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The role of sound propagation in concentrated colloidal suspensions
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In a suspension, the hydrodynamic interactions between particles can propagate by two
mechanisms: relatively slowly, by the diffusion of transverse momentum, or relatively rapidly, by
the propagation of sound waves. Here we describe computer simulation results for the collective and
single particle dynamics of colloidal particles with the aim of clarifying the role of sound. We find
that for single particle motion the effect is rather trivial. As for an isolated particle, compressibility
modifies the decay of velocity fluctuations only at very short times. For collective correlations this
is not true. Our results show that the multiple scattering of sound waves between particles can
induce correlated collective motions on time scales comparable with the diffusion of transverse
momentum. The effects of compressibility are no longer restricted to very short times and manifest
themselves as rapid oscillations in the time dependence of the collective diffusion coefficient. We
suggest that these oscillations can largely be explained in terms of ‘‘effective’’ incompressible
hydrodynamic theory, the suspension bulk viscosity, kinematic viscosity, and speed of sound
becoming the relevant parameters. The oscillations are furthermore centered on the~hypothetical!
incompressible result. Thus, while the effects of sound propagation may extend to surprisingly long
times, thenet effect remains limited to very short times. We discuss where these sound-induced
oscillations will be relevant experimentally. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1454995#
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I. INTRODUCTION

A colloidal system consists of particles that are atom
cally large~the colloidal particles! dispersed in a solvent to
form a liquid-like dispersion. In concentrated suspensio
there are interactions between the colloidal particles t
relative to the dilute case, modify the dynamics. These ‘‘h
drodynamic’’ interactions are caused by colloidal partic
influencing one another by momentum transfer through
fluid occupying the space between them. This transpor
momentum can take place by two mechanisms that gene
operate on very different time scales. The first is the dif
sion of transverse momentum. The second is the propaga
of a sound wave longitudinal to the direction of motion.

Theoretical approaches developed thus far1,2 only take
the first, diffusive, mechanism into account. Nonethele
there are cases where the second, sonic, mechanism has
shown to be relevant.3,4 The suggestion can also been ma
that sound propagation may explain apparent discrepan
between computer simulations results and experiments
probe the time dependence of the hydrodynamic interact
in concentrated suspensions.5,6 With the development of
novel experimental techniques, such as position correla
microscopy, it is possible to actually measure the tim
dependent hydrodynamic interactions between isolated
loidal particles.7 It is now possible, therefore, to study th
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role of sound propagation in unprecedented experimental
tail. In this paper our aim is to establish, from compu
simulations, precisely what role we expect sound to play

To begin with, it is useful to consider a case where co
siderable theoretical progress can be made, namely, a s
spherical colloidal particle. This serves as a useful mean
illustrating the relative characteristics of the two mech
nisms. The analysis of the single particle case begins w
the observation that the equation of motion for the colloid
particle takes the form of a generalized Langevin equat
~GLE!.8–10 To study the decay of velocity fluctuations, it
useful to consider the velocity autocorrelation functio
C(t). In terms of one component of the instantaneous vel
ity v i(t), the velocity autocorrelation function~VACF! is
defined as

C~ t !5^v i~0!v i~ t !&. ~1!

The solution to the GLE for the Laplace transform of t
velocity autocorrelation function~denoted by the tilde!, in
terms of the transform variablez, reads

C̃~z!5
^v i

2&
z1g~z!/m

, ~2!

wherem is the particle mass. Given the equations of moti
describing the dynamics of the solvent and imposing the c
rect boundary conditions on the surface of the particle,g(z)
can in principle be calculated. The simplest assumption
that the motion of the solvent can be described by theincom-
7 © 2002 American Institute of Physics
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pressibleNavier–Stokes equations. For a sphere of radiusa,
in a fluid with a kinematic viscosityn and densityr, and
assuming a stick boundary condition, the problem can
solved11 to yield, in terms of the dimensionless transfor
variable z* 5za2/n, an expression for the dimensionle
VACF

nC̃~z* !

a2C~0!
5Fz* 1

9r*

2 S 11
1

9
z* 1Az* D G21

, ~3!

wherer* is the ratio of the mass of fluid displaced by th
particle to the mass of the particle itself, i.e.,r*
54pa3r/3m. Equation~3! implies that, for a given value o
r* , the normalized VACF is a unique function of the dime
sionless timetn5tn/a2. Values oftn of the order of unity
characterize the time it takes transverse momentum to dif
a distance the order of a particle radius. As this is contro
by the viscosity, we subsequently refer to it as the visc
time scale. A notable feature of Eq.~3! is that it predicts a
discontinuous drop in the value of the normalized VAC
from unity att50 to a value (11r* /2)21 at an infinitesimal
time later. For a neutrally buoyant particle (r* 51) the nor-
malized VACF drops instantaneously to a value of 2/3,
flecting the fact that 1/3 of the momentum is carried away
sound propagation and that this happens instantaneo
This so-called ‘‘added mass’’ effect is an artifact of assum
that the fluid is incompressible. In practice fluids are not,
course, completely incompressible. Sound propagates
time scale set by the speed of sound through the system
allow for the finite speed of sound, one needs to procee
above, but solve the more complexcompressibleNavier–
Stokes equations. Despite the greater degree of comple
this problem can still be solved.12 Again imposing a stick
boundary condition, an expression can be derived forg(z)
and hence the VACF. The full result is given in Ref. 12; he
we will just summarize the salient points.

The solution involves two additional parameters asso
ated with sound propagation, the speed of soundc and the
bulk viscositynB . These are most conveniently incorporat
into the analysis by defining, in addition to the viscous tim
a ‘‘sonic’’ time ts5tc/a and a viscosity ratiob5nB /n. For
most fluids the latter is of the order of unity. The sonic tim
is the time relative to the time it takes a sound wave to tra
a distance of a particle radius. To get an idea of the two t
scales involved, it is useful to consider real times in a ‘‘typ
cal’’ suspension. We consider a typical system to be partic
of radius 1m dispersed in water at room temperature. T
being the case, we havetn;1 whent;1026 s, whereasts

;1 whent;1029 s. The ratio of the twoa5tn /ts5ac/n
takes the valuea;1000. In this case sound propagates m
mentum much more rapidly than does viscous diffusion.
terms of the viscous and sonic time scales, the principal c
acteristics of the VACF in a compressible fluid can now
summarized as follows~real times, where given, correspon
to the typical system described above!.

~i! At short times, t!c/a(t!1029 s), the normalized
VACF depends only onc/a and is a unique function
of the dimensionless ‘‘sonic’’ time scalets5tc/a.
This very rapid decay replaces the discontinuity fou
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for the incompressible case and reflects the per
during which the particle generates the sound wav

~ii ! At intermediate timest;a/c(t;1029) there is a
‘‘mixed’’ region where the viscous time, sonic time
and viscosity ratio are all relevant. This reflects t
period where the sound wave is separating from
particle.

~iii ! For longer timest.a/c(t.1029) the result reduces
to the incompressible result above@Eq. ~3!#. The
sound wave has departed and consequently compr
ibility plays no role.

In summary, by going from an incompressible to a compre
ible model for the fluid, we get rid of the discontinuity in th
VACF at very short times. Further, we find that for time
ts.1 we could have saved ourselves the trouble because
incompressible result suffices. This is illustrated in Fig.
where we have plotted the VACF predicted by compress
theory, for a neutrally buoyant particle witha510 anda
5100, along with the incompressible result.

While the above discussion serves as a useful guid
the relevant parameters and time scales for a compres
fluid, it only applies for a single particle. What we are inte
ested in is a concentrated suspension. The question
arises, what role does sound play in a suspension? In p
ciple, part of the interactions can develop on the fast so
time, rather than the slow viscous time. There are sev
reasons to establish whether such a mechanism is pre
First, the separation of the relative time scales for proces
operating in suspensions underlies theoretical treatment
detailed discussion of this was given by Masters.13 Second, if
sound can be neglected then the size of colloidal particles~at
a given volume fraction! becomes essentially irrelevant. Th
results for any correlation function can be expressed as
versal functions of the dimensionless parameters outli
above. On the other hand, if sound propagation does pla
role this is no longer true. The size of the particles enters

FIG. 1. The velocity autocorrelation function,C(tn) for a single colloidal
sphere as a function of the dimensionless timetn/a2. The solid line is the
result for an incompressible fluid, the dashed and dotted lines are f
compressible fluid~parameters given in the legend!.
se or copyright; see http://jcp.aip.org/about/rights_and_permissions
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the expression for the compressibility factora. Thus, if
sound plays a role, correlation functions for particles of d
ferent sizes differ fundamentally. They cannot simply
scaled onto each other. This is important because the c
pressibility can vary considerably between different syste
that could still lay claim to being called colloidal. For in
stance, we quoted a valuea;103 for our typical system of a
micron sized particle suspended in water. There is noth
special about 1 micron, though. Particles of sizes in the ra
1 nm,a,10m satisfy the criterion of being atomically larg
but macroscopically small. This implies compressibilities
the range 1,a,104, i.e., ranging from sound propagatio
and viscous diffusion occurring on similar time scales to
regime where the latter is much slower.

Despite the fact that sound propagation might be an
portant mechanism for propagating interactions in a susp
sion, until relatively recently the tacit assumption was tha
is not. There are two substantive reasons to support this v
First, as we have seen, it is largely irrelevant for a sin
particle. Second, at sufficiently long times sound cannot p
a role. This is simply because the integral of a correlat
function is related to the zero frequency response. The z
frequency response to an external perturbation is the s
for a compressible or an incompressible fluid. Thus,
speed of sound does not enter into the expression for
diffusion coefficient of a single particle, for exampl
whether the fluid is compressible or not. The question m
always be one of when, not if, it becomes irrelevant. Expe
mental, theoretical, and computer simulation results h
nonetheless suggested that, for concentrated suspension
effects of sound propagation may persist on longer ti
scales. First, experiments were reported14,15probing the tran-
sient behavior of the mean-square displacement at s
times (tn;1). By comparing the short-time dynamics
particles in a concentrated suspension with those of an
lated particle, Zhuet al.14 found that the experimental dat
could be plausibly collapsed onto the single-particle curv
the time was rescaled in units ofa2/nf , wherenf is the
kinematic viscosity of the suspension. This was surpris
because, if the hydrodynamic interactions develop on the
cous time scale, one would expect that the suspension c
only display this ‘‘effective fluid’’ behavior on time-scale
tn@1. Computer simulations performed by Ladd16,17 ap-
peared to confirm this, although more detailed simulation18

and theoretical work2 suggested that the effective fluid re
gime was only reached at longer timestn@1. Nonetheless
these observations led Espan˜ol et al.19,20 to re-examine the
role of sound propagation and suggest that the spee
sound may play a role in determining the time scale
which the hydrodynamic interactions propagate. Similarly
discrepancy between experimental work and computer si
lationsvis á vis the collective dynamics, was tentatively a
cribed to sound propagation.5 More recently, for a colloidal
particle confined by some fixed geometry, it was dem
strated that the effects of sound propagation persist well
yond the sonic time scale and into the the viscous diffus
regime.3 In fact, compressibility actually determines th
long-time form of the decay of the VACF.

Our aim here is thus to establish in what regimes
oaded 10 Sep 2010 to 131.180.130.114. Redistribution subject to AIP licen
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effect of sound propagation can be safely neglected and
versely where not. To do so, we have chosen to study
wave-vector-dependent current–current correlation func
J(k,t), defined as

J~k,t !5
1

N K (
i 51

N

(
j 51

N

@ k̂•vi~ t !vj~0!• k̂#exp@ ik•~r i2r j !#L ,

~4!

where k is the wave vector. The reasons for choosing
study this function are twofold. First, it gives an insight in
collective correlations, that is, the ability of the instantaneo
velocity of one particle to subsequently influence the mot
of its neighbors. There is no analogue of this process fo
single particle, so the inference that sound does not influe
this function cannot, by analogy, be drawn. Second, the s
gestion has already been made that this quantity is ind
influenced by sound propagation.5,6

II. DESCRIPTION OF THE MODEL

The model we have used consists of configurations
hard spheres, generated using standard Monte Carlo t
niques, embedded in a model compressible fluid. In keep
with an assumption of short-time dynamics, we impose
time-scale separationtn!tp , where tp is a characteristic
time for the particles to displace significantly. Thus, the p
sitions of the colloidal particles are not considered to cha
during a run. The compressible fluid is modeled using a
tice Boltzmann equation,21 in which the state of the fluid
system is characterized by the single-particle distribut
functionni(r ,t) ~see, e.g., Ref. 22!. This denotes the averag
number of particles at a particular node of the latticer , at a
time t, with the discrete velocityci .

The motion of the colloidal particles is determined b
the forces and torques exerted on them by the fluid. Th
are in turn a result of the stick boundary conditions applied
the solid/fluid interface. For moving boundaries the modifi
bounce-back rule is applied, whereby some of the partic
moving in the same direction as the solid object are allow
to ‘‘leak’’ through, thus matching the fluid velocity to th
object velocity at the boundary and implying~through con-
servation of total linear and angular momentum! a force and
torque acting on the particle. Given this information, we c
solve the equations of motion for the colloidal particles.
do so we use the ‘‘self-consistent’’ method, described in R
23, whereby the new fluid velocity at the boundary implies
force and torque on the object which, when incorporated i
the equations of motion of the object, give the same n
velocity for the particle. The advantage of this approach
that it is unconditionally stable. The density ratio can
chosen freely. This parameter, as we have seen, determ
the relative proportion of momentum carried by sou
propagation and momentum diffusion. If one is interested
the role of sound it is therefore important that it takes
physically sensible valuer* ;1. Because of stability prob
lems, the simulations reported in Refs. 5 and 6 used a lo
value ofr* (r* <0.2), in which case the proportion of mo
mentum carried away by sound waves is underestima
relative to the neutrally buoyant case. This was suggeste
se or copyright; see http://jcp.aip.org/about/rights_and_permissions
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a possible source of discrepancy between the simulations
experimental results. For all the simulations we report he
r* takes the value unity.

The approach outlined above has been used to s
~nominally! neutrally buoyant colloidal particles.18,23 How-
ever, there are certain artifacts generated by the presen
fluid inside what should be solid objects.24 We will be look-
ing for the effects of sound propagation in a suspens
largely by studying scaling behavior and these artifacts co
plicate the analysis considerably. We have therefore ado
the procedure outlined in Ref. 24 to remove the effects of
internal fluid. This basically involves setting all the distrib
tions inside a particle to their equilibrium values for a fluid
rest. The force and torque required to do this are then in
porated as additional forces and torques in the equation
motion. This procedure can be shown to reproduce ac
rately the velocity autocorrelation function for a sing
spherical particle suspended in a compressible fluid.24

In order to calculate the wave-vector-dependent curre
current correlation function@Eq. ~4!#, we need to introduce
velocity fluctuations into the system. One way to do so is
drive fluctuations in the stress tensor of the fluid and th
maintain the model colloidal particles at some prescrib
temperature.21 The other is to impose velocity fluctuations o
the colloidal particles and study the decay of these fluct
tions in an otherwise dissipative system.25 According to On-
sager’s regression hypothesis the two methods should
equivalent. For reasons of computational expediency
have chosen the latter. Our method therefore proceed
follows. The initial velocities,vi(0), of the colloidal par-
ticles are generated from a Gaussian distribution with a fi
variance. The subsequent velocitiesvi(t) are calculated by
simply letting the system evolve in time as described abo
The correlation function can then be calculated by sim
substituting these quantities into Eq.~4! and taking the en-
semble average over different initial configurations of p
ticles and statistically independent initial values of the vel
ity. In practice we do both at the same time by repeating
calculation with different configurations, each with a set
initial velocities drawn independently from Gaussian dis
butions.

III. RESULTS

In order to separate out collective motions from sing
particle motion, it is useful to split the wave-vecto
dependent current–current correlation function into the~nor-
mal! velocity autocorrelation function,C(t), and an ‘‘inter-
action’’ correlation functionJi(k,t). Thus, we haveJ(k,t)
5C(t)1Ji(k,t), where, by definition@see Eq.~4!# Ji(k,t) is
defined as

Ji~k,t !5
1

N K (
i 51

N

(
j Þ i

N

@ k̂•vi~ t !vj~0!• k̂#exp@ ik•~r i2r j !#L .

~5!

By considering the properties ofJ(k,t) we can deduce som
of the features we expect to characterize theJi(k,t). The
integral over all times ofJ(k,t) defines the wave vector
dependent collective diffusion coefficient,D(k). In the limit
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k→0 this should approach the~short-time! collective diffu-
sion coefficient,Dc . In the opposite limitk→`, D(k,t)
approaches the single-particle or self-diffusion coefficie
This is in turn equal to the integral over all time of th
velocity autocorrelation function. In terms of transport coe
ficients, the time integral ofJi(k,t) is therefore equal to the
difference between the wave-vector-dependent collective
fusion coefficient and the self-diffusion coefficient,Ds

E
0

`

Ji~k,t !dt5D~k!2Ds . ~6!

Given the above, we expect that ask→` the integral of
Ji(k,t) will be zero, whereas in the limitk→0 it will be
equal toDc2Ds . The collective diffusion coefficient can b
calculated~to a good approximation! theoretically26 and has
also been calculated numerically.5,27 Both concur thatDc

,Ds , so we expect that, ask→0, the integral ofJi(k,t) will
be a negative quantity.

We will begin by considering the self-, or single-particl
contribution, C(t). Measuring all quantities in units suc
that the lattice spacing and time step are equal to unity,
took a suspension with volume fractionf50.25 and calcu-
lated the VACF for spheres with three different radii,a
52.5, 4.5, and 6.5. The viscosityn, speed of soundc, and
bulk viscositynB were kept at constant values of 1/6, 1/&,
and 1/30, respectively. This means that for these three si
lations the compressibility factora(5ac/n) took the values
10.6, 19.1, and 36.0. For these three particle sizes we h
been able to simulate systems large enough to calculate
VACF up to sufficiently long times, while still limiting the
calculations to times less than those required for sound
cross the simulation box. The periodic boundary conditio
applied at the faces of the simulation box cannot, therefo
influence the results~if such a procedure is not adopted the
is a pronounced perturbation to the decay of the VACF a
particle gets hit by the sound wave generated by its perio
images!.

The results we obtained for the normalized VACF, as
function of the viscous time scaletn , are plotted in Fig. 2.
Plotting the data in this form makes the effects of compre
ibility simple to spot. Any difference between the curv
~apart from numerical errors, which are relatively small ev
for a52.524! must be attributed to sound propagation. If t
fluid is incompressible, then, in these dimensionless te
we are basically simulating the same system. Clearly, at s
times the response of the three systems is not identical. H
ever, at longer times the three functions converge, indica
that sound is playing no role. Furthermore, they become
distinguishable at shorter times as we decrease the comp
ibility ~increasea!. More quantitatively, we find that the
VACF calculated for a510.6 becomes indistinguishabl
from the other two ~higher! values of a for tn.0.40,
whereas the result fora519.1 becomes indistinguishabl
from that calculated ata536.0 for timestn.0.20. For the
single-particle case, we saw that the effects of compress
ity can be neglected on time scales long as compared to
sonic timets , that is t.a/c. In terms of the viscous time
this condition corresponds totn.1/a, i.e., the effects of
compressibility become negligible after a viscous time wh
se or copyright; see http://jcp.aip.org/about/rights_and_permissions
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scales as 1/a. The behavior we noted above is quite cons
tent with this being the case in a suspension. On increasina
from a value of 10.6 to 19.1~a factor of 1.8!, we see that the
time at which incompressible behavior is recovered~the ‘‘in-
compressible’’ time! decreases by a factor of approximate
2. Given the uncertainty involved in establishing a prec
value for the incompressible time, this difference cannot
regarded as significant. It is interesting to note that the
compressible time not only scales in the same way as for
single particle case but is also quantitatively almost identi
Examining the Bedeaux and Mazur result~Fig. 1! for a
single particle, the incompressible time is, to a good appro
mation,tn'4/a. Extrapolating the same behavior to a su
pension, one would predict an incompressible time oftn

50.38, for the system witha510.6, andtn50.21 for the
system witha519.1. This compares with values 0.4 an
0.2, respectively, calculated from the simulation results. T
most obvious conclusion we can therefore draw from Fig
is that, in a suspension, the influence of sound propaga
on the velocity autocorrelation function is rather trivial. It
remarkably similar to the single-particle case in that it mo
fies the decay on the short sonic time scale. On the lon
viscous time scale it is irrelevant and an incompress
theory could adequately describe the dynamics of the sys

FIG. 2. The velocity autocorrelation function,C(tn), for a suspension of
volume fractionf50.25, as a function of the dimensionless timetn/a2.
The three sets of data correspond to three different values of the comp
ibility factor a.
oaded 10 Sep 2010 to 131.180.130.114. Redistribution subject to AIP licen
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Turning our attention to the interaction part of the tran
verse current correlation function,Ji(k,t), we found it useful
to modify our approach in two respects. First, by compar
the results for simulations on different system sizes we fou
that, in contrast to the VACF, the periodic boundary con
tions did not influence the results significantly, even on tim
scales long as compared to the time taken by a sound w
to cross the simulation box. We were therefore able to c
culate Ji(k,t), free from finite-size artifacts, up to longe
times~and using smaller systems!. Second, in order to gain a
reasonable degree of insight into the role of sound propa
tion, the compressibility factor needed to be varied to
greater extent than was practical by varying the particle s
alone. Six sets of simulations were carried out in total, al
a volume fractionf50.25. The parameters associated w
these simulations, which we denoteR1, R2, . . .R6, are sum-
marized in Table I. In Fig. 3 we have plottedJi(k,t), calcu-
lated for various values of the dimensionless wave vec
k* 5ka, for run R4. This simulation had a compressibilit
factor a536 and, as such, corresponds to particles of rad
a;25 nm suspended in water, i.e., small colloidal particl
The most notable feature is clearly the pronounced osc
tion. This phenomenon was also observed in computer si
lations performed by Laddet al.,5 who further concluded tha
these oscillations were sonic in origin. However, these os

ss-

FIG. 3. The dimensionless interaction correlation function,Ji(k,t)/Ji(k,0),
calculated for systemR4. The results for various values of the reduced wa
vectork* are shown. In the interests of clarity, the data have been displa
from bottom to top, by successive increments of 0.2 along they axis.
.

TABLE I. The parameters associated with the six systems studied: sphere radius (a), effective radius (a* ),
viscosity ~n!, compressibility factor~a!, sound wave attenuation coefficient~G!, number of spheres (N), and
system dimensions (L). The volume fraction was 25% in all cases and values are quoted in lattice units

Set a a* n a G N L3L3L

R1 1.5 1.5 1/6 6.3 0.255 3820 60360360
R2 2.5 2.5 1/6 10.5 0.255 3820 10031003100
R3 4.5 4.5 1/6 18.9 0.255 3820 18031803180
R4 8.5 8.5 1/6 35.7 0.255 477 17031703170
R5 4.5 4.7 1/48 157.9 0.0611 119 47347394
R6 4.5 4.79 1/96 321.89 0.0472 120 48348396
se or copyright; see http://jcp.aip.org/about/rights_and_permissions



d
3
In

s
se
a
g
s

ng
r,
om
tic
t b
e
b

at
en
s
ri
i

th
rre
s

on
nc
e

at
n

, f
tio
o

in
to
ec

e
i

a
bu-

8.
on
ld

r all
n
as

he
on

an
t
is

ort
ro
t of
s
We

e-

e

a

5872 J. Chem. Phys., Vol. 116, No. 13, 1 April 2002 A. F. Bakker and C. P. Lowe

Downl
lations cannot be considered simply as artifacts of the mo
fluid being too compressible,5 as the results shown in Fig.
are parametrically correct for small colloidal particles.
Fig. 4 we show the equivalent plot for runR6. For this simu-
lation the compressibility factor wasa5325, approximately
one order of magnitude greater. As such, it correspond
particles of radiusa;250 nm suspended in water. The
could reasonably be described as ‘‘average’’ colloidal p
ticles. As Fig. 4 shows, we still observe oscillations althou
they are characterized~at a given value of the dimensionles
wave vector! by a higher frequency and more rapid dampi
than was the case fora536. Taking Figs. 3 and 4 togethe
it appears that these oscillations are sensitive to the c
pressibility of the system. The fact that their characteris
depend on the compressibility factor shows that they mus
sonic in origin. If the solvent were incompressible this b
havior could not be observed, and Figs. 3 and 4 would
identical. A further point illustrated by Figs. 3 and 4 is th
both the frequency and damping of the oscillations dep
on the wave vector. In order to come to any conclusion a
whether this effect will be relevant in the analysis of expe
mental results, it is necessary to establish the scaling w
respect to the wave vector. There are two reasons for
First, experimentally it is not possible to measure the co
lation functionJ(t) itself. It is only possible to measure it
time integral ~as in photocorrelation spectroscopy!, or a
quantity closely related to the time integral. The contributi
these oscillations make to the integral of the correlation fu
tion, and the time scale over which this contribution will b
significant, will depend on the amplitude, frequency, and r
of damping. Second, the time regime probed by experime
depends on the wave vector. Smaller wave vectors are
instance, characterized by longer decay times for correla
functions of position. Thus, decreasing the wave vector n
mally implies probing longer times. If the oscillations
J(k,t) increase in magnitude with decreasing wave vec
but correspondingly decay over shorter times, their eff
may still not be relevant.

A convenient reference point for analyzing the wav
vector-dependent current–current correlation function

FIG. 4. As Fig. 3, but for runR6.
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what one may term ‘‘classic hydrodynamic’’ behavior. For
one-component, isothermal, compressible fluid, the contri
tion to Ji(k,t) due to sound propagation,Ji

s(k,t), is of the
form28

Ji
s~k,t !5

kBT

2mp
cos~kct!exp~2Gk2t !, ~7!

whereG5(4n/31nB) is the sound attenuation coefficient,T
the temperature, andkB Boltzmann’s constant. The full form
of Ji

s(k,t), in the frequency domain, is given in Ref. 2
Equation~7! is obtained by taking the inverse transformati
for frequenciesv!ck and so can only be expected to ho
for timestsk* @1. In a suspension,Ji

s(k,t) can in general be
only one component of the total interaction functionJi(k,t).
We know this because, as noted above, the integral ove
time of Ji(k,t) at smallk is equal to the difference betwee
the collective and self-diffusion coefficients. Furthermore,
we pointed out in the Introduction, this quantity, being t
difference between transport coefficients, cannot depend
the compressibility of the fluid. There must therefore be
incompressible contribution toJi(k,t), i.e., a component tha
is independent of the compressibility of the solvent. This
clearly illustrated in both Figs. 3 and 4, particularly at sh
times, whereJi(k,t) oscillates about a negative nonze
value. To try to separate out the compressible componen
Ji(k,t), it is convenient to work with the relative amplitude
of successive oscillations rather than absolute values.
therefore define the following quantities.

~i! A frequencyv defined asv52p/Dt, whereDt is the
time between successive maxima~or minima! in the
oscillations. From the first maximum~or minimum!
onwards we find that this value is constant, in agre
ment with Eq.~7!. Equation~7! further predicts that
v5ck.

~ii ! A dimensionless ‘‘initial’’ amplitude A0*
5A0m/2pkBT, whereA0 is defined as the differenc
between the first minimum ofJi(t) and the first maxi-
mum. According to Eq.~7!, A0* 5exp(2Gk2p/v)(1
1exp(2Gk2p/v)). If k2Gp/v!1 ~the decay of the
oscillations is slow compared to the frequency!, this
can be expanded in the simpler form

A0* .22k2Gp/v1Ok4. ~8!

~i! A dimensionless time-dependent amplitude,A* (t l),
defined as

A* ~ t l !5uJi~ t l2Dt/4!2Ji~ t l1Dt/4!um/2pkBT, ~9!

where l 51,2,. . . , is an integer andt l5 lDt/21Dt/4. Ac-
cording to Eq.~7!, this should decay as

2A* ~ t l !5exp~2k2Gt l !~exp~2k2Gp/2v!

1exp~k2Gp/2v!!. ~10!

Again, so long ask2Gp/v!1, this can be expanded in
simpler form

A* ~ t l !.exp~2k2Gt l !1Ok4. ~11!
se or copyright; see http://jcp.aip.org/about/rights_and_permissions
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We will take these characteristics in turn and examine
what extent they describe the results we find in a suspens
Beginning with the frequency, in Fig. 5 we have plotted t
dimensionless frequency,v/ck, as a function of the dimen
sionless wave vector. According to classic hydrodynam
theory, this function takes a value of unity, independent
wave vector. As Fig. 5 shows, the dimensionless freque
of the oscillations displays a weak dependence on the w
vector, but becomes independent ofk for k* ,0.5. That is,
we recover hydrodynamic behavior on sufficiently lo
length scales. However, careful analysis of Fig. 5 shows
in this limit the dimensionless frequency is not asympto
cally unity. The value we find is limk→0v/ck51.0560.01.
We now note, however, that there are two primary objecti
to applying the classic theory for a suspension. First, ther
an ambiguity as to the values we should take for the trans
coefficients. In the above analysis we have taken the spee
sound to be the speed of sound through the solvent.
course, we do not necessarily expect the speed of sound
suspension to be equal to the speed of sound in the solv
Second, it takes no account of the structure of the fluid. O
possible explanation for the low-frequency asymptote diff
ing from unity concerns the former. It is simply that th
speed of sound in the suspensionsc(f) is slightly greater
than that in the solvent, specificallyc(f)/c51.05. We have
independently confirmed that this is the case by measu
directly the speed of sound in the system~by examining the
time at which sound-induced perturbations to the decay
the VACF, resulting from the periodic boundary condition
are observed!. This analysis also gives a value ofc(f)/c
51.05. The asymptotic behavior we observe for the f
quency of the oscillations at long wavelengths is thus c
sistent with classic hydrodynamic theory if we replace
transport coefficient characteristic of the solvent,c, with a
transport coefficient characteristic of the suspension,c(f).
If we now turn to the wave-vector dependence, this is m

FIG. 5. The reduced frequency of the oscillations in the interaction corr
tion function as a function of the reduced wave vectork* 5ka. These data
were obtained from systemR4. The other systems displayed the same
havior.
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likely to be a consequence of the structure present in
fluid. This ~in Fourier space! is most conveniently probed b
the static structure factorS(k)

S~k!5
1

N K (
i

exp~ i r i•k!(
i

exp~2 i r i•k!L . ~12!

At sufficiently small wave vectors the static structure fac
~SSF! approaches a constant value, reflecting the fact that
sufficiently long length scales, the suspension appears ho
geneous. For hard spheres at this volume fraction~see, for
example, Ref. 29!, the SSF becomes essentially independ
of k for k* ,0.5, in line with our estimate for the wav
vectors for which we observe classic hydrodynamic beh
ior. Thus, the wave-vector dependence we observe inv/ck,
at short wavelengths, is consistent with the structure of
suspension, not accounted for in the simple theory, playin
role. We finally note that generalizing the hydrodynamic
sult by defining a wave-vector-dependent speed of so
c(k), such thatv/c(k)k51, the data we have plotted in Fig
5 are consistent, at short wavelengths, withc(k),c. That is,
a wave-vector-dependent speed of sound less than the s
of sound in the solvent. Although this is somewhat count
intuitive, the same phenomenon—on length scales wh
structure cannot be neglected—is observed in simple ato
fluids30,31 and can be accounted for theoretically.32 It should
also be pointed out that in simple atomic fluids the wav
vector dependence of the speed of sound is significa
more pronounced. The suspensions we consider here fo
classic hydrodynamic behavior to a better approximat
than do simple fluids.

The second characteristic of classic hydrodynamic
havior, the initial dimensionless initial amplitude,A0* , is
plotted in Fig. 6. Examining Fig. 6 we see that the dime
sionless initial amplitude is approaching the value 2 ask
→0, so again we are recovering classic hydrodynamic
havior in the limit of long wavelengths. However, there is
clear k dependence with the amplitude decreasing roug
linearly with increasing wave vector. Thek dependence is

-

-

FIG. 6. The dimensionless initial amplitude of the oscillations in the int
action correlation functionA0* ~defined in the text! as a function of the
reduced wave vectork* . The data correspond to systemsR2, R4, andR6.
se or copyright; see http://jcp.aip.org/about/rights_and_permissions
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not quadratic, so it cannot be accounted for by theOk2 term
appearing in Eq.~8! ~which simply reflects the relatively
trivial change in the value of the exponential decay envel
between the first minimum and first maximum!. The k de-
pendence we observe therefore represents behavior no
counted for by simple hydrodynamics, again manifesting
self on length scales where the structure of the suspen
cannot be neglected. One further point illustrated by Fig.
that, following the trend, the amplitude of the oscillatio
tends to zero at a valuek* ;2. That is, we observe no co
lective effects at all fork* .1.75. Presumably this reflect
the fact that the minimum separation of 2a between particles
essentially defines a maximum wave vector at which p
ticles interact via sound propagation. Again, the theory o
lined above takes no account of this effect.

Having examined the factors determining the frequen
and initial amplitude of the sound-induced oscillations,
that remains is to establish what determines the subseq
rate of decay. In Fig. 7 we have plotted, at a reduced w
vectork* 50.314, the dimensionless time-dependent am
tude as a function of a dimensionless timetGk2 for all six
simulations. Hydrodynamically, this plot should be line
with a slope equal to unity. As Fig. 7 shows, the data are
a good, approximation, linear. The amplitude of the osci
tions decays exponentially. However, if we calculate
slopes by linear regression, the values are not unity. Foll
ing the same reasoning applied for the speed of soun
seems sensible to interpret this as indicating that the so
wave attenuation coefficient in the suspensionG~f! is not the
same as the solvent valueG. That is, we expect the amplitud
of the oscillations to decay as exp(2G(f)k2). Having made
this assumption, we can calculate values forG(f) consistent
with the data shown in Fig. 7. These values are summar
in Table II. As the table shows, for the first four systems~R1,
R2, R3, R4! the ratioG(f)/G takes a roughly constant valu
between 2.0 and 2.6. For these simulations, the solvent
cosity is greater than the bulk viscosity so, to a first appro
mation, we can neglect the bulk viscosity and thusG

FIG. 7. Linear-log plot of the dimensionless time-dependent amplit
A* (t) of the oscillations in the interaction correlation function~defined in
the text! as a function of the dimensionless timetG0k2. The reduced wave
vectork* was equal to 0.314. Data for all six systems are shown.
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;4n/3. If we further interpretG(f) as depending on the
suspension viscosityn(f) and the suspension bulk viscosi
nB(f), i.e., G(f)54n(f)/31nB(f), this condition corre-
sponds to G(f)/G5n(f)/n ~so long as nB(f)/nB

<n(f)/n!. The value of n(f) for suspensions of hard
spheres is known.

Accurate multipole calculations performed by Ladd33

give a valuen(f)/n52.17 at this volume fraction. The val
ues we obtained for the ratioG(f)/G @;n(f)/n# from the
first four simulations are roughly equivalent to this value.
should be noted that because these simulations use sphe
different radii, the numerical errors are not the same.
expect the runR4, where the radius of the spheres was 8
lattice units, to be the most accurate. This simulation give
value G(f)/G52.6, somewhat higher than the value f
n(f)/n quoted above. It is nonetheless clear from Table
that the most anomalous results are those for runsR5 and
R6. These are characterized by, respectively, a solvent b
viscosity greater than the kinematic viscosity and a bulk v
cosity roughly equivalent to the kinematic viscosity. The o
vious explanation for this is that the rationB(f)/nB behaves
significantly differently from the ration(f)/n. If we take the
values ofG(f)/G for these two runs and solve for the tw
viscosity ratios, we findn(f)/n52.3 andnB(f)/nB54.8. If
we now return to runR6 but this time, instead of neglecting
we include the bulk viscosity, then, substituting this value
nB(f) we find thatG(f)/G52.5, in better agreement with
the value we calculated. Taken as a whole, our results
therefore consistent with the sound wave attenuation co
cient in the suspension taking the formG(f)54n(f)/3
1nB(f), if nB(f)/nB;4.8, suggesting that the bulk visco
ity of the suspension has a stronger dependence on the
ume fraction than does the shear viscosity. It would be us
to test this hypothesis by calculatingnB(f) directly. Unfor-
tunately, we have not as yet succeeded in doing so.
above must therefore remain a working hypothesis.

We now turn our attention to the contribution the osc
lations do, or do not, make to the time integral ofJi(k,t). In
Fig. 8 we have plotted the time integral ofJi(k,t), at a
reduced wave vectork* 50.314, as a function of the viscou
time scale. Data for five of the six runs are plotted; data fr
run R5 is omitted for clarity~it follows the same trend!. As
the figure shows, for the data obtained from the least co
pressible simulation (R6), the frequency of the oscillation
in Ji(t) is high enough to hardly influence the time integr
The striking thing is, for all the other data where the effect
the oscillations is not negligible, the time integrals clea

e

TABLE II. The apparent suspension sound wave attenuation coeffici
G~f!, normalized by the solvent value,G. The values are calculated from
linear fits to the data shown in Fig. 7.

Simulation G~f!/G

R1 2.1
R2 2.2
R3 2.0
R4 2.6
R5 4.8
R6 4.4
se or copyright; see http://jcp.aip.org/about/rights_and_permissions
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oscillate about the same underlying function as runR6. This
is despite the fact that between runsR1 andR6 the com-
pressibility factor varies by a factor of 50. It is therefore cle
that the correlation function consists of a compressible co
ponent, which oscillates about zero and ultimately contr
utes nothing to the integral, and an incompressible com
nent, determined entirely bytn . Although we only show
results fork* 50.314, where the statistical errors are min
mal, the same was true for all the wave vectors we stud

IV. DISCUSSION

Having carefully examined the role sound plays
propagating hydrodynamic interactions, we arrive at the
lowing conclusions. On the dynamics of a single tagged p
ticle in a suspension, the effect of sound is relatively trivi
Sound propagation only influences the dynamics on t
scales of the order of the time it takes a sound wave
propagate a distance the order of a particle radius.

If, however, we consider collective motions, that is t
ability of one particle to influence the velocity of others, t
situation is more complicated. We observe oscillations in
current–current correlation function that are clearly the re
of sound propagation back and forth between partic
These oscillations are not restricted to the very short t
scale characteristic of sound propagating a characteristic
tance in the suspension. Rather, in the limit of small wa
vectors (k!1/a), these oscillations will be negligible, ou
results imply, only whent@k2G. Thus, at sufficiently smal
wave vectors, the influence of sound propagation on the
relation function can always be significant. If we ask t
question, do hydrodynamic interactions propagate at
speed of sound, the answer is a qualified yes. Strictly, a
of the time-dependent interaction of one particle with
neighbors is governed by the speed of sound and the so
wave attenuation coefficient. Since these are quantities c
acteristic of sound propagation, this clearly implies a so

FIG. 8. The time integral of the interaction correlation function, made
mensionless by dividing the Stokes–Einstein diffusion coefficientD0 . The
reduced wave vectork* was equal to 0.314. Data for systemR5 are omitted
for clarity.
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propagation of hydrodynamic interactions. Thus, our res
show that the motion of one particle does influence others
sound propagation. However, we might prefer to define
hydrodynamic interaction as the motion of one particle infl
encing anotheron average. If we took this definition we
would come to a different conclusion. Looking at the int
grated effects of sound propagation we found no net ef
for times greater than the oscillation period. On avera
sound does nothing but induce wiggles about the inco
pressible result. It is still, therefore, the viscous diffusi
mechanism that determines the time scale on which the
teractions have a net effect—the ‘‘relaxation’’ time scale
which the transport coefficients are asymptotic. Con
quently, we find no evidence to support the speed of so
propagation mechanism suggested by Laddet al. to explain
the different relaxation times observed in computer simu
tions and experiment. The origin of this discrepancy rema
unknown.

Where our simulations show that sound propagation
relevant, its role can, we suggest, be understood relativ
simply. At sufficiently small wave vectors~the simulations
suggest roughlyka,0.1! the effect of sound in a suspensio
is the same as the effect of sound propagation in a sim
fluid. In other words, if one views a colloidal suspension
length scales very much longer than the size of the partic
it behaves in the same way as a generic ‘‘structureless’’ flu
This can be understood quite simply in terms of what o
may term classical hydrodynamics. The only modificati
required is that the transport coefficients be those charac
istic of the suspension~speed of sound, bulk- and shear vi
cosity!, rather than the solvent. Our simulations sugges
that for a suspension where the colloidal particles occu
25% of the available volume, the speed of sound is appro
mately 1.05 times the value for the solvent and the b
viscosity 4.8 times the solvent value. Relative to other tra
port coefficients, this implies a very weak dependence
volume fraction for the former and a very strong depende
for the latter. The scattering of sound waves by the partic
is, it seems, a more effective means of dissipating den
fluctuations than propagating them.

Based on these results we can estimate when so
induced oscillations should be observable experimentally
do so we return to the time-dependent transport coefficie
The quantity measured experimentally, in photocorrelat
spectroscopy, for example, is the dynamic structure fac
S(k,t). The decay of the dynamic structure factor, to lowe
order ink, is given by

S~k,t !5S~k,0!expS 2k2E
0

t

D~k,t8!dt8D , ~13!

where

D~k,t !5E
0

t

J~k,t8!dt8. ~14!

If we approximate the nonoscillatory components ofJ(k,t)
by their asymptotic values~valid for timest.a2/n!, we have

-
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E
0

t

D~k,t !.D~k,t !t1E
0

tE
0

t8
Ji

s~k,t9!dt9 dt8. ~15!

In order for the oscillations in the second term to be exp
mentally observable, the condition

*0
t *0

t8Ji
s~k,t9!dt9dt8

D0t
;1, ~16!

whereD0 is the Stokes–Einstein diffusion coefficient, shou
be satisfied. Substituting the hydrodynamic result forJi

s(k,t)
@Eq. ~7!# and performing the double integral, this corr
sponds to the condition

t;
n

~ck* !2 . ~17!

We have also taken the limitk* !a, but, as we have seen
for any colloidal suspension the compressibility factora is
greater than unity so this only corresponds to the condi
k* ,1 ~required anyway for the simple hydrodynamic res
for the oscillatory component of the correlation function
be valid!. The conclusion we therefore arrive at is th
sound-induced oscillations in the dynamic structure fac
should be observable at short times. To see how short,
can substitute values forc and n typical of water at room
temperature. This yieldst,10210s at k* 51021, which is
rather short, or more reasonablyt,1026s at k* 51023. We
should also point out that the dynamic structure factor dec
on a time scalet;1/(k2D(k)), and that unless the colloida
particles are very small (a;1 nm), the time regime define
by Eq. ~17! is very much shorter. Thus, any effect of sou
propagation on the dynamic structure factor would manif
itself more as an oscillation about the initial value than
modulation of the subsequent decay.
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