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Abstract

In this report we give new insights into the properties of invertible and singular deflated and

preconditioned linear systems where the coefficient matrices are also symmetric and positive

(semi-) definite.

First we prove that the invertible deflated matrix has always a more favorable effective

condition number compared to the original matrix. So, in theory, the solution of the deflated

linear system converges faster in iterative methods than the original one.

Thereafter, some results are presented considering the singular systems originally from the

Poisson equation with Neumann boundary conditions. In practice these linear systems are

forced to be invertible leading to a worse (effective) condition number. We show that applying

the deflation technique remedies this problem of a worse condition number. Moreover, we

derive some useful equalities between the deflated variants of the singular and invertible ma-

trices. Then we prove that the deflated singular matrix has always a more favorable effective

condition number compared by the original matrix.

Keywords: singularity, deflation, conjugate gradient method, preconditioning, Poisson equa-

tion, spectral analysis, symmetric positive semi-definite matrices.
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Chapter 1
Introduction

In this report we consider the symmetric and positive semi-definite linear system

Ax = b, A = [ai,j ] ∈ Rn×n. (1.1)

This linear system (1.1) can be derived for instance after a second-order finite-difference

discretization of the 1-D, 2-D or 3-D Poisson equation with Neumann boundary conditions

which is 



∇ ·
(

1

ρ(x)
∇p(x)

)
= f(x), x ∈ Ω,

∂

∂n
p(x) = g(x), x ∈ ∂Ω,

(1.2)

where p, ρ,x and n denote the pressure, density, spatial coordinates and the unit normal

vector to the boundary ∂Ω, respectively.

In this case, A is singular and symmetric positive semi-definite (SPSP). If b ∈ Col A

then the linear system (1.1) is consistent and infinite number of solutions exists. Due to the

Neumann boundary conditions, the solution x is fixed up to a constant, i.e., if x1 is a solution

then x1 + c is also a solution where c ∈ Rn is an arbitrary constant vector. This situation

presents no real difficulty, since pressure is a relative variable, not an absolute one. This

means that the absolute value of pressure is not relevant at all, only differences in pressure

are meaningful and these are not changed by an arbitrary constant added to the pressure

field.

In many computational fluid dynamics packages, see e.g. Patankar [13] and Kaasschieter

[4], one would impose an invertible A, denoted by Ã. This makes solution x unique which

can be advantageous in computations, for instance,

• direct solvers like Gauss elimination can only be used to solve the linear systems when

A is invertible;

• the original singular system may be inconsistent as a result of perturbation of domain

1



2 Chapter 1. Introduction

errors whereas the invertible system is always consistent.

• the deflation technique requires an invertible matrix E := ZTAZ which will be explained

later on this report. The choice of Z is straightforward if A is non-singular;

One common way to force invertibility of A in the literature of Computation Fluid Dynamics

is to modify the last element of matrix A in the following way:

ãn,n = (1 + σ) · an,n, σ > 0. (1.3)

In fact, a Dirichlet boundary condition is imposed in one point of the domain. Observe that

if σ = 0 would be chosen in the latter expression, then we obtain exactly the original singular

problem. This modification results in a symmetric and positive definite linear system

Ãx = b, Ã = [ãi,j ] ∈ Rn×n. (1.4)

Presently, direct methods (such as methods based on Cholesky decompositions) are available

to solve such a linear system. However, fill-in causes a loss of efficiency for a large and sparse

matrix A. For such a case, iterative methods are a better alternative to reduce both memory

requirements and computing time.

The most popular iterative method is the Conjugate Gradient (CG) method (see e.g.

Golub & Van Loan [2]). It is well-known that the convergence rate of the CG method is

bounded as a function of the condition number of matrix Ã. After k iterations of the CG

method, the error is bounded by (cf. Thm. 10.2.6 of [2])

||x− xk|| eA ≤ 2||x− x0|| eA
(√

κ− 1√
κ+ 1

)k
, (1.5)

where x0 denotes the starting vector, κ = κ(Ã) = λn/λ1 denotes the spectral condition

number of Ã and, moreover, the Ã-norm of x is given by ||x|| eA =
√
xT Ãx. Therefore, a

smaller κ leads to a faster convergence of the CG method.

In practice, it appears that the condition number κ is relatively large, especially if σ is

close to 0. Hence, solving (1.4) applying the CG method shows slow convergence to the

solution, see also Section 6.7 of [13] and Section 4 of [4]. Instead, a preconditioned system

M̃−1Ãx = M̃−1b could be solved, where the SPD preconditioner M̃ is chosen, such that M̃−1Ã

has a more clustered spectrum or a smaller condition number than that of Ã. Furthermore,

M̃ must be chosen in such a way that the system M̃y = z for every vector z can be solved

with less computational work than the original system Ãx = b. The most easy preconditioner

is the so-called diagonal preconditioner defined by M̃ = diag(Ã). A more effective SPD

preconditioning strategy in common use is M̃ = L̃L̃T which is an Incomplete Cholesky (IC)

factorization of Ã, defined by Meijerink & Van der Vorst [9]. Since Ã is an SPD matrix
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with ãi,j ≤ 0 for all i 6= j, an IC decomposition always exists, see also Kaasschieter [4]. We

denote the preconditioned Conjugate Gradient method by PCG and the PCG with the IC

preconditioner by ICCG.

In simple practical applications, ICCG shows good convergence relative to other iterative

methods (e.g., CG, Gauss-Seidel, SOR). However, it appears that ICCG still does not give

satisfactory results in more complex models, for instance when the number of grid points

becomes very large or when there are large jumps in the coefficients of the discretized PDE.

To remedy the bad convergence of ICCG in more complex models, (eigenvalue) deflation

techniques are proposed, originally by Nicolaides [14]. The idea of deflation is to project the

extremely large or small eigenvalues of M̃−1Ã to zero. This leads to a faster convergence of

the iterative process, due to Expression (1.5) and due to the fact that the CG method can

handle matrices with zero-eigenvalues, see also [4].

The deflation technique has been exploited by several other authors, e.g., Mansfield [7,8],

Morgan [10], Vuik et al. [1, 20, 24–26]. A detailed treatment of deflation can also be found in

a previous report of the author (Tang [17]). The deflation matrix is defined by

P̃ = I − ÃZ̃Ẽ−1Z̃T , Ẽ = Z̃T ÃZ̃, Z̃ ∈ Rn×r, r < n, (1.6)

which will be treated more specifically in the next chapter. The resulting linear system which

has to be solved is

P̃ M̃−1Ãx = P̃ M̃−1b. (1.7)

In this report, we will concentrate on this latter equation. In particular, we will focus on the

deflated-preconditioned system P̃ M̃−1Ã.

1.1 Objectives of this Report

First we start with comparing the condition number of M̃−1Ã and the effective condition

number of its deflated variant P̃ M̃−1Ã. It is of importance to show that extending an original

preconditioned system with the deflation technique never deteriorates the iterative process.

Moreover, it is known and it will also be shown in this report (Chapter 3) that forcing

invertibility of A leads to a worse condition number, i.e.,

κ(Ã) ≥ κeff(A), (1.8)

where κ and κeff denote the standard and effective condition numbers, respectively. As a

consequence, the convergence of the CG method applied to the system with A is theoretically

faster than with Ã. In practice, this is indeed the case and it holds also for the preconditioned

CG method. In this report, we investigate this issue for the deflated variants of the invert-

ible matrix M̃−1Ã and singular matrix M−1A. Therefore, the effective condition numbers
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κeff(P̃ M̃−1Ã) and κeff(PM−1A) will be treated and compared. In addition, relations between

the singular matrix A and the invertible matrix Ã will be worked out using the deflation ma-

trices P and P̃ to gain more insight in the application of the deflation technique for singular

systems. Most articles about deflation, e.g. [1, 7, 8, 10, 20, 24–26], deal only with invertible

systems. Applications of deflation to singular systems are described in less articles, see for

instance Lynn & Timlake [6] and Verkaik et al. [18, 19]. In these articles, some suggestions

have been done how to handle singular systems in the deflation technique, but the underlying

theory has not yet been developed.

1.2 Outline of this Report

In Chapter 2 and 3 we introduce some notations, assumptions, definitions and preliminary

results which will be required through this report.

Chapter 4 deals with the comparison of κ(M̃−1Ã) and κeff(P̃ M̃−1Ã) for a general invertible

SPD matrix Ã. Moreover, we have seen that forcing invertibility leads to a worse condition

number. It will be shown that applying the deflation technique remedies this problem. In

the subsequent chapters, we assume A and Ã to be matrices from the Poisson equation.

In Chapter 5 the proof is given of the equality P̃ Ã = PA, which is an unexpected result.

Thereafter, in Chapter 6 this is generalized for P̃ M̃−1Ã and PM−1A, where the diagonal and

the Incomplete Cholesky preconditioners are considered. Moreover, a comparison of κ(M −1A)

and κeff(PM−1A) will be made in that chapter.

Results of numerical experiments will be presented in Chapter 7 to illustrate the theory.

We will end the report with some conclusions in Chapter 8.



Chapter 2
Notations, Assumptions and Definitions

In this chapter some notations, definitions and assumptions will be presented which will be

used through this paper.

2.1 Notations of Standard Matrices and Vectors

We first define the following notations for standard matrices and vectors:

1p,q := p× q unit matrix;

1p := column of 1p,q;

0p,q := p× q zero matrix;

0p := column of 0p,q;

e
(r)
p := r-th column of the p× p identity matrix I;

e
(r)
p,q := p× q matrix with q identical columns e

(r)
p ,

with p, q, r ∈ N.

2.2 Assumptions for Matrices A and Ã

Through this paper, the n× n matrices A and Ã can be arbitrary chosen provided that they

satisfy some assumptions which are given below. First we start with matrix A.

Assumption 2.1. Matrix A is singular, symmetric and positive semi-definite (SPSD). More-

over, the algebraic multiplicity of the zero-eigenvalue of A is equal to one.

Assumption 2.2. Matrix A satisfies A · 1n = 0n.

Next, we give the definition of matrix Ã.

5



6 Chapter 2. Notations, Assumptions and Definitions

Definition 2.1. Let A = [ai,j] be given, which satisfies Assumption 2.1 and 2.2. Then

Ã = [ãi,j ] is defined by

ãn,n = (1 + σ) · an,n, σ > 0, (2.1)

and for the other indices i and j

ãi,j = ai,j . (2.2)

Some consequences of this definition can be found in the following two corollaries.

Corollary 2.1. Matrix Ã is invertible, symmetric and positive definite (SPD).

Corollary 2.2. Matrix A satisfies Ã · 1n = σan,n · e(n)
n .

2.3 Definitions of the Deflation Matrices

In this section the deflation matrices will be defined, but we start with the deflation subspace

matrices.

2.3.1 Deflation Subspace Matrices Z, Z̃ and Z̃0

Let the computational domain Ω be divided into open subdomains Ωj, j = 1, 2, . . . , r, such

that Ω = ∪rj=1Ωj and ∩rj=1Ωj = ∅ where Ωj is Ωj including its adjacent boundaries. The

discretized domain and subdomains are denoted by Ωh and Ωhj , respectively. Then, for each

Ωhj with j = 1, 2, . . . , r, we introduce a deflation vector zj as follows:

(zj)i :=

{
0, xi ∈ Ωh \ Ωhj ;

1, xi ∈ Ωhj ,
(2.3)

where xi is a grid point in the discretized domain Ωh. Define also

z0 = 1n, (2.4)

then it automatically satisfies

z0 ∈ span {z1, z2, . . . , zr} . (2.5)

Next, we define the so-called deflation subspace matrices Z, Z̃ and Z̃0 below.

Definition 2.2. Matrices Z, Z̃ and Z̃0 are defined as follows:

• Z := [z1 z2 · · · zr−1] ∈ Rn×(r−1);

• Z̃ := [z1 z2 · · · zr−1 zr] ∈ Rn×r;

• Z̃0 := [z1 z2 · · · zr−1 z0] ∈ Rn×r.
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Therefore, matrix Z is equal to Z̃ and Z̃0 without their last column, i.e.,

Z̃ = [Z zr], Z̃0 = [Z z0]. (2.6)

In addition, we also obtain

Z̃ · 1r = 1n. (2.7)

2.3.2 Deflation Matrices Pr, P̃r and Q̃r

The deflation matrices are given below.

Definition 2.3. Matrices Pr, P̃r and Q̃r are defined as follows:

• Pr := I −AZE−1ZT , E := ZTAZ;

• P̃r := I − ÃZ̃Ẽ−1Z̃T , Ẽ := Z̃T ÃZ̃;

• Q̃r := I − ÃZ̃0Ẽ
−1Z̃T0 , Ẽ0 := Z̃T0 ÃZ̃0.

In the latter expressions, I is the n× n identity matrix. Moreover, the index ‘r’ is added as

subscript in Pr, P̃r and Q̃r to emphasize the value of r. Note further that Z̃TAZ̃ is singular,

while E := ZTAZ is invertible so that E−1 exists. In addition, also Ẽ−1 := (Z̃T ÃZ̃)−1 and

Ẽ−1
0 := (Z̃T0 ÃZ̃0)−1 always exist, since both Z̃, Z̃0 and Ã are full-ranked so also Ẽ and Ẽ0

are full-ranked, see e.g. Horn & Johnson [3].

As special case of P̃r and Q̃r, we can take r = 1 which leads to

Q̃1 = P̃1 = I − Ãz0Ẽ
−1zT0 , (2.8)

since Z̃ = Z̃0 = z0 for r = 1. Note that, in contrast to P̃1 and Q̃1, matrix P1 does not exist

since Z is not defined in this case.

2.4 Eigenvalues and Effective Condition Numbers

Through this report, the eigenvalues λi of each arbitrary symmetric n× n matrix are always

ordered increasingly, i.e.,

λ1 ≤ λ2 ≤ . . . ≤ λn. (2.9)

Next, let B be an arbitrary n×n SPSD matrix with rank n−r, so that λ1 = . . . = λr = 0.

Note that all eigenvalues of B are real-valued due to the symmetry of B. Then its effective

condition number κeff(B) are defined as follows:

κeff(B) =
λn(B)

λr+1(B)
. (2.10)
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Since B is singular, κ(B) = λn(B)/λ1(B) is undefined, so the standard condition number

makes no sense for singular matrices. Observe further that for an invertible and symmetric

matrix C this yields κ(C) = κeff(C).

As special cases we can write the effective condition numbers for PrA and P̃rÃ:

κeff(PrA) =
λn(PrA)

λr(PrA)
, κeff(P̃rÃ) =

λn(P̃rÃ)

λr+1(P̃rÃ)
. (2.11)



Chapter 3
Preliminary Results

In this chapter we give some preliminary results from the theory of functional analysis, linear

algebra and deflation.

3.1 Results from Functional Analysis

We first start with giving the definition of orthogonal complement and direct sum in terms

of Hilbert spaces and subspaces.

Definition 3.1. Let H be a Hilbert space with an arbitrary inner product 〈·, ·〉 and let Z be

a closed subspace of H. Then the orthogonal complement Y of Z is defined by

Y = {y ∈ H | 〈z, y〉 = 0 ∀z ∈ Z} . (3.1)

In other words, Z is the subspace orthogonal to Y. Therefore, the orthogonal complement Y
is also often denoted by Z⊥.

Definition 3.2. Let X be a vector space and let Y and Z be subspaces of X . Then, X is said

to be the direct sum of Y and Z, written

X = Y ⊕ Z, (3.2)

if each x ∈ X has a unique representation

x = y + z, (3.3)

where y ∈ Y and z ∈ Z.

In other words, the direct sum of two subspaces Y and Z is the sum of subspaces in which Y
and Z have only the zero element in common.

9



10 Chapter 3. Preliminary Results

Next, using Definitions 3.1 and 3.2 we can derive Theorem 3.1 which says that the union

of the subspaces Y and Z is exactly H.

Theorem 3.1. Let H,Y and Z be defined as in Definition 3.1. Then

H = Y ⊕Z. (3.4)

Proof. The proof can be found in any elementary functional analysis book, see e.g. pp.

146–147 of Kreyszig [5].

Note that H = Rn with the standard vector inner product is an Hilbert space and that

in this case dim Y+ dim Z = n. This means that if Z = Rr with r < n then Y = Rn−r.
Moreover, it is easy to see that Y and Z are both closed subspaces of Rn, see also [5].

3.2 Results from Linear Algebra

In the following we denote by λi(B) the eigenvalues of a symmetric n× n matrix B = [bi,j].

Recall that these eigenvalues are ordered increasingly.

Moreover, the p-norm and Frobenius norm for matrices are defined by

||B||F :=

√√√√
n∑

i,j=1

b2i,j, ||B||p := sup
x6=0

||Bx||p
||x||p

. (3.5)

In particular, for symmetric matrices the 2-norm satisfies

||B||2 := sup
x6=0

||Bx||2
||x||2

= max { |λ1(B)| , |λn(B)| } . (3.6)

It is known that: ||B||2 ≤ ||B||F ≤
√
n · ||B||2.

Next, we mention well-known properties of the eigenvalues of symmetric matrices which

can be found in Section 8.1.2 of Golub & Van Loan [2].

Theorem 3.2. Let B and B +E be n× n symmetric matrices. Then

(i)
∑n

i=1 [ λi(B +E)− λi(B) ]2 ≤ ||E||2F ;

(ii) λk(B) + λ1(E) ≤ λk(B +E) ≤ λk(B) + λn(E), k = 1, 2, . . . , n;

(iii) |λk(B +E)− λk(B)| ≤ ||E||2, k = 1, 2, . . . , n.

Property (ii) is known as the Wielandt-Hoffman theorem. With the help of this theorem

we can immediately derive the following corollary.

Corollary 3.1. Let A and Ã be defined as in Chapter 2. Then the following statements hold:
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(i) limσ→0 κ(Ã) =∞;

(ii) if σan,n ≤ λ2(A) then κeff(A) ≤ κ(Ã);

(iii) there exists a σ0 > 0 such that for all σ < σ0

κeff(A) ≤ κ(Ã) (3.7)

hold.

Proof. (i) Taking B = A and B +E = Ã in Theorem 3.2(ii) leads to

E =



∅

σan,n


 ,

resulting in

λ1(E) = . . . = λn−1(E) = 0, λn(E) = σan,n.

As a result of Theorem 3.2(ii) we obtain

λk(A) ≤ λk(Ã) ≤ λk(A) + σan,n, k = 1, 2, . . . , n.

In particular, we have

0 ≤ λ1(Ã) ≤ σan,n, λn(A) ≤ λn(Ã) ≤ λn(A) + σan,n.

This implies

lim
σ→0

κ(Ã) = lim
σ→0

λn(Ã)

λ1(Ã)
≥ lim

σ→0

λn(A)

σan,n
=∞.

(ii) Since σan,n ≤ λ2(A) holds, we have

0 ≤ λ1(Ã) ≤ σan,n ≤ λ2(A).

Then,

κ(Ã) =
λn(Ã)

λ1(Ã)
≥ λn(A)

λ2(A)
= κeff(A).

(iii) This statement follows immediately from Property (ii).

Next, the well-known theorem of Gershgorin (see again Section 8.1.2 of [2]) is given.

Theorem 3.3. Let B be an n× n symmetric matrix and C be an n× n orthogonal matrix.
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If CTAC = D + F where D = diag(d1, . . . , dn) and F has zero diagonal entries, then

λ(A) ⊆
n⋃

i=1

[di − ri , di + ri], (3.8)

where ri :=
∑n

j=1 |fi,j| for i = 1, 2, . . . , n.

Next, given an SPSD matrix A ∈ Rn×n and an SPD matrix B ∈ Rn×n, we consider the

eigenproblem

B−1Ax = λx, (3.9)

which can be rewritten into

(A− λB)x = 0, (3.10)

where λ and x are an eigenvalue and corresponding eigenvector of B−1A, respectively. The

latter problem is known as the symmetric-definite generalized eigenproblem and A − λB is

called a pencil, see e.g. Section 8.7 of [2]. In this case, λ and x are known as a generalized

eigenvalue and generalized eigenvector of the pencil A− λB.

Moreover, the Crawford number c(A,B) of the pencil A− λB is defined by

c(A,B) = min
||x||2=1

(xTAx)2 + (xTBx)2 > 0. (3.11)

The following theorem gives information about the eigenvalues after perturbing matrix B.

This theorem is a simplified variant of the origin theorem of Stewart [16], see also Section 8.7

of [2].

Theorem 3.4. Let the symmetric-definite n×n pencil A−λiB have generalized eigenvalues

satisfying

λ1 ≤ λ2 ≤ . . . ≤ λn. (3.12)

Suppose EB is a symmetric n× n matrix that satisfy

||EB ||22 < c(A,B). (3.13)

Then A− µi(B +EB) is symmetric-definite with generalized eigenvalues

µ1 ≤ µ2 ≤ . . . ≤ µn, (3.14)

satisfying

| arctan (λi)− arctan (µi) | ≤ arctan

( ||EB ||2
c(A,B)

)
, (3.15)

for i = 1, 2, . . . , n.

Next, it is a well-known property, see for instance p. 13 of Horn & Johnson [3], that the
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rank of a matrix is unchanged upon left or right multiplication by a non-singular matrix, see

the next theorem.

Theorem 3.5. Suppose B1 and B2 are n× n invertible matrices and C is an n× n matrix

with rank n− k, k < n. Then

rank C = rank B1C = rank CB2 = rank B1CB2 = n− k. (3.16)

As a consequence,

λi(C) = λi(B1C) = λi(CB2) = λi(B1CB2) = 0, i = 1, 2, . . . , k. (3.17)

Now, we can derive the following corollary.

Corollary 3.2. Let M and M̃−1 be SPD matrices and let A be an SPSD matrix with rank

n− k. Then,

λi(M
−1A) = λi(M̃

−1A) = 0, i = 1, 2, . . . , k, (3.18)

where the eigenvalues are sorted increasingly.

Proof. Note that both M and M̃ are invertible. Then we obtain immediately

rank M−1A = rank M̃−1A = rank A = k,

resulting in

λi(M
−1A) = λi(M̃

−1A) = 0, i = 1, 2, . . . , k.

Next, for two symmetric n×n matrices A and B, we can write A ≺ B if A−B is positive

definite. Now we can give the next theorems, which are Theorem 4.3.1 and Theorem 4.3.6 of

Horn & Johnson [3].

Theorem 3.6. Let A,B be SPD with A ≺ B, then

λi(A) > λi(B), (3.19)

for all i = 1, 2, . . . , n.

Theorem 3.7. Let A,B be symmetric and suppose B has rank t with t ≤ r. Then

λi(A) ≤ λi+r(A+B), (3.20)

for all i = 1, 2, . . . , n− r.
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Note that from this lemma we obtain also the inequality

λi(A) ≤ λi+r(A−B),

since −B is still symmetric and rank −B = t still holds.

Next, Theorem 3.8 (Wilkinson [27], pp. 94–97) is given, which is from the perturbation

theory for the symmetric eigenvalue problem (see also Th. 8.1.8 of [2]).

Theorem 3.8. Suppose B = A+τccT where A ∈ Rn×n is symmetric, c ∈ Rn has unit 2-norm

and τ > 0. Then

λi(A) ≤ λi(B) ≤ λi+1(A), i = 1, 2, . . . , n− 1. (3.21)

Moreover, there exist m1,m2, . . . ,mn ≥ 0 such that

λi(B) = λi(A) +miτ, i = 1, 2, . . . , n, (3.22)

with m1 +m2 + . . .+mn = 1.

Using this latter theorem, we can derive Corollary 3.3 which generalizes Corollary 3.1.

Corollary 3.3. Let A and Ã be as defined in Chapter 2. Then,

κ(Ã) ≥ κeff(A), (3.23)

for all σ ≥ 0.

Proof. Note that

Ã = A+ τccT ,

with

c = e(n)
n , τ = σ · an,n.

So, Theorem 3.8 can be applied. We will show that (i) λ2(A) ≥ λ1(Ã) and (ii) λn(A) ≤ λn(Ã),

then Inequality (3.23) follows immediately.

(i) Proof of λ2(A) ≥ λ1(Ã). From Eq. (3.21) we have

λi(A) ≤ λi(Ã) ≤ λi+1(A), i = 1, 2, . . . , n− 1,

so in particular

λ1(A) ≤ λ1(Ã) ≤ λ2(A).

(ii) Proof of λn(A) ≤ λn(Ã). From Eq. (3.22) we derive

λi(Ã) ≥ λi(A), i = 1, 2, . . . , n,
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since miτ ≥ 0 for all i. In particular,

λn(Ã) ≥ λn(A).

3.3 Results from Deflation

We start with Theorem 2.6 and Lemma 2.9 of Nabben & Vuik [11].

Theorem 3.9. Let Ã and Z̃ be matrices as defined in Chapter 2. Then

λ1(P̃ Ã) = λ2(P̃ Ã) = . . . = λr(P̃ Ã) = 0.

This means that the algebraic multiplicity of the zero-eigenvalue of P̃ Ã is equal to r.

Theorem 3.10. Let Ã and Z̃ be as defined in Chapter 2. Let Z̃1 and Z̃2 have the same

properties as Z̃ and assume Col(Z̃1)=Col(Z̃2). Define Ẽ1 := Z̃T1 ÃZ̃1 and Ẽ2 := Z̃T2 ÃZ̃2.

Define also P̃1 := I − ÃZ̃1Ẽ
−1
1 Z̃T1 and P̃2 := I − ÃZ̃2Ẽ

−1
2 Z̃T2 . Then

P̃1Ã = P̃2Ã

and hence,

P̃1 = P̃2.

As a consequence, P̃ Ã is invariant for permutations, scaling and linear combinations of the

columns of Z̃, as long as the column space of Z̃ does not change.

Theorem 3.10 can be applied on the deflation matrices P̃r and Q̃r which are defined in

the previous chapter, see the next corollary.

Corollary 3.4. Let Ã, P̃r, Q̃r, Z̃ and Z̃0 be matrices defined in Chapter 2. Then,

Q̃r = P̃r.

Proof. By substituting P := P̃r and Q := Q̃r in Theorem 3.10, we obtain

Q̃r = P̃r,

since the conditions rank Z̃0 = rank Z̃ = r and Col Z̃0 = Col Z̃ are satisfied.

Subsequently, Theorem 2.10 of [11] is given below.
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Theorem 3.11. Let Ã be as defined in Chapter 2. Let Z̃1 ∈ Rn×r and Z̃2 ∈ Rn×s with

rank Z̃1 = r and rank Z̃2 = s. Define again Ẽ1 := Z̃T1 ÃZ̃1 and Ẽ2 := Z̃T2 ÃZ̃2. Define also

P̃1 := I − ÃZ̃1Ẽ
−1
1 Z̃T1 and P̃2 := I − ÃZ2Ẽ

−1
2 Z̃T2 . If Col(Z̃1) ⊆ Col(Z̃2) then

λn(P̃1Ã) ≥ λn(P̃2Ã), λr+1(P̃1Ã) ≤ λs+1(P̃2Ã).

The consequence of the latter theorem is that the effective condition number of P̃ Ã decreases

if we increase the number of deflation vectors, see also Corollaries 3.5 and 3.6.

Corollary 3.5. Let Ã, P̃1, P̃2 be as in Theorem 3.11. Then

κeff(P̃1Ã) ≤ κeff(P̃2Ã).

Corollary 3.6. Let Ã be as above. Define Z̃(i) = [z1 z2 · · · zi] for i = 1, 2, . . . , r with

Col(Z̃(i)) ⊆ Col(Z̃(i+1)). Moreover, define

P̃(i) = I − ÃZ̃(i)Ẽ
−1
(i) Z̃

T
(i), Ẽ(i) = Z̃T(i)ÃZ̃(i).

Then:

λ2(P̃(1)Ã) ≤ λ3(P̃(2)Ã) ≤ . . . ≤ λr+1(P̃(r)Ã),

and

λn(P̃(1)Ã) ≥ λn(P̃(2)Ã) ≥ . . . ≥ λn(P̃(r)Ã).

This yields

κeff(P̃(1)Ã) ≥ κeff(P̃(2)Ã) ≥ . . . ≥ κeff(P̃(r)Ã) = κeff(P̃ Ã).

Finally, we end with Theorem 3.12 which gives a useful property of PA and P̃ Ã.

Theorem 3.12. Let A, Ã, P and P̃ be as defined in Chapter 2. Then, both PA and P̃ Ã are

SPSD matrices.

Proof. We prove P̃ Ã to be SPSD. The proof for PA is analogous.

Note first that

ÃP̃ T = Ã− ÃZ̃Ẽ−1Z̃T Ã = P̃ Ã,

and

P̃ 2 = (I − ÃZ̃Ẽ−1Z̃T )2 = I − ÃZ̃Ẽ−1Z̃T = P̃ .

This yields

P̃ ÃP̃ T = P̃ 2Ã = P̃ Ã.

Then, P̃ Ã is symmetric due to

(P̃ Ã)T = ÃT P̃ T = ÃP̃ T = P̃ Ã.
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Moreover, P̃ Ã is positive semi-definite, since by hypothesis 0 < uT Ãu for all u 6= 0n, so in

particular,

0 < (P̃ Tu)T Ã(P̃ Tu) = uT P̃ ÃP̃ Tu = uT P̃ Ãu.

for P Tu 6= 0n. Hence,

0 ≤ uT P̃ Ãu,

for all vectors u, see also Frank & Vuik [1].
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Chapter 4
Comparison of (Effective) Condition

Numbers of Deflated Invertible Matrices

In this chapter, first we will prove that the effective condition number of P̃rÃ is always lower

than the condition number of Ã for all choices of Z̃, see Theorem 4.1.

Theorem 4.1. Let Ã and P̃r be as defined in Chapter 2. Let Z with rank r be arbitrary.

Then the following inequality holds:

κeff(P̃rÃ) < κ(Ã). (4.1)

Thereafter we proof that it can be generalized in the case of using an SPD preconditioner

M̃ , see Theorem 4.2.

Theorem 4.2. Let Ã and P̃r be as defined in Chapter 2. Let M̃ be an n × n SPD matrix.

Then the following inequality holds:

κeff(M̃−1P̃rA) < κ(M̃−1Ã). (4.2)

This chapter is organized as follows. We start with some auxiliary results in Section 4.1,

which are needed in the proofs of Theorems 4.1 and Theorem 4.2. Thereafter, in Section 4.2

the proof of Theorem 4.1 is given after showing that the inequalities λr+1(P̃rÃ) ≥ λ1(Ã) and

λn(P̃rÃ) < λn(Ã) hold. Finally, we end up with the proof of Theorem 4.2 in the last section.

Important Remarks

• The results given in these chapters, including Theorems 4.1 and 4.2, are applicable for

a larger class of matrices than only for Ã as defined in Chapter 2. Matrices Ã and M̃

can be replaced by arbitrary SPD matrices.

19
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• In the remainder of this chapter, we omit the index r of P̃r since r is always the same.

More important, in this whole chapter we do not consider the singular matrices A and

M but only the invertible matrices Ã and M̃ . For the sake of readibility, we will omit

the tildes on P̃ , Ã and M̃ in the following. In other words, through this chapter A is

an SPD matrix and furthermore M and P are based on this matrix A.

4.1 Auxiliary Results

A set of lemma’s, which are needed to prove Theorems 4.1 and 4.2, are given below.

Lemma 4.1. Let Q be a projection matrix (i.e., Q2 = Q) and let R be an SPD matrix with

dimensions n× n such that QR is symmetric. Then QR is also SPD.

Proof. By definition, uTRu > 0 for all vectors u. In particular,

(QTu)TR(QTu) > 0

leading to

(QTu)TR(QTu) = uTQRQTu > 0.

In other words, QRQT = Q(RQT )T = Q2R = QR is SPD.

Lemma 4.2. Matrix I − P is a projector.

Proof. By definition, I − P = AZE−1ZT so that

(I − P )2 = AZE−1ZTAZE−1ZT = AZE−1EE−1ZT = AZE−1ZT = I − P.

Next, two simple lemma’s are given about the rank of a matrix. Recall that a rank of a

matrix A is the dimension of the column space of A.

Lemma 4.3. Let u = [ui] and v = [vi] be vectors with length n. Then rank uvT = 1.

Proof. We have

uvT = [u1 · · · un]T [v1 · · · vn] = [v1u v2u · · · vnu].

Hence, each column is a multiple of the first column. Indeed rank uvT = 1.

Lemma 4.4. Define T := (I − P )A with P and A as defined above. Then T is symmetric.
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Proof. Note first that T = (I − P )A = −AZE−1ZTA. Since

T T = (−AZE−1ZTA)T = −ATZE−TZTA = −AZE−1ZTA = T,

matrix T is symmetric.

We end with the following lemma which says that the preconditioned A, denoted by Â, is

always symmetric and positive definite.

Lemma 4.5. Let Â := M−1/2AM−1/2 with M to be SPD. Then Â is SPD.

Proof. Note first that M−1/2 exists since M is symmetric positive definite. Obviously, M−1/2

is SPD. Now, matrix Â is symmetric since

ÂT = (M−1/2AM−1/2)T = (M−1/2)TAT (M−1/2)T = M−1/2AM−1/2 = Â.

Moreover, matrix Â is positive definite since by definition, uTAu > 0 for all vectors u and in

particular,

(M1/2u)TA(M1/2u) > 0

leading to

uTM1/2AM1/2u = vT Âv > 0

with v := M 1/2u.

4.2 Comparison of the (Effective) Condition Numbers of the

Matrices A and PA

In this section, the proof of Theorem 4.1 is given. It consists of three steps.

Step 1: Proof of Inequality λn(PA) < λn(A).

Note first that

A− PA = V A, V := AZE−1ZT = I − P.

V = I −P is a projector due to Lemma 4.2. Obviously, applying the identity PA = AP T , we

have that V A is symmetric. Next, since A is SPD, we obtain that V A is also SPD, by using

Lemma 4.1. Therefore, by definition, A ≺ PA so that

λi(A) > λi(PA),

by Theorem 3.6. Thus in particular:

λn(A) > λn(PA).
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Step 2: Proof of Inequality λ1(A) ≤ λr+1(PA).

It suffices to prove λ1(A) ≤ λr+1(P(1)A) due to Corollary 3.6. We write Z(1) = z since it

consists of exactly one vector.

Note first that

P(1)A = A−AzE−1
(1)z

TA = A+ T.

with T = (I−P(1))A = −AzE−1
(1)z

TA. Moreover, since E−1
(1) is a scalar, we write α := −E−1

(1) ∈
R. Hence,

T = −AzE−1
(1)z

TA = αAzzTA.

Obviously, rank αAzzTA = rank AzzTA. Furthermore, since A is invertible,

rank AzzTA = rank zzT ,

from Theorem 3.5. Finally,

rank zzT = 1,

due to Lemma 4.3. In order words,

rank T = 1.

Moreover, T is symmetric by applying Lemma 4.4, . Hence, the conditions of Lemma 3.7

have been satisfied. By taking B = T in that lemma, we obtain immediately

λ1(A) ≤ λ2(P(1)A).

Step 3: Proof of Theorem 4.1.

In the previous two steps it has been proved that

λ1(A) ≤ λr+1(PA), λn(A) > λn(PA),

for all Z with rank Z = r. Hence, this leads to

κ̃(PA) < κ(A).

4.3 Comparison of the (Effective) Condition Numbers of the

Matrices M−1A and M−1PA

As mentioned in the beginning of this chapter, Theorem 4.1 can be generalized for deflated

preconditioned systems M−1PA where M is an SPD matrix. This leads to Theorem 4.2

whose the proof can be found below.
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Proof of Theorem 4.2. Let Â := M−1/2AM−1/2. Then Â is SPD from Lemma 4.5.

Note that

κeff(M−1PA) = κeff(M−1/2PAM−1/2) = κeff(M−1/2PM1/2Â) (4.3)

and

κ(M−1A) = κ(M−1/2AM−1/2) = κ(Â) (4.4)

using the fact that κ(B1B2) = κ(B2B1) (with the standard 2-norm) for two arbitrary invert-

ible symmetric matrices B1 and B2.

Next, define P̂ as

P̂ := I − ÂY Ê−1Y T , Ê := Y T ÂY

with Y := M 1/2Z. Since M 1/2 is invertible, Y is of rank r. Note further that

E = ZTAZ = (M−1/2Y )TAM−1/2Y = Y T ÂY = Ê.

Now we obtain
M−1/2PM1/2 = M−1/2(I −AZE−1ZT )M1/2

= I −M−1/2AZE−1ZTM1/2

= I − ÂM1/2ZE−1ZTM1/2

= I − ÂY Ê−1Y T

= P̂ .

Hence, Equation (4.3) can now be rewritten as

κeff(M−1PA) = κeff(M−1/2PM1/2Â) = κeff(P̂ Â). (4.5)

From Theorem 4.1 we know that κeff(PA) < κ(A) for arbitrary Z with rank r and for

arbitrary SPD matrix A. In particular we can take P = P̂ and A = Â, since Y is also of rank

r and Â is SPD. Therefore we obtain

κeff(P̂ Â) < κ(Â),

which is equivalent with

κeff(M−1PA) < κ(M−1A).
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Chapter 5
Comparison of Deflated Singular and

Invertible Matrices

In this chapter, we first show that the problem with a worse condition number is solved, by

applying a very simple and cheap deflation technique with only one deflation vector. More

precisely, if P̃1 is the deflation matrix with one constant deflation vector based on Ã, then the

deflated matrix P̃1Ã will be showed to be identical to the original singular A. Thereafter, we

show that even the deflated variants of Ã and A, denoted by P̃rÃ and PrA respectively, are

equal. As a consequence, solving Ax = b and Ãx = b with a deflated Krylov iterative method

leads in theory to the same convergence results. Finally, we will compare the (effective)

condition numbers of PrA and A.

The outline of this chapter is as follows. The equality P̃1Ã = A will be proved in Sec-

tion 5.1. In Section 5.2, a set of lemma’s is given which are required in Section 5.3 where we

will prove P̃rÃ = PrA. In the final section, we show that the effective condition number of

PrA is always smaller than the condition number of A.

5.1 Comparison of P̃1Ã and A

Before giving the proof of the equality P̃1Ã = A, we start this section with Lemma 5.1, where

it will be shown that P̃1 is the identity matrix except for the last row. In addition, P̃1 has

the properties that the last column is the zero-column and that the matrix consists of only

the values 0, 1 and −1.

Lemma 5.1. Let A, Ã and P̃1 be defined as in Chapter 2. Then P̃1 has the following

25
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structure:

P̃1 =




1 ∅
1

∅ . . .

1

−1 −1 · · · −1 0



. (5.1)

Proof. For the case of r = 1, obviously Z = z0 is a vector and hence, E is a scalar. Therefore,

we can rewrite Eq. (2.8) in the following way:

P̃1 = I − αÃ1n,n, (5.2)

where α := E−1 = 1/E ∈ R is equal to

α =
1

zT0 Ãz0

=
1

σ · an,n
,

where we have used Corollary (2.2). From this corollary, we obtain also immediately

Ã1n,n = σ · an,n · e(n)
n,n, (5.3)

resulting in

αÃ1n,n = e(n)
n,n.

Hence, deflation matrix P̃1 as stated in (5.2) is exactly

P̃1 = I − e(n)
n,n =




1 ∅
1

∅ . . .

1

−1 −1 · · · −1 0



.

Note that Lemma 5.1 still holds if the last row of Ã is chosen arbitrary. However, due to

the symmetry condition of Ã , only the last element of Ã can be arbitrarily chosen.

Next, applying Lemma 5.1, we obtain the following important theorem which connects

the matrices Ã and A with the help of the deflation matrix P̃1.

Theorem 5.1. Let P̃1, A and Ã be defined as in Chapter 2. Then the following equality holds:

P̃1Ã = A. (5.4)
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Proof. The exact form of P̃1 is given in Lemma 5.1. Obviously, P̃1Ã = A for all rows except

the last one, since the rows 1 to n−1 of P̃1 are equal to the corresponding rows of the identity

matrix.

The analysis of the last row of P̃1Ã is as follows. The sum of each column of A is zero

due to symmetry and Assumption 2.2, so we obtain immediately

an,j = −
n−1∑

i=1

ai,j, ∀j. (5.5)

By Definition 2.1 we have
n−1∑

i=1

ãi,j =
n−1∑

i=1

ai,j ∀j. (5.6)

Combining Eqs. (5.5) and (5.6) yields

(−1, −1, . . . , −1, 0) · Ã =
(
−∑n−1

i=1 ãi,1, −
∑n−1

i=1 ãi,2, . . . , −
∑n−1

i=1 ãi,n−1, −
∑n−1

i=1 ãi,n

)

= (an,1, an,2, . . . , an,n−1, an,n) .

Hence, the last rows of P̃1Ã and A are also equal which proves the theorem.

The consequence of Theorem 5.1 is that, after applying deflation with r = 1, the invertible

matrix Ã becomes the original singular matrix A. Hence, we see that the perturbation

parameter σ disappears completely after deflation. This statement can even be made stronger:

the results using this deflation technique are independent of the elements of the last row of

matrix Ã. This is a nice result, since matrix Ã has been made invertible with the consequence

that the perturbation causes a worse condition number. The deflation technique remedies this

problem.

Now, intuitively it is clear that subdomain deflation with r ≥ 1 acting on A and Ã

leads to the same convergence results, since the constant deflation vector is in the span of

the subdomain deflation vectors. In the remaining of this chapter, we will prove this idea.

When it is definitely true, it is a favorable result since we can apply both the singular A and

invertible Ã in our deflation method leading to the same convergence results.

Example 5.1

To illustrate matrices A, Ã and P̃1, we now consider a simple example with

A =




1 −1 0

−1 2 −1

0 −1 1


 , Ã =




1 −1 0

−1 2 −1

0 −1 1(1 + σ)


 .
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These matrices satisfy the conditions of A and Ã as mentioned above. Therefore:

P̃1Ã =




1 0 0

0 1 0

−1 −1 0


 ·




1 −1 0

−1 2 −1

0 −1 1(1 + σ)


 =




1 −1 0

−1 2 −1

0 −1 1


 = A.

The spectra and effective condition numbers of the above matrices can be found in Table 5.1.

Eigenvalues A Ãσ=0.001 Ãσ=10 P̃1Ãσ=0.001 = P̃1Ãσ=10

λ1 0 5.0 ·10−4 0.5 0
λ2 2 2.0 3.4 2
λ3 4 4.0 22.1 4

κ, κeff 2 8006.0 41.0 2

Table 5.1: Eigenvalue Analysis of Example 1.

From this table, we see that the condition number of Ã can be much larger than the

effective condition number of A, which can be remedied by applying deflation with P̃1.

5.2 Auxiliary Results

In order to prove Theorem 5.1, we need a set of lemma’s which are stated below. The most

important lemma’s are Lemma 5.4 and Lemma 5.9 which show that deflation matrix P̃r is

invariant by right-multiplication with deflation matrix P̃1 and that deflated systems P̃rA and

PrA are identical.

Lemma 5.2. Let a symmetric and invertible n× n matrix C = [ci,j] have the property that

C · 1n = α · e(n)
n . (5.7)

Then the elements of the last row and last column of C−1 have the same values 1/α, i.e.,

c−1
n,j = c−1

i,n =
1

α
∀ i, j. (5.8)

Proof. From Eq. (5.7) we obtain

α · C−1 · e(n)
n = 1n,

since C is invertible. This leads to

c−1
n,1 · α = 1 → c−1

n,1 =
1

α
,
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for all i = 1, 2, . . . , n. Due to the symmetry of C, C−1 is also symmetric and Eq. (5.8)

holds.

Lemma 5.3. Let P̃r be the deflation matrix as defined in Chapter 2. Then the last column

of P̃r is always zero, i.e.,

P̃r =




× · · · × 0

× · · · × 0
...

...
...

× · · · × 0



. (5.9)

Proof. Due to Eq (2.7) and Assumption 2.2, it is easy to see that the rowsums of ÃZ̃ are all

equal to zero except for the last one which is σ · an,n, i.e.,

ÃZ̃ · 1r = Ã · 1n = σan,n · e(n)
n (5.10)

and therefore Ẽ = Z̃T ÃZ̃ has the following property:

Z̃T ÃZ̃ · 1r = Z̃T · σan,n · e(n)
n

= σan,n · e(r)
r ,

(5.11)

since it is easy to see that Z̃T · e(n)
n = e

(r)
r .

Next, we show that the last column of Ẽ−1Z̃T contains the same elements, namely

1/(σan,n). The last column of Z̃T is e
(r)
r , so we only have to focus on the last column of

Ẽ−1. Since Eq. (5.11) holds and Ẽ is both symmetric and invertible, we can take C := Ẽ in

Lemma 5.2. Applying this lemma we obtain that this last column of Ẽ−1 is a constant vector

with element 1/(σan,n).

Hence, the last column of ÃZ̃Ẽ−1Z̃T is exactly e
(n)
n for all values of σ, since for all

i = 1, 2, . . . , n it yields

(ÃZ̃Ẽ−1Z̃T )i,n =
∑r

p=1(ÃZ̃)i,p(Ẽ
−1Z̃T )p,n =

1

σan,n

∑r
p=1(ÃZ̃)i,p

=
1

σan,n
ÃZ̃1r =

1

σan,n
σan,ne

(n)
n = e

(n)
n ,

where we have again applied Eq. (5.10). Therefore, the last column of P̃r = I − ÃZ̃Ẽ−1Z̃T

is the zero-vector 0n.

Lemma 5.4. Let Pr, P̃r and P̃1 be matrices as defined in Chapter 2. Then the following

equation holds:

P̃rP̃1 = P̃r. (5.12)
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Proof. In the proof of Lemma 5.1, see Eq. (5.3), we have already derived

Ã · 1n = γ · e(n)
n,n, γ ∈ R.

From Lemma 5.3 we have the result that the last column of P̃r is 0n. This implies that

P̃rÃ · 1n = 0n,

for all values of parameter σ and γ. Using this fact, we obtain immediately

P̃rP̃1 = P̃r(I − αÃ1n) = P̃r − αP̃rÃ1n = P̃r.

Next, we know that Z̃0 = [z1 z2 · · · zr−1 z0] ∈ Rn×r. Define now Y as follows:

Ỹ = [zr+1 zr+2 · · · zn−1 zn] ∈ Rn×(n−r), (5.13)

where zr+1, . . . , zn are still undefined.

We can employ the theory in terms of Hilbert spaces and subspaces as given in Defini-

tion 3.1 of Chapter 3, by considering the column space of these matrices, so we take

Z = Col Z̃0, Y = Col Ỹ . (5.14)

Subsequently, assume that matrix Ã is SPD, so Ã = ÃT and xT Ãx > 0 for all vectors

x 6= 0 hold. Consider now the Ã−inner product

〈z, y〉 eA = zT Ãy. (5.15)

In this case, it can be easily seen that this Ã−inner product is indeed an inner product, since

it satisfies the four conditions:

(i) 〈z, y〉 eA = zT Ãy = (zT Ãy)T = yT ÃT z = yT Ãz = 〈y, z〉 eA;

(ii) 〈z, x+ y〉 eA = zT Ã(x+ y) = zT Ãx+ zT Ãy = 〈z, x〉 eA + 〈z, y〉 eA;

(iii) 〈cz, y〉 eA = czT Ãy = c 〈z, y〉 eA;

(iv) 〈z, z〉 eA = zT Ãz > 0 and 〈z, z〉 eA = zT Ãz = 0 if z = 0,

where c is a scalar and x, y, z are vectors of H = Rn. Hence, Eq. (3.1) holds in particular for

the Ã−inner product:

Col Y =
{
y ∈ Rn | 〈z, y〉 eA = 0 ∀z ∈ Col Z̃0

}
. (5.16)
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Now, we can choose the vectors zr+1, . . . , zn such that Y is the orthogonal complement of

Z in the Ã−inner product. Then the next lemma follows immediately.

Lemma 5.5. Let Ã and Z̃0 be as defined in Chapter 2. Then there exists a matrix Ỹ :=

[zr+1 zr+2 · · · zn] such that

• the columns of Ỹ and Z̃0 are mutually linear independent, i.e., matrix X := [Ỹ Z̃0] is

invertible;

• the following identity holds:

Z̃T0 ÃỸ = 0r,n−r. (5.17)

Proof. Due to Theorem 3.1, we know that a matrix Ỹ can be found such that

Col H = Col Ỹ ⊕ Col Z̃0, (5.18)

where Col Ỹ is an orthogonal complement of Col Z̃0. Then, by definition of the direct sum,

X :=
[
Ỹ Z̃0

]
(5.19)

is a square matrix consisting of linear independent columns. Therefore, X is invertible.

Due to Eq. (5.16), we also know that

Col Ỹ =
{
y ∈ Rn | 〈w, y〉 eA = 0 ∀w ∈ Col Z̃0

}
. (5.20)

In particular, for each w ∈ Z̃0 and for each y ∈ Ỹ we have

〈w, y〉 eA = wT Ãy = 0. (5.21)

Hence,

Z̃T0 ÃỸ = 0r,n−r. (5.22)

The latter lemma can also be proven without applying the theory of the functional analysis,

see therefore Appendix A.

Lemma 5.6. Let Ã, Pr, Q̃r and z0 be as defined in Chapter 2. Then,

[
Pr − Q̃r − e(n)

n · zT0
]
· Ã · z0 = 0n. (5.23)

Proof. Expression

ZT Ãz0 = 0n (5.24)
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holds, since Ãz0 = Ã1n = σan,n · e(n)
n and the last row of Z consists of zeros. Note further

that Ẽ−1
0 Z̃T0 ÃZ̃0 = I, so in particular

Ẽ−1
0 Z̃T0 Ãz0 = e(n)

n ,

resulting in

Z̃0Ẽ
−1
0 Z̃T0 Ãz0 = Z̃0 · e(n)

n = z0. (5.25)

Applying Eqs. (5.24) and (5.25) and Corollary 2.2, we obtain

[
ÃZ̃0Ẽ

−1
0 Z̃T0 −AZE−1ZT

]
· Ãz0 = ÃZ̃0Ẽ

−1
0 Z̃T0 · Ãz0

= Ãz0 = σan,n · e(n)
n .

(5.26)

Note further that e
(n)
n · 1Tn = e

(n)
n,n and e

(n)
n,ne

(n)
n = e

(n)
n . With the help of these equalities, we

can derive

e(n)
n · 1Tn · Ãz0 = σan,n · e(n)

n,n · e(n)
n = σan,n · e(n)

n . (5.27)

Finally, equalizing Eqs. (5.26) and (5.27) results in

[
Pr − Q̃r − e(n)

n · zT0
]
· Ã · z0 = 0n,

which completes the proof.

Lemma 5.7. Let Ã, Z, Pr and Q̃r be as defined in Chapter 2. Then,

(
Pr − Q̃r

)
· Ã · Z = 0n,r−1. (5.28)

Proof. Note first that

E−1ZTAZ = Ẽ−1Z̃T0 ÃZ̃0 = I.

Since zj is a column of both Z and Z̃0 for all j = 1, 2, . . . , r − 1, this yields

E−1ZTAzi = Ẽ−1Z̃T0 Ãzi = e(i)
r ,

so the only non-zero element of this vector is located at the i-th position. Hence,

Z ·E−1ZTAzi = Z · e(i)
r = zi

and

Z̃0 · Ẽ−1Z̃T0 Ãzi = Z̃0 · e(i)
r = zi, i 6= n.
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Next, we consider each column zi of Z separately. Note that

Ãzi = Azi, ∀ i = 1, 2, . . . , r − 1,

since each last element of zi is zero. Then,

(
Pr − Q̃r

)
· Ã · zi =

(
ÃZ̃0Ẽ

−1
0 Z̃T0 −AZE−1ZT

)
· Ãzi,

= ÃZ̃0Ẽ
−1
0 Z̃T0 Ãzi −AZE−1ZT Ãzi

= ÃZ̃0Ẽ
−1
0 Z̃T0 Ãzi −AZE−1ZTAzi

= Ãzi −Azi
= 0n,

for all i = 1, 2, . . . , r − 1. Thus, each column of Eq. (5.28) is the zero-vector 0n and the

lemma has been proved.

Lemma 5.8. Let Pr and P̃r be matrices as defined above. Then each row of Pr− P̃r contains

the same elements, i.e., there exist some parameters βi ∈ R, i = 1, 2, . . . , n, such that

Pr − P̃r = (β1, β2, · · · , βn)T · 1Tn (5.29)

is satisfied.

Proof. Define Q̃r as in Chapter 2. Then from Lemma 3.4, we obtain immediately

Q̃r = P̃r.

Therefore, we are allowed to replace P̃r by Q̃r in this lemma. Now, it suffices to show that

[
Pr − Q̃r − (β1, β2, · · · , βn)T · 1Tn

]
· C = 0n,n, (5.30)

where C is an arbitrary invertible matrix. Obviously, after multiplication of the latter ex-

pression with C−1, we would exactly obtain Eq. (5.29).

The proof is as follows. First take

C = Ã ·
[
Z̃0 Ỹ

]
,

where Ỹ = [zr+1 zr+2 · · · zn] with the following two properties:

• the set z1, z2, . . . , zr−1, z0, zr+1, . . . , zn is linear independent;

• the equation Z̃T0 ÃỸ = 0r,n−r holds.

Using Lemma 5.5, matrix Ỹ with these properties can always be constructed. As a conse-
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quence of Z̃T0 ÃỸ = 0r,n−r, we obtain in particular

zT0 ÃỸ = 0Tn−r. (5.31)

Next, observe that

Ã · [z1 z2 · · · zr−1] = A · [z1 z2 · · · zr−1],

since the last element of the vectors zi, i = 1, 2, . . . , r−1 is zero and all columns of A and Ã are

identical except for the last column. Then, the last element of zi is zero for all i = 1, 2, . . . , n

except for i = r, because

• by construction the last element of the vectors zi, i = 1, 2, . . . , r − 1, are zero;

• Equality Ãz0 = σan,n ·e(n)
n holds due to Corollary (2.2). Combining this with Eq. (5.31)

results in zeros for the last element of zi where i = r + 1, r + 2, . . . , n. More detailed,

zT0 ÃỸ can only be zero if the last row of Ỹ is zero, since only the last element of zT0 Ã

is non-zero.

Therefore, we obtain immediately

Ãzi = Azi, ∀ i = 1, 2, . . . , n, i 6= r. (5.32)

Next, define C0 := Ã · z0, C1 := Ã · Z and C2 := Ã · Ỹ . Then we have C = [C0 C1 C2].

To prove Eq. (5.30), we distinguish two cases which will be shown seperately.

• Case 1:
[
Pr − Q̃r − (β1, β2, · · · , βn)T · 1Tn

]
· C0 = 0n.

• Case 2:
[
Pr − Q̃r − (β1, β2, · · · , βn)T · 1Tn

]
· [C1 C2] = 0n,n−1.

Case 1. The proof is given in Lemma 5.6 by taking

β1 = 1, β2 = β3 = . . . = βn = 0.

Case 2. The proof of Case 2 consists of three steps, where all βi can be arbitrarily chosen.

• Using Assumption 2.2, Eqs. (5.31) and (5.32) this gives

zT0 ÃZ = 0Tr , zT0 ÃỸ = 0Tn−r, (5.33)

or equivalently,

1Tn · C1 = 0Tr , 1Tn · C2 = 0Tn−r. (5.34)

Hence this yields [
[β1 β2 · · · βn]T · 1Tn

]
· [C1 C2] = 0n,n.
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• The equality
[
Pr − Q̃r

]
· C1 = 0n,r−1 holds, using Lemma 5.7 and noting that Z =

Ã−1C1.

• By construction of Ỹ , the identity Z̃T0 Ãzj = 0r holds for all j = r + 1, r + 2, . . . , n.

Therefore, also ZT Ãzj = 0r−1 holds, since Z ∈ Z̃. As a result, we have

[
ÃZ̃0Ẽ

−1
0 Z̃T0 −AZE−1ZT

]
· Ãzj = 0n, j = r + 1, r + 2, . . . , n,

and hence, [
Pr − Q̃r

]
· C2 = 0n,n−r.

Thus, combining Cases 1 and 2, the following equation is satisfied:

[
Pr − Q̃r − (β1, β2, · · · , βn)T · 1Tn

]
· C = 0n,n,

with β1 = 1, β2 = β3 = . . . = βn = 0 and thereby the proof of the lemma has been

completed.

Lemma 5.9. Let Pr, P̃r and A be as defined as in Chapter 2. Then,

P̃rA = PrA. (5.35)

Proof. In Lemma 5.8, it has been shown that each row i of B = [bi,j ] := (P̃r − Pr) has the

same elements, i.e.,

B = (β1, β2, · · · , βn)T · 1Tn , βi ∈ R, i = 1, 2, . . . , n.

Then BA = (P̃r−Pr)A = 0n,n will hold, since each columnsum of A is zero from Assumption

2.2, i.e.,

(BA)i,j =

n∑

p=1

bi,pap,j = βi

n∑

p=1

ap,j = βi · 0 = 0.

5.3 Comparison of P̃rÃ and PrA

After giving the lemma’s and their proofs in the previous section, the main theorem and its

proof will be presented in this section. Theorem 5.2 shows that the deflated singular system

based on A is equal to the deflated variant of the invertible system Ã. This is a rather

unexpected result, since Z consists of one vector less compared to Z̃.
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Theorem 5.2. Let Pr, P̃r, A and Ã be matrices as defined in Chapter 2. Then,

P̃rÃ = PrA, (5.36)

for all σ > 0 and r ≥ 1.

Proof. By applying Theorem 5.1, Lemma 5.4 and Lemma 5.9, we obtain the following three

equalities:

P̃1Ã = A, P̃rP̃1 = P̃r, P̃rA = PrA, (5.37)

which hold for all σ > 0 and r ≥ 1. Hence,

P̃rÃ = P̃rP̃1Ã = P̃rA = PrA.

We illustrate Theorem 5.2 and its corresponding lemma’s in Example 5.2.

Example 5.2

Let

A =




1 −1

−1 2 −1

−1 2 −1

−1 1



, Ã =




1 −1

−1 2 −1

−1 2 −1

−1 1(1 + σ)



.

Obviously, A is SPSD and A · 1n = 0n holds, whereas Ã is SPD and A · 1n = σ · e(n)
n holds.

Constructing Z and Z̃ with r = 2 leads to

Z =




1

1

0

0



, Z̃ =




1 0

1 0

0 1

0 1



.

Now we can derive some auxiliary matrices:

AZ =




0

1

−1

0



, ÃZ̃ =




0 0

1 −1

−1 1

0 σ



,

and

E = ZTAZ = 1, Ẽ = Z̃T ÃZ̃ =

[
1 −1

−1 1 + σ

]
,
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which result in

E−1 = 1, Ẽ−1 =
1

σ

[
1 + σ 1

1 1

]
.

In this case, we have

E−1ZT =
[

1 1 0 0
]
, Ẽ−1Z̃T =

1

σ

[
1 + σ 1 + σ 1 1

1 1 1 1

]
.

Moreover,

AZE−1ZT =




0 0 0 0

1 1 0 0

−1 −1 0 0

0 0 0 0



, ÃZ̃Ẽ−1Z̃T =

1

σ




0 0 0 0

−σ −σ 0 0

σ σ 0 0

σ σ σ σ




=




0 0 0 0

1 1 0 0

−1 −1 0 0

1 1 1 1



,

and hence,

P2 = I −AZE−1ZT =




1 0 0 0

−1 0 0 0

1 1 1 0

0 0 0 1



, P̃2 = I − ÃZ̃Ẽ−1Z̃T =




1 0 0 0

−1 0 0 0

1 1 1 0

−1 −1 −1 0



.

Note that parameter σ has completely disappeared from the latter expression. Now we can

derive the following:

P2A =




1 0 0 0

−1 0 0 0

1 1 1 0

0 0 0 1



·




1 −1

−1 2 −1

−1 2 −1

−1 1




=




1 −1 0 0

−1 1 0 0

0 0 1 −1

0 0 −1 1




and

P̃2Ã =




1 0 0 0

−1 0 0 0

1 1 1 0

−1 −1 −1 0



·




1 −1

−1 2 −1

−1 2 −1

−1 1(1 + σ)




=




1 −1 0 0

−1 1 0 0

0 0 1 −1

0 0 −1 1




= P2A.

Thus indeed: P2A = P̃2Ã (Theorem 5.2). Note further that P2A gives two decoupled Neu-

mann problems, but in general this does not hold for n > 4.
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Furthermore, we can also show that P̃2A = P2A (Lemma 5.4):

P̃2A =




1 0 0 0

−1 0 0 0

1 1 1 0

−1 −1 −1 0



·




1 −1

−1 2 −1

−1 2 −1

−1 1




=




1 −1 0 0

−1 1 0 0

0 0 1 −1

0 0 −1 1




= P2A.

Next, P̃2P̃1 = P̃2 (Lemma 5.9) can be verified:

P̃2P̃1 =




1 0 0 0

−1 0 0 0

1 1 1 0

−1 −1 −1 0



·




1

1

1

−1 −1 −1 0




=




1 0 0 0

−1 0 0 0

1 1 1 0

−1 −1 −1 0




= P̃2.

We end up with noting that P2P̃1 6= P2 and P̃2Ã 6= P2Ã.

5.4 Comparison of the Effective Condition Numbers of PA

and A

In Chapter 4 we have already proved for the invertible matrix Ã that (cf. Eq. (4.1))

κeff(P̃rÃ) < κ(Ã). (5.38)

In the next theorem, we will show that such a inequality can be derived for the singular

matrix A.

Theorem 5.3. Let A and Pr be as defined in Chapter 2. Let Z with rank r be arbitrary.

Then the following inequality holds:

κeff(PrA) ≤ κeff(A). (5.39)

Proof. From Theorems 5.1 and 5.2 we have

P̃rÃ = PrA, P̃1Ã = A.

This implies

κeff(P̃rÃ) = κeff(PrA), κeff(P̃1Ã) = κeff(A). (5.40)

From Corollary 3.6 we know

κeff(P̃rÃ) ≤ κeff(P̃1Ã). (5.41)
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Finally, combining Eqs. (5.40) and (5.41) gives

κeff(PrA) ≤ κeff(A).

The generalization of this theorem where a preconditioner is included in (5.39) can be found

in the next chapter.
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Chapter 6
Comparison of Preconditioned Deflated

Singular and Invertible Matrices

In the previous chapter we have shown that P̃rÃ = PrA holds. However, in general, the

preconditioned variant of this equality does not hold, i.e., M̃−1P̃rÃ 6= M−1PrA. Moreover,

we have seen in Chapter 3 that limσ→0 κ(Ã) = ∞, whereas obviously limσ→0 κeff(P̃rÃ) =

κeff(PrA). The question in this chapter is:

lim
σ→0

κeff(M̃−1P̃rÃ) = κeff(M−1PrA)? (6.1)

This is the same as showing that

lim
σ→0

κeff(M̃−1PrA) = κeff(M−1PrA) (6.2)

holds. We restrict ourselves to the standard diagonal and incomplete Cholesky (IC) precon-

ditioners in our proofs. These are denoted by D and MIC when they are based on A and

these are denoted by D̃ and M̃IC when they are based on Ã .

This chapter is organized as follows. Section 6.1 deals with the comparison of D−1A

and D̃−1A. In Section 6.2 the comparison of M−1
ICA and M̃−1

ICA is given. We generalize

these results and comparisons to D−1PrA and D̃−1PrA and also to M−1
IC PrA and M̃−1

IC PrA in

Section 6.3. In the last section, we end with a comparison of the (effective) condition numbers

of M−1PrA and M−1PrA for general preconditioner M .

6.1 Comparison of D−1A and D̃−1A

The diagonal preconditioners D and D̃ are defined as follows:

D := diag (A) , D̃ := diag
(
Ã
)
. (6.3)

41
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Note that both D and D̃ are SPD matrices. Next, we define the diagonal-preconditioned

systems

Q := D−1/2AD−1/2, Q̃ := D̃−1/2AD̃−1/2. (6.4)

Note that both systems are singular systems since A is singular, i.e., λ1(Q) = λ1(Q̃) = 0.

Now, in this section we compare Q and Q̃ and their spectra. For Krylov iterative methods

this is equivalent to comparing D−1A and D̃−1A, since the spectra in both cases are identical.

6.1.1 Perturbation Matrix E

Matrices D−1/2 and D̃−1/2 can be written out:

D−1/2 =




1√
a1,1

1√
a2,2

. . .
1√
an,n



, D̃−1/2 =




1√
a1,1

1√
a2,2

. . .
1√

(1+σ)·an,n



.

Then, D̃−1/2 = D−1/2R = RD−1/2 where R = diag
(

1, 1, . . . , 1, 1√
1+σ

)
. Next, RAR− A is

as follows:

RAR−A =




a1,1 · · · a1,n−1
a1,n√
1+σ

...
...

...

an−1,1 · · · an−1,n−1
an−1,n√

1+σ
an,1√
1+σ

· · · an,n−1√
1+σ

an,n
1+σ



−A

=




a1,n

(
1√

1+σ
− 1
)

∅
...

an−1,n

(
1√
1+σ
− 1
)

an,1

(
1√
1+σ
− 1
)
· · · an,n−1

(
1√

1+σ
− 1
)

an,n

(
1

1+σ − 1
)



.

Furthermore, perturbation matrix E is defined by E = [ei,j ] := Q̃−Q and can be worked out

in the following way:

E = Q̃−Q
= D̃−1/2AD̃−1/2 −D−1/2AD−1/2

= D−1/2(RAR−A)D−1/2.
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And hence,

E = D−1/2(RAR−A)D−1/2

=




a1,n√
a1,1an,n

(
1√
1+σ
− 1
)

∅
...

an−1,n√
an−1,n−1an,n

(
1√

1+σ
− 1
)

an,1√
an,na1,1

(
1√

1+σ
− 1
)
· · · an,n−1√

an,nan−1,n−1

(
1√

1+σ
− 1
) (

1
1+σ − 1

)




=




a1,n(1−
√

1+σ)√
a1,1an,n(1+σ)

∅
...

an−1,n(1−
√

1+σ)√
an−1,n−1an,n(1+σ)

an,1(1−√1+σ)√
a1,1an,n(1+σ)

· · · an,n−1(1−√1+σ)√
an−1,n−1an,n(1+σ)

−σ
1+σ




.

Observe that E is symmetric, so we obtain

E =




en,1

∅
...

en,n−1

en,1 · · · en,n−1 en,n



, (6.5)

where

en,n =
−σ

1 + σ
, en,j =

an,j
(
1−
√

1 + σ
)

√
aj,jan,n(1 + σ)

, j = 1, . . . , n− 1. (6.6)

This perturbation matrix E has the following properties:

• only the last row and column contain non-zero elements, more stronger: only m elements

(independent of the sizes of E) located in the last row and column are non-zero elements

where m is the number of diagonals in A;

• the last element of E is negative, while the other non-zero elements are all positive;

• if σ = 0 then we have E = 0 as expected;

• E is indefinite which can be derived in several ways, for instance with Theorem 3.2(ii)

by taking k = 1:

λ1(Q) + λ1(E) ≤ λ1(Q̃) ≤ λ1(Q) + λn(E) → λ1(E) ≤ 0 ≤ λn(E).
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Moreover, we can derive ||E||2F :

||E||2F = e2
n,n + 2

∑n−1
j=1 e

2
n,j

=

( −σ
1 + σ

)2

+ 2

(
1−
√

1 + σ√
an,n(1 + σ)

)2∑n−1
p=1

(
an,p√
ap,p

)2

,

where we have used the fact that E is symmetric. We work this latter expression out:

||E||2F =
σ2

(1 + σ)2
+

2(1 −
√

1 + σ)2

an,n(1 + σ)

n−1∑

p=1

a2
n,p

ap,p
. (6.7)

This can be simplified to

||E||2F =
σ2 + θ(1 + σ)(1−

√
1 + σ)2

(1 + σ)2
, (6.8)

with

θ =
2

an,n

n−1∑

p=1

a2
n,p

ap,p
. (6.9)

Note that, if A consists of m nonzero diagonals, then the sum in Eq. (6.9) consists of m

terms.

Moreover, note that

σ2

(1 + σ)2
= O(σ2),

(1−
√

1 + σ)2

(1 + σ)
= O(σ2), σ → 0,

which can be easily derived with Taylor expansions. Therefore, Eq. (6.8) can be rewritten

into

||E||2F = O(σ2) + θ · O(σ2) = (1 + θ) · O(σ2).

Example 6.1

We consider the singular matrix A derived from the 3-D Poisson equation with Neumann

boundary conditions as described in Chapter 1. Furthermore, it is assumed that there is only

one fluid in the neighbourhood of the last grid point. Then,

• A and Ã consist of 7 non-zero diagonals;

• the non-diagonal elements of the last row are all the same. Let α := an,n, then for all

nonzero an,j we have an,j = −α/3.
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In this case, simple analysis can be done for θ to estimate the order of this parameter. We

get

θ =
2

an,n

n−1∑

p=1

a2
1,p

ap,p
=

2

α

n−1∑

p=1

(α/3)2

α
=

6(α/3)2

α2
=

2

3
.

Hence, parameter θ is of O(1) and we obtain

||E||2F = O(σ2).

6.1.2 Eigenvalue analysis of Q and Q̃

To deal with the spectra of Q and Q̃, we apply Theorem 3.2(i) which gives

n∑

i=1

[
λi(Q̃)− λi(Q)

]2
≤ ||E||2F =

σ2 + θ(1 + σ)(1−
√

1 + σ)2

(1 + σ)2
. (6.10)

Observe that the RHS of Eq. (6.10) does not depend on n. Moreover, due to this expression

and the fact that (λi(Q̃) − λi(Q))2 ≥ 0, we have that λi(Q̃) → λi(Q) for σ → 0 which holds

for all i. In other words, for sufficiently small σ, the eigenvalues of Q and Q̃ resemble each

other very well, since the RHS of (6.10) approaches zero, see also Table 6.1.

σ ||E||2F
1 2.5 · 10−1 + 8.6 · 10−2 θ
10−3 1.0 · 10−6 + 2.5 · 10−7 θ
10−6 1.0 · 10−12 + 2.5 · 10−13 θ

Table 6.1: Value of ||E||2F for several choices of σ.

In the next section we investigate the condition numbers of Q and Q̃ to complete the

whole spectral analysis.

6.1.3 Condition Numbers of Q and Q̃

In Theorem 6.1 we prove that the condition numbers of Q and Q̃ are more or less the same

if σ is sufficiently small.

Theorem 6.1. Let Q and Q̃ as defined above. Then,

lim
σ→0

κeff(Q̃) = κeff(Q). (6.11)

Proof. The proof consists of four parts.

• Application of Theorem 3.2. Applying Theorem 3.2(ii) to Q and Q̃ leads to

λk(Q) + λ1(E) ≤ λk(Q̃) ≤ λk(Q) + λn(E), k = 1, 2, . . . , n.
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In particular we have

λ2(Q) + λ1(E) ≤ λ2(Q̃) ≤ λ2(Q) + λn(E)

and

λn(Q) + λ1(E) ≤ λn(Q̃) ≤ λn(Q) + λn(E)

resulting in

λn(Q) + λ1(E)

λ2(Q) + λn(E)
≤ κeff(Q̃) =

λn(Q̃)

λ2(Q̃)
≤ λn(Q) + λn(E)

λ2(Q) + λ1(E)
. (6.12)

• Proof of κeff(Q̃) ≤ κeff(Q). First we give bounds for λ1(E) and λn(E). Note first that

en,n −
n−1∑

p=1

en,p < −en,j, ∀ j = 1, . . . , n,

using Eqs. (6.5) and (6.6). Now, we apply the theorem of Gershgorin (see Theorem 3.3)

which leads to

en,n −
n−1∑

p=1

en,p ≤ λ1(E)

and

λn(E) ≤ max



en,n +

n−1∑

p=1

en,p , en,n , en,n−1 , . . . , en,1



 .

This gives

λn(Q) + λn(E)

λ2(Q) + λ1(E)
≤
λn(Q) + max

{
en,n +

∑n−1
p=1 en,p , en,n , en,n−1 , . . . , en,1

}

λ2(Q) + en,n −
∑n−1

p=1 en,p
.

Obviously, if σ → 0, then

λn(Q) + max
{
en,n +

∑n−1
p=1 en,p , en,n , en,n−1 , . . . , en,1

}

λ2(Q) + en,n −
∑n−1

p=1 en,p
→ λn(Q)

λ2(Q)
,

since each term of E approaches zero for small σ. Hence, for the RHS inequality of

Eq. (6.12) this implies

lim
σ→0

κeff(Q̃) = lim
σ→0

λn(Q̃)

λ2(Q̃)
≤ lim

σ→0

λn(Q) + λn(E)

λ2(Q) + λ1(E)
=
λn(Q)

λ2(Q)
= κeff(Q). (6.13)

• Proof of κeff(Q̃) ≥ κeff(Q). We can repeat the whole procedure as given in the above
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proof of κeff(Q̃) ≤ κeff(Q). This yields

λn(Q) + en,n −
∑n−1

p=1 en,p

λ2(Q) + max
{
en,n +

∑n−1
p=1 en,p , en,n , en,n−1 , . . . , en,1

} ≤ λn(Q) + λn(E)

λ2(Q) + λ1(E)
.

Obviously, if σ → 0, then

λn(Q) + max
{
en,n +

∑n−1
p=1 en,p , en,n , en,n−1 , . . . , en,1

}

λ2(Q) + en,n −
∑n−1

p=1 en,p
→ λn(Q)

λ2(Q)
.

Therefore, for the left inequality of Eq. (6.12) we get

lim
σ→0

λn(Q) + λn(E)

λ2(Q) + λ1(E)
=
λn(Q)

λ2(Q)
= κeff(Q) ≤ lim

σ→0
κeff(Q̃) = lim

σ→0

λn(Q̃)

λ2(Q̃)
. (6.14)

• Proof of κeff(Q̃) = κeff(Q). By combining Eqs. (6.13) and (6.14), we obtain finally

lim
σ→0

κeff(Q̃) = κeff(Q).

6.2 Comparison of M−1
ICA and M̃−1

ICA

In the previous section, we have based the analysis on D−1A and D̃−1A. In this section, we

consider M−1
ICA and M̃−1

ICA. For the sake of simplicity we omit the underscript ‘IC’ through

this section, so the IC-preconditioners are denoted by M = [mi,j] and M̃ = [m̃i,j]. Below, we

will show that

lim
σ→0

κeff(M̃−1A) = κeff(M−1A) (6.15)

hold.

6.2.1 Connection between M and M̃

The algorithm of computing the IC-preconditioner can be found in for instance Section 10.3.2

of Golub and Van Loan [2] and for completeness this algorithm is also given below.

The lower triangular part of the resulting matrix A is L and the IC-preconditioner is formed

by M = LLT . Analogously, M̃ = L̃L̃T can be formed from Ã.

Obviously, the IC-preconditioners of A and Ã are the same except the last element, since
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Algorithm 1 Construction of the IC-preconditioner for Matrix A

1: Given matrix A = [ai,j]
2: for k = 1, . . . , n do
3: ak,k :=

√
ak,k

4: for i = k + 1, . . . , n do
5: if ai,k 6= 0 then
6: ai,k = ai,k/ak,k
7: end if
8: end for
9: for j = k + 1, . . . , n do

10: for i = j, . . . , n do
11: if ai,j 6= 0 then
12: ai,j = ai,j − ai,k/aj,k
13: end if
14: end for
15: end for
16: end for

L and L̃ differ only in the last element. In other words:

M̃ −M =




∅

β



, β ∈ R. (6.16)

Note that, since mn,n = an,n and m̃n,n = ãn,n hold by definition of the IC-preconditioner and

β = m̃n,n −mn,n = ãn,n − an,n = σan,n, (6.17)

we obtain immediately

lim
σ→0

β = lim
σ→0

σan,n = 0. (6.18)

6.2.2 Condition Numbers of M−1A and M̃−1A

Below it will be proved that the effective condition numbers of M−1A and M̃−1A are the

same if the perturbation σ is asymptotically zero, i.e., if σ → 0, see Theorem 6.2.

Theorem 6.2. Let A and Ã be matrices as defined in Chapter 2. Let M−1 and M̃−1 be their

corresponding IC-preconditioners. Then

lim
σ→0

κeff(M̃−1A) = κeff(M−1A). (6.19)
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Proof. Note first that A is SPSD while both M and M̃ are SPD matrices. Then,

λi(M
−1A) = λi(M

−1/2AM−1/2), λi(M̃
−1A) = λi(M̃

−1/2AM̃−1/2),

for all i = 1, 2, . . . , n. Therefore, the eigenvalues of both systems M−1A and M̃−1A are all

real-valued.

Now, the proof consists of three steps.

Step 1: Transforming Eigenproblems to Generalized Eigenproblems. We deal with the eigen-

problems

M−1Av = λv, M̃−1Aw = µw, (6.20)

which can be rewritten into

(A− λM)v = 0, (A− µM̃)w = 0, (6.21)

which are generalized eigenproblems, see also Chapter 3. Due to Eq. (6.16), the following

expression can be derived:

M +EM = M̃,

where

EM =




∅

−β



, β ∈ R

is a symmetric matrix. This gives

||EM ||2 = max { |λ1(EM )| , |λn(EM )| } = β.

Step 2: Satisfying Conditions of Theorem 3.4. Before we can apply Theorem 3.4, the corre-

sponding conditions have to be satisfied:

• Perturbation matrix EM is symmetric;

• The Crawford number c(A,M) does obviously not depend on σ. Obviously, there exists

a parameter σ0 > 0 such that for all σ < σ0 yields

β2 < c(A,M). (6.22)

Hence,

||EM ||22 < c(A,M).

Step 3: Application of Theorem 3.4. Theorem 3.4 can be applied since all conditions have
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been satisfied. Note first that limσ→0 β = 0 from Eq. (6.18). This implies

lim
σ→0

β

c(A,M)
=

1

c(A,M)
lim
σ→0

β = 0,

so also

lim
σ→0

arctan

(
β

c(A,M)

)
= 0. (6.23)

Now, the eigenvalues of (6.20) are related by Eq. (3.15) from Theorem 3.4, which is

| arctan (λi)− arctan (µi) | ≤ arctan

( ||EM ||2
c(A,M)

)
.

Therefore, applying Eq. (6.23), this implies

lim
σ→0

arctan (λi) = arctan (µi) ,

resulting in

lim
σ→0

λi = µi,

since the arctan-operator is bijective and continuous. Hence,

lim
σ→0

κeff(M̃−1A) = lim
σ→0

λn
λ2

=
µn
µ2

= κeff(M−1A). (6.24)

6.3 Generalization to Deflated Systems

In the previous sections we have shown

lim
σ→0

κeff(D̃−1A) = lim
σ→0

κeff(D−1A), lim
σ→0

κeff(M̃−1A) = κeff(M−1A). (6.25)

Moreover, we have already mentioned that both A and PrA are SPSD matrices, see also

Theorem 3.12. So in particular, we can subsitute PrA into A in Eq. (6.25), which implies

lim
σ→0

κeff(D̃−1PrA) = lim
σ→0

κeff(D−1PrA), lim
σ→0

κeff(M̃−1PrA) = κeff(M−1PrA). (6.26)

In other words, the theory given in the previous two sections still holds if we replace A by

PA in the whole analysis.
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6.4 Comparison of the (Effective) Condition Numbers of M−1PA

and M−1A

In Chapter 4 we have already proved for non-singular matrices that

κeff(M̃−1P̃ Ã) ≤ κ(M̃−1Ã).

In this section we show that

κeff(M−1PA) ≤ κ(M−1A), (6.27)

also hold for the singular matrix A, see the next theorem.

Theorem 6.3. Let A and P be matrices as defined in Chapter 2. Let M be the corresponding

IC-preconditioner of A. Then

κeff(M−1PA) ≤ κ(M−1A). (6.28)

Proof. Note first that M is invertible. With the identities P̃ Ã = PA and P̃1Ã = A we can

immediately derive

κeff(M−1P̃ Ã) = κeff(M−1PA), κeff(M−1P̃1Ã) = κeff(M−1A).

So, it suffices to prove the following inequality:

κeff(M−1P̃ Ã) ≤ κ(M−1P̃1Ã).

This latter inequality holds due to Theorem 2.12 of Nabben & Vuik [11], which is a general-

ization of Theorem 3.11.
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Chapter 7
Numerical Experiments

In this chapter we give the results of some numerical experiments which are done by us-

ing FORTRAN. These results will illustrate the theoretical results obtained in the previous

chapters.

7.1 Problem Setting

We consider the 3-D Poisson problem as given Eq. (1.2) with two fluids Λ0 and Λ1. Specifi-

cally, we consider two-phase bubbly flows with air and water in an unit domain. In this case,

ρ is piecewise constant with a relatively high contrast:

ρ =

{
ρ0 = 1, x ∈ Λ0,

ρ1 = 10−3, x ∈ Λ1,
(7.1)

where Λ0 is water, the main fluid of the flow around the air bubbles, and Λ1 is the region

inside the bubbles. In Figure 7.1 one can find a plot in the case of such a problem with m = 8

bubbles.

7.2 Results of ICCG and DICCG−k
Eight bubbles are chosen in the domain (i.e., m = 8) in all test cases. The resulting n × n
singular linear system Ax = b and also the resulting n×n invertible linear system Ãx = b are

ill-conditioned due to the presence of these bubbles. We apply ICCG and DICCG−k to solve

this linear system, where DICCG−k denotes DICCG with k deflation vectors. The relative

tolerance 1 of the iterative method is ε = 10−8. Moreover, the number of bubbles m and the

number of grid points n = nxnynz are taken constant. We vary the perturbation parameter σ

1In Appendix B one can find more details of the relative tolerance and the termination criterions of both
ICCG and DICCG.

53
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Figure 7.1: Geometry of an air-water problem with eight air bubbles in the domain.

and the number of deflation vectors k in our experiments. The results can be found in Table

7.1.

# ICCG Iterations

σ n = 323 n = 643

0 118 200

10−1 163 329
10−3 174 350

# DICCG−k Iterations

σ k n = 323 n = 643

10−1 1 118 200
10−1 23 57 106
10−1 43 57 106

10−3 1 118 200
10−3 23 57 106
10−3 43 57 106

Table 7.1: Number of iterations of ICCG and DICCG−k to solve the invertible linear system
Ãx = b with m = 23 bubbles.

The results of DICCG−k are completely independent of σ, as expected from the previous

chapters. Furthermore, if σ = 0 then the original singular problem has been solved. In this

case, we see that the required number of iterations for ICCG is equal to the number for

DICCG−1 when the problem with arbitrary σ > 0 is solved. This is in agreement with the

theoretical results found in Chapters 5 and 6.

Moreover, note that increasing the number of deflation vectors k leads to a non-decreasing

number of iterations for DICCG−k, which agrees again the theoretical results found in Chap-
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ters 5 and 6.
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Figure 7.2: Plot of the update residuals of both ICCG and DICCG for the test case with
n = 323, σ = 10−3 and k = m = 23.

In Figure 7.2 one can find a plot of the residuals of ICCG and DICCG−k for one test

case. From the figure we can see that ICCG shows an erratic convergence behavior, while

DICCG converges almost monotonically. Apparently, the approximations of the eigenvectors

corresponding to the small eigenvalue are very good. This is due to the fact that for k = 23

each bubble is in the interior of a subdomain corresponding to one of the 23 deflation vectors.

In this case, the deflation technique is very efficient, in spite of the relatively low number of

deflation vectors. This explains also the same results of DICCG−k for k = 23 and k = 43, as

can be seen in Table 7.1. It appears that if we take m = 33 instead of m = 23 bubbles, then

the results with k = 43 is much better than with k = 23 (see Table 7.2), since now none of

the bubbles is contained in one of the subdomains.

In Figure 7.3 one can find a plot of the residuals of ICCG and DICCG−k for one test

case. It can be observed that both plots are very erratic. Obviously, in this case the small

eigenvalues are worse approximated by the deflation technique compared by the case with

m = 23 bubbles (cf. Figure 7.2). The reason is not only the position of the bubbles with

respect to the subdomains, but also the increased number of bubbles is more difficult to treat

with a constant number of deflation vectors.

7.3 Results of DICCG−k for Singular Systems

In the above experiments, we have not yet tested DICCG−k in cases for singular linear

systems. That will be the subject of this section.

We define the deflation technique for singular systems as in Chapter 2. In this case,
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σ ICCG

0 160

10−1 234
10−3 254

σ k DICCG−k
10−1 1 160
10−1 23 134
10−1 43 64

10−3 1 160
10−3 23 134
10−3 43 64

Table 7.2: Number of iterations of ICCG and DICCG−k to solve the invertible linear system
Ãx = b with m = 33 bubbles and n = 323.
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Figure 7.3: Plot of the update residuals of both ICCG and DICCG for the test case with
n = 323, σ = 10−3, k = 23 and m = 33.

for instance DICCG−8 applies 7 instead of 8 deflation vectors. Note that DICCG−1 is not

defined in this case. Now, the results can be found in Table 7.3.

From Table 7.3 we observe immediately that these results are the same as the results

of the corresponding test cases with invertible matrices. Indeed, the two approaches of the

deflation technique for both the singular and invertible matrices are equivalent, as earlier seen

in Chapters 5 and 6.
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# Iterations of DICCG−k
k n = 323 n = 643

1 – –
23 57 106
43 57 106

Table 7.3: Number of iterations of DICCG−k to solve the singular linear system Ax = b.

7.4 Modified Matrix Ã

From Definition 2.1 we know that ãn,n = (1 + σ) · an,n. We can also choose other locations

on the main diagonal of A to perturb. In fact, we can take

ãi,i = (1 + σ) · ai,i, 1 ≤ i ≤ n, (7.2)

and leaving the other elements of A untouched. The resulting Ã is invertible and will be

denoted by Ã(i). The question is whether or not the above results will change for various

matrices Ã(i). Some results can be found in Table 7.4.

i DICCG−23 DICCG−43

1 57 57
15 57 57
n− 15 57 57
n− 1 57 57
n 57 57

Table 7.4: Number of iterations of DICCG−k to solve the invertible linear system Ã(i)x = b
for n = 322 and σ = 10−3.

Obviously, DICCG−k does not depend on the value of i. So, each diagonal element of A

can be chosen to perturb in order to obtain an invertible matrix.

Next, we take

ãn,n = (1 + σ) · an,n + γ, γ ≥ 0, (7.3)

and subsequently we do the same analysis as done above. The results can be found in

Table 7.5.

For γ < 10−4 the same results of DICCG−k can be observed, while for γ > 10−4 the

convergence of DICCG−k is slower. This confirms the theory of Chapter 6, since we have

seen that only for sufficiently small perturbations in an,n the eigenvalues of the systems

M̃−1P̃ Ã and M−1PA are more or less equal.
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γ DICCG−23 DICCG−43

0 57 57
100 57 57
102 57 57
104 58 58
106 73 73

Table 7.5: Number of iterations of DICCG−k to solve the invertible linear system Ãx = b for
n = 322 using ãn,n = (1 + σ) · an,n + γ.

7.5 Further Analysis

In this section, we investigate the deflation methods in more detail using numerical experi-

ments. First we consider more severe termination criteria and real residuals, thereafter we

investigate matrix Z and we end up with some alternative choices for the deflation vectors.

7.5.1 Termination Criteria and Real Residuals

We have seen that the deflation technique can be applied for both the singular and invertible

matrices which results in identical results. In this section, we investigate the real residuals

and we test the convergence for more severe termination criterions. The results can be found

in Table 7.6 where we use n = 323.

Invertible System Singular System

ε # Iterations Real Residual # Iterations Real Residual

10−8 57 3.4 · 10−4 57 3.4 · 10−4

10−12 87 4.2 · 10−8 87 4.1 · 10−8

10−14 102 1.4 · 10−8 102 1.0 · 10−8

Table 7.6: Number of iterations of DICCG−k to solve the singular and invertible linear
system.

For various ε, the results considering the number of iterations and the real residuals are

more or less identical in cases of both the singular and invertible matrices. Therefore, both

deflation methods have the same performance.

7.5.2 Modified Matrix Z

We have already mentioned that Z̃ = [Z zr], so in fact we have omitted the last column of

Z̃ to construct Z. Now, an idea is to omit other columns of Z̃ instead of the last column.

Therefore, we define Z (m) as follows:

Z(m) = [z1 · · · zm−1 zm+1 · · · zr], 1 < m < r − 1, (7.4)
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and for m = 1 and m = r − 1:

Z(1) = [z2 · · · zr], Z(r−1) = [z1 · · · zr−2 zr], (7.5)

Some results can be found below where we apply the same test case as above with n = 322, 642

and m = 5.

m DICCG−4 DICCG−16

n = 322 n = 642 n = 322 n = 642

1 45 116 61 127
r − 1 63 130 61 127

r 53 128 60 125

Table 7.7: Number of iterations of DICCG−k to solve the singular linear system Ax = b with
Z(m) instead of Z.

From the table we can observe that the convergence results depend on the value of m. The

original method (m = r) is the best one when the number of deflation vectors is sufficiently

large.

7.5.3 Alternative Choices for the Deflation Vectors

For the singular systems we have used matrix Z instead of Z̃, since Z̃TAZ̃ is singular while

ZTAZ is an invertible matrix. Now, the question is whether there are another choices for the

deflation vectors which are better than Z. We test the following subspace deflation matrices:

Zm := [Z vm], m ∈ N, (7.6)

where

vm = zr −
m∑

p=1

e(n−p+1)
n . (7.7)

In other words, Zm is identical to Z̃ except the last column whose last m elements are zero.

Some results can be found below where we apply the same test case as above with n = 323.

m DICCG−8 DICCG−64
(Original: 57 iter.) (Original: 57 iter.)

1 72 72
2 75 75
3 76 76

Table 7.8: Number of iterations of DICCG−k to solve the singular linear system Ax = b with
Zm instead of Z.

Obviously, the method with Zm is not better than the original deflation method using Z.
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It appears that the larger m the worse the convergence of the iterative process.



Chapter 8
Conclusions

In this report, we develop the theory of deflation and both singular and invertible SPSD

matrices. The main results are given below.

First, we have shown that the effective condition number of the deflated singular system is

always better than the effective condition number of the original singular system. This result

can also be generalized for preconditioned singular systems. These results are attractive for

Krylov iterative methods, since a more favorable (effective) condition number leads to faster

convergence of the solution.

Next, we have supposed the singular matrix coming from for instance the Poisson equa-

tion. This matrix can be made invertible by modifying the last element, while the solution of

the resulting linear system is still the same. Invertibility of the matrix gives several advan-

tages for the iterative solver. The drawback, however, is that the condition number becomes

worse compared to the effective condition number of the singular matrix. It appears that

this problem with a worse condition number has completely been remedied by applying the

deflation technique with just one deflation vector.

Moreover, the deflated singular and invertible matrices have been related to each other.

For special choices of the deflation vectors, these matrices are even identical. Also these results

can be generalized for the preconditioned singular and invertible matrices. This means that

two variants of deflated and preconditioned linear systems can be solved resulting in the same

convergence results.

Results of numerical experiments confirm the theoretical results and show the good per-

formance of the deflation technique.
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Appendix A
Proofs of two Lemma’s

In this appendix we proof first some elementary observations (Lemma A.1). Thereafter, we

show that there exists a matrix Y such that [Y Z̃0] is invertible and Z̃T0 ÃY = 0r,n−r holds

(Lemma A.2).

Lemma A.1. Let Ã, Z̃0 and Z̃ be matrices as in Chapter 2. Let Y ∈ Rn×(n−r) be a matrix

such that (ÃZ̃)TY = 0r,n−r and define X := [Y Z̃]. Then,

(i) ÃZ̃ has rank r;

(ii) identical pivot positions of Z̃ and ÃZ̃ can be chosen;

(iii) there exists an Y such that X is full-ranked, i.e., ∃ Y : rank X = n.

(iv) after replacing Z̃ by Z̃0 in all above expressions in this lemma, the properties (i)–(iii)

still hold.

Proof. (i) An elementary observation since rank Ã = n and rank Z̃ = r , see e.g. p. 13 of

Horn & Johnson [3].

(ii) Denote the position corresponding to the last non-zero element of a column of Z̃ by (p, q)

(i.e., row p and column q). Obviously, pivot position (p, q) can always be chosen as pivot

position since it is a non-zero element. Below we prove that the position (p, q) of ÃZ̃ can also

be chosen as pivot position by showing that this element is always a non-zero element.

The proof is as follows. Let z̃p,q the last non-zero element of Z̃ in column q 6= n. Then,

(ÃZ̃)p,q =

n∑

i=1

ãp,i · z̃i,q =

p∑

i=1

ãp,i · z̃i,q = ãp,1 · z̃1,q + . . .+ ãp,p · z̃p,q. (A.1)

Since the main diagonal elements of Ã are non-zero, we have that

ãp,p · z̃p,q 6= 0.
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Due to Corollary 2.2, this means that (ÃZ̃)p,q = 0 only holds if all non-zero elements of Ã in

row p > 1 contributes to the sum from Eq. (A.1). However, for all rows p < n, we know that

there exists a k ≥ 1 such that ap,p−k 6= 0. Since this element does not contribute to the sum

from Eq. (A.1) because z̃p−k,q = 0 for all k ≥ 1, this results in

(ÃZ̃)p,q =

p∑

i=1

ãp,i · z̃i,q = ãp,1 · z̃1,q + . . .+ ãp,p · z̃p,q > 0, ∀ p > 1.

Furthermore, we know that the sum of the last row of Ã is σ · an,n 6= 0. Hence, for position

(p, q) = (n, n) it yields

(ÃZ̃)n,n 6= 0,

where we also assume that the value of the diagonal elements has different sign compared to

the other elements.

Thus, pivot position (p, q) of Z̃ is a non-zero position of ÃZ̃ and therefore it can also be

chosen as a pivot position of ÃZ̃, since Z̃ and ÃZ̃ have the same dimensions and rank ÃZ̃ =

rank Z̃ = r.

(iii) Note first that Z̃ and ÃZ̃ have both rank r. From Property (ii) we already know that

the same pivot positions of Z̃ and ÃZ̃ can be chosen. Since span
{
ÃZ̃
}
⊥ span {Y }, Y is an

orthogonal complement of ÃZ̃, which can be chosen such that Y has pivot positions different

of the common pivot positions of Z by definition of orthogonal complements, see also pp.

16–17 of Horn & Johnson [3]. Due to Property (ii), these pivot positions of Y differ also from

AZ. Then, matrix Y is linear independent of both span
{
Z̃
}

and span
{
ÃZ̃
}

, although Y is

no orthogonal complement of span
{
Z̃
}

in general. As a consequence, both matrices [Y ÃZ̃]

and [Y Z̃] are full-ranked and hence rank X = n is achieved.

(iv) Since Z̃0 and Z̃ only differs in the last column and z0 ⊂ span {z1, z2, . . . , zr} for all

r > 1, the proof is analogous to the proofs of above.

Lemma A.2. Let Ã and Z̃0 be defined as in the previous lemma. Then there exists a matrix

Y := [zr+1 zr+2 · · · zn] such that

• the columns of Y and Z̃0 are mutually linear independent, i.e., matrix X := [Y Z̃0] is

invertible;

• the following identity holds:

Z̃T0 ÃY = 0r,(n−r). (A.2)

Proof. Note first that Z̃0 has rank r since the columns of Z̃0 are linear independent by

construction.
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We start the proof with a simple case when Z̃0 is an Ã−invariant subspace and thereafter

we prove the lemma when Z̃0 is derived from subdomain deflation as in Section 2.

• Z̃0 is Ã−invariant (ÃZ̃0 ⊆ Z̃0). By definition, Z̃0 is an Ã−invariant subspace if for

all z ∈ Z̃0 we have Ãz ∈ Z̃0, which will be denoted by ÃZ̃0 ⊆ Z̃0. For instance Z̃0 is

Ã−invariant when it consists of eigenvectors of Ã.

Since Ã has full rank and Z̃0 has rank r, we may choose the remaining space Y in the

orthogonal complement of span
{
Z̃0

}
, i.e., Y TZ = 0n−r,r. As a consequence,

Y T ÃZ̃0 ⊆ Y T Z̃0 = 0n−r,r.

By taking the transpose of the latter expression, we have

Z̃T0 ÃY = 0r,n−r.

• Z̃0 is from subdomain deflation (ÃZ̃0 * Z̃0). Because now matrix Z̃0 is from subdomain

deflation, Z̃0 is definitely not Ã−invariant, just ‘nearly Ã−invariant’.

Note first that if Z̃T0 ÃY =
(
ÃZ̃0

)T
Y = 0n−r,r, then in fact each column of ÃZ̃0

is orthogonal to any column of Y , i.e., wT ÃY = 0Tr . By definition of orthogonal

complement such a Y can always be constructed and it is not unique in general. We

show that for some choices of Y this leads to an invertible X.

Since Ã has full rank and Z̃0 has rank r, ÃZ̃0 has again rank r from Lemma A.1(i).

Denote the columns of ÃZ̃0 by [w1 w2 · · · wr]. Applying Lemma A.1(iii)–(iv), we may

choose the remaining space Y in the orthogonal complement of span{w1, w2, · · · , wr}
such that

rank
[
Y Z̃0

]
= rank

[
Y ÃZ̃0

]
= n. (A.3)

Then X is invertible and the lemma has been proved.

Remark. Note that the conditions of both Ã and Z̃0 have to be satisfied in Lemma A.2 to

apply this lemma. Take for instance the following matrix:

Ã =

[
0 1

1 0

]
.

Obviously, A is SPD and invertible. Next, if Z̃0 = (1, 0)T , then ÃZ̃0 = (0, 1)T . To satisfy

Z̃0ÃY = 0r,n−r, we have to choose Y = (1, 0)T . However, in this case the identity Z̃0 = Y

has been derived resulting in a singular matrix [Y Z̃0]. Apparently, Lemma A.2 does not
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hold in this example. Clearly, the conditions for Ã and Z̃0 (as described in Lemma A.2) are

required to apply the lemma.



Appendix B
Termination criterions of ICCG and DICCG

In the original ICCG we solve the system

M−1Axk = M−1b (B.1)

in each iterate k, whereM is the preconditioner. It is common to use the following termination

criterion in the iterative process:

||M−1(b−Axk)||
||M−1b|| < ε, (B.2)

where we assume that we start with the zero starting vector, i.e., x0 = 0n. Note that the

LHS of (B.2) is called the relative tolerance of the method.

On the other hand, in DICCG we solve the singular system

M−1PAx̃k = M−1Pb, (B.3)

where x̃k is the non-unique solution in each iterate k. The unique solution can be made using

xk = ZE−1ZT b+ P T x̃k. (B.4)

However, extra cost is required in order to compute (B.4) and form xk in each iterate k,

whereas we would like to choose the same termination criterion as in ICCG for a comparison

between ICCG and DICCG in our numerical experiments. Fortunately, it is easy to show

that (B.2) is equivalent to
||M−1P (b−Ax̃k)||

||M−1b|| < ε, (B.5)

due to Theorem B.1. Hence the computation (B.4) can be avoided in the DICCG-iterates.

Note that the LHS of (B.5) is the relative tolerance of the method and differs from the relative
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tolerance of ICCG as showed in (B.2).

Theorem B.1. Assume that A,M,P, b are defined as above. Let xk and x̃k the solutions in

iterate k of the ICCG and DICCG method, respectively. Then we have the identity

||M−1(b−Axk)||
||M−1b|| =

||M−1P (b−Ax̃k)||
||M−1b|| . (B.6)

Proof. It suffices to show that

b−Axk = P (b−Ax̃k). (B.7)

Using Exp. (B.4) we have

b−Axk = b−A(ZE−1ZT b+ P T x̃k) = (I −AZE−1ZT )b−AP T x̃k

and hence,

b−Axk = Pb−AP T x̃k. (B.8)

Note that AP T = PA since

AP T = A−AZE−1ZTA = PA. (B.9)

Combining Eqn. (B.8) and (B.9) it yields

b−Axk = P (b−Ax̃k).

which is exactly (B.7).


