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Abstract We present an improved mascon approach to
transform monthly spherical harmonic solutions based on
GRACE satellite data into mass anomaly estimates in Green-
land. The GRACE-based spherical harmonic coefficients are
used to synthesize gravity anomalies at satellite altitude,
which are then inverted intomass anomalies permascon. The
limited spectral content of the gravity anomalies is properly
accounted for by applying a low-pass filter as part of the
inversion procedure to make the functional model spectrally
consistent with the data. The full error covariance matrices
of the monthly GRACE solutions are properly propagated
using the law of covariance propagation. Using numerical
experiments, we demonstrate the importance of a proper data
weighting and of the spectral consistency between functional
model and data. The developed methodology is applied to
process real GRACE level-2 data (CSR RL05). The obtained
mass anomaly estimates are integrated over five drainage
systems, as well as over entire Greenland. We find that the
statistically optimal data weighting reduces random noise by
35–69%, depending on the drainage system. The obtained
mass anomaly time-series are de-trended to eliminate the
contribution of ice discharge and are compared with de-
trended surface mass balance (SMB) time-series computed
with the Regional Atmospheric Climate Model (RACMO
2.3). We show that when using a statistically optimal data
weighting in GRACE data processing, the discrepancies
between GRACE-based estimates of SMB and modelled
SMB are reduced by 24–47%.

B J. Ran
j.ran@tudelft.nl

1 Delft University of Technology, Stevinweg 1, 2628 CN Delft,
The Netherlands

Keywords GRACE · Mascon · Data weighting · Greenland
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1 Introduction

One of the primary sources of information about mass varia-
tions of the Greenland Ice Sheet (GrIS) is the Gravity Recov-
ery and Climate Experiment (GRACE) satellite mission.
Using primarily K-band ranging (KBR) data between the
two GRACE satellites, monthly sets of spherical harmonic
coefficients (SHCs) are computed complete to some maxi-
mum degree, e.g. 96 for CSR (the Center of Space Research
of the University of Texas at Austin) RL05 solutions (Bettad-
pur 2012) and 90 for GFZ (GeoForschungsZentrum) RL05
solutions (Dahle et al. 2012). Alternatively, gravity solutions
in terms of mass anomalies per mass concentration block
(“mascon”) have also been released by Jet Propulsion Labo-
ratory (JPL) (Watkins et al. 2015; Wiese 2015; Wiese et al.
2016), Goddard Space Flight Center (GSFC) (Luthcke et al.
2013) andCSR(Save et al. 2016).To cleanKBRdata from the
contribution of high-frequencymass variations, an ocean tide
model [e.g. EOT11a (Savcenko andBosch 2010)], amodel of
non-tidal components of the atmospheric and oceanic mass
variations [e.g. theAtmosphere andOceanDe-aliasingmodel
(AOD) (Dobslaw et al. 2013)] and other background models
are routinely used.

The sensitivity of GRACE measurements is known to be
anisotropic: it is higher in the along-track direction and lower
in the cross-track direction (Condi et al. 2004; Ditmar et al.
2012). A higher sensitivity amplifies data errors, which are
caused, among others, by noise in the data provided by on-
board sensors and imperfectness of background models. As
a result, monthly sets of SHCs are contaminated by strong
north–south “stripes”, with amplitudes that depend on the
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latitude (Wahr et al. 2006). These amplitudes are smaller in
polar areas and larger near the equator (Wahr et al. 2006;
Linage et al. 2009).

In principle, gravity field variations expressed in spheri-
cal harmonics can be converted into mass anomalies at the
Earth’s surface by a spectral transfer using a proper scaling
of SHCs (Wahr et al. 1998). To suppress stripes and high-
frequency noise, low-pass filters and/or de-striping schemes
are typically used (Jekeli 1981; Wahr et al. 1998; Swenson
and Wahr 2006) at a price of a reduced spatial resolution
and distortions in the estimated mass anomalies (Duan et al.
2009).

Alternatively, the mass anomalies can be estimated from
theSHCsusing least-squares techniques. In this case, they are
modelled as a thin mass layer located at the Earth’s surface,
or some approximation of it. The mass layer is introduced
as a constant function over mascons of pre-defined geome-
tries. The geometry of the mascons can be chosen to take
into account existing physical constraints, like the geometry
of the coastal line. A proper choice of the size of the mas-
cons allows for noise suppression without the need for any
additional filtering of the SHCs, e.g. de-striping scheme. This
helps in reducingdistortions in the estimatedmass anomalies.
Luthcke et al. (2006) were the first to use the mascon rep-
resentation to derive mass anomalies over Greenland from
GRACE level-1b data, followed by Luthcke et al. (2013),
Watkins et al. (2015) and Save et al. (2016). To reduce the
numerical complexity, variants of the mascon approach have
been suggested, which use monthly sets of SHCs as input,
e.g. Forsberg and Reeh (2007), Baur and Sneeuw (2011) and
Schrama andWouters (2011). In line with Forsberg and Reeh
(2007) and Baur and Sneeuw (2011), we compute monthly
sets of gravity disturbances at a mean satellite altitude from
the monthly sets of SHCs as data to estimate mass anomalies
per mascon.

Themajor objective of the present study is to develop a sta-
tistically optimal variant of the mascon approach applicable
to the estimation of Greenland mass anomalies. We suggest
a number of improvements upon Forsberg and Reeh (2007)
and Baur and Sneeuw (2011). Two of the major improve-
ments are described here. Firstly, we properly propagate the
full error covariance matrices of monthly SHCs into gravity
disturbances at satellite altitude using the law of covari-
ance propagation. These noise covariancematrices of gravity
disturbances are used in the subsequent least-squares adjust-
ment. We expect a noticeable improvement in the estimated
mass anomalies and their uncertainties, as noise in SHCs
is highly correlated (Swenson and Wahr 2006), among oth-
ers due to the anisotropic sensitivity of the GRACE KBR
data. To address the ill-conditioning of the propagated noise
covariance matrices, we develop an approximate inversion
scheme based on an eigenvalue decomposition. Secondly,
we ensure a spectral consistency between the GRACE-based

gravity disturbances and the unknown mascon parameters.
The spectrum of the GRACE-based gravity disturbances is
limited by the maximum spherical harmonic degree of the
monthly sets of SHCs, whereas the mascon representation
implies that gravity disturbances contain energy at higher
frequencies, too. The spectral consistency has not been con-
sidered in previous studies, which is partially due to the fact
that in these studies scaled unit matrices were used to repre-
sent the data noise.Whenusing full noise covariancematrices
as in this study, spectral consistency between model and data
noise is indispensable to obtain high-quality solutions.

Typically, the mascon approach makes use of regulariza-
tion or other spatial constraints to suppress noise at a price
of introducing a bias in the solution. In this study, no spatial
constraints in the form of regularization are used. Instead, the
size of the mascons is chosen carefully in order to control the
noise.

To demonstrate the performance of the proposed method-
ology, we make use of both synthetic and real data. In the
latter case, we exploit GRACERelease-05monthly solutions
provided by CSR. To investigate the importance of proper
data weighting and for validation, we compare the estimated
mass anomalies with surface mass balance (SMB) estimates
from the Regional Atmospheric Climate Model (RACMO
2.3) (Noël et al. 2015). However, a direct comparison of
GRACE-based and SMB-based mass anomalies is not pos-
sible because the latter time-series lacks the ice discharge
signal. To solve that problem, we estimate and remove linear
trends from both time-series. This is justified because sea-
sonal mass variation signals of Greenland are dominated by
SMB-related signals (van den Broeke et al. 2009).

The remaining part of the paper is organized as follows. In
Sect. 2, we present the statistically optimalmascon approach.
The performance of this approach is demonstrated using sim-
ulated data, which is the subject of Sect. 3. Particularly, we
investigate to what extent the estimates are improved when
incorporating the full noise covariance matrices and ensur-
ing the spectral consistency between the data and the mascon
parameters. In Sect. 4, we present the results of real data pro-
cessing and validate them against SMB time-series. Finally,
we provide a summary and the main conclusions in Sect. 5.

2 Methodology

We propose an improved mascon approach compared to
earlier studies by Forsberg and Reeh (2007) and Baur and
Sneeuw (2011). Section 2.1 describes the exploited func-
tional model, which is forced to be spectrally consistent with
monthly GRACE SHCs. In Sect. 2.2, we discuss a practical
way to divide the territory of Greenland into almost equal-
area patches of irregular shape. The proper choice of the area
over which gravity disturbances at satellite altitude are gen-
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erated is discussed in Sect. 2.3. Section 2.4 describes the
statistically optimal inversion of gravity disturbances into
mass anomalies per mascon.

2.1 Gravity disturbances

Monthly sets of gravity disturbances atmean satellite altitude
are computed from monthly GRACE SHCs using spherical
harmonic synthesis. Then, they are linked to the gravitational
attraction of mascons at the Earth’s surface. Finally, mascon
parameters are estimated using least-squares techniques.

2.1.1 GRACE-based gravity disturbances

In the context of this study, a gravity disturbance δg is under-
stood as the negative radial derivative of the gravitational
potential V , generated by a mass anomaly:

δg = −∂V

∂r
. (1)

They are linked to a set of GRACE SHCs ΔClm and ΔSlm
complete to degree L as

δgp = GM

r2p

L∑

l=1

l + 1

1 + k′
l

(
a

rp

)l l∑

m=0

P̄lm

× (
sin φp)(ΔClm cosmλp + ΔSlm sinmλp

)
, (2)

whereGM is the geocentric constant;a is the semi-major axis
of the reference ellipsoid; (rp, φp, λp) are spherical coordi-
nates of a data point p, which in this study is assumed to be
located at an altitude of 500 km above a mean Earth sphere;
L is the maximum degree of the monthly GRACE solutions;
and P̄lm is the normalized associated Legendre function of
degree l and orderm. Notice that the expression contains the
load Love numbers k′

l , which are introduced to eliminate the
effects of the elastic response of the Earth to a load, which is
included in the SHCs. The lateral distribution of data points
is discussed in Sect. 2.3.

2.1.2 Gravity disturbances generated by a set of mascons

Suppose we have N mascons Mi (i = 1, 2, . . . , N ). The
surface density (mass per unit area) of mascon i is denoted
as ρi . Then, Eq. (1) can be rewritten as

δgp = − ∂

∂r

(
G

N∑

i=1

ρi

∫

Mi

ds

l p

)
= − ∂

∂r

(
G

N∑

i=1

ρi Ii,p

)
,

(3)

where G is the universal gravitational constant and

Ii,p =
∫

Mi

ds

l p
(4)

with l p being the distance between an integration point and
the data point p.

Ii,p has to be computed using numerical integration. Here,
we use a composed Newton–Cotes formula. The nodes are
located on a Fibonacci grid (González 2010). The number of
nodes of mascon i is denoted Ki . Then,

Ii,p ≈
Ki∑

j=1

wi j
1

li j,p
, (5)

wherewi j = Si/Ki with Si the surface area of mascon i . The
distance li j,p between a Fibonacci point (i, j) with spheri-
cal coordinates (ri j , φi j , λi j ) and the data point p with
spherical coordinates (rp, φp, λp) can be computed as

li j,p = (r2i j + r2p − 2ri j r p cosΨi j,p)
1
2 , (6)

where cosΨi j,p = sin φp sin φi j + cosφp cosφi j cos(λp −
λi j ).

Then,

δgp ≈ G
N∑

i=1

ρi

Ki∑

j=1

wi j (r
2
i j + r2p − 2ri j r p cosΨi j,p)

− 3
2

× (ri j − rp cosΨi j,p). (7)

Equation (7) represents the functional model that relates the
gravity disturbances and the surface densities of themascons.
In matrix-vector form, Eq. (7) can be written as

d ≈ A′x, (8)

where x is the vector of surface densities, d is the vector of
gravity disturbances, and A′ is the design matrix. The vector
x is estimated from the vector of gravity disturbances d using
weighted least-squares techniques.

The gravity disturbances of Eq. (2) have a limited band-
width because the monthly GRACE solutions are limited to
a certain maximum spherical harmonic degree. However, the
gravity disturbances of Eq. (7) are not band-limited. Hence,
the functional model, Eq. (8), is not correct as there is a spec-
tral inconsistency between the data and the model. To obtain
a spectrally consistent functional model, we need to apply
a low-pass filter to the design matrix A′, i.e. A′ needs to be
replaced by A, where

A = YA′, (9)
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andY represents the low-pass filter. Without such a low-pass
filter, the short wavelengths of the estimatedmascon solution
would be biased towards zero.

To define a suitable low-pass filter, we need to remember
that each column of the design matrix A′ represents a set
of gravity disturbances caused by a single mascon of unit
surface density. Therefore, the filter operation can be imple-
mented as follows. Firstly, gravity disturbances caused by a
single mascon of unit surface density are computed on an
equal-angular global grid. They are used as input to estimate
a SH model of gravity disturbances complete to some max-
imum degree L > LG using spherical harmonic analysis.
The SH model is truncated at the maximum degree LG of
the monthly GRACE spherical harmonic models and suc-
cessively used to synthesize a column of the design matrix
A, which corresponds to the single mascon. This procedure
has to be followed for every mascon. The result is a design
matrixA, which is spectrally consistent with the information
content in the data and the data noise covariance matrix.

The spectrally consistent analogue of Eq. (8) is written as

d = Ax + n, (10)

where the vector n is introduced to account for noise in the
GRACE-based gravity disturbances. This noise is assumed
to be of zero mean and Gaussian. Furthermore, we assume
that

D{n} = Cd, (11)

where D{·} is the dispersion operator and Cd is the data
noise covariance matrix. The latter is computed on a month-
by-month basis from the full noise covariance matrix of the
monthly SHCs using the law of covariance propagation.

Then, best-linear unbiased estimator (BLUE) x̂ of the
mass anomalies is

x̂ = (ATCd
−1A)−1ATCd

−1d. (12)

The BLUE, Eq. 12, is referred to as the “statistically optimal
estimator” in this study.

2.2 Parameterization

The proper choice of the size of a mascon is important to
mitigate noise amplification during the data inversion. To
facilitate experiments with different mascon sizes, we devel-
oped a procedure for an automatic division of the territory of
Greenland into nearly equal-area mascons of a desired size.
The procedure consists of two steps. In the first step, Green-
land is split into latitudinal strips of equal width, which is
chosen to be as close to the desired size as possible. In the
second step, each strip is split into individual mascons of

an approximately desired size using straight segments in the
rectangular projection. The orientation of the segments is
adapted to follow the orientation of the west and east borders
of the current strip. Examples of the resulting parameteriza-
tions are shown in Fig 1. Note that the mascons located at the
Greenland coast are defined in linewith the coastal geometry.

We also define 9 mascons outside Greenland to reduce
leakage of signal from outside Greenland into the Greenland
mascons. These mascons cover Iceland, Svalbard and the
Canadian Arctic Archipelago glaciers, see Fig. 2. It is worth
mentioning that we do not parameterize the nearby ocean
areas, due to a minor impact of oceanic mascons, e.g. at the
level of 7 Gt/year for the trend over 2003–2013, when the
optimal data weighting is applied.

2.3 Distribution of data points

In choosing the altitude of data grid, we followed the sugges-
tion of Baur and Sneeuw (2011): 500 km. Another option is
to use altitudes between 480 and 500 km in order to address
the decrease in orbital altitude of the GRACE satellites, as
was done by Forsberg et al. (2017). Numerical studies (not
shown here) reveal that this leads to similar estimates (around
10 Gt/year in terms of trend over 2003–2013) when the data
weighting is switched on. We attribute the observed minor
differences to the fact that the applied data processing strat-
egy, including the truncation of the spectrum of the matrix
Cd, was fine-tuned for the grid altitude of 500 km.We expect
that fine-tuning of the data processing for grid altitudes cho-
sen consistently with actual GRACE orbits would reduce
these differences further. This was out of the scope of this
study, butmay be the subject of future research. The data area
comprises Greenland and a buffer zone of 800 km around
Greenland. The use of a buffer zone is justified by the fact
that each gravity disturbance at satellite altitude is sensitive
to a mass redistribution in a neighbourhood of a few hundred
kilometres around that point (Baur and Sneeuw 2011). Thus,
defining the data area in such a way ensures a more compre-
hensive representation of the target signals. The data points
are located on a Fibonacci grid with a mean distance of 37.5
km. Additional data points on the oceans, but outside the
data area are introduced for reasons discussed in Sect. 3.2.2.
They are located on a Fibonacci grid with a mean distance
of 2000 km. The total number of data points is 6953 with
6867 points inside the data area and 86 points in ocean areas
outside the data area.

2.4 Data inversion

The full noise covariance matrix of the GRACE-based grav-
ity disturbances, Cd, is ill-conditioned and possesses a
gradually decreasing eigenvalue spectrum with many eigen-
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Fig. 1 Partitioning of Greenland into 23 (size about 300 × 300 km), 36 (size about 250 × 250 km), 54 (size about 200 × 200 km) and 95 (size
about 150 × 150 km) mascons, respectively
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Fig. 2 Mascons outside Greenland used in this study

values close to zero. Therefore, some kind of regularization
is needed before this matrix is inverted. Here, we use an
eigendecomposition to compute an approximate inverse, i.e.

Cd = Q�QT, (13)

where Q is a unitary matrix which contains the eigenvectors
of Cd and � is the square diagonal matrix of eigenvalues of
Cd. In Appendix A, we show that the matrices Q and � can
be computed without an explicit computation of the matrix
Cd, which helps to minimize the loss of significant digits.

Formally, the inversion of the matrix Cd can be written as

Cd
−1 = (Q�QT)−1 = Q�−1QT. (14)

However, many eigenvalues of the matrix Cd are small,
reflecting the ill-conditioning of this matrix. Therefore, an
approximate inverse of this matrix is computed as follows.
The matrix � is truncated in such a way that only the eigen-
values exceeding a pre-defined threshold are retained:
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�t = J�JT, (15)

where J = [I 0] is the truncation operator with I being a unit
matrix and �t is the resulting diagonal matrix, containing
a truncated set of eigenvalues. By retaining only sufficiently
large eigenvalues, we stabilize the computation of the inverse

of the matrix�t. An approximate inverse �̃
−1

of the original
matrix � is obtained by replacing the missing elements with
zeros:

�̃
−1 = JT�−1

t J. (16)

After that, we define the approximate inverse C̃−1
d of the

matrix Cd as

C̃−1
d = Q�̃

−1
QT = QJT�−1

t JQT = Qt�
−1
t Qt

T, (17)

where

Qt = QJT (18)

is the truncated matrix Q containing only the eigenvec-
tors related to the retained eigenvalues. Then, according to
Eq. (12), the weighted least-squares solution x̂ is

x̂ = (ATC̃−1
d A)−1ATC̃−1

d d

= (ATQt�
−1
t QT

t A)−1ATQt�
−1
t QT

t d

= (BT�−1
t B)−1BT�−1

t QT
t d, (19)

where

B = QT
t A. (20)

This solution is still unbiased, but strictly spoken not a min-
imum dispersion solution.

3 Numerical experiments

We do a number of numerical experiments to investigate
the performance of the improved mascon approach and to
fine-tune some data processing parameters. In Sect. 3.1, we
present the basic set-up of the numerical experiments. Sec-
tion 3.2 is devoted to a presentation and discussion of the
results. The importance of the spectral consistency is dis-
cussed in Sect. 3.3.

3.1 Experimental set-up

The basic set-up used in all numerical experiments includes
the definition of (i) the “true” signal and (ii) the error sources.

3.1.1 “True” signal

We define the “true” signal as the yearly mass change, which
is determined on the basis of trends extracted from ICE-
Sat altimetry data (see Table 1) (Felikson et al. 2016). As
shown in Fig. 3, these trends represent the mean rate of mass
change over the period 2003–2009 per 20 × 20 km patch
covering entire Greenland, converted from the surface eleva-
tion change rate by applying a density of 917 kg/km3 (Wahr
et al. 2000). This signal is directly used to compute the mass
anomaly per mascon as “truth”. Using the proposed mas-
con approach, we generate gravity disturbances at satellite
altitude from the ICESat altimetry data. Thereafter, we low-
pass-filter them to limit the spectrum to spherical harmonic
degrees from 1 to 120. Finally, we estimate mass anomaly
per mascon and compare with the “truth” to evaluate the per-
formance of the methodology.

There ismuch freedom in the definition of the “true” signal
in the presence of secular trends. The “true” signalmay reflect
total mass change over an arbitrary time interval, ranging
fromonemonth tomanyyears. The choice of the time interval
determines the contribution of error sources like signal leak-
age and parameterization errors to the overall error budget.
If the time interval is short (e.g. one month), signal leakage

Table 1 A summary of data used in this study

Data Role Temporal resolution Spatial resolution Pre-processing

ICESat elevation
change rate

Simulating the true signal 2003–2009 20-km blocks –

GRACE SHCs from DMT Simulating signal
leakage

Month Degree 120 –

GRACE SHCs from CSR RL05 Real data Month Degree 96 –

Surface mass
balance from
RACMO 2.3

Validating estimates Daily 11-km blocks Resampled to monthly
mean SMB for each
drainage system and
entire Greenland
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Fig. 3 The “true” signal defined as the yearly mass change over the
GrIS, in terms of EWH in units of metres

and parameterization errors may be small compared to the
data noise. However, the relative contribution of these error
sources to the overall error budget increases with increasing

time interval. In this study, we define the “true” signal as the
yearlymass change, which represents a kind of intermediate
choice between the two extremes of a monthly signal and a
multi-year signal. Our time interval is somewhat shorter than
that considered in the study by Bonin and Chambers (2013),
which was set equal to 4 years. In any case, the amplitude
of the true signal in real GRACE data processing may differ
depending on the signal of interest, which may range from
short-term mass variations to long-term trends.

3.1.2 Error sources

The data generated in the previous section are superimposed
by errors. In this study, we consider 4 error sources, i.e. sig-
nal leakage, AOD noise, random noise in GRACE-based
SHCs and parameterization error. The latter is also some-
times referred to as “model error” (e.g. Xu 2010; Stedinger
and Tasker 1986).
3.1.2.1 Signal leakage In this study, signal leakage refers
to the impact of mass variations from outside Greenland on
the estimated mascons. To simulate signal leakage, we intro-
duce mass variations in Alaska, northern Canada, northern
Russia and Fennoscandia, see Fig. 4. The “true” signal over
these areas is also defined as the yearly mass variation. It
is generated using the available optimally filtered trend over
2003–2008 based on the Delft Mass Transport (DMT)model
(Siemes et al. 2013).

Fig. 4 Mascons used to
simulate signal leakage. The
value of each mascon is the full
signal generated using the trend
over the period 2003–2008
derived from the DMT model, in
terms of EWH in units of metres
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3.1.2.2 AOD noise AOD noise refers to errors in the back-
ground models, which are used to reduce non-tidal mass
transport in the atmosphere and ocean. AOD error is consid-
ered to be one of large error sources in the monthly solutions.
Here, we also take 10% of the difference of twoAODmodels
separated by one year as the AOD noise, in line with the def-
inition of the true signal (yearly mass accumulation). To that
end, we choose AOD models in August of 2005 and 2006,
because this period is roughly in the middle of the true sig-
nal (ICESat trend over 2003–2009). Based on our numerical
study, we find that the AOD noise plays a minor role. There-
fore, there would be negligible impact if a different time
interval were chosen. Defining the AOD error as 10% of the
AOD model signal is believed to be a reasonable choice, in
view of previous studies (Thompson et al. 2004; Ditmar et al.
2012).

3.1.2.3 RandomnoiseWeassume that the yearlymass change
is the result of the difference between two monthly solutions
separated by a time interval of one year. Furthermore, we
assume that there is no noise correlation between monthly
solutions. This implies that the random noise in the gener-
ated yearly mass change can be set equal to the noise in a
monthly solution multiplied with a factor of

√
2. First, we

generate a vector n of zero-mean white Gaussian noise with
unit variance; the length of n is equal to the number of SHCs.
Then, a realization of correlated noise with the covariance
structure of the matrix Cδp is obtained as

nc = Ln, (21)

where L is the lower triangular Cholesky factor of the noise
covariance matrix Cδp of GRACE monthly SHCs:

Cδp = LLT. (22)

In this study, the noise covariance matrix is complete to
degree 120. It describes the noise inGRACESHCs inAugust
2006 and was produced together with the DMT model. Note
that the noise in the degree-one coefficients is not included.
One hundred random noise realizations are simulated in this
way in order to make the results of the numerical study more
representative. Figure 5 shows one of these noise realizations
in terms of EWH (equivalent water height).

3.1.2.4 Parameterization errors Parameterization errors are
caused by the fact that the adopted parameterization assumes
a uniform surface density distribution within each mascon,
whereas the actual distribution within a mascon may spa-
tially vary. Here, parameterization errors are automatically
introduced, as the “true” signals are generated with ICESat
altimetry data with a spatial resolution of 20 km, which is
much finer than the mean size of a mascon.
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Fig. 5 The top panel shows the AOD error, which is taken as 10%
of the difference between August 2005 and August 2006. The bottom
panel is a realization of simulated random errors based on the DMT
noise covariance matrix of spherical harmonic coefficients for August
2006. (The matrix is complete up to degree 120.) The units are metres
of EWH

3.2 Choice of the optimal data processing strategy

There are a number of choices to be made when using the
improved mascon approach:

– the size of the buffer zone around Greenland;
– the number of additional data points in the oceans outside
the data area;

– the number of mascons covering entire Greenland;
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Table 2 Optimal set of
parameters for the estimation of
total mass variations of entire
Greenland

Options Optimal choice

Width of the buffer zone around Greenland 800 km

Using additional data points over the global oceans Yes

Number of mascons within Greenland 23

Optimal data weighting applied Yes

Number of eigenvalues retained in the approximate inversion of Cd 600

Spectral consistency maintained Yes

Fig. 6 Buffer zones around Greenland considered in this study

– the choice of the least-squares estimator (i.e. ordinary
least-squares versus weighted least-squares);

– the number of eigenvalues to be retainedwhen computing
an approximate inverse of the noise variance–covariance
matrix Cd.

In a series of numerical experiments, we have investigated
various choices. For each choice, 100 solutions have been
computed each using a different random noise realization.

Other error sources were kept the same in all experiments.
Each solution has been converted into mass anomalies per
mascon (in Gt) and then summed up over all “Greenland”
mascons to yield the total mass anomalies over entire Green-
land. The total mass anomalies are then compared with the
“true” ones; the RMS difference between estimated and true
total mass anomalies is used as a measure of the quality of
the solution.
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In this way, we found the optimal choice of the various
parameters mentioned before, which is shown in Table 2. In
the next sections, we show how the inversion results dete-
riorate if a suboptimal choice is made. In each test, only
one parameter is changed. Regarding data weighting, we
always compute two solutions: aweighted least-squares solu-
tion (weight matrix is the inverse of the full noise covariance
matrix) and an ordinary least-squares solution (weightmatrix
is the unit matrix).

3.2.1 Width of the buffer zone around Greenland

It is well known that a buffer zone beyond the area of inter-
est is necessary (Baur 2013). In this study, the extension is
referred to as the buffer zone. To investigate the impact of
the choice of the buffer zone on the estimated mass anoma-
lies over entire Greenland, we consider buffer zones varying
from100 to 1400 km (cf. Fig. 6). For each choice of the buffer
zone aweighted least-squares solution and the ordinary least-
squares solution are computed. The other parameters are set
equal to the values shown in Table 2. The resulting RMS
error of the recovered Greenland mass anomalies is shown
in Fig. 7. Using a weighted least-squares estimator, the RMS
error is minimum for a 800-km buffer zone, though other
choices only increase the RMS error with a few Gt. From
this we conclude that when using a proper dataweighting, the
solution is quite robust against the choice of the buffer zone.
The situation is different when an ordinary least-squares
estimator is used. The smallest RMS errors are obtained
for buffer zones larger than 600 km with little variations.
For smaller buffer zones, however, the RMS errors increase
quickly and attain values which are a few tens of Gts higher
than the minimum. Overall, the RMS error of a weighted
least-squares solution is always smaller than the RMS error
of an ordinary least-squares solution.

3.2.2 Using data points distributed over the oceans globally

GRACE-based SHCs at very low degrees (particularly at
degree 2) are relatively inaccurate. In principle, the imple-
mented data weighting should suppress noise which origi-
nates from these low-degree coefficients (Chen et al. 2005).
However, in regional studies as considered here, the contri-
bution of different low-degree SHCs cannot be separated.
Therefore, any attempt to suppress noise in the very low-
degree SHCs may introduce a bias in the estimated mass
anomalies over entire Greenland. For instance, eliminating
the C20 may reduce the estimated trend over 2003–2013 of
GrISmass variation by∼18Gts. To avoid such a bias, we add
additional data points. To avoid that they capture signal below
them, and they are confined to the oceans. Figure 8 shows
the geographic location of these additional data points.
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Fig. 7 RMS error of estimated mass anomalies as a function of the
buffer zone size.Redwith dataweighting, greenwithout dataweighting.
Different vertical scales are used when plotting the red and green curves
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Fig. 8 Location of additional data points over the oceans. The mean
distance is about 2000 km

The additional data points are located on a Fibonacci
grid with a mean distance of about 2000 km. Solutions are
computed with and without the additional data points. A
comparison of these solutions reveals that the added value
of using additional data points is 0.02%when using ordinary
least-squares and 0.5% when using weighted least-squares.
Though the improvement is minor, we recommend to add
additional data points in regional studies. The numerical
complexity does not change much as the total number of
extra points is very limited.

3.2.3 Optimal number of mascons over Greenland

In this test, we split the territory ofGreenland intomascons of
different sizes: from approximately 300×300 km to approx-
imately 150 × 150 km, which corresponds to the number of
mascons ranging from 23 to 95 (see Fig. 1). In addition, we
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Fig. 9 Partitioning of Greenland into 6 and 12 mascons, respectively,
in line with Luthcke et al. (2006). a 6 drainage systems, b 12 mascons

consider also the division of Greenland into 6 or 12 mas-
cons, as proposed in (Luthcke et al. 2006) (Fig. 9). The RMS
differences between the recovered and true mass anomaly
estimations are shown, as a function of the number of mas-
cons over entireGreenland, in Fig. 10.We notice a significant
reduction in the RMS error when a weighted least-squares
estimator is used, between 19 and 65%, depending on the
size of the mascons.

From the green curve in Fig. 10, obtained without optimal
data weighting, we find that the RMS error in the case of
6 mascons is larger than that for 23 mascons. Note that the
numerical study shown in Fig. 11 considered all noise types,
including random noise and representation error. It is also
worth noticing that when using weighted least-squares, the
quality of results based on 6 drainage systems is slightly
higher than that based on 23 mascons (see the red curve in
Fig. 10). This is caused by the fact that the random noise
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Fig. 10 RMS errors in estimated mass anomalies over Greenland as a
function of the number of mascons

in the case of 6 mascons is reduced (i.e. from 15 to 9 Gt),
as compared to 23 mascons. The numbers of 15 and 9 Gt
are the result of additional numerical studies where random
noisewas the only error source.We did not include the details
in the form of tables and figures in an attempt to limit the
length of the paper and because they are not critical for the
main conclusions of our study. As the difference of the RMS
values in the cases of 6 and 23 mascons (see the red curve in
Fig. 10) is rather small and 23mascons provide amuch better
spatial resolution than 6 mascons, we recommend using 23
mascons.

The estimated mass anomalies for 23 mascons are shown
in Fig. 11a; they are estimated from the data that were con-
taminated by the errors presented inFigs. 4 and5.Wefind that
in general the recovered mass anomalies show some agree-
ment with the true signal. For instance, the mass losses take
place in the coastal area and are mainly located in the north-
west and south-east of Greenland. However, we could also
find that the recovered mass per mascon does not exactly
represent the spatial pattern of the signal. This finding is con-
sistent with Baur (2013) and Bonin and Chambers (2013).
For instance, the recovered spatial pattern in the inner part
of Greenland noticeably deviates from the true signal. The
recovered solution is much worse when using too many (i.e.
54) mascons as shown in Fig. 11. Due to a small size of
mascons (about 150 × 150 km), the recovered mean mass
anomalies are quite unstable, with many positive and nega-
tive estimates next to each other.

3.2.4 Number of eigenvalues retained in the approximate
inversion of the noise covariance matrix

The high condition number of the noise covariance matrix
does not allow a stable computation of the weight matrix,
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Fig. 11 a Spatial pattern of recoveredmass anomaly permascon. They
are estimated from the data that were contaminated by the errors pre-
sented in Figs. 4 and 5 (Gt). b For a better visual comparison, the true

signal defined in Fig. 3 is spatially resampled to 23 mascons and shown
in the unit of Gt. Similar to (a) and (b), (c) and (d) are for 54 mascons

and some regularization is necessary. In this study, we use a
truncated eigenvalue decomposition to improve the condition
number prior to inversion (cf. Sect. 2.4). In order to estimate
the optimal number of eigenvalues to be retained,we consider
values between 200 and 1,600. The dimension of the noise
covariance matrix is 6953 × 6953 in our case.

The RMS error of the estimated mass anomalies over
Greenland is relatively large when only 200 eigenvalues are
retained, but decreases by 49%, as the number of retained
eigenvalues increases to 600 (see the red curve in Fig. 12a).
A further increase also increases the RMS error. Therefore,
we retain only the first 600 eigenvalues, i.e. about 10%. The
condition number of the noise covariance matrix obtained in
this way is 1.2 · 107. Based on Fig. 12b, which shows the
same RMS error as a function of the condition number, we

conclude that in general it makes sense to keep the condition
number below a value of 107.

3.3 Spectral consistency

As explained in Sect. 2, the parameterization of the signal
has to be spectrally consistent with the data. In this sec-
tion, we demonstrate the importance of that requirement, as
this requirement has not been fulfilled in previous studies. A
series of tests will be done. For each test, two solutions are
computed. One, which is already considered in the previous
section, uses the low-pass-filtered design matrix A, and the
other one, the unfiltered design matrix,A′ (cf. Eq. (9)). In all
tests, the “true” data are generated using the design matrix
A. The number of eigenvalues which are retained in the data
weighting varies between 200 and 1600.
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Fig. 12 RMS errors in estimated mass anomalies as a function of a
the number of retained eigenvalues and b the condition number after
truncation

Figure 12a shows the RMS error of the estimated total
mass anomalies as a function of the retained eigenvalues.
There are hardly any differences between the solutions using
design matrix A′ compared to A if no more than 600 eigen-
values are retained. Above 600 eigenvalues, the RMS error
increases quickly if the design matrix A′ is used and attains
values close to the signal. We explain this high RMS error
with the fact that the estimated mass anomalies go to zero.
When using the spectrally consistent design matrix A, the
RMS error is almost the same (around 20 Gts) if at least 400
eigenvalues are retained. From this experiment we conclude
that spectral consistency is important to obtain high-quality
mass anomalies.

In addition, we perform a number of experiments to
demonstrate the importance of using realistic signal spectra
in GRACE numerical studies in general. In those tests, the
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Fig. 13 RMS errors of estimated mass anomalies over entire Green-
land as a function of the number of retained eigenvalues. Dataweighting
is applied

unfiltered design matrix A′ is used not only to invert grav-
ity disturbances, but also to simulate them on the basis of
yearly mass changes (Sect. 3.1.1). In that sense, the mascon
functional model in these tests is consistent with the input
data. At the same time, the simulated data are not realistic in
the sense that the generated signal is not band-limited unlike
signals which are represented by a truncated spherical har-
monic series. Furthermore, the only error source considered
in these tests are random errors. Data weighting is used when
estimating the mass anomalies.

The tests are performed for different numbers of retained
eigenvalues in the spectral representation of the matrix Cd.
As shown in Fig. 13, an unrealistic (not band-limited) sig-
nal spectrum provides error estimates of the mass anomalies,
which are toomuch small. If the number of retained eigenval-
ues exceeds 1400, the estimated formal RMS uncertainties of
themass anomalies are 10−6 Gt.We explain this by a spectral
mismatch between signal and noise.Whereas in these experi-
ments the signal bandwidth is not band-limited, the generated
data noise is band-limited to a maximum spherical harmonic
degree 120. Thus, signal above degree 120 is considered as
being noise-free. Then, the exploited data inversion proce-
dure, which suppresses data noise in the statistically optimal
way, manages to exploit that high-frequency error-free signal
in the recovery of mass anomalies. From these experiments,
we conclude that when ignoring a proper reproduction of the
signal content in numerical tests, the obtained results may be
over-optimistic, particularly when a weighted least-squares
estimator is used.

This experiment also explains the poor performance of
the statistically optimal data inversion in the presence of
spectral inconsistencies, which have been reported in the pre-
vious section. In that case, the applied data weighting assigns
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Fig. 14 Partitioning of
Greenland into 23 mascons, and
the definition of the five
individual drainage systems
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unrealistically high weights to high-frequency components
of the signal. These signal components, however, have been
removed when low-pass-filtering the design matrix. Then,
the estimated mass anomalies tend to zero when more and
more eigenvalues of the matrix Cd are retained.

4 Real GRACE data analysis

The performance of the proposed approach is analysed using
real GRACE data. Here we use Release-05 GRACEmonthly
gravity field solutions from CSR from January 2003 to
December 2013. Missing months are not interpolated, but
just left out. Each monthly solution is provided as a set of
SHCs complete to degree 96 including a full noise covariance
matrix. We replace the C20 coefficient of all monthly solu-
tions with estimates based on satellite laser ranging (Cheng
et al. 2013). Degree-one coefficients are taken from Swenson
et al. (2008) including noise variances. The Glacial Isostatic
Adjustment (GIA) signal in GRACE data is removed using
the model compiled by A et al. (2013).

The data are used to compute a time-series of Greenland
mass anomalies. To that end, we follow the recommended
data processing set-up, which is summarized in Table 2. We
compute both weighted least-squares solutions and ordinary
least-squares solutions.

The results are analysed in three different ways. In
Sect. 4.1,we quantify the noise in the time-series of estimated
Greenland mass anomalies using only the data themselves.
The method applied is briefly described in Sect. 4.1. In

Table 3 VCE-based noise standard deviations (inGt) of estimatedmass
anomalies for (i) entire Greenland and (ii) five individual drainage sys-
tems

Data weighting N NW SW SE NE Gr I S

No 14 49 30 39 34 33

Yes 9 16 9 17 17 16

Reduction (%) 35 67 69 56 52 50

Sect. 4.2, we compare the GRACE-based time-series (after
correction for ice discharge) with time-series of SMB syn-
thesized from the RACMO 2.3 model. We evaluate mass
anomalies not only for entire Greenland, but also for indi-
vidual drainage systems. In line with van den Broeke et al.
(2009), we merge the 23 patches into five drainage systems:
North (N), Northwest (NW), Southwest (SW), Southeast
(SE) and Northeast (NE), cf. Fig. 14. In Sect. 4.3, a compar-
ison between the estimates in this study and other mascons
solutions is presented.

4.1 Estimating mass anomaly uncertainties

First of all, we quantify noise in mass anomaly time-series
using an original approach that does not require any indepen-
dent reference. The approach is based on the assumptions that
(i) true signal in the data time-series is close (but not neces-
sarily equal) to a combination of an annual periodic signal
and a linear trend; (ii) noise in the data time-series is uncor-
related and (optionally) non-stationary; and (iii) time-series
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Fig. 15 De-trended mass
anomaly time-series based on
modelled SMB (outlined by the
grey zone) and GRACE data, for
individual drainage systems and
entire Greenland.
GRACE-based time-series were
computed with (red) and
without (green) data weighting
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of noise variances is known up to a constant scaling factor.
The basic idea is to approximate the original data time-series
d with a regularized one x, for which purpose the following
functional is minimized:

Φ[x] = 1

σ 2
d

(d − x)T P (d − x) + 1

σ 2
x
xTRx, (23)

where P is a diagonal weight matrix, which accounts for
temporal variations of noise level; σ 2

d is the noise variance;
σ 2
x is the signal variance; and R is a regularization matrix,

which is designed such that periodic annual signals and a
linear trend in the data are not penalized. An estimation of
the noise variance σ 2

d and the signal variance σ 2
x is a part

of the regularization procedure. To that end, the variance
component estimation (VCE) technique (Koch and Kusche
2002) is used. This technique is iterative: at each iteration, the

estimates of σ 2
d and σ 2

x are updated, which allows for a better
regularization of the original time-series and, therefore, in
a better estimation of σ 2

d and σ 2
x at the next iteration. As

soon as the procedure converges, the latest estimate of σd is
used as the measure of standard deviation of random noise
in the considered data. A more extended presentation of this
approach will be the subject of a separate publication.

In this study, we use this approach to quantify the uncer-
tainties in mass anomaly estimates both for entire Greenland
and for the five drainage systems mentioned before.

Table 3 summarizes the main results. They confirm that,
compared to an ordinary least-squares solution, optimal data
weighting reduces random noise in mass anomaly estimates
substantially. The largest reduction, 69%, is observed for
the SW drainage system. This is likely due to a relatively
large contribution of random noise to the estimated mas-
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Fig. 16 Differences of
SMB-based and GRACE-based
de-trended mass anomaly
time-series for individual
drainage systems and entire
Greenland. GRACE-based
time-series were computed with
(red) and without (green) data
weighting. a N, b NE, c NW, d
SE, e SW, f GrIS
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con of this drainage system, so that the statistically optimal
data weighting becomes particularly efficient. An increased
level of random noise over the SW drainage system can be
explained by its relatively small size. The smallest reduction
in random noise, which is observed in the NE drainage sys-
tem, is still substantial, about 35%. For entire Greenland, the
random noise is reduced by a factor of two.

4.2 Validation against modelled SMB time-series

The estimated mass anomalies are compared with modelled
SMB estimates over the period 2003–2013 computed using
the Regional Atmospheric Climate Model (RACMO) ver-
sion 2.3 (Noël et al. 2015). The spatial resolution of the
RACMO 2.3 model is 11 × 11 km (see Table 1). We inte-

grate the daily SMB estimates over time to produce daily
mass anomalies, and then compute on their basis monthly
mean values, to be consistent with the temporal resolution of
GRACE. Finally, the computed mass anomalies are spatially
integrated over individual drainage systems and over entire
Greenland, respectively.

The mass anomalies derived from GRACE account for
both SMB and ice discharge. According to van den Broeke
et al. (2009), ice discharge manifests itself mostly as a long-
term trend, whereas the seasonal mass variations are largely
attributed to surface processes. In view of that, we de-trend
both SMB- andGRACE-based time-series prior to their com-
parison. To that end, we approximate each of them with the
analytic function f (t):
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f (t) = A + B(t − t0) + C sinω(t − t0) + D cosω(t − t0)

+ E sin 2ω(t − t0) + F cos 2ω(t − t0),

(24)

where A to F are constant coefficients, which are estimated
using ordinary least-squares, t0 is the reference epoch defined
as the middle of considered time interval, and ω = 2π

T
with T = 1 year. The de-trending comprises the first two
terms of f (t). After de-trending, the residual GRACE-based
and SMB-based time-series are compared. In the compar-
ison, GRACE-based mass anomalies produced both with
and without data weighting are considered. The de-trended
GRACE-based and SMB-based time-series are shown in
Fig 15 with and without using data weighting. Remarkable
is the erratic behaviour of GRACE-based time-series per
drainage systemwhen no data weighting is used. This erratic
behaviour is averaged out when computing mass anomaly
time-series for entire Greenland.

Figure 16 shows the time-series of the differences between
GRACE-based and SMB-based time-series of mass anoma-
lies. Statistics of the differences are shown in Table 4. When
data weighting is used, the differences are much smaller
compared to solutions without data weighting. The most sig-
nificant improvement is attained in the SW drainage system,
which is consistent with the results obtained with the VCE
technique (cf. Sect. 4.1). At the same time, the improve-
ment observed for entire Greenland is smaller, about 17%,
than those of individual drainage systems (24–47%). This is
likely due to the fact that when summing up mass anomalies
per mascon to get the mass anomalies of entire Greenland,
the random noise is reduced by averaging out. Therefore, a
relatively low level of random noise can be achieved for the
estimates of entire Greenland, compared with the estimates
per mascon. However, this will not affect the determination
of other optimal parameters in Table 2. Because our opera-
tion (i.e. summing up mass anomalies per mascon to get the
mass anomalies of entire Greenland) is applied to the final
estimates. As a result, the remaining difference in Fig. 16f
should rather be explained by residual physical signals than
by noise. Such signals may reflect nonlinear mass variations
not related to SMB, such as inter-annual variability in ice
discharge or meltwater retention. A physical interpretation
of these signals is outside the scope of this study.

4.3 Comparison with Greenland mass anomalies from
other studies

Themass anomaly estimates are further compared with those
based on existing global and regional mascon solutions, as
well as with results from the literature. The available global
mascon solutions discussed in this study are the products
released by JPL (Watkins et al. 2015), GSFC (Luthcke et al.
2013) and CSR (Save et al. 2016). Note that these mascon

Table 4 Ice discharge-corrected RMS differences (in Gts) between
GRACE-based mass anomaly estimates and SMB-based mass anoma-
lies for (i) entire Greenland and (ii) five individual drainage
systems

Data weighting N NW SW SE NE Gr I S

No 16 48 34 54 37 76

Yes 12 27 18 41 27 63

Reduction (%) 28 44 47 24 27 17

solutions are estimated from GRACE KBR data, while the
method developed in this study uses GRACE SHCs. We also
include the regionalmascon solutionbyWouters et al. (2008),
which also takes GRACE SHCs as input. As shown in Fig.
17, different mass anomaly time-series of entire Greenland
agree with each other very well. The same applies to the
linear trend estimates, which are shown in Table 5.

As before, we use VCE-based estimation of random
noise standard deviations and a validation against modelled
SMB estimates to assess the quality of the various mascon
solutions. The smallest noise standard deviation (16 Gt) is
observed for the solution produced in this study with the
optimal data weighting (Table 6). A comparable noise stan-
dard deviation (19 Gt) is estimated for the JPL solution,
whereas standard deviations for other solutions are much
larger.When validating against independent SMBoutput, the
solution produced in this study with the optimal data weight-
ing shows, again, the best performance (see Table 6). From
Table 6, it follows that relatively low VCE-based standard
deviations in the JPL solutions do not indicate a better qual-
ity. This might be caused by the fact that the application of
spatio-temporal constraints in the production of those solu-
tions could reduce random noise, but at a price of making
the estimates biased towards a priori information, which is
reflected in the applied constraints. The bias becomes visible
when validating with independent data such as SMB model
estimates. This justifies our decision not to apply any spatial
or temporal constraints in producing our solutions in order
to minimize biases. A rapid mass loss in an area of a limited
size is a particularly challenging scenario for any method
for mass anomaly estimation. In particular, the impact of a
bias caused by the applied constraints can be particularly
large in that case. An in-depth discussion of this issue is
beyond the scope of this manuscript. A further discussion of
biases introduced into mascons solutions by various spatio-
temporal constraints will be the subject of a separate article.

5 Summary and conclusions

In this study, we proposed an improved mascon approach
compared to the previous studies of Forsberg and Reeh
(2007) and Baur and Sneeuw (2011). Based on numeri-
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Fig. 17 Mass anomaly
time-series produced in this
study with data weighting and
without data weighting, as well
as by Wouters et al. (2008)
(marked as “BW”), JPL, GSFC
and CSR. The unit of Y-axis is
mass variation in Gts. Each plot
highlights only one solution
(black line), whereas other
solutions are shown in grey
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cal experiments, we optimize various parameters shown in
Table 2. The proposed methodology allows the estimation
of mass anomalies over Greenland in a statistically optimal
way, by propagating the full noise covariance matrices of
SHCs into full noise covariance matrices of gravity distur-
bances at altitude, which are then used as data in the mass
anomaly estimation scheme.We show that the dataweighting
improves the accuracy of the estimated mass anomalies sub-
stantially. The high condition number of the noise covariance
matrix is addressed successfully using a truncated eigenvalue
decomposition, which retains about 10% of the eigenval-
ues corresponding to a condition number of about 107. We
also demonstrated that the optimal size of a mascon is about
300 × 300 km, which implies about 23 mascons for Green-
land. This finding is consistent with the spatial resolution of
GRACE reported in the literature (Longuevergne et al. 2010;
Ramillien et al. 2004; Beighley et al. 2011). Furthermore, we
have proven that spectral consistency of the mass anomaly
model and the data is very important to obtain accurate esti-
mates of the mass anomalies. If data weighting is applied, a
spectral inconsistencymakes the recovery of mass anomalies
non-robust and provides severely biased estimates. This is
more pronounced ifmore eigenvalues of the noise covariance
matrix are retained. Then, the high-frequency components
of the model are over-weighted, resulting in gravity anoma-
lies close to zero, because high-frequency signal is absent
in the data. The maximum degree in the low-pass filter
applied to maintain a spectral consistency must be consistent
with the GRACE solutions utilized to generate the pseudo-

Table 5 Greenland mass anomaly trends over the period 2003–
2013 (in Gt/year) estimated from different solutions and experimental
set-ups

Different estimates Trend

With data weighting (this study) −286

No data weighting (this study) −276

JPL mascon −289

CSR mascon −262

GSFC mascon −283

Wouters et al. (2008) −264

Velicogna et al. (2014) −280

Schrama et al. (2014) −278

observations. More specifically, in the simulation, we choose
the maximum degree to be 120, in line with the DMT solu-
tions. However, in the real data processing, the CSR solutions
are utilized. Then, the maximum degree is 96, in line with
the CSR solutions.

It is worth stressing that the set of parameters shown
in Table 2 is optimal if the main goal is to estimate mass
anomalies over a one-year interval. This scenario represents
a kind of intermediate choice between the two extremes of
a monthly signal and a mean signal over a multi-year time
interval (e.g. a long-term linear trend). In our latest studies,
we found that the optimal data processing scenario definitely
depends on the temporal scale of interest. If, for instance, the
main focus is on a long-term trend, the impact of random
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Table 6 VCE-based noise
standard deviations (in Gts) of
estimated mass anomalies (left
column) and ice
discharge-corrected RMS
differences (in Gts) between
GRACE-based mass anomaly
estimates from different mascon
solutions and SMB-based mass
anomalies (right column). All
the estimates refer to entire
Greenland

Different estimates VCE-based noise Ice discharge-corrected
standard deviations RMS differences

With data weighting (this study) 16 63

No data weighting (this study) 33 76

JPL mascon 19 73

CSR mascon 29 70

GSFC mascon 45 76

Wouters et al. (2008) 36 79

noise (north–south stripes) is minor, so that other types of
noise (particularly the parameterization error) become dom-
inant. In that case, the way to improve the quality of the
estimates is reducing the size of individual mascons and
applying a data weighting based on provided error covari-
ance matrices of GRACE monthly solutions. On the other
hand, if the main research interest is month-to-month mass
anomaly variations, random noise by far exceeds noise of
other types, including the parameterization errors. Then, the
best results are obtained when the size of individual mas-
cons is relatively large, whereas the data weighting based on
provided error covariancematrices is switched on. These and
other findings are discussed in detail in a separatemanuscript.

We also applied the proposed data processing scheme to
real GRACE data and computed mass anomaly time-series
for five drainage systems and entire Greenland. Using VCE,
we found that when a proper data weighting is used, the accu-
racy of the estimated mass anomalies increases by a factor
of 1.5 to 3.0, depending on the drainage system. A compar-
ison of the GRACE-based mass anomalies with modelled
SMB mass anomalies revealed that a proper data weighting
provides a better fit of GRACE-based and SMB-based mass
anomalies, with improvements between 24 and 47% depend-
ing on the drainage system. We consider this as indication
that a proper data weighting provides much more accurate
estimates of mass anomalies. The improvement is, however,
marginal for entire Greenland. This is likely due to a rel-
atively minor role of random noise when estimating mass
anomalies over very large areas.

Acknowledgements We would like to thank the Center for Space
Research at University of Texas at Austin for providing GRACE level-2
data and the corresponding error variance–covariance matrices (both
are available from http://www.csr.utexas.edu/grace). The JPL mas-
con solutions are available at http://grace.jpl.nasa.gov, supported by
NASA MEaSUREs Program. Goddard Space Flight Center (GSFC) is
acknowledged for providing NASA GSFC mascon solutions. We also
thank Dr. B. Gunter, who provided us with the GrIS elevation change
rates over 2003–2009 estimated from ICESat data. Noël B. and van den
BroekeM. R. are acknowledged for providing SMB estimates produced
with RACMO 2.3. J. Ran thanks his sponsor, the Chinese Scholarship
Council. J. Ran has also been partly supported by the Major National
Scientific Research Plan (2013CB733305) and the National Natural
Science Foundation of China (41474063, 41431070 and 41674006).

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

Appendix A. Eigenvalue decomposition of the noise
covariance matrix Cd

A statistically optimal inversion of gravity disturbances
into mass anomalies per mascon requires the inversion of
the noise covariance matrix Cd. Since this matrix is ill-
conditioned some type of regularization is needed. Here, we
use an eigenvalue decomposition

Cd = Q�QT. (25)

To minimize the loss of significant digits during the compu-
tations, we do not compute explicitly the noise covariance
matrix, but apply the following procedure.

We start with Eq. (2) in matrix-vector form:

d = Fδp, (26)

where the vector δp comprises the SHCs of a monthly
GRACE solution (ΔClm , ΔSlm) and F is the matrix of
spherical harmonic synthesis that maps SHCs into gravity
disturbances. If the noise covariance matrix of the SHCs is
Cδp andno constraints are appliedwhen estimating theSHCs,

Cδp = N−1, (27)

where N is the normal matrix exploited in the computation
of SHCs from GRACE level-1b data. The Cholesky decom-
position of this matrix is:

N = LLT. (28)
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According to the law of covariance propagation, the noise
covariance matrices Cδp and Cd are related to each other as

Cd = FCδpF
T. (29)

Substitution of Eqs. (27) and (28) into Eq. (29) gives

Cd = F
(
LLT

)−1
FT = F

(
L−1

)T
L−1 FT = HHT,

(30)

where

H = F
(
L−1

)T
. (31)

Let

H = U�VT (32)

be the SVDof thematrixH, where� is thematrix of singular
values andU andV are the matrices of left and right singular
vectors, respectively. Equation (32) and the equality

VTV = I (33)

allow Eq. (30) to be rewritten as

Cd = U�VTV�TUT = U��TUT. (34)

It is easy to see that ��T is a square diagonal matrix with
elements λi defined as

λi = σ 2
i (i = 1, . . . Nd), (35)

where σi are the singular values forming thematrix� and Nd

is the number of data points. Therefore, the representation of
matrix Cd given by Eq. (34) satisfies the properties of the
eigendecomposition, so that λi are the eigenvalues of Cd,

Q = U, and � = ��T. (36)

Thus, the operations prescribed by Eqs. (28), (31), (32) and
(36) provide the eigenvalue decomposition of the matrix Cd

without the need to compute this matrix explicitly.
In order to demonstrate the superior stability of the

proposed computational procedure, we perform the follow-
ing experiment. We use the normal equation matrix for
the monthly GRACE solution of August 2006 from DMT.
We compute explicitly the noise covariance matrix Cd and
perform an eigenvalue decomposition of this matrix. Alter-
natively, we follow the procedure outlined before. Figure 18
shows the eigenvalues of Cd for both procedures. The direct
computation of the eigenvalues of Cd provides only the first
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Fig. 18 Eigenvalues of the matrix Cd computed directly (blue) and
using the procedure suggested in this study (red). The singular values
of the matrix H are shown in green

900 eigenvalues. The flattening of the eigenvalue spectrum
beyond an index of about 900 is caused by numerical round-
off errors and is at the level of the largest eigenvalue times
machine epsilon for IEEEdouble-precision arithmetic.Using
the proposed procedure allows to compute the first 1400
eigenvalues before numerical round-off errors become dom-
inant. From this we conclude that the proposed procedure is
numerically more stable and, therefore, better suited to deal
with ill-conditioned noise covariance matrices when com-
puting a weighted least-squares solution.
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