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Abstract

With the highly increased interest in offshore wind turbines and their technologies, the sector has wit-
nessed rapid development in the past decade. For installed offshore wind turbines, there has been a lot
of research conducted in the field of aero-, hydro- and structural dynamics, wind turbine-control, opera-
tion & maintenance, foundations and moorings. The research field of offshore wind turbine installation
is on the other hand relatively new, and the studies regarding this topic are limited. The lifting of heavy
objects is one of the most commonly performed offshore installation operations and has become more
challenging due to the trend of increasingly larger and heavier payloads. Especially for substantial
waves, the pendular motions of the payload may cause operations to be halted.

This thesis performs a study on a positioning control strategy for a complex lifting control scenario,
i.e., position-keeping of a complex-shaped 6-DOF payload using a floating vessel equipped with multi-
ple tugger winches. As the system is highly complex and contains non-linear and time-varying dynamic
phenomena, it is an impracticable task to formulate a model that meticulously describes the actual sys-
tem. For this reason, a fully integrated simulation model in Orcaflex has been used to capture the
non-linear dynamic behaviour of the system.

The preassembly operation of a Jacket Lifting Tool on a monohull vessel is adopted as a case study to
verify the proposed control strategy. Two scenarios are considered -installation and decommissioning-
for which an outrigger configuration is used to position the tugger winches. Due to the difference in
setpoint (i.e. the desired position) in the two scenarios, the proposed controller is solely implemented in
the decommissioning scenario. Damping tuggers, the current state-of-the-art when it comes to motion
mitigation, is considered suitable in the installation scenario.

The proposed controller does not consider the state—space equations of the system and only relies
on real-time motion and tension measurements of the vessel and suspended payload. In addition, the
controller considers the system’s velocity tension and power limitations. The controller’s impact is eval-
uated based on the positional error and verified by the peak reduction in the power spectral density
spectra of the simulations. Despite its simple form, results show a significant reduction in the positional
error, and therefore the possibility to extend the working conditions of the installation vessel. To improve
the controller’s performance it is recommended to involve derivative control, consider payload motion
prediction and to optimise the tugger winch configuration. For further studies, experimental testing is
needed to verify the effectiveness of the control scheme as it could appear that the controller does
not exhibit similar performance in the real system. However, it is deemed unlikely that the latter would
occur as a sensitivity study regarding measurement error indicates a stable response of the controller.
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Introduction

In the 2015 Paris Agreement on climate change, 195 countries agreed to limit the global average tem-
perature rise to a maximum 2 C above pre-industrial levels. In addition, all countries concurred to
bring greenhouse gas emissions to zero within the second half of the 21st century. Energy production
is responsible for 73.2% of global greenhouse gas emissions and will be the focal area for climate
change mitigation efforts [42]. At the same time, the global energy demand has been increasing over
the last decades due to an increase in world population in combination with technological and economic
developments [20]. This trend is likely to continue in the coming years. The total final energy consump-
tion is estimated to increase by 1.4 - 1.7% per year from 2020 to 2030. The exact percentage will
largely depend on the global energy efficiency and electrification developments. In order to reach the
climate targets and meet the global energy demand, new energy sources are to be implemented. The
shift from hydrocarbons to renewable energy as the primary energy supplier is known as the energy
transition. One of the most promising renewable energy sources is offshore wind energy. Offshore
wind energy offers many benefits in comparison to onshore wind. For example, no horizon pollution,
higher wind speeds and less fluctuating amounts of energy are produced. Furthermore, offshore space
is practically unlimited, making it suitable for developing large (>100 turbines) wind farms. This allows
for large-scale development of renewable energy, a goal many European countries pursue.

1.1. Lifecycle of an offshore wind farm
The lifecycle of a OWF consist of 5 main stages:

1 2 3 4 5
A Production Operation Decommissio
Pl"’:,gg'l:gigﬂd and and ning and
p acquisition maintenance repowering

Figure 1.1: Lifecycle stages of an OWT [23]

1. Planning and production
This can also be called the "scoping” stage. The site selection and preparation of a formal con-
sent application take place. The metocean data and seabed conditions are analysed, and an
environmental impact assessment induced by the chosen wind turbine type is carried out.

2. Production and acquisition
The second stage refers to the manufacturing/production of the WTs, moorings and cables.

3. Installation and commissioning
In this stage, the installation of the OWTs takes place. This includes the installation of the cables,
foundation, tower, nacelles and blades. Depending on the chosen installation method, installation
vessels and handling equipment are needed. The most suitable installation method for an OWF
depends on the foundation types, site conditions, and available equipment [23].
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SRVLWLRQ DQG KHDGLQJ DUH HVVHQWLDO IDFWRUV WKDW LQIOXHQFH VX
XVXDOO\XVHG WR SURYLGH UHD O@W ) PO DEHF\L WLRH) D/XG SB XYWLV ILOOHG ZL
WR FXUH EHIRUH LQVWDOOLQJ WKH ZLQG WXUELQH 7KHDQQXOXV LV WKF
WKLY FDVH EHWZHHQ WKH DQFKRU SLOHDQG WKH SLOH VOHHYH LQ WKH N

JLIXUH .H\VWHSV RID MDFNHW LQVWDOO@WLRQ SUH SLOH GULYLQJ >

3RVW SLOH GULYLQJ

SRVW SLOHPBWIKR®RUIV DQ DOWHUQDWLYH ZD\ WR IL[ WKH MDFENHW WR WK
XVHG KHUH DV ZHOO EXW DV WKH QDPH LPSOLHV WKH\ DUH QRZ KDPPHU
WKH MDFNHW 7KH SLQ SLOHV DUH GULYHQ RUORZHUHG LQWR SUH GULOC
OHJV 3RVW SLOHGULYLQJVHHPVPRUHFRQYHQLHQW WKDQ SUH SLOH GU
VWHSV 1HYHUWKHOHVYV SUH SLOLQJLVY XVHG PRUHRIWHQ VLQFH LW KD\
DQG MDFNHW LQVWDOODWLRQ UHGXFLQJWKH YHVVHO FRVWV WR EH XVH
VSDFH RIWKHPDLQ MDFNHW@QVWDOODWLRQ YHVVHO >

6XFWLRQ EXEFNHW

$VXFWLRQIEXBRH®O NQRZQ WHFKQRORJ\LQ WKHRLODQGJDVLQGXVWU\\
ODWLRQ FRVWV EHFDXVH OHVV HTXLSPHQWaD & \RDILHD G RAUPLDYQ Q\J RV GIHH I
VWHHO RU FRQFUHWH DQG LQVWDOOHG XVLQJ WKH SULQFLSOHV RI VXFW
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