stress in-
tensity factor induced by bridging mechanism.

Despite the fact that the pin loading in the FML joints results in a non-symmetric
loading scenario for the crack, the model using the superposition of the two symmetric
loading cases successfully estimates the driving force for the crack. The model captures
the rapid crack growth in the vicinity of the fastener hole. The pin loading effects on the
crack growth behaviour diminish as the crack tip grows away from the location of pin
loading, which is also successfully predicted by the analytical model.

The non-symmetric loading scenario slightly deviates the crack growth from the trans-
verse direction perpendicular to the far-field loading direction. Non-symmetric delam-
ination shapes with respect to the crack flank also develop. These effects are neglected
in the prediction model. However, the model still provides a reasonable prediction of an
equivalent delamination shape in terms of the bridging mechanism.
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7
ANALYSIS OF MSD CRACK GROWTH

IN MECHANICALLY FASTENED FIBRE

METAL LAMINATE JOINTS

In the previous two chapters, models for MSD crack growth in FMLs under far-field tension
and crack growth in FMLs subjected to tension and pin loading were developed and vali-
dated. Within this chapter, the relevance and applicability of theses models for predicting
the MSD behaviour in mechanically fastened FML joints is examined. The crack growth
in FML joints is affected by many stress components that are present due to the complexity
of load transfer from one jointed FML panel to another via fastened joints. This chapter
therefore starts with an introduction of the stress components in mechanically fastened
joints and their complications in developing an analytical model for predicting the MSD
crack growth behaviour in such joints. The development of the prediction model is pre-
sented in Section 7.2 and respective model validations for a joint without secondary bend-
ing and a joint with secondary bending are given in Section 7.3 and Section 7.4.
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7.1. BACKGROUND: STRESSES IN A MECHANICALLY FASTENED

FML JOINT AND THEIR INFLUENCES ON CRACK GROWTH

BEHAVIOUR
In order to evaluate the fatigue crack growth behaviour in a mechanically fastened FML
joint, the stress distribution in the joint and the interplay between the stress distribu-
tion and crack growth have to be understood. To aid in the explanation of the interplay,
the nomenclature for a typical mechanically fastened joint containing three rows of fas-
teners is shown in Fig. 7.1. The three-row joint configuration is chosen since this con-
figuration is widely applied in aircraft structures due to the trade-off between structural
efficiency and structural weight. The first fastener row and third fastener row are also
denoted as the outer fastener rows.

Faying Surface t
(thickness)

Faying Surface

Upper

Sheet

Upper Sheet

Lower

Sheet

Lower Sheet

L
row

(row pitch)

(fastener pitch)

L
fastener

First Row Second Row Third Row

Figure 7.1: Nomenclature for a three-row lap joint

As illustrated in Fig. 7.2, the stress distribution in a joint can be decomposed into
stress components related to bearing, friction and bypass loading components resulting
from load transfer. In addition, the stress distribution can comprise secondary bending
stresses in mechanically fastened joints where eccentricities in load path exist, and local
compressive residual stresses around the periphery of each fastener hole to which an
interference fit fastener or cold expansion processes are applied [1]. The impact of stress
components resulting from load transfer on the crack growth behaviour in mechanically
fastened FML joints containing MSD scenario will be the focuses of this chapter. The
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impact of secondary bending stresses and favourable residual compressive stresses will
be qualitatively analysed.

7.1.1. LOAD TRANSFER
Load is transferred in a mechanically fastened joint by means of bearing between fasten-
ers and jointed substances and friction between the jointed plates. A significant portion
of overall load is transferred by bearing. Friction only accounts for a small portion and
is therefore often neglected; however, friction results in fretting damage which is a con-
tributor to the crack nucleation starting from the faying surface. For a multiple-row joint,
each row of fasteners transfers a portion of the applied load while the remainder known
as the bypass load remains in the loaded plate. Based on the displacement compati-
bility between jointed plates and fasteners, closed form solutions have been derived to
calculate the load transferred by each fastener row.

In a mechanically fastened joint containing two fastener rows, each fastener row
transfers 50 percent of the applied load as a result of the symmetry of the joint. For a
joint containing three rows of fasteners, as illustrated in Fig. 7.1, the load transferred by
each row of fasteners can be calculated, neglecting the load transfer by means of friction,
with the following equations [2]:

T 1 = f f astener + fpl ate

3 · f f astener +2 · fpl ate
·Fapp (7.1)

T 2 = f f astener

3 · f f astener +2 · fpl ate
·Fapp (7.2)

T 3 = T 1 (7.3)

where Fapp refers to the applied load. T 1, T 2 and T 3 denote the loads transferred by the
first row, second row and third row respectively. f f astener and fpl ate refer to the fastener
flexibility and the plate flexibility respectively. As expressed in Eq. 7.4, plate flexibility is
related to the joint geometry (row pitch Lr ow , fastener pitch L f astener and plate thickness
t ) and plate stiffness (Young’s modulus E). Laminate-level material properties of FMLs
have to be substituted into the equation to calculate the plate flexibility [3]. Whereas
fastener flexibility is normally empirically determined, several empirical equations have
been reported [4–6].

fpl ate =
Lr ow

L f astener · t ·E
(7.4)

Eqs. 7.1-7.3 indicate that the outer rows alway transfer more load than the middle
row as negative fpl ate is not possible. It is obvious that the first fastener row in the upper
sheet and the third fastener row in the lower sheet (Fig. 7.1) are the critical rows where
the fastener holes subject to the highest bypass load and the highest bearing load among
all fastener holes. In consequence, cracks tend to initiate at fastener hole edges in the
critical fastener rows. Another significant contributor to the crack initiation in the criti-
cal fastener rows is the secondary bending stresses, which will be explained in the next
subsection.
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Load Transfer

Secondary Loads

BypassBearing Friction

Secondary Bending Interference

Figure 7.2: Loading components in a mechanically fastened joint [1]

For the critical fastener row without any cracks, the bearing load is equal to T3, and
the bypass load equals the total load transferred by other fastener rows, i.e., T 1+T 2. It is
important to understand that crack growth in the joint can change the bypass load and
bearing load for the critical fastener row. The cracks initiating from fastener holes permit
fasteners to have more freedom of rotation, indicating a higher fastener flexibility at the
cracked fastener hole. Moreover, the crack growth in the critical row results in the jointed
plate becoming less stiff, indicating a higher plate flexibility.

Analytically estimating the sophisticated changes in the fastener flexibility and plate
flexibility as a result of the crack growth in the critical row is extremely challenging and
can be an extensive research topic on it own. Finite element modelling or experimental
measuring techniques can be implemented to evaluate the load transfer in a mechani-
cally fastened joint containing MSD cracks in the critical row of fasteners.

7.1.2. SECONDARY BENDING

Eccentricities in the load path of a mechanically fastened joint can lead to out-of-plane
displacements and bending stresses known as secondary bending. The bending stresses
caused by load path eccentricities inherent to mechanically fastened joints can be esti-
mated using the neutral line model [7, 8]. For the typical three-row joint configuration
illustrated in Fig. 7.1, the outer fastener rows encounter the highest secondary bending
stresses.

Secondary bending stresses vary through the thickness of the jointed plate. Super-
posed upon the tensile stress resulting from the load transfer in the critical row, the
bending stress leads to the faying surface experiencing the highest tensile stress. As a
consequence the faying surface in the critical row is susceptible to fatigue crack nucle-
ation and crack growth. For FMLs, the stiffness variation trough the laminate thickness
has to be considered when calculating the bending stresses in FML joints [3]. An exam-
ple of stress distribution through the laminate thickness in the critical row of a three-row
riveted Glare3-3/2-0.3 lap joint is given in Fig. 7.3.

Secondary bending stresses could induce complex crack configuration in FML joints.
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Figure 7.3: Illustration of the stress distribution through thickness predicted by the neutral line model for a
critical rivet row of a three-row riveted Glare joint [3]

The cracks in the metal layers originating from the same fastener hole could possess dif-
ferent crack lengths through the laminate thickness and different delamination shapes
at the metal/composite interfaces as a consequence of the stress variation through the
laminate thickness [9], as illustrated in Fig. 7.3.

This effect of bending stresses poses two complications in calculating the crack growth
behaviour of multiple cracks in the same fastener row. The first one is that the varia-
tion in crack lengths through the laminate thickness requires local discretization of the
crack configurations in the metal sheets originating from the same fastener hole. The
uncracked metal sheets in the wake of cracks in other metal sheets act as bridging ma-
terials and the local load path eccentricity induces local bending stresses [9]. Special
care needs to be taken to account for these effects [9]. Another complication is induced
from the calculation of crack interaction in terms of the load redistribution mechanism
explained in detail in Chapter 5. The presence of other cracks reduces the local geo-
metric stiffness, resulting in load redistribution from the cracks to a single crack for a
given loading case when analysing the state of the single crack. The strain distribution
derived from the Westergaard stress distribution is assumed the same through the lam-
inate thickness in front of the crack tip of the single crack in order to evaluate the load
redistribution [10]. At the location of a crack of the same length in the metal layers, the
isostrain condition is applied to calculate the stress reduction, thus the load reduction,
caused by the cracked metal layers. However, the complex crack configuration induced
by the secondary bending stresses requires great modification of the method to evaluate
the load redistribution and the effects on a single crack with different crack lengths in
the metal layers.

It is important to make a distinction between the load redistribution among multiple
cracks and the load redistribution over multiple fastener rows. The later is due to the
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changes in the plate flexibility and fastener flexibility caused by the multiple cracks. For a
given load transfer over multiple fastener rows, the load redistribution from other cracks
to a single crack needs to be evaluated in order to calculate the state of the single crack.

7.2. MODEL IMPLEMENTATION
From the previous section, it can be concluded that developing an analytical model
to consider the influences of the load redistribution over multiple rows and secondary
bending on MSD crack growth in an FML joint is burdensome and impractical. There-
fore a simplified model based on the prediction models in Chapter 5 and Chapter 6 is
proposed with some assumptions and simplifications.

7.2.1. ASSUMPTIONS AND SIMPLIFICATIONS
Due to the complexity in calculating the load redistribution over multiple rows in a me-
chanically fastened joint containing MSD cracks, the load redistribution is simplified not
to be simultaneously considered when calculating the crack states in the critical fastener
row in this proposed model. In other words, the changes in f f astener and fpl ate due to
the crack growth are not taken into account. The load transfer over multiple rows can
be calculated using Eqs. 7.1-7.3. The calculated load transfer in each row can then be
used to obtain the bypass load and bearing load for the critical fastener row, which are
the input loading parameters for calculating the crack growth behaviour in the critical
fastener row.

As discussed in Section 7.1.2, the secondary bending effects can result in a complex
fatigue crack configuration through the laminate thickness. Calculating the state of a
complex fatigue crack configuration in an FML requires the implementation of the Wil-
son’s model [9] at the cost of great computational inefficiency. In order to derive a com-
putationally efficient model to evaluate the MSD crack growth behaviour in FML joints,
the effects of secondary bending are neglected in this proposed model, but will be qual-
itatively analysed in Section 7.4.

In consequence of the assumptions and simplifications, cracks in the critical fastener
row are subjected to the calculated pin bearing load and bypass load. The methodology
in the previous chapter will be followed here: LEFM and the principle of superposition
are applied to calculate the crack growth in the metal layers and the delamination growth
at the interfaces between metal layers and composite layers. The method for a single
symmetric crack in an FML under pin loading and far-field loading is summarized at
first, then the method is extended for a non-symmetric crack, and for MSD cracks.

7.2.2. SINGLE SYMMETRIC CRACK
In the previous chapter, an analytical model has been developed for calculating the crack
state of a single symmetric crack in an FML subjected to pin loading and far-field tension
(see Fig. 7.4). The overall stress intensity factor, K j oi nt , at the crack tip in the metal layers
is expressed by the following equation:

K j oi nt = Kby pass +0.5Kpi n, f f +0.5Kpi n,bear i ng (7.5)

The superposition of the stress intensity factors is illustrated in Fig. 7.4. It is impor-
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Figure 7.4: Superposition scheme of the overall stress intensity factor for a single symmetric crack in an FML

tant to understand that each of the stress intensity factors on the right side of Eq. 7.5 can
be decomposed into two items. The first item is the stress intensity factor due to the
stress in the metal layers resulting from one corresponding loading case. The second
item is the stress intensity factor due to the fibre bridging mechanism. In order to avoid
repetitively calculating the bridging mechanism and thus the stress intensity factors due
to the bridging mechanism for each loading case, an alternative method has been pro-
posed in the previous chapter: K j oi nt can be alternatively expressed as:

K j oi nt = Kapp +Kbr (7.6)

where Kapp denotes the sum of stress intensity factors due to the loading cases acting
on the single crack, which is given by Eq. 7.7. The stress intensity factors on the right
side of Eq. 7.7 are associated with the stresses in the metal layers resulting from the re-
spective loading components illustrated in Fig. 7.4. The superscript ∗ is added to make a
distinction between these stress intensity factors and the total stress intensity factors in
Eq. 7.5.

Kapp = K ∗
by pass +0.5K ∗

pi n, f f +0.5K ∗
pi n,bear i ng (7.7)

The calculation of Kbr is dependent on the total crack opening displacement of the
crack due to the loading cases illustrated in Fig. 7.4. Similar to the decomposition of
Kapp , the total crack opening displacement, vapp , is also broken down into contributing
factors related to the corresponding loading cases illustrated in Fig. 7.4.

vapp (x) = v∗
by pass (x)+0.5v∗

pi n, f f (x)+0.5v∗
pi n,bear i ng (x) (7.8)

The displacement compatibility between the crack opening and the deformation of
the bridging fibres can be applied to calculate the bridging stress distribution, Sbr (x), in
the bridging fibres.

vapp (x)− vbr (x) = δ f (x)+δpp (x) (7.9)
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Once the bridging stress distribution, Sbr (x), is determined, Kbr and the strain en-
ergy release rate, G , can be calculated. The detailed calculation of the unknown variables
in Eqs. 7.7-7.9 can be found in the previous chapter.

7.2.3. SINGLE NON-SYMMETRIC CRACK

For a non-symmetric crack in an FML subjected to pin loading and far-field tension,
as illustrated in Fig. 7.5, the same approach in the previous subsection can be followed
to calculate the crack state. Nevertheless, it is noted that the states of the two tips of
the non-symmetric crack are not identical as a result of the crack tip non-symmetry,
the delamination non-symmetry and the non-symmetric pin loading effects for the two
crack tips (see Fig. 7.5).

F
bypass

F
pin

F
pin

+F
bypass

tip1tip 2

2a

Figure 7.5: A non-symmetric crack in an FML subjected to pin loading and far-field tension

In Chapter 4, a detailed calculation of the stress intensity factors at two crack tips
of a non-symmetric crack due to the stresses in the metal layers resulting from far-field
tension, and the non-symmetric crack opening displacement, has been described. The
calculation method can be adopted to determine (K ∗

by pass +0.5K ∗
pi n, f f )1 for crack tip 1,

(K ∗
by pass +0.5K ∗

pi n, f f )2 for crack tip 2 and the crack opening displacements v∗
by pass (x)+

0.5v∗
pi n, f f (x).

The effects of pin loading on the two crack tips of the non-symmetric crack should be
different since the crack tips are not symmetric with respect to the pin hole (see Fig. 7.5).
Based on the work pertaining to the analysis of the pin loading effects on the crack state
of a symmetric crack in an FML in the previous chapter, a pair of pin bearing loads acting
on the crack flanks of a through thickness crack in an FML can be modelled as a pair of
point loads and are assumed to be borne by the metal layers only. A generic illustration
of a pair of point loads acting on the crack flanks of a crack is depicted in Fig. 7.6.

The stress intensity factors for the two crack tips illustrated in Fig. 7.6 can be ex-
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Figure 7.6: Illustration of a pair of point loads acting on crack flanks [11]

pressed with the following equation:

KP±a = Pp
πa

p
a2 −b2

a ∓b
(7.10)

The crack opening displacement of the crack is written as:

2v (x,0) = 4P

πE
cosh−1 a2 −bx

a|x −b| (7.11)

with E being the Young’s modulus of the metallic panel.
For the non-symmetric crack illustrated in Fig. 7.5, the location of the pair of point

loads, b, can be determined according to the geometric relation between the pin hole
and the two crack tips. The point load, P , for each metal layer can be given by:

P = Fpi n

nm tm
(7.12)

where nm denotes the number of the metal layers and tm denotes the thickness of each
metal layer.

Then (K ∗
pi n,bear i ng )1 for crack tip 1 and (K ∗

pi n,bear i ng )2 for crack tip 2 can be obtained

by substituting Eq. 7.12 into Eq. 7.10. v∗
pi n,bear i ng can also be derived by substituting

Eq. 7.12 into Eq. 7.11. The generic algorithm for calculating the bridging stress distribu-
tion, Sbr (x), of a non-symmetric crack in Chapter 4 has to be applied. A non-symmetric
bridging stress distribution can be derived. In consequence, two bridging stress intensity
factors can be obtained: (Kbr )1 for crack tip 1 and (Kbr )2 for crack tip 2.

To summarize, the overall stress intensity factor, (K j oi nt )1, for crack tip 1 can be ex-
pressed as:

(K j oi nt )1 = (Kapp )1+(Kbr )1 = (K ∗
by pass +0.5K ∗

pi n, f f )1+0.5(K ∗
pi n,bear i ng )1+(Kbr )1 (7.13)

and the overall stress intensity factor, (K j oi nt )2, for crack tip 2 can be expressed as:

(K j oi nt )2 = (Kapp )2+(Kbr )2 = (K ∗
by pass +0.5K ∗

pi n, f f )2+0.5(K ∗
pi n,bear i ng )2+(Kbr )2 (7.14)

The subscripts 1 and 2 are employed to denote the associated variables in this sub-
section are related to crack tip 1 and crack tip 2 respectively. The non-symmetric crack
configuration in this subsection is a more generic configuration in comparison with the
symmetric crack configuration in the previous subsection.
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7.2.4. MSD CRACKS
Fig. 7.7 illustrates the decomposition of the pin loading and far-field tension acting on
MSD cracks in an FML into simpler symmetric loading cases. For each crack tip, a set
of stress intensity factors can be derived for the corresponding loading cases and su-
perposed to get the overall stress intensity factor, following the same basic approach
discussed in subsection 7.2.2. Since several cracks are present, the identification system
as illustrated in Fig. 5.5 in Chapter 5 is followed to aid in clarifying the discussion. The
derivation of the stress intensity factors for the tip on the right side of crack i , denoted
with the subscript i 1, is described in this subsection as an example.
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Figure 7.7: Superposition scheme of loading cases for MSD cracks in an FML

The decomposition of the stress intensity factor, (K j oi nt )i 1, for crack tip i 1, as illus-
trated in Fig. 7.7, can be written as:

(K j oi nt )i 1 = (Kby pass +0.5Kpi n, f f )i 1 +0.5(Kpi n,bear i ng )i 1 (7.15)

In order to avoid repetitively calculating the bridging stress distribution for the same
crack configuration under different loading cases, the above equation is alternatively
given as:

(K j oi nt )i 1 = (Kapp )i 1 + (Kbr )i 1 (7.16)

with
(Kapp )i 1 = (K ∗

by pass +0.5K ∗
pi n, f f )i 1 +0.5(K ∗

pi n,bear i ng )i 1 (7.17)

The corresponding crack opening displacement of the single crack i , (v∗
app (x))i , is

expressed as:

(vapp (x))i = (v∗
by pass (x)+0.5v∗

pi n, f f (x))i +0.5(v∗
pi n,bear i ng (x))i (7.18)

When analysing the crack state of the single crack i , the adjacent cracks are treated
as local stiffness reductions in this research. The reductions in local stiffness lead to load
redistribution from the adjacent cracks to the single crack, enlarging the stress intensity
factor and the corresponding crack opening of the single crack in comparison with the
isolated crack scenario.

The calculation of (K ∗
by pass +0.5K ∗

pi n, f f )i 1 involves considering the load redistribu-

tion mechanism, which is described in detail in Chapter 5. Two different Westergaard
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stress distributions in front of the single crack can be applied to evaluate the load re-
distribution as a result of the reductions in local stiffness cased by the presence of the
adjacent cracks. Simultaneously the non-symmetry of the single crack needs to be mod-
elled to get (K ∗

by pass +0.5K ∗
pi n, f f )i 1 and (v∗

by pass (x)+0.5v∗
pi n, f f (x))i .

The significance of modelling the load redistribution mechanism under far-field ten-
sion has been demonstrated in Chapter 5. Nevertheless, the significance of modelling it
in calculating K ∗

pi n,bear i ng for the case of MSD cracks subjected to pairs of point loads

needs to be re-evaluated.
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Figure 7.8: Comparison of stress distributions ahead of a crack tip for a far-field tension of S = 100 MPa and
for a pair of point loads with P = 1000 N /mm for different crack lengths

The stress distribution in front of the tip of a crack loaded by a pair of point loads,
illustrated in Fig. 7.6, can be given as:

σy y = P

π

p
a2 −b2

(x −b)
p

x2 −a2
(7.19)

In Fig. 7.8, the stress distributions in front of a crack in an infinite panel subjected to
a pair of point loads acting at the center of the crack (b = 0) are compared to the stress
distributions of the crack subjected to far-field tensile stress for different crack lengths.
Typical quantities for the pin load and far-field stress are chosen respectively. As can be
seen, the magnitude of the stress distribution in front of the crack subjected to a pair of
point loads is much lower than that of the same crack subjected to far-field loading, the
stress roughly 15 mm away from the crack tip gets close to 0 MPa. The scale of the stress
distribution for the case of far-field loading escalates with increasing crack length. On
the contrary, in case of a pair of point loads, the stress distribution magnitude decreases
with increasing crack length.
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Figure 7.9: Illustration of sequential analysis of each crack state

Based on the comparison and analysis, it is concluded that the load redistribution
caused by the presence of other cracks millimeters away in front of a crack loaded by a
pair of point loads is negligible for FMLs. The calculation of K ∗

pi n,bear i ng and vpi n,bear i ng (x)

for each of the multiple cracks therefore can be derived considering each crack as an iso-
lated crack.

It is worth noting that the point load, P , for the MSD scenario should be calculated
with the following equation:

P = Fpi n

n f astener nm tm
(7.20)

with n f astener denoting the number of fasteners.
The overall approach for calculating the crack states of MSD cracks in an FML sub-
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jected to tension-pin loading is summarized in Fig. 7.9.

7.3. MODEL VALIDATION FOR A JOINT WITHOUT SECONDARY

BENDING
One mechanically fastened FML joint was designed and tested to verify the proposed
methodology in this work. The configuration of the FML joint is illustrated in Fig. 7.10.
The symmetric double shear joint configuration was designed with the intention to ex-
clusively present the loading components in the joint that are accounted for in the pro-
posed methodology. Secondary bending and interference fit fastener, not considered in
the model, are not present in the tested joint. As such, the test configuration can provide
a more accurate validation of the performance of the model.

7.3.1. TEST PROCEDURE
The symmetric double shear lap joint consisted of two Glare3 3/2-0.4 specimens that
were symmetrically jointed to a middle plate which was manufactured by bonding two
Glare3 3/2-0.4 panels together with a very thin bond-line. As a consequence the stiffness
of the middle plate is equivalent to the total stiffness of the two specimens. Two fastener
rows were applied such that each row transfers 50 percent of the applied load from the
middle plate to the two specimens.
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Figure 7.10: Illustration of the double shear lap FML joint

Each fastener row had three evenly spaced fastener holes with the middle hole at
the middle of each specimen as shown in Fig. 7.10(b). The fastener pitch was 30 mm.
The fastener hole was firstly drilled and later reamed to the diameter of 4.8 mm that is
the diameter of used fasteners. Therefore no compressive residual stresses at the fas-
tener holes would present. As shown in Fig. 7.10(b), saw-cuts were applied to the fas-
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tener holes in the second fastener row in both specimens. The length of the saw-cut was
2.1 mm. Hi-lok HL12V6 fasteners were used to join the specimens and the middle plate.
The Hi-Lok collar was not driven to the maximum protrusion but tightened enough so
that the out-of-plan displacement of the specimens were eliminated by the collar and
the head of Hi-lok fasteners during fatigue loading.

The fatigue test was conducted on an MTS 810 servo-hydraulic test frame with pin
hole clevis and a 250 kN load-cell (model 661. 22D-01). The maximum applied stress
was 100MPa with a stress ratio of R = 0.05 and a frequency of f = 10H z. The fatigue
test was paused after a number of fatigue loading cycles, the maximum load was applied
to make the crack fully open. Pictures of the surfaces of the two specimens were taken
by two high resolution cameras. The corresponding fatigue life was also recorded. The
test was resumed then. The crack lengths at different fatigue life were measured from
the pictures. Seven-point incremental polynomial method recommended in the ASTM
E647-00 [12] was applied to reduce the scatter of the crack growth rate measurement for
each crack.

7.3.2. VALIDATION
The test data is used to validate the proposed model. In the tested joint, the bypass load
and pin bearing load for the multiple cracks in the second fastener row kept changing as
cracks grew. However, this changing due to the load redistribution over the two fastener
rows is not simultaneously modelled when calculating the growth of multiple cracks in
the proposed model.

A tension-pin loading case is required in the proposed model as input parameters
in order to calculate the state of MSD cracks in an FML joint. Five tension-pin loading
cases are studied for different initial crack configurations in order to directly illustrate the
effects of the load redistribution among the fastener rows on the crack growth behaviour.
The studied loading cases for the 2nd fastener row in the tested joint configuration are
summarized in Table 7.1. Loading case 1 is based on the fact that the symmetry of the
joint permits each fastener row to transfer 50% of the applied load, particularly when the
crack length is very small. As the lengths of the cracks in the 2nd fastener row increase,
the escalation in the fastener and plate flexibility allows the first row to transfer more
and more load. Consequently the bypass load for the 2nd fastener row increases while
the pin load decreases. Loading cases 2-4 follows this rule of thumb. Loading case 5 is to
demonstrate the impact of a significant increase in the bypass load on the crack growth
behaviour with long crack lengths.

Table 7.1: Loading cases for the 2nd fastener row

case pin load bypass load initial average crack length
(% of applied load) (% of applied load) (mm)

1 50 50 5.0
2 49 51 6.4
3 45 55 9.1
4 40 60 10.8
5 30 70 10.8
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In Fig. 7.11, the measurements and the prediction results of the five loading cases
are plotted. The locations of the fastener holes and saw-cuts are indicated in both sub-
figures.

The measured and predicted crack growth rates for the symmetric crack tip pairs are
compared in Fig. 7.11(a). The test data shows that the crack growth rates are rapid in the
vicinity of the fastener hole, become stable after a certain amount of crack increment
and soar up when two crack tips approach each other. For the outer crack tips, a12 and
a31, their crack growth rates increase because they approach the free edge boundaries
ahead and the link-up of the inner crack tips results in the two tips being the tips of a
lead crack in the laminate.

The predicted crack growth behaviour for loading case 1 in Table 7.1 captures the
trend of the growth behaviour of the multiple cracks in the tested joint. The prediction
results for the crack tips near the fastener holes correlate very well with the test results.
The predicted crack growth rates are very high but decrease dramatically with increasing
crack length, which is consistent with the correlation in Fig. 6.7 and can be attributed to
the effects of pin loading in the vicinity of a fastener hole. This accurate prediction results
for the crack tips in the vicinity of fastener holes is attributed to the fact that the small
cracks in the second fastener row hardly altered the portions of the load transferred by
the two fastener rows. When the crack lengths are long enough, the prediction results of
loading case 1 under estimates the surge in the measured crack growth rate though the
predicted crack growth rates of two approaching crack tips soar up. This underestima-
tion is contrary to the over-predicted crack growth rates for FMLs containing multiple
cracks subjected to far-field tensile fatigue loading (for example Fig. 5.8(a) in Chapter 5).

Loading case 2 for an initial crack length of 6.4 mm takes the load redistribution over
the two fastener rows into consideration, the result shows that a slight rise in the by-
pass load for the cracks in the 2nd row can significantly enhance the predicted crack
growth rates. For even longer crack lengths, the significant rise in the bypass load, how-
ever, marginally enhances the predicted crack growth rate (see the prediction results of
loading cases 3-5 in Fig. 7.11(a)).

The corresponding predicted a-N curves for the 5 loading cases are compared to the
test data in Fig. 7.11(b). As can be seen, the prediction model becomes conservative if
the load redistribution over the fastener rows due to the crack growth in the 2nd fastener
row is taken into consideration.

7.4. MODEL VALIDATION FOR A JOINT WITH SECONDARY BEND-
ING

This section discusses the difference between the measured crack growth rates of cracks
in a single shear lap joint where the secondary bending stresses affect the crack growth
behaviour and the predicted results without considering the effects of secondary bend-
ing.

The test data is extracted from the experimental study conducted by Müller [3]. Re-
sults of test series 4 from the study of fatigue behaviour of Glare3 riveted lap joints are
selected for the purpose of this section. The tested joint consisted of two Glare3 3/2-0.3
sheets jointed with three rows of rivets (see the inset in Fig. 7.12) while each row had
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Figure 7.11: Predictions vs test results

three rivets. The width of the Glare3 sheet was 72 mm. The loading parameters are given
in Fig. 7.12.

The compiled crack growth rates in the metal layers of the top sheet in the joint riv-
eted with the squeeze force of 15.6 kN are given in Fig. 7.12. Crack growth were measured
only for the central rivet in the critical row with eddy current non-destructive inspection
technique [3]. The half crack length was measured from the rivet hole edge to the crack
tip. The accuracy of the test data is limited because the inspection method for invisible
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cracks is poor [3] and the obtained data points are few. Layer 1 had the highest tensile
stress due to the secondary bending stresses (see Fig. 7.3), the crack initiated in layer 1
at first. However the crack growth in this layer in the beginning was very slow as a result
of compressive residual stress due to high riveting squeeze force and the bridging mech-
anism provided by fibre layers and intact layer 2 and layer 3 (larger crack free life due
to secondary bending in these two layers). The crack growth rate in layer 2 was higher
compared to that in layer 1. Layer 3 had the highest crack growth rate due to the fact that
layer 1 had been completely cracked and layer 2 was partially cracked. However, com-
pressive bending stresses resulting both from the eccentric load paths in the joint (see
Fig. 7.1) and the neutral line step in the partially cracked laminate (see Fig. 7.13) play a
beneficial role in constraining the crack growth rate in layer 3.

The analysis model does not take the effects of squeeze force and the effects of sec-
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ondary bending into consideration, it is assumed that cracks initiate in all metal layers
simultaneously, i.e. a through thickness crack. The load distribution over the fastener
rows can be calculated with the method described in Section 7.1.1 for the tested joint
without cracks, i.e. T 1 = 4.366kN and T 2 = 4.053kN . For this given load transfer in the
joint, the bypass and pin loads for the multiple cracks can be calculated. The predicted
crack growth rate for the middle crack is plotted in Fig. 7.12. Obvious difference can be
observed compared to the test data since the prediction model leaves out the influence
of bending stresses on the growth behaviour in different layers. It is noteworthy that the
greatly simplified prediction model provides conservative prediction results.

This simplified model is very efficient to analyse the crack growth behaviour in an
FML joint with MSD cracks. It avoids further discretization of the crack configuration in
order to detailedly analyze the bridging mechanism offered by uncracked metal layers
and the effects of local secondary bending stresses on the crack growth behaviour. It
could be potentially useful for quick screening FML joint design.

7.5. CONCLUSION
The proposed analysis methodology for MSD crack growth prediction in mechanically
fastened FML joints is based on LEFM. The analysis methodology does not account for
load redistribution over multiple fastener rows as a result of cracks evolution in one fas-
tener row and the effects of secondary bending stresses. For a given load transfer in the
joint, the overall stress intensity factor at a crack tip can be calculated using the principle
of superposition for different loading cases and the bridging mechanism. And then the
crack growth rate can be determined. The crack state needs to be estimated one by one
until all the crack states are determined for a MSD configuration.

Neglecting the secondary bending effects is feasible for double-shear lap joints, such
as the tested joint in this chapter. The prediction without considering load redistribution
over multiple fastener rows captures the feature of rapid crack growth in the vicinity of
fastener holes due to pin loading, but starts to underestimate the crack growth rates after
several millimetres crack growth. However, the underestimation can be alleviated by ad-
justing the load transfer in the joint. Since the pin loading effects dramatically fade out
with increasing crack length, the bypass load introduced by other fastener rows starts to
dominate the crack growth behaviour. The increase in the bypass load therefore can im-
prove the prediction results for MSD cracks with longer crack lengths, resulting in more
conservatively predicted fatigue growth life. In order to obtain more accurate predic-
tion results for FML joints containing MSD cracks, the prediction methodology should
simultaneously accounts for the load redistribution over multiple fastener rows when
analysing the crack growth in the critical fastener row.

The secondary bending effects due to the eccentricities in the load path in single-
shear lap joints induce complex crack configuration in FMLs. Even though the sec-
ondary bending effects are neglected in the proposed methodology, it provides conser-
vative prediction results for FML single-shear lap joints based on the comparison be-
tween prediction and test data from open literature. The slow crack growth in different
metal layers compared to the prediction can be attributed to several aspects. The sec-
ondary bending results in highest tensile stresses at the faying metal layer and least ten-
sile stress in the outer metal layer (Fig. 7.3). This stress distribution though the laminate
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thickness results in the cracks in different layers having different crack lengths. The un-
cracked metal material in the wake of cracks in other layers could still bridge the crack,
alleviating the adverse effects posed by secondary bending on the crack growth in the
faying layer in an FML lap joint. For the crack growth in the outer metal layer, the sec-
ondary bending stresses resulting from the eccentricities in the load path of the joint
and the neutral line step in the partially cracked laminate could play beneficial role in
restricting the crack growth in this layer.
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8
CONCLUSION

This chapter summarizes the underlying approach adopted for predicting fatigue crack
growth in FMLs containing MSD in this thesis. It also provides a critical review of the lim-
iting assumptions made in developing the described prediction models in Chapters 2-7.
The effects of the limiting assumptions on the output of the prediction model are discussed
to provide potential users with the needed confidence to apply the developed model.
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8.1. OVERVIEW

The present research has investigated the crack growth behaviour in FML structures
containing MSD scenario. The underlying approach adopted in this research for crack
growth prediction employs LEFM: a methodology that has its roots in Hooke’s law that
associates stress and strain in materials through material stiffness parameters. Normally,
the stress or strain distribution in a structure is static indeterminate. Determining the
stress or strain requires a thorough analysis of the loads applied to the structure and
the stiffness of the structure (including material stiffness and geometric stiffness). Any
changes in the stiffness of a structure under the same loading could alter the deforma-
tion of the structure, and thus the strain and stress distribution. Macro-damages, such
as cracks and fastener holes, in a structure can undermine the geometric stiffness of the
structure, the deformation therefore enlarges under the same loading condition, which
alters the associated strain and stress states.

The physics of the fatigue damage issue in FMLs is no exemption from Hooke’s law.
The stress states at areas of interest in FMLs need to be calculated and used to determine
whether or not a damage could occur and propagate. In the context of LEFM, the stress
states can be related to either K or G to calculate the damage evolution under fatigue
loading. Alderliesten has developed an analytical model for predicting the crack growth
behaviour of isolated central cracks in FMLs subjected to far-field fatigue loading.

The present research deals with the crack growth behaviour in FMLs containing mul-
tiple cracks. Compared to the case of an isolated crack in an FML, multiple cracks further
undermine the laminate stiffness, resulting in more deformation of the laminate. Precise
analysis and calculation of the associated deformation and stress states for this sophis-
ticated phenomenon is intricate. To simplify the problem, other adjacent cracks are ide-
alized as “negative stiffeners” so that the reductions in the geometric stiffness due to the
cracks can be modelled in a simplified way when calculating the stress states of a single
crack (Chapter 2, Chapter 5). However, the assumption of “negative stiffeners” artificially
introduces more stiffness reduction in the FML in comparison with that caused by real
cracks accompanied with small scale delamination shapes, resulting in more load redis-
tribution from the adjacent cracks to the single crack. As a consequence the described
prediction model overestimates the stress states at the tips of a single crack and its COD
due to applied loads. The bridging stress distribution therefore is also overestimated by
the prediction model due to the overepredicted COD, which can partially offset the over-
estimation in calculated Ktot al . Yet the prediction model provides conservative results.

An overview of the structure of this thesis in Chapter 1 is represented in Fig. 8.1. In or-
der to develop models to predict MSD crack growth behaviour in flat FML panel (Chap-
ter 5) and in FML joint (Chapter 7), the load redistribution mechanism due to stiffness
reductions was first validated in Chapter 2, followed by the extensions of the capabil-
ity to calculate the stress states for generic eccentric cracks in metals (Chapter 3) and in
FMLs (Chapter 4). Meanwhile, the pin loading effects on the crack growth behaviour in
FMLs was analysed (Chapter 6) in order to implement the approach for fastened FML
joints containing MSD cracks (Chapter 7).
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Chapter 3: COD and K solutions

   for eccentric cracks in metals

Chapter 4: non-symmetric 

    crack growth in FMLs

Chapter 2: load redistribution

                mechanism

Chapter 5: MSD in flat FMLs Chapter 6: pin loading effects

Chapter 7: MSD in FML joints

Figure 8.1: Structure of this research

8.2. ASSUMPTIONS AND CONSEQUENCES

Any predictive model is only useful with a thorough understanding of any limiting as-
sumptions and their consequences on the model output. In order to provide potential
users with the needed confidence in the developed model to apply it, its key assumptions
and their consequences are discussed here.
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LEFM assumption The approach in this work is based on LEFM with a lack of plas-
ticity at crack tips. A small plastic zone develops in front of a crack tip in the metal layers
in an FML, which is not characterized by the LEFM approach. It should be less of an
issue for FMLs since the bridging mechanism significantly reduces the plastic zone size
in the metal layers. When one crack tip is in the vicinity of a notch or another crack
tip, the plasticity interaction can occur over a very small portion of crack length and re-
sult in dramatic increase in the crack growth rate, the model underestimates the results
(Figs. 2.9, 2.10 and Figs. 5.9, 5.10).

Negative stiffeners assumption The influence of other cracks on a single crack is
evaluated by considering the cracks as removals of metal strips. In comparison with an
actual crack with small scale delamination shapes in an FML, the non-physical represen-
tation of the crack exaggerates the damage status, i.e. more materials are assumed not to
bear the applied load and lager delamination shapes. The load redistribution from the
exaggerated damages therefore is higher than that from actual cracks. This assumption
leads to the prediction model providing conservative prediction results (Figs. 2.9, 2.10
and Figs. 5.9, 5.10).

Application of Westergaard stress distributions The stress distributions in front of
crack tips of an asymmetric crack in a metal panel are assumed to be characterized with
two different Westergaard stress distributions. In Fig. 3.10, the two Westergaard stress
distributions for the analysed eccentric crack in the metal panel correlate with the FEM
results very well. The application of two Westergaard stress distributions allows the
asymmetric crack opening displacement of an eccentric crack to be derived (Fig. 3.9);
however, leads to underestimation of the stress intensity factor of the crack tip that is
relatively away from the free edge boundaries. This error is only obvious for an eccentric
crack with a normalized crack length longer than 0.7, see Fig. 3.7.

Simplification of pin bearing loads In Chapter 6, the bearing load applied by a fas-
tener to the hole edge in an FML is modelled as a concentrated load and assumed to be
borne by the metal layers only. This simplification and assumption is analogous to the
pin bearing transfer in fibre reinforced polymer composites where the matrix bears the
pin loading and then transfers the load to stiffer fibres. This simplification may lead to
some error when the crack tip is in the vicinity of the fastener hole (Fig. 6.7). In addition,
the damage caused by the bearing load in the fibre layers cannot be analysed with this
assumption.

Application of the principle of superposition for splitting asymmetric loading cases
An asymmetric tension-pin loading case is regarded as a half of the superposition of a
pair of pin loads and symmetric far-field tension in Chapter 6. The asymmetric tension-
pin fatigue loading acting on FMLs results in non-symmetric delamination shapes and
Mixed Mode crack growth in the metal layers (Fig. 6.8(a)). This superposition enables a
simple prediction of the crack growth under pin bearing. On the other hand, the pre-
dicted crack configuration is a Mode I crack, which cannot capture the crack path de-
viation from the transverse direction. In FMLs, the loading case leads to asymmetric
delamination shapes with respect to the transverse section, which cannot be captured
by the prediction model either.

Neglecting the load redistribution among fastener rows Load redistribution among
fastener rows is not simultaneously accounted for when calculating the growth behaviour
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of multiple cracks in an FML joint. As cracks grow in the joint, the changes in fastener
and plate flexibility alter the portion of load transferred by each fastener row. This load
redistribution among fastener rows is still indeterminate. Yet the study of 5 loading cases
summarized in Table 7.1 shows that the increase in the bypass load for the cracks can in-
crease the conservativeness of the prediction model (Fig. 7.11). Nevertheless, neglecting
load redistribution among fastener rows leaves out the real-time influence of variation
in bypass and pin loads on the MSD crack growth behaviour.

Neglecting secondary bending stresses The effects of secondary bending are not
taken into consideration in the analysis for single-shear lap joints. The eccentricities
in the load path of such joints lead to out-of plane displacement and bending stresses.
The bending stress could result in different crack lengths through thickness in the metal
layers. By neglecting the secondary bending stresses, the prediction model can not cap-
ture the complex crack configuration through thickness (Fig. 7.12). A detailed analysis of
the crack problem can not be obtained.

8.3. PERFORMANCE OF THE MODEL
With the limiting assumptions of the model discussed, the overall performance can be
thoroughly critiqued.

• The prediction model can accurately predict the crack growth rate in a cracked
FML containing discretely notched layers, see Figs. 2.9, 2.10. The model captures
the crack acceleration when the crack tip approaches the notch edge. This accu-
rate prediction is attributed to the fact that the idealization does not exaggerate the
reduction in geometric stiffness compared to the reduction caused by the actual
notches in the metal layers.

• The model for MSD crack growth prediction consistently over-predicts the crack
growth rates over the major portion of the crack length for multiple collinear cracks
in FMLs, which results in a conservatively predicted fatigue growth life. However,
without considering the load redistribution caused by the stiffness reduction re-
sulting from the cracked metal layers leads to very non-conservative predictions
(Figs. 5.8, 5.9 and 5.10). The over-predicted crack growth rate is due to the con-
sequences of the non-physical representations of cracks. From Table 5.2, it is ob-
served that the analysis method performs better for FMLs with lower MVF in terms
of predicting fatigue growth life.

Over approximate 1 to 2 mm crack length just before two crack tips link-up, the
predicted crack growth rate is lower than test data since the effects of plasticity in-
teraction is not considered. Due to the rapid crack growth before two crack tips
coalesce, the error resulting from neglecting plasticity interaction effects in pre-
dicted fatigue growth life is negligible.

The model provides very accurate MSD damage configuration prediction com-
pared to the measurements, see Fig. 5.11.

• The prediction model for eccentric cracks in FMLs successfully captures the ef-
fects of the delamination shape asymmetry and crack tip asymmetry. The pre-
dicted crack configuration, including the delamination shapes for two crack tips,
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correlates very well with test data (Fig. 4.11 and Fig. 4.12). The assumption made
for calculating non-symmetric crack state in metals results in an over-predicted
crack growth rate for the critical crack tip that is very close to the free edge and an
under-predicted crack growth rate for another tip that is relatively away from any
free edges in FMLs (Fig. 4.13). However, this error is pronounced only when the
normalized crack length is larger than 0.7, which means the ligament between the
critical crack tip and the free edge ahead is much smaller than the crack size.

In practical aircraft structures, panels are usually very wide and the edges are jointed
to supporting structures such as frames, stringers and straps. Load redistribution
between a cracked panel and supporting structures occurs when a crack tip in the
panel approaches the jointed edge. The boundary conditions in this case for the
prediction model do not valid anymore. It is therefore appropriate to use the non-
symmetric crack growth prediction model for a non-symmetric crack with normal-
ized crack length smaller than 0.7 in a practical wide panel so that the boundary
conditions can still be considered valid.

• The model for predicting the effects of pin loading on crack growth behaviour in
FMLs accurately determines the crack growth rate (Fig. 6.7). However, the model
fails to predict the crack path and non-symmetric delamination shapes with re-
spect to the crack path. The important aspect is that the symmetric delamination
shape determined with the prediction model has equivalent delaminated lengths
in comparison with the delamination shape in the tested specimen (Fig. 6.8).

• The implementation of the models developed in Chapter 5 and Chapter 6 for pre-
dicting crack growth in FML joints captures the rapid crack growth behaviour in
the vicinity of fastener holes and surge in crack growth rates before link-up of
cracks (Fig. 7.11). However, the methodology losses the conservativeness for FML
joints containing MSD cracks without considering the load redistribution over mul-
tiple fastener rows.

The loading case study (Table 7.1) proves that the methodology presented in this
theses should provide conservative predictions for double-shear lap joints con-
taining multiple cracks if the real-time bypass load and pin loads for the cracks in
the joint are known.

• The methodology for FML single-shear lap joints does not take secondary bending
effects into consideration, which cannot predict complex crack configurations in
the metal layers through laminate thickness. It is noteworthy that the predictions
derived from the methodology are conservative compared to the different crack
growth rates in different metal layers in the Glare riveted lap joint tested by Müller
(Fig. 7.12).

8.4. FINAL CONCLUSION
The nature of slow and stable crack growth in FMLs, thanks to the bridging mechanism
offered by the fatigue resistant fibres, leads modelling load redistribution to be the key
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factor when analysing MSD crack growth behaviour. In this work, models have been de-
veloped to analyse the load redistribution mechanism and non-symmetric growth be-
haviour in FMLs containing MSD scenarios, the effects of pin loading on crack growth
behaviour in FML joints.

Further research is necessary to lead the present work to a more realistic analysis for
FML joints where load redistribution over multiple fastener rows and secondary bending
effects are present.





A
INTEGRALS

The typical integrals in Chapter 3 are given here for x > a > 0∫
1√

1− (a/x)2
d x =

√
x2 −a2 +C1 (A.1)

where C1 is a constant.∫
x√
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d x = a2ln(x +
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p
x2 −a2

2
+C2 (A.2)

where C2 is a constant.
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B
WESTERGAARD STRESS FUNCTIONS

The Westergaard stress functions for cracked body under two-point loads (see Fig. 4.8)
are given by:

ZI = P

2π
p
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(Par t1− i ·αy0Par t2) (B.1)
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and
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In these functions, P represents the point load per unit thickness, and the complex
numbers z0 (x0+i ·y0), z̄0 (x0−i ·y0) indicate the locations of the applied point loads in a
xy-coordinates; z (x+i · y) indicates the location of interest in the same coordinates (Fig.
4.8).

For the application in this paper, the following substitutions are needed:

z = x + i ·0 (B.8)

z0 = xi + i ·b(xi ) (B.9)

z̄0 = xi − i ·b(xi ) (B.10)
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