5000 JAAR SCHOON SCHIP
5000 YEARS OF SHIPPING

Prof. ir. S. Hengst
5000 JAAR SCHOON SCHIP
5000 YEARS OF SHIPPING

Delen van deze publicatie zijn gebruikt voor de
afscheidsrede
uitgesproken op 28 september 2001,
door prof. ir. S. Hengst,
hoogleraar Scheepsbouw
bij de afdeling Maritieme Techniek
van de faculteit Ontwerp, Constructie en Productie
van de Technische Universiteit Delft.

Parts of this publication have been used for the
farewell address
given on september 28, 2001,
by prof. ir. S. Hengst,
professor of Shipbuilding
at the department of Marine Technology
of the Faculty of Design, Construction and Production
of the Delft University of Technology.

There is an 'idea' boat that is an emotion, and because the emotion is so strong it is probable
that no other tool is made with so much honesty as a boat A man builds the best of
himself into a boat - builds many of the unconscious memories of his ancestors. ¹

¹ John Steinbeck, The log of the sea of Cortez, 1951, ISBN 0 330 20230 8
The panoramic view of Shipping and Shipbuilding is taken from a position in time in Egypt. In 1954 a ship was discovered near the pyramid of Cheops. The age of the ship was estimated at some 5000 years. Some 2412 parts were found, of which 651 in wood, with oars, bow, stern, paddles for steering of 23 m length weighing 2000 kg each. The planking of the hull was prefabricated and bought in the right shape. The Egyptian shipbuilders knew how to dovetail and scarf the planking in such a way that the hull was smooth and could be made watertight using resin and teased rope.

The ship was in knock down condition, ready for assembly and, had once assembled a length of 43 m and breadth of 5.66 m (fig. 1). It is the oldest ship known, in her original state, which can be visited in a museum of Gizeh built on purpose for this ship.

Fig.1: Een 4700 jaar oud schip uit Egypte

1. Het panorama van de tijd

De tijd is hier bedoeld als een ononderbroken reeks van gebeurtenissen waarvan het begin en eind niet vast liggende. De positie van waaruit het panorama van de tijd wordt geschildert ligt ongeveer 5000 jaar terug. Vanaf dat tijdperk zijn er betrouwbare gegevens over schepen en scheepsbouw. Andere motieven voor die keuze zijn toeval, ervaringen, belangstelling en mogelijk ook iets van wat Steinbeck schetst (zie citaten).

Eén van mijn grootvaders had op een klein wervel een aantal traditionele Nederlandse klassieke schepen in onderhoud. Een boeiende, tjotters, overmaad sloepen, wherry's enz. Fraai, statige houten jachten en scheepjes. Hij vertelde over de kennis die daarvoor nodig is, de zorg die het onderhoud vraagt, de aandacht voor het detail, de keuze van het gereedschap, de toewijding aan het vak en het werk dat werd uitgevoerd in de wetenschap dat een schip moet varen. 'Prachtig werk', zei hij, 'want het resultaat van kennis, ervaring en inspanning is goed te zien'.

Dit verhaal voor een deel waarom ik Scheepsbouw, nu Maritieme Techniek geheten, wilde gaan studeren, de schoonheid van het schip en de belangstelling voor het kunnen ontwerpen en maken. Daarvoor ging je in Delft studeren.

De tweede ervaring ligt in Egypte. In 1954 trof een Egyptische archeoloog in een bootplaag van 31,50 m x 3,50 m x 2,60 m de onderdelen van een schip aan waarvan de leeftijd op ca. 5000 jaar wordt geschat. In totaal lagen in de put 2412 onderdelen, waarvan 651 in hout, hoofdzakelijk cederhout uit Libanon en acacia uit Nubie, maar ook van locale houtsoorten zoals vycnornoor, en de onderdelen van de romp waren voorbewerkt, in vorm gebracht, konden glad worden gegeveugd met zwaaluwstaart verbindingen en waterdicht gemaakt met hennep en was. De voor- en achterstevens, stuur- en roerinstrumenten en de opbouw met deuren waren in een prima conditie. Meertrossen en hennep touw waren aangetast door de tand des tijds.

De schip was in een 'knock-down condition ready for assembly' zou men tegenwoordig zeggen en staat nu tentoongesteld in een museum in Gizeh dat speciaal voor dit doel is gebouwd naast de piramide van Cheops.

De afmetingen van het schip zijn 43 m lang en 5,66 m breed, de boeg is 5 m en de achtersteven 7 m boven de basis. Voor de voortstuwing zijn 12 ruiten van 9 m lengte beschikbaar. De helmstokken zijn 23 m lang en wegen meer dan 2000 kg per stuk (fig. 1). Het is het oudste product van de scheepsbouw ter wereld dat in vrijwel geheel oorspronkelijke staat te bezichtigen is. Het is qua vorm en bouw een wonder van schoonheid, een combinatie van kunst, kennis en vakmanschap. Voordat de scheepsbouwers uit die tijd zo ver waren dat ze over de nodige kennis, vaardigheden, geraadschappen en materialen beschikten zat er heel wat water door de Nijl zijn gevloed en de professionele scheepsbouw heeft dus nog wel enige eeuwen ouder zijn.
Another reason is the perspective of time. When we look into the progress of shipping today and the developments in the Shipbuilding Industry, we may claim that we did make a lot of progress. When this is seen over all those centuries, we may be able to get an impression of the importance of shipping for mankind, the impact on economy and welfare.

At the same time this gives a different view on our performances today when placed in the light of the continuous presence and growth of shipping and shipbuilding over the centuries. Knowledge has been lost and gained. And what was the role of science during that time?

Ship shape
'Schoon Schip' has different meanings in Dutch. It could mean 'Ship Shape', 'the beauty of the ship', 'free of debts', 'environmental friendly' etc. The multitude of ship types, in a brief review, making steps from 100 to 2000 years, from Egypt, via Phoenicia, Greece, Venice to the North of Europe has it limitations. An overwhelming amount of literature about shipping and shipbuilding provides the interested reader with many details about the maritime history and find any of these meanings.

2. The first period
This period starts some 3000 years BC and end in the 18th century in Europe. Holland is the major shipbuilding country of Europe in the 17th century. The building of wooden ships comes to a high degree of perfection. During the 18th century little progress is made and the economy of the Netherlands is gradually declining.

Egypt
Egypt was, according to Baines and Mâlek [2] a prosperous country. The basis of the economy was agricultural. The rather complex religious system created a new incentive for the economy. The pharaohs viewed themselves as the intermediates between the gods and the people and tried to raise their status by divining and identifying themselves with certain gods. Therefore they needed experts in writing, mostly priests, who had knowledge of hieroglyphics and developed themselves to a separate class. There were high priests, normal priests and also part-time priests who dealt with the practical matters. Lecturing priests took care of the daily routine. The priests developed the hieroglyphics into an ornamental, sacred writing, which could not be used for day-to-day work. The writing was taught to limited groups of people. A large part of the time was spent at the studying and copying of existing texts (whether there was a citation index is not known). By making the ornamental writing inaccessible for the daily use the experts became isolated from society and finally the hieroglyphic ornamental writing was not used anymore as of 200 AD. During some 3000 years the preservation of myths needed symbols and rites and this resulted in the building of temples, pyramids, tombs and art (fig. 2).

Bij een bezoek in 1990 werd ik rondgeleid door een Egyptisch scheepsmaker die aan de assemblage van het schip had gewerkt. Hij vertelde over de kennis en het gevoel die daarvoor nodig waren, de zorg voor het onderhoud, wees op de details in de constructie en het oude gereedschap. 'It is the beauty of the ship' zei hij, 'and having the feeling to work for your colleagues of 5000 years ago'.

Een derde reden is het perspectief van de tijd. Een halve eeuw bewust met schepen omgaan lijkt veel. Gelopen in de geschiedenis van het vak is het weinig. Er is in een halve eeuw veel veranderd, in onze perceptie.

Hoe ziet het beeld gezien over een periode van 5000 jaar eruit? Dit is een poging om in een korte beschouwing de betekenis van schepen en scheepvaart voor de samenleving te laten zien, de continuïteit zichtbaar te maken, de laatste halve eeuw in dat perspectief te plaatsen en onze prestaties in deze tijd enigszins te relativiseren.

Wat is verloren gegaan? Wat hebben wij aan kennis verzameld? Wat deed de wetenschap voor de techniek? Waarom daalt de belangstelling daarmee?

U mag vervolgens zelf Uw conclusies trekken hoe wij in Nederland daar nu mee omgaan.

Schoon Schip
'Schoon' wordt hier gebruikt in verschillende zin: mooi, niet vuil, respectabel, vrij van lasten en is in die betekenissen van toepassing op het schip, afhankelijk van het onderwerp of de benadering.

De veelheid aan scheepstypen en functies van schepen en een overzicht in stappen van 2000 tot 100 jaar, van de Egyptenaren, via de Fenicijers en Venetiaans naar het noorden van Europa, dwingt tot beperking. Er is echter voor belangstellenden een omvangrijke literatuur over de geschiedenis en de rol van schepen tot en met de golfoorlog aan het eind van de vorige eeuw.

2. De voltooid verleden tijd

Deze periode begint ongeveer 3000 jaar v.C. in Egypte en eindigt in de 18e eeuw. Voor de scheepsbouw noem ik dit de voltooid verleden tijd. Nederland is het scheepsbouwland van Europa in de 17e eeuw. Het bouwen van de houten schepen bereikt een hoge graad van perfectie. In de 18e eeuw zijn er vrijwel geen verbeteringen meer.

Egypte
Egypte werd gedurende 3000 jaar tot het begin van onze jaartelling, bestuurd door ca. 33 dynastieën en was volgens Baines en Mâlek 7 een welvarend land. De basis van de welvaart, die hoogte- en diepepunten kende, was agrarisch. De goden verering en de rol van de koningen gaven een bijzondere stimulans aan de economie van het land.

5000 YEARS OF SHIPPING

This is the connection with shipping. Much of the material came from Nubia and the surrounding of Aswan. Statues, pylons, obelisks and blocks were carried by ship over the Nile which was 3000 years the highway of Egypt. The knowledge of ships and shipbuilding is reliable and is coming from pictures and hieroglyphics in tombs, models and entire ships. A great variety in ships, depending on type of cargo and service were sailing the river, from bulk to heavy transport and passenger services (fig. 3 and 4). Also the pharaohs needed a ship in eternity for their travels. The ship shown in Gizeh is one of these.

The first wooden ships in Egypt are estimated to be from around 3000 BC. Over the time the design changed, the arrangement of sails, methods of lowering and raising the mast, steering arrangements, the construction of the vessel, all depending on the type of material.

5000 JAAR SCHOON SCHIP

figureren de koningen als bemiddelaar tussen goden en mensen en proberen de status te verhogen door zich met bepaalde goden te identificeren of zichzelf te vergoddelijken. Dit vroeg om schriftgeleerd, veelal priesters, die het hierogliefen schrift beheersten en zich langzamerhand tot een afzonderlijke klasse van coryfeusen ontwikkelden. Deze klasse bestond uit hoge priesters, gewone priesters en parttime priesters die zich bezighielden met de meer praktische gang van zaken. Ook waren er voorlezer-priesters die de meer routine matige onderwerpen behandelden.

Egyp te had twee schrijfwijzen, één voor het dagelijks gebruik en één voor ornamentaal gebruik. De priesterorden ontwikkelden het ornamentale hierogliefenschrift en onderwezen dit aan beperkte groepen mensen. De studie bestond voor een deel uit het kopieren van reeds bestaande teksten. Het is niet bekend of er een citation index bestond. De bouw van tempels stimuleerde de groei van het aantal priesters en hun maatschappelijke status. In grote tempels kwamen meerdere rangen leidinggevenden en priesters met veel personeel.

Het monumentale hierogliefenschrift werd na ongeveer 1000 v.C. door de schriftgeleerden als complexer gemaakt, waardoor het minder toegankelijk en uiteindelijk onbruikbaar werd voor het dagelijks gebruik. De priesters isoleerden zich van de samenleving met het gevolg dat de maatschappelijke verhoudingen veranderden. Het formele, ornamentale schrift bleef tot het eind van de Egyptische beschaving bestaan, maar de toepassing was beperkt tot magische, sacrale teksten. Het gebruik is vanaf de 2e eeuw verloren gegaan, het schrift is nu een onderwerp van wetenschappelijk onderzoek.

Het instandhouden van de mythen, en de daarbij behorende symboliek en rituelen, werd geconcretiseerd met de bouw van piramiden, tempels, koningsgraven en uitingen van kunst in schilderijen en reliëfs (fig. 2).

Hier ligt de relatie met de scheepvaart. De granieten onderdelen voor de bouw kwamen uit Nubie en de omgeving van Aswan. In Aswan zijn in de steengroeve niet voltooide of mislukte pylons en obelisk nog te bezichtigen. Beelden, pylons, obelisk en blokken wogen soms meer dan 50 ton per stuk en werden per schip over de Nijl vervoerd. De Nijl was de snelweg van Egypte, vrijwel al het transport ging over water. Onze kennis over de scheepvaart en de scheepsbouw uit die tijd is afkomstig van afbeeldingen, veelal uit graven en, dank zij de vondsten van gehele schepen en modellen, betrouwbaar.

Er was een grote verschcheidenheid aan schepen van stukgoed, bulk- en zwaart transport tot en met plezierv- en passagiersvaart. De koning kreeg dan ook een schip mee voor het reizen in het hiernamaals, een zomerschip, waarvan het in Gizeh gevonden schip er één is.

1 Een aardige opgave voor een student Maritieme Techniek: Ontwerp een houten schip geschikt voor het transport van een obelisk van 25 tot 30 meter lang. De obelisk, dient met behulp van hard houten rollen op en af het schip te worden gereden. Het schip mag niet langer zijn dan 35 meter, de diepgang niet groter dan 1,2 meter. Tijdens het laden, lossen (over de zij) en varen moet het schip over voldoende stabiliteit beschikken. Er kan ballast worden gebruikt, er zijn geen ballasttanks. Stroomafwaarts, over een afstand van 200 km wordt gevorderd. Stroomopwaarts wordt gezild. De langsvoerep en dwarsvoerep sterkte vragen aandacht. Het aantal riemen is maximaal 12.
The influence of shipping is visible in the hieroglyphics indicating the south (fig. 5) and going north (fig. 6). Going south down streams was done by rowing, going north, upstream by sailing because of the prevailing winds. These were also the signs used on shore to indicate the direction of travelling.

The Egyptians sailed the Mediterranean Sea as well as the Red Sea and the shipbuilders had the knowledge and techniques to build sea-going vessels: the wood was imported from Phoenicia (Lebanon) and Nubia, because of the poor quality of the local wood. The Rind-papyrus from 1650 BC indicates, according to Richard Mankiewicz [4] that volumes and surfaces could be calculated by the Egyptians. The papyrus is written in the common script. Calculations of volumes in the ornamental notation. Obviously the mystic element has been combined with daily use, which could indicate the double role of the priesthood.

The Phoenicians

The first attacks from the sea on Egypt were made by the Phoenicians. They controlled the Mediterranean Sea from 1000 BC till 250 BC and sailed the Atlantic to the south of England. According to Herodote they even sailed around the South of Africa [5].

The mastered navigation, could plot a course by the accognition of certain stars and had an early form of a compass, a magnetic needle.

De Feniciërs

De Feniciërs gaven een impuls aan de scheepvaart. Ze richtten haven- en handelscentra op langs de kusten van de Middellandse zee, zoals Carthago, bouwden de galei als handelschip en als oorlogsschip, waarbij ze zich baseerden op de Egyptische modellen. Kleine schepen voor de locale handel met de buurlanden en grotere schepen die op het noordwesten van Afrika, Spanje en de Atlantische oceaan voeren. De handelschepen werden gerodert en voor de wind gezeld met een rechthoekig zeil (fig. 7).

During 750 years they stimulated the trade, developed and built the galley for warfare and shipping using Egyptian models, built harbours and established trade centers along the coasts of the Mediterranean Sea, e.g. Carthage and had coastal vessels for the local trade while the larger vessels served Spain, the African Coast and the Atlantic (fig. 7).

Different types of rowing vessels were introduced such as biremes, trimeres, polyremes etc. [6].

When Greece came to power the struggle for the supremacy in the Middle Eastern Sea started. Controlling the sea was controlling the trade between Europe and the Levant.

New types of galleys were developed up till 6 or 7 man on one oar and 5 to 7 rows for each board. The scientific discussion about the arrangement of oars, levels and rowers is still going.

Venice

Venice grew from a fishing village to a maritime power, combining trade and maritime power, as did the Phoenicians. Greece became in control of the Levant between 300 BC till 200 AD but the Romans and the Italian States took gradually over during that period.

The crusades made from Venice a flourishing state. The naval power of Venice controlled the trade to the Levant together with the logistic support for the armies of the crusades. The growing welfare of Venice induced the piracy and robbery from the surrounding states of Italy and Turkey.

In 1488, Bartholomeus Dias rounded the cape and found the way to the Far East. The Portuguese ships were followed by the Spanish, the Dutch and the English. This was the indication of the beginning of the end of the rich trade of Venice on the Levant. The republic was abolished in 1797 when Napoleon arrived.

Shipbuilding in Venice

Venice remained a maritime power during more than five centuries and in order to be able to cope with the demand for ships for transport and warfare at sea shipbuilding became an important industry. The shipyards were isolated from the outside world and the production process of building ships was well kept secret.

At first sight this is remarkable because the galley was well known and seem even more or less standardised type of ship.
The shipyards in Venice were ahead of their competition. Fast, manoeuvrable and well equipped ships were of the essence to maintain the trade on the Levant and support the logistics of the crusades. The design, construction and building of the ships were well engineered and suitable for production in a flow line using stations which were placed in a sequence suitable for assembly. This resulted in considerable savings in time, high productivity and quality. Apparently the production of different types of ships could be balanced [7]. The maximum dimensions of the vessels were 52 m long and 6.80 m wide (fig. 9).

To keep the ships as much as possible in service, trading ports were supplied with spare parts (masts, rudders, oars). Other Italian states were trying to copy this method by attracting the master shipbuilders from Venice, but these were not allowed to leave the city and had a lifetime contract with the shipyard. In case they escaped or started to work for the competition they were chased and killed.

The start of globalisation

The Phoenicians started the Atlantic adventure. The European coastal states continued and went all over the world. The Portuguese were the first at the end of the 15th and beginning of the 17th century to go around the Cape of Good Hope and South America. The Dutch established an exclusive trade relationship with Japan which lasted for 200 years. The trade in the Mediterranean Sea was still attractive for the most European countries. They were involved in the struggle for power, but at the same time the world was discovered and the trade globalised. The maritime battle was concentrated on the protection of the trades in the Mediterranean Sea and the access to the West-European ports. Alliances at sea changed continuously as they did in the Mediterranean Sea.

The battle of Lepanto (1571) is the last battle between Galleys manned with oarsmen. The importance of the battle was politically important because the threat of a Turkish hegemony on the Mediterranean was prevented.

In 1488, rondde Bartholomeus Dias kaap de Goede Hoop, en was de route over zee naar het Verre Oosten gevonden door de Portugezen, spoedig gevolgd door Spanjaarden, Nederlanders en de Engelsen. Daarmee tekende zich het begin af van het einde van de rijke handel met het Verre Oosten voor Venetië. De komst van Napoleon betekende in 1797 het definitieve einde van een republiek die 1100 jaar bestond.

De scheepshouw in Venetië

Venetië was gedurende meer dan vijf eeuwen een maritieme grootmacht met een grote behoefte aan handels- en oorlogsschepen. De scheepshouw nam in het goed georganiseerde Venetië daarom een bijzondere plaats in. De werven waren afgesloten van de buitenwereld en het productieproces van de schepen was een goed bewaard geheim dat niet voor vreemden toegankelijk was. Dit is opmerkelijk omdat het ontwerp van de galei een meer of minder gestandaardiseerd product leek te zijn.

Het eindstation bij de oplevering was het installeren van de voortstuwing, de roeiers. De schepen waren maximaal ca. 52 m lang en 6.80 breed (fig. 9).

Om de inzet, effectiviteit en efficiëntie van de schepen zo hoog mogelijk te houden waren in de havensteden waarmee handel werd gedreven, reserve onderdelen als roeren, masten, riemen gestationeerd.

De scheepshouw had veel belangstelling van omliggende staten. De scheepshouwmeesters en scheepsmakers mochten om die reden de stad Venetië niet verlaten en waren voor het leven gebonden aan de werf. In het geval dat ze vluchten of voor de concurrentie gingen werken werden ze achtervolgd en om hals gebracht.

De galei is een bron voor wetenschappelijk onderzoek en waarschijnlijk één van de meest bestudeerde historische schepen ter wereld.

Het begin van de mondialisering

De Fenicieren begonnen met een Atlantisch avontuur, dat wereldwijd door de West Europese kunststatten werd voltooid. De Portugezen gingen aan het eind van de 15e en het begin van de 16e eeuw als eerste om Kaap de Goede Hoop en Zuid-Amerika, vonden de weg naar de Indische Oceaan en de Pacific en kwamen in Japan. Voor de West Europese landen was de handel op de Levant in de 16e eeuw nog steeds attractief. Ze bezielden de handelsroutes in de Middellandse zee en werden daarmee ook bij de strijd om de macht betrokken.

1 Dick Horringa (van Horringa & de Koning) heeft hier een studie van gemaakt en een boekje over geschreven (waarschijnlijk een privé uitgave). Ik heb het helaas niet meer kunnen achterhalen.
The North of Europe

Only from 1000 AD the North Sea and the Baltic Sea become a mirror of the Mediterranean Sea in the Northern part of Europe. The Hanseatic League develops the maritime trade and consequently an expansion of merchant shipping. For a period of time (13th and 14th century) the league has a monopoly in sea borne trade consisting of some 150 harbours at sea and on rivers. This monopoly is broken by the Dutch traders [9]. One of the reasons is the introduction of new types of vessels (pinnae and fluit) which were faster, could carry more load and were better manoeuvrable.

There is no doubt that during the 17th century Holland was the shipbuilding centre of Europe. In the second half of this century Nicolas Witsen is expressing his worries about the future. As burgomaster of Amsterdam and member of the State council he is expressing his concern about the lack of interest of the provinces in a further development of the Dutch shipping and shipbuilding industry.

He is addressing the need of the development of knowledge and science in combination with practice in a voluminous work [10]. He draws attention to the importance of shipping and shipbuilding for the position of the Netherlands in Europe. Apparently the politicians were not interested in the subject and had insufficient knowledge of the contribution of the maritime trade to the welfare of the country. The reason may have been the tulip hipe.

His views are confirmed by C.R. Boxer [11], who made a study of the maritime and economic of Netherlands during the 16th and 17th century. He confirms the lack of interest of the politicians of maritime matters which is leading to the decline in the 18th century. Boxer states: ‘......the land provinces would never pay their full quotas for the upkeep of the navy and the convoys of merchant shipping’. He argues that ‘......the trans-ocean trade brought more than a profit: it made windows into the mind. Rich and valuable as the trans-ocean trade was for the Dutch, stimulating as it was to the mind and the imagination as well as science and technology, nevertheless it would be rash to overvalue the part it played in the Dutch miracle of the 17th century other factors played also their part - the rich Baltic trade which the Dutch dominated, and of course the vigorous European commerce borne on the great rivers that the Dutch controlled’.

Another English historian Jonathan I. Israel [13] confirms that the loss of international trade was the major reason for the recession of the Netherlands in the 18th century. The lack of scale must have been a reason. The surrounding countries controlled the trade and the Netherlands were not able to create sufficient power. The occupation of France closed the windows to the world and it took a century before the decline could be reversed.
3. The Change from Decline to Recovery

This begins at the end of the 18th century. During the 19th century many changes are introduced. Mechanisation, new materials, electricity are developed and introduced. Technological changes push science in a new direction with a strong relation with day to day practice. During the 20th century the economical centre of the world is slowly shifting towards the Pacific Rim (Japan, Newly Industrialising Countries and China).

Scale and mechanical propulsion

Iron and steel are introduced as well as the mechanical propulsion. The sailing ship is still making progress. During the 19th century the ‘Queens of the ocean’, the clippers, are designed and built. The American Shipyards are the first to develop these ships, the most beautiful and fine sailing ships for transport of cargo ever built.

In every aspect ships are metamorphosed: changes from wood to steel, sail to mechanical propulsion, stem to diesel, paddle wheels to propellers, riveting to welding are making it possible to increase the size and speed of the vessels and to maintain a reliable service.

The transatlantic passenger transport grows [fig. 12]. Oil and industrialisation are boosting the intercontinental trade.

In the second half of the 19th century the shipbuilding industry in the Netherlands is recovering slowly. In 1861 Schokker [14] publishes a voluminous book on shipbuilding in which he is addressing the area’s of the Dutch shipbuilding industry, is pleading for better education and research for naval architecture.

In many respects the leeway of the industry in the Netherlands must have been significant. The ‘École Polytéchnique’ in Paris is founded in 1794, the ‘Politechnical School’ opens the doors in Delft in 1842. The driving force is the growing need for technical know-how for a wide range of technical disciplines, including naval architecture.

initiatieven die buiten de Hanze om tot stand kwamen, leidden tot de ondergang. De Hollandsers doorbraken in de 16e eeuw het monopolie van de Hanze waarmee de basis werd gelegd voor de welvaart van Nederland in de Gouden Eeuw. Dat succes werd mede mogelijk door de nieuwe scheeps typen, de pinas en de fluit, die de Nederlanders in de vaart brachten (fig. 10 en 11).

Sommige bestuurders uit die tijd hadden een scherp oog voor de onderschijnlijk sterke situatie van de scheepsbouw in die tijd. Nederland was ongetwijfeld het scheepsbouwland in Europa in de 17e eeuw, maar kennelijk was er nog werk aan de winkel.

Nicolaes Witsen, burgemeester van Amsterdam en statenlid, publiceert in 1671 een omvangrijk werk over de scheepvaart en scheepsbouw in Nederland. Witsen ziet, als politicus, het belang van het samenspel van kennis, wetenschap en praktijk want in de inleiding schrijft hij ‘Het wit deses is vermeerdering van de kennis van een jegelyk zonder practijk en gestadighe hanedeling (buiten bespiegelingh) van ’t werck, zijn de schriften onnut. Zoo groot dient de waardighet dezer wetenschap te zijn, dat niemand der zelve hier te lande behoorde onkundig te zijn’. Witsen geeft een terugblik in de geschiedenis van het schip, beschrijft de ‘state of the art’ in 1671 en stelt dat de scheepsbouw en scheepvaart meer aandacht verdienen gezien de positie van Nederland in Europa en het belang voor het land. Kennelijk waren de bestuurders niet goed geïnformeerd.

Zijn visie wordt onderschreven door C.R. Boxer 11, een 20e eeuws Engels historicus, die de opkomst en neergang van Nederland als maritieme natie vanaf het begin van de 16e tot het einde van de 18e eeuw analyseert. Hij onderschrijft de waarneaming van Witsen dat men te weinig zicht had op het maritieme belang („... the land provinces would never pay their full quotas for the upkeep of the navy and the conveying of merchant shipping“) en signaleert het belang van de toegevoegde waarde („the trans-ocean trade brought more than a profit: it made windows into the mind. Rich and valuable as the trans-ocean trade was for the Dutch, stimulating as it was to the mind and the imagination as well as science and technology, nevertheless it would be rash to overvalue the part that it played in the Dutch miracle of the 17th century.other factors played also their part - the rich Baltic trade which the Dutch dominated, and of course the vigorous European commerce borne on the great rivers that the Dutch controlled‘...). Boxer beroept zich op een groot aantal Nederlandse studies. Hij wijst op de teruggang van de industrie in de tweede helft van de 18e eeuw, waarbij de scheepsbouw die in de 17e eeuw omvangrijk en welvarend was, ook hard werd getroffen. De redenen voor de terugval van vrijwel de gehele Nederlandse industrie zijn het verlies van de buitenlandse markten. Dit is het gevolg van protectionistische maatregelen van de omringende landen.

1. Philippe Dollinger, La Hanse (XIIe-XVIIe siecle), editions Montaigne, Paris 1964
2. Nicolaes Witsen, Aeloude en Hedendaagse Scheepsbouw en Bestier, 1671
3. C.R. Boxer, The Dutch Seaborne Empire 1600-1800, 1965
export van kapitaal, etc. Ook Jonathan I. Israel 12 geeft aan dat de terugval van de internationale handel de oorzaak was voor de terugval van de welvaart in Nederland in de 18e eeuw.

Nederland gaat na het verlies van de vierde zeearog met Engeland aan het eind van de 18e eeuw internationaal naar het tweede décor. Engeland maakt van Portugal een kolonie en sticht een imperium waarin de zon niet ondergaat: ‘Britannia rules the waves’.

3. De onvoltooid verleden tijd

De onvoltooid verleden tijd begint aan het eind van de 18e eeuw. De 19e eeuw is in vele opzichten een eeuw van verandering en vernieuwing. Het is het begin van een periode van mechanisering, nieuwe materialen en technieken zoals elektriciteit en elektronica waarvan het einde nog niet in zicht is.

In de 20e eeuw begint de langzame verschuiving van het economische zwaartepunt naar de Pacific Rim door de opkomst van Japan, de Newly Industrializing Countries en China.

Schuurvergroting en mechanische voorstuwning

De scheepsbouw is ijzer en staal als bouwmateriaal, en de mechanische voorstuwning hun intrede. Het zeilende vrachtschip blijft weliswaar tot ver in de 20e eeuw varen maar de 19e eeuw is het begin van schaurlvergroting, het schip ondergaat in 150 jaar een metamorfose. Van hout via composietbouw naar staal, van zeilen via stoommachine naar de diesel, van klinken naar lassen. De transatlantische passagiersvaart komt tot bloei (fig. 12).

De industrialisatie en de olie stimuleren de intercontinentale handel. Nieuwe technieken en technologieën vinden hun weg naar de scheepsbouw.

Schokker besteedt naast de theorie (stabiliteit, weerstandsverzekering, vormgeving en sterkte) aandacht aan scheepsbeschrijvingen, de constructie van het schip, de gereedschappen, de (klink)bouwtechniek en de sterkte daarvan.

Hij wijst op het probleem van de maatvoering (evenals Witsen) en op de technische achterstand die er in Nederland is (in tegenstelling tot de tijd van Witsen).

Hij onderschrijft het belang van de theoretische onderbouwing voor de vernieuwing maar stelt...
During both wars the USA is capable to increase the production of merchant ships to compensate for the losses due to German sub-marines actions. The standard ships are built in series which makes it possible to realise short delivery-times. The record during the first world war is 38 days for a 5000 t/dw ship (riveted?).

An example of the efforts made by the Americans is Hog Island Shipyards, built in 9 months on the Delaware river in Philadelphia. The yard had 50 slipways and 7 outfitting quays for 4 ships each (fig.13). The yard was closed in 1921. The building of standard ships did not meet the demand of the market. The market needed different ships for different trades, routes, harbours, cargo's etc. The requirements of the market are in both situations the governing factor. War requires that ships are faster than they are sunk by submarines. During World War II the situation is identical. Ships are than not riveted but welded and assembled from large sections. Series of ships are built from large blocks and delivery times are reduced drastically. The record for building a ship is set at less than five days. The USA was capable to realise this under difficult conditions because of the availability of know-how on all levels. The key-factor to be successful was the availability of skills, the result of training and education.

After the WW II trade and shipping show an explosive growth. During the second half of the century regional conflicts are disturbing and endangering political stability. Again the navies are crucial to maintain control at sea and the supplies. A major maritime connection, the Suez- canal, is twice the cause for a regional conflict. The combination of the demand for oil and the closure of the canal in 1967 is the reason for the development of the VLCC.

The European nations are facing the competition of Japan. The shipbuilding industry in Japan is growing faster than the demand. The rationalisation of the shipbuilding industry starts in Japan, in combination with an increase in capacity and scale of the shipyards. The assembly of ships by means of large blocks and pre-outfitting is introduced. The basis is the method used by the American shipbuilding industry during WW II.

The size of the shipyards is further increased in Korea with European and Japanese know-how and results in an unprecedented growth in capacity.

The efforts of Europe and (later) Japan to create a balance between demand and supply are in vain. The surplus in capacity creates a buyers market. The market for the large relatively simple ships such as tankers and bulkcarriers is at the end of the 20th century controlled by Korean shipyards. At the same time Korea is penetrating the European market of specialised vessels. The shipbuilding industry in Europe is divided between state owned or state supported shipyards (Italy, Spain, France, Germany and Finland) and countries with shipyards which are private enterprises (Denmark, Great-Britain, Sweden and the Netherlands). This results in a dual subsidy policy which differentiates between ship types and-sizes. The Dutch shipbuilding industry is suddenly faced with price-dumping from shipyards in the South of Europe.

darbij vast dat 'vooruitgang in den scheepsbouw is alleen te verwachten van hen, die theorie en praktijk weten te verenigen; van hen, die geen luidelijke opmerkers zijn van de physische waarheden'. Schokker wijst onder meer op het belang van onderzoek naar het gedrag van de materialen, de effecten van corrosie, de conservering, de aangroei aan de huid die bij ijzer groter is dan bij hout, de grotere veiligheid van ijzeren schepen, het onderzoek naar het gedrag van de klinknagels om tot betrouwbare verbindingen te komen.

Schokker schrijft over het belang van de opleiding in de scheepsbouw: '... en elk onderdeel van het schip eischen dat zorgen in deelzame mate: elke scheepsbouwmeester en elke redor doe zichzelven voordeel wanneer hij daarop acht geeft; terwijl men bovendien vooral bedenken moet, dat het veiligheid van mensen-levens daarvan afhangt. Daarom ook is het te wenschen, dat er een tijd zal komen, waarin aan scheepsbouwkundigen, die de hoofdstudie van hun vak hebben gemaakt, het toezigt over te bouwen schepen worde opgedragen...'

De toenemende maatschappelijke betekenis van de techniek stimuleert de vraag naar opleiding en onderzoek. In 1974 wordt in Frankrijk de école polytechnique opgericht, in Nederland, bijna 50 jaar later, in Delft de polytechnische school. De drijvende kracht is de behoefte aan kennis voor een scala van technische disciplines waaronder de scheepsbouw.

Over werkmethoden, organisatie en effectiviteit van het werk wordt vrijwel niet gesproken alhoewel Schokker soms beschrijvingen geeft bij de tekeningen (platen) over de wijze en volgorde van het maken van verbindingen.

Uit de literatuur valt niet vast te stellen hoe het proces van het bouwen van een schip verloopt. De middelen, materialen en onderdelen worden wel beschreven. De methode van werken, organisatie en beheersing van het proces was het vak van de scheepsbouwmeester.

Ervaring werd mondeling overgedragen, de kennis is niet vastgelegd en verloren gegaan. Het bouwen van een vrijwel exacte replica van een VOC-schip neemt nu, met de beschikbare moderne en geavanceerde middelen zeven jaar, terwijl deze schepen in de 16e eeuw in drie tot zes maanden werden gebouwd.

Daarin komt in de 20e eeuw verandering. De arbeidsanalyse, de studie van de organisatie van de arbeid komen, in samenhang met de bewerkingstechnieken en het ontwerp van de inrichting van een bedrijf, tot ontwikkeling voor serie-, massa- en procesindustrie. De beheersing van de logistiek en kwaliteitszorg leiden tot kwantitatieve analyse technieken en verbetering van de bedrijfsprocessen. De mechanisering, automatisering en robotisering zijn de volgende stappen voor de verhoging van de productie en de productiviteit. Er is op dit gebied een omvangrijke literatuur. Een uitzondering daarbij vormt de enkelproductie, zoals de scheepsbouw, die het moet doen met de kwalificatie 'projectmatige organisatie'...

In eerste helft van de 20e eeuw herhaalt zich op wereldschaal wat tot in de 18e eeuw een regionale strijd was. Twee wereldoorlogen worden beslist door de slagkracht van de geallieerde marines die met de koopvaardij in staat zijn de logistieke bevoorrading van de legers in stand te houden. Tijdens beide oorlogen bouwen de Verenigde Staten serie staardschepen om de verbindingen over zee in stand te kunnen houden.
The Netherlands
Around 1960 there are clear indications that the growth of the Japanese shipbuilding industry cannot be stopped. Delegations are sent to Japan to see what can be learned from the Japanese industry. A combination of economy of scale, mergers, diversification, reorganisations and subsidies follows but does not in every case lead to the satisfactory results. Mergers forced by the government do not yield the expected successful effects. The differences between capital assets, organisation and cultures of the companies are big and do not get sufficient attention with negative effects on the motivation of the employees and loss of confidence in management. During the eighties the shipbuilding industry is restricting without government interference. Two types of organisations appear to be successful: the small independent enterprise and a (rather small) holding with autonomous subsidiaries.

In 1969 the know-how and quality of the European shipbuilding industry are demonstrated when eight fast containerships are contracted by a consortium of four shipyards: the Rotterdam Dockyard Company, AG Weser and Rheinstahl Nordseewerke. A joint engineering office, the Containership Construction Centre (CCC) is set up by the yards in Rotterdam.

Fig.13: Hog Island Shipyard

In de eerste wereldoorlog pogen de Duitse onderzeeboten de leveringen aan de geallieerden te verhinderen door niet alleen de geallieerde handelschepen maar ook die van neutrale landen tot zinken te brengen. Na de Amerikaanse oorlogsverklaring wordt het gebouwde tonnage aan schepen in twee jaar verdubbeld. Een uitgekipte serieproductie zorgt voor korte doorlooptijden. Het record is een bouwperiode van kielegging tot oplevering van 38 dagen voor een 5000 tdw vrachtschip (gekronken!).

Eén van de nieuwe werken was Hog Island Shipyard aan de Delaware bij Philadelphia. De werf, met 50 hellingen en 7 albouwpleinen, werd in negen maanden gebouwd. De opzet is een assemblage bedrijf voor standaardschepen (fig.13). In 1921 werd de werf gesloten. Waar in oorlogstijd standaardschepen voldoen (de opdracht is de schepen sneller te leveren dan ze werden getorpedeerd), blijkt dat de vraag naar commerciële schepen te gevarieerd is voor aantrekkelijke seriebouw. In de tweede wereldoorlog doet zich dezelfde situatie voor. De schepen worden dan niet meer geklonken maar gelast. De serie- en sectiebouw maakt het mogelijk de doorlooptijden drastisch te reduceren. Het record van de bouwperiode komt op minder dan vijf dagen.

De V.S. konden dergelijke prestaties leveren omdat de kennis op alle niveaus beschikbaar was. Eén van de sleutelfactoren van succes was de scholing en opleiding van mensen.

In de tweede helft van de eeuw komen regelmatig regionale conflicten voor. Bij het beslechten daarvan blijken de bevoorrading over zee en de marines weer onmisbaar te zijn. De scheepvaartverbindings door het Suez kanaal in Egypte is twee maal de aanleiding tot een conflict. Samen met de groeiende vraag naar olie, is de sluiting in 1967 de drijvend voor de komst van de VLCC. De intercontinentale handel en scheepvaart groeien na de tweede wereldoorlog tot 1975 explosief. Japan komt op als industrieland en de scheepbouwcapaciteit groeit wereldwijd sterkder dan de vraag. De Azatische concurrentie zet de concurrentie positie van de zware industrie in de zestiende en zeventiger onder druk en de scheepbouw in West-Europa ondervindt daarvan de weerslag. In West-Europa wordt het behoud van arbeidsplaatsen een politiek belang.

In Japan begint de rationalisering van het bedrijfsproces in de scheepbouw. Het doel is niet zozeer de seriebouw, maar vooral schaalgrootte. Er komen werken waar grote hoeveelheden staal worden verwerkt. De stapsgewijze assemblage tot grote secties neemt een vlucht in combinatie met pre-outfitting. De Japanners gebruiken de Amerikaanse bouwmethoden uit de tweede wereldoorlog als basis en vervolmaken die.

In Korea wordt vervolgens de schaal van werken verder vergroot met steun van Europese en Japanse kennis. Het resultaat is een ongekende groei in capaciteit. De ontwikkeling is mogelijk door geo-politieke overwegingen. Het gevolg is een formidabele overcapaciteit waardoor de inspanningen van Europa en later ook Japan om evenwicht tussen vraag en aanbod teniet worden gedaan en een buyers market ontstaat.
The capacity of the vessels is 1096 containers of 35' and 40' (approx. 2250 TEU). The service speed is 33 knots, with 120,000 horsepower on two shafts. The ships had to be build under U.S.G.G. supervision and ABS. Because the owner requires that the eight vessels will be identical in every detail. CCC is made responsible for engineering, purchasing, the logistics, the deliveries, theoretical and technical support, co-ordination between the shipyards and approval of drawings by Sea-Land, U.S.G.G. and ABS. The hydrodynamic aspects (lines-plan and propellers) were investigated and developed by MARIN in Wageningen. The know-how and quality were the deciding factors for the decision of Sea Land to entrust the order to the European shipyards. The Japanese yards refrained from quoting because of the complexity of the projects.

Some conclusions and trends
- Shipping shows a steady growth over the centuries.
- The growth of increasing transport results in mainports from where the cargo is redistributed.
- Ships are indispensable for trade and transport.
- Over the centuries navies are protecting merchant shipping and in the event of war maintaining logistics and supplies in combination with merchant vessels.
- Protection is only effective during a limited period, difficult to maintain even with the assistance of the navy.
- Globalisation reduced the periods during which protection can be maintained.
- Shipping stimulates the search for new developments and technologies.
- Economic depressions hit shipbuilding hard, but if know-how and skill are maintained and able to keep up with new developments.
- Shipbuilding is geographically moving to cheap labour countries. This is successful if know-how and skill are available or can be obtained from elsewhere.

4. Shipbuilding today
The ship of today is a floating village disposing of all facilities being available in society. Moreover the ship is carrying cargo. For this purpose a power plant, hotel services, installations for propulsion and cargo treatment, navigation and communication equipment are installed or on board. The crew is managing complex a capital good. Many suppliers are involved in the design and building of such a product, its installations, equipment, materials and components.

The process of shipbuilding
Basically a design starts with a clean sheet of paper to realise a concept which fits the market requirements. In doing this the designer has to anticipate on innovations and changes and incorporate these in his design. The second step is to produce that can be made against the lowest possible cost with the help of suppliers. Systems and assemblies are designed and engineered to enable the fast and reliable manufacturing of sub-assemblies. Engineering is the precise fixing into the last detail which makes the manufacturing assembly and outfitting
Het werd een fascinerende periode waarin naast vrachtschepen, tankers en cruise-schepen een verscheidenheid aan offshore equipment werd gebouwd en verbouwd, van kraanschepen tot semi-submersibles, pijpleggers en -begravers, heftralen etc. (fig. 14).

De reputatie van Nederlandse scheepsbouw is, reker in die tijd, zeer goed. De containerschepen zijn in opkomst en een in alle opzichten uniek project is de bouw van acht snelle containerschepen voor Sea-Land die door de RDM met Wilton-Fijenoord, AG Weser en Rheinmetall Nordseewerke worden gecontracteerd en in samenwerking gebouwd. Met een capaciteit van 1096 containers van 35° (1) en 40° (ca. 2250 TEU) krijgen de schepen een snelheid van 33 knoop met een vermogen van 120.000 PK op twee assen. De totale omvang van de opdracht is ongeveer 1,2 miljard gulden en dient in 3,5 jaar te worden gerealiseerd. Er zijn sindsdien wereldwijd voor de vrachtafvaart geen schepen meer gebouwd met een zo hoge snelheid (fig. 15).

Gezien de complexiteit van de opdracht en op aandring van de Reder wordt door de samenwerkende werven in Rotterdam het Containership Construction Center (CCC) opgericht, waarover ik in 1969 de leiding kreeg. Het CCC is verantwoordelijk voor de engineering, inkoop, logistieke afstemming van de leveringen, de theoretisch-technische ondersteuning, de coördinatie tussen de werven, de goedkeuring van de tekeningen door Sea-Land, U.S.C.G.11 en de kwaliteitscontrole bij A.B.S.

11 Tijdens de engineering werd duidelijk dat de gedetailleerde regelgeving van de U.S. Coast Guard de introductie van nieuwe constructies en materialen had gefrustreerd. De Europese leveranciers en werven waren aanzienlijk vooruitstrevender. De regelgeving beschermde de Amerikaanse leveranciers met algeveld dat de prijzen veel hoger waren dan die van de kwalitatief betere Europese leveranciers. Deze methoden konden nu voor in sommige Europese richtlijnen voor de import van producten in de E.U. de antidumping- of kwaliteitseisen voor die producten lijken de Europese leveranciers te beschermen.
Enkele conclusies uit het voorgaande:
- De scheepvaart groeit gestaag door de toenemende vraag naar transport, zowel in tonnen als volume.
- De groei van de goederenstromen gaat gepaard met de groei van havens waar de lading zich concentreert, waardoor de regionale handel, industrie en welvaart toenemen.
- Schepen zijn onmisbaar voor handel en transport.
- De mariniers zorgen voor het handhaven van de vrije handel en samen met koopvaardij voor de onmisbare logistieke bevoorrading tijdens conflicten.
- Protectionistische maatregelen zijn slechts effectief voor een beperkt tijd en moeilijk te handhaven zelfs met behulp van maritieme militaire machtssmidden.
- Globalisering maakt de periodes waarover protectie te handhaven is korter.
- De scheepvaart stimuleert het zoeken naar en de ontwikkeling van nieuwe technologie.
- Economische depressies treffen de scheepshout hard, maar dat deze handhaalt zich daar waar de kennis en het vakmanschap nieuwe ontwikkelingen volgen.
- De scheepsbouw verplaatst zich geografisch naar goedkope londenlanden. Dit is mogelijk indien daar voldoende kennis en vakmanschap beschikbaar zijn of worden ingekocht.

4. Scheepsbouw in de tegenwoordige tijd

Het schip is nu een varend dorp met aan boord vrijwel alle voorzieningen die in de samenleving voorkomen. Het schip vervoert lading. Het heeft een energiecentrale, hotelbedrijf, installaties voor voortstuwing en ladingbehandeling, navigatie- en communicatiemiddelen. De bemanning beheert een kapitaal en complex goed. Bij het ontwerp en de bouw is, voor de installaties, componenten, materialen, technologieën, middelen en technieken, de gehele bedrijfsskolom vanaf de levering van grondstoffen betrokken.

Het bedrijfsproces in de Scheepsbouw

De ontwerper begint in principe met een blanco blad en brengt in een eerste stap het schip tot een ‘bruikbaar concept’. Hij staat voor de taak op vernieuwingen en veranderingen te anticiperen. Dat is niet eenvoudig maar daarmee ook een uitdaging. De tweede stap is de uitwerking tot een maakbaar product tegen de laagste mogelijke kosten met behulp van toelevanciers. Dit is het ontwerpen van systemen en samenstellingen van onderdelen tot snel en efficiënt te vervaardigen en assembleren halfproducten die stapsgewijs tot een eindproduct worden samengesteld.

De derde stap is ‘het construeren en tekenen’, naar een precieze vastlegging tot op het detail. Dit is een proces dat van op hoofdlijnen gedefinieerde functies naar betrouwbare, verifieerbare en bruikbare informatie gaat waarmee de stappen, fabricage, assemblage en uitrusting uitvoerbaar worden.
5. The university
Having been active for 20 years in the industry and 20 years at the university one might tend to compare these two periods. Both engagements are challenging and different. Going back to university is a change in many respects and inspiring. Being suddenly in the midst of all technical disciplines which are a reflection of society offers many opportunities.

Also universities are searching to find a balance between modernisation and stability. Reorganisation and restructuring, mostly triggered by budgetary savings, are causing changes in educational and research programs. Looking back, there may be doubt about the effectiveness of the measures, but a shake-up is refreshing and keeping people alert.

Education
A change from industry to a university creates the possibility to incorporate the previous experience into the curriculum and to enliven courses. My basic idea was that the interest to gather knowledge is a matter of curiosity, which is not necessarily created by lecturing. Experience is a tool to demonstrate that knowledge is indispensable for the engineer to solve problems and creates the confidence of human beings to better understand and control the process in their environment. It also helps to compare methods to find pragmatic and reliable solutions for problems. However, experience can only be incorporated in knowledge if this can be incorporated in a structure which is enhancing the curiosity.
A method is facing the students with realistic problems and stimulating the study of literature in combination with an evaluation of methods and theories which may contribute to a solution and the search for shortcomings and possible improvements. This requires skill and understanding from the student. Understanding has to grow and is, in a way, a matter of experience. The fact of being faced with a problem will support the focus on the required background and theory. The relevance of a problem is than an important factor and cooperation with the industry is inspiring.

The core of the matter is that an engineer must be capable to integrate conflicting requirements in a design which is competitive in the market and can be made against minimal cost. The basic technical know-how from a naval architect differs from an aeronautical, mechanical or civil engineer. Floating, drifting and sailing differ from flying or rolling. Environmental conditions, speed, infrastructure, ports, traffic management and safety are basically different and require specific knowledge and competencies. The fact that the Delft University of Technology is offering complementary disciplines is therefore one of the most attractive aspects of this university and should be guarded in every respect. It is the basis of the future technological developments. This university is capable to maintain a ‘Total Quality Concept for Engineering’ which is a valuable asset for the future. The future will be in the capacity to integrate, starting with the basic knowledge of a discipline and the capability to understand the capacity and strengths of other disciplines. The knowledge of the designing and constructing engineer and the science supporting this are visible in the product, an aspect which should be much higher valued than any citation index. The creativity to produce and different solutions for the same function is what the designing and constructing engineer stands for. He delivers a reliable product.

It is stimulating for the students and the staff of Marine Technology to know the Board of Management and the Management of the Faculty value the societal and scientific relevance of same importance. The confirmation that the two chairs for design & construction and two scientifically oriented chairs (shiphydrodynamics and shipstructures) are the basis for Marine Technology is in line with the accommodations from industry.

The financial support for a renewed and innovative curriculum for Marine Technology emphasizes the view that there should be a balance between theory and application in both research and educational programmes.

Research & Development
The probability calculation is from a societal and scientific point of view important for the professional engineer, provided, "... engineers ... learn to deal in a sensible way with uncertainties and coincidences" [16]. This is precisely the responsibility of a naval architect. Gambling is not his business, but he must recognise risks and be able to deal them with profound and reliable knowledge. Knowledge which is specific, applicable and continuously being improved by research. The results of research have to be verifiable. This could e.g. indicate if probability calculations are indeed leading to less accidents at sea. If such proof cannot be given the research is meaningless and may create a myth.

Door creativiteit met kennis en wetenschap te combineren met vertrouwen in eigen kunnen is niet alleen de scheepbouw, maar de gehele maritieme sector in Nederland, er in geslaagd successen te boeken in een sector waar de concurrentie wereldwijd op het scherpst van de snede wordt uitgevocht. Nederlandse werven zijn in concurrentie met Koreaanse werven en ondervinden dat in Europa de speelregels niet overal hetzelfde zijn.

Daarbij behoort onderwijs dat afgestemd is op de behoeften van deze sector met onderzoek op niveau. De afdeling Maritieme Techniek van de TU Delft heeft daaraan, zoals blijkt uit het oordeel van een internationale commissie tijdens een recente visitatie van de VSNU en de ABET accreditatie, naar behoren bijgedragen.

5. De universiteit
De overgang van het bedrijfsleven naar een universiteit was groot, maar de TU Delft is een inspirerende omgeving o.m. door de vele technische disciplines die een weerspiegeling zijn van de samenleving in Nederland. Ook bij de universiteiten werd een balans gezocht tussen vernieuwing en stabiliteit. Dit bracht, samen met de noodzaak tot besparingen, veranderingen in de organisatie en herstructurering tussen en binnen faculteiten. Het onderwijs veranderde enkele malen ingrijpend: de opleiding ging van vijf naar vier jaar en vervolgens weer van vier naar een vijf jaar. De nieuwe curricula, overgangsregelingen en herzieningen van jaarstudies maken de studie voor de studenten niet overzichtelijker. De gevolgen waren afstemmingsproblemen (dubbele onderwijsprogramma's voor dezelfde jaren), minder tijd voor inhoudelijke onderwijsvernieuwing en onderzoek. Het korte termijn effect van veel gelijktijdige investeringen in veranderingen was niet altijd positief. De financiering van het onderzoek verschof van de eerste naar de tweede en derde geldstroom. Voldoende beweging dus om bij de tijd te blijven, er moesten keuzes worden gemaakt en een nieuwe balans worden gevonden.

Het onderwijs
Er is een grote verscheidenheid in talenten en belangstelling van de studenten die zich in Delft aanmelden, ook bij een kleine studierichting als Maritieme Techniek. Het onderwijsprogramma moet daar op afgestemd zijn.

Een van mijn doelstellingen was de ervaring, opgedaan in het bedrijfsleven, te gebruiken in het onderwijs, over te brengen aan studenten en het onderwijs daarmee te verlevendigen. De uitgangspunten waren eenvoudig:
- Kennis is een onmisbaar hulpmiddel voor de ingenieur.
- Met het vergaren van kennis neemt het vertrouwen van de mens om zijn omgeving en de processen die zich daarin afspelen beter te begrijpen en te beheersen, toe.
- De methodes om kennis te vergaren verschillen, maar er is ervaring nodig om pragmatische en betrouwbare oplossingen van een probleem mogelijk te maken.
- Ervaring kan, indien gestructureerd en vastgelegd, worden overgedragen.
The maritime field has still many scientific challenges for R&D:
- methods to improve safety and behaviour of ships at sea,
- further reduction of the environmental impact,
- methods to analyse the external loads on the structure,
- methods to verify the suitability of new materials and constructions,
- methods to analyse the cost-effectiveness of design, ship-construction and operation for shipowners and shipbuilders,
- integration of business processes in particular design, systems-engineering, engineering and construction, in particular for the cost-effective building and maintenance.

The department of Marine Technology is participating in national and international R&D projects on these topics.

Integration yields Progress

The integrated approach of design, systems-engineering and suppliers shows impressive results over the last fifty years. The fuel consumption per ton displacement has been reduced by an average of 1.2% to 1.5% per year, depending on the type of ship. This is the joined result of improvements in the hull form, propeller design, diesel engines, surface treatments, energy savings on board by power management, smoother surfaces of the hull as a result from better production technologies etc.

When effects of scale, increase of deadweight resulting from improved designs and lighter constructions, reduction in crew and the cost-price of vessels are also taken into consideration the performance per ton of cargo is spectacular. One example: from 1984 till 1994 tariffs for the transport of containers between Europe and the Far East were reduced by 50%, an average of 5% per year. [17].

Ships made a huge contribution to the reduction of emissions, cost of transport and the suitability of the society. And this is still going on. There is not other modality in transport who is coming in any respect near to this performance. This is the result of a combination of thorough and consistent international research and product development for shipbuilding and related activities. The Netherlands contributed to this research with Marin, Delft University of Technology and TNO. The fruits of this R&D are visible and measurable. The steps are small but over a period of fifty years, the results are unrivalled by any other mode of transportation. The scientific results are measurable, effective and relevant for society.

Innovations in shipbuilding processes

On request of the shipbuilding industry in the Netherlands, Delft University of Technology made inventory of R&D subjects, related to the shipbuilding process. Electronic databases have been screened world-wide using key-words to allocate reports and publications. Some 5700 records were found. The publications have been classified and categorised. The aim is to establish which contributions have been made in R&D to improve the shipbuilding process. Simultaneously the possibilities promising innovations for the short-, medium- and long term is examined.
Some trends are visible. Regional conflicts will remain, terrorism will increase, and the ship remains a sine qua non. Korea will continue to try to monopolise the shipbuilding industry. We will have to live with anything that happens.

For new designs of ships the shape, packing and quantities of cargo are of importance as well as the available infrastructure of the harbours. A great variety of goods are transferred, basically from any mode to any other mode. Volume and tonnage are high. An inter-modal, integrated approach of the logistics may change methods of packing, shape and transfer of cargo and effect the design of the ship. Direct transfer ship-to-ship, ship-to-barge, ship-to-train or ship-to-truck may reduce the cost of transfer and storage. The costs of the land-side are for containers under 70% for inter-continental transport, the sea-side takes 30%. So we know where the savings are to be found.

The added value of transport is motion. Goods being stationary or in storage represents costs which should be avoided. This all is resulting in a growing interest in the overall logistic chain, including all stages and phases, the design of harbours and transfer systems.

System integration and added value in the supply chain is also a subject of interest for the shipyards. Decreasing added value as a result from increased outsourcing appears to reach its limits. A fundamental change is worthwhile to be investigated. A selective reversing of the process of outsourcing based on integrated systems engineering is worthwhile to be examined. Such a move requires a careful analysis. Methods to evaluate the effects of process-integration, reduce avoidable costs by adding value is a subject for further research.

Inland Waterway Transportation

Many R&D projects have been carried out for the inland waterway sector. Inland Waterway Transportation deserves much more attention from the transportation sector. It is an activity which is underestimated, but offers similar, if not better opportunities for clean, reliable and cost-effective transportation as the sea-going ships. For decades the policy has been to transfer cargo from water to road. Still industrial zones are planned alongside the highways, in stead of canals. This is decreasing the door-to-door capabilities of the ships. Attention was given to the larger waterways, because of economies of scale.

The Inland Waterways Transport should be looked at with much more attention than it is done today. Since the time of the Hanseatic League shipping on rivers and canals is asset for the Netherlands. One ship can take up till 300 trucks from the road for larger distances on the river Rhine. Planning is more important than speed and being in a traffic jam does not add value to the transport.

The ship powered by fuel cells is a subject for research and offers possibilities for still cleaner ships, which is particularly of interest for densely populated area’s.

Myths, hype and the engineer

The researcher formulates a thesis, but does not know whether his supposition is true or not. Fundamentally this is a well-reasoned myth, one may believe in it, or not. Some times figures and numbers should suggest some kind of reliability and trust in the future. This are the symbols, sometimes supported by ceremonies to support the myth.

De basisopleiding van een discipline zal het inzicht in en de uitdagingen van de techniek voor de student moeten aanreiken.

Van de ingenieur wordt een wereld van zekerheden verwacht. Het schip mag niet zinken, de roder vraagt een snelheid die met een minimum aan vermogen en brandstofverbruik, gecombineerd met het draagvermogen van het schip dat voor een concurrerende prijs in wereldmarkten kan worden gebouwd. De ingenieur ‘maakt’ objecten die zichtbaar, tastbaar en bruikbaar zijn. Hij levert geen mythen maar vertrouwen en bouwt voor een toekomst. Hij beschikt over de creativiteit verschillende oplossingen voor dezelfde functie te bedenken. Bij de keuze van de oplossing onderzoekt hij naast de functionaliteit, het schoon zijn, de onderhoudbaarheid, de betaalbaarheid (kosten) duurzaamheid, de veiligheid etc.

Het is stimulerend voor de studenten en de staf om vast te kunnen stellen dat het College van Bestuur en de faculteit OCP de maatschappelijke relevante van een technische opleiding als Maritieme Techniek van gelijk belang achten als de wetenschappelijke. De toezegging van het College van Bestuur dat vier voltijdse leerstoelen, twee ontwerp gerichte en twee wetenschappelijk georiënteerde, de basis vormen voor de opleiding Maritieme Techniek sluit aan bij de adviezen van het bedrijfsleven.

De financiële ondersteuning van het College van Bestuur voor de vernieuwing van het onderwijsprogramma van Maritieme Techniek bekraftigt de visie dat er een balans moet zijn in de opleiding tussen de toepassing en de theorie. De basis opleiding is er nu en de eerste resultaten zijn naar verwachting. De verbetering van de propedeuse resultaten is gerealiseerd zonder afbreuk te doen aan de inhoud. Studenten scoren beter op alle onderdelen. Verbetering van inhoud en vorm hebben hun werk gedaan. Dit vergroot het vertrouwen in een opleiding waarvan de internationale VNSU visitatie en de ABET accreditatie vast hebben gesteld dat de kwaliteit van de afgestudeerde ingenieur excellent is.

Het onderzoek

Zonder kennis geen wetenschap.

Dekking 17 geeft aan dat maatschappelijk en wetenschappelijk de kansrekening van belang is, ook voor de ingenieur mits, zoals Dekking stelt, ‘... ingenieurs ... leren op een verantwoorde manier om te gaan met onzekerheden en toevalheden’.

Bij het ontwerpen en bouwen van een schip doet de scheepsbouwer dat voortdurend. Gokken is niet zijn vak, maar wel het onderkennen van risicos met kennis van zaken. Kennis die concreet, toepasbaar en in ontwikkeling is. Verificatie en onderzoek moeten dan uitwijzen of kансberekeningen inderdaad leiden tot minder ongevallen op zee. De resultaten moeten uitzicht op bruikbaarheid en toetsbaarheid bieden.

TRUST IN PERFORMANCE seems to become a virtual concept. Knowledge of business processes and people is not a factor anymore.

Are myths, symbols and ceremonies the driving forces why are people prepared to conduct enterprises, invest money even if losses over many years are predicted? This is not scientific reasoning but a matter of fear and hope.

The traditional task of the engineer is to remove uncertainties and to create confidence. It is a basic element of the task of those who are designing and making products based on technical know-how. The designer predicts the results, measures and delivers verifiable information. The increasing product reliability puts even financial claims on non-performance to predicted results. The increasing liability may lead to increasing risks taken by the user. From this point of view the engineer creates a myth as well. But there is a difference between a professional user (education) and an amateur-buyer. The last category of people need education to learn to understand where the limits are.

The Maritime Outlook for the Netherlands

The future is unpredictable, but in 2001 the Mediterranean Sea, the Atlantic Ocean, the North Sea and the Baltic Sea are on the edges of an European Union, that in the relation to its surface disposays of the longest coastal line of any sub-continent in combination with a navigable network of rivers and canals. The Netherlands has from a geographical point of view an excellent position on the mouth of the larger rivers with access to a network of canals. This is an asset for Europe. Whether the Netherlands will be able to take advantage of this position is another matter. History proves that other factors than reasonable thinking controls the decisions of the nations surrounding a small state.

The development and future position of the harbours in North West Europe will amongst other factors depend on the total costs of transportation in a chain. The market will decide. This will offer opportunities for changes in the modes of transportation.

Tariffs of governmental bodies will play a role in the competition between harbours. Whether governments will be able to realise a level playing field is still to be seen.

The impact of shipping on the total costs resulted in considerable reductions and the influence of private enterprise on the market position of harbours is consequently decreasing.

The growth of shipping depends on the growth of trade. The position of the harbours will depend on cost and logistic services. The spectacular improvements of shipping and private enterprise may in this respect serve as an example for governmental services.

Expertise, know-how and means are available in the Netherlands. Examples are for dredging, builders of dredgers the offshore industry, yachting, containershipping, inland waterway transportation, performances of the shipbuilding industry, deep sea-towing and salvage.
There are no reasons to suppose that the maritime markets which are serving society for some 5000 years and are de facto indispensable will disappear. The Netherlands, laying on one of the busiest shipping traffic routes in Europe and at the mouth of the European Inland waterway system, has the assets to recognise the challenges and use the opportunities. It will depend on people with know-how, persistence and technical capabilities to innovate, build and operate ships and all other sea going and floating equipment for these global markets.

6. De toekomende tijd

De lacune tussen de onvolwassen kennis uit de verleden tijd en de onvoorspelbare nieuwe mogelijkheden van kennis voor de toekomende tijd is door de eeuwen heen aangegroeid om mythen (of visies) te lanceren omdanks het feit dat de kennis, door ervaring, overdracht en wetenschapsbeoefening toeneemt. Resultaten uit het verleden bieden geen garantie voor de toekomst. Soms zijn trends zichtbaar. Regionale conflicten blijven, het internationale terrorisme neemt toe, het schip blijft onmisbaar. Korea tracht de scheepsbouw als natie te monopoliseren. We zullen daar mee om moeten gaan.

Voor scheep zijn de vorm, verpakking en hoeveelheid van de lading en de aanwezige infrastructuur van de havens van belang. In de haven komen modaliteiten samen en de verscheidenheid aan goederen is groot. De ketenbenadering in het transport kan de functie van het schip beïnvloeden door de logistieke eisen en veranderingen in verpakking van de lading en methoden van op- en overslag. Er komt een 'inter modulo', 'integrale' en 'logistieke' benadering van het transport. Direct ship-to-ship, ship-to-barge, ship-to-train of ship-to-truck
De toegevoegde waarde van transport is beweging. Stilstand en opslag zijn kosten die, waar mogelijk, voorkomen moeten worden. Een ketenbenadering vraagt onderzoek waarbij alle elementen zijn betrokken tot en met het ontwerp van de havens en overslagconcepten. De trend dat de containerredereijen naar terminals in eigen beheer willen duidt op die ontwikkeling. Hier liggen kansen voor ‘vernieuwend en wetenschappelijk geavanceerd onderzoek’ waar nieuwe concepten voor schepen uit voort kunnen komen.

De ketenbenadering in de bedrijfsslom is een onderwerp dat ook in de scheepsbouw aandacht verdient. De toegevoegde waarde van de werf zal, afhankelijk van het product, kunnen variëren van ca. 35% tot wellicht 15%. Het overige deel bestaat uit leveringen van toeleveranciers van volledige systemen (HVAC, elektrische installaties) tot motoren, interieur, componenten, staal en bulkmaterialen. Onderzoek kan uitwijzen of het haalbaar is de toegevoegde waarde te verhogen en de kosten van de toeleveringen te verlagen door het ketenbeheer in de bedrijfsslom te verbeteren en vermijdbare kosten in de bedrijfsslom te voorkomen. Schaalgrootte is een factor. Het selectief integreren van kennis in de werf, de integratie van de engineering in een vroeg stadium zou met gecombineerde inkoopcontracten kostenbesparingen op kunnen leveren.

De resultaten van het onderzoek ‘Innovatie en Vernieuwing van de bedrijfsslommen in de Scheepsbouw’ zullen onderwerpen voor het onderzoek op middellange en lange termijn moeten opleveren.

Binnenvaart

De mogelijkheden van de binnenvaart, waarvoor in Delft veel onderzoek is uitgevoerd, worden onderschot. Het gevolg is dat de mogelijkheden voor ‘door-to-door’ transporten voor de binnenvaart afnamen door industrieterreinen niet meer aan het water te positioneren en de vaaromgeving te beperken. De extra schakels van op- en overslag en wegvervoer verhoogden de kosten in de keten en stimuleerden de overgang van water naar weg.

Het schip is een naar verhouding milieuvriendelijk transportmiddel dat veilig is en gebruik maakt van een natuurlijke infrastructuur. Het heeft een prijs-prestatie verhouding die geen ander transportmiddel kan bieden.

Onderzoek naar de effecten van nieuwe technologieën als de brandstofcel voor schepen, waarvoor de industrie in Nederland belangstelling toont, is een onderwerp dat aandacht verdient voor de lange termijn. Het is de voortzetting van de gestage verbeteringsslag. Voor de binnenvaart door dichtbevolkte gebieden verdient het project ‘Schoon Schip’ aandacht. Naast milieueigenen heeft de integratie van de nieuwe technologie in een ‘All Electric Ship’ concept gevolgen voor het ontwerp van het schip. Een onderzoek waarbij alle invloedsfactoren op ware grootte kunnen worden geëvalueerd is geen demonstratie project.

maar een laboratorium. Over een tijdsbestek van 10 tot 20 jaar kunnen de economische effecten groot zijn, vooral omdat de brandstofcel in principe schaalbaar en geschikt is voor grotere vermogens. Wellicht is Nederland voor dit onderzoek te klein, alhoewel de kosten voor het onderzoek in vergelijking met lichtcellen en biotechnologie gering zijn. De maritieme sector dreigt voor de financiering van dit type onderzoek in Nederland echter uit de boot te vallen.

De mythen en de hypes

De onderzoeker herkent een probleem en formuleert een hypothese, maar weet niet of deze juist of onjuist is.19 In essentie is een hypothese daarmee een beredeneerde mythe, je kunt er in geloven of niet.

De bijbehorende symbolen en riten bestaan soms uit een berg van cijfers waarin een betrouwbaarheid wordt gesuggereerd om het vertrouwen in de toekomst te vergroten.19 Zelfs opvallend rationeel functionerende financiële wereld gelooft in indexen en getallen. Op grond van het verleden samengestelde cijfermatige overzichten, het verzamelen en ordenen van data, maakt men inzicht te verkrijgen in de toekomst.

De geciteerde uitspraak van Dekking verdient de aandacht van de analisten die sectoren en ondernemingen analyseren, de toekomst voorspellen of onderzoek evalueren. De verwachtingen leiden vaak tot teleurstellingen, alhoewel kennelijk alle indexen op groen staan. Recente fiasco's spreken voor zich.

Het vertrouwen in een prestatie dreigt een virtueel begrip geworden. Het resultaat op korte termijn telt. Kennis van de bedrijfsgeschiedenis en mensen is geen factor meer. Is er sprake van mythen, symbolen en riten waardoor mensen bereid zijn ondernemingen te leiden, of daarin te investeren, die meerjarige verliezen voorspellen?

Het gedrag wordt dan kennelijk gestuurd door begrippen als angst en hoop.

De ingenieur

De taak van de ingenieur is, zoals geregeld het wegnemen van onzekerheden en het scheppen van vertrouwen. Dit is de basis van de taak voor diegenen die zich met het ontwerpen en maken van op techniek stoeilende producten bezighouden. De technicus voorspelt het resultaat, meet en levert verifieerbare gegevens. De huidige aansprakelijkheid

19 Zie ook Herman Philipse, hoogleraar wijsbegeerte, NRC 11-06-2001

voor het product eist dit meer en meer. De toename van het vertrouwen in prestaties en veiligheid leidt bij sommige gebruikers tot het nemen van grotere risico’s en daarmee weer tot de toename van onzekerheden. Een technisch beter product kan resulteren in een grensverleggend gedrag van de gebruiker door een groter vertrouwen in de techniek. Er is een verschil tussen de professionele, goed opgeleide gebruikers en amateurs. Voor de laatste categorie zou de ingenieur dan een mythe kunnen produceren met alle gevolgen van dien.

De toekomende tijd in Nederland

In 2001 liggen de Middellandse zee, de Atlantische oceaan, de Noordzee en de Oostzee aan de periferie van een Verenigd Europa dat, in verhouding tot het oppervlak, de langste kosten van alle subcontinenten heeft en beschikt over een omvangrijk netwerk van rivieren en kanalen. Nederland heeft daarin, geografisch gezien een goede positie met de centrale ligging aan de monding van bevaarbare rivieren en toegang tot het netwerk van kanalen. Ziet Nederland kans die positie te benutten? In het spanningsveld tussen milieu en economie biedt het water kansen vele mogelijkheden voor het transport. Van de goederenstroom kan meer over water.

Het bedrijfsleven voelt in de gehele maritieme sector de druk van de concurrentie van de diensten in de zeehavens van de Le Havre-Hamburg range. In de markt worden, onder vergelijkbare omstandigheden, keuzes gemaakt op grond van de regelmatig terugkerende integrale kosten. Door de overheden vastgestelde tarieven zijn daarbij een niet te onderschatten factor. Het streven naar een ‘level playing field’ is in het belang van de toekomst van de transport over water. De voor schepen gerealiseerde verbeteringen in de prijs-prestatie verhouding zijn indrukwekkend maar beïnvloeden de concurrentiepositie van Rotterdam nog slechts ten dele.

De geografische positie van Nederland in Europa is niet voldoende om de groei van het vervoer over water te stimuleren. De tragie ontwikkeling van de tweede Maasvlakte remt de groei van Rotterdam en dat is verontrustend, gezien de groei van het transport over zee. Het transport over water is duurzaam, milieuvriendelijk en economisch aantrekkelijk.

De expertise, kennis en de middelen zijn in Nederland beschikbaar. Nederlandse baggeraars voeren in Arië immense werken uit, de scheepvaart is innovatief en in gespecialiseerde markten op wereldniveau. Bergers, baggeraars en bouwers van baggerschepen, offshore bedrijven, jachtbouw, de intercontinentale containervaart, de zware lading-, koel- en kustvaart, de jachthoud opereren met succes in een wereldmark. De Koninklijke Marine ontwerpt en bouwt haar schepen in Nederland. De binnenvaart, de zeesleepvaart, de prestaties van de scheepsbouw in niche markten op de wereldmarkt, de expansie van de scheepsbouw naar het buitenland en de scheepsreparatie zijn voorbeelden van een sector die springlevend is.
De kwaliteit van de maritieme kennis in Nederland is evident. De financiering van het maritieme onderzoek niet. Het kunnen bergen van de ‘koers’ of het bouwen van een schip zijn éénmalige en unieke prestaties die in één keer goed moeten gaan. Dit vraagt kennis van de materie, doordachte voorbereiding, het kunnen beschikken en omgaan met nieuwe technologieën en het toepassen van die technologie die kosten-effectief en effectief is, rekening houdend met de specifieke eisen en omgevingscondities van het schip. Het is een wereld van multidisciplinaire complexe projecten, zonder prototypes, in ‘global competition’. Inmiddels worden in de samenleving te hoog gestelde ambities bijgesteld, verdwijnen de keren van de nieuwe coryfeeën omdat de ballon van de nieuwe economie met de mythen en symbolen is doorgeprikt. Daarmee komt de maritieme sector in internationale markten met een constante groei wellicht in een ander perspectief. In een ‘level playing field’ kan de industrie op eigen kracht presteren. Met excellente medewerkers en op maatgesneden onderzoek.

7. De vrije tijd
Het bedrijfsleven en de overheid ben ik erkentelijk voor de plezierige wijze waarop is samengewerkt.

Ongetwijfeld wilt U weten waar Maritieme Techniek bij de TU Delft anno 2001 staat.

De globale stand van zaken is als volgt.
- In twintig jaar is de instroom van eerstejaars studenten gestegen van ongeveer 25 naar 50.
- Een gemiddelde groei van 0,75% per jaar.
- Het onderwijsprogramma is vernieuwd en biedt opties die de verscheidenheid in talenten bij de studenten aan moet spreken.
- Maritieme Techniek heeft een internationale Masters opleiding waar de voertaal engels is.
- De internationale visie en accreditatie geven de hoge waardering voor onderwijs en onderzoek.
- De internationale bijdrage van het onderzoek is goed, maar kan nog beter.
- Er zijn vaste afspraken gemaakt met het College van Bestuur en de faculteit over de vier voltijdse leerstelen, twee ontwerp- en productie gericht, twee onderzoeksgericht, waarmee de balans in onderwijs en onderzoek is gerealiseerd.
- De procedures voor de benoeming van nieuwe hoogleraren zijn in volle gang.
- Er is een samenwerkingsovereenkomst getekend tussen de Koninklijke Marine en de TU Delft voor een nauwere samenwerking voor onderwijs en onderzoek.
- De medewerkers van gehele subafdeling zijn eindelijk bij elkaar gehuisvest in een nieuwe afdeling, boven en naast de sleeptank.

De steun van het College van Bestuur en de decaan van de faculteit OCP Wijnand Dalmijn was hiervoor onmisbaar. De bijdrage van de medewerkers van Maritieme Techniek die zich voluit inzetten bij de vernieuwing van het onderwijs is voortreffelijk. Het is onmogelijk om allen bij naam te noemen. Het was een plezier om met U samen te werken.
Een bijzonder woord van waardering voor Hans Klein Woud die er alles aan heeft gedaan om het onderwijs een nieuw elan te geven, samen met de onmisbare Ubald Nienhuis. De bijdrage van Hans aan ‘Schoon Schip’ bracht de analytische en nuchtere benadering die het project nodig had.

Aan Arie Aalbers heeft Maritieme Techniek veel te danken. Een man uit één stuk, van weinig woorden en een harde werker die het ontwerpen een nieuwe impuls heeft gegeven. Dat ontwerpen, engineering en produceren met elkaar verder moeten is voor ons beiden duidelijk. Het is aan de opvolgers om die lijn door te zetten. Wij hadden weinig woorden nodig om elkaar te begrijpen en dat is een bijzonder ervaring.

In Pierre Malotaux vond ik op de TU Delft de gesprekspartner die het belang van de inhoud van bedrijfsprocessen zag en van tijd tot tijd behoorlijk te zoeken naar de beheersing vorm te geven. Zijn laatste boeken heb ik met belangstelling gelezen. Ik neem aan dat wij het er nu over eens zijn dat het wiskundig modelleren van bedrijfsprocessen in de enkelproductie weinig waarde heeft, in tegenstelling tot het denken in processen.

Voor de sectie scheepbouw heeft Cees Dirkse de afgelopen jaren veel werk verzet, zowel voor het derde gelsroom onderzoek als het onderwijs, soms onder moeilijke omstandigheden. Nuchter, to the point en effectief. De projecten voor de binnenvaart en de werven zijn bij hem in goede handen, worden conscintieus tot een goed einde gebracht met publicaties. Zijn inzet bij de vernieuwing van het onderwijs voor inhoudelijke en organisatorische verbeteringen is voortreffelijk. De samenwerking was perfect.

Jan v.d. Wagt heeft in twee jaar, na de overgang van het bedrijfsleven en een inwerkperiode, goed werk verzet. Ik vertrouw erop, dat na enkele maanden afwisselings in ziekte, het herstel voorspoedig zal verlopen en de draad weer kan worden opgepakt.

Een bijzonder woord van waardering voor Hans Drooger die de oefeningen en practica altijd perfect heeft vormgegeven en maat de ondersteuning in het onderwijs puntueel de financiële zaken van de projecten bijhoudt.

Voor Ria Nieuwland ging geen zee te hoog. De wijze waarop Ria haar werk doet en omgaat met collega’s en studenten heeft veel bijgedragen aan de goede onderlinge verhoudingen. De samenwerking is uitstekend en daarvoor ben ik zeer erkentelijk.

De herinneringen aan studenten en afstudendeers zijn onuitwisbaar. Dank aan de student assistenten die, niet altijd even regelmatig maar wel doelmatig, veel werk hebben verzet, zowel voor de projecten als het onderwijs. De inzet van de studenten in de besturen van het ‘Scheepbouwkundig Gezelschap William Froude’, de Stichting MATSO, Delft Waterbike Regatta etc. is een groot goed. Het projectwerk van studenten in het kader van MATSO heeft
vele buitenlandse reizen voor hen mogelijk gemaakt. Ik ga er van uit dat de bedrijven deze formule met projecten blijven ondersteunen. Internationale reizen verruimen de blik en zijn van belang, vooral om met andere culturen kennis te maken.

Het is voor ons gezin een vreugde dat mijn moeder deze gebeurtenis in haar 93e jaar mag meemaken, weliswaar broos, maar ze is er bij.

In de komende vrije tijd heb ik, dank zij U allen, veel goede herinneringen. Vrijheid bestaat omdat er grenzen zijn, maar soms herkent de mens met te veel ambities, die niet. Het ambitienniveau moet realiserbaar zijn (anders wordt het een mythe), vraagt inhoudelijke kennis van zaken en echte veranderingen kosten tijd.

Gelukkig is er Catherine die mij daar veertig jaar lang aan heeft herinnerd, zonder veel ophef of woorden. Een thuisfront als een rots in de branding. Daarvoor schiette woorden tekort.

Ik dank U voor Uw aandacht.

Inhoudspagave

1. Het panorama van de tijd
 Schoon Schip
 5
2. De voltooide verleden tijd
 Egypte
 7
 De Feniciërs
 7
 De Grieken en Venetië
 11
 Het begin van de mondialisering
 13
 Het noorden van Europa
 15
3. De onvoltooide verleden tijd
 Schaalvergroting en mechanische voortstuwing
 Nederland
 21
 21
 27
4. Scheepbouw in de tegenwoordige tijd
 Het bedrijfsproces in de Scheepbouw
 31
 31
5. De universiteit
 Het onderwijs
 Het onderzoek
 De voortschrijdende integratie
 Het onderzoek vernieuwing bedrijfsprocessen in de scheepbouw
 35
 39
 41
 41
6. De toekomende tijd
 Binnenvaart
 De mythen en de hypes
 De ingenieur
 De toekomende tijd in Nederland
 43
 47
 47
 49
7. De vrije tijd
Figurenlijst

Fig. 1: Een 4700 jaar oud schip uit Egypte 4
Fig. 2: Een Tempel in Egypte 8
Fig. 3: Schip uit oude rijk ca 2500 v.C. 10
Fig. 4: Schip uit middenrijk ca 1800 v.C. 10
Fig. 5: Noordwaarts 10
Fig. 6: Zuidwaarts 10
Fig. 7: Trireme 12
Fig. 8: Feniciaans handelsschip 12
Fig. 9: Venetiaanse Galei 14
Fig. 10: Pinasschip 18
Fig. 11: Fluitschip 18
Fig. 12: SS United States 20
Fig. 13: Hog Island Shipyard 24
Fig. 14: RDM, Heyse Haven 28
Fig. 15: SL 7 voor tewaterlating 30
Fig. 16: Procesfasen in het productieproces 32
Fig. 17: Opzet onderzoek bedrijfsprocessen 42
Fig. 18: Onderzoek Bedrijfsprocessen, aandeel Nederland, ICT 44
Fig. 19: Onderzoek Bedrijfsprocessen, aandeel Nederland, Productivity 44
Fig. 20: Onderzoek Bedrijfsprocessen, aandeel Nederland, Assembly 46
Fig. 21: Onderzoek Bedrijfsprocessen, aandeel Nederland, ICT, Post Assembly 46
Fig. 22: Venetiaans Galei 50
Fig. 23: Pen Duick III 52