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Abstract  

Non-recurrent traffic events, consisting of events of a n unpredi ctable nature such as incidents  and vehicle 

breakdowns , can either directly or indirectly influence road traffic.  A better understanding of these events could 

prove beneficial towards improving a multitude of facets concerning  the management of the Dutch road network.  

Traditional traffic event d etection, based on significant changes in traffic flow/speed characterist ics, is often 

limited by sparse road sensor coverage.  More importantly , traditional detection methods are unable to  categorize 

and describe traffic events.  

The ai m of this study is to explore to which extent geosocial data (e.g., data from Twitter and Waz e) could 

enrich traditional traffic data (e.g., traffic speed/flow data), in order to improve the detection, categorization, and 

description of traffic events  in the Netherlands . In order to achieve this, a pipeline was designed for extracting 

knowledge on  traffic events from geosocial data sources. We  collected geosocial data from Twitter, Waze, and 

TomTom and used traffic data provided by DiTT Lab. We specifically focused on reports by real road users, which 

we define as natural person s that report on thei r  own account, therefore excluding all legal person entity accounts 

such as public/private organizations, and bots. A machine learning approach was applied  to automatically classify 

tweets as either traffic event related or not. In order to categorize twee ts into a traffic event category, a rule -based 

traffic domain annotator was created. Additionally, a geocoding method to link tweets to a geographic location  

was developed. As Waze and TomTom event reports are classified and geocoded by default , we could cluster these 

reports together with the processed tweets based on their categorical, spatial and temporal extent into a combined 

traffic event. These combined traffic event reports were then linked to traffic data , based on corresponding spatial 

and tempor al aspects. In order to present the collected data , a web-based interactive map application was buil t .  

This methodology was applied to data collected over the period from 05 -12-2017 to 17-02-2018. From the 

set of collected tweets approximately 6.71% prove d traffic event related. Based on a linear support vector machine 

classification model we achieved an average f1 -score of 0.95 and an accuracy of 0.954, for detecting traffic event -

related  tweets. The rule -based traffic domain annotator showed an average f1 -score of 0.874, and an accuracy of 

0.964. The geocoding method proved able to geocode tweets to a location that covers all place indicators in a tweet 

in 86% of the evaluated cases. The remai ning 14% of the tweets either got  geocoded to a part of relevant indicators 

or to no relevant indicators at all.  Our clustering app roach is able to cluster 39.61% of the event reports into a 

traffic event report cluster consisting out of more than one event report, from which 48.66% could be linked to 

traf fic data.  

All in all, based on the achieved results, this work shows that geosocial data can be used to enrich traffic 

data towards the improvement of the detection, categorization, and description of non -recurrent traffic event s. 

 
Thesis Committee:  

 

Prof. dr. ir . G.J.P.M.  Houben, Faculty EEMCS 1, TU  Delft  

Dr. ir . A. Bozzon, Faculty EEMCS,  TU  Delft  

Prof. dr . Ir. J.W.C. van Lint, Faculty CEG 2, TU Delft  

Dr. A. Psy llidis, Faculty EEMCS, TU Delft

                                                
1 Electrical Engineering, Mathematics and Computer Science  
2 Civil Engineering and Geosciences  



v 

 

Preface 

 

Before you lies the thesis òUnderstanding Traffic Events by Enriching Traffic Data with 

Geosocial Dataó. It has been written to fulfill the graduation requirements of the MSc 

programme in Computer Science at the Delft University of Technology. I was engaged in 

researching and writing this thesis  from May 2017 to September 2018. This project was 

undertaken at the request of the Web Information Systems research group in the Software 

Technology department.  

 

Throughout the challenging work on my masterõs thesis  I have learned a great number of 

new useful technologies,  and gained  experience in  the art of  performing scientific res earch. I 

am glad I was able to finish this thesis in a satisfying matter. However, this work would not 

have been possible without the valuable advice and support of the following number of 

persons.  

 

First, I would like to thank m y supervisors Alessandro Bozzon and Achilleas Psyllidis . 

Throughout the project, I have always been able to ask you for advice and you helped me with 

supportive criticism and suggestions. Second , I would like to thank Panchamy 

Krishnakumari who acted a s my contact person at the DiTTL ab, and Hans van Lint for 

providing advice on the traffic research part of my thesis.  

 

Third, my thanks go out to Alexander Grooff and Jan Zegers for teaming up through the 

entirety of the master track. I have always been able to count on your advice and assistance 

when needed, and discussing my work with you proved invaluable.  

 

Lastly, I would like to thank my father Alex and brother Kees for their support and love 

throughout the years. Also, I would like to dedicate this thes is in memory of my lovely mother 

Ciska, who has always supported and inspired me to pursue my study in computer science.   

  

 

Bas de Böck 

Vlissingen, the Netherlands  

August,  2018 

  

 

 

  



vi  

 

Contents  

Abstract  ................................................................................................................................... iv  

Preface ....................................................................................................................................... v 

Contents  ................................................................................................................................... vi  

List of Figures  .......................................................................................................................... ix  

List of Tables  ........................................................................................................................... xi  

1 Introduction  ....................................................................................................................... 1 

1.1 Research Objectives ....................................................................................................... 3 

1.2 Methods  .......................................................................................................................... 4 

1.3 Contributions  ................................................................................................................. 7 

1.4 Thesis Outline  ................................................................................................................ 7 

2 Background and Related Work  ......................................................................................... 8 

2.1 Traffic Data  .................................................................................................................... 8 

2.1.1 Data Collection  .................................................................................................... 8 

2.1.2 Data Processing ................................................................................................... 9 

2.1.3 Traffic Data Evaluation  .....................................................................................12 

2.2 Geosocial Data ..............................................................................................................13 

2.2.1 Geosocial Data based Related Work  ..................................................................13 

2.2.2 Geosocial Data based Related Work Evaluation  ...............................................17 

2.3 Combination of Traffic and Geosocial Data ..................................................................21 

2.3.1 Combination of Traffic and Geosocial Data based Related Work  .....................21 

2.3.2 Combination of Traffic and Geosocial Data based Related Work Evaluation  ..23 

2.4 Additional Related Work  ..............................................................................................26 

2.5 Evaluation of Related Work  ..........................................................................................28 

2.5.1 Related Work Key Points  ...................................................................................28 

2.5.2 This Work versus Related Work  ........................................................................29 

3 Experiment Design  ...........................................................................................................30 

3.1 Data Collection  ..............................................................................................................31 

3.1.1 Twitter and Instagram  .......................................................................................31 

3.1.2 Waze ...................................................................................................................35 

3.1.3 TomTom ..............................................................................................................37 

3.1.4 DiTTLab  .............................................................................................................38 

3.2 Data Pre -processing ......................................................................................................39 

3.2.1 Twitter  ................................................................................................................39 

3.2.2 Waze and TomTom .............................................................................................40 



vii  

 

3.2.3 DiTTLab  .............................................................................................................40 

3.3 Traffic Event Categorization  ........................................................................................41 

3.3.1 Category Composition  ........................................................................................41 

3.3.2 Grammar  ............................................................................................................45 

3.3.3 Evaluation  ..........................................................................................................47 

3.4 Feature Engineering  .....................................................................................................48 

3.5 Traffic Event Classification  ..........................................................................................49 

3.5.1 Support Vector Machine Theory  ........................................................................49 

3.5.2 Naïve Bayes Theory  ...........................................................................................49 

3.5.3 Model Selection and Evaluation  ........................................................................50 

3.6 Geocoding ......................................................................................................................53 

3.6.1 Approach  .............................................................................................................53 

3.6.2 Evaluation  ..........................................................................................................57 

3.7 Traffic Event Description  .............................................................................................59 

3.8 System Architecture - SocialTerraffic  ..........................................................................65 

3.8.1 Entity -Relationship Model  .................................................................................65 

3.8.2 Requirements  .....................................................................................................67 

3.8.3 Data Presentation  ..............................................................................................68 

4 Implementation  ................................................................................................................69 

4.1 Data Col lection  ..............................................................................................................69 

4.1.1 Collection Timespan Overview  ..........................................................................69 

4.1.2 Twitter Data Collection  ......................................................................................70 

4.1.3 Waze Data Collection  .........................................................................................76 

4.1.4 TomTom Data Collection ....................................................................................81 

4.2 Rule-based Traffic Domain Annotator  .........................................................................86 

4.3 Traffic Event Classification  ..........................................................................................90 

4.4 Geocoding ......................................................................................................................95 

4.5 Traffic Event Description  .............................................................................................98 

4.5.1 Traffic Event Description Evaluation  .............................................................. 100 

4.5.2 Traffic Event Description Insights  ................................................................... 106 

4.6 SocialTerraffic System  ................................................................................................ 110 

5 Discussion ....................................................................................................................... 116 

5.1 Data Collection  ............................................................................................................ 116 

5.2 Rule-based Traffic Domain Annotator  ....................................................................... 117 

5.3 Traffic Event Classification  ........................................................................................ 118 



viii  

 

5.4 Geocoding .................................................................................................................... 119 

5.5 Traffic Event Description  ........................................................................................... 119 

5.6 SocialTerraffic System  ................................................................................................ 120 

6 Conclusions ..................................................................................................................... 122 

6.1 Conclusion  ................................................................................................................... 122 

6.2 Future Work  ................................................................................................................ 124 

Bibliography  .......................................................................................................................... 125 

Appendix A:  Source Code Repository ................................................................................ 129 

Appendix B:  Rule-based Traffic Domain Annotator Grammar  ........................................ 130 

 

 

  



ix  

 

List of Figures  

Figure 2 -1: Heat map of traffic speed (km/h)  ..........................................................................11 

Figure 2 -2: Heat map of traffic flow (vehicle/hour/lane)  .........................................................11 

Figure 3 -1: Overview of experiment design methods  .............................................................30 

Figure 3 -2: Adaptive keyword selection flowchart  .................................................................34 

Figure 3 -3: Waze Live Map, where the icons represent users  and traffic events  ..................35 

Figure 3 -4: Rule-based Traffic Domain Annotator Evaluation  ..............................................47 

Figure 3 -5: ROC Curve  ............................................................................................................52 

Figure 3 -6: Precision -Recall Curve  .........................................................................................52 

Figure 3 -7: High -Level Geocoding Model  ................................................................................54 

Figure 3 -8: Location Linking Approach (d)  .............................................................................56 

Figure 3 -9: Location Linking Approach (a, b, c)  .....................................................................56 

Figure 3 -10: Geocoding evaluation category 1  ........................................................................57 

Figure 3 -11: Geocoding evaluation category 2  ........................................................................57 

Figure 3 -12: Geocoding evaluation categ ory 3 ........................................................................58 

Figure 3 -13: Geocoding evaluation category 4  ........................................................................58 

Figure 3 -14: Traffic Event Report Location Examples  ...........................................................60 

Figure 3 -15: High -level overview of traffic event report clustering approach  .......................63 

Figure 3 -16: High -level overview of DiTTLab traffic data to traffic events linking approach

 .................................................................................................................................................64 

Figure 3 -17: ERD Traffic Eve nt Domain Knowledge  .............................................................66 

Figure 3 -18: Wireframe for the front -end of the SocialTerraffic system  ................................68 

Figure 4 -1: Timespan of the collected data sets.  .....................................................................69 

Figure 4 -2: Positive co-occurrence between tokens in iteration 1  ..........................................72 

Figure 4 -3: Tweets collected with the Twitter data collection approach  ...............................74 

Figure 4 -4: Tweets collected with the Twitter data collection approach, labeled tra ffic event -

related (TE) or non -traffic event -related (NTE)  .....................................................................75 

Figure 4 -5: Waze Event Report Collection 06 -12-17 to 05-02-18 ...........................................77 

Figure 4 -6: Total Number of Waze Event Reports by Category over 24 Hours  .....................79 

Figure 4 -7: TomTom Event Report Collection 06 -12-17 to 14-02-18 ......................................82 

Figure 4 -8: Total Number of TomTom Event Reports by Category over 24 Hours  ...............85 

Figure 4 -9: Total Number of Tweet Event Reports by Event Category over 24 Hours  .........89 

Figure 4 -10: Tweets collected with the Twitter data collection approach, classified as TE o r 

NTE by our trained Linear SVM based classifier  ...................................................................94 

Figure 4 -11: Distribution of Report Relevance towards Subreport Intersection  ................. 103 

Figure 4 -12: Subreport Relevance towards Main Report Intersection ................................. 104 

Figure 4 -13: Tweet Event Accident (12 event reports)  ......................................................... 108 

Figure 4 -14: TomTom Event Accident (34 event reports) ..................................................... 108 

Figure 4 -15: Waze Event Accident (218 event reports)  ........................................................ 108 

Figure 4 -16: Accident Events (29) based on a single main - and subreport  .......................... 108 

file:///C:/Users/basde/Desktop/Master%20Thesis_28-08-18.docx%23_Toc523227935
file:///C:/Users/basde/Desktop/Master%20Thesis_28-08-18.docx%23_Toc523227936
file:///C:/Users/basde/Desktop/Master%20Thesis_28-08-18.docx%23_Toc523227941
file:///C:/Users/basde/Desktop/Master%20Thesis_28-08-18.docx%23_Toc523227942
file:///C:/Users/basde/Desktop/Master%20Thesis_28-08-18.docx%23_Toc523227944
file:///C:/Users/basde/Desktop/Master%20Thesis_28-08-18.docx%23_Toc523227945
file:///C:/Users/basde/Desktop/Master%20Thesis_28-08-18.docx%23_Toc523227946
file:///C:/Users/basde/Desktop/Master%20Thesis_28-08-18.docx%23_Toc523227947
file:///C:/Users/basde/Desktop/Master%20Thesis_28-08-18.docx%23_Toc523227948
file:///C:/Users/basde/Desktop/Master%20Thesis_28-08-18.docx%23_Toc523227949
file:///C:/Users/basde/Desktop/Master%20Thesis_28-08-18.docx%23_Toc523227955
file:///C:/Users/basde/Desktop/Master%20Thesis_28-08-18.docx%23_Toc523227956
file:///C:/Users/basde/Desktop/Master%20Thesis_28-08-18.docx%23_Toc523227957
file:///C:/Users/basde/Desktop/Master%20Thesis_28-08-18.docx%23_Toc523227958
file:///C:/Users/basde/Desktop/Master%20Thesis_28-08-18.docx%23_Toc523227958
file:///C:/Users/basde/Desktop/Master%20Thesis_28-08-18.docx%23_Toc523227959
file:///C:/Users/basde/Desktop/Master%20Thesis_28-08-18.docx%23_Toc523227960
file:///C:/Users/basde/Desktop/Master%20Thesis_28-08-18.docx%23_Toc523227962
file:///C:/Users/basde/Desktop/Master%20Thesis_28-08-18.docx%23_Toc523227963
file:///C:/Users/basde/Desktop/Master%20Thesis_28-08-18.docx%23_Toc523227964
file:///C:/Users/basde/Desktop/Master%20Thesis_28-08-18.docx%23_Toc523227964
file:///C:/Users/basde/Desktop/Master%20Thesis_28-08-18.docx%23_Toc523227965
file:///C:/Users/basde/Desktop/Master%20Thesis_28-08-18.docx%23_Toc523227966
file:///C:/Users/basde/Desktop/Master%20Thesis_28-08-18.docx%23_Toc523227967
file:///C:/Users/basde/Desktop/Master%20Thesis_28-08-18.docx%23_Toc523227968
file:///C:/Users/basde/Desktop/Master%20Thesis_28-08-18.docx%23_Toc523227969
file:///C:/Users/basde/Desktop/Master%20Thesis_28-08-18.docx%23_Toc523227970


x 

 

Figure 4 -17: Accident Events (27) based on a single main - and multiple subreports  ......... 108 

Figure 4 -18: Accident Events (208) based on a single main report  ...................................... 108 

Figure 4 -19: Tweet Event Traffic Jam (9 event reports)  ...................................................... 109 

Figure 4 -20: TomTom Event Traffic Jam (1107 event reports)  ............................................ 109 

Figure 4 -21: Waze Event Traffic Jam (4045 event reports)  ................................................. 109 

Figure 4 -22: Traffic Jam Events (2081) based on a single main - and subreport  ................. 109 

Figure 4 -23: Traffic Jam Events (2257) based on a single main report  ............................... 109 

Figure 4 -24: Traffic Jam Events (1685) based on a single ma in - and multiple subreports  . 109 

Figure 4 -25: SocialTerrafic App lication Start Screen  ........................................................... 110 

Figure 4 -26: SocialTerraffic Menu Sid ebar - Traffic Event Explorer  ................................... 111 

Figure 4 -27: SocialTerraffic screen after submitting query  ................................................. 111 

Figure 4 -28: SocialTerraffic screen after unchecking the Event Traffic Jam box  ............... 112 

Figure 4 -29: SocialTerraffic screen after selecting a traffic event on the map or timeline  . 113 

Figure 4 -30: SocialTerraffic screen after checking the Mainreport and Subreport boxes  ... 113 

Figure 4 -31: SocialTerraffic screen with the focus on a traffic event of the accident category

 ............................................................................................................................................... 114 

Figure 4 -32: DiTTlab Traffic Data submenu, speed heat map for the left side of the road  . 115 

Figure 4 -33: DiTTlab Traffic Data submenu, flow heat map fo r the left side of the road  ... 115 

Figure 4 -34: DiTTlab Traffic Da ta submenu, speed heat map for the right side of the road

 ............................................................................................................................................... 115 

Figure 4 -35: DiTTlab Traffic Data submenu, flow heat map for the right side of the road  115 

 

  

file:///C:/Users/basde/Desktop/Master%20Thesis_28-08-18.docx%23_Toc523227971
file:///C:/Users/basde/Desktop/Master%20Thesis_28-08-18.docx%23_Toc523227972
file:///C:/Users/basde/Desktop/Master%20Thesis_28-08-18.docx%23_Toc523227973
file:///C:/Users/basde/Desktop/Master%20Thesis_28-08-18.docx%23_Toc523227974
file:///C:/Users/basde/Desktop/Master%20Thesis_28-08-18.docx%23_Toc523227975
file:///C:/Users/basde/Desktop/Master%20Thesis_28-08-18.docx%23_Toc523227976
file:///C:/Users/basde/Desktop/Master%20Thesis_28-08-18.docx%23_Toc523227977
file:///C:/Users/basde/Desktop/Master%20Thesis_28-08-18.docx%23_Toc523227978
file:///C:/Users/basde/Desktop/Master%20Thesis_28-08-18.docx%23_Toc523227979
file:///C:/Users/basde/Desktop/Master%20Thesis_28-08-18.docx%23_Toc523227980
file:///C:/Users/basde/Desktop/Master%20Thesis_28-08-18.docx%23_Toc523227981
file:///C:/Users/basde/Desktop/Master%20Thesis_28-08-18.docx%23_Toc523227985
file:///C:/Users/basde/Desktop/Master%20Thesis_28-08-18.docx%23_Toc523227985
file:///C:/Users/basde/Desktop/Master%20Thesis_28-08-18.docx%23_Toc523227986
file:///C:/Users/basde/Desktop/Master%20Thesis_28-08-18.docx%23_Toc523227987
file:///C:/Users/basde/Desktop/Master%20Thesis_28-08-18.docx%23_Toc523227988
file:///C:/Users/basde/Desktop/Master%20Thesis_28-08-18.docx%23_Toc523227988
file:///C:/Users/basde/Desktop/Master%20Thesis_28-08-18.docx%23_Toc523227989


xi  

 

List of Tables  

Table 2-1: Traffic event detection based on geosocial data sources. The best performing 

classifiers have been made bold and relate to the evaluation metrics.  ..................................19 

Table 2-2: Traffic event categorization based on geosocial data sources.  ..............................20 

Table 2-3: Traffic event description based on geosocial data sources.  ...................................20 

Table 2-4: Traffic event detection based on traffic data & geosocial data  .............................24 

Table 2-5: Traffic event categorization based on traffic data & geosocial data  .....................24 

Table 2-6: Traffic event description based on traffic data & geosocial data  ..........................25 

Table 3-1: Tweet properties  .....................................................................................................34 

Table 3-2: Waze attributes overview with examples  ..............................................................36 

Table 3-3: TomTom Online Traffic Flow properties  ...............................................................38 

Table 3-4: Pre-processing techniques selection  ......................................................................39 

Table 3-5: DiTTLabReportCollection  ......................................................................................40 

Table 3-6: BRON relevant categories  ......................................................................................41 

Table 3-7: Feature selection  ....................................................................................................48 

Table 3-8: Requirement List ....................................................................................................67 

Table 4-1: Top 20 positive tokens in iteration 1  .....................................................................71 

Table 4-2: Top 20 negative tokens in iteration 1  ....................................................................71 

Table 4-3: Twitter Data Collection Metrics 05 -12-2017 to 17-02-2018 ..................................74 

Table 4-4: Twitter Data Collection Metrics 05 -12-2017 to 06-01-2018 ..................................75 

Table 4-5: Waze Event Report Metri cs 06-12-17 to 05-02-18 .................................................77 

Table 4-6: Waze User Metrics 06 -12-17 to 05-02-18 ...............................................................78 

Table 4-7: Example of Twitter Accounts linked to Waze Accounts  ........................................79 

Table 4-8: Waze Event Report Distribution by Category per Day  .........................................80 

Table 4-9: TomTom Event Report Collection Metrics 06 -12-17 to 14-02-18 ..........................82 

Table 4-10: TomTom Event Report Distribution by Category per Day  ..................................84 

Table 4-11: Rule-based Traffic Domain Annotator Evaluation Metrics .................................86 

Table 4-12: Rule-based Traffic Domain Annotator Confusion Matrix  ...................................87 

Table 4-13: Annotated Twitter Collection Metrics by Category from 05 -12-17 to 06-12-18 ..88 

Table 4-14: MultinomialNB based Classification Metrics  ......................................................91 

Table 4-15: MultinomialNB Oversampled based Classification Metrics  ...............................91 

Table 4-16: MultinomialNB Undersampled based Classification Metrics  .............................91 

Table 4-17: LinearSVM based Classification Metrics .............................................................92 

Table 4-18: LinearSVM Oversampled based Classification Metrics  ......................................92 

Table 4-19: LinearSVM Undersampled based Classification Metrics  ...................................93 

Table 4-20: Classified Twitter Data Collection Metrics 07 -01-2018 to 17-02-2018 ...............94 

Table 4-21: Geocoding Evaluation Metrics  .............................................................................97 

Table 4-22: Traffic Event Rule Col lection - Event_accident  ...................................................98 

Table 4-23: Traffic Event Rule Collection - Event_hazard_trafficlight  ..................................98 

file:///C:/Users/basde/Desktop/Master%20Thesis_28-08-18.docx%23_Toc523228015


xii  

 

Table 4-24: Traffic Event Cluster (some keys have been collapsed, for readability purposes)

 .................................................................................................................................................99 

Table 4-25: Subreports linked to Main Reports by Category, where P1 equals the period from 

05-12-2017 to 06-01-2018 and P2 equals the period from 07 -01-2018 to 17-02-2018 .......... 101 

Table 4-26: Subreports linked to Main Reports by Category where P1 equals the period from 

05-12-2017 to 06-01-2018 and P2 equals the period from 07 -01-2018 to 17-02-2018 (only 

including the dates where data could be collected for all sources)  ....................................... 102 

Table 4-27: Traffic Event Clusters linked to DiTTLab data  ................................................ 105 

 



1 

 

1 Introduction  

Traffic  events that cause road congestions are a daily phenomenon on the road network of 

the Netherlands. These traffic events can be divided into seven root causes: capacity, work 

zones, traffic control devices, fluctuations in normal traffic, traffic incidents,  weather, and 

special events (Systematics & others, 2005) . Capacity is the maximum amount of traffic that 

a highway is able to cope with, determined by factors such as the number and the width of 

lanes, shoulders, and interchanges. Traffic incidents cause the disruption of the normal 

traffic flow by road blockages which are the result of, e.g., vehicular crashes and bre akdowns. 

Work zones are planned construction activities that influence the normal physical state of 

the road by, e.g., reducing the number of available or width of travel lanes. Weather could 

cause the normal driving behavior of dri vers to change by, e.g., reducing the travel speed of 

vehicles due to icy roads or  causing impaired vision due to heavy rain. Traffic control devices 

such as railway and bridge control systems could cause a change towards the typical traffic 

flow. Special events such as sport s matches and festivals could also influence the typical 

traffic flow. Fluctuations in normal traffic are caused by varying traffic demand volumes 

while having roads with a fixed capacity. Additionally , these events can influence each other, 

e.g., bad weather could lead to car crashes.  

 

Traffic events can be divided in those with recurrent predictable causes and non -recurrent 

unpredictable causes. These non -recurrent events, consisting of traffic incidents, unplanned 

roadworks, weather, and special events, are  a critical but difficult problem to detect , 

categorize and describe. These traffic events are of interest to a multiple of different 

stakeholders, which can be divided into three groups. First, stakeholders that are interested 

in traffic event detection, which takes place in the period moving towards the event. Second, 

stak eholders that have to apply traffic event management during the event. Third, 

stakeholders that apply a historical offline analysis on the traffic events and research the 

causes behind and statistics on the events. These organizations have multiple tools a t their 

disposal to achieve their tasks, such as roadside detection sensors and cameras. In addition , 

they have the availability o f information provided by traffic inspectors and emergency 

services. However, the problem with the current tooling is that the ir capabilities to detect , 

categorize and describe traffic events are limited and flawed . On the one hand, the detection 

part is not always reliable when it comes to  events that are too small to have an impact on 

the traffic at that moment  (Stephanedes & Chassiakos, 1993) . However , this event could 

cause another event , later on, that is measurable and could , therefore,  have been used as a 

predictor . Take for exam ple traffic that has to evade road debris (tree branches, sharp objects, 

auto parts), which stays undetected at first but could cause future accidents due to flat tires 

or sudden dangerous evasion maneuvers. The underlying problem behind this is that these  

events are automatically detected with the use of algorithms, which assume that traffic 

events immediately cause a change in the traffic flow and speed characteristics. The data on 

which these algorithms depend is provided by traffic sensors which are lim ited in amount 

and cannot cover every point on the road. Besides, these algorithms are  road-type dependent, 

algorithms that can be applied on freeways, are often not suitable for arterial situations 

which are much more complex. On the other hand, the description and categorization of 

traffic events are limited and inconsistent as they depend  on the observations and deductions 

made by the instances arriving after the event occurred , as the traffic data itself does not 

contain the semantics to achieve this .  
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This thesis explores the e xtent to which new forms of geosocial data (e.g., data from  Twitter  

and Waze) could enrich traditional traffic data  (e.g., traffic speed and flow data from roadside 

detection sensors) , in order to impr ove the detection, categorization, and description of traffic 

events. Geosocial data refers to data created by individuals that is voluntarily and knowingly 

shared on online platforms , and contains some sort of geographic property . Social media 

platforms a s Twitter 3 and Instagram 4 have become a widely used tool to extract geosocial 

data  within the Web Information Systems research field . Research by der Veer, Sival, and 

van der Meer (2017) shows that Instagram is used by 3.2 mi l lion Dutch users of which 1.5 

mi l lion are daily users and 2.6 mi l lion Dutch Twitter users of which are 871,000 daily users. 

As traffic is a part of almost everyoneõs daily life, the assumption can be made that this also 

reflects  on people their online social life, resulting in tweets a nd Instagram posts abo ut traffic 

events. Additionally, less general but more traffic specialized social platforms such as Waze 5 

could be used. Waze is a community -based traffic and navigation app, which enables users to 

share traffic event reports. These t raffic event reports can be seen as categorized traffic based 

geosocial posts, and therefore could contribute towards the enrichment of traffic data.  

 

In recent  years, limited research has been performed on how geosocial data can be used to 

detect and describe (traffic) even ts. Most of  the research either focus  on how geosocial data 

can be utilized  to derive new and improved  traffic event detection, categorization, and 

description approaches (e.g.,  Schulz, Ristoski, and Paulheim (2013) , D'Andrea, Ducange, 

Lazzerini, and Marcelloni (2015), and Gu, Qian, and Chen  (2016)). However, using only one 

geosocial data source comes with a number of disadvantages:  

 

1. Reliability of the category assigned to a detected traffic event: Did the user use 

distinctive enough words to derive the correct event category?  

2. Reliability of the spatial aspects of the detected traffic event: Was the user really on 

the location of the event at the time of posting the geosocial post, or did he post about 

an event he read or heard about? And did the user use accurate enough locational 

words to be able to derive the correct event location?  

3. Reliability of the temporal aspects of the detecte d traffic event: Was the geosocial post 

composed directly after the traffic event, or did it refer to a historical or future event?  

 

These disadvantages would mostly be non -existent if the number of tweets that refer to a 

single event would always be of a high quantity. That way, tweets could be aggregated 

together to improve the reliability of the detected event. However, research shows that the 

ratio of the number of traffic event -related tweets per location and time range proves to be 

very low, and thus additional data sources are needed to compensate for this.  

 

  

                                                
3 Twitter.com  
4 Instagram.com  
5 Waze.com 
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In the last few years research towards the combinati on of traffic and geosocial data has been 

conducted (e.g., Daly, Lecue, and Bicer  (2013) and Giridhar, Amin, Abdelzaher, Wang, 

Kaplan, George, and Ganti (2017)). The limited amount of research show s that there is still 

a gap to fill by combining multiple  (new) geosocial data and traffic data sources in order to 

improve upon existing traffic event detection,  categorization , and description  approaches.   

 

1.1 Research Objectives 

The main goal of this thesis is to investigate  how geosocial and traffic data relate to each 

other and how this relationship can be utilized to improve upon the current state of the art 

tr affic event detection, categorization , and description approaches. The  main research 

question  is therefore defined as follows:   

 
RQ: To what extent can geosocial data enrich traffic data to improve the detection , 
categorization, and description of non -recurrent traffic events?  
 

In order to answer this main resea rch question, the following research sub-questions are 

posed: 

 
RQ1: What is the current state of the art regarding  non-recurrent  traffic event detection,  
categorization , and description  by using traffic data and  geosocial data, individually or 
combined? 

 
RQ2: How can non-recurrent traffic event -related geosocial posts be detected?  

 
RQ3: How can detected non -recurrent traffic event -related geosocial posts be categorized by 
event type ? 

 
RQ4: How can categorized geosocial posts be used to describe non-recurrent traffic event s? 

 
RQ5: How to develop a software system that is able to perform the detection,  categorization , 
and description of non -recurrent traffic events ?  
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1.2 Methods  

To address research question 1, we have to understand the decisions, demarcations, 

conclusions and future work directions that have been made in previous related scientific 

work.  Related work is reviewed based on the data source types used in their research: traffic 

data sources, geosocial data sources, and a combination of the two.  This way choices can be 

taken towards the selection and extension of certain data  collection, pre -processing, featur e 

engineering,  classification, categorization, linking, aggregation , and visualization 

approaches. This literature study provides the foundation for  the approach taken in the 

remaining  research questions.  

 

To address research question 2, a data retrieval process is set up for the  selected geosocial 

data  sources Twitter and Instagram . In this approach , we only focus on Dutch data that is 

related to the road network of the Netherlands. The Twitter REST API is used to collect 

tweets based on an adaptively created traffic event -related  keyword set. The main goal to 

achieve when collecting traffic event -related tweets, is to create a keyword set that maximizes 

the percentage of traffic event -related  tweets over  all a cquired tweets and  maximizes the 

amount of  acquired traffic event -related tweets in the pool (all Dutch tweets in the 

Netherlands within a specific time range). Furthermore, a filtering method is applied to filter 

out the major ity of non -real road user  accounts. We define a real road user  as follows: a 

natural person that tweets on his/her own account, therefore excluding all legal person entity 

accounts such as public organizations ( government agencies, police, and infrastructure 

agencies), private organizations , and bots. This same keyword set is used to collect Instagram 

posts by using the Instagram API Platform. However, initial experiments show  that 

Instagram provides extremely  low amounts of traffic event -related posts. Therefore, we make  

a well -substantiated decision t o no longer include Instagram in our setup. Besides Twitter 

data, data from Waze is collected by extracting a GeoRSS web feed from its web -based live 

map6. This way all traffic event data within a bounding box covering the entirety of the 

Netherlands is collected every 2 minutes. Furthermore, data from TomTom 7 is collected 

through their Online Traffic Incidents API.  Here, also a bounding box covering the entirety 

of the Netherlands is used to collect TomTom data every 2 minutes.  

 

Next, as preparation for  the creation of a traffic event classifier, part of the tweets from the 

collected Twitter dataset are manually labeled  as either  traffic event -related (TE) or non-

traffic event -related (NTE). Next , pre-processing is applied to the TE tweets  by applying 

tokenization and stop word removal . Subsequently , feature selection is applied to the Twitter 

data. Features based on the following characteristics are used: term frequency -inverse 

document freq uency (TF -IDF) weighting, bag of words/n -grams, syntactic featur es 

(exclamation/question marks, emoticons, and total number of capital characters ), and traffic 

domain categories based on our custom created rule -based traffic domain annotator. In order 

to automatically determine if a  tweet is related to a traffic event, a classifier is applied. A mix 

of different machine learning classification algorithms  (Support vector machine  and Naïve 

Bayes), features and dataset sizes are explored to achieve the best classifier for identifying 

tr affic event -related tweets. In order to estimate the performance  of the model , 10-fold cross-

validation  is applied  on the Twitter training dataset . To measure the performance of the 

                                                
6 waze.com/livemap  
7 https://developer.tomtom.com/online -traffic  
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classification approaches the following metrics are reported: accuracy, pr ecision, recall , f1-

score, and the area under the curve of receiver operating characteristic (ROC AUC) . This 

provides us with an overview that evaluates all features and their combinations with 

different classifiers.  The classifier with the best performanc e is used to classify the tweet in 

the Twitter dataset. Contrary to data collected from Twitter, data from  Waze and TomTom 

have little pre -processing needs. Attributes that do not contain any descriptive value will be 

omitted and attribute terms are made  uniform between the datasets. Besides, Waze and 

TomTom reports are by definition traffic event -related  and therefore do not need to be 

classified by a classifier.  

 

In order to address research question 3, a rule -based traffic domain annotator is created. This 

annotator is used for extracting relevant traffic domain information from tweet  text data. 

This allows for the automatic catego rization of a tw eet into one of 27  distinct traffic domain 

categories (e.g., categories that describe road users, spatial features and traffic events) of 

which  13 are related towards traffic events (e.g., traffic jam, accident and roadworks) . The 

traffic domain categories are based upon the event categories from Waze, TomTom, the 

categories in the police accident reporting doss ier (BRON) 8, and acquired knowledge from 

reviewing literature and annotating tweets. The annotator uses a Backus -Naur form (BNF) 

grammar, allowing for partial matching of tokens, while using a combination of place names, 

temporal expressions, traffic domai n knowledge, and lexical pattern dictionaries.  

 

To address research question 4, mul tiple data sources (Waze, TomTom , and a data source 

provided by Delft integrated Traffic & Travel Laboratory ( DiTTLab )9) are combined with 

traffic event -related  annotated and categorized Twitter data, to describe traffic events. Our 

description approach consists of the following three stages: 

 

1. Geocoding: tweets have to be linked to a geographic location , also known as geocoding. 

Approximately, only 1% of the twee ts contain s a geotag. Therefore, to identify the 

location of the other 99%, a location linking  method is developed. This method utilizes 

the rule -based traffic domain annotator, which is able to annotate a multitude of spatial 

indicators from tweets. Based  on the location category  the Google Places API10, Google 

Directions API 11, or custom created r oad database (consisting of road numbers and mile 

markers, with their respective coordinates)  is queried  to obtain a location. Tweets can 

contain multiple spatial indicators bringing the following challenges: 

contradiction/confirmation of each other, relation to different forms and scales, and 

ambiguity. Therefore, a model is designed to mitigate these challenges, by computing 

the intersections of spatial indicators  in a tweet.  

2. Clustering of traffic event reports : in this step geocoded tweets are clustered together 

with other relate d tweets, Waze and TomTom event reports, eventually forming a 

described traffic event. First, a traffic event described by a newly incomi ng traffic event 

report (e.g., a tweet, Waze, or TomTom report) is compared to  a previously reported 

traffic event report cluster. Matching is based on a rule -based approach, in which a rule 

specifies the categorical, spatial and temporal  extent, used to a ssert if the new traffic 

event report should be part of an existing traffic event cluster. A traffic event report is 

                                                
8 https://www.rijkswaterstaat.nl/apps/geoservices/geodata/dmc/bron/  
9 dittlab.tudelft.nl/  
10 https://developers.google.com/places/web-service/ 
11 https://developers.google.com/maps/documentation/directions/  
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added to an existing traffic event cluster when there is a match, otherwise a new traffic 

event cluster is created based on that traffic ev ent.  

3. Linking to traffic data:  based on the clustering results, traffic event  reports  are formed 

based on geosocial data. However, as it is not our goal to map traffic events based on 

geosocial data alone, but to enrich traffic data, an  additional approach is taken. For this 

purpose, a traffic data set from DiTTLab  is used, containing interpolated speed and flow 

values per 100m segments for ea ch motorway (A -roads) in the Netherlands. This data 

could be used as a source for traffic event detection al gorithms. However, as traffic event 

detection algorithms greatly depend on the type and properties of the road, it is not 

feasible to implement this for every highway. Besides, it would fall out of the scope of 

this research. As stated before this traffic data on its own does not tell anything about 

the kind of traffic event  that  has happened, is happening or will happen. Besides, a 

traffic event can also happen without influencing the traffic speed and flow, making this 

data  in some cases on its own more or less useless. Therefore, a method is created that 

links traffic events to traffic speed and flow data , based on temporal and locational 

similarity.  

 

 

To address the final research question 5 , the parts developed in the answering of research 

questi ons 2 to 4 are combined into a pipeline . This pipeline is able to perform the detection, 

categorization, and description of traffic events , and forms the back -end of the system. To 

present the collected data to the user a web -based interactive map application  is build.  This 

application enables the user to view the traffic events and their descriptions on an interactive 

map. Besides, a user will be able to filter traffic events based on event category, time range 

and location.  
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1.3 Contributions  

The main contribu tions made in this thesis are fivefold : 

 

1. A literature survey on state of the art techniques regarding non -recurrent traffic event 

detection, categorization, and description by using either traffic data, geosocial data 

or the combination.  

2. A model that combines multiple geosocial data sources to enrich traffic data to 

improve the detection, categorization, and description  of traffic events. We extend 

upon previous related work by combining detection, categorization and description 

methods with  each other , instead of focusing on one in particular . Additionally, 

instead of focusing on a single data source, we combine multiple social and traffic 

based data sources including Twitter, Waze, TomTom, and DiTTLab. We specifically 

focus only on geosocial posts by real road users, instead of a mix of posts by real road 

users, news agencies, bots etc. Lastly, we focus on Dutch geosocial data, which has not 

been researched before besides in the study by Dokter (2015). 

3. A dataset containing annotated tweets as well as Waze, TomTom and traffic data.  

This dataset can be used in future studies regarding this topic.  This dataset could 

prove useful for any future research regarding this topic.  

4. Patterns and i nsights into the properties of the different data source s, and their 

relation towards getting a better understanding of traffic events.  

5. A software system named SocialTerraffic. This system consists of two parts. First, a 

pipeline that is able to perform the detection, categorization and description of traffic 

events, and store this data in a database. Second, a web -based interactive map that 

uses the collected and processed data from the pipeline to present traffic events to a 

user. This application enables a user to filter traffic events based on event category , 

date range and location. Additionally, the application is able to generate speed/flow 

charts based on traffic data related to a traffic event.  

 

1.4 Thesis Outline  

The remainder of this thesis is organized as follows. 2 introduces the scientific background 

of this thesis and discusses related work on how geosocial data can be used to detect, 

categorize and describe traffic  events. The experiment design, in which the approaches and 

methodologies used in this work are described, takes place in  3. 4 describes the 

implementation  and results  of the designed experiment s. In 5 we discuss and interpret the 

outcomes of our experiments. Finally, in 6 a conclusion of this thesis is provided , and 

opportunities for future research are  explored.  
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2 Background and Related Work  

In this chapter, previous work regarding traffic event detection, categorization and 

description is discussed and compared. This is done in ord er to show how this thesis builds 

upon and extends from previous research on similar topics. Therefore, this chapter should  

provide an  answer  to the first research sub-question:  

 

¶ RQ1: What is the current state of the art regarding non -recurrent traffic event 
detection, categorization, and description by using traffic data and geosocial data, 
individually or combined?  

 

In order to answer this question, this chapter is divided into three sections based on the data 

source types used in the research:  

 

1. Traff ic data sources, mostly used in Transport & Planning research field.  

2. Geosocial data sources, mostly used in Computer Science research field.  

3. A combination of traffic and geosocial data sources used in the Transport & Planning 

and Computer Science research  fields.  

 

As we focus specifically on traffic event detection, categorization and description, some 

research using a combinat ion of traffic and geosocial data would fall out of scope. This 

research could, however, contain valuable information for our resea rch. Therefore an 

additional section is devoted to possible relevant topics including traffic prediction, traffic 

and geosocial data correlation, and  traffic congestion monitoring.  

 

2.1 Traffic Data  

Research within the Transport & Planning field mainly focusses on the detection of traffic 

events. These traffic event detection systems can be divided into a data collection and a data 

processing part. Data collection describes the measurement techniques used to obtain the 

traffic data. These technologies ca n be divided into roadway -based and probe-based sensors. 

 

2.1.1 Data Collection  

Roadway-based sensors are integrated into the roadway infrastructure system, being 

embedded in the roads, at the side of the road or over the road. They provide traffic 

information f rom the passing vehicles over a fixed point or short segment. Therefore, the 

advantages of this system are that traffic volumes can be measured directly, while the traffic 

speed can be inferred from the traffic volume based on an average vehicle length. A 

disadvantage, however, is that the quality of travel time measurements is dependent on the 

density of the sensor network. Other disadvantages come with high deployment costs and 

intensive maintenance costs (Young, 2007). Roadway-based sensors can be divided into 

magnetic (piezoelectric detectors, active/passive magnetic detectors, inductive loop detectors 

(ILD)), range detectors (infrared detectors, ultrasonic detectors, microwave/millimeter wave 

radar, passive acoustic detector arrays, photoelectric detect ors, spread-spectrum wideband 

radar), and image sensing detectors (video image processors (VIP)) (Kon, 1998) .  
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Probe-based sensors are carried by vehicles instead of being part of the underlying road 

infrastructure. This allows for direct travel time measurements and increases the traffic flow 

coverage space. However, the quality of these sensors highly depends on the number of 

vehicles equipped wit h a sensor. Probe-based sensors can be categorized into: cell phone 

probes (by using signaling information or GPS), automated vehicle location (AVL) services 

by in -car systems that monitor the GPS of the car, and automatic vehicle identification (AVI) 

systems that use an in -vehicle tag or transponder to wirelessly communicate with a roadside 

unit to identify the vehicle location (Young, 2007). 

 

2.1.2 Data Processing  

Data processing uses traffic detection and classification algorithms by analyzing traffic data 

obtained from the data collection sensors. These algorithms can be classified by the traffic 

data they rely on resulting in roadway -based and probe-based algorithms.  

2.1.2.1 Roadway-based Algorithms  

Roadway-based algorithms can be divided into the following five mai n categories: 

comparative, statistical, time series, traffic modeling, and image processing algorithms.  

 

1. Comparative algorithms compare the traffic data to a pre -defined threshold value. This 

category includes algorithms based on decision trees which assum e that traffic events 

cause significant increases in upstream occupancy  (the percent age of time the detection 

zone of a detector is occupied by some vehicle)  while reducing downstream occupancy 

(Tignor &  Payne, 1977). And algorithms based on pattern recogn ition, which compare 

historically estimated vehicle speeds for particular traffic patterns with pre -established 

thresholds.  

2. Statistical algorithms use statistically determined traffic characteristics to find 

deviations in the traffic data. Dudek, Messer, and Nuckles  (1974) propose a method 

based on the standard normal deviate to find sudden changes in traffic data that could 

suggest occurrences of traffic events. Levin and Krause  (1978) propose a method based 

on Bayesian statistical techniques that use the  relative distances of occupancies from 

comparative algorithms to compute if an event signal is caused by a lane -blocking event.  

3. Time series algorithms compare the traffic data to time series models that contain 

historically predictable traffic patterns. The commonly used techniques are the 

autoregressive integrated moving -average (ARIMA) model and the high occupancy 

(HIOCC) algorithm (Ahmed and  Cook, 1979). 

4. Traffic modeling algorithms use traffic flow theory to develop models that describe traffic 

behavior when a traffic event occurs. One common technique is the dynamic model that 

uses speed and flow density relationships to apply traffic flow models to capture the 

dynamic nature of traffic (Willsky, Chow, Gershwin, Greene, Houpt, &  Kurkjian, 1980). 

Anothe r technique is based on the catastrophe theory model, which is based on the 

assumption that when a state changes from congested to uncongested, the traffic speed 

changes sharply while flow and occupancy change smoothly (Forbes and Hall, 1990) .  

5. Image processing algorithms process surveillance video footage and use this processed 

data to provide traffic measures o r to detect traffic events. Li and Porikli (2004) propose 

a mechanism to detect highway traffic events by extracting features directly from the 

vid eos, based on the Gaussian Mixture Hidden Markov Model framework. Additionally, 

they classify the traffic events into six traffic patterns (heavy congestion, high density 
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with low speed, high density with high speed, low density with high speed, low densit y 

with low speed, and vacancy) by using the Viterbi algorithm to determine the most likely 

t raffic condition. Ikeda, Kaneko, Matsuo, and Tsuji  (1999) performed a feasibility study 

towards detecting abnormal traffic events by using image processing technolo gies. In 

this study, they automatically detect traffic events and classify them into the following 

four categories: stopped vehicle, slow veh icle, and fallen object. Aköz and Karsligil  (2014) 

propose a detection and classification mechanism by using traffi c event severities at 

intersections. By clustering vehicle trajectories the system learns common traffic flow 

patterns which are used to detect abnormalities. These events are then classified into 

low and high severity classes.  

 

The major drawback of roadway -based algorithms (with the exception of image processing 

algorithms) is that the data source they use is easily corrupted by noise, which therefore 

should be filtered out before use. With a noisy dataset traffic event patterns may not be 

detected easily, and fluctuations could be misinterpreted as events. As a result , only severe 

traffic events can be detected with these kinds of algorithms (Stephanedes &  Chassiakos, 

1993). 

2.1.2.2 Probe-based Algorithms  

Probe-based algorithms can be divided by their most c ommonl y used probe sensor technology.  

 

¶ AVL sensor -based algorithms: Sethi, Bhandari, Koppelman, and Schofer  (1995) propose 

a travel time algorithm that uses the event link and adjacent upstream link and average 

speed measures, based on GPS data. Sermons and Koppelman (1996) use GPS based 

algorithms that are based on the assumption that vehicles passing traffic events have 

higher travel times and a higher coefficient of speed variation.  Kamran and Haas  (2007) 

combine dynamic road segmentation log ic with individual vehicle behavior identification 

methods based on GPS data to detect traffic events.  

¶ AVI se nsor-based algorithms: Parkany and  Bernstein (1995) discuss three algorithms 

(headways, lane switches, lane -monitoring algorithm) to use vehicle -to-roadside 

communication sensors in the form of electronic toll transponders . Niver, Mouskos, Batz, 

and Dwyer  (2000) use the statistical travel time comparison between the TRANSMIT 

traffic surveillance and incident detection system (based on E -ZPass electronic toll 

collection tags) and probe reports.  

2.1.2.3 Freeway vs Arterial Algorithms  

Most of the described road -way and probe -based algorithms are only applicable on freeways 

and are not directly applicable towards arterials (high -capacity urban roads). This has a 

number of reasons. First, the variation of traffic on arterials is more complex and varied than 

on freeways. Second, arterials are susceptible to certain events that could signal false traffic 

events when applying freeway based algorithms, e.g., events c aused by bus stops, parking 

maneuvers, traffic leaving and entering from side streets, traffic signal control (Ivan, Schofer, 

Koppelman,  &  Massone, 1995). Due to these additional difficulties, research on arterials has 

only caught the interest of researche rs in the last number of years, while research towards 

freeways has been going on for the last few decades. An example of these arterial algorithms, 

which do not fall in the previously discussed freeway algorithms are the fuzzy logic -based 

algorithms. Thes e are based on human -interference -oriented AI techniques and used for 
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models that operate in real -time and deal with uncertainty and need approximate reasoning 

(Yaguang and  Anke, 2006) . Hawas (2007) uses such a fuzzy-based system for traffic event 

detection at intersections in urban street networks. He developed a simulation -based 

methodology and tested its logic under various real -world scenarios. Additionally, show that 

a combination of SVM and fuzzy logic -based on volume and occupancy data from f ixed 

detectors can be used to detect traffic eve nts on urban arterial streets.  

2.1.2.4 Traffic Event  Detection Key P oints  

The most important theoretical key point on the detection of traffic events is that traffic is a 

spatiotemporal problem. This means that in o rder to detect an event  by using just traffic data 

a couple of things are needed:  

1. There should be some sort of congestion.  

2. The outflow out of the congestion should be (much) lower than the (expected) capacity.  

3. The congestion is often homogeneous with very low speed and flow values . 

4. The congestion takes place at  locations  without a known bottleneck (known 

bottlenecks include ramps, bridges/tunnels, weaving sections etc.).  

 

Such cases of congestion can be translated to heat map charts depicting the speed/flo w values 

on a lane over time . Figure 2-1 and Figure 2-2, depict  a heat map of traffic  speed/flow over a 

500 meters road lane segment , where the time is placed on the x -axis, the distance (in km)  

on the y -axis, and speed (km/h)  /flow (vehicle/hour/ lane) on the z-axis. These figures provide 

an example of a case where the congestion is homogenous with very low speed and flow values 

represented by the red segment in the traffic speed and blue segment in the traffic flow heat 

map. Such congestion could thus indicate something is going on, however this traffic data 

provides no context on the type of event. Traffic data can help to predict the traffic 

consequences of an event, but only if there can be made a prediction on how long the event 

itself will las t.  

 

 

 

 

  

Figure 2-2: Heat map of traffic flow (vehicle/hour/lane)  Figure 2-1: Heat map of traffic speed (km/h)  
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2.1.3 Traffic Data Evaluation  

Research within the Transport & Planning field shows us that there are numerous 

algorithms to detect traffic events based on roadway -based and probe-based sensors. 

However, these algorithms do not always provide reliable and  constant results due to three 

factors. First, the quality of measurements from roadway -based sensors depends on the 

density of the sensor network. The same is true for probe-based sensors as they depend on 

the number of vehicles equipped with sensors. Second, data sources are easily cor rupted by 

noise which makes detection of less severe traffic events near to impossible. Third, the 

difference between a freeway and arterial (urban) traffic data. Algorithms that can be applied 

on freeways are often not suitable for arterial situations whi ch are much more complex. 

Beside these traffic event detection approaches, no methods for traffic event categorization 

and description could be found . This makes sense, as traffic data misses the se mantics to 

derive these methods.  In conclusion, this works  shows that traffic data sources on their own 

can only be used for traffic event detection on a specific s election of roads. This shows that 

there lays an  opportunity  for this  thesis  to enrich this traffic data by adding a traffic event 

categorization and description approach. Additionally, by enriching the traffic data source 

itself we can show that our contribution is suitable for all algorithms that are based on such 

traffic data sources.  
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2.2 Geosocial Data 

Contrary to the previously discussed Transport an d Planning field where the focus laid on 

traffic event detection, research within the Computer Science is more evenly focused on 

traffic event detection, categorization, and description. Each evaluated research paper 

contains at least one of these three ca tegories, which will get discussed in depth. For the 

traffic event detection part, an overview is given of the used geosocial data and the data 

collection, preprocessing and feature engineering and machine learning techniques that are 

used to create a bina ry traffic event classifier. For the traffic event classifier part, techniques 

are discussed that are being used to classify a geosocial post into a traffic event categories. 

For the traffic event description part, we look at how (categorized) geosocial data is used to 

infer a traffic event, which includes linking, aggregation and visualization strategies.  

 

2.2.1 Geosocial Data based Related Work  

Wanichayapong, Pruthipunyaskul, Pattara -Atikom, and Chaovalit  (2011) propose an 

extraction and classification techniq ue for traffic information. They collect Thai tweets by 

using a query of two traffic -related keywords on the Twitter REST API. The resulted tweet 

set is tokenized and the tokens get parsed into four dictionary categories: òPlaceó (names of 

roads, places, crossroads, and alleys), òVerbó (traffic conditions, e.g., traffic jam), òBanó 

(vulgarity, profanity, and question words), and òPrepositionó (road directions). A tweet is 

considered traffic -related if it contains at least a word in the òPlaceó and òVerbó categories 

and does not contain a òBanó category word. This dictionary and rule -based detection method 

are able to detect traffic event -related tweets with an accuracy of 91.75% , precision of 91.39%, 

and recall of 87.53% . Based on a dataset of 1249 tweets , consisting for 21% of traffic 

information center  based tweets and for 79% of individual users  based tweets.  

In addition to the proposed traffic event detector, a limited traffic event description 

method is proposed that links tweets classified as traffi c event-related  directly to a possible 

traffic event location. In this method, the start and end point of the possible traffic event get 

derived by finding òPrepositionó and òPlaceó combinations in the tweet. These points are use d 

to find a corresponding location, by using them to query the  place dictionary of the Ministry 

of transportation Thailand, or to query  Google geocoding (road segment -based). If a tweet did 

not contain a start or endpoint , the road keyword is used to determine a location  (road point -

based). This method is able to classify traffic event -related tweets with 76.85% accuracy , 

62.77% precision, and 95.36% recall  in the road segment  category, based on a dataset of 3311 

tweets. And 93.23% accuracy, 81.72% precision, 92.20% recall in the road point category , 

based on a dataset of 2942 tweets .  

 

Ribeiro Jr, Davis Jr, Oliveira, Meira Jr, Gonçalves, and Pappa  (2012) propose a real-time 

Twitter -based traffic event and condition identification method for the city Belo Horizonte. 

Portuguese twee ts are collected by following ten influential accounts that report on traffic 

situations. Traffic event detection  is performed based on a static dictionary list of frequently 

used traffic event terms in tweets. They do not apply any  way of automated traffi c event 

categorization. Instead,  they focus on location det ection and mapping based on tweets. For 

this purpose, a geographic dictionary is formed of thoroughfare names and segments, and 

street crossings with their related thoroughfares. Additionally, this  dictionary also provides 

for common traffic abbreviations. By using exact string matching on words in tweets 
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combined with thoroughfare types, a traffic event location is determined. This location is then 

refined by using fuzzy string matching to find nam es of related roads.  

 

In the work by Li, Lei, Kwadiwala, and Chang  (2012) a Twitter -based event (crime and 

disaster -related, including traffic accidents) detection and analysis system  are proposed. 

Data is collected by using a seed keyword set to query th e Twitter REST API. From the 

resulted tweet set, word bi-grams are extracted as possible candidates to add to the keyword 

set. They get added to the keyword set if the ratio between event -related and non -event 

related is positive. These new keywords get va lidated by comparing the ratio of newly 

retrieved event -related tweets to newly retrieved non -event related tweets. If this proves 

positive the keyword set gets added to the initial key word set. This process is repeated  until  

no new keywords can be found. Their method uses a combination of Twitter -specific features 

(links, hashtags, and mentions) and event -specific features (time, location, and numbers). 

Based on these features they train  a classification model which tested to have an accuracy of 

80%. However, no specifics on feature extraction or the type of classifier are given.  

Positively classified tweets are indexed by a text search engine and stored in a 

database, which is used to answer real -time queries and provide visualizations. A clustering 

model is used to group similar tweets into similar geographic regions and temporal ranges.  

However, no further details were provided on the workings of this clustering model.  Another 

event description part includes  the ranking of tweets according to their impor tance, which is 

done based on content features (e.g., important words or URLõs), user features (e.g., verified 

account, number of followers/tweets, or the age of the account), usage features. Usage 

features are measured by the number  of similar tweets, and  tweets with the same hashtags 

within a time and location range to the current tweet.   

 

Cui, Fu, Dong, and Zhang (2014) propose a method to extract traffic information from the 

Chinese social media platform equivalent of Twitter, called Sina Weibo. The pa per does not 

contain a specified data collection and pre -processing approach. It detects traffic event -

related posts into three categories (traffic flow, traffic accident, traffic control) by using a 

Bayesian classifier based on word n -gram features, howev er, no concrete results are provided. 

Moreover, temporal and locational features are extracted based on a custom natural language 

approach, which is not further elaborated. These two features are used to position the 

geosocial post on a geographic point or  line. Besides a linking procedure, another novel idea 

has been implemented towards traffic event description, namely a QA system. When a 

geosocial post is labeled as traffic event -related  but misses an incident category, temporal or 

locational aspect, the  system sends a question to the user who posted the message to inquire 

additional missing information.  

 

An automatic road hazard detection system based on twee ts is proposed by Kumar, Jiang, 

and Fang  (2014). Tweets are retrieved with the Twitter Streaming API based on a dictionary 

of terms related to hazardous events in the categories: animals, emergency, weather, special 

events, and traffic. Tweets without a geo point  (single latitude/longitude point)  were 

discarded, stop words were removed and stemming was applied. The result set was manually 

labeled as hazardous or not hazardous. In this study, it is claimed that there is a relationship 

between negative sentiment and the mention of road hazards in a tweet. Therefore sentiment 

classification is applied to the labeled tweets based on word n -grams, with the help of three 

machine learning methods: kNN, NB, and Dynamic Language Model (DLM). NB proved to 

have the best precision of 77.5%, with a recall of 51.5% and accuracy of 81.2%, based on a 

dataset of 30,876 tweets .  
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An approach of detecting small -scale incidents  (not limited to the traffic domain)  based on 

spatial -temporal -type clustering is proposed b y Schulz, Schmidt, and Strufe (2015) . In their 

research, they try to solve the problem of clustering incident -related tweets based on incident -

type, location and time. Data is collected through the Twitter Search API based on a geo -

radius and is then prepr ocessed so it can be used for feature generation. Their preprocessing 

steps consist of: replacing abbreviations with words from slang dictionary, identification and 

replacement of locational and temporal expressions with a token, interlinking entities with  

types and categories in linked open data, and lastly tokenization. Next, non -alphanumeric 

characters are removed from the tokens and lemmatization is applied on the tokens. They 

select the following features to use for their classifiers: word -n-grams, char -n-grams, TF -IDF 

scores, syntactic features, number of location al and temporal mentions , and linked open data. 

The features get combined and evaluated by using the binary classifiers multinomial Naïve 

Bayes (NB) and Support Vector Machine (SVM) , based on a sub-dataset of 2000 tweets 

collected over a period of 2.5 months . SVM with word -3-grams and binary weighting provided 

the best results  with an accuracy of 90 .1% and micro -avg. F1 of 90.05%.  

The classified incident -related tweets are linked to a location , by using a custom 

location mapping technique. First, word -3-grams are created of location -tagged words 

(Stanford NER). Second, each n -gram gets mapped by using geocoding APIs (e.g., MapQuest 

Nominatim API). Third, based on the resulted sets of coordinate  pairs for each n -gram a 

polygon is created. Last, the polygons get stacked and the highest area is used as an 

estimation of the incident location. In addition to location -based linking, tweets get linked to 

a time period by extracting temporal expressions  (based on the HeidelTime framework, which 

uses regular expressions) and combining them with the creation date to calculate the most 

probable incident occurrence date. Based on the incident type, location and time period a 

rule -based clustering method is a pplied. Incident reports get clustered with each other when 

there is a corresponding incident type and the spatial and temporal extent falls within the 

extent of the defined in the rule. Their evaluation of the approach showed that 50% of real -

world incide nts published in an emergency management system could be detected. 

Furthermore, 32.14% of the incidents could be detected within a 500 -meter radius and 10 -

minute interval around the actual event.  

 

D'Andrea et al.  (2015) propose a real-time traffic event de tection system. Data is collected 

through the Twitter Search API based on a geo -radius and keyword list. Their preprocessing 

steps consist of: discarding hashtags, links, mentions, special characters, non -Italian tweets. 

Additionally, tweets get tokenized and stop-word filtering and stemming are applied. Next, 

to form a feature set, the weight of all stems is computed by using the IDF index. Then a 

method based on the computation of the Information Gain (IG) value between the feature set 

(stem set) and outp ut set (traffic class labels) is applied, in which the set of relevant stems 

have a positive IG value. Based on the feature set of relevant stems, a multi -class 

classification is applied in which three traffic classes get distinct: non -traffic related, tra ffic 

congestion/crash and traffic due to an external (scheduled) event (e.g., sports match or 

concert). Several classification algorithms have been taken into account: SVM, Multinomial 

NB  (MNB) , C4.5 decision tree, k -nearest neighbor ( kNN), and PART. When applying the 

classifiers on a 2 -class (non-traffic, traffic based) dataset, SVM  turned out to be best with an 

accuracy of 95.75%, precision of 95.3%, recall of 96.5%, and F1 -score of 95.8%. The evaluation 

was performed on a dataset of 1330 tweets, collecte d over a time span of four evening hours 

of two weekend days . SVM also proved to be the best classifier with an 88.89% accuracy when 
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applying the classifiers on a 3 -class (non-traffic, traffic congestion/crash, traffic due to an 

external event) dataset  of 999 tweets .  

 

Nguyen, Liu, Rivera, and Chen (2016)  developed a system that detects traffic incidents in 

real time by monitoring Twitter. Data collection is achieved by using a keyword -based query 

on the Twitter REST API. The result set of tweets is afterwa rd filtered on a combination of 

geo-location, time zone, location and country from the userõs profile in order to only obtain 

Australian tweets. Next, the following pre -processing techniques are applied: stop word 

filtering, special character filtering, an d tokenization. In order to train the traffic incident 

classifier the following list of features are extracted: bag of words (each word gets a weight 

based on the accumulated TF -IDF score overall positive tweets); lemmatization and part -of-

speech (POS) by applying the Stanford Twitter tagger; date, time  and numbers  by applying 

a custom pattern recognizer; bag of tags (custom NER, trained based on CRFs). Based on 

these features experiments with the following classifiers were executed: kNN, BN, SVN, C4.5 

decision tree. The BN method based on a combination of a ll features delivered the best 

performance: precision of 94.2%, recall of 96.6%, and a n F1-score of 95.4%, based on a dataset 

of 5000 tweets .  

 Even though the tweet sets have been annotated with a va riety of  location types (state, 

suburb, street, POI, place), entity types (people, vehicle, stationary object),  incident types 

(queue, accident, breakdown, hazard, special event, police, roadwork) and properties (lane, 

direction, status), in order to train  a custom NER, this information was not used to create a 

traffic event categorizer. However, tokens identified as one of the location types have been 

used to couple tweets to a location (no further details were given). Besides the 2.87% of tweets 

located based the device location , this custom geo -locator approach mapped an additional 

19% of tweets. The final application consists of geo -located traffic event -related tweets 

mapped on a map in a real -time fashion.  

 

In recent work by Gu et al.  (2016) a methodology is proposed to crawl, process and filter 

tweets to extract incident information on highways and arterials. An adaptive data 

acquisition is used to collect tweets based on an iteratively composed keyword list used to 

query the Twitter REST API. First, an initial keyword list of traffic -related words that are to 

be included and words that are to be excluded from the query. In each iteration this keyword 

list gets expanded with a pair of synonyms per keyword derived from the WordNet database. 

Second, the resulted tweet set gets labeled traffic related or not. Third, for all tweets, the 

combinations of tokens and their labels ( traffic event -related  or not) get counted and 

aggregated. A set of tokens and their combinations with the highest positive and a set  with 

the highest negative correlation, get added to the initial keyword set. This process is iterated 

until it is no longer cost -effective (adding new keywords does not yield enough new traffic -

related tweets). This resulted in a final keyword set with 13 1 positive and 383 negative 

keywords. Additionally, tweets from 46 influential users got queried. The final keyword set 

of positively correlated keywords and combinations of keywords is used to form the feature 

space for a Semi-Naïve-Bayes classifier for d etecting traffic incident related tweets. Tests 

with this classifier  resulted in an accuracy of 98.94 %, precision of 99.02%, and recall  of 

79.84%, based on a dataset of 5000 tweets .  

 In order to categorize traffic incident related tweets five categories a re defined: 

accidents, road work, hazards & weather, events, and obstacle vehicles. Supervised Latent 

Dirichlet Allocation (sLDA) is used to assign a category label to the traffic incident related 

tweets. Its output is a vector containing a probability of a tweet falling in one of the five 
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categories. 51% of the tweets proved to be categorized into the correct category by applying 

this method.  

 In this research, a geo -parser linking approach, based on a large set of regular 

expressions, is used as a way to  describe traffic incidents. It contains rules for identifying 

roads and segments (based on markers and relational words). The resulted output is used as 

a query for a Gazetteer in order to identify the geo -location. The linking of the tweets has 

been vali dated by comparing it with the traffic incident data from the Road Condition Report 

System from the Department of Transportation Pennsylvania (RCRS). When comparing the 

traffic incidents based on tweets, allowing a 30 -minute reporting time and a 1 -mile dis tance 

discrepancy with the traffic incident data from RCRS, 71% of the incidents matched.  

 

2.2.2 Geosocial Data based Related Work Evaluation  

The research  discussed in this section shows how geosocial data, which is almost always 

Twitter -based, can be utilized for traffic event detection, catego rization, and description . 

However, traffic event categorization seems to be a less researched topic . Research involving  

traffic event detection shows that this can be divided into a data collection, pre -processing, 

and feature engineering stage. These stages are steppingstones to arrive at the classification 

stage, where machine learning and rule -based approaches are applied in order to create a 

traffic event detector.  Table 2-1, provides an overview of the research that includes a 

geosocial data based traffic event detection approach. Traffic event categorization was 

neglected in most research, d ue to unknown reasons. Only one paper discusses a 

categorization approach based on sLDA, as is made visible  in Table 2-2. Traffic event 

description ap proaches can be divided into linking, aggregation and visualization 

approaches. Just like with the traffic event detector approaches, linking and aggregation are 

often used as steppingstones towards a map visualization. Most of the research focus es on 

geocoding approaches based on a dictionary/gazetteer method, or rule -based methods. 

Temporal linking  is mostly done based on the creation date of a geosocial post. Aggregation 

methods are not applied most of the times, resulting into a visualization approach t hat 

directly maps  tweets based on the combination of geo-coordinates and creation time. 

Aggregation approaches that do have been used, cluster geosocial posts based on rules 

regarding incident types, geo -regions, and temporal ranges. An overview of all res earch that 

includes traffic event descrip tion approaches can be found in Table 2-3.  

The overall weaknesses of only focusing on one source of geosocial data to detect, categorize, 

and describe traffic events are:  

 

1. Reliability of the category assigned to a detected traffic event: Did the user use 

distinctive enough words to derive the correct event category?  

2. Reliability of the spatial aspects o f the detected traffic event: Was the user really on 

the location of the event at the time of posting the tweet, or did he post about an event 

he read or heard about? And did the user use accurate enough locational words to be 

able to derive the correct ev ent location?  

3. Reliability of the temporal aspects of the detected traffic event: Was the tweet 

composed directly after the traffic event, or does it refer to a historical or future event?  

 

These disadvantages would mostly be non -existent if the number of social posts that refer to 

a single event would always be of a high quantity. That way, tweets could be aggregated 

together to improve the reliability of the detected event. However , the reviewed research 



18 

 

shows that the ratio of the number of traffic event-related tweets per location and time range 

proves to be very low.  

An overview  of the weaknesses in/ what is missing from , current research based on geosocial 

data  only, and how our work extents upon current work based on the opportunities these 

missing parts offer , is provided below . 

 

1. Weakness: Research focusses on sub-parts of the traffic event domain, or mixes it with 

different incident domains. Including differe nt incident  domains could improve the 

overall results, while the sub-results related to traffic events are not as good.  

Opportunity:  Focus on a large range of possible non -recurrent traffic events.  

2. Weakness: Data collection approaches often seem biased due to a limited keyword 

selection approach. For example, by choosing traffic related keywords that are not 

ambiguous  better results could be achieved , yet this  limits the diversity and am ount of 

collected traf fic event -related  geosocial posts. 

Opportunity:  Create a keyword based data collection approach that captures as many 

traffic event-related tweets as possible.  

3. Weakness: Data collection is performed over a too limited time range. This could cause 

bias towa rds traffic events that are time period bounded, e.g., rush hour traffic jams.  

Opportunity:  Perform data collection over a time range that is likely to include all types 

of traffic events.  

4. Weakness: Datasets are small in size, and likely to miss traffic ev ent categories.  

Opportunity:  Collect larger datasets containing traffic events of every category.  

5. Weakness: Datasets include a mixture of traffic event -related  geosocial posts from òreal 

road-usersó, news agencies, bots, and emergency agencies. This affects the results, as 

traffic event -related  geosocial posts from news agencies, bots and emergency agencies 

contain a different syntax than geosocial posts from òreal road-usersó. This could have a 

biased positive result on the detection, categorization, and d escription methods.  

Opportunity:  Focus only on traffic event -related  tweets from òreal road-usersó. 

6. Weakness: Categorization approaches are almost non -existent or limited in scope.  

Opportunity:  Categorization of a large range of non -recurrent traffic event  categories. 

7. Weakness: Geocoding approaches only take geopoint based linking into account. 

Geosocial posts, often contain multiple locational terms. By linking a geosocial posts to a 

single  geopoint one creates conflicts based on location resolution.  

Opportunity:  Create a location linking appro ach that takes into account geo point, -line, 

and ðshape based linking. As well as takes into account the interrelationships between 

location terms in geosocial posts. 

8. Weakness: Visualization of traffic events (in  an application) is static and only focuses on 

displaying the events on a map and showing the ir  related descriptions.  

Opportunity:  Create an interactive map -based application that allows for the 

visualization of traffic events, but also contains interactiv e elements for data analysis.  
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Geosocial Data - Traffic Event Detection  

Research Data Collection  Pre-processing Feature 

Engineering  

Classifier  Evaluation  

Wanichayapong 

et al. (2011)  

Twitter Search API: 

keyword list  

-Thai language 

filtering  

-Dictionary -based 

Tokenization  

N/A  Rule-based 

Dictionary 

approach 

Dataset size: 1249 

tweets  

Accuracy: 91.75% 

Precision: 91.39% 

Recall: 87.53% 

Ribeiro Jr et al. 

(2012) 

Twitter: influential 

accounts 

-Portuguese 

language filtering  

N/A  N/A  N/A  

Li et al. ( 2012) 

 

Twitter REST API: 

adaptive keyword 

approach 

N/A  -Twitter -specific 

(links, hashtags, 

mentions)  

- Traffic event -

specific (time, 

location, 

numbers)  

Unspecified 

classifier  

N/A  

Cui et al.  

(2014) 

 

Sina Weibo  N/A  -Word n -grams Bayesian  N/A  

Kumar et al . 

(2014) 

Twitter Streaming API: 

keyword list  

-Discarding non -geo 

tweets  

-Stop word removal  

-Stemming  

 

-Word n -grams 

-Sentiment  

-kNN  
-NB  

-DLM  

Dataset size: 30,876 

tweets  

Accuracy: 81.2% 

Precision: 77.5% 

Recall: 51.5% 

Schulz et al. 

(2015) 

Twitter Search API: geo-

radius  

-Abbreviation 

replacement  

-Locational and 

temporal 

generalization  

-Linked open data  

-Tokenization  

 

-Word n -grams 

-Char n -grams 

-TF-IDF scores 

-Syntactic 

features  

-Number of 

locational and 

temporal 

mentions  

-Linked open 

data  

-Multinomial -NB  

-SVM 

Dataset size: 2000 

tweets  

Accuracy: 90.1% 

Micro -avg. F1: 90.05% 

D'Andrea et al. 

(2015) 

Twitter Search API: geo -

radius and keyword list  

-Italian language 

filtering  

-Discarding 

hashtags, link, 

mentions, special 

characters  

-Tokenization  

-Stop word removal  

-Stemming  

-Set of relevant 

stems based on 

Information 

Gain between 

stem set and 

traffic class 

labels set  

-SVM 

-NB  

-C4.5 decision 

tree 

-kNN  

-PART 

Dataset size: 1330 

tweets  

Accuracy: 95.75% 

Precision: 95.3% 

Recall: 96.5% 

F1-score: 95.8% 

Nguyen et al.  

(2016) 

Twitter REST API: 

keyword list  

-Discarding special 

characters  

-Stop word removal  

-Tokenization  

-Bag of words  

-Lemmatization  

-POS 

-Temporal, 

numerical 

features  

-Bag of tags 

(Custom NER)  

-kNN  

-Bayesian 

Network  

-SVN 

-C4.5 decision 

tree 

Dataset size: 5000 

tweets  

Precision: 94.2% 

Recall: 96.6% 

F1-score: 95.4% 

Gu et al. ( 2016) Twitter REST API: 

adaptive keyword 

approach in combination 

with influential accounts  

Tokenization  Word n -grams of 

positively 

correlated 

(towards traffic 

incidents) 

keyword tokens  

Semi-NB  

 

Dataset size: 5000 

tweets  

Accuracy: 98.94% 

Precision: 99.02% 

Recall: 79.84% 

Table 2-1: Traffic event detection  based on geosocial data sources. The best performing classifiers have been made bold and  relate to the 

evaluation metrics.  
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Geosocial Data - Traffic Event Categorization  
Gu et al, (2016)  -Categorization into 5 categories: accidents, road work, hazards & weather, events, and obstacle vehicles  

-sLDA is used to assign a category label, its output being a probability vector  

Table 2-2: Traffic event categorization based on geosocial data sources.  

Geosocial Data - Traffic Event Description  
Research Linking  Aggregation  Visualization/App  Evaluation  

Wanichayapong 

et al. (2011)  

- Combination of 

Dictionary (Gazetteer) 

and Rule -based approach 

N/A  N/A  Linking to road segment:  

   -Dataset size: 3311 tweets  

   -Accuracy: 76.85% 

   -Precision: 62.77% 

   -Recall: 95.36% 

Linking to road point:  

   -Dataset size: 2942 tweets  

   -Accuracy: 93.23% 

   -Precision: 81.72% 

   -Recall: 92.20% 

Ribeiro Jr et al. 

(2012) 

- Combination of 

Dictionary ( Gazetteer) 

and Rule -based approach 

N/A  Direct mapping of tweets 

based on geo-coordinates and 

creation time  

N/A  

Li et al. (2012)  

 

Unspecified linking 

method 

-Clustering on geo -

regions and temporal 

range 

-Importance ranking 

based on content, user, 

and usage features  

Direct mapping of tweets 

based on geo-coordinates and 

creation time  

N/A  

Cui et al. (2014)  

 

- Unspecified temporal 

and locational NLP 

extraction approach  

- Unspecified geo-

positioning approach  

- QA approach to 

complement missing 

labels  

N/A  Direct mapping of tweets 

based on geo-coordinates, 

creation time or time specified 

through QA  

N/A  

Schulz et al. 

(2015) 

- Geocoding approach 

based on word n-grams 

retrieved with an NER, 

geocoding APIs and 

polygon stacking  

- Temporal linking 

derived from a 

combination of regular 

expressions (HeidelTime 

framework) and creation 

date of the tweet  

Rule-based clusterin g of 

event-related tweets 

based on incident type, 

location and time 

period.  

N/A  Locational (500m)/Temporal 

(10min) linking:  

   -Dataset size: 1271 tweets  

   -Accuracy: 32.14% 

Nguyen et al. 

(2016) 

- A geocoding approach 

based on word types 

retrieved with a  custom 

NER.  

N/A  Direct mapping of tweets 

based on geo-coordinates and 

creation time  

Geocoding: 

   -Dataset size: 1056 tweets  

   -Accuracy: 21% 

Gu et al. (2016)  - Combination of 

Dictionary Gazetteer) and 

Rule-based approach 

 

N/A  Direct mapping of tweets 

based on geo-coordinates and 

creation time  

Geocoding: 

   -Dataset size: 3776 tweets  

   -Portion of geocodable tweets 

by influential users: 64.0%  

   -Portion of geocodable tweets 

by individual users: 4.9%  

Table 2-3: Traffic event description based on geosocial data sources.  
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2.3 Combination of Traffic and Geosocial Data 

On the one hand, there exists a fair amount of research on traffic event detection based on 

traffic data in the Transport & Planning domain. On the other hand, there is a considerable 

quantity of research on traffic event detection, categorization, and des cription based on 

geosocial data in the Computer Science do main. However, research focusing on  the 

combination of these two domains regarding the topics on traffic event detection, 

categorization, and detection, seems to be still in its infancy. In this section, the research 

conducted in this domain is discussed.  

 

2.3.1 Combination of Traffic and Geosoc ial Data based Related Work  

Daly et al.  (2013) developed the Dub -STAR system that uses a mechanism that fuses  

traditional city t raffic data sources with tweets  in order to describe the underlying causes of 

traffic conditions. The system is able to infer li nks between traffic events and traffic 

congestion based on a traffic diagnosis method trained on historical traffic data within 

Dublin. In other words, it is able to explain anomalies such as congestion in real -time based 

on historic conditions. This is ac hieved by using Dublin Bus GPS speed data  to define road 

segments as congested based on pre-defined rules. Other traffic data including  Eventful (a 

web-based event sharing service) matched with DBPedia, Dublin  Road Works, and 

LinkedGeoData is used to descr ibe possible causes of the congestion. This is done on the basis 

of the semantic similarity, time window, and road network of the event. In order to describe  

additional aspects of  these derived traffic  events, a dataset of tweets is  collected from three 

in fluential users who tweet about traffic in the Dublin area. In this research, it is presumed 

that these tweets are traffic event -related , so no traffic event detection classification is 

applied. In order to link the tweets to a geo -location, punctuation is  removed and traffic 

abbreviations are expanded (e.g., rd to road). Each word is used to perform a dictionary 

lookup (Lucene index b ased on OpenStreetMaps), if no result is found a spelling checker is 

applied to check for any misspelling. All found words a re extracted from the tweet and used 

to create word n -grams. These n-grams are again used to perform a dictionary loo kup and 

removed if no results are found. The resulting n -grams are used to search for a location. An 

evaluation of their geocoding approach , based on a dataset of 719 tweets,  showed that 50% of 

the tweets were matched accurately with an error range of 500 meters (100% when applying 

an error range of 2 km). Additionally, tweets get semantically annotated based on a simple 

dictionary approach b ased on the categories: delay, incident, event, closure, roadworks, 

obstruction, and weather. The tweets are matched to the traffic events derived from the 

traffic data, based on a similarity estimation. This estimation is computed by using the 

semantic description of the event and spatial and temporal connectivity of events. This all 

comes together in an application called Dub -STAR in which real -time traffic events are 

visualized on a map. The system supports free text queries, coordinate -based queries, and 

filtering on specific types of events. The system itself is evaluated based on the same dataset 

of 719 tweets, having a recall of 78% and a precision of 20%.  

 

Dokter  (2015), conducted his thesis research, as part of the WIS group at the TU Delft, on 

the characterization of traffic events using social media. In his thesis, geosocial data from 

Twitter and traffic data from the National Data Warehouse for Traffic Information (NDW) is 

used. Twitter data is collected by using a keyword list of traffic terms a nd a bounding box 

covering the Netherlands, in combination with the Twitter streaming API. A linkage method 
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is developed to link tweets to traffic events from the traffic data set of the NDW. Within this 

method, geocoding is performed based on the similarities of textual location descriptors 

within NDW data and tweets. Temporal linking is performed based on the creation date of 

tweets and the creation date of events in the NDW data. Linked events are classified by 

matching  the linked tweet tokens with a traffic dictionary. This way the most occurring cause 

type is used as the type of the traffic event. An evaluation of the linking method on a small 

subset of tweets gave a precision of 96% and a recall of 80%. An evaluation of the classifier 

showed that the system is able to identify the traffic cause type for 63% of the events, from 

which 33% was classified correctly. The proposed system proved to have difficulties with  the 

classification of cause types due to: incorrect lin king of tweets to NDW data, tweets of non -

real -time nature, and the limited amount of traffic event -related  tweets.  

Giridhar et al. (2017) propose a traffic anomaly explanation service using Twitter data, 

named ClariSense+. This service is an extension on  their previous system ClariSense 

(Giridhar, Amin,  Abdelzaher, Kaplan, George, &  Ganti,  2014) and enhances their base 

algorithm by considering the credibility of the tweets and the spatial locality of detected 

traffic anomalies. On the one hand, the system  relies on traffic sensor data. It detects 

anomalies in sensor reports and clusters these sensors based on distance and time overlap. 

An anomaly gets defined as an unusual flow interruption on major freeways. A sensor 

anomaly detection algorithm called the  Performance Management Systems (PEMS) analysis 

tool is used to report the start, end, duration and sensor IDs for each detected anomaly. 

Additionally, each anomaly is classified in the categories: Accidents, Hazards, Breakdowns, 

Weather, and Other events.  It must be noted that this anomaly detection algorithm is not 

further explained and no information is given on how traffic events are categorized based on 

unusual traffic flow interruptions. Clustering of nearby sensor anomaly reports is used to 

remove redundant observations. Sensors are part of the same cluster when they are less than 

2 miles apart from each other. On the other hand, the system relies on the data from the 

Twitter Search API, collected by using a bounding box for the chosen city and the ke yword 

òtrafficó. The proposed method does not rely on semantic analysis of tweets but instead 

focusses on the question if there can  automatically be found a set of keyw ords that has  a one-

to-one correspondence with a unique event. First, all words longer t han four characters long 

get removed from the tweet set. Second, a POS tagger is applied to identify nouns, which 

serve as keywords. Last, bi -grams of keywords are formed and ranked by information gain. 

By comparing this information gain with a certain thr eshold it can be determined that these 

keyword pairs occur disproportionally more frequently compared to the historical normal. 

When this is the case the tweets get labeled as traffic event -related . After having created a 

traffic and geosocial data set, th e geosocial data can get matched to the traffic data. Tweets 

get matched to a sensor anomaly based on location keywords that occur in the tweet and geo -

keywords (e.g., highway number, exit names, landmarks) associated with each physical 

sensor. Tweets that  match the location of (containing one or more corresponding keywords), 

and occur within 24 hours from the traffic event are sorted by information gain. The top 

tweets are then used as an explanation of the traffic events. Their service is evaluated based 

on a dataset of tweets over a 3 -week period for the cities Los Angeles (avg. of 850 tweets per 

day), San Francisco (avg. of 300 tweets per day) and San Diego (avg. of 800 tweets per day). 

The evaluation of their service showed  an average recall  over the th ree cities  (number of 

correctly explained events among all returned tweets) of 85.7% for Hazard, 83.5% for 

Accident related traffic events. The precision is measured by determining how good the 
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algorithm is at picking the right traffic event category for t he traffic data anomalies at hand. 

Their approach resulted in a precision over all three cities of 88.63%.  

 

2.3.2 Combination of Traffic and Geosocial Data based Related Work Evaluation  

Research based on the combination of traffic and geosocial data proved to be limited and 

distinguishes itself mostly in its traffic event description approach  as summarized in Table 

2-6. Herein, possible traffic events derived from traffic data anomalies can be used to link 

geosocial data with , towards improving the description of traffic events. By enforcing 

geosocial data to be linked to traffic data in order to describe a traffic event, the overall 

weakness (reliability of the category, spatial, temporal aspects of the detected traffic event) 

of using only a geosocial data source is partly solved. Besides containing the sa me weaknesses 

and opportunities  as described in  Section 2.2.2, these works bring another  weakness and 

opportunity to the light.  

 

1. Weakness: In these works, a combination of traffic data anomalies and geosocial data is 

always needed to infer a possible traffic event. However traffic events can happen 

without any traffic data anomalies appearing, e.g., road debris does not necessarily lead 

to tr affic data anomalies, but is considered a traffic event. In this case , any geosocial data 

referring to this road debris would be discarded.  

Opportunity:  Use multiple geosocial data sources and if possible link these  to roads 

containing traffic data. On the  one hand, by aggregating geosocial data sources, the 

weakness related to the reliability of one geosocial data source is reduced. On the other 

hand, geosocial data is always linked to roads containing traffic data, so when anomalies 

appear no geosocial data is lost and it can be used to describe the anomalies.  

 

Traffic and geosocial data based research containing traffic event detection methods are 

further summarized in Table 2-4. The only research containing a traffic event categorization 

approach can be found in Table 2-5. 
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Traffic Data & Geosocial Data - Traffic Event Detection  

Research Data Collection  Pre-processing Feature 

Engineering  

Classifier  

Daly et al. (2013)  Geosocial data: 

Twitter: influential accounts  

Traffic Data:  

-Dublin Bus GPS speed data  

-Eventful (matched with 

DBPedia)  

-Dublin Road Works  

-LinkedGeoData  

Geosocial data: 

-Abbreviation 

replacement  

-Discarding 

punctuation  

N/A  Traffic Data:  

Rule based congestion classifier  

Dokter (2015)  Geosocial data: 

Twitter streaming API: 

keywordset and boundingbox  

Traffic Data:  

-NDW dataset  

 

Geosocial data: 

  -Bot filter  

  -Ban word filter  

  -Discarding special 

characters and 

punctuation  

  -Tokenization  

  -Remove tokens 

with < 4 characters  

N/A  Geosocial data: 

Linked  tweets to NDW data get 

a matching percentage based 

on term similarity  

Giridhar et al. 

(2017) 

Geosocial data: 

Twitter Search API: geo -radius 

and keyword  

Traffic Data:  

Roadway-based sensors flow 

data  

Geosocial data: 

-Discarding words 

containing less than 

5 characters  

-Discarding non 

nouns based on POS 

tagger  

Geosocial data: 

-Set of word bi -

grams based on 

Information 

Gain  

Geosocial data: 

Classifier based on comparison 

of Information Gain with 

threshold  

Traffic Data:  

Performance Management 

System classifies flow 

anomalies into: accidents, 

hazards, breakdowns, weather, 

and ôotherõ events 

Table 2-4: Traffic event detection based on traffic data & geosocial data  

Traffic Data & Geosocial Data - Traffic Event Categorization  
Daly et al. 

(2013) 

-Categorization into 7 categories: delays, incidents, social events, closure, roadworks, obstruction, weather.  

-Dictionary approach  

Dokter (2015)  -Categorization into 11 categories: rush -hour, accident, event, non-technical, technical, construction, weather, 

breakdown, other, unknown.  

-Dictionary approach  

Table 2-5: Traffic event categorization based on traffic data & geosocial data  
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Traffic Data & Geosocial Data  - Traffic Event Description  
Research Linking  Aggregation  Visualization/App  Evaluation  

Daly  et al. 

(2013) 

- Dictionary approach 

applied first on all 

words in a tweet 

(spelling correction is 

applied when necessary) 

and followed by n -grams 

if a word matched a 

term from the dictionary  

- Gazetteer  

Confidence ranking, 

based on spatial -

temporal relationship 

between congestion 

and potential causes  

 

Direct mapping of tweets based 

on geo-coordinates and creation 

time  

Mapping of traffic data based on 

semantic  similarity to historical 

events, time window, and road 

network.  

Geocoding: 

  -Dataset size: 719 tweets  

  -Accuracy: 50% (<500m) 

  -Accuracy: 

100%(<2000m) 

 

System: 

  -Dataset size: 719 tweets  

  -Precision: 20% 

  -Recall: 78% 

Dokter ( 2015) - Geocoding approach 

based on the similarities 

of textual location 

descriptors within NDW 

data and tweets.  

 

-Temporal linking 

approach based on the 

creation date of tweets 

and the creation date of 

events in the NDW data.  

Tweets get aggregated 

to NDW events based 

on locational and 

temporal similarities.  

Direct mapping of clusters based 

on geo-coordinates and creation 

time of NDW events. Tweets and 

NDW events also get mapped by 

themselves if geo -coordinates 

are available. Additionally, an 

experiments part is provided 

where users can interact with 

the system to test different 

linkage strategies.  

Event linking:  

  -Dataset size: 100 events  

  -Precision: 96%  

  -Recall: 80%.  

Classifier:  

  -Recall: 63% 

  -Precision: 33% 

Giridhar et al. 

(2017) 

-Dictionary approach, 

matching location 

keywords in tweets to 

location keywords 

associated with physical 

roadway ðbased sensors 

-Temporal linking based 

on creation time of 

tweets   

N/A  Mapping of tweets based on geo -

coordinates and creation time to 

a physical sensor cluster tha t 

indicates a possible traffic event  

Event category:  

  -Dataset size: approx. 

40.950 tweets  

  -Recall: 85.7% Hazard 

event, 83.5% Accident 

event 

  -Precision: 88.63% 

Table 2-6: Traffic event description based on traffic data & geosocial data 



26 

 

2.4 Additional  Related Work  

As the research on traffic event detection, categorization, and detection, by utilizing a 

combination of traffic and geosocial data seems to be still in its infancy, this section provides 

a short overview on closely relevant topics that do use this combination. These topics include 

traffic prediction, traffic and geosocial data correlation, and traffic congestion monitoring.  

 

He, Shen, Divakaruni, Wynter, and Lawrence  (2013) examine the possibilities of using  

Twitter data to improve long -term traffic prediction. The Twitter Streaming API is used to 

collect tweets based on a geo-bounding box, and stop word removal and stemming is appli ed. 

For this same location, a traffic dataset is generated by collecting measurements of loop 

detectors. By applying a correlation  technique  they establish  that there is indeed a significant 

correlation between the intensity of traffic and social activity (tweet counts). Next, a general 

optimization framework to extract traffic indicators based on traffic intensity and tweet 

semantics is proposed. Th e evaluation of the model shows  that the additional information in 

tweets indeed helps to improve the perform ance of traffic prediction, in terms of mean 

absolute percentage error and root mean square error.  

 

Tostes, Silva, Duarte -Figueiredo, and Loureiro  (2014) study the correlation between 

Foursquare and Instagram posts and congested traffic flows from Bing Ma ps. Their  goal is 

to verify if these geosocial posts can be used as an indicator of traffic condition changes within 

Manhattan, New York City. Their method to evaluate the corr elation consists  of five steps. 

First, the geosocial posts are aggregated into 3 -hour periods due to the long time intervals 

between posts. Additionally, the traffic flow for streets gets categorized into three groups 

representing fast, moderate and slow traffic. Second, the mean and standard deviation of the 

number of geosocial posts per street segment is calculated. Third, based on the relation 

between the number of posts and the mean and standard deviation, the geosocial post gets 

assigned to one of the three traffic flow categories. Fourth, five groups are created to analyze 

the correlation between the geosocial posts categories and traffic flow categories (e.g., 

geosocial posts category is less than the traffic flow category, in other words when the number 

of geosocial posts is low, the traffic flow is more congested). Last, for bo th categories, a 

distribution of the frequency of geosocial posts during 24 hours, and the frequency of 

congested average traffic flow is created. Based on a temporal and spatial analysis the 

authors were able to show that the distribution of geosocial posts is equal to that of congested 

traffic flows (with a discrepancy error). However, due to the time difference between an 

occurred congestion and a geosocial post, the signal time of traffic flow congestions has a 36 

minutes delay.  

 

Silva, de Melo, Viana,  Almeida, Salles, Loureiro  (2013) research how the geosocial data from 

Waze can be used to derive a participatory sensor network (PSN), to gain a better 

understanding of traffic problems, city dynamics and urban behavioral patterns of users. 

Waze data is collected through tweets containing Waze alerts, which means that only a 

fraction of all Waze data is used. They found that spatial coverage of Waze alerts is greatly 

influenced and correlated by the number of circulating vehicles per region. Additionally, 

Waze alert sharing happens at specific intervals, where alerts cluster towards specific events. 

When looking at the user activity, a great variability of user participation was measured. The 

routines of the users proved to correlate with rush hour peaks an d proved much lower during 

late night hours and dawn.  
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P. Chen, F. Chen, and Qian  (2014) propose an approach towards traffic congestion 

monitoring, by combining a language model and Hinge -loss Markov Random Fields based on 

Twitter data on traffic events. In this approach, two datasets containing Twitter data and 

traffic speed data are used. Tweets are collected by using the Twitter REST API and a 

selection of traffic -related keywords. These tweets are categorized based on if they report on 

traffic accident s or not by using an SVM classifier. Traffic data is taken from the INRIX 

database, which provides traffic speed and reference speed information for road links at a 5 -

minute rate. Next, a custom traffic language model is applied to model tweet descriptions  

that describe free and congested traffic conditions. Furthermore, a probabilistic soft logic 

(PSL) model (based on 11 PSL rules) is used to detect traffic congestions and includes tweet 

geocoding. These two models are integrated into a newly proposed Lang uage enhanced 

Hinge -Loss Markov Random Fields model. In an evaluation of the model, an average recall 

value of 70.4% and a precision of 48.7% was measured.  

 

Another traffic congestion estimation model is proposed by Wang,  He, Stenneth, Yu, and Li  

(2015). In this study, a coupled matrix and tensor factorization algorithm is proposed to 

combine data from Twitter, road features, and social events, in order to create a traffic 

congestion estimation model. Twitter data is collected from 11 influential accounts that focus 

on traffic, as well as from users that have Chicago registered as their hometown in their 

Twitter profiles. These tweets are divided into traffic event categories based on a dictionary 

based word matching approach. Additionally, social events ar e extracted from Twitter 

accounts focusing on social events. These tweets are all geocoded to road segments by 

matching them to terms from a gazetteer. The traffic data set consists of road features 

including the segment length, number of lanes, one -way ro ad, road heading, and number of 

intersections. And eight types of places of interest (POI), e.g., schools and hospitals. Based 

on this real -time data a real -time congestion matrix and event tensor are constructed. 

Besides real -time data, historical data is  used to conduct congestion probability 

summarization of road segments, and road segment congestion co -occurrence pattern mining. 

Evaluations of these methods on real data in Chicago showed that th e proposed method is 

effective.  
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2.5 Evaluation of Related Wor k 

In this chapter , we looked at the related work regarding traffic event detection, classificatio n, 

and description methods.  In this section we summarize the most important takeaways from 

this literature review.   

 

2.5.1 Related Work Key Points  

1. Traffic Data:  traffic event detection proved to be the only focus of research based on traffic 

data. Traffic event detection is based on algorithms that depend on data from roadway -

based sensors. Weaknesses of this approach include:  

a. Quality of measurements depend on th e density of the sensor networ k 

b. Noise corruption of sensor network.  

c. Algorithms are road-type dependent, i.e. algorithms that can be applied on freeways 

are often not suitable for arterial situations which are much more complex .  

2. Geosocial data: traffic eve nt detection, categorization, and description were all part of 

research based on geosocial data. Weaknesses of this approach include:  

a. Reliability of the categorical , spatial, and temporal aspects of the de rived traffic 

event, by only using one geosocial data  report as basis to derive a traffic event . 

b. Focus lays on sub-parts of the traffic event domain, or is mixed with different 

incident domains unrelated to traffic.  

c. Biased data collection approaches, due to limited keyword selection and time ranges, 

dataset size, and mixed geosocial post authors (e.g., òreal road-usersó, news 

agencies, bots). 

d. Categorization approaches are non -existent or limited.  

e. Geocoding is limited.  

f. Visualization of traffic events is static.  

3. Combination of Traffic Data and Geosocial data : Research based on the combination of 

traffic and geosocial data proved to be limited and distinguished itself mostly in its traffic 

event description approach. Weaknesses of this approach include:  

a. A mandatory combination of traffic data anomalies and  geosocial data can lead to a 

loss of important semantic data.  

4. Additional Related Work:  Other related research showed us that geosocial data can 

contribute to traffic data for other means than traffic event detection, categorization, and 

description. Never theless, these works contain many overlapping approaches, and 

therefore gave us a better understanding of our own research domain.  
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2.5.2 This Work versus  Related Work  

In this thesis, we aim to mitigate the weaknesses and fill in a selection of open research ga ps 

found in the re lated work. First, in this work, we do not rely on traffic data alone to de rive  

traffi c events. Instead, we enrich  traffic data with geosocial data and use the combination to 

derive  traffic events. This way, even though the traffic data o n its own would have been 

inconclusive to derive  a traffic event, the inclusion of supporting geosocial data can help make 

this conclusive. Additionally, this work  provides a traffic event categorization and description 

approach based on geosocial data, which is not possible when relying on traffic data alone. 

Second, in this thesis, we aim to mitigate the reliability issues related to the categorical, 

spatial and temporal aspects  of geosocial data reports , by not relying on a single geosocial 

data  report to derive a traffic event. Instead , we combine multiple geosocial data reports from 

different sources, by clustering them based on categorical, spatial and temporal similarities, 

to derive a traffic event.  Third, a keyword -based data collection approach  is created that 

mitigates the bias formed due to a limited keyword selection approach. Fourth, in this work , 

the focus lays on traffic event derivation through geosocial data from òreal road-usersó, 

instead of using a mixture of different user -types inclu ding news agencies, bots, and 

emergency agencies. Thus filling in the gap of specialization towards understanding traffic 

event through òreal road-useró geosocial data. Fifth, a rule -based traffic domain annotator is 

created to annotate tweets and to assig n a wide range of traffic event categories. This fills in 

the open research gap towards categorization, as these are limited in scope in related work. 

Sixth, related work only uses geocoding approaches based on locational terms and their 

derived geopoint, within geosocial posts. In this work , we fill this gap by taking into account 

that tweets can contain multiple locational terms that can correlate, contradict, and confirm 

each other. Additionally, our approach takes into account that spatial indicators ca n relate 

to different geographic forms and scales, and as well can be ambiguous (locational term 

matches multiple locations). Seventh, related work that combines traffic data and geosocial 

data  work from the perspective of traffic data and try to describe this data by linking traffic 

event-related  geosocial data to it. In this work , a less limited approach is taken, by working 

from the perspective of clustering geosocial data to derive a traffic event and link traffic data 

to this event based on temporal and locational features. This way we reduce the loss of 

valuable data  caused due to mandatory linking of traffic data and geosocial data. This as, 

traffic events can happen wi thout any traffic data anomalies appearing, e.g., road debris does 

not necessarily lead to traffic data anomalies  but is considered a traffic event. Lastly, related 

work leaves a gap when it comes  to using the implementation of the pipeline that detects, 

categories and describes traffic events, in an interactive map -based application. We fill this 

gap by creating this application, allowing for the visualization o f traffic events, and providing  

interactive elements for data analysis.  
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3 Experiment Design  

This  chapter focuses on the design of a pipeline for  extracting knowledge on traffic events 

from geosocial and traffic data sources. The literature study as described in 2, showed us 

what current research on traffic event detection, categorization and description models based 

on a combination of traffic and geosocial data lacks and where the opportunities lay for our 

work. This enables us to design our own pipeline containing the detection, categorization, 

and descrip tion parts, as depicted in Figure 3-1. This chapter discusses the experiment desi gn 

setup of each pipeline part, leading up to the answering of the fol lowing research sub -

questions:  

 

¶ RQ2: How can non -recurrent traffic event -related geosocial posts automatically be 

detected?  

¶ RQ3: How can detected non -recurrent traffic event -related geosocial posts be 

categorized by event type? 

¶ RQ4: How can categorized geosocial posts be used to describe non-recurrent traffic 

events? 

¶ RQ5: How to develop a software system that is able to perform the detection, 

categorization, and description of non -recurrent traffic events?  

 

Figure 3-1: Overview of experiment design methods  
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3.1 Data Collection  

The data collection part is the starting point of our  pipeline. In this study data sources 

containing social a nd traffic data are used. For a data source to be used in this study , it needs 

to provide a significant enough amount of possible traffic event -related  data in order to be 

able to conduct an analysis o n it. Additionally, i t must contain data within the targe ted 

geographical  area, as well as temporal period. The initially chosen data sources include 

Twitter, Instagram, Waze, TomTom, and DiTTLab. We describe the data collection approach 

for each data source, aligning the data towards the subject, temporal, and locational scope of 

the study.  

 

3.1.1 Twitter and Instagram  

The main goal that we want to achieve when collecting  traffic event -related (TE) geosocial 

posts, is to create a keyword set that maximizes the percentage of TE geosocial posts over all 

acquired geosocial posts and maximizes the amount of acquired TE geosocial posts in the pool 

(all Dutch geosocial posts in the Netherlands within a specific time range). This means that 

at the same time we want to achieve as much recall and precision as possible. R ecall and 

precision are defined as follows:  

 
 ὙὩὧὥὰὰὃ᷊ὄ Ⱦ ὃ 

 ὖὶὩὧὭίὭέὲὃ᷊ὄ Ⱦ ὄ 

  

Where A is the set of all TE geosocial posts within a specified time period and B is the set of 

all geosocial posts with in the same specified time period . The r ecall is defined as the number 

of true positives, denoted as the intersection between A and B divided  by the number of 

relevant geosocial posts. Whereas precision is defined as the number of true positives divided 

by the number of retrieved tweets (combination  of true and false positives). Even though it is 

known how to calculate recall, doing so is complicated in the case of data mining Twitter, as 

there is no ground truth available that describes a full set of TE geosocial posts. Obtaining a 

100% precision is also impossible as the used keyword set will always contain ambiguous 

keywords, resulting  in  geosocial posts that are not traffic event -related  (NTE) .  

 

Twitter is offering two suitable options for data mining t o developers. The first one is their 

REST API, which enables developers to search for tweets based on keywords and location 

radius. It is also possible to define a set of keywords w ith operators including OR, AND, and 

EXCLUDE, as well as pre -filtering out languages, specific user accounts, retweets, links, 

replies , and mentions. However, the free and standard version comes with a number of 

limitations. It only enables developers to search up to ten  days back in time and API calls are 

limited to 180 calls ev ery 15 minutes.  The second option  is their streaming API, which allows 

for real -time tweet collection. A single HTTP connection is opened between the app and the 

API, resulting in new results whenever matches occur. Compared to the REST API, which 

enables the app to obtain data in batches through multiple re quests, the streaming API has 

a lower latency and supports a very high throughput. This , however,  comes with a number 

of limitations. O nly 1% of all public tweets can be obtained from the stream. The str eaming 

API does not support keyword operators or pre -filtering operations. The original idea was to 
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use the SocialGlass 12 application to obtain the TE -related Twitter data. But as SocialGlass 

makes use of the streaming API this option is not feasible, as this would lead to a massive 

loss of possible relevant tweets. Take for example a query containing the Dutch keyword òfileó 

(EN: traffic jam) . As the streaming A PI has no pre -filter option on language, it returns 1 % of 

all public  tweets containing the keyword òfileó. This causes us to miss out on a lot of possible 

relevant TE tweets, as the returned set is òcontaminatedó with irrelevant English tweets. 

Therefore, we decided to use the REST API as it is more important to obtain the complete set 

of TE tweets than to get a large stream of public tweets in real time.  

 

The REST API can be used with a keyword set, a geocoordinates radius or a combination of 

the two. As we aim  to obtain an as large as possible set of TE tweets, using only a keyword 

set is the most logical option. By only querying based on a geocoordinates radius, one collects 

many irrelevant tweets resulting in a possible loss of TE tweets, besides these tweets have to 

be filtered afterward  to obtain a set of possible TE-related tweets. The initial set of keywords 

is based on the keywords used in the thesis by Dokter  (2015). In this thesis a set of suitable 

keywords is defined to find TE -related tweets, co nsisting of: file  (EN: traffic jam) , ongeluk  

(EN: accident) , pech (EN: breakdown) , brug  (EN: bridge) , langzaam rijden  (EN: drive slowly) , 

traag rijden  (EN: slow moving) , km, spits  (EN: rush hour) , verkeer  (EN: traffic) , gekanteld  

(tilted) , gekantelde  (EN: overturned) , aanrijding  (EN: collision) . 

It is our assumption however that this initial keyword  set is just a subset of often used traffic 

event-related  keywords within tweets. In addition, this initial keyword set could lead to too 

many NTE tweets, due to the ambiguity of some keywords . Therefore, a method is created to 

improve the quality and quantity of TE tweets that can be acquired through a keyword set.  

 

We extend the initial keyword set with the road number s of the Dutch road network. Next, a 

Dutch language, retweet  and replies  filter is applied to the query , as we are only interested 

in Dutch tweets directly posted by road users . Initial results s howed us that tweets 

containing URLs that link to external websites are never TE -related. Based on this discovery 

we decided to also filter out any tweets that contain a URL . Note that this does not include 

tweets that contain an embedded media link (conta ining a photo or video), as these are 

relevant. To achieve this, we use the òfilter on links ó option the API provides us. Furthermore, 

a rule -based filtering method is applied to filter out the majority of non -real road user  

accounts. We define a real road  user as follows: a natural person that tweets on his/her own 

account and is a road user , therefore excluding all legal person entity accounts such as public 

organizations (government agencies, police, and infrastructure agencies), private 

organizations, and bots. Tweets from these accounts are filtered out , based on suspicious 

terms in their  name or username , as well as a manually composed list of non -real road user  

accounts. The result set is manually  labeled, as TE or NTE posted by a real road user  account 

as well as TE or NTE related but posted by a non -real road user  account. The entire s et of 

tweets is then processed as follows:  

 

1. Filter tweets on stop  words, based on a Dutch Twitter stop  word list.  

2. Strip the tweets from any URL links.  

3. Transform  tok ens of road names to a general road number  tag. 

4. Tokenization of tweets through the tokenizer  from the F rog NLP library  (Bosch, Busser, 

Canisius, & Daelemans , 2007). 

                                                
12 social-glass.tudelft.nl/  
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5. For each token and its bi gram, compute how many times it appears in TE and NTE  

tweets  posted by a real road user  account. 

6. For each token and its bigram , compute how many times it appears in TE and NTE 

tweets posted by a non-real road user  account. 

7. For each token and its bigram , compute how many times it appears in combination with 

other tokens in TE tweets (positive co-occurrence) and NTE tweets (negative co -

occurrence). 

 

 

By following this process,  we are able to identify keywords with their positive and negative 

correlation towards  TE tweets. Tokens are manually added to the keyword set when they a re 

not too ambiguous and appear  in more than one TE -related tweets  and the following is rule 

holds:  

 

# of tokens in TE tweets/ (#  of tokens in  NTE tweets by non -real road user  accounts) > 0.05 

 

In this rule, w e divide the number of appearances of a token in TE tweets through the number 

of times it appears in NTE tweets by non-real road user  accounts, as these will get filtered 

out in the next iteration and should not result in a lower ratio.  The five  percent threshold has 

been chosen, based on initial tests with multiple thresholds. This threshold, proved to bring 

the best balance between accepting keywords indicating TE tweets and rejecting keywords 

indicating NTE tweets.  The idea was to automatically extend these tokens with synonyms 

retrieved from ConceptNet  (Speer & Havasi, 2012) . However initial resu lts  showed that t his 

adds too many ambiguous new terms, and therefore cannot be used as an automated process. 

Therefore, for this experiment we choose not to add synonyms. Additionally, we experimented 

with adding tokens to a negative keyword list when they are not too amb iguous, and if they 

do not appear in TE tweets and appear more than 20 times in NTE  tweets . Tweets that 

contain a token fro m the negative keyword list would  not have been collected. This however, 

resulted in the loss of too many TE tweets, due to ambiguity  problems and was therefore left 

out. This entire process is iterative and ends when no more new positive keywords are found. 

An overview of the process can be found in  Figure 3-2. Table 3-1 shows the properties of each 

collected tweet. The final keyword set is used  to collect geosocial data from Twitter and 

Instagram.   
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For collecting data from Instagram we follow the same approach as with Twitter. The main 

difference however, is that Instagram offers an API that only allows for keyword queries on 

tag objects inst ead of text objects. This causes a significant decrease in results, as tags have 

to be manually added to an Instagram post by a user in contrast to Twitter where tags are 

part of the tweet text  itself . Therefore, based on initial experiments, we made a well -

substantiated decision to no longer include Instagram in our setup . 

 

 

 

 

Start
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Set

Filtering
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Users

Positive Keyword 
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Figure 3-2: Adaptive keyword selection flowchart  

  

Tweet Properties  

Tweet  User 

Id  Name 

Text  Screen name 

Creation date  Description  

Geocoordinates # Followers  

# Retweets # Friends  

Language  Language  

In reply to 

status id  

Profile image 

URL  

In reply to user 

id  

User home 

location (as 

defined by the 

user in its profile)  

Source Profile creation 

date 

# Favorited   

URLs   

Hashtags   

User mentions   

Symbols  

Media   

Table 3-1: Tweet properties  
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3.1.2 Waze 

Waze is a community -based traffic and navigation application, which integrates data 

provided by users to  inform other users on all sorts of traffic events. Contrary to the other 

data sources that we use, Waze does not have an API for data collection. Therefore, an 

alternative data collection approach is  set up. In this approach, the w eb-based live map from 

Waze is monitored , as depicted in  Figure 3-3. Through this map we extract data in the form 

of a GeoRSS web feed. By specifying a geo bounding box all Waze live map data within that 

region can be extracted, up to a limit of 200 alerts and 100 jams (two parent categories under 

which all data is grouped). Because of this  limitation, the initial bounding box covering the 

Netherlands is automatically split in to sub bounding boxes until we collect less than 200 

alerts and less than 100 jams. As the live map is updated every two minutes, our method 

downloads the JSON files in  two-minute intervals.  

 

 
Figure 3-3: Waze Live Map , where the icons represent users and traffic events  

Waze subdivides its data into three main categories, each with its own set of attributes as 

shown in  Table 3-2. The Alerts category, contains a wide selection of al l sorts of traffic events. 

The Jams category, extends upon closed road types , including construction types  from the 

alerts category.  The category name òJamsó proved to be misleading as it includes no 

information on traffic jams. The U sers category, contains anonymous information on active 

users. When a Waze user reports a traffic event he chooses from a set of inheritance based 

traffic event  types. This way it is possible for a user to choose a more abstract parent type 

(e.g., Hazard) or a more specified child type (e.g., Hazard On Shoulder Car Stopped ). The 

following event types can be used in Waze to categorize traffic events:  

¶ Accident: Min or, Maj or 

¶ Hazard:  

o On Shoulder: Animals, Car Stopped, Missing Sign  

o On Road: Car Stopped, Construction, Ice, Lane Closed, Object, Oil  

o Weather: Fog, Hail, Heavy Rain, Heavy Snow, Flood, Freezing Rain  

¶ Police: Visible, Hiding  

¶ Jam: Stand Still Traffic, Moderate Traffic, Heavy Traffic  

¶ Road Closed: Event Construction  
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As Waze users are able to link their Twitter account to their Waze account, we decided to 

also collect all Dutch Waze related data on Twitter. Automated Waze tweets contain either 

information on traffic events posted by the user or a summary of the car rid e of the user.  Only 

tweets containing information on traffic events are useful for this study and are therefore 

collected based on the bold tweet format as shown below.  

 

Automated Waze tweet:  

Hielp chauffeurs in de omgeving door het melden van wegwerkzaamheden op de N209 - 

Nieuwe Hoefweg, Bleiswijk via @waze - social navigation.  (EN: Helped nearby drivers by 

reporting roadworks on the N209 ð Nieuwe Hoefweg, Bleiswijk on @waze ð Drive Social. ) 

  

                                                
13 Reliability score based on the experience level of the user. Users gain experience levels by 

contributing to the map, from level 1 to level 6. The higher the level, the more experienced and 

trustworthy the user. The score ranges between 0 and 10, with 10 being the most reliable.  
14 Confidence score based on how other users react to the report - either with a òThumbs upó to indicate 

the alert is accurate or òNot thereó if the report is irrelevant. The score ranges between 0 and 10, and 

a higher score indicates more positive feedback from Waze users.   

Alerts  Jams Users 
Attributes  Example  Attributes  Example  Attributes  Example  

Country  NL  Country  NL  Speed 25.77 

City  Delft  City  Delft  GeoPoint  [4.877815, 

51.823144] 

# of Thumbs 
Up 

1 Descriptio
n 

Werkzaamheden   

Report Rating  3 GeoLine [4.877815, 51.823144], 

[4.877817, 51.823145]  

Reliability 13 7 Length  37 

Type HAZARD  Type NONE  

Speed 0 Block Type  ROAD_CLOSED_EVENT  

Subtype  HAZARD_ON_ROAD

_OIL  

Speed 0 

Street  Oostplantsoen  Street  A13 

Image URL  https://s3.amazonaws

.com/waze.photos/364

08761-0c20-4a2a-

8730-2fcf847db845 

Severity  2 

Reported by  BasdeBock Level  5 

Comments  - Delay  -1 

Confidence14 2 Published 
Millis  

1512322497351.0 

Description  Olie op weg Last 
updated 
Millis  

1512322497352.0 

GeoPoint [4.877815, 51.823144]   

Published 
Millis  

1512322497351.0 

Table 3-2: Waze attributes overview with examples  
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3.1.3 TomTom 

TomTom is a company that produces traffic, navigation and mapping products. It enables 

developers to use their APIs and SDKs to enhance applications with search, routing, 

mapping, traffic and navigation features. For our research , the TomTom data should ei ther 

contribute to geosocial data or traffic data. This leaves us with two possible useful data sets 

that they offer: Online Traffic Incidents 15 and Online Traffic Flow 16. 

 

The Online Traffic Incidents data can enrich our geosocial data set, in the same way  Waze 

does. This service provides information on traffic incidents inside a given bounding box, 

updated every minute. This information is generated from anonymous real -time location 

trace information from connected GPS devices in vehicles, including persona l navigation 

devices, in-dash navigation systems, smartphones and fleet management devices. This 

technique, called Floating Car Data (FCD), is able to measure traffic conditions on the road 

by using the previously described location -aware devices17. We contacted the developer 

relations helpdesk from TomTom to get more information regarding how traffic incidents are 

derived from their FCD technique. Unfortunately, they were not allowed to provide any 

specifics. We therefore make the assumption that TomTom inc ident data is provided by òreal 

road-usersó, and thus could provide a valuable geosocial data source for this work.   

 

The Online Traffic Flow data  service, provides information about the speeds and travel times 

of the road fragment closest to the given co ordinates. It is designed to work alongside the 

Flow layer of the Maps API , in order  to support clickable flow data visualizations. After 

experimenting with this data source, we came to the conclusion that it could not be used in  

the way we would have like d. This because we can only provide one set of coordinates, which 

their system uses to map to the closest road and based on the provided zoom level it returns 

the values for a road section with a maximum of 1  kilometer . It is therefore impossible to 

scale this to get the flow data for the entire Netherlands, which is why we decided to only use 

the Online Traffic Incidents data from TomTom.  

 

An overview of the most important properties and incident categories from the TomTom data 

we collect in JSON format i s shown in  Table 3-3. On first sight, compared to Waze, TomTom 

seems to have a more limited non -inheritance based traffic eve nt typing (i ncident category) 

system, containing the following types:  Fog, Rain, Ice, Wind, Flooding, Accident, Dangerous 
Conditions, Jam, Lane Closed, Road Closed, Roadworks, and Detour . However, we noticed 

after some experimenting with the data that TomTom incidents sometim es also contain 

descriptions and causes of the incident. By contacting the developer relations helpdesk, we 

learned that these incident descriptions an d causes are part of a set of 443 incident categories 

(note that these can be used interchangeably as des cription and cause) . These are nowhere 

mentioned in the documentation of this service, but have been provided to us by the helpdesk. 

We can therefore s ee the incident category as the main category and the description/cause as 

a subcategory of the event.  

  

                                                
15 developer.tomtom.com/online -traffic/online -traffic -documentation/online -traffic -incidents  
16 developer.tomtom.com/online -traffic/online -traffic -documentation/online -traffic -flow  
17 htt ps://www.tomtom.com/en_gb/traffic -news/traffic -incidents  
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TomTom Online Traffic Flow  

Attributes  Example  
GeoPoint [4.877815, 51.823144]  

Incident category  6 

Magnitude of delay  5 

Description of incident  Slow traffic  

Cause of incident  Accident  

Start point  Deil (N327)  

End point  A2: Geldermalsen - A2 (N327)  

Caused time delay  in seconds 231 

Affected road numbers by the incident  N327 

Retrieval date  2017-12-05T13:05:18.179Z 
Table 3-3: TomTom Online Traffic Flow properties  

 

3.1.4 DiTTLab  

The Delft integrated Traffic & Travel Laboratory (DiTTLab), is a research lab at the TU Delft 

that works with traffic data and simulation models to develop knowledge and tools for the 

international traffic and transport community.  This lab provides us with traffic data that 

contains raw  and interpolated speed and flow values per 100  meter  segments for each 

motorway  (e.g., A10) in the Netherlands.  The raw traffic data is collected by roadway -based 

sensors. As these are irregularly spread along the highways, the data is inter polated to cover 

consistent 100 meter  segments. The data is collected within the DiTTLab and distributed to 

us in JSON formatted files.  
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3.2 Data Pre -processing  

In this section, we show how each data set is cleansed and transformed so that it is suitable 

to extract infor mation out of it in the next phases of the pipeline.  

 

3.2.1 Twitter  

Before we start our pre -processing approach, we label the Twitter data as tra ffic event -

related (TE) and non -traffic event -related (NTE). Based on the many pre -processing 

technique s used in previous work, we make  a selection of pre -processing techniques for the 

Twitter data. Table 3-4 shows the p re-processing techniques used in previous wo rk and shows 

the arguments on why a technique is applied, replaced or rejected in our work.  

 

Technique  Apply/Reject/

Replace 

Reason 

Tokenization  Apply  Demarcation of sections of a string of input characters is needed 

for all other forms of processing.  

Stop word removal  Apply  Removing the most common words in a language is needed to 

improve performance while keeping the words with the highest 

importance.  

Stemming  Replace with 

Lemmatization  

The goal of stemming and lemmatization 18 is to reduce 

inflectiona l forms and derivationally related forms of a word to 

a common base form. We replace stemming with lemmatization, 

as stemming chops off the ends of words and often includes the 

removal of derivational affixes. Lemmatization uses a 

vocabulary and morphologi cal analysis of words, to remove 

inflectional endings only and to return the base or dictionary 

form of a word, called a lemma.  

Discarding non -geo 

tweets  

Reject Approximately 1% of the tweet dataset is geo -tagged, 

discarding all other tweets leaves us with a too small data set 

to work with.  

Abbreviation 

replacement  

Reject Automatic correction of abbreviations could lead to incorrect 

words, increasing possible false positives.  

Locational/ 

Temporal 

generalization  

Reject Locational/temporal features are used later on in the pipeline.  

Discarding 

hashtags, links, 

mentions, special 

characters, words 

based on length  

Reject Links are already removed during the data collection process. 

Hashtags, mentions, special characters, and words of all 

lengths are able t o provide us valuable information and are 

therefore not discarded.  

Discarding non -

nouns based on 

POS Tagger 

Reject Words other than nouns can still provide valuable information 

and are therefore not discarded.  

Table 3-4: Pre-processing techniques selection  

 

  

                                                
18 https://nlp.stanford.edu/IR -book/html/htmledition/stemming -and-lemmatization -1.html  
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3.2.2 Waze and TomTom  

Both data sources from Waze and TomTom have little pre -processing needs. Attributes that 

do not contain any descriptive value will be omitted and attribute terms are mad e uniform 

between the datasets.   

 

3.2.3 DiTTLab  

DiTTLab provides us with raw and interpolated traffic speed and flow data. In this study , 

only the interpolated data is used, as this  provides us with a higher  possible anomaly 

coverage. This data could  be used as a source for traffic event detection algorithms . However, 

as traffic event detection algorithms greatly depend on the type and properties of the road, it 

is not feasible to implement this for every motorway  in  the Netherlands . Besides, this would 

fall out of the scope of this research. Therefore, we only process the data in such way that it 

can be stored and accessed in and from our document database. In order to achieve this we 

store the data by road number, road side, road location and date.  

Table 3-5, shows an example of how DiTTLab data will be stored in our database.  

 

Key Value  Type 

_id 5afc2974e8b2900e404e9ce6 ObjectId  

roadNumber  A1 String  

roadSide R String  

roadLocation  { 2 fields }  Object 

x 4.959109 Double 

y 52.346883 Double 

roadData  [ 2879 elements ]  Array  

0 { 3 fields }  Object 

date 2017-12-05T00:00:00.000Z Date  

speed 101 Int32  

flow 398 Int32  
Table 3-5: DiTTL abReportCollection  
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3.3 Traffic Event Categorization  

In this section, we discuss the design of our rule -based traffic domain annotator, inspire d by 

the work of Oostdijk, Hürriyetoglu, Puts, Daas, and van den Bosch  (2016). This annotator is 

used for extracting relevant traf fic domain information from tweet  text data.  This  enables us 

to categorize a tweet to one or multiple traffic event categories.  

 

3.3.1 Category Composition  

This annotator enables us to automatically id entify tokens belonging to multiple traffic 

domain  related  categories within tweets. The categories that are used to label the tweets are  

based on the event categories from Waze and TomTom , the categories in the  police accident 

reporting dossier (Bestand geRegistreerde Ongevallen Nederland (BRON 19)), and acquired 

knowledge from reviewing literature and annotating tweets . The event typing method from 

Waze and TomTom can be found in  Sections 3.1.2 and 3.1.3. BRON contains information on 

causes and effects of traffic eve nts.  Table 3-6, describes the categories within BRON that are 

relevant to this study.   

   

Categories Description  
Lane subtypes  All types of lanes within the road network, e.g., entry, service lane, bus lan e. 

Vehicle details  All types of vehicle brand, and sub brand names and their measurements, e.g., 

Volkswagen, Volkswagen Polo, and Skoda. 

Points of collision  Point of impact from a collision on a vehicle, e.g., left side, center rear.  

Nature of 

accident  

Anything that could cause the accident, e.g., animal, parked vehicle, fixed 

object. 

Outcomes Outcomes for people and vehicles involved in the accident, e.g., injury, 

material damage.  

Movements  Movement of involved vehicles during the accident, e.g., roll over, overturning, 

skidding.  

Particulars  Any particulars during the accident such as nearby infrastructure or road 

types, e.g., bridge, speed bump, overtake prohibition.  

Devices Any type of vehicle involved in the accident, e.g., tipping wagon, taxy, caravan.  

Light conditions  Conditions of light that could have been the cause of the accident, e.g., 

daylight, darkness, twilight.  

Manoeuvres  Any type of movement of vehicle or person that caused the collision, e.g., 

collision with lose object, head -tail collision when turning to the right.  

Object types  Any type of object that could cause the accident, e.g., tree, bike, bus.  

Circumstances  Any circumstance related to driving or the driver that caused the accident, 

e.g., not giving right of way, ignoring a  red traffic light, high -speed. 

Road surfaces Status of the road surface that could have caused the accident, e.g., dry, wet, 

snowy. 

Road Situations  Type of road on which the accident occurred, e.g., crossroads, roundabout.  

Road Surfacing  Type of road surface at the place of the accident, e.g., concrete, asphalt.  
Table 3-6: BRON relevant categories  

  

                                                
19 https://www.rijkswaterstaat.nl/apps/geoservices/geodata/dmc/bron/  
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The following pro cedure is followed to compose the  list of traffic domain categories. Firstly, a 

category from Waze is selected, as Waze has the most coherent traffic  event taxonomy. 

Secondly, a related TomTom category is selected. Thirdly, categories from BRON that are 

related to the category are selected. Finally, a custom category with related sub categorie s is 

formed based on the categories from Waze, TomTom and BRON. Categories that are not 

described in Waze, TomTom or BRON, but are deemed relevant are added, and any 

overlapping categories are merged. Note that events within Waze and TomTom depend on a 

location and datetime, while approximately, only 1% of the traffic event -related  tweets 

contains a geotag. Therefore, additional place based categories are defined that could be 

mapped to a location . In order to infer a datetime, a combination of the creation  date of a 

tweet and temporal expressions in a tweet is  used, as the creation date by itself is not 

necessarily a reflection of the date a traffic event occurred.  By following this category  

composing procedure a set of 27 (not counting the not applicable, temporal , and media 

attachment  categories) unique  traffic related  categories has been composed. For each 

category we explain the idea behind it, were it der ived from (Waze, TomTom, BRON, 

l iterature), and provide an example of the sort of tokens it should d escribe. Note, that we do 

not make a distinction between positive/confirming categories and negative/disconfirming 

categories. For example, the token set òA man was injuredó and òNo man was injuredó both 

get assigned the category Road User Casualty.  

 
1. No Applicable Category (N/A) : Describes tokens that are not matched by the other categories.   

Derived from: Literature . 
Example:  @joopb68flc we staan bij brug Zaltbommel in file . (EN: @joopb68flc we stand near bridge 
Zaltbommel in traffic jam.)  

2. Media Attachment: An indication of a media link.  

Derived from: Literature.  
Example:  Ongeval 2 personenwagens . Snel bergen . #A16 Li 16,9 https://t.co/ovmSUIHLMv   (EN: 
Accident 2 passenger cars. Quick salvage. #A16 Le 16,9 https://t.co/ovmSUIHLMv ) 

3. Temporal  (Timex) : An i ndication of time, a point in time, a time duration, or a time frequency.   

Derived from: Waze, TomTom, BRON, Literature.  
Example: Ik sta al 30 minuten  in de file richting Den Haag. (EN: Standing in a traffic jam for 30 
minutes  in the direction of Den Haag.)  

4. Advice: A mention of an announcement or guidance.  

Derived from:  TomTom,  Literature . 
Example: Pas je snelheid aan  er heeft net een ongeluk plaatsgevonden op de A10. (EN: Adjust your 
speed, an accident just happened on the A10.)  

5. Road User Transport : Various types of groups of traffic.  

Derived from: Literature . 
Example: Veel vakantieverkeer  richting Amsterdam vandaag. (EN: Lots of holiday traffic  in the 
direction of Amsterdam today.)  

6. Road User Casualty : Various types of injuries and casualties.  

Derived from: BRON . 
Example: Meerdere inzittenden ernstig gewond  bij kettingbotsing op de A10. (EN: Multiple 
passengers seriously injured  at chain collision on the A10.)  

7. Road User Traffic : Inf ormation that describes traffic related persons and their road user role (e.g., 

driver, passenger).  

Derived from: Literature . 
Example: Bestuurder  onwel geworden achter het stuur, politie is gearriveerd #A2. (EN: Driver  
unwell behind the wheel, police has arrived #A2).  

8. Road User General:  Information that describes general persons.  

Derived from: Literature.  

https://t.co/ovmSUIHLMv
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Example: Persoon onwel geworden achter het stuur, politie is gearriveerd #A2. (EN: Person unwell 
behind the wheel, police has arrived #A2).  

9. Road User Vehicle : Various types of vehicle names and their brands.  

Derived from: BRON . 
Example: Reed net voorbij een ongeluk met een Audi en een vrachtwagen  op de A1. (EN: Just 
drove past an accident between an Audi  and a lorry  on the A1.)  

10. Road User Emergency Service : Various types of emergency services and their status.  

Derived from: TomTom, Literature  
Example: Ongeval bij knooppunt Amstel politie is ter plaatse . (EN: Accident at junction Amstel 
police is on location .) 

11. Place Location : Exact locations in the Netherlands that contain a geopoint, geoline, or geoshape.  

Derived from: TomTom, Waze, BRON , Literature.  
Example: @RWS_verkeer En we rijden weer zeeburgertunnel  is weer open. (EN: @RWS_verkeer 
And weõre driving again zeeburgertunnel  is weer open.) 

12. Place Location Combination : Combination of areas having unique physical and human 

characteristics, and locations.  

Derived from: TomTom, Waze, BRON, Literature.  
Example: Ongeluk voor de rotonde Vliegveldweg . (EN: Accident in front of the roundabout 
Vliegveldweg .) 

13. Place Road Section: Section of a road containing a start and end point, indicated by places and 

locations.  

Derived from: TomTom, Waze, BRON, Literature.  
Example: Er staat een file van knooppunt Coenplein tot Zaandam . (EN: Thereõs a traffic jam from 
junction Coenplein to Zaand am.) 

14. Place Road Direction : Combination of directional terms and a location.  

Derived from: TomTom, Waze, BRON, Literature.  
Example: 5km file Delft richting Den Haag . (EN: 5km traffic jam Delft in the direction of Den 
Haag.) 

15. Place Road Mile Marker : Place on the road denoted with a mile marker.  

Derived from: TomTom, Waze, BRON, Literature.  
Example: Gat in wegdek #A58 re 13.4 afrit Middelburg. (EN: Pothole #A58 ri 13.4  exit 
Middelburg.)  

16. Place Infrastructure  Type: Various types of road infrastructures.  

Derived from: TomTom, Waze, BRON, Literature.  
Example: File voor de brug , heb ik weer #Delft. (EN: Traffic jam in front of the bridge , just my luck 
#Delft.)  

17. Place Road Lane: Further specification of road strips.  

Derived from: TomTom, Waze, BRON, Literature.  
Example: Olie op de vluchtstrook  nabij Utrecht. (EN: Oil on emergency lane  near Utrecht.)  

18. Event Accident : Anything related to traffic collisions (including consequences) between vehicles 

and other vehicles, pedestrians, animals, road debris, or other stationary obstructions.  

Derived from: TomTom, Waze, BRON  
Example: Mercedes van de weg geraakt  bij knooppunt Amstel. (EN: Mercedes of the road  at 
junction Amstel.)  

19. Event Traffic Jam : Traffic jam terms and indicators of a traffic jam, e.g., traffic flow/ intensities 

and durations.  

Derived from: TomTom, Waze.  
Example: Korte file van 10 minuten  voor de Kuip. (EN: Short jam of 10 minutes  in front of de 
Kuip.)  

20. Event Closure : Anything related to a road being closed off.  

Derived from: TomTom, Waze.  

Example: Doorgaand rijverkeer gestremd  in de richting van Delft -Noord. (EN: Through traffic 
obstructed  in the direction of Delft -Noord.)  
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21. Event Enforcement : Activities held by traffic enforcement agencies.  

Derived from: TomTom, Waze, Literature.  
Example: Alcoholcontrole  op de A2 richting Den Bosch. (EN: D.U.I. checkpoint  on the A2 in the 
direction of Den Bosch.)  

22. Event Hazard Violation: Road activities that violate the law.  

Derived from: TomTom, Literature.  
Example: Auto achter me loopt irritant te bumperkleven  #A5. (EN: Car behind me is annoyingly 
tailgating  me #A5.)  

23. Event Hazard Traffic Sign : Indicators  of broken,  unreadable , or missi ng traffic signs.  

Derived from: TomTom, Waze. 
Example: @VID Defect matrixbord boven de rechter rijbaan  hmp 56.1. (EN: @VID Defect matrix 
signal above the right lane  hmp 56.1.)  

24. Event Hazard Traffic Light : Indicators of malfunctioning or broken traffic lights.  

Derived from: TomTom, Literature.  
Example: Stoplichten op hol  geslagen bij kruispunt Sloeweg. (EN: Trafficlights out of control  at 
crossroads Sloeweg.) 

25. Event Hazard Weather : Bad weather conditions that could have an effect on the traffic speed and 

flow, and sight of road users.  

Derived from: TomTom, Waze.  
Example: Dichte mist  op de A2 zie geen hand voor ogen! (EN: Dense fog on the A2 canõt see a 
thing!)  

26. Event Hazard Stopped Vehicle : Indicators of a stopped vehicle, due to a breakdown.  

Derived from: TomTom, Waze. 
Example: Stilstaande auto met rookontwikkeling op de vluchtstrook  bij afrit Goes. (EN: Stopped 
car with smoke on the emergency lane  at exit Goes.)  

27. Event Hazard Roadwork : Indicators of unplanned roadwork activities.  

Derived from: TomTom, Waze.  
Example: Rechterrijbaan tussen Souburg en Vlissingen afgesloten vanwege spoedreparatie aan 
het wegdek . (EN: Right lane between Souburg and Vlissingen closed off because of emergency 
repair on the road surface .) 

28. Event Hazard Object : Foreign objects and road debris that could cause dangerous situations.  

Derived from: TomTom, Waze.  
Example: Boom omgewaaid op de rechterrijbaan  bij station Delft. (EN: Tree blown down on right 
traffic lan e near station Delft.)  

29. Event Hazard Animal : Stray animals or roadkill that could cause dangerous situations.  

Derived from: TomTom, Waze. 
Example: Tussen Nijkerk en Amersfoort ligt langs de A28 een overreden kat . (EN: Between 
Nijkerk and Amersfoort lays a run over cat  besides the A28.)  

30. Event Hazard Road Condition: A hazardous condition to the road surface.  

Derived from: TomTom, Waze.  
Example: Gaten in wegdek  #A5 li 13.24 afrit Middelburg. (EN: Poth oles in road surface  #A5 le 
13.24 exit Middelburg.)  
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3.3.2 Grammar  

Having established this  set of categories, we can focus on the characteristics of the grammar 

and dictionaries behind each category . Our method uses a combination of place names, 

temporal expressions, traffic domain knowledge , and lexical pattern  dictionaries . First, t he 

place names dictionary , which  is composed out of place names for the Netherlands from the 

GeoNames database, and the tagging system from OpenStreetM ap20 . Note that the 

GeoNames database is only used as a source for place names, an d is not used to derive any 

locations (coordinates). The system from OpenStreetMap  enables us retrieve the names of 

the following features:  

¶ Highway: Names of roads for the entire road network of the Netherlands, e.g., bridges 

and residential roads.  

¶ Amenity: Names of facilities used by visitors and residents, e.g., colleges and parking . 

¶ Building: Names of buildings, e.g., warehouses and churches.  

¶ Leisure: Names of leisure and sports facilities, e.g., parks and sport stadiums.  

¶ Place: Names of settleme nts, e.g., suburbs and towns.  

 

The advantage of using such a comprehensive dictionary is that we significantly increase our 

possibil ities of finding a locational term in a tweet. However, we do acknowledge that this 

library contains a lot of ambiguous term s that could be either a location name or a common 

word used in the Dutch language. Additionally, using such a large dictionary  will most 

certainly also significantly increase the computation time of the annotator. We decided 

however that being able to map  a traffic event -related  tweet, with the risk of mapping it to a 

wrong location, is more important than not being able to map it due to a too limited 

dictionary.  In order to mitigate false positives due to ambiguous location terms, a dictionary 

is manually  composed based on these types of encounters. Second, the temporal expressions 

dictionary, which is composed of the temporal expressions dataset  from the work by  

Hürriyetoglu,  Oostdijk, & van den Bosch  (2014). This dictionary contains tokens and phrases 

that serve to identify time intervals, e.g., òvanmiddag om 16.20 uuró (EN: this afternoon at 

16.20). Third, multiple traffic domain knowledge based dictionaries, e.g., vehicle 

names/brands, road debris, and emergency services. These dictionaries are composed  of 

terms from the BRON dataset, the national scientific institute for road safety research in the 

Netherlands (SWOV) traffic terms set 21, and synonyms/ colloquial speech derived from these 

sets. Additionally , this dictionary is updated manually, based on relevant terms encounter ed 

in traffic event -related  tweets. Finally, lexical pattern dictionaries, that consist of non -traffic 

related terms that occur within traffic event -related  tweets with high frequency.  

 

These resources are used to create a Backus -Naur form (BNF) grammar, allowing for partial 

matching of tokens.  The grammar allows for case -insensitive matching as tweets are known 

for having an inconsistent usage of capitals. Additionally, the grammar  includes rules to 

recognize spelling variations of  domain terms, by matching  on suffixes. For each of the 27  

defined traffic categories, key terms and syntactic knowledge for that particular category  are 

defined. We include optional term matching  and linguistic structures such as adjectives to 

restrict am biguous terms from matching excessively. In practice this means that some traffic 

domain knowledge terms can be used by themselves, while other terms need to have 

preceding/succeeding terms. For instance, for the category Event Hazard Weather the term 

                                                
20 https://wiki.openstreetmap.org/wiki/Map_Fea tures  
21 https://www.swov.nl/publicatie/verkeersveiligheidstermen -nederlands -engels-en-engels-nederlands  
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òweeró, which translates to both òweatheró and òagainó, needs to be preceded with a weather 

type (e.g., òmistyó), as it is  too ambiguous by itself. The documentation of each category, with 

rules and exa mples can be found in  Rule-based Traffic Domain Annotator Grammar . Below, 

we provide an example of one of the grammar modules for the òEvent Hazard Roadworkó 

category. In order to understand the grammar rules we first explain the subparts each rule 

consists of. Rules are build out of operators, predefined grammar methods, and tokens from 

the resources.  

 

Some of the commonly used operators are:  

¶ Token + Token: concatenates two tokens with an interspace.  

¶ Token | Token: exclusive or.  

¶ ~Token: disallows matching of this token.  

 

Some of the commonly used grammar methods are:  

¶ WordStart:  matches if the current position is at the beginning of a word, and is not 

preceded by any character in a given set of characters, as well as at the beginning of 

a line.  

¶ WordEnd:  does the exact opposite of WordStart.  

¶ Optional(Token):  makes all tokens within  the parentheses optional.  

 

The grammar module in this example uses the following traffic domain related dictionaries:  

¶ Roadwork : e.g., opruimingswerkzaamheden  (clearing -up operations), spoedreparatie  

(emergency repair) , onderzoek (examination)  

¶ Vehicle names:   e.g., auto (car), vrachtwagen  (truck) , caravan.  

¶ Vehicle brands:   e.g., Nissan, Volvo, Hobby.  

¶ Traffic lights : e.g., stoplicht  (traffic light) , verlichting  (lighting) , lantaarnpaal  

(lamppost)  

¶ Traffic signs:  e.g., bewegwijzering  (signage), matrixbord  (matrix sign) , wegmarkering  

(road marking)  

¶ Road lanes: e.g., rijbaan  (lane), vluchtstrook  (shoulder) , parallelrijbaan  (parallel lane)  

 

By establishing the defini tions of all sub parts, the grammar rules become basically self -

explanatory. We colored the tokens within the example to reflect the  subparts of the grammar 

rules:  

¶ R1: Optional(vanwegeLit | ivmLit | doorLit | tgvLit | alsgevolgvanLit 

|alsgevolgvanLit | metalsgevolgvanLit | naLit)  + Optional(~ Roadwork  token +  

Arbitrary  token)  + Roadwork  token  + Optional(aanLit | vanLit | opLit | nabijLit | 

langsLit | bijLit | vlakLit| naastLit)  + Optional(~(Vehicle names token | Vehicle 

brands token | Road lanes token) + Arbitrary token)  + (Vehicles names token | 

Vehicle brands token | Road lanes token)  

 

Example:  

¶ E1: Vanwege langdurige  spoedreparatie  aan het  wegdek bij afrit Delft -Noord. (EN: 

Because of prolonged repairs  on the road surface  at exit Delft -Noord.)  
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3.3.3 Evaluation  

We evaluate our rule -based traffic domain annotator on a randomly selected sample of 200 

annotated traffic event -related  tweets. This set is omitted from the training phase of the 

traffic domain annotator in order to obtain an honest and unbiased assessment of the 

performance of the annotator. To prevent any personal bias in this evaluation phase, the 

evaluation is performe d by two fellow ex -master students from our Web Information Systems 

research group, namely ir. Jan Zegers and ir. Alexander Grooff. Both will be assigned with 

an Excel file containing 100 annotated tweets , as partly depicted in Figure 3-4. For each 

annotated set of tokens within a tweet the following questions have to be answered:  

 

1. Is the correct categ ory assigned to the token set ? 

2. If a wrong category is assigned, what other category (from the predefined category 

list) should have been assigned to the token set  instead.  

 

By answering these two questions, we will be able obtain the number of false 

positives/negatives and true positives/negatives for eac h category. Thereby, we can find out 

what categories should had been assigned in the case a false positive/negative is found. As 

natural language is ambiguous and thereby open to interpretation, the assessor has a third 

option òNot Sureó, besides òYes/Noó when answering if the correct category has been assigned 

to the set of tokens.  

 

 
Figure 3-4: Rule-based Traffic Domain Annotator Evaluation  
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3.4 Feature Engineering  

Feature selection is applied to the Twitter data. Based on the many feature engineering 

techniques used in previous work, we make a selection of the most relevant and useful 

features , as shown in  Table 3-7. The selected features will be used by our traffic event 

classifier as described in the next step of the pipeline, to indicate if a tweet is traffic event -

related  or not. The main objective of our feature selection approach is to improve the 

prediction performance of the classifier, providing faster and more cost -effective predictors, 

and to better understand the underlying process that generated the data (Guyon & Elisseeff , 

2003). For this process , we will use Scikit -learn 22, a free software machine learning library 

for Python in combination with the Frog NLP library.  

 

Technique  Reason 
Syntactic features  Exclamation/question marks, emoticons, and the total number of capital 

characters are part of the syntactic features. These features could indicate 

sentiment characteristics about the tweet.  

Bag of words/n -grams This process turns a collection of tweets into numerical feature vectors and 

is part of v ectorization. Tweets are described by their word occurrences while 

ignoring the relative position information of words in the tweet. We will 

extract 1 -grams (bag of words). However, this bag of words approach has its 

limitations. It is not able to capture phrases and multi -word expressions, 

thus effectively disregarding any word order dependence. This approach also 

does not account for misspellings/ word derivations. Therefore, we 

additionally use word bigrams to preserve some of the local ordering of 

infor mation, as well as character bigrams as a solution against misspellings 

and derivations.  

TF-IDF  term weighting  Term frequency -inverse document frequency shows the importance of a term 

to a document in the corpus. The term -frequency (TF) resembles the amount 

of times a term is located in a document. The document frequency (DF) 

denotes the number of documents that contain this term. To measure the 

uniqueness of a term, the infrequency of the term occurring across documents 

is needed, in other words , the inverse document frequency (IDF). A high 

result of the product of TF and IDF shows that the term occurs frequently in 

the document and provides the most information about that document.  

Traffic domain types  In the previous section , we showed how our traffic d omain annotator is able 

to tag 2 7 different categories. These word categories thus appear as word n -

grams or character n -grams in our model  and can all be regarded as features. 

This includes temporal and locational tags that wer e often used as features 

in previous work.  

POS tagging  POS features, e.g., nouns and verbs, could be used to extract syntactic and 

linguistic representation out of the tweets. A POS tagger is able to tag words 

with different part of speech labels. This feature will be used in the same way 

as the traffic domain types. We must state, that due to the limited amount of 

characters in tweets, the effectivity of a POS feature is uncertain.  
Table 3-7: Feature selection  

  

                                                
22 Scikit -learn.org  
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3.5 Traffic Event Classification  

In order to predict if a tweet is related to a traffic event, supervised binary  classification is 

applied , in which we classify a tweet to either the traffic event -related  (TE) or non -traffic 

event-related  (NTE) group . We first manually label each tweet  in our dataset , collected with 

the data collection approach from Section  3.1.1, with a TE or NTE  label . The next  step is to 

choose a classification method based on the size of the dataset,  number of  features, and 

previous work related to supervised binary classification of tweets. Commonly used methods  

for binary c lassification consist of  decision trees, random fore sts, Bayesian networks, support 

vector machines, neural networks, and logistic regression.  When trying to predict a category 

and working with a dataset of less than 100 -thousand text -based tweets , it is advised by the 

documentation of sci -kit learn (the machine learning library that we will be using), to use 

either a Support Vector Machine  (SVM)  or Naïve Bayes  (NB)  based method. During our 

literature review , we also found  that methods based on SVM and NB were the most used and 

proved to deliver the best r esults  when working with tweets . Based on this information we 

opt to start the traffic event classification approach with these  two types of algorithms.  

 

3.5.1 Support Vector Machine  Theory  

SVMs consist of multiple supervised learning algorithms  for classif icat ion, regression and 

outlier  detection. In this work , we focus on the classification methods SVM offers. The idea 

behind SVM is finding a hyperplane that best divides a data  set into two classes. This is 

achieved by plotting the data items from the dataset as a point into an n-dimensional space, 

where n represents the number of features. The coordinates of the points correspond to the 

value of each feature. The further away data points  (support vec tors)  lie from the hyperplane 

the more confident we can be abo ut the classifier performance. In SVM theory the term 

margin is used for the distance between the hyperplane and the nearest support vector from 

either set. Therefore, the goal is to find the hy perplane with the greatest possible margin 

between the hyperplane and any support vector within the training set  (Joachims, 1998) .  

 

3.5.2 Naïve Bayes Theory  

Naµve Bayes typed classifiers apply the Bayesõ theorem, where the naµve part describes the 

independence assumptions between the feature values. So for example, a vehicle may be 

considered to be a school bus if it  is yellow, longer than 5 meters and has 4 w heels. A NB 

classifier  considers each of these features to contribute independently to the probability t hat 

the vehicle is a school bus, regardless of any correlations between the features. Which is why 

this algorithm is called naïve, as features are not always independent of each other . The 

Bayesõ theorem itself describes how to update the probabilities of hypotheses when provided 

data. Given a hypothesis H and data D, the theorem states that the relationship between the 

probability of the evidence P(D) and the probability of the hypothesis after getting the 

evidence P(H|D)  is: 

 

 ὖὌȿὈ
ȿ
 ὖὌ   
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Where: 

¶ P(H|D)  is the probability of hypothesis H given the data D, called the posterior 

probability.  

¶ P(D|H)  is the probability of data D given that the hypothesis H was true.  

¶ P(D) is the probability of the data.  

¶ P(H) is the probability of hypothesis H being true, the so called prior probability of H.  

 

The NB  classifier combines the probability model of the Bayesõ theorem with the maximum 

a posteriori (MAP) decision rule:  
 ὓὃὖὌ ÍÁØ ὖὈȿὌ  zὖὌ   

This provides us with the numerator and the class giving the largest response, being the 

predicted output (Murphy, 2006) . 

 

 

3.5.3 Model Selection and Evaluation  

To determine which of our models has the best performance, we have to compare them based 

on the same evaluation techniques , which are discussed in this section .  

3.5.3.1 Resampling of Dataset  

The dataset to be used in the experiment is very likely to be imbalanced, as the number of 

collected NTE tweets will always outweigh the TE tweets. Therefore, we have to con sider 

that some metrics can give a misleading picture . Take for example a dataset with a TE/NTE 

tweet ratio of 1:9. In this case, the accuracy score is misleading because when the classifier 

always predicts the most common class without performing any anal ysis of the features, it 

will still have a high accuracy rate of 90% . We therefore , use multiple types of metric scores 

to evaluate our model. Additionally, resampling is applied, which is a widely adopted 

technique for dealing with highly unbalanced datasets. Resampling consists of under -

sampling and over -sampling techniques. With under -sampling , records from the over -

represented class are removed, while with over -sampling copies of records from the under -

represented class are added. We apply  over-sampling  based on three popular methods: 

random  over-sampling technique , SMOTE (Synthetic Minority Oversampling Technique), 

and ADASYN (Adaptive Synthetic sampling method) . Under -sampling is applied based on a 

random under -sampling technique, and Cluster  Centroids  (Chawla, 2009) .  
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3.5.3.2 Cross-validation  

K-fold cross-validation  is applied  to estimate how accurately the model performs in practice 

(on out-of-sample data) and to prevent overfitting. Overfit ting is the situation in which  a 

model is trained and tested on the same data (or closely related data), and therefore fails to 

fit additional data or provide reliable future observations. A common solution to this problem 

is to split the dataset into a train and a test set, so that the model can be trained and tested 

on different data. In the case of cross-validation, a bunch of these train/split sets is  created. 

The training set is split into k smaller equal sets called folds. For each of these folds a model 

is trained using k-1 of the folds as training data, while the union of the other folds is used as 

the training set. The average of the values computed in the loop is used as a performance 

measure. This  is a way more accurate estimate of out -of-sample performance can be gained, 

and we use our data more efficiently as every observation is used for both training and 

testing. Initial findings show that our dataset exhibits a large imbalance in the distribution 

of the target classes. We therefore, have to ensure that relative class frequen cies are 

approximately preserved in each fold. To this end, we apply a variation of k -fold cross 

validation called stratified k -fold. This ensures that each fold contains approximately the 

same percentage of each target class as the complete set.  

3.5.3.3 Hyper -parameter Tuning  

Now that we have compensated for any possible overfitting, we can focus on tuning the hyper -

parameters of the classifiers we use. Hyper -parameters, express properties of the model that 

cannot be directly learned from the regular training pro cess. These types of parameters 

define higher level concepts and influence the predictive of computation performance of the 

model. Examples of i mportant hyper -parameters, which we will tune, for SVM based 

classifiers are:  

¶ Kernel : The used kernel method fo r pattern analysis. A kernel function returns the inner 

product between two points in a suitable feature space. Examples of kernels are: linear, 

polynomial, rbf, and sigmoid.  

¶ C: Penalty parameter of the error term. A large C corresponds to a smaller -margin 

separating hyperplane in the case that hyperplane does a better job of getting all the 

training points classified correctly. A small C corresponds to a larger -margin separating 

hyperplane, even if that hyperplane misclassif ies more points.  

¶ Loss: The hinge loss is used to determine the maximum margin classification.   

In order to obtain the best combination of hyper -parameters, an exhaustive grid search will 

be applied. This grid search exhaustively generates candidates from  a grid of user -specified 

parameter values, and evaluates all the possible combinations of these values.  
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3.5.3.4 Model Evaluation  

A range of different evaluation metrics will be used to evaluate our models:  

 

¶ Precision:  the ability of the classifier not to label  negative 

samples as positive.  
ὖὖὠ

Ὕὖ

Ὕὖ Ὂὖ
 

¶ Recall: the ability of the classifier to find all the positive 

samples. 
ὔὖὠ

Ὕὔ

Ὕὔ Ὂὔ
 

¶ Accuracy: the proportion of true results among the total 

number of examined cases.  
ὃὅὅ

Ὕὖ Ὕὔ

Ὕὖ Ὕὔ Ὂὖ Ὂὔ
 

¶ F1: the weighted  harmonic mean of precision and recall , 

between 0 (worst score) and 1 (best score).  
Ὂρ

ςὝὖ

ςὝὖ Ὂὖ Ὂὔ
 

¶ ROC AUC:  Area Under the Curve (AUC) of Receiver Operating Characteristic (ROC). In 

a ROC curve true positives are plotted against false positives at various threshold 

settings. A perfect classifier would have a ROC curve that goes straight up the y -axis and 

then along the x -axis. While a classifier with no power (by random guessing) w ill sit on 

the diagonal, and other classifiers falling in between, as illustrated in  Figure 3-5. 

Therefore, the area under the curve shows a classifier  with no power when its value is 

0.5, and a perfect classifier at 1.0.  

¶ Precision -Recall curve: this curve shows the tradeoff between precision and recall for 

different threshold values, as depicted in Figure 3-6. By changing the threshold  values 

different precision -recall ratios can gained.   

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3-5: ROC Curve  Figure 3-6: Precision -Recall Curve  
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3.6 Geocoding 

In this section, we discuss how traffic event -related  tweets can be linked to a location . A 

geocoding method is needed, as even though  tweet s can have their own location attribute  

(device location)  in the form of a geopoint, this only occurs in very rare cases. Based on our 

initial  findings, only 0.2% of the traffic event -related  tweets contains a geopoint.  

 

3.6.1 Approach  

With the help of our annotator , as described in Section  3.3, we collect one or a multitude of 

spatial indicators from tweets.  These spatial indicators are tagged with the following 

categories:  

¶ Place Location: Exact locations in the Netherlands that contain a geopoint, geoline, or 

geoshape.  

¶ Place Location Combination: Combination of òunnamedó areas, e.g., infrastructure  and 

natural environments, and ònamedó locations, e.g., cities and street nam es.  

¶ Place Road Section: Section of a road containing a start and end point, indicated by 

places and locations.  

¶ Place Road Direction: Combination of directional terms and a location.  

¶ Place Road Mile Marker : Right or left side of the road, in combination with mile marker  

number or road number.  

 

These spatial indicators bring the following challenges with them:  

¶ Contradiction: Spatial indicators can contradict each other , as they describe multiple 

places (e.g., ò#N247 near Edam accident, traffic redirected from Monnickendam via 

A7ó). 

¶ Confirmation:  Spatial indicators can coincide and provide a more precise description of 

the event location (e.g., òAccident with multiple cars on A13 near exit Ikeaó).  

¶ Scale: Spatial indicators can relate to different forms and  scales. An indicator can be a 

geopoint, geoline or geoshape. And it can vastly differ in size, e.g., Amsterdam (city 

level) and Noord -Holland (province level).  

¶ Ambiguity: Spatial indicators with the same name can be matched to different locations, 

e.g., òMichiel de Ruyterstraató is a street name that appears in five different cities. 
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Therefore, we design a model that computes the intersections of a multitude of spatial 

indicators in a tweet. Figure 3-7, depicts a high -level view of the geocoding model. We will go 

through each step of the model, with the help of the following traffic event -related tweet 

example:  

 

TE Tweet:  ò@vid vast op de #A4 thv McDonaldõs #Delft. Vermijd A4 richting Den Haag 
#Fileó (EN: @vid stuck on the #A4 near McDonaldõs #Delft. Avoid A4 in the direction of 
Den Haag #Trafficjam)  
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Figure 3-7: High -Level Geocoding Model  

 

1. Place mention extraction:  place related tokens are categorized in to our five predefined 

place categories. Each token within a plac e category can also relate to one of the following 

place sub categories: Location, Road Number, Mile Marker Number, and Road Side.  

Place labels: 

¶ Place Location Combination: #A4 thv McDonaldõs 

o Road Number: A4 

o Location: McDonaldõs 

¶ Place Location: #Delft  

o Location: Delft  

¶ Place Road Section: A4 richting Den Haag  

o Road Number: A4  

o Location: Den Haag  
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2. Geocoding: a geocoding approach is defined for each place category.  Note, that queries are 

restricted to be within the borders of the Netherlands. Any locational mentions of places 

outside of the Netherlands are therefore being discarded.  

a. Place Location : a place that per definition must have a location, and therefore can 

be used to query the Google Places API to retriev e a bounding box, if its 

subcategory is òLocationó. When its subcategory is òRoad Numberó or òMile 

Marker  Numberó, a query is made to our  road database, as the Google Places API 

does not provide road number based geolines. Our road dat abase consists of road 

numbers , mile marker numbers, road sides, and geopoints, based on data from 

Rijkswaterstaat Ministry of Infrastructure and Water Manage ment 23.  

Example: #Delft = bounding box.  
b. Place Location Combination : a place and location that have some sort of relation 

to each other. Therefore, a combination of place tokens is used to query the Google 

Places API, except when one of the tokens is a òMile Marker  Numberó, as the 

Google Places API cannot work with th is category. In that case the tokens are to 

query either the Google Places API or road database by themselves .  

Example: #A4 McDonaldõs = list of bounding boxes. #A4 = geolines. McDonaldõs = 
list of bounding boxes.  

c. Place Road Mile Marker : these token combination s can be used directly to query 

our road database, to retrieve one or multiple geopoints, or a geoline.  

d. Place Road Section: the combination of place indicators is used to query t he Google 

Directions API to retrieve geolines (note that we dilate geolines retrieved from the 

Google Directions API and the road database with a radius of 100m, in order to 

compensate for multi -lane roads) . Where the first token indicates the start of a 

geoline and the last token the end.  If one of the tokens is not of the subcategory 

òLocationó, but of the category òRoad Numberó or òMile Marker Numberó the road 

database is queried for a geopoint instead. In the case of a òRoad Numberó the 

result could be a geoline, which cannot be used in the Google Directions API, 

therefore the centroid of this geoline is taken instead. This way a road section can 

be derived in every case.  

Example: A4 Den Haag Ą start: (A4, Den Haag), end: Den Haag = geolines.  
e. Place Road Direction: the token subcategory  òLocationó, òRoad Numberó, or òMile 

Marker  Numberó defining the pointed to direction is used to query the Google 

Places API and road database by itself. Additionally, the closest preceding place 

category is used as a starting point, so that the Google Directions API can be 

queried , in the same way as the Place Road Section approach .  

f. Device Location: even though geotagged t weets are rare, the ones that are 

geotagged can provide valuable information.  

 

  

                                                
23 https://sites.google.com/site/hectometerpalendatanederland/  
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3. Intersecting Locations:  the location linking approach results in a list of possible relevant 

locations per place category. However, we want to find the most relevant location (s), 

instead of linking the tweet to all possible lo cations that can be found in  a tweet. In order 

to find the most relevant location(s), we make the following assumption: all spatial 

indicators within a tweet are of equal importance and add to the descrip tion of one or 

multiple event locations. Therefore, for each place category, we intersect the found 

locations with each other.  Note that an additional radius of 250  meters is added to the 

places, to increase the chance of intersection. After testing a vari ety of radiuses on a 

selection of tweet reports, this radius provided the best balance in keeping the precision 

of the location without missing out on possible relevant intersections.  Next, we intersect 

the results of these intersections with each other.  This results in  one or multiple 

intersected locations , which we define as the locations the traffic events in the tweet are 

most likely referring to. These locations  based on rules a, b, and c, have been visualized 

in  Figure 3-9. The location based on ru le d is visualized in  Figure 3-8. The following rules 

apply to each location:  

 

a. ὖὰὥὧὩ ὒέὧὥὸὭέὲ ὅέάὦὭὲὥὸὭέὲὃτ ȟὓὧὈέὲὥὰὨί᷊ Πὃτ᷊ ὓὧὈέὲὥὰὨί  
b. ὖὰὥὧὩ ὒέὧὥὸὭέὲΠὈὩὰὪὸ 
c. ὖὰὥὧὩ ὙέὥὨ ὛὩὧὸὭέὲὃτ ȟὈὩὲ ὌὥὥὫ  
d. ὝὶὥὪὪὭὧ ὉὺὩὲὸ ὒέὧὥὸὭέὲὖὰὥὧὩ ὒέὧὥὸὭέὲ ὅέάὦὭὲὥὸὭέὲ ᷊
ὖὰὥὧὩ ὒέὧὥὸὭέὲȟὖὰὥὧὩ ὒέὧὥὸὭέὲ ὅέάὦὭὲὥὸὭέὲ ᷊  ὖὰὥὧὩ ὙέὥὨ ὛὩὧὸὭέὲȟ
ὖὰὥὧὩ ὒέὧὥὸὭέὲ ᷊ ὖὰὥὧὩ ὙέὥὨ ὛὩὧὸὭέὲ   

 

 

 

 

Our defined model of geocoding, enables us to transform traffic event -related  tweets into one 

or multiple traffic event -related  locat ions. The presented example shows  how three locations 

can be extracted from a tw eet containing two mentions of  traffic jam events. It shows a 

solution for contradicting spatial indicators by allowing a tweet to be linked to multiple 

locations. Coinciding spatial indicators are also taken into account by the predefined 

annotation rules and  intersection of places. The intersections also help with the scaling 

problem, as it scales a city level indicator (Delft) back to a smaller scaled polygon within Delft 

(Place Location Combination). Ambiguity is also tackled by  the intersection, e.g., the 

ambiguous term McDonaldõs is only used in combination with less ambiguous locations as A4 

and Delft.  

Figure 3-9: Locati on Linking Approach (a, b, c)  

Figure 3-8: Location Linking Approach (d)  
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3.6.2 Evaluation  

We evaluate our geocoding approach on a randomly selected sample of 100 traffic event -

related  tweets. By using our geocoding  approach, location s are calculated for each tweet. As 

place mentions in tweets are highly ambiguous, a geocoded location cannot be either correct 

or incorrect. Therefore, each tweet is evaluated on how well the geocoded locations suit the 

contents of the tweet, by ranking i t into one of four categories:  

 

Category 1:  The geocoded result covers each place 

indicated in the tweet and includes no irrelevant 

locations, as shown in  Figure 3-10. 

Example: #N201 hmp 28.0 rechts vrachtauto verzakt in 
de buitenberging . Rijstrook 2 afgesloten . @vid 
@ANWBverkeer https://t.co/sGAVpLHjTa  
(EN: N201 hmp 28.0 right truck subsided in the out side 
storage . Lane 2 closed . @vid @ANWBverkeer 
https://t.co/sGAVpLHjTa ). 
 

 

 

 

 

 

Category 2: The geocoded result covers each place indicated in the tweet, but also includes 

irrelevant locations, as shown in Figure 3-11. 

Example: Afrit 7 en 8 #a 28 zijn glad ! Utr ri Amersfoort (EN: Exit 7 and 8 #a28 a re slippery ! 
Utr to Amersfoort ) 

 

 

 

 

 

 

 

 

 

  

Figure 3-10: Geocoding evaluation category 1  

Figure 3-11: Geocoding evaluation category 2  
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Category 3: The geocoded result covers only part of the places indicated in the tweet, as shown 

in Figure 3-12. 

Example: Knijpbrug in #Hoogezand heeft er geen zin meer in , verkeer staat muurvast aan 
beide kanten @provgroningen @112groningennl (EN: Knijpbrug in #Hoogezand is not feeling 
it anymore, traffic is deadlocked on both sides  @provgroningen @112groningennl ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Category 4: The geocoded result covers no places indicated in the tweet, as shown in Figure 

3-13. 

Example: @meldkamervid het is weer raak op #a10 thv s109 2x   (EN: @meldkamervid 

it is a hit again on #a10 near s109 2x  ) 

 

 

 

 

 

  

Figure 3-12: Geocoding evaluation category 3  

Figure 3-13: Geocoding evaluation category 4  
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3.7 Traffic Event Description  

In this section , the traffic event description step is discussed, in which a rule -based approach 

is used to cluster related information from TE tweets, Waze events, TomTom events and 

DiTTLa b traffic data. Hereafter , TE tweets, Waze events , and TomTom events will be 

referred to as a traffic event report s. This clustering step will eventually result in  the 

detection of traffic events. The event category, location and time period are used to conduct 

the clustering. The rule -based clustering approach works as follows. First, a traffic event 

described by a newly incoming traffic event report is compared to  the previously reported 

traffic events. This comparison can have one of two outcomes:  

 

¶ Match to existing traffic event  cluster : i f the newly incoming traffic event report lies 

within the categorical, locational and temporal extent , then the traffic event report is 

added to the existing traffic event cluster.  

¶ No match to existing traffic event cluster:  i f the newly incoming traffic event report 

does not lie within the categorical, locational and temporal extent, then a new traffic 

event cluster is created. This traffic event cluster contains the categorical, locational 

and temporal properties of the newly incoming traffic event.  

 

Matching is based on a rule -based approach, in which a rule specifies the categorical, spatial 

and temporal  extent, used to assert if the new traffic event report should be part of an existing 

traffic event cluster. A rule can thus be described as a triplet of the form:  

 

(traffic event category, radius/dilation, time span) 

 

In which the traffic  event category i s one of the 13 event categories described in Section 3.3.1. 

Note that we used TomTo m and Waze to co-create these 13 event categories for the tweet  

annotator. This means that these categories can be used to ma p TomTom events, Waze 

events, and TE tweets to traffic events clusters. We use a radius or dilation drawn around 

either geopoints or geolines/geoshapes that represent the spatial location of a t raffic event. 

This is done because of the possible delay existing between the traffic event location and the 

location of the creation of the traffic event report . A timespan calculated in minutes from the 

creation time of the traffic event report , is used to represent the temporal extent of a traffic 

event. We use a timespan, because the time extracted from a traffic event description does 

not necessarily represent the exact time a traffic event took place.  

 

Let us take a look at the following exa mple rule : (Event Enforcement, 250m, 30min) .  

This rule asserts that for a new  traffic event report to match to this existing cluster, it must 

have a category that can be matched to the òEvent Enforcementó category. For example, a 

Waze event with the categ ory òPoliceó can be matched to the òEvent Enforcementó category 

as police is a type of enforcement.  This rule further asserts, that a new traffic event report 

must be within a range of 250 meters, and within a time interval of 30 minutes.  

 

When a traffic event report successfully matches an existing traffic event cluster, the spatial 

and temporal  information have to be merged. In this case, traffic event reports would only 

have a location in the form of a geopoint, they could be merged to a weighted average location. 

A 1:N ratio, where N is the number of associated reports to a traffic event cluster, could then 

be applied to the weights between new traffic event reports and the existing traffic event 
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cluster. By applying such a ratio, it is ensured that all traffic event reports have the same 

impact on the average traffic event location.  

However, in our case locations can also take the form of geolines, and geoshapes. Therefore, 

a different  spatial me rging  approach has to be taken . We will elaborate the model, with the 

help of the following traffic event -related  tweet, and simplified Waze, and TomTom examples  

listed below : 

 

¶ TE Tweet  Report  1:  

o Text: ò@vid ongeluk op de #A4 thv McDonaldõs #Delft. Vermijd A4 richting Den 
Haag #Fileó (EN: @vid accident on the #A4 near McDonaldõs #Delft. Avoid A4 in the 
direction of Den Haag  #Trafficjam)  

o Category: Event Accident, Event Traffic Jam  
o Location : geoshape 
o Event date : 2018-03-13T10:00:00Z 

¶ Waze Event  Report : 

o Category : ACCIDENT  
o Subcategory: ACCIDENT_MINOR  
o Location: geopoint (dilated with a radius of 100  meters)  
o Creation date: 2018 -03-13T10:05:00Z 

¶ TomTom Event  Report : 

o Category: Jam  
o Location: geoline  (dilated with a radius of 100  meters)  
o Creation date: 2018-03-13T10:07:00Z 

¶ TE Tweet Report 2:  
o Text: òZojuist kop-staartbotsing gezien bij Delft, viel gelukkig mee.ó (EN: Just saw 

a rear -end collision near Delft, could have been worse.)  
o Category: Event Accident  
o Location: geoshape 
o Event date: 2018-03-13T10:08:00Z 

 

Figure 3-14 depicts the approximate visualization of the locations of thes e traffic event 

report examples.  

 
 

 

 

           

 

 

 

 

 

Figure 3-14: Traffic Event Report Location Examples  














































































































































