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ABSTRACT

Many research and industrial communities are betting on LoRa

to provide reliable, long-range communication for the Internet of

Things. This new radio technology, however, provides widely het-

erogeneous coverage; a LoRa link may span hundreds of meters

or tens of kilometers, depending on the surrounding environment.

This high variability is not captured by popular channel models

for LoRa, and on-site measurements—a common alternative—are

impractical due to the large geographical areas involved.

We propose a novel, automated approach to estimate the cov-

erage of LoRa gateways prior to deployment and without on-site
measurements. We achieve this goal by combining free, readily-

available multispectral images from remote sensing with the right
channel model. Our processing toolchain automatically classifies

the type of environment (e.g., buildings, trees, or open fields) tra-

versed by a link, with high accuracy (>90%) and spatial resolution

(10×10m2
). We use this information to explain the attenuation ob-

served in experiments. As signal attenuation is not well captured by

popular channel models, we focus on the Okumura-Hata empirical

model, hitherto largely unexplored for LoRa, and show that i) it
yields estimates very close to our observations, and ii) we can use

our toolchain to automatically select and configure its parameters.

A validation on 8,000+ samples from a real dataset shows that our

automated approach predicts the expected signal power within a

∼10dBm error, against the 20–40dBm of popular channel models.
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1 INTRODUCTION

The success of the Internet of Things (IoT) will depend fundamen-

tally on the ability to provide reliable communication to the billions

of devices that will monitor our cities and rural areas. Many RF

technologies are competing to achieve this goal; among these, LoRa

and, more generally, Low-Power Wide Area Networks (LPWAN)

are at the forefront of commercial interest. The reason is that LoRa

promises communication coverage spanning tens of kilometers; a

potentially high number of IoT devices can be covered by a single

gateway and with a simple star topology, simplifying deployment,

operation, and management of the communication infrastructure.

Problem and motivation. These potential advantages, however,

must be checked against reality: it is well-known that the perfor-

mance of a wireless link is intrinsically dependent on the environ-

ment it traverses—and LoRa is no exception. Open, urban and rural

areas attenuate and distort the wireless signal in very different man-

ners. Unfortunately, although there is plenty of anecdotal evidence

about LoRa links being much shorter than claimed, channel models

and empirical evidence are still largely lacking in the literature,

with the exception of a few preliminary works [8, 25, 28, 45].

One reason is that accruing the necessary empirical knowledge,

even for a well-defined and limited deployment, is significantly

more demanding with LoRa. In short-range technologies like the

IEEE 802.14.5 radios popular in wireless sensor networks and IoT,

the vagaries of wireless communication are assessed by deploying

a few nodes over a relatively small area (typically ∼100-500 m2
) to

obtain key radio propagation parameters required by channel mod-

els. These can later be used to estimate the coverage and reliability

of communication in the same (or similar) environment, which are

typically uniform across the deployment.

In contrast, performing the same on-site measurement cam-

paigns to assess LoRa long-range entails deploying nodes over

areas ∼10–100 km
2
, i.e., orders of magnitude larger, with a cor-

responding increase in logistical complexity and personnel effort.

More importantly, these results do not necessarily transfer directly

to similar environments. Indeed, unlike short-range radio links,

LoRa long-range links i) traverse multiple types of environments,

ii) whose spatial extension and sequence are highly variable, and

typically a priori unknown, in the large area under consideration.

Considering the thousands of LoRa gateways deployed world-

wide and the millions of km
2
they cover, here we ask ourselves:

How can we model LoRa links and estimate their quality
in a simple and low-cost manner?

The crux of the matter is that the actual performance of LoRa

links, and therefore the ability to model and estimate them before-
hand, strictly depends on local and specific features of the environ-
ment. These features are however difficult to obtain with on-site

measurements, due to the large scale of the target area. A key asset

of our approach is the use of remote sensing techniques to obtain

environment-specific information in a low-cost manner.

Key asset: Remote Sensing. Remote Sensing (RS) systems acquire

data (mainly images) over wide areas by exploiting the propagation

and reflection properties of electromagnetic waves. The target scene

is illuminated by a source of electromagnetic radiation, and sensors

mounted on satellites, airplanes or UAVs, measure the radiation



reflected by the objects in the scene. The acquired data enables the

automatic extraction of detailed information over a large-scale area.

Remote sensing is a very active area, with several systems in op-

eration [11, 29, 41], roughly distinct in two classes. Passive systems

(e.g., multispectral and hyperspectral scanners) mainly exploit the

sun as the source of radiation and measure the spectral response

of the objects across several spectral channels. The multidimen-

sional images acquired represent the “spectral signature” of the

investigated objects, enabling the extraction of information about

the composition of materials. Active systems (e.g., Light detection

and ranging, LiDAR, Synthetic Aperture Radar, SAR), generate a co-

herent radiation themselves and are able to capture also the vertical

structure of the scene (i.e., heights) exploiting the delay, amplitude

and phase of the reflected signal.

Remote sensing systems have been widely applied to large-scale

monitoring of the Earth surface, and their data exploited for a

plethora of services. These notably include the generation of land-
cover and land-use maps [24, 29], which classify each pixel of the

image with, e.g., the presence of man-made artifacts like buildings

and roads, or natural features like trees, vegetation, and water. It is

precisely this capability and related body of work that we leverage

to classify the types of environment traversed by LoRa links.

Contributions and relevance. The key contribution of this paper

is a novel, automated approach to estimate the quality of LoRa links

prior to deployment and without on-site measurements. We achieve

this goal by performing a structured analysis of the LoRa link.

First, we analyze empirically the maximum range of LoRa in

free space with a weather balloon (§3), and use that evaluation

as a baseline to gain insights about the negative effects of the

environment at ground level (§4).

Second, motivated by the insights gained in our initial exper-

iments, we propose a dedicated processing toolchain (based on

Sentinel-2 multispectral images [1]), to automatically analyze the

types of environment traversed by LoRa links. Our system i) ex-
ploits automatic classification techniques to discern seven land-

cover classes typical in LoRa deployments (§5) with high accuracy

(>90%) and spatial resolution (10×10m2
), and ii) allows us to es-

tablish correlations between the type of land-cover and the Packet

Reception Rate (PRR) of links (§6).

Third, we analyze the models proposed in the literature for

LoRa [7], identify their shortcomings and propose a framework that

builds upon the Okumura-Hata empirical model, hitherto largely

unexplored for LoRa (§7). Our approach i) uses our remote sensing

toolchain to automatically select and configure the model parame-

ters, and ii) yields estimates that are very close to our observations.

Fourth, we validate the combined use of the Okumura-Hata

model and our toolchain on a large real-world dataset from “The

Things Network” (TTN) (§8). Our results show that we can estimate

the signal power in complex urban environments within a 10 dBm

error, compared to the 20–40 dBm error of existing models. This

confirms that our approach is a significant, albeit initial, step to-

wards the goal of predicting the quality of LoRa links over large

areas and in a completely automated fashion.

2 THE LORA LINK IN THEORY

Obtaining a long communication range with high power radios (e.g.
satellite), or a short communication range with low power radios (e.g.
ZigBee) does not defy intuition. Obtaining a long communication

range with a low power radio is less intuitive. Low-power long-

range technologies, including LoRa, build upon the key concept of

link budget to achieve this seemingly contradicting goal.

Wireless signals attenuate while travelling through free space.

The link budget, i.e., the difference between the output power at

the transmitter and the sensitivity at the receiver, determines the

maximum amount of attenuation that a signal can tolerate. Once

the signal strength falls below the sensitivity of the receiver, the

information cannot be decoded. A simple way to increase the range

of a signal is to increase the output power, but requirements from

technical standards and IoT scenarios prohibit that; devices should

use a very low power, to increase their lifetime. Thus, the only other

option to increase the link budget (and range) is to improve the

receiver sensitivity.

LoRa can achieve a high sensitivity: −140 dBm. To put this value

in context, consider a WiFi receiver with a sensitivity of −90 dBm:

the 50 dB difference means that LoRa can recover signals that are

10
5
times weaker. This property can increase significantly the

range of a link. Taking into account that the maximum output

power of WiFi and LoRa is 20 dBm and 14 dBm (in Europe), the

resulting link budget is 110 dB and 154 dB, respectively. Using the

well-known free-space path loss (FSPL) model for 2.4 GHz (WiFi)

and 868MHz (LoRa) signals, the aforementioned link budgets map

to ranges of approximately 3 km and 1400 km.

The FSPL ranges are upper bounds. In practice, all radio links

achieve much shorter ranges. For example, in real open scenar-
ios, WiFi can reach distances of ∼90m, and LoRa of ≥30 km [37].

This is approximately 3% of their free-space ranges (FSPL), still the

long-range advantage of LoRa in open spaces is overwhelming. The

problem arises when LoRa operates in urban or rural environments

where the signal needs to travel throughmultiple obstacles. In those

scenarios, the coverage of short-range signals, such as WiFi, could

vary by a factor of 5; but the range of LoRa links can vary by a

factor of 100 or more. This high variability is unique to low-power

long-range links, and creates complex and highly heterogeneous

coverage patterns that are hard to estimate.

3 THE BASELINE: OPEN-SPACE SCENARIOS

LoRa claims long ranges, but how long can they be in the wild? And

under what conditions can they be achieved? A proper link analysis

requires evaluating an important baseline: identifying the longest

range by performing Line-of-Sight (LOS) experiments. Researchers

are devising ingenious ways to analyze LoRa links in big open

spaces, e.g., installing a gateway close to a coastline and carrying a

node on a boat [37]. We use a high-altitude weather balloon. The

latter was launched on March 15
th
, 2017 on a clear afternoon and

was on-air for 3 hours covering a distance of 164.4 km. The balloon

carried a GPS receiver and a LoRa device registered to TTN. The

LoRa node in the balloon transmitted packets periodically with
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Figure 1: ESP vs. distance

for all gateways.
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Figure 2: Error between Friis

model and measurements.
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(a) Gid = 7 (5m)
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(b) Gid = 79 (38m)
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(c) Gid = 116 (11m)

Figure 3: ESP vs. distance for selected gateways.

spreading factor
1 SF = 7, bandwidth BW = 125 kHz, and coding

rate CR = 4/5.

For open spaces, the most accurate link model is given by the

Friis equation:

Prx = P tx + Gtx + Grx − FSPL (1)

where Prx is the expected received power, also dubbed the Received
Signal Strength Indicator (RSSI ); P tx is the transmission power; Gtx

and Grx
are the transmitting and receiving antenna gains, all in

dB(m) units. The last term is the free-space path loss:

FSPL = 20loд(d) + 20loд(f ) − 27.55 (2)

where d is the distance in meters and f is the frequency in MHz. In

our experiments, P tx =14 dBm and f = 868 MHz, and we assume a

worst-case scenario with no antenna gains, Gtx = Grx = 0.

Given that LoRa enables the reception of signals whose power is

up to 20 dB under the noise floor, LoRa defines a metric called the

Expected Signal Power (ESP) to obtain the energy of the signal. The

ESP can be derived from the RSSI and SNRmeasurements (available

from TTN) as per the following equation:

ESP[dBm] = RSSI[dBm] + SNR[dB] − 10 · loд10
(
1 + 100.1 SNR[dB]

)
(3)

Figure 1 reports the ESP received by all stations and the Friis model.

We collected 8578 packets from 141 TTN gateways; each color

represents the samples received at a particular gateway. Figure 2

reports the average error ± the standard deviation between the

Friis model and the measurements.

Our results show some interesting insights. First, in open spaces

it is not uncommon for LoRa to attain very wide coverages. Sev-

eral gateways provide a range between 50 and 200 km. Second,

at shorter distances (<50 km) the error is quite high. This occurs

because several samples fall significantly below the Friis model,

1SF = 12 provides the longest range, but also increases the on-air time of packets by a

factor of 32. Thus, SF = 7 is a lower bound on the maximum range and provides more

packet samples.

Table 1: Selected gateways with their integer ID (Gid ), TTN

ID (TTNid ), number of receptions (Nrx ), connection duration

(Tc ), and connection distances from-to [km] (Dc ).

Gid TT Nid Nrx Tc Dc
7 eui-0000024b080602ed 98 1h 30’ 0.01 - 93

79 eui-aa555a00080605b7 173 2h 45’ 2 - 151

116 eui-fffeb827eb5d8d35 79 1h 13’ 1 - 53

0 5 10 15 20 25 30
Distance [km]

Figure 4: Variation of communication ranges for LoRa links.

which indicates the presence of paths with high attenuation. The

attenuation is caused by the presence of obstacles, as we discuss

later in detail. At longer distances, the error decreases. Some gate-

ways consistently obtain long ranges, which indicates paths with

low attenuation.

To gain a better understanding about the cause of these dif-

ferences in coverage, we focus on 3 gateways, Gid ∈ {7, 79, 116}.

Table 1 summarizes some relevant characteristics, and Figure 3

shows the ESP vs. distance. We can observe that Gid = 79 fits very

well the Friis model, apart from some samples in the first kilo-

meters. In contrast, the trend observed for Gid ∈ {7, 116} presents

stronger decay rates. The reasons for this different performance are

the height of the gateway and the surrounding environment. The

best gateway, Gid = 79, is placed very high (38m), and its vicinity

consist of open agricultural fields. In contrast, Gid = 7 is placed at

only 5m height and in an area surrounded by residential buildings,

and Gid = 116 is placed at 11m and surrounded by trees.

This baseline evaluation provides two important insights. First,

the need to classify the attenuation of the surrounding environment

(§5 and §6). Second, the need to use a model that considers height

as an integral parameter of the propagation model (§7).

4 ASSESSING THE IMPACT OF OBSTACLES

In practice, LoRa will rarely be deployed in open spaces. In rural and
urban environments, LoRa signals travel through several obstacles,

e.g., foliage and buildings. In those cluttered scenarios, a large link
budget does not necessarily translate into a long coverage. Depending
on the obstacles that are encountered on a given direction, a large

link budget can be consumed rather fast, leading to short ranges.

For example, the link budget difference between WiFi and LoRa

is 44 dB. This extra budget can stretch a link quite far in an open

environment, but a brick wall can attenuate the signal by 10 dB; a

few walls can make the LoRa link disappear within 100 m.

To capture the joint effect of large link budgets and obstacles

on the variability of ranges, we collected 65821 samples from TTN

Mapper [2]. The traces were collected over one year (June 2016

to June 2017) from 5 TTN gateways placed at different heights in

various cities. The maximum communication range was 76 km, but

3
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Figure 5: Measurement sites (yellow dots) along four routes

(R1–R4) around TTN gateways (GA–GC).

98% of samples were within 20 km, with a median distance of 1.3 km

and 25
th
and 75

th
percentiles at 0.6 and 6 km, respectively (Figure 4).

Note that in urban environments, the range of LoRa links can have

a remarkable variability; two orders of magnitude or more. This

variance is not present on prior wireless technologies.

To analyze the effect of cluttered environments in more detail,

we perform controlled experiments over a relatively large area.

Based on these experiments, we provide a qualitative description

of the impact of the environment on the reliability of links.

4.1 Experimental Setup

The user device is based on a Dragino LoRa shield v1.3 embedding

a RF96 radio chip. The TX power is set to 14 dBm; the other LoRa

parameters (SF, BW and CR) are set as in §3.

The experiments took place across urban and rural areas of Delft,

The Netherlands. Measurements were taken every ∼1 km along

4 routes departing in different directions from a TTN gateway (GA)

chosen as reference (Figure 5). This gateway is placed inside a tall

building, 62m above ground. The shape of the routes is a com-

promise between the desire to follow a straight line and practical

limitations, e.g., fences preventing access to farming fields. The

tests were performed on June 7, 2017 (R1, R3) and June 12, 2017 (R2,

R4). Overall, we selected 23 measurement sites, 6 for each route

(except for R2), where the user device transmitted 30 packets, one

every 40 s. These packets were received by two other gateways

in range, GB and GC in Figure 5. For each received packet, the

dataset contains the GPS position and the information provided by

TTN: application and device IDs, packet payload, time of reception,

frequency, modulation scheme, data rate, coding rate, RSSI, SNR,

ID and GPS coordinates of the receiving gateway.

4.2 LoRa: A Long Transitional Region

Overall reliability. Figure 6 depicts the link reliability, i.e., the

packet reception rate (PRR), vs. distance. We can observe that, for

any distance under 6 km, we get a mix of link quality, from good

to poor. For short-range technologies, like those commonly used

in wireless sensor networks, the research community established

three clear communication regions [46]: connected (links with re-

liability close to 1), transitional (links with reliability between 0

and 1), and disconnected (no links). Even though short-range ra-

dios have anisotropic coverages, the above described regions still

0 2 4 6 8 10 12
Distance [km]

0

0.2

0.4

0.6

0.8

1

PR
R

Figure 6: Link reliability (PRR) vs. distance for three gate-

ways. LoRa provides only a single, long transitional region.
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Figure 7: PRR vs. distance for gateway GA.

appear because, probabilistically, the propagation properties are

the same in all directions; an environment does not change much

within a couple hundred meters. Longer links, on the other hand,

can see widely different environments depending on the direction

they travel; a big open park or a series of houses yield very differ-

ent ranges. On a kilometer scale, there is no clear connected (i.e.,

reliable) region. We then formulate the following insight:

The large budget of LoRa links does not yield homogeneous cov-
erage, but a long “transitional region” with complex coverage.

This wide variability leads to highly irregular coverage patterns,

like those later shown in Figure 19. We now look deeper into this

phenomenon and qualitatively relate it to the type of land cover.

Reliability per gateway and route. We focus our analysis on

gateway GA, as the data for GB and GC provide similar insights.

Figure 7 shows the PRR vs. distance for each route. For the

gateway of interest (GA), R1 shows a short range (<3 km) because it

unfolds only through buildings. R2 and R3 mostly traverse farming

fields and exhibit better reception, with the exception of a single

site in R2 (at ∼3 km) with PRR = 0 further investigated in §6. R4

is an interesting case. Even though it also unfolds across farming

fields, almost none of the packets are received at GA. We found

out that GA is placed indoors and near the NW side of the building

(i.e., pointing towards R1 in Figure 5). Therefore, the bulk of the

building sits exactly in between the gateway and the measurement

sites along R4, yielding a significant shielding. In our evaluation

(§8) these disagreements will show as estimation errors.

4



Figure 8: Sentinel-2 multispectral images for the area of in-

terest (tiles 31UET, 31UFT, and 31UFU).

Table 2: Land-cover classes.

n
l
o
s

building buildings

greenhouse greenhouse structures

trees trees

l
o
s

field farming field or grassland

soil bare soil

road streets, roads,and highways

water lakes and rivers

These preliminary tests highlight the value of remote sensing

to acquire information about how cluttered is the landscape; we

describe next the toolchain we develop towards this task.

5 EXTRACTING LAND COVER MAPS

FROMMULTISPECTRAL IMAGES

We describe how we automatically extract land-cover classes from

multispectral images acquired via the Sentinel-2 satellite constella-

tion, a last-generation remote sensing system of the European Space

Agency (ESA). Images are acquired at global scale with high spatio-

temporal resolution: i) every 2–3 days at mid-latitudes ii) across
13 spectral bands in the visible, near-infrared, and short-wave in-

frared range, and iii) with a spatial resolution of 10–60 m, depend-

ing on the spectral band. These data can be downloaded from ESA

archives free of charge.

We extract accurate land-cover maps by exploiting the spectral

response of different land-cover classes and applying supervised

classification techniques based on machine learning. We consider

kernel based approaches, specifically pixel-based Support Vector

Machines (SVM) [12, 23, 24, 31], due to their good properties, includ-

ing high generalization capabilities, high classification accuracy,

and relatively simple design through few control parameters.

Dataset. We perform classification on 3 multispectral images ac-

quired on May 26, 2017. Each image (hereafter tile) covers a ground
area of ∼100×100 km2

; together, they cover the full area (Figure 8)

where the experimental data discussed in §4–§8 were collected.

Land-cover classes. We define the land-cover classes (Table 2)

based on three criteria: i) presence in the target area ii) usefulness
in characterizing LoRa links, and iii) possibility to discriminate

them in the multispectral images [33, 36]. We further divide them

in two groups, depending on whether they introduce significant

attenuation (nlos) or instead do not affect signal propagation (los).

Automatic classification. Our system automatically maps each

10×10m2 pixel in the images to the land-cover class that bestmatches

model 
selection classification

training set test set
land-cover 

map
multispectral

images

SVM 
training

C,γ( )

Figure 9: Automatic classification system.

a predefined criterion based on spectral features, i.e., the spectral

values of the raw pixels, the Normalized Difference Vegetation In-

dex (NDVI) and the Normalized Difference Water Index (NDWI)

computed for each pixel.

As the problem involves multiple non-linearly-separable classes,

it is solved via non-linear kernel methods. Specifically, we use

SVMs with Radial Basis Function (RBF) kernel [13], along with

the one-against-all (OAA) strategy, a state-of-the-art multiclass

approach [9].

The toolchain (Figure 9) requires a training set, i.e., a small set of

reference labeled pixels manually associated to a land-cover class

via photo interpretation. This dataset is used for model selection

and the training of the SVM in the learning phase of the classi-

fier. Once the SVM is trained, it is applied to all considered tiles

for automatically producing the land-cover map. We classify each

tile independently after collecting tile-specific training (200 sam-

ples) and test (100 samples) sets for each land-cover class. The test

samples are used for validating classification accuracy.

The model selection phase is crucial in determining application-

specific optimal SVM tuning parameters (C,γ ) to use in the other

two phases. C is the regularization parameter determining the

penalty for mis-classified samples [10, 43], while γ is the width

of the RBF kernel [13]. The selection aims at i) accurately discrimi-

nating the classes, and ii) minimizing the expected generalization

error. We perform on each tile a grid-search model selection based

on 5-fold cross-validation [6], testingC ∈ [100, 1000] in increments

of 20 and γ ∈ [0.1, 2] in increments of 0.1 [16]. The training set is

randomly divided into 5 folds; the SVM is trained on 4 folds and

validated on the 5
th
. This process is repeated 5 times for each (C,γ )

pair, by swapping the training and validation folds, and the corre-

spondent average classification accuracy is computed. The (C ,γ )
with the best cross-validated estimate of classification accuracy is

selected and used in SVM training and classification, performed

with standard tools and techniques and not discussed further.

Classification accuracyWe evaluate the classification of our test

set in terms of i) Overall Accuracy (OA), the percentage of test pixels
correctly classified ii) Producer’s Accuracy (PA), the percentage of
correctly classified pixels for the given class iii) User’s Accuracy
(UA), the percentage of correctly classified pixels computed w.r.t. the

overall number of pixels associated to the given class. While OA

focuses on the entire dataset, PA and UA are per-class metrics

relating to the error of omission and commission, respectively.

Table 3 shows high (≥ 92%) overall accuracy for all three tiles.

This is visually confirmed by Figure 10, which compares a true

color composition of the RGB bands from a portion of tile 31UET

vs. the corresponding land-cover map. On the other hand, a few

mis-classified pixels for building and road can be noticed, e.g.,

along the highway. Indeed, the worst performance is for building

5



Table 3: Classification accuracy metrics, per tile and per

class, estimated on the test samples.

31UET 31UFT 31UFU

OA PA UA OA PA UA OA PA UA

building

98.3

92.5 96.3

92

70 77.7

95

86 92.4

greenhouse 100 100 100 100 100 99

trees 100 99.5 100 97 97 99

field 99.5 100 95 96 99 94.2

soil 99.5 98.5 98 88.3 98 85.2

road 97 94.2 80 82.5 86 98

water 100 100 100 100 100 99

and road on tile 31UFT (Table 3); by comparing their PA and UA

we can deduce that these two classes are often confused, likely

due to relatively similar spectral signatures of the related materials.

A similar yet less marked trend occurs in tile 31UFU. Confusing

building and road pixels may seem concerning, as these classes

affect communication differently. However, this (still acceptable)

error occurs sparsely on 10 × 10 m
2
pixels (Figure 10b), a very small

scale w.r.t. the long (km) range of LoRa. Therefore, the error does

not significantly affect the analysis in the next sections.

6 EXPLOITING LAND-COVER KNOWLEDGE

Armed with the land-cover classification enabled by the remote

sensing toolchain, we now revisit the empirical observations in §4;

instead of intuitive and qualitative arguments about landscape

characteristics, we provide quantitative and detailed evidence. For
each of the measurement sites (Figure 5), we use our automated

classification (§5) to retrieve the sequence of land-cover classes

present on each link between the transmitting device and receiving

gateway, and compute the occurrence (in percentage) of each class.

Measurement routes vs. land cover. Figure 11 shows the results

for all 7 classes considered. Each plot focuses on a route, with one

subplot for each measurement site, ordered in increasing distance

w.r.t. the gateway. We omit R4 as it exhibits very poor reception, as

discussed earlier.

Water Field Soil Road Greenhouse Building Trees

(a) (b)

Figure 10: True color composition of red, green, and blue

spectral bands (a) and classification map (b) of a 4 × 5 km
2

subset of the area of interest.

Reliability vs. land cover. In Figure 7, R1 has the shortest range.

Figure 11a shows that this route has a heavy presence of the high-

attenuation building class, 32% to 61% depending on the site. R3,

on the other hand, has the longest and most reliable link. Along

this route, field and road prevail, which can be considered open

spaces. field covers 38–62% of each link, and road covers 10–26%

(Figure 11c). R2 has an intermediate quality, with a comparable

presence of high- (building and trees) and low-attenuation (field

and road) classes (Figure 11b).

These quantitative data support our previous considerations

about reliability observed in Figure 7. The trends of PRR vs. distance

diverge significantly on R1 and R3 at 3 km. This is reflected in the

predominance of different land-cover classes along the links, i.e.,

building on R1 and field on R3 (Figure 11). Similar considerations

can be drawn by comparing the PRR for distances ≥ 3 km of R1 and

R2 and observing that the two routes are dominated by building

and field, respectively.

As these two classes (building and field) are predominant in

our dataset, we investigate further the correlation between their

presence and the link performance. Figure 12 helps visualizing the

impact of the land cover on the signal attenuation. We differenti-

ate the data obtained in §4.1 between measurement points whose

links are dominated by building and field classes. We observe

that the ESP, and consequently
2
the PRR, have a noticeably better

performance for field than for building.

Impact of obstacle height. Figure 7 shows that one measurement

site along R2 (2.8 km) exhibits no packet reception from GA, despite

being field-dominated as the the rest of the route. We observe

that the composition of land-cover classes in the vicinity of the

transmitter presents peculiar characteristics in this site. Figure 13a

shows that field is predominant on the overall path (top), while

trees is present for 41% along the first kilometer (center) and 100%

in the first 50 m (bottom). Trees are exactly in front of the TX

device (held at 1.5 m height), and completely obstruct the line of

sight towards GA. It is interesting to compare against the next

measurement site along R2 (3.1 km), where PRR = 0.8 (Figure 7).

Figure 13b shows that in this case field remains predominant at

all distances, including next to the TX device.

We therefore observe that, in addition to the height of transmit-

ting and receiving devices (§3), the height of obstacles belonging to

nlos classes plays a role in determining link quality. As mentioned

in §1, passive remote sensing does not capture obstacle height,

which could instead be derived automatically with, e.g., LiDAR,

whose data is however less pervasive (and much more expensive)

than multispectral images. In §8, we propose a simple geometric

approach to attribute more weight to the obstacles in the vicinity of

the end-device. Alternately, other sources of information could be

exploited, e.g., cadastral maps for building or forestry surveys for

trees. However, even in absence of these, the detailed horizontal

structure extracted from high-resolution land-cover maps already

enables accurate estimates, as shown in §8.

2
The PRR is a function of the ESP (or RSSI) and it depends on the response of the radio

receiver. We do not delve into those details in this paper as they are not relevant for

our discussion.
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Figure 11: Occurrence of the land-cover classes in Table 2 along the links between the user device and gateway GA along routes

R1–R3. Each subplot concerns a measurement site at the distance shown from GA.
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Figure 12: Reliability and power vs. distance for building

and field dominated links.
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Figure 13: Occurrence of land-cover class at different vicini-

ties from the TX device, for two peculiar sites on R2.

7 MODELING THE IMPACT OF LAND COVER

It is now quantitatively evident that a different combination of land

cover characteristics results in a very different packet reception,

due to differences in signal attenuation. Can we predict these trends
with the land cover knowledge distilled by the automated toolchain

relying on satellite images? We provide a positive answer in this

section, corroborated by the validation on real-world data in §8.
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Figure 14: ESP vs. distance for measurements (dots), free-

space model (dashed line) and Bor’s model (solid line).

7.1 A Model that Needs Measurements

In §3, we discussed the free-space model (Eq. 1). That model only

considers the attenuation in free space, FSPL (Eq. 2). Bor et al. [7]

builds on top of a more realistic model called log-normal shadowing

model [39] to analyze LoRa links:

PL[dB] = PL(d0) + 10 · n · loд10

(
d

d0

)
+ Xσ (4)

Prx = P tx +Gtx +Grx − PL[dB] (5)

where d is the distance from the transmitter, PL(d0) is the path loss

at a known reference distance d0, n is the path loss exponent of the

environment and σ is the standard deviation of a zero-mean Gauss-

ian random variable X . This model captures the attenuation (path

loss) of the environment, but it requires empirical data. Based on

an indoor building environment, Bor et. al. perform measurements

and estimate these parameters as PL(d0) = 127.41 dB, n = 2.08, and

σ = 3.57 at a reference distance d0 = 40 m.

Figure 14 compares the expectation (mean) of the Bor model,

the free-space model, and all the ESP measurements for the data

we gathered in §4.1. The free space equation (Eq. 1), accurately

models the behavior of LoRa links in free space, but it overestimates

the received power by ∼20 dBm, on average, because it does not

consider the effect of obstacles. The Bor model, on the other hand,
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Table 4: Least-square estimate of path loss exponent n, stan-
dard deviation σ of the gaussian random variable Xσ and

average error between measurements and fitted model.

subset n σ avg err [dB]

GA nlos 3.34 3.63 5.21

GB nlos 3.89 6.64 7.22

GA los 3.11 3.39 5.79

GC los 2.84 3.39 5.14

severely underestimates signal strength. This occurs because the

this model is suited solely for the particular environment where

it was trained, as stated by the authors, and that environment is

particularly harsh. Considering that their PL(d0) is 127.41 dBm at

40m, and the LoRa budget is 140 dB, the link has already lost most

of its budget at that short distance.

The performance of the log-normal shadowing model, i.e., the

basis of the Bor model, can improve significantly if we train it with

the data we gathered. To obtain a more stable and accurate path

loss reference PL(d0) in Eq. (4), we use a distance d0=1m [19, 39].

With 200 samples we obtain a PL(d0) = 23.9 dB with a standard

deviation of 1.1 dB. To obtain the n and σ propagation parameters,

we use a least mean square approximation based on Eq. (4) and (5).

The parameters we use are P tx = 14 dBm for the transmission

power, and Gtx = Grx = 2 dBi for the antenna gains
3
.

Table 4 reports the results we obtain for the path loss parameters

along with the average error in dB between measurements and the

fitted model. Hereafter, we group the land-cover classes according

to their effect on communication links, i.e., into the los and nlos

macro-classes of Table 2. The curve fitting is done separately for

each gateway/class combination. We omit the combinations GB/los

and GC/nlos due to the very few measurements available. We

observe that n is much larger in nlos than in los ([3.34, 3.89] vs.

[2.84, 3.11]), coherently with the stronger attenuation induced by

the former class. Moreover, for the same class, n increases as the

gateway height decreases, e.g., n = 3.34 for GA/nlos (62 m) vs.

n = 3.89 for GB/nlos (6 m). The value of σ and the average error

are generally ∼3 dB and ∼5 dB, respectively, except for GB/nlos.

This is due to the high variability of the ESP measured in the site

next to GB (Figure 5), caused by dynamic components (e.g., cars)

across this very short link (67 m).

The results can be visually evaluated in Figure 15a, where each

fitting curve is represented with the color of the corresponding

measurement. The chart shows that trends are captured well. Inter-

estingly, the fitting curve for GB/nlos is the one best approximated

by Bor’s model, as the land cover in the former is similar to the one

where the latter model was derived.

7.2 A General Model

The previous section reasserted the impact of land-cover on com-

munication, but the model requires training data. Instead, our goal

is to derive a priori accurate estimates of the expected received

power, based on knowledge of the land cover and an appropriate

general model. Further, our results also highlighted the interplay of

3
GA mounts a typical half-wave dipole antenna; we assume that also GB and GC

mount an antenna with similar characteristics and gain.
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(a) Free-space and Bor models.
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Figure 15: ESP vs. distance and fitting curves for each gate-

way and land-cover macro-class.

landscape with the gateway height, which must therefore be taken

into account by model estimates.

We tackle both concerns by using the Okumura-Hata model [21,

34, 39], widely applied in the context of cellular communications.

The key advantage of this model is that it provides equations that

can be selected based on the properties of the surrounding envi-

ronment. The model only needs as input the type of environment,

which is provided by our automated tool. The Okumura-Hata model

relates the height of transmitter and receiver hm and hb (m), their

distance d (km), and transmission frequency f (MHz) based on the

following equation determined empirically:

LU [dB] = 69.55 + 26.16 loд10(f ) − 13.82 loд10(hb )

− a(hm ) + (44.9 − 6.55 loд10(hb )) loд10(d)
(6)

This basic model is then adapted with a correction factor a(hm )

depending on the environment where the communication link is

placed. Considering that we have two land-cover macro-classes

(Table 2), we use the two equations (urban and suburban) that best

match from the Okumura-Hata set:

• Urban model. If our automated toolchain determines that

the link path is dominated by the nlos class, we use the

correction factor below for Eq. (6):

a(hm )[dB] = (1.1 loд10(f ) − 0.7)hm

− (1.56 loд10(f ) − 0.8)
(7)

• Suburban model. If our automated toolchain determines that

the link path is dominated by the los class, we use the fol-

lowing equation:

LSU [dB] = LU − 2

(
loд10

(
f

28

))
2

− 5.4 (8)

In our case, the transmitter height is hm = 1.5 m, while the re-

ceiver height is hb = 62 m for GA and hb = 6 m for GB. The height

of GC is unfortunately not available from TTN. Figure 15b com-

pares the estimates obtained in this way with the fitting described

in §7.1. The curves are very close, with a difference ∼3 dB; the aver-

age difference is 1.13 dB for GA/nlos (urban), 3.33 dB for GA/los

(suburban) and 3.36 dB for GB/nlos (urban).

This result is significant under two respects. On one hand, it

shows that the Okumura-Hata model can accurately capture the

characteristics of LoRa communication signals; to the best of our

knowledge this result is hitherto unreported in the LoRa literature.

We further validate this result to a larger scale in the next section.

On the other hand, the Okumura-Hata model requires knowledge
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Figure 16: Land-cover analysis (a) on the whole link

path (path) and (b) on the link portion that intersects

objects given a threshold TH on their average height

(intersection).

about the environment surrounding the links being estimated. Nev-

ertheless, our results show that the toolchain described in §5 can be

effectively used to easily and automatically select the appropriate

variant of the Okumura-Hata model based on land cover classes,

therefore greatly simplifying its practical application.

8 VALIDATION “IN THEWILD”

In this section, we validate the approach presented in §7.2 for the

automatic estimation of ESP in LoRa links. We compare our predic-

tions against real traces from TTN. Our validation i) predicts the
expected ESP by exploiting the combination of the Okumura-Hata

model and remote sensing data, and ii) shows quantitatively that

LoRa communication range is strongly not isotropic.

8.1 Dataset & Approach

The TTN dataset was collected through the TTN Mapper applica-

tion. The gateways and end-devices provide GPS coordinates. This

data set is different from the one used in §4.1. We consider data

collected over one year, from June 2016 to June 2017, for 5 gate-

ways in The Netherlands; the number is limited by difficulties in

retrieving information about the gateway height. Our estimation

approach targets communication in outdoor scenarios, therefore
we consider only traces associated to end-devices whose height is

≤2m; devices at higher altitudes are likely transmitting from inside

buildings. We consider 8642 traces overall. The number of traces

for each gateway is reported in Table 5 together with the gateway

ID and height.

As stated in §7.2, our automated tool needs to find the dominant

land cover to select between the urban (nlos) or suburban (los)

equations. We consider two prediction approaches to estimate the

dominant land cover, as shown in Figure 16: a) path (Figure 16a),

where we consider all the land cover between the end device and

the gateway, and b) intersection (Figure 16b), where we consider

only the land cover surrounding the end-device. The intersection

approach is considered to capture in a better manner the effect of

obstacles in the vicinity of the end-device, as discussed in §6.

8.2 Estimation Accuracy of ESP

We quantitatively evaluate the prediction accuracy of path and

intersection by comparing each per-link estimate of ESP against

the corresponding real value. For intersection, the threshold TH

Table 5: Gateways: integer identifier (Gid ), TTN identifier

(TTNid ), height [m] (Hgw) and number of samples (#samples)

for end-device height ≤2m.

Gid TT Nid Hgw #samples

1 eui-0000024b080e015d 100 3010

7 eui-aa555a000806047a 79 1235

8 eui-aa555a00080605b7 38 3619

11 eui-0000024b080e015b 32 365

13 eui-0003ffff1d09ce86 23 413

Table 6: Estimation error on ESP: average [dBm] (avg) and

standard deviation [dBm] (stdd) for path, intersection

(TH = 10m), as well as free-space and Bor models.

path intersection free-space Bor

Gid avg stdd avg stdd avg stdd avg stdd

all 8.73 6.67 8.71 6.62 32.24 10.61 33.53 10.71

1 9.73 8.01 9.64 7.69 25.66 9.93 40.58 10.59

7 7.11 5.73 6.53 5.25 32.18 6.58 33.91 6.63

8 7.90 5.36 8.03 5.56 35.68 8.36 29.92 8.31

11 10.14 5.55 9.67 5.25 42.58 8.43 22.97 8.46

13 12.28 7.22 13.63 7.69 43.22 8.28 21.97 8.17

represents the average height of objects (e.g., buildings) expected

in the target area. We set TH = 10 m to represent the three-storey

buildings commonly found in the areas targeted by the evaluation.

The statistics of the errors (average and standard deviation) are

reported in Table 6 for the whole dataset and for each gateway;

Figure 17 offers a visual representation. These results provide some

important insights. First, the average error for path and inter-

section is ≤9 dB; further, it is slightly better for intersection,

as discussed later. This is an acceptable error considering that the

attenuation of a single brick wall is around that value. Second, the

error of our approach is far lower than the ones obtained for the

free-space and Bor models, whose errors are ≥32 dB. This is a sig-

nificant difference. To put these values in context, consider that in

urban environments, a 10 dB difference roughly doubles the range

of a link [22]. For example, if the range of a real link is 1 km in an

urban environment, our method would provide a range between

0.5 and 2 km, the free-space model would provide a range above

8 km, and the Bor model would provide a range below 125m. Third,

our method does not consistently over- or under-estimate the ESP.

Figure 17 shows that free-space consistently overestimates the ESP,

while Bor consistently underestimates it. With our approach, the

average ESP estimations of all samples deviate by only 1.1 dB from

the real measurements, while the free-space and Bor estimations

deviate by more than 30 dBm (Figure 18). This balanced oscillation

around the real mean is an important property for channel models,

since it avoids the under- or over-provisioning of gateways during

deployment.

8.3 Predicting the Gateway Coverage

The per-link estimates of ESP can be exploited to predict the non-
isotropic radio coverage of LoRa gateways. Based on the map in

Figure 20a, which has a 6×6 km2
area, we used our automated tool

to generate the coverage maps for a gateway positioned in the

middle of the map (G8), as shown in Figure 19. In this figure the

same colorscale of [−40,−140] dBm is used for all models. All the
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Figure 17: Per-gateway statistics of the estimation error (median value, 25
th

and 75
th

percentile) for path, intersection, as

well as free-space and Bor models, for end-devices with height ≤ 2m.

predicted values < −140 dBm are saturated at the bottom of the

scale (i.e., black); this happens for most of Bor predictions, where

we only plot the mean ESP for clarity.

Considering that the samples we took are sparse (red dots in

Figure 20a), we cannot obtain a complete ground truth image to

compare with our estimations, and we only provide per-sample

values for the ground truth in Figure 20b. Nevertheless, our coverage

evaluation provides some interesting insights. First, both path and

intersection improve the coverage estimation w.r.t. free-space

(too optimistic) and Bor (too conservative). Using the free-space

model in a real deployment planning would leave several areas

without coverage, while using the Bor model would lead to an

unnecessarily dense deployment of gateways. Second, the gateway

coverage is strongly non-isotropic, showing significant variability
in space depending on both the direction and the distance. This

anisotropic behavior is better captured with the intersection

approach thanwith the path one. By comparing the building (gray)

and field (green) areas in Figure 20a with the coverage provided

by the path and intersection approaches, we can notice that the

intersection approach captures in a better manner the “pockets”

of building environments, compared to the path approach. This

helps explain the better performance of intersection in Table 6.

We hyphotesize that the reason the difference is small in our data is

because the samples are very sparse; a denser data set would likely

amplify the better performance of intersection.

path

intersection

free-space

Bor

-60 -45 -30 -15 0 15 30 45 60
error [dB]

Figure 18: Overall estimation error (median, 25
th

and 75
th

percentile) on samples with devices ≤ 2m height: path, in-

tersection, free-space and Bor.

9 RELATEDWORK

Characterizing LoRa links: Empirical studies. Realistic cover-

age estimation is crucial to provide connectivity guarantees, satis-

factory service, and resource optimization (e.g., number of gateways

to deploy). This has led to numerous empirical studies on LoRa

coverage ranges, but unfortunately with equally many different

findings [7, 15, 25, 28, 32, 37, 45]. Real-world observations show

both a significant gap w.r.t. theoretical expectations [26, 27] and sig-

nificant variability depending on the specific environment at hand.

For example, Centenaro et al. [15] estimated the number of gate-

ways required to enable city-wide LoRaWAN coverage in Padova

(Italy). They experimentally obtained a coverage estimate of 2 km

in a high-building area. Bor et al. [7] observed a range of 2.6 km

in rural areas and of 100 m in a built-up environment, while in the

central business district of Glasgow (Scotland) the communication

range was 1–20 km [45]. In Hyde Park (London), Kartakis et al. [28]

achieved 2.4 km with semi line-of-sight conditions, but 450 m in a

built-up area. Petajajarvi et al. [37] reported a range of 15–30 km in

a urban/maritime environment. Instead, a maximum range of 90 m

was measured in a mountain forest with dense vegetation [25].

Besides the environment, the PHY-level configurable settings of

LoRa also determine different trade-offs between range, consump-

tion and data rate. For example, a quantitative assessment of the

impact of PHY settings on PRR is presented in [14]. The authors

observed through experiments indoor, outdoor, and underground

i) a drastic decrease of link reliability at high temperatures, and

ii) the benefits of using energy-hungry PHY settings to increase

link quality, instead of relying on retransmission schemes.

Characterizing LoRa links: Modeling studies. Georgiou and

Raza [18] evaluated the coverage probability by exploiting stochas-

tic geometry and observed that when collisions occur between

packets with the same SF, the stronger signal can be successfully re-

ceived if it is at least 6 dB stronger than any other. In the paper, the

expected received signal power was estimated by considering path

loss attenuation, assuming a path loss exponent equal to 2.7 in sub-

urban environments and 4 in urban environments. However, these

approximations may not be representative enough for real scenar-

ios, in that the attenuation as a function of distance usually varies

also within environments belonging to the same category and it is

not isotropic in practice, due to the intrinsic non-homogeneity of

the propagation environment. Voigt et al. [44] analyzed the impact

of inter-network interference due to independent LoRa networks
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Figure 19: ESP prediction on a 6×6 km
2
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Figure 20: Deployment map and ground truth.

operating over the same deployment area. In their simulations, the

best improvement was obtained by placing additional gateways to

ensure that all devices are in reach of at least one of them, under the

assumption of circular (i.e., isotropic) coverage. However, in real

scenarios, the desired interference mitigation can be guaranteed

only by properly accounting for the non-uniform spatial coverage

that gateways can provide.

Although these prior works present valuable insights on link

performance, they do not provide a systematic understanding about

how LoRa behaves in real conditions. The development of models

and tools that consider these conditions are therefore needed to

provide realistic coverage estimates.

An approach toward such a model is to use machine learning

to model connectivity of (low-power) wireless deployments, e.g.

as in [35], where topographic and vegetation features are taken

into account. However, the training of their algorithm requires

the collection of a significant amount of in-field connectivity mea-

sures in the target deployment environment, difficult to obtain

for long-range links. In this paper, we have therefore combined

techniques from remote sensing with machine learning to replace

on-site measurements with an automated approach based on satel-

lite information.

Coverage planning in cellular networks. The idea of using a

digital representation of the target area for coverage planning has

been exploited in the context of cellular networks, mostly in com-

bination with deterministic radio models based on ray-tracing [17,

20, 30]. These models are very precise but computationally com-

plex, and require highly accurate 3D city models [17, 20] usually

not available for free. Some commercial products adapted these

techniques to LoRa. For instance, the provider of 3D city maps

Siradel [3] exploits the Volcano ray-tracer for LoRa coverage pre-

dictions; however, detailed descriptions of the techniques employed

are generally not available. In contrast, our methodology is based

on publicly available satellite images and yields good estimates

without requiring full 3D maps.

Alternately, cellular coverage planning also employs empirical or

physical radiomodels, e.g., Okumura-Hata orWalfisch-Ikegami [30],

whose accuracy is often improved by correction factors accounting

for the “clutter type” (e.g., urban, rural, or forest). These factors are

determined via extensive measurements and on-purpose planning

tools that make use of digital cartography, e.g., terrain models and

clutter classes [30, 38]. Vendors and operators typically rely on their

own proprietary tools, often patented [40, 42], or on commercial

tools [4, 5], some of which now support LoRa. However, again, in-

formation about how these tools derive and use digital cartography

is not available, including their combination with radio models.

In summary, motivated by the fact that on-site experiments are

costly and their result difficult to generalize, we have combined two

fields—radio path loss modeling and remote sensing—to develop a

novel tool that uses i) multi-spectral images, ii) a machine-learning

based classification of the environment based on those images, and

iii) the right path loss model per environment type, to estimate

LoRa coverage in an automated, low-cost manner.

10 CONCLUSIONS AND OUTLOOK

This paper presents a novel approach to estimate the quality of

LoRa links in a fully automated way over the geographical scale

typical of this radio technology, based on two key elements. First, a

remote sensing toolchain based on freely available multispectral

images from satellites, exploits land-cover classification techniques

to enable the automated analysis of the landscape characteristics on

a per-link basis. Second, the actual estimation of expected received

power is achieved via the Okumura-Hata model, hitherto largely

neglected by LoRa literature, configured—again, automatically—

based on land-cover knowledge. Our validation on 8000+ samples

from the TTN network confirms that our approach yields signal

power estimates considerably more accurate than popular channel

models for LoRa.

This work is a first, albeit crucial, stepping stone towards the goal

of accurately predicting the quality of LoRa links; several aspects

are therefore not yet addressed. For instance, we focus on modeling
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the outdoor environment, implicitly assuming that gateways are

unencumbered. This is a problem when gateways are instead placed

indoor, as discussed in §4, as walls induce a significant attenuation

near the gateway. However, in principle, this attenuation could

be modeled (or measured) and factored as a correction of model.

Similarly, and more importantly, we do not consider weather con-

ditions (e.g., rain or fog) or physical parameters (e.g., temperature

and humidity) known to affect wireless links. These dynamic pa-

rameters are significantly harder to model than the static features

we focused on; moreover, empirical studies for LoRa are scarce, let

apart reliable models. Therefore, in general the estimates returned

by our toolchain should be considered as an upper bound w.r.t. the

conditions one may expect in reality.

On the other hand, these upper bounds are much more accurate

and spatially fine-grained than popular channel models for LoRa, as

Figure 19 clearly shows—yet they are derived entirely automatically.
These two aspects, accuracy and automation, hold the potential for

significant practical impact, in that LoRa gateways, unlike cellular

base stations deployed by telco operators, are often deployed by

public bodies (e.g., smart cities) and individual citizens (e.g., as in the

TTN network). We argue that our contribution is key in enabling

the tools necessary to simplify a truly decentralized and grass-root

deployment of the future IoT infrastructure, while at the same time

ensuring its reliability and performance.
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