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Abstract
Decision-making dynamics and their impact of hu-
man behaviour have raised a large number of ques-
tions throughout the years. Traits like competition
and collaboration amongst agents are often stud-
ied, in the context of Game Theory, by the medium
of games such as the Iterative Prisoners’ Dilemma.
Furthermore, many realistic scenarios and possi-
ble real world applications of the Iterative Prison-
ers’ Dilemma (e.g. socio-geographic and economic
ones) can only be modeled by a more genral in-
stance of the game that allows for multiple numbers
of players such as the n-person IPD.
Work has been done to analyse the effect of spa-
tial configuration on the outcome of the game[4].
The goal of this research is to conduct further anal-
ysis on the possible confounding factors of these
experimental settings. In particular, we investigate
on the effect than different machine learning ap-
proaches for learning-rule inference (such as ge-
netic algorithms and particle swarm optimisation)
have on the correlation between the dependent vari-
ables of previous controlled experiments (the num-
ber of players, the scale of interaction and the ini-
tial percentage of cooperators and defectors) and
the evolution of cooperative behaviour. The data
that are relevant to answer the research question are
gathered by means of repeated controlled experi-
ments that aim to give insight on the effect that the
factors under analysis have on the convergence of
the environment to a state of almost full coopera-
tion.

1 Introduction
The need for a tool to study the evolution of cooperative and
competitive behaviour in many real world scenarios (such as
socio-geographic and economical environments or biologi-
cal systems) has lead to the formulation, in the context of
Game Theory, of new extensions to the renowned Prisoner’s
Dilemma. The n-person iterative prisoner’s dilemma (IPD)
consists of multiple, consecutive rounds of the classic Pris-
oner’s Dilemma, each played by n > 2 players. Similarly
to the classic game, each player can either choose to defect

or cooperate at each round. The defect option is the dom-
inant strategy (Nash equilibrium), although it intersect in a
subpar outcome. In fact, if all agents choose to cooperate
the resulting outcome is preferable. In the classical formu-
lation of the game, since no agent is motivated to deviate
unilaterally from defecting, cooperative behaviour is highly
unlikely to emerge[10]. Nonetheless, the introduction of mul-
tiple consecutive rounds in the iterative extension of the game
is proven to lead to a more significant evolution of coopera-
tive behaviour among the agents[5]. This new variant of the
game is indeed deemed to have grater generality and more
applicability in real-life scenarios[9].

Due to its wide suitability to model relevant decision-
making processes in realistic environments, the n-person it-
erative prisoner’s dilemma has been thoroughly studied dur-
ing the past two decades. In particular, the effect of numer-
ous factors on the evolution of cooperative behaviour was the
matter of extensive analysis. The past twenty years of re-
search have indeed shown that parameters such as the number
of players, the mobility of the agents and the initial percent-
age of cooperators and defectors are all variables that can
determine the predominance of cooperative or competitive
behaviour at the end of game[4][5][2]. The aforementioned
conclusions, although thoroughly proven under the assump-
tion of an evolutionary approach to strategy inference, were
drawn without considering the impact that the method em-
ployed to infer the strategy might have to the dynamics of the
game.

The research on the development of new learning-rules for
NIPD agents has indeed led to the proposal of multiple ml-
based approaches to the decision making processes of play-
ers. Among many, solutions employing Genetic Algorithms,
Particle Swarm Optimisation and Q-Learning have proven
themselves to be valid alternatives that favour the develop-
ment of effective NIPD strategies[7][6][8].

The development of these new solutions raises new ques-
tions on the dynamics behind the evolution of cooperation in
the NIPD. The purpose of this work is indeed to investigate on
whether the approach to strategy inference can be considered
a confounding factor of previous analysis on the development
of cooperative behaviour. The hypothesis is that, although
generic patterns might be confirmed, the ML algorithm cho-
sen to implement the agent’s computational intelligence has
bearing on the speed to which the population converges to a
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predominance of cooperators.
To prove so, a set of controlled experiments is designed in

3.4, each will be conducted under the assumption of a differ-
ent ML-based approach to strategy inference. The algorithms
to be employed are explained in 3. The results of the ex-
periments are presented in 4, and conclusions are drawn in
6 along with suggestions for future work. A meditation on
possible ethical implications and on the reproducibility of the
work is included in 5.

2 Related Work
A spatial version of the n-person iterative prisoner’s dilemma
has proven itself to be a powerful tool to analyse and reason
upon a variety of realistic socio-economic scenarios [5] [2].
Nonetheless, while the 2-players version of the game has been
extensively studied for decades, a more general formulation
of the game, allowing n > 2 players to play rounds of the
IPD, is deemed to have greater generality and applicability to
to real life situations[9].

In his work on Game Theory, Colman[10] defines the n-
player Prisoner’s dilemma by three main properties:

• each player can either defect or cooperate;

• the defect option is dominant for each player, mean-
ing each player is better off defecting than cooperating,
no matter the percentage of cooperators in the n-players
cluster;

• the defect strategy intersect in a non-optimal equilib-
rium; if all players choose their non-dominant strategy
of cooperation, the resulting outcome is preferable, from
each player’s perspective, to the one resulting from ev-
ery player choosing to defect. Nonetheless, no one is
motivated to deviate unilaterally from defecting.

Extensive work has been done to investigate and interpret
the effect of different factors on the evolution of coopera-
tion across multiple rounds of a spatial prisoner’s dilemma[1].
Previous studies have indeed analysed the impact of the num-
ber of players in the Prisoner’s Dilemma Game on the evolu-
tion of cooperation, along with how the latter is influenced by
the initial percentage of cooperators and the magnitude of the
interaction of agents[5][2].

As far as the first one of the aforementioned factors (the
number of players) is concerned, [5] argues that, although
cooperation can still be present in a version of the n-IPD with
n > 2, it is more difficult to evolve cooperation as the group
size increases, while [2] extensively reports on how the initial
percentage of cooperators has little bearing on the emergence
of cooperation but the mobility of the automata, thus the scale
of their interaction, was a central factor that favoured cooper-
ation.

Both the experimental settings, as many others in the con-
text of analogue analysis for 2IPD games, were based on the
assumption of evolutionary learning rules, i.e. strategies de-
veloped throughout the game in accordance to a mimic be-
haviour of the most successful player. Nonetheless, multi-
ple alternative machine learning approaches were proposed
to replace the go-to evolutionary algorithm in strategy infer-
ence. In particular, an evolutionary model based on Genetic

Algorithms is explained in [7] while a model based on Par-
ticle Swarm Optimisation is proposed in [6] and it is stated
to enhance the cooperation rate. On the other end, in an em-
pirical study of reinforcement learning in the iterated pris-
oner’s dilemma, [11] investigates the ability of Q-Learning
agents to play against other unknown opponents. It was in-
deed concluded that although learners faced difficulties when
playing against other learners, agents with longer history win-
dows, lookup table memories and longer exploration sched-
ules fared best in the IPD games.

As the research on new machine learning based strategies
advances, the question of whether those approaches affect the
conclusions drawn in previous studies on the effect of spatial
configuration on the evolution of cooperation affirms itself as
a legitimate research question.

This work intends to elaborate on whether the assumption
of different ML techniques for learning rules inference is to
be considered a confounding factor in the analysis that was
conducted on the effect of spatial configuration on the evolu-
tion of cooperation in the NIPD.

3 Methodology
The research data in this thesis is drawn from three main
sources; a spatial iterative prisoner’s dilemma game is sim-
ulated by means of agent-based modelling involving agents
situated on a square grid. The players are therefore allowed
to learn new strategies to play the game using three different
frameworks for computational intelligence: a vanilla evolu-
tionary algorithm to mimic the efforts of the most successful
agent in the neighbourhood, a genetic algorithm to produce
an evolutionary fortunate strategy and a particle swarm opti-
misation approach to encourage Pareto optimal behaviour.

This section describes the procedures and algorithms used
in this investigation, including the design of the controlled ex-
periments that were performed to answer the research ques-
tion.

3.1 Baseline Algorithm
The algorithm at the base of much of the related work on the
evolution of cooperation in spatial NIPD is a simple mimic-
last-move evolutionary algorithm.

In fixed size grid, each agent is placed to occupy a single
cell. The n-person iterative prisoner’s dilemma is played for
n > 2 rounds and at each round the agent can either cooper-
ate or defect. Furthermore, the agent keeps track of its own
currently gained payoff; information about an agent’s payoff
can be shared at the moment of an interaction. Interactions
happen systematically at every round with a fixed number of
nearby agents.

At the beginning of the game, each agent is instructed to
randomly pick a move to play during the first round (either
cooperate or defect). The first round is therefore arbitrarily
played, each player can either be a cooperator with proba-
bility p (initial percentage of cooperators) or a defector with
probability 1− p.

From the second round on, the agent picks its next move
according to the following decision-making process: it re-
trieves information about the nearby agents’ current payoff



during its interactions with them. It identifies the ‘best fit’
member of the neighbourhood as the player with the highest
payoff and decides upon its next move mimicking the player’s
last move.

Although it is a very simple strategy, the mimic-last-move
evolutionary algorithm has proven itself to guarantee a fast
convergence to a state of full cooperation amongst the players
in the grid.

3.2 Genetic Algorithm
Genetic algorithms are search algorithms that exploit the me-
chanics behind natural selection and genetics. The initial state
of the algorithm includes a sample of the search space con-
stituted by random solutions. The fitness of these solutions is
then evaluated according to a designed fitness function and a
form of ‘natural selection’ is performed based on the fitness
score achieved by each of the solutions. The selected solu-
tions are therefore combined (through cross-over and muta-
tion) to produce a new generation of solutions [7].

The first step to develop a Genetic Algorithm for strategy
inference in the NIPD game is to figure out how to encode
a strategy as a string. In [7], Haider A. suggests to reason
upon the possible combinations of previous games, assuming
that each player can remember up until one previous game.
A strategy is then a rule that specifies an action in the case of
each one of these possibilities.

The instrument that maps each possibility to a consequent
decision upon the next game is a lookup-table. To use a
string as a strategy the player records the moves made in the
previous game and retrieves from the lookup-table the value
that corresponds to the case. The retrieved integer value i
(from 0 to the number of possible combinations of previous
game moves) is then used to select the ith letter in the strat-
egy string. The letter (C for cooperate and D for defect) will
therefore be the agent’s next move of choice.

A random strategy is therefore a random sequence of Cs
and Ds, with length equals to the number of possible previ-
ous games scenarios. At each round of the game, the agents
play the NPD and record their current payoff. The payoff is
the estimate of each agent’s strategy’s fitness. The 10% of
the population with the highest payoff is therefore selected to
generate the next generation of strategies. The new genera-
tion is produced by randomly picking two parents from the
10% elite. The two parent-strategies are then crossed-over
with probability 0.95. The cross-over happens at a random
point of the strategy string. With probability 0.02 the re-
sulting children-strategies are mutated in two different points.
The mutation point is picked at random and the letter corre-
sponding to the selected point is switched (Cs are replaced
with Ds and Ds are replaced with Cs). The old generation is
finally replaced by the new generation of strategies; the new
strategies are randomly placed in the grid.

The algorithm performs a thorough scan of the solution
space and eventually converges to a state of full cooperation
between the agents in the grid.

3.3 Particle Swarm Optimisation
Swarm Intelligence is a computational technique inspired by
the behaviour of animal swarming, where a coordinated be-

haviour can be reached by means of a small set of simple
local interactions between members of the flock or between
the individuals and the environment.

Particle Swarm Optimisation is the most popular approach
in SI. Searching the best solution in PSO is carried out by
endowing each member of the swarm to wonder the search
space and to adjust its velocity at each step based on the best
local solution and the swarm (global best) solution.

In the adjusted implementation of the PSO employed in
this work, each particle’s position (strategy) is represented by
means of a bi-dimensional normalised vector representing the
probability of choosing to cooperate or defect. At each round,
while searching the strategy solution space, the position of
each particle is updated according to the following equation:

Xi(t+ 1) = Xi(t) + Vi(t+ 1) (1)

where:

Vi(t+ 1) = wVi(t) + c1r1(t)(yi(t)− xi(t)) + c2r2(t)(ŷi(t)− xi(t)) (2)

as presented in [6] and normalised afterwards; the coeffi-
cients c1 and c2 have an initial value of 2.0 and 2.5 and are
respectively decreased and increased by 0.1 at each iteration
to allow the global solution contribution to weight more as the
game proceed. The parameter w, the inertia weight, is meant
to balance the global exploration and the local exploration of
PSO; it is set to be within the range [0, 1] and it is decreased
to 0.1 during the game.

Along with the specifications of the PSO implementation,
a set of communication topologies are described in [6] as a
mean to enhance the communication between players during
the rounds of the game.

To the purpose of this paper, the PSO strategy is imple-
mented assuming a random topology that, given n members
of a neighbourhood, establishes n random symmetrical con-
nections between pairs of individuals.

As we have reasons to think that this component of the al-
gorithm has a strong correlation with the effect that the scale
of interaction has on the performance of the algorithm, results
in subsection 4.2 must be interpreted with caution. It is im-
portant to bear in mind the possible alterations in the outcome
of such experiments under the assumptions of topologies that
dictate sparser connections between neighbours (such as the
ring topology) or an higher number of pair communication
between members of the neighbourhood (such as the star
topology).

Nonetheless, the algorithm is able to converge quickly and
to reach a state of almost full cooperation in the grid at the
end of the game.

3.4 The controlled experiment
The previous sections have attempted to provide a brief sum-
mary of the possible alternative algorithms that can be ex-
ploited to infer strategies to play the n-person iterative pris-
oner’s dilemma.

As was pointed out in the introduction to this paper, the
purpose of this work is to elaborate on whether the choice of
a certain approach can represent a confounding factor in the



analysis conducted on the effect of spatial configuration on
the development of cooperative behaviour. This is a prelimi-
nary study that aims to justify further, meticulous and statis-
tically rigorous research on the possible spurious association
caused by this confounder.

In order to accomplish the goal, a series of controlled ex-
periments, involving each of the aforementioned algorithms,
were carried out to test the effect of the number of players, the
scale of interaction of the agents and the initial percentage of
cooperators and defectors under the assumption of different
learning rules.

The independent variable in this scenario is indeed the
learning rule of choice. The variable is assigned three pos-
sible different values: the agents’ computational intelligence
can be based on either a simple mimic-last-move evolution-
ary algorithm (the baseline), a genetic algorithm or a particle
swarm optimisation algorithm, according to their implemen-
tations in 3.1, 3.2, 3.3.

The dependent variable to be observed is the behaviour
of the agents, intended as their tendency to cooperate rather
than defect while playing the game. In particular, the change
in the final portion of cooperators as the number of play-
ers increases, as their mobility is increased and when we
change the spatial configuration to modify the initial collabo-
rators/defectors ratio.

The dependent variable can therefore be intended as a 3-
tuple of vectors, each vector representing the evolution of co-
operative behaviour when one of the aforementioned spatial
factors is tweaked. The vectors’ direction is regarded as the
general trend (cooperation increases or decreases), while the
magnitude amounts to the intensity of this effect.

Other components of the game, such as the size of the grid
(and thus the total number of the agents) and the number of
rounds to play, are kept constant across all instances of the
experimental setting.

The size of the grid is a 50X50 matrix, each cell contain-
ing only one agent. The agents play a total amount of fifty
rounds each time. A more detailed explanation of how val-
ues are assigned to the variables of the experiment during the
simulations can be found in Figure 1.

Figure 1: Specifications of the experimental setting

The code for the simulations is written in python3 and the

experimental setting is implemented exploiting the mesa li-
brary for agent-based modelling (ABM).

4 Results
As mentioned in Section 3.4, in order to provide insight on
the evolution of cooperative behaviour in the n-person IPD,
an estimate of the change in the number of cooperators in the
grid was produced for each experimental setting illustrated in
Figure 1.

Simple statistical analysis was used to approximate the
numbers produced by the experiments in order to mitigate
the role that randomness plays in the machine learning algo-
rithms under analysis.

With the aim of generating a reliable value for such quanti-
ties in a feasible amount of time, the algorithms implemented
a simple form of antithetic variable variance reduction tech-
nique whenever a uniform distribution was used initialise a
random variable in the process.

The experiments were therefore run three hundreds times
each, and the average of the results is used as an estimate of
the value to be computed.

The results are presented in Tables 1, 2 in the form of esti-
mate ± error, where the error is the standard deviation of the
gathered data.

4.1 The number of players
The first set of analyses examined the changes in the magni-
tude of the cooperative behaviour as the number of player is
increased. Cooperation is measured as the portion of agents
in the grid that opted for a collaborative deportment in the
last round of the game. These agents are represented in the
visuals of the grid with the colour blue.

Figure 2: Comparison of the evolution of cooperative behaviour in
2IPD and 4IPD conditional to MLM-EA

Figures 2, 3 and Figure 6 compare the evolution of coop-
erative behaviour and its correlation with the number of con-
tends playing the n-person iterative prisoner’s dilemma under
the assumption of the three algorithms presented in Section 3.
The top half of visuals 2 and 3 represent the state of the grid
across 50 rounds of 2IPD when the agent’s decision process is
based respectively on the mimic-last-move evolutionary algo-
rithm (MLM-EA) and the genetic algorithm (GA). The sec-
ond row of the figures aims to report about an analogue series



Table 1: Development of cooperation in the controlled experiments

MLM-EA GA PSO

Experimental Setting 1.1 1119.316 ± 47.15 395.67 ± 98.46 1242.89 ± 24.92
Experimental Setting 1.2 895.09 ± 49.55 394.11 ± 91.63 1242.34 ± 25.97
Experimental Setting 2.2 1409.69 ± 29.95 447.54 ± 92.89 1246.50 ± 12.25

of simulations with the number of players increased from two
to four (thus the game consists of 50 rounds of 4IPD). As the
convergence to a state of almost full collaboration is much
quicker under the PSO assumption, Figure 6 shows the evo-
lution of cooperative behaviour (in terms of number of coop-
erators) at each round of the NIPD. Experimental setting 1.1
and 1.2 represent respectively the case of a 50-rounds 2IPD
and 50-rounds 4IPD under the assumption of PSO (full de-
tails about the experimental settings can be found in Figure
1). The algorithms are implemented as per their description
in Section 3 .

Figure 3: Comparison of the evolution of cooperative behaviour in
2IPD and 4IPD conditional to GA

Experimental setting 1.1 and Experiemental setting 1.2 in
Table 1 compare the delta of collaborators when the game is
played respectively by two and four players, employing the
three algorithms analysed.

What stands out in the illustrations is how increasing the
number of players affects and discourages cooperation when
the MLM-EA is involved in the players’ decision-making
process, while it has less impact on the development of col-
laboration when the latter is replaced by the GA. Ultimately,
it seems to have little to no effect when the approach that is
used is the PSO.

Together these results provide important insights about the
correlation between the number of players and their collabo-
rative attitude and how this can be widely dependent on the
nature of the computational intelligence framework to be em-
ployed. The magnitude of the effect established to be caused
by the variation of the number of players by [4] has proven to
vary a lot across the three scenarios presented, this might sug-
gest a possible total cancellation (or even a shift in the trend)
of such effect under the assumption of a different reinforce-
ment learning approach.

4.2 The scale of interaction
The second set of analyses examined the effect of increasing
the size of the neighbourhood on the evolution of cooperation
between the agents. As mentioned in the previous subsection,
the cooperation is measured as the cooperators/defectors ratio
after 50 rounds of n-person prisoners’ dilemma.

Figure 4: Comparison of the evolution of cooperative behaviour
changing the scale of interaction of the agents, conditional to MLM-
EA

To that end, Figures 4, 5 show the development of coop-
eration across 50 rounds of NIPD; as it was the case for the
previous set of results, the cooperators are depicted in blue
and the defectors are in red. The top-halves of visuals 4 and
5 report the state of the grid after 50 rounds of 2IPD when
each agent’s neighbourhood consists of its immediate con-
tiguous peers (once again, the results are produced varying
the approach to strategy inference and employing respectively
MLM-EA, GA). The bottom-halves of the visuals assume one
agent’s neighbourhood to be defined as the set of its immedi-
ate neighbours and their nearest neighbours.

Results under the PSO assumption are depicted in Figure
6 for reasons analogue to the ones elaborated in the previous
subsection.

Figure 4, reproducing the results of previous relevant stud-
ies, shows how an increase in the neighbourhood size leads to
a quicker convergence and an higher final percentage of coop-
erators. The delta of the number of cooperators, as reported in
Table 1, is much smaller in Experimental setting 1.1, where
the neighbourhood consists of near at hand agents, than the
equivalent measurement in Experimental setting 2.2, when
the neighbourhood consists of the immediate neighbours and
their neighbours.



Table 2: Final state of the grid in Setting 1.1 (base case) vs Setting 3.2

MLM-EA GA PSO

Experimental Setting 1.1 2368.31 ± 37.9 1644.17 ± 94.21 2492.23 ± 9.50
Experimental Setting 3.2 2407.70 ± 35.01 1662.10 ± 89.33 2486.91 ± 12.60

Figure 5: Comparison of the evolution of cooperative behaviour
changing the scale of interaction of the agents, conditional to GA

Although an analogue conclusion can be drawn while ob-
serving the behaviour of the agents that implemented the GA
(Figure 5), the magnitude of this effect is hardly the same
in the latter case. In fact, although values in Table 1 rela-
tive to Experimental setting 1.1 and 2.2 are indeed compara-
ble in their rapport to the ones reported under the MLM-EA
assumption, the error coupled with such estimates is signifi-
cantly higher. The scale of interaction seem to have less con-
sistent influence on the evolution of cooperation. The fact
that the two parameters are loosely coupled can be caused
by the elitist nature of the genetic algorithm. Independently
by the interactions amongst members of the neighbourhood,
the algorithm contemplates a complete replacement of the old
generation of strategies with a new generation that is the re-
sult of a cross-over and mutation process between members
of a global elite. This justifies the lower correlation between
the two variables in this experiment.

Figure 6 reports the results of increasing the scale of inter-
action of the agents under the assumption of the PSO, com-
paring the number of cooperators across the fifty rounds in
Experimental setting 1.1 and Experimental setting 2.2.

The single most striking observation to emerge from the
data comparison was that the algorithm seems to converge
similarly in both cases, to reach a state of almost full collab-
oration in the grid at the end of the game. Further inquiry on
the effect that the topology of choice in the PSO algorithm
can bear on such phenomenon is in need to establish with
certainty the consistency of this result.

In summary, these results show that, analogously to what
was established in the previous subsection regarding the num-
ber of players in the game, the effect of the scale of interac-
tion is influenced by the reinforcement learning technique of

Figure 6: Comparison of the convergence to cooperation in different
experimental settings, conditional to PSO

choice and the details of its implementation.

4.3 The initial ratio
The third set of analyses examined the effect of biasing the
initialisation of the grid to have majority of defectors playing
the first round of the game.

The initial percentage of cooperators/defectors is deemed
by Power [2] to have little bearing on the development of
cooperative behaviour in the n-person iterative prisoners’
dilemma.

The top-half of Fig 7 shows the initial and final state of the
grid (after 50 rounds of 2IPD) assuming a uniform distribu-
tion of cooperators and defectors in the initialisation of the
grid. In other words, the state of the grid at step zero consists
of 50% cooperators and 50% defectors.

The bottom-half of Figure 7 reports the results of an ana-
logue setting assuming an initial percentage of cooperators
equals to 20%.

Furthermore, estimates of the number of cooperators at the
end of the NIPD employing respectively MLM-EA, GA and
PSO are reported in Table 2. The data reported in the first row
of the table are relative to Experimental setting 1.1, when the
grid is initialised to contain an equal percentage of cooper-
ators and defectors. This data is compared to Experimental
setting 3.2, when the initialisation of the grid is biased to in-
clude only 20% of cooperators.

The results in presented in the visual and the table partially
confirm the conclusions drawn by previous studies, and show
how it is indeed of minor importance how the early state of
the grid is biased towards a general attitude to cooperate or
defect.



Figure 7: Impact of grid initialisation on the evolution of cooperation in NIPD, conditional to different ML approaches to strategy inference

5 Responsible Research
The strong reliance that the scientific community, and ar-
guably society itself, place on experimental results rises a
number of questions about the role of reproducibility as an
essential practice in every scientific discipline.

In the past years the difficulty to replicate machine learning
research was a topic for discussion in the context of many
computer science and ML conferences.
This shows a need to be explicit about exactly what is meant
by the word replicability.

The term replicability has come to be used to refer to the
characteristic (of an experiment or scientific setting) of being
able to be copied exactly; in the context of machine learning
it is often associated to the practice of providing the code to
give third parties the possibility to replicate the experiment as
it was performed during the process of answering the research
question(s). Whereas replicability refers to the operations of
performing the exact steps (in the exact order) performed by
the research team, reproducibility refers to the extent to which
consistent results are obtained when multiple experiments are
conducted to answer the same research question.

In his attempt to distinguish the term ‘reproducibility’ and
the term ‘replicability’ Drummond [12] claims there are im-
portant differences between the two: reproducibility implies
changes while replicability discourages them. For this rea-
son, while reproducibility is generally desirable, replicability
is not worth having.

In the task of defining reproducibility for machine learning
based research is indeed in order a look-back to more tradi-
tional sciences. As stated by Sonnenburg et al. in [14], “in
many areas of science it is only when an experiment has been
corroborated independently by another group of researchers
that it is generally accepted by the scientific community.” To
this end, a mere replication of the experiment by means of the
replication package might not provide the necessary endorse-

ment to the drawn conclusions.
As noted by Drummond [12], an attempt to a discussion

about scientific results is far more cost effective than precise
records of the original experiment, especially in light of the
great trust placed in these results. Collecting scripts and soft-
ware as the basis of experimental results is a good practice to
enhance the reviewing process, but reproducibility should not
be the reason why we record experiments.

Also, as it is the case for the implementation that is the
basis of this work, the performance of computational intel-
ligence and systems based on machine learning algorithms
designed to learn by trial and error is widely influenced not
only by the exact code used, but to the random numbers that
are used to initialise the learning environment [13].

To mitigate the effects of the latter, the conclusions drawn
in this paper are presented to the reader as the results of a
statistical estimate of the quantities under analysis; variance
reduction techniques (such as antithetic variables) were used
to estimate the values as precisely as possible in feasible time.

Although a replication package including the code used to
run the experiments is provided (upon request), the imple-
mentation is thoroughly described in Section 3 to enhance
reproducibility as previously defined in this passage.

6 Conclusions and future work
The aim of the present research was to examine the extent
to which different approaches for strategy inference can af-
fect the behaviour of the agents playing the n-person iterative
prisoner’s dilemma as the spatial configuration of the game
changes. In particular, the effect of factors such as the number
of players, their scale of interaction and the initial predomi-
nance of cooperators or defectors is investigated under the
assumption of different machine learning algorithms shaping
the agent’s learning rules. The present study was designed to
determine if the choice of such different ML approaches can



be considered a confounding factor in previous analysis on
the correlation between the aforementioned spatial features
and the development of cooperative behaviour.

Previous studies have proven that, while the initial coop-
erators/defectors ratio has little bearing on the final predomi-
nance of cooperators in the context of the NIPD, the number
of players to participate in the game is of key importance, and
the greater it is, the less prone the contenders are to collabo-
rate. Furthermore, the number of interactions between agents
and thus the amount of information an agent is able to gather
from the grid is a relevant factor that favours joint effort and
cooperation. The most obvious finding to emerge from this
study is that the general pattern identified by previous related
work is indeed confirmed, although the end result of adapting
the parameters under analysis is contingent on the algorithm
of choice.

This finding provides some support for the conceptual
premise that learning approaches are relevant constituents of
NIPD simulations that should be regarded as much as pos-
sible while drawing conclusions on experimental results of
such nature. Being limited to an analysis of three main
ML approaches, this study lacks generality. Notwithstand-
ing these limitations, the study suggests that some algorithms
might bear a more consistent attitude to collaboration than
others and that the effect of some of the spatial constituents
that were accounted for in this study might be cancelled of
shifted under the assumption of a different model for the
agent’s computational intelligence.

More information on the effectiveness of alternative algo-
rithms would help us to establish a greater degree of accu-
racy on this matter. Scientific research lead by means of
NIPD simulations is as the basis of many sociological, socio-
geographic and socio-economic notions; the insight provided
by this work can help in the task of confidently defining cir-
cumstances under which human collaboration is enhanced.

A natural progression of this work is to analyse, in an ana-
logue manner, other types of machine learning approaches for
strategy inference.

The findings reported in this work provide insights for fu-
ture research: although the generic pattern of the effect of
spatial configuration on the evolution of cooperation is con-
firmed under the hypothesis of the algorithms under analysis
in this paper, the effect is very much dependent on the ap-
proach to strategy inference. This could suggest a potential
cancellation (or even shift) of such effect(s) when a different
ML-based approach is employed.

Furthermore, large randomised controlled trials could pro-
vide more definitive evidence to endorse the conclusions
of this work. To this end, implementing multiple ML al-
ternatives to drive the learning process of the agents is of
paramount importance.
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