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J. H. G. Verhagen'

Introduction.

This paper presents an analysis of the sound field generated by a simple
source which is surrounded by a flexible cylindrical tube of finite length.
The acoustic properties of the material of the tube wall differ only slightly
from those of the surrounding medium. Assuming the thickness of the tube
wall small compared to the wave length of sound a perturbation method,
often referred to as the "Born approximation", can be used. In this ap-
proximation the whole scattering field is considered as a perturbation
modifying the primary wave motion of the simple source at the origin

= r1 e1(kt)
The first Born approximation involves substituting the unperturbed wave

function under the integral sign in the integral equation for scattering. The
second approximation is obtained by substituting the first approximation
for the unknown function and so on. An asymptotic solution is obtained for
the sound pressure at large distances from the scattering region.

Statement of the problem.

A zero order spherical sound source supplying a constant volume velocity
is located at the origin of a rectangular coordinate system x-y-z.

A circular cylindrical tube of length 21, whose axis coincides with the
x-axis, encloses the sound source at its center. The wall thickness of the
tube is h, and the mean radius between outer- and inner cylinder surface
is denoted by R. See figure below.

z
The source radiates a monochromatic wave of frequency w/2r. The

following assumptions about the properties of the tube are made:
The flexibility of the tube wall is such, that Young's modulus of elasticity
can be neglected.
The wall thickness h is small compared to the cylinder radius h/R « 1.
The wall thickness is small compared to the wave-length of the sound
within the wall h/Ac « 1.
The acoustic properties of the tube material differ only slightly from those
of the surrounding medium

= 0(1) A/Aa = 0(1)
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With these assumptions the pressure- and velocity differences between
inner and outer boundary of the tube-wall can be expressed in terms of
the primary wave motion of the source at the origin. The boundary con-
ditions on the inner and outer boundary, can be applied on the mean cylinder
surface with radius R, after carrying out an analytical continuation of the
velocity potential.

The remaining solution of the Helmholtz equation, satisfying given con-
ditions at a surface of discontinuity is straightforward and well-known. An
asymptotic expansion of this solution at large distances from the orìgin
can be made.

The motion of the cylinder wall.

The problem is rotatory symmetric around the x-axis. Polar coordinates
x, r, e are introduced. Due to the assumption, the thickness of the cylinder
wall is small compared to the wave length of sound within the wall (h k « 1),
the pressure within the wall will be equal to the mean pressure at the
boundaries.

So,
+ po
2

where subscript i indicates the inner region and o the outer region of the
cylinder surface.

Linearizing for small values of h/R, the equation of continuity becomes:

p hR +
(p hR) = o

the equation of motion in x direction:

ap a.1:=
c at

the equation of motion in radial direction:

a2R
P1 - =

h ---
The sound velocity within the wall of the tube is

c
/&p

C yap k

Eliminating u from (2) and (3) and substituting

.
a2h 32R k a2p

+
c ax2 - ' at2 + PCw2 &t2

(5)

(1)

(4)

results into

Expressing the equations (4) and (6) in terms of the velocity potential
(Rc)' (x, y, z, t) = p(x, y, z)et using the conditions

a
at 3r 2

3h a
T -(-&) (7)
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and

pi + Po

we get the dimensionless equations:

c h a
- - - '- ( + = O
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'ca h h a2- (9)

where = and

-y are dimensionless polar coordinates

= i + and

= (, 1 - ) is the velovity potential

on the outer- respectively inner cylinder surface.
By an analytical continuation of 0 and on the mean cylinder surface

T) = 1 we can write

1 + - 1) +
-;

1) + O \R2)1h a (h2\
(10)

h2 \1h 1h a
1 - = 1) - 1) + O ()

The discontinuous boundary conditions on the cylinder with radius Rtransform into

w0 w1 (l c- ---)(co0+w)+0
a2

PCa h- (-) +(l -a-)
2 (kR2-k2R2 ) 2 oÇ_) o

(13)
where use has been made of the fact that satisfies

a2 a2 ia 22
a2 aT)2 - + k R] = o-+- +

Relation (12) is Newtons second law for the motion of the cylinder wall
in radial direction, while (13) represents the equation of wave motion in
axial direction within the wall.

7h2
R2

(8)

=0 (12)

P= 2



and

= -
= ikRVT1

i hi A = i+ 1an

jkRV"+1
+ (kR2 P k2R2)e

PC

+

(19)

The second part of the integral in (17) can be considered as the potential
due to a dipole distribution on the cylinder surface with strength ')

3 h, p
r i

( -1)---- +(kR2 -k2R2)
&

(16)
3e e

ikR'Jj

The solution of the wave motion in first order approximation becomes

hR 2 eikh
d ikh\

o h/RJ=i,n) =
+ 1

a()
h/R
-+M(g0) ) dQd0 (17)

where

=
+ + n2 - 2 n cos (8 - (18)

is the distance between the point P(, n cos -y, n sin -y) and the point
Q(, n cos O, n0 sin O) on the cylinder surface (n= 1).

The problem is axisymmetric, hence the solution is independent of y.
Take y= O.

The first part of the integral in (17) is the potential due to a source
distribution on the cylinder surface with strength (0)
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The approximate solution.

If the acoustic properties of the cylinderwall deviate only slightly from
those of the surrounding medium, we can apply Born s approximation for
inhomogeneous media.

As a zero order approximation the primary wave motion of the source
at the origin is taken as

e ikRI2 + n2

= - \I2+ 2
(14)

The first order approximation of the boundary conditions on the cylinder
surface results into

O1 R P 2l 2+l
h (1 - ) (ikR

ikR2+
e (15)
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ikRVi
1 1h! c\/. i '\ e= - (-a) = - 1 - )1kR

+ +

We are especially interested in the radiation of sound at large distances
from the origin.

It is easy to derive the asymptotic behaviour of the velocity potential
expressed in equation (17) for large values of /2 + r2. Introduce

cosa

/2 +2

= /2 + n2

The asymptotic expansion for reads

and

sin a

- 0cosa + n0sina cos e +2
l-2 +J2 2 +2

+ 2 [1

h/R \/E2 +2
e

cos a + 0 sin a cos e + Q(2 +
\J2 +2

e eikh ikRV2+n2 cas a + n0 sin a cos [i + 0(2 + n2]

(20)

(21)

The potential at the point P(,n) becomes

-ikR
[ hR

=

v'2 ±n2
1 + 2ff

J
e oc05a {o(0)J0(kR sin a)

-hR

+ )kR sin a J1(kR sin a)1 d0] (22)

Substituting the expressions (19) and (20) for a(0) and and evaluating
the integral gives the final result

h ri +Jo(kRs1na)[(__l)
e + n2

R2cos(kl cos a)
12 +R2

i '\ ik'Jl+R.(ik'l
-

e
+

1) sin(kl cos a)kR cos a R e22+
Vhi2,R2

+{(kR2_k2R2cos2a)_k2R2sin2a
51/R eh+1 - oc05a) i

PC l/R +
d0] +

hR ikR(V +1 - cas a)
e (ikRkRsina Ji(kRsina)(1_)J

+ 1
(23)
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Some particular solutions of the problem.

The general solution as expressed by equation 23 reduces to a more
simple result for the following particular cases.

Case 1.
The frequency of the sound emitted by the point source tends to zero.

Expanding equation 23 in power series of the constant kR results into.

= (2+2)4eikR2+2 l +
-

R21
O(kR

c (12 + R2)312

So the amplitude of the perturbed wave motion is inversely proportional
to the distance + ïì, and to the square of the wave-length X.

Case 2.
The frequency of the sound wave tends to infinity.

Still satisfying the conditions, hk c 1 and k/ks is order unity, involves
that

h/R « (kR)' approaches zero.

For large values of the constant kR an asymptotic approximation of the
integrals in expression 23 can be obtained by the application of the method
of stationary phase.

The mean contribution to the integral
hR

= f (E,2 + l)-k e'2 - E, cosa) dE,

-1(R)

arises from the neighbourhood of that point E,c of the integration interval
at which the phase of the oscillatory part of the integrand is stationary.

The value of E,, is determined by the relation

d .,J21 - E,cosa)=O

so = cotg c.
The integral I is of order (kR when the stationary point , lies in

the interior of the interval -l/R ç E, ç hR and of order (kR)' when E,,,

lies outside the interval.
The approximate solution is

= / 2ir e1tha + + O(kR)32 if cotg a ç
V kR sin a

= O(kR)' if cotg a >

Likewise the second integral in equation 23 becomes
hR

12 5
Ç(E,2 + l)' ikR-(E,2 + l)3/2e( cosa) dE, =

-hR L

71i(kR sin a += iV'2irkR sin a e + O(kRy1 if cotg

= 0(1) if cotg a >



and

= 11m 25
hR

hR -
o

-1/s

= (2

=1+
e

+

I/R ikR(V'i -cosa)
L e
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Using the asymptotic expressions of the besselfunctions J0(kR sin a) and
J1(kR sin a) for large values of kR the final result becomes

= (2 + 2y [ + [ kR sin a cos(2 kR sin a).

(7
p + + 0(kR) if cotga <.( 2 2\k sin alp p pc c

+ 2y4 [i. + 0(kR)] if cotg a >

From the above it can be concluded that the perturbation of the primary
wave motion at large distances from the source is greater in the 'shadow
region" cotg a than it is in the region cotg a . Whether the intensity
of the radiated sound in the shadow region is increased or decreased depends

/ k-k2 p Pcon the sign of the term I - + - - -
\k2 sin2a p

Case 3.
When the length of the cylindrical tube tends to infinity the integrals in

equation 23 can be written as:

hR
um (2 + l) e - cosa) d =

hR -
-hR

(2 + l) cos( kR cosa)d

= -irkR sina H'(kR sin a)

ikR(2 + 1)' (2 + l)3/2}d

iir [[(kR2_ k2R2cos2a) - - k2R2sin2aI.
L

= iH'(kR Sin a)

The velocity potential at large distances from the origin for an infinite
long cylinder becomes:

rJ2 +

J0 kR sin a)H'(kR sin a) - k2R2sin2a (1
- J1(kR sin a)H'(kR sin a)]

The same result has been obtained by P. le Grand [1], who used a
Fourier transform technique.

Numerical results.
Equation 23 is numerically evaluated for the special case h/R = 0. 1

kR = 1.5 a = 7r/2 hR = 1 /c = 1.2 k/k 0.8.
Each one of these quantities is varied, leaving the other quantities fixed.

The reduction of sound intensity far away from the source is expressed

1

R

1

R

11m
hR
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in decibels according to the definition equation

D = -20 '°log I,)J2+ 2
Fig. i till 6 show the sound reduction due to the effect of the cylindrical
screen as a function of the various parameters.
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BOOK REVIEW

Classical and Contagious Discrete Distributions,
Proc. International Symposium held at McGill University. Montreal,
Canada, August 963, edited by G. P. Patil,
distributed by Pergamon Press, Oxford, New York, Londen. XIV
+ 552 p.,price £ 7.

The present volume containing forty papers on discrete distri-
butions is a very valuable addition to the existing literature on
the subject. A huge amount of information has been brought to-
gether in this volume on the theory of discrete probability distri-
butions, and it is embarrassing to see a review of the amount of
information which is at present available on this theory. The or-
ganizers, and the editor, who seems to be the man behind all
the activities leading to the presentation of Phese proceedings are
to congratulate on the outcome of the symposium.

The forty papers are classified in 12 groups:
stochastic processes, structural properties, limit distributions,
unified models and inference, some classical distributions, con-
tagious distributions, inference for mixtures of distributions, cer-
tain distributions in biological sciences, finite populations, general
topics and bibliography.

To start with the last group, a list of about 1250 papers on
discrete distributions is given here, mostly referring to papers
in English and published before 1964. This bibliography has been
prepared by Patil.

It is impossible to review here all forty papers. We, therefore
shall only mention some of the papers which are the more at-
tractive ones from the viewpoint of reviewer's interest. First,
there is the inaugural address by Jerzey Neyman. He reviews
shortly the work done on contagious distributions and refers to
the important studies on Polia's urn scheme. The effect of clus-
terings and the chance mechanism which produces clusterings are
the main topics of Neyman's contribution. A very interesting study
is given by Tosi Kitagawa on weakly contagious stochastic processes;
it is a generalization in two directions of Polia's classical urn
scheme, viz, the number of balls put back in the urn at each
trial is not constant but a discrete variable; the second generali-
sation is a continuous version of the replacing. E. L. Scott devotes
an extensive study to cluster effects. He emphasizes the phenomena
of clusters in epidemics, in astronomy of galaxies, in weather
records and in biological processes. After describing a stochastic
model for cluster effects, he is mainly concerned with these phe-
nomena in galaxies. Lukacs presents a paper on characterization
problems for discrete distributions. An extensive study on normal
approximation to the classical discrete distributions, and a list of
196 references to this subject is given by Zakkula Govindarajulu.
Discrete distributions limit theorems are discussed by Vivian
Pessin. Asymptotic expansions for some contagious distributions
form the subject of a contribution by Douglas. Katti & Sly consider
the analysis of contagious data through behavioristic models.
Rodhakrishna Rao presents a paper on discrete distributions arising
out of methods ascertainment. Mixtures of discrete distribution
are studied by Blischke. This paper contains 95 references. Rider
introduces the zêta distribution.

These important proceedings should be available in the library
of every statistic al department.

J. W. Cohen


