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Abstract: Scale-up to large-area Cu(In,Ga)Se2 (CIGS) solar panels is proving to be much more 
complicated than expected. Particularly, the non-vacuum wet-chemical buffer layer formation step 
has remained a challenge and has acted as a bottleneck in industrial implementations for mass-
production. This technical note deals with the comparative analysis of the impact on different 
methodologies for the buffer layer formation on CIGS solar panels. Cd(1-x)ZnxS ((Cd,Zn)S) thin 
films were prepared by chemical bath deposition (CBD), and chemical surface deposition (CSD) for 
24-inch (37 cm × 47 cm) patterned CIGS solar panel applications. Buffer layers deposited by the CBD 
method showed a higher Zn addition level and transmittance than those prepared by the CSD 
technique due to the predominant cluster-by-cluster growth mechanism, and this induced a 
difference in the solar cell performance, consequently. The CIGS panels with (Cd,Zn)S buffer layer 
formed by the CBD method showed a 0.5% point higher conversion efficiency than that of panels 
with a conventional CdS buffer layer, owing to the increased current density and open-circuit 
voltage. The samples with the CSD (Cd,Zn)S buffer layer also increased the conversion efficiency 
with 0.3% point than conventional panels, but mainly due to the increased fill factor.   

Keywords: chalcogenides; CIGS PV; chemical bath deposition; chemical surface deposition; 
(Cd,Zn)S; Cu(In,Ga)Se2; solar cell 

 

1. Introduction 

One of the most appealing advantages of Cu(In,Ga)Se2-based (CIGS) solar cells is the potential 
to grow CIGS thin films on large-area substrates using an in-line vacuum deposition equipment 
leading to a high-throughput process [1,2]. However, the non-vacuum wet-chemical buffer layer 
formation step has acted as a bottleneck in industrial implementations for mass-production, since it 
prevents true in-line processing [3]. While much effort for the recent laboratory cells has been focused 
on the development of the buffer layer using various vacuum and in-line deposition processes [4–6], 
the buffer layer formation process for the commercially available large-scale CIGS photovoltaic (PV) 
panels has still remained at a conventional wet-chemical cadmium sulfide deposition stage [1,7]. 
Notably, chemical bath deposition (CBD) of CdS is very reproducible and yields good step coverage 
on any chalcopyrite absorber, including CIGS and CdTe [3,8], which are widely used both in PV and 
photoelectrochemical applications [9].  

The CBD method additionally takes advantage over other technologies by its large-area 
deposition capability, which makes the CBD preferable for the PV industry for decades [10]. As 
shown in Figure 1a, its simple system configuration also makes it the most commonly used method 
for both industrial and lab-scale solar cells. However, the CBD method requires appropriate back-
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side protection from unexpected deposition, which can dilute the value of the final products. On the 
other hand, the chemical surface deposition (CSD) equipment (Figure 1b) induces the chemical 
reaction via direct heating of the substrate which allows relatively high uniformity of substrate 
temperature without any back-side contamination. The CSD method is derived from the CBD 
method, but is differing from the CBD and other methodology by the possibility to obtain a coating 
of large areas with minimal reagent usage, and, accordingly, minimal number of waste. Owing to 
these advantages, the CSD CdS process has been introduced for high-efficiency CIGS PV panel 
manufacturing line, such as Tenuis equipment from Singulus Technologies AG for Manz AG CIGS 
PV in-line system [11]. In contrast, the easily scalable route of the CSD process is still challenging, 
while the CBD process shows relatively high scalability due to its batch process, which allows a 
feasible increase of the panel input per batch. Brief key characters discussed here for both CBD and 
CSD methods are summarized in Table 1. 

Table 1. Comparison between the chemical bath deposition (CBD) and chemical surface deposition 
(CSD) processes. 

Item CBD Process CSD Process 
Chemical consumption* ~20 liter m−2 [11] ~6 liter m−2 

Heating method Indirect (via electrolyte) Direct 
Flow type Batch process Semi-continuous 

Deposition side Double Single 
Scalability Good Limited 

*Consumption for a single panel (shall be reduced when the panel numbers increase in the batch). 

Apart from the equipment-wise aspects mentioned above, because of its small bandgap (~2.42 
eV), the CdS shows strong absorption in the blue region, i.e., the short wavelength region ( ≤520 nm), 
of the solar spectrum, and this results in a parasitic optical loss by this buffer layer [4,12]. Therefore, 
the alternative n-type materials such as ZnS and Zn-based oxides, which has a broader bandgap with 
relatively lower toxicity, have been proposed [2]. For instance, a Japan-based company, Solar 
Frontier, has successfully replaced the CdS buffer layer with a CBD ZnS for its commercial CIGS PV 
modules [13].    

The plain fact is that most solar cell manufacturers choose to set up a mass production line with 
CBD-based CdS process for the CIGS PV modules because of the relatively poor reproducibility of 
existing ZnS growth methods (in most cases—chemical solution deposition) [14,15], probably due to 
low solubility product of ZnS process (i.e., Zn(OH)2) resulting in a loose thin-film structure [16,17]. 
Moreover, the large conduction band offset between CIGS and ZnS also hinders its comprehensive 
implementation in the industry [12,18]. In this context, Cd(1-x)ZnxS ((Cd,Zn)S) have stepped into the 
spotlight of CIGS PV community as a practical “Cd-reduced” buffer layer material because of its 
wider bandgap, exceeding the bandgap of CdS (~2.42 eV) [19], and its suitability for the CIGS PV has 
already proven previously [18–20]. Although there are numerous research has been reported on the 
deposition of (Cd,Zn)S buffer layers by wet-chemical deposition [21–23], only a few studies discuss 
the impact of wet-chemical equipment design on the growth behavior of the buffer layer, and CIGS 
PV panel performance consequently. Notably, no technical report on properties of the (Cd,Zn)S 
prepared by large area CBD and CSD equipment, which share industrial wet-chemical equipment 
market for the CISG PV manufacturing system, has been demonstrated.      

The present study is aimed at the comparative investigation on the deposition of a (Cd,Zn)S film 
on indium tin oxide (ITO) and CIGS PV panel made in pilot production factory using a conventional 
(i.e., dipping) CBD- and chemical surface deposition (CSD)-type equipment. Optoelectrical and 
compositional characterizations with statistical analysis for the samples with (Cd,Zn)S prepared 
using the aforementioned two different types of techniques will be performed. Also, we discuss the 
operational parameters that merit the most attention in further equipment design towards the mass 
production line of CIGS PV panels.  
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2. Materials and Methods  

The (Cd,Zn)S thin films were prepared by in-house designed CBD and CSD system, which is 
schematically illustrated in Figure 1. The CBD equipment in Figure 1a includes a chemical bath with 
a heating line where a thermostat and a mechanical stirrer provide continuous warm water flow. 
Mechanically scribed CIGS panels (i.e., after P2 scribing as shown in Figure 1c) were positioned 
vertically inside the bath using a substrate holder during the reaction. Basically, the CBD system 
design used in this work is the same as is most commonly used dipping CBD method for fabricating 
lab-scale CIGS solar cells [20,24]. The cleaned indium–tin–oxide (ITO) coated glass samples were also 
treated identically with the CIGS panels in order to produce the same buffer layer for optical 
characterization and thickness monitoring.    

 

Figure 1. Schematic of apparatus of chemical bath deposition (a) and chemical surface deposition (b) 
processes for the buffer layer deposition step during the Cu(In,Ga)Se2 (CIGS) photovoltaic (PV) panel 
fabrication baseline (c). 

On the other hand, the CSD equipment (Figure 1b) includes a direct heating system positioned 
behind the substrate and a tilted mechanical two-way rotator to ensure uniform thermal and chemical 
homogeneity throughout the surface. This type of equipment is favorable for providing a 
thermostated homogeneous substrate with uniform surface temperature. In the conventional dipping 
CBD process, the heat for driving an activated chemical reaction is transferred from the bath to the 
sample surface through the solution. In general, the CdS formation reaction is better in the hottest 
region. Therefore, naturally, the deposition also occurs significantly on the heating mediators, 
including the bath solution, leading an adhesion of homogeneously produced particles in the bath 
volume to the film surface. Meanwhile, the CSD process is known to provide a predominant 
deposition of the buffer layer on the substrate from a heterogeneous growth by an ion-by-ion reaction 
mechanism [25].  

The fabrication sequence of the CIGS PV panel is similar to those demonstrated in our previous 
reports [7,19,26,27]. We note that the CIGS panels 370 × 470 mm2 used in this experiment were 
fabricated using the first generation pilot line at LG Innotek. A Mo back-contact was deposited onto 
the soda-lime-glass substrate by sputtering and scribed using a laser ablation process along 
identically spaced patterns (P1 as shown in Figure 1c). CIGS was sequentially deposited using a three-
stage thermal co-evaporation process onto the Mo layer and mechanically scribed (P2). The buffer 
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layer was formed by the above-described wet-chemical methods (CBD or CSD). Finally, the front 
window layers (i-ZnO/ZnO:Al) were deposited on top of the device with a 40 nm/1μm thickness 
combination and mechanically scribed (P3). More detailed on device structure and methods (e.g., 
patterning width, vacuum deposition parameters, etc.) are provided in references [7,19,28]. Indium 
tin oxide (ITO) coated (100 nm) tempered low-iron glasses (2.8-mm thick) were also used as the 
substrates for buffer layer thickness and transmittance control. We note that no anti-reflective (AR) 
layer deposition was applied to the cells in this study. 

The confirmed composition of CIGS absorber layer were approximately [Ga]/([Ga] + [In]) = 0.38 
± 0.01 and [Cu]/([Ga] + [In]) = 0.92 ± 0.02, and its thickness was 2.01 ± 0.06 μm. The concentrations of 
CdSO4·xH2O, thiourea (NH2CSNH2), and ZnSO4·7H2O were 1.1 × 10−3, 5.0 × 10−2, and 5.1 × 10−3 M, 
respectively. Note that the ZnSO4·7H2O was not used for the conventional CdS process. Then, the 
chemicals were dissolved in 2.25 wt. % NH4OH mixed deionized water (DI) water. All chemicals 
used were of reagent grade purchased from Sigma Aldrich. For the CBD process, the starting 
temperature of the chemical bath was 20°C, which was then increased up to 80℃, while the substrate, 
for the CSD process, was directly heated with the same temperature profile. The thickness of the 
buffer layer prepared on ITO-glass was determined by using an interferometer (NV-3000, 
Nanosystem, Daejeon, Republic of Korea). A chemical etching was carried out using a 5 wt. % HCl 
solution in order to make a step between the ITO and CdS films so that thickness measurements could 
be easier. 

Compositional analysis of the CdS and (Cd,Zn)S layers was performed by scanning electron 
microscopy combined with energy-dispersive X-ray spectroscopy (SEM-EDX, Nova 200, FEI, 
Hillsboro, U.S.A). X-ray fluorescence spectroscopy (XRF; Seiko Instruemnts Inc., SFT9500, Inoue, 
Japan) was used for the thickness and compositional analysis of the CIGS layer. Scanning AES (Auger 
Electron Spectroscopy, PHI-700, ULVAC-PHI, Chigasaki, Japan) depth profiling was performed on 
the samples as a supporting tool using a Nanoprobe (PHI 700) system. The formation of 
CIGS/(Cd,Zn)S/ZnO:Al structure was verified with ex-situ HRTEM (Titan 80-300, FEI, Hillsboro, 
U.S.A) imaging at an accelerating voltage of 300 kV. Both AES and HRTEM measurements were 
performed at KIST (Korea Institute Science and Technology) Advanced Analysis Center. The 
transmittance of the buffer layer was determined by ultraviolet-visible (UV/Vis) spectroscopy 
measurements (Shimadzu, UV 3600, Kyoto, Japan). The solar cell performance was characterized by 
current-voltage (J-V) measurements performed by using a solar simulator under AM1.5 equivalent 
illumination (Wacom Electric, WXS-300S-50, Saitama, Japan). The external quantum efficiency (QE) 
was also provided to determine the change in the bandgap of the buffer layers used for the working 
device by measuring the short-circuit current using spectrally resolved monochromatic light (PV 
Measurements QEX7, Point Roberts, U.S.A). 

3. Results and Discussion 

The thickness, transmittance, and composition of the CdS and (Cd,Zn)S films deposited on ITO-
coated glass are shown in Table 2. The deposition time was varied to ensure that the thickness of the 
(Cd,Zn)S layer was somewhat similar to that of the reference CdS layer (~70 nm) since a large Zn2+ 
concentration can inhibit complex formation between the complexing agent NH3 and the Cd2+ ion, 
thus reducing the growth rate of the film [29]. As shown in Table 2, the transmittance of the buffer 
layer strongly depends on the Zn/(Cd+Zn) ratio of films, whereas the layer thickness remained almost 
constant. Comparison of CdS and(Cd,Zn)S layers prepared by the CBD reveals that the transmittance 
of the (Cd,Zn)S layer with Zn/(Cd+Zn) ≈ 0.38 is higher than that of the reference CdS layer by at least 
5%~6 % at the same thickness. CdS and (Cd,Zn)S films prepared by CSD were also identified as 
shown in Table 2. Since the CSD process involves direct heating of the substrate, a relatively short 
process time was required to ensure a similar level of thickness as those in the CBD process. This 
reduced process time, along with low chemical usage, would be the principal advantages of making 
the CSD attractive for the PV manufacturing line. Zn/(Cd+Zn) ratio, as presented in Table 1, obtained 
by the CSD process shows a slightly lower Zn content than that of similar thickness prepared by the 
CBD process. The AES depth profile analysis shows reasonably good agreement with the 
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measurement using the EDX used in Table 1 (Figure S1). This compositional discrepancy is probably 
due to different dominant chemical reaction mechanisms at the surface between the two methods.  

Table 2. Properties of buffer layers formed on indium tin oxide (ITO)-coated glass by different 
deposition methods (CBD and CSD) using CdS and (Cd,Zn)S bath solutions. 

Method Buffer Layer Process Time (min) 
Properties 

Thickness1 (nm) Transmittance2 (%) Zn/(Cd+Zn)3 

CBD 
CdS 16 70.42 ± 2.04 78.62 ± 2.27 0 

(Cd,Zn)S 20 71.19 ± 3.47 84.79 ± 3.81 0.38 ± 0.04 

CSD CdS 12 71.18 ± 2.45 77.74 ± 1.12  0 
(Cd,Zn)S 16 72.37 ± 4.57 81.74 ± 2.96 0.27 ± 0.03 

1 Thickness of the layer measured using an interferometer. 2 Average transmittance of the layer 
measured by ultraviolet-visible (UV/Vis) spectroscopy (wavelength: 300–1000 nm). 3 Calculation 
based on the compositional analysis by energy-dispersive X-ray spectroscopy (EDX) measurements. 

As previously reported [29], the growth of ZnS film is achieved mainly by a cluster-by-cluster 
mode: ZnS particles form agglomerates, and subsequent accumulation of the ZnS building units 
results in film formation. In the CBD process, the bath solution is heated up prior to the substrate, 
and thus, the reaction in the bulk solution is more vigorous than that at the surface, and this may 
increase the possibility of homogeneous growth by the agglomerated ZnS clusters in the bath. During 
CSD, on the other hand, the ion-by-ion reaction at the substrate surface is more dominant because of 
the direct heating from the back-side of the substrate and the flow of the chemical solution along the 
tilted substrate surface. Overall, the bath condition of the CBD process could be responsible for a 
favorable environment for the higher Zn-content in the (Cd,Zn)S film grown on the substrate.  

Figure 2 shows SEM images of the (Cd,Zn)S buffer layer prepared on ITO-coated glass substrates 
by using CBD and CSD (Figure 2a,b, respectively). As expected, both (Cd,Zn)S films fabricated by 
CBD and CSD completely cover the glass substrate across the sample area. These images also indicate 
that the buffer layers have a granular structure with very well defined granular boundaries. 
Generally, the CdS is known to have a very good match with the ITO glass substrate, as reported 
previously [8,30]. Nonetheless, the SEM images in Figure 2a indicates the buffer layer prepared by 
the CBD method has larger granules than the film formed by the CSD method (Figure 2b). Clear and 
fine boundaries between the granules prepared by the CSD method also support the smaller granular 
size of the (Cd,Zn)S film. This might be related to the diffusion of Zn into the CdS film, which leads 
to a larger lattice constant than that of conventional CdS [24]. The lattice constant of wurtzite CdS 
crystal is about 4.16 Å at 300K, while the ZnS with zinc blende structure has 5.42 Å. Figure 2c–e show 
the plain-view SEM images of (Cd,Zn)S films with various ZnSO4·7H2O concentrations (4.0 × 10-3; 1.7 
× 10-2; and 2.6 × 10-2 respectively). It was found that the granular size of the (Cd,Zn)S layer increases 
with increasing the ZnSO4·7H2O concentration in the chemical solution. An interesting feature is that 
the number of void in samples also increases with Zn-content in the solution. As expected, dense 
(Cd,Zn)S buffer layer was also obtained on CIGS thin films (Figure 2f and g). The morphological 
tendency is quite similar to that on the ITO substrates and the CBD (Cd,Zn)S layer has larger granules 
with clear boundaries compared to the one prepared using a CSD process.  
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Figure 2. Scanning electron microscopy (SEM) images of samples of as-deposited (Cd,Zn)S films 
prepared on ITO-coated glass by the CBD (a) and CSD (b) processes. SEM top-view images of 
(Cd,Zn)S films obtained from various Zn-concentration (c–e; 4.0 × 10−3; 1.7 × 10−2; and 2.6 × 10−2 M, 
respectively). (f) and (g) correspond to the (Cd,Zn)S films formed on CIGS surfaces by using CBD and 
CSD, respectively. Note that the chemical solution for (f) and (g) is identical to the one used for (a) 
and (b). 

However, the EDX analysis (Table 3) revealed that the buffer layer formed on the CIGS photo-
absorber by both CBD and CSD under the (Cd,Zn)S conditions showed significantly reduced 
Zn/(Cd+Zn) ratio (0.04~0.20) in contrast to the films formed on the ITO-coated glass samples 
(0.28~0.39). In common with other thin film deposition techniques, rough morphologies tend to give 
more adherent films than corresponding smooth ones. In spite of the fact that glass itself is relatively 
inert, the surface of the glass can be very reactive towards species in solution. Specifically, the surface 
of the ITO is hydroxylated in aqueous solution, and the surface hydroxide groups can bind 
chemically to constituents (e.g., cationic precursors). Moreover, the heavy metal content of the ITO 
film, as was already shown previously [31], tend to bind with S-containing anionic precursors of the 
solution. 

Table 3. Compositional analysis of the surface of buffer layers on CIGS using EDX. Note that pieces 
from the CIGS substrate were obtained immediately after buffer layer deposition for the 
measurements (see Figure S2). 

Method Cd S Zn Zn/(Cd+Zn) 
CBD (Cd,Zn)S 42.69 45.79 11.53 0.20 
CSD (Cd,Zn)S 47.96 49.91 2.13 0.04 

Interestingly, the EDX analysis in Table 3 reveals the surprisingly low Zn-content in the (Cd,Zn)S 
layer, which was prepared using a CSD process. The TEM measurement with an energy-dispersive 
spectroscopy line-scan across the (Cd,Zn)S/CIGS interface (Figure S3) also evidenced that only slight 
diffusion of Zn into the CdS film could be measured in the case of CSD process. In contrast, the sample 
prepared by the CBD process showed a noticeable amount of Zn from the buffer layer. This can be 
explained in the following manner: The hydroxylated ITO in aqueous solution can form fairly strong 
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hydrogen bonds (e.g., ꞊Sn–OH− ↔ ꞊Sn–O− + H+), which reduces the local pH that is a favorable 
condition for the reaction between the [Zn(NH3)4]2+ and S2− in the solution [32,33]. Meanwhile, in the 
solution with the CIGS sample, the ZnS is formed scarcely due to a relatively slow reaction of the 
[Zn(NH3)4]2+ with S2−. In this case, the CdS nuclei formation takes place on the substrate under the 
ion-by-ion growth mechanism instead of adhesion of the particles formed by the cluster-by-cluster 
mechanism in the solution, such as ZnS particles. 

The I–V characteristics of the CIGS PV panels with different buffer layer treatments are shown 
in Figure 3 (see also Table 4). Irrespective of the deposition method adopted, the cells fabricating 
using the (Cd,Zn)S solution showed comparatively higher efficiency (0.3%~0.4% absolute point) than 
did those prepared using the CdS buffer layer. Similar to the behavior on the ITO surface (Figure 4a), 
it is also assumed that the Zn-salts react with S2+ ions in the solution under cluster-by-cluster growth 
regime and are integrated into the CdS which is formed under a mixed growth regime (cluster-by-
cluster and ion-by-ion growth mechanism (Figure 4b)). We emphasize that all CIGS panels used in 
this study were obtained from the same batch so that we can focus on parameters merit the most 
attention, i.e., effect of the buffer layer on the PV performance. In the case of the (Cd,Zn)S-based cells 
formed by CBD, the improvement in efficiency is attributed to the increase in both open-circuit 
voltage (VOC/cell) and current density (JSC). This result well coincides with the previous report that Zn 
addition increases the ban-gap of the buffer layer. It thus results in lower optical loss from the buffer 
layer (i.e., better blue photon response) and a suitable conduction band offset with CIGS light-
absorber layer due to a reduced conduction band discontinuity at the (Cd,Zn)S/CIGS junction [34–
36]. Hamri et al. [36] revealed in recent theoretical work that the open-circuit voltage (VOC) slightly 
increases by the change on the Zn concentration from 0 to 0.6 (relative to the Cd), above which the 
presence of spike at the interface hinders a feasible electrons transfer from the CIGS.  

 
Figure 3. Statistics of photovoltaic current-voltage (J-V) performance parameters of CIGS panels 
fabricated with various buffer layers (CdS and (Cd,Zn)S prepared by CBD and CSD methods) under 
simulated illumination of 100 mW/cm2 AM 1.5G. 
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Figure 4. Illustration for the mixed mechanism of the cluster-by-cluster and ion-by-ion growth 
regimes during the (Cd,Zn)S deposition on the ITO-coated glass (a) and on the CIGS substrate during 
the CBD process (b). The ion-by-ion growth dominant mechanism during the CSD process is also 
illustrated in (c). 

Table 4. Effect of chemical solution type on CIGS PV panel performance; conversion efficiency (Eff.), 
fill factor (FF), cell open-circuit voltage (VOC/cell), current density (JSC), and series and shunt resistivity 
(Rs and Rsh). 

Method Buffer layer Efficiency1 (%) FF (%) VOC/cell (V) JSC (mA/cm2) Rs (Ω cm2) Rsh (Ω cm2) 

CBD 
CdS 11.71 61.97 0.625 30.33 9.10 1123.02 

(Cd,Zn)S 12.12 59.58 0.651 31.67 12.20 1882.13 

CSD 
CdS 11.88 63.55 0.633 30.98 8.77 1291.09 

(Cd,Zn)S 12.22 65.01 0.635 31.13 8.59 2185.53 
1Light conversion efficiency under AM1.5 equivalent illumination. 

In the case of the CIGS PV panels with the (Cd,Zn)S-based buffer layer formed by CSD, the 
efficiency gain was approximately 0.34 % absolute point, which is mainly resulted from the increased 
fill factor (FF). It is obvious that the increase in FF is primarily attributed to the improved shunt 
resistance (Rsh), as the series resistance (Rs) remained nearly unchanged (see Table 4). Naturally, Jsc 
remained nearly unchanged (Table 4), as the EDX results in Table 3 revealed a very low Zn/(Cd+Zn) 
ratio for the buffer layer implying that any meaningful optical bandgap of the buffer layer cannot be 
observed. This different trend PV performance for the cell with a CSD (Cd,Zn)S buffer layer towards 
the one with CBD (Cd,Zn)S layer is well-represented in the J-V curves (Figure 5a). As shown in Table 
2, the processing time required to form a (Cd,Zn)S layer with the same thickness to that of the 
reference CdS layer (~ 70 nm) was 4 minutes longer than the established time for the reference CdS 
layer formation. This increased process time may influence the stack-coverage by the buffer layer, 
probably arising from a prolonged time to sufficiently cover the rough surface with the chemically-
grown particles on the CIGS surface under the ion-by-ion growth regime, as illustrated in Figure 4c.  

 
Figure 5. J–V characteristics of CIGS panel with various buffer layers (dark – CBD (Cd,Zn)S; red – 
CSD (Cd,Zn)S) (a). TEM cross-sectional image of the CIGS PV cell with a (Cd,Zn)S buffer layer 
deposited by a CSD process (b) and zoomed-in focused ion beam (FIB) SEM image for the interface 
at CIGS/(Cd,Zn)S (c). 
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The SEM image of the (Cd,Zn)S formed on a CIGS layer by using the CSD method (Figure 2g) 
confirms a conformal and much smoother coverage compared to the one formed by CBD (Figure 2f). 
This conformal coverage by the buffer layer is also well demonstrated in the TEM and SEM images 
shown in Figure 5b and c. As indicated with a red circle in Figure 5c, the crevice between the CIGS 
grains also is well protected by a dense buffer layer. Though the present experimental results do not 
directly support the hypothesis mentioned above, it is a well-established fact that pinholes or voids 
resulted from inadequate surface coverage create a shunting path that contributes to the decreased 
Rsh, which is intrinsically related to the FF, as has been argued previously [19,22,37].   

As evidenced in external quantum efficiency (EQE) measurements (Figure 6a), an improved 
response from the (Cd,Zn)S buffer layers prepared by a CBD process (from 350 to approximately 520 
nm in wavelength) also well agrees with the abovementioned description. The differential EQE 
(dEQE(λ)/dλ) conversion (Figure 6b) also yields a positive peak shift for the buffer layer (from 2.5 to 
2.7 eV) which is attributable to a slight bandgap shift due to high Zn concentration in (Cd,Zn)S layer. 
Meanwhile, the overlapping characteristic peaks from the differential EQE for other buffer layer cases 
reveal the steady EQE responses without any noticeable bandgap shift. Another interesting feature 
specific to the CBD (Cd,Zn)S buffer layer case is the decrease in fill factor (FF) as plotted in Figure 3d. 
In connection with the increased series resistance (Rs) in Table 4, the (Cd,Zn)S buffer layer with a high 
Zn/(Cd+Zn) ratio might increase the resistivity of the buffer layer, and the lowered FF consequently. 
As reported previously [38,39], the resistivity of the (Cd,Zn)S films increases with increasing Zn-
content due to decreasing carrier density of the (Cd,Zn)S layer.  

 

Figure 6. External quantum efficiency (EQE) (a) and differential EQE (b) graph for the CIGS PV 
panels with different type of buffer layers (red – CBD and black – CSD). 

4. Conclusions 

(Cd,Zn)S layers were grown by chemical deposition using CBD and CSD processes. The 
transmittance and growth rate of the (Cd,Zn)S buffer layers on the ITO-coated glass were directly 
and inversely proportional to the Zn addition level, respectively. CIGS solar panels with (Cd,Zn)S 
buffer layers deposited by both CBD and CSD processes have shown improvement in conversion 
efficiency. In particular, the conventional CBD process with Cd and Zn components led to increased 
cell efficiency because of the increase in JSC and VOC. However, the use of CSD with the same solution 
led to improved cell efficiency because of the increased FF, while the JSC remained unchanged. EDX 
and QE results confirmed that the concentration of the Zn component incorporated into the CdS layer 
differs depending on the surface type. Unlike the CBD buffer layer prepared on the CIGS PV panels, 
the relatively small quantity of the Zn was found from the (Cd,Zn)S layer prepared by the CSD 
method. This result could be evidence for the fact that ion-by-ion growth dominant mechanism 
during the CSD process. Despite the beneficial effect of using the (Cd,Zn)S buffer layer, irrespective 
of the type of the method, this approach can restrict the use of (Cd,Zn)S for the mass production line 
due to the reduced deposition rate. This technical note with an equipment-wise approach can be used 
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as a technological guideline for the manufacturers to further develop of wet chemical buffer layer 
deposition system for the CIGS PV production line. Apart from the statistical and microscopic 
analysis provided in this technical report, in-depth optoelectronic characteristics must be addressed 
along with a cost-effectiveness analysis for further development.  

Supplementary Materials: The following are available online at www.mdpi.com/1996-1944/13/7/1622/s1, Figure 
S1: AES depth profile of (Cd,Zn)S thin films grown on ITO-coated glass substrates, Figure S2: CIGS panel photo 
after the buffer layer deposition process and SEM image of the scraped CIGS piece, Figure S3: TEM images of 
AZO/i-ZnO/(Cd,Zn)S/CIGS interfaces with buffer layers prepared by different methods with energy-dispersive 
spectroscopy line-scans across the interfaces. 
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