Modelling different levels of detail of roads and intersections in 3D city models

Freek Boersma

Supervisors: Anna Labetski, MSc & prof. dr. Jantien Stoter

MSc Geomatics for the Built Environment
Faculty of Architecture and the Built Environment,
Delft University of Technology

12 July 2019
2D to 3D geo-information

- Increase in creation and use of 3D geo-information
- 3D data can be stored in 3D city models
Level of Detail (LoD)

Computer graphics

- Geometric complexity of modelled object
Level of Detail (LoD)

Computer graphics
- Geometric complexity of modelled object

3D city models
- Model’s usability
- Level of approximation to real world features
- Quality measure for 3D city model
- Each level suited for a group of applications
CityGML

- Data model and XML encoding
- Thematic modules: buildings, transportation, vegetation, etc.
- Five LoDs: LoD0 – LoD4. Focus on buildings.
- Spatio-semantic coherence

Road modelling

Roads are often modelled as either lines or surfaces.
CityGML Transportation module

- Road LoD specification not well-developed
- Government officials and road data users identified drawbacks

CityGML Transportation module

- Road LoD specification not well-developed
- Government officials and road data users identified drawbacks

Central object registration

- Government gathers object data in different key registers
- Issues with linking data
Central object registration

- Government gathers object data in different key registers
- Issues with linking data
- Moving towards central object register (COR)
- Incorporate 3D data
- Incorporate both linear and areal road data
Motivation

- Government moving towards object-oriented 3D geo-information
- Many road data use cases identified
- Data users benefit from having clear LoD definitions
- CityGML Road LoD specification not well-developed
How can roads and intersections be modelled in 3D city models at various LoDs such that it suits user needs?
Research question & sub-questions

How can roads and intersections be modelled in 3D city models at various LoDs such that it suits user needs?

- What are the use cases of roads and intersections in 3D city models and what are their road data needs?
Research question & sub-questions

How can roads and intersections be modelled in 3D city models at various LoDs such that it suits user needs?

- What are the use cases of roads and intersections in 3D city models and what are their road data needs?
- What road standards exist, and how do they model the identified data needs?
Research question & sub-questions

How can roads and intersections be modelled in 3D city models at various LoDs such that it suits user needs?

- What are the use cases of roads and intersections in 3D city models and what are their road data needs?
- What road standards exist, and how do they model the identified data needs?
- How can the CityGML transportation data model be improved such that it satisfies the use case data needs?
Research question & sub-questions

How can roads and intersections be modelled in 3D city models at various LoDs such that it suits user needs?

- What are the use cases of roads and intersections in 3D city models and what are their road data needs?
- What road standards exist, and how do they model the identified data needs?
- How can the CityGML transportation data model be improved such that it satisfies the use case data needs?
- How can the newly improved data model be populated with data?
Research question & sub-questions

How can roads and intersections be modelled in 3D city models at various LoDs such that it suits user needs?

- What are the use cases of roads and intersections in 3D city models and what are their road data needs?
- What road standards exist, and how do they model the identified data needs?
- How can the CityGML transportation data model be improved such that it satisfies the use case data needs?
- How can the newly improved data model be populated with data?

Fieldwork

Throughout the research: meeting with experts
Research overview

1. CityGML shortcomings and data needs analysis
2. Improving the data model
3. Creating road data files
4. Discussion & future work
Research overview

1. CityGML shortcomings and data needs analysis
2. Improving the data model
3. Creating road data files
4. Discussion & future work
CityGML road modelling

TransportationComplex provides linear network with line objects
→ line objects

TransportationComplex provides surface geometry describing the actual shape of the object

Surface geometry is divided thematically into TrafficAreas, like:
- Traffic – cars
- Traffic – emergency lane
- Traffic – restricted area
- Auxiliary - grass

CityGML road modelling: LoD2 – LoD4
More strict areal specification needed

LoD1

LoD2

LoD3

LoD0: Linear LoD specification needed

LoD0.1

LoD0.2

LoD0.3
Intersections

Use case data needs analysis

<table>
<thead>
<tr>
<th></th>
<th>Areal</th>
<th></th>
<th>Linear</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LoD1</td>
<td>LoD2</td>
<td>LoD3</td>
<td>LoDo.1</td>
<td>LoDo.2</td>
<td>LoDo.3</td>
</tr>
<tr>
<td>Road repair</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>De-icing roads</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Disaster management</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface heat monitoring</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air quality monitoring</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visibility analysis</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noise mapping</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traffic light config</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traffic simulations</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Routing / navigation</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Autonomous driving</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>
Use case data needs analysis

Traffic modelling
- Road data needs
 - Road standard review

Navigation
- Road data needs

Road maintenance
- Road data needs

Modelling ideas for road data needs
Data needs

- **LoD specification.** LoD0.1 – LoD0.3, LoD1 – LoD3.

- **Graph structure.** Implement a graph structure such that LoD0.1 up to LoD0.3 can be modelled as a network.

- **Attributes.** Many attributes were identified which might be useful.

- **Road segments and linking representation types.** How to link segments of linear and areal road objects together?

- **Intersections.** Intersections and roundabouts need explicit modelling, including specific turning lanes, turn restrictions, way giving information and stop lines.

- **Connecting to other modules.** Link Road surfaces with Bridge surfaces when a road is on a bridge.
Research overview

1. CityGML shortcomings and data needs analysis
2. Improving the data model
3. Creating road data files
4. Discussion & future work
Research overview

1. CityGML shortcomings and data needs analysis
2. Improving the data model
3. Creating road data files
4. Discussion & future work
CityGML encoding

```
<core:cityObjectMember>
  <tran:TrafficArea gml:id="_A299D47AD4E6D2BB7E0532B0B5B0AE93E">
    <core:creationDate>2014-02-13</core:creationDate>
    <tran:class>local carriageway</tran:class>
    <tran:surfaceMaterial>surfaced pavement</tran:surfaceMaterial>
    <tran:lod2MultiSurface>
      <gml:MultiSurface srsName="EPSG:7415" srsDimension="3">
        <gml:surfaceMember>
          <gml:Polygon>
            <gml:LinearRing>
              <gml:posList>94273.344 463812.831 0.6688626441047193
                94260.472 463809.828 0.583103898885288 94272.374
                463807.149 0.69790611812650841 94273.344 463812.831
                0.6688626441047193</gml:posList>
            </gml:LinearRing>
            <gml:exterior>
              <gml:Polygon>
                <gml:SurfaceMember>
                  <gml:surfaceMember>
                    <gml:Polygon>
                      <gml:LinearRing>
                        <gml:posList>94261.624 463815.323 0.5593409338157872
                          94260.472 463809.828 0.583103898885288 94273.344
                          463812.831 0.6688626441047193 94261.624 463815.323
                          0.5593409338157872</gml:posList>
                      </gml:LinearRing>
                    </gml:exterior>
                  </gml:Polygon>
                </gml:surfaceMember>
              </gml:SurfaceMember>
            </gml:Polygon>
          </gml:LinearRing>
        </gml:surfaceMember>
      </gml:MultiSurface>
    </tran:lod2MultiSurface>
  </tran:TrafficArea>
</core:cityObjectMember>
```
CityJSON encoding

```json
{
    "type": "CityJSON",
    "version": "1.0",
    "CityObjects": {
        "id1": {
            "type": ..., 
            "attributes": {
                ...
            },
            "geometry": [{
                "type": ..., 
                "lod": ..., 
                "boundaries": ...
            }
            ]
        },
        "vertices": [
            ...
        ]
    }
}
```
```
"ma_rue": {
  "type": "Road",
  "geometry": [{
    "type": "MultiSurface",
    "lod": 2,
    "boundaries": [
      [[0, 3, 2, 1, 4]], [[4, 5, 6, 666, 12]], [[0, 1, 5]], [[20, 21, 75]]
    ],
    "semantics": {
      "surfaces": [
        {
          "type": "TrafficArea",
          "surfaceMaterial": ["asphalt"],
          "function": "road"
        },
        {
          "type": " AuxiliaryTrafficArea",
          "function": "green areas"
        },
        {
          "type": "TrafficArea",
          "surfaceMaterial": ["dirt"],
          "function": "road"
        }
      ],
      "values": [0, 1, null, 2]
    }
  }
}
```
CityJSON: JSON encoding of CityGML data model

```
"ma_rue": {
  "type": "Road",
  "geometry": [
    { "type": "MultiSurface",
      "lod": 2,
      "boundaries": [
        [[0, 3, 2, 1, 4]], [[4, 5, 6, 666, 12]], [[0, 1, 5]], [[20, 21, 75]]
      ],
      "semantics": {
        "surfaces": [
          { "type": "TrafficArea",
            "surfaceMaterial": ["asphalt"],
            "function": "road"
          },
          { "type": "AuxiliaryTrafficArea",
            "function": "green areas"
          },
          { "type": "TrafficArea",
            "surfaceMaterial": ["dirt"],
            "function": "road"
          }
        ],
        "values": [0, 1, null, 2]
      }
    ]
  ]
}
```
Implementing changes in CityJSON

- CityJSON structure defined by JSON schemas
- CityJSON core: encoding of the CityGML data model
Implementing changes in CityJSON

- CityJSON structure defined by JSON schemas
- CityJSON core: encoding of the CityGML data model
- Data model can be extended with Extensions: new CityObjects and attributes can be added.

- Implementing data needs: changes in core, and new Extension
Starting point: new LoD specification

LoD1 LoD2 LoD3
Starting point: new LoD specification

LoD0.1 LoD0.2 LoD0.3
Graph structure

- New CityObject classes in Core: Node and Edge.
- Nodes have attribute edges: incident edges
- Edges have attributes startNode, endNode

- In Extension: RoadNode and RoadEdge
- Graph structure can be reused for other object classes
- This gives the desired topological structure
Network attribute modelling

- Many linear attributes from data needs
- No over-fitting data model to assessed use cases
- Geography-related attributes not added: can be deduced from areal data

- Will model: allowed vehicle types, road classification, driving direction, administrator, maximum speed.

- Other attributes may be added in Extension per use case
Network attribute modelling

- Linear referencing vs node based attribute modelling.
- Choose attribute based.
- Linear referencing system may always be added.
Network intersections: LoD0.1

- Add turning restrictions for intersection / roundabout RoadNode
Network intersections: LoD0.2

- RoadNodeType: Intersection and Roundabout
- RoadEdgeType: Connecting and Roundabout
Network intersections: LoD0.3

- RoadNodeType: LaneSplit, Intersection and Roundabout
- RoadEdgeType: Connecting and Roundabout
Segments and linking representation types

- Central object register: linking representation types.
- Node based attribute changes lead to highly segmented network.
- Areal road segmentation already possible through semantic surfaces.
Segments and linking representation types

- Central object register: linking representation types.
- Node based attribute changes lead to highly segmented network
- Areal road segmentation already possible through semantic surfaces

- Choice: linking types on an aggregate level
- Thus: segments implemented differently for linear and areal representations!
Segments and linking representation types
Segments and linking representation types

- Aggregated road
 - CityObjectGroup
 - consists of
 - Road CityObjects
 - Road
 - has
 - Geometry
 - can be
 - Array
 - consists of
 - RoadNodes
 - extension of
 - Node
 - RoadEdge
 - extension of
 - Edge
 - MultiSurface
 - not affiliated
 - Semantic surfaces
 - TrafficArea
 - Road
 - Carriageway
 - Lane
 - Intersection
 - Roundabout
Areal LoD specification

<table>
<thead>
<tr>
<th>Object</th>
<th>Attribute</th>
<th>Value</th>
<th>LoD1</th>
<th>LoD2</th>
<th>LoD3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Road</td>
<td>roadType</td>
<td>Road</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carriageway</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lane</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intersection</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Roundabout</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>class</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>function</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>intersectionID</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>streetName</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>bridge</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>administrator</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
Research overview

1. CityGML shortcomings and data needs analysis
2. Improving the data model
3. Creating road data files
4. Discussion & future work
Research overview

1. CityGML shortcomings and data needs analysis

2. Improving the data model

3. Creating road data files

4. Discussion & future work
Creating CityJSON road data files

Goal is to reflect on the modelling choices made.

- Source data: areal and linear data from Noord-Brabant
- Provincial road N640
- Create a data file per LoD
- Create a data file linking two representation types
LoD3

- Dataset specified per lane.
- Easy to map to CityJSON
LoD1–2

- Awkward merging
- What to do with AuxiliaryTrafficArea?
LoD0.2 – 0.3

- Strict geometric modelling: lots of preprocessing
- Nodes with semantics need to be generated, and pointers from RoadNodes to RoadEdges and vice versa established
LoD0.1

- Road centre line data present in data set
Linking LoD1 & LoD0.1

- Object defined by hand. This could be done on an existing attribute
Research overview

1. CityGML shortcomings and data needs analysis
2. Improving the data model
3. Creating road data files
4. Discussion & future work
Research overview

1. CityGML shortcomings and data needs analysis
2. Improving the data model
3. Creating road data files
4. Discussion & future work
Discussion

- Goal was to accommodate! Accommodate user and provider by giving clear but not over-fit LoD specification.
- Results based on mostly network use cases. Areal LoDs might have extra data needs not assessed.
- Node-based segmentation: low LoD but highly detailed..?
Discussion

- Is linking representation types necessary?
- Is 3D road data necessary?
- How did CityJSON influence design choices? Object-based nature aided linking of representation types. How does this generalise to Transportation in CityGML?
Future research

- Focus on roads. How do we incorporate bicycle paths, footpaths, or other Transportation objects like Railway?
- Further specification of areal representation and AuxiliaryTrafficArea?
- Add semantic validation of new data model.
- Create general CityJSON road writer program that does data processing itself.
- How to use the graph structure for routing?
Thank you for your attention!