
Self-interested Planning Agents using Plan Repair

Roman van der Krogt and Mathijs de Weerdt∗
Transport Research Center Delft
Delft University of Technology

Delft, The Netherlands
{r.p.j.vanderkrogt | m.m.deweerdt}@ewi.tudelft.nl

Abstract

We present a novel approach to multiagent planning for self-
interested agents. The main idea behind our approach is that
multiagent planning systems should be built upon (single-
agent)plan repair systems. In our system agents can ex-
change goals and subgoals through an auction, using their
own heuristics or utility functions to determine when to auc-
tion and what to bid. Some experimental results for a logistics
domain demonstrate empirically that this system supports the
coordination of self-interested agents.

Introduction
Most of the interesting applications of planning involve
more than one agent to plan for. Often these agents are
self-interested and require some privacy concerning their
plans and the dependencies of actions in their plans on
other agents’ actions. We propose a system in whichself-
interestedagents can i)construct their plansthemselves, ii)
coordinatetheir actions during planning, and do so while
iii) maintaining their privacy. With this system we take
the challenge of negotiated distributed planning that “meth-
ods must be developed for adapting the various [existing]
approaches in a way that is consistent with the resource-
constrained nature of planning agents: planning should be
a continuous, incremental process at both the individual and
group level.” (DesJardinset al. 2000).

Our idea is to combine a dynamic planning method for
each agent with an auction for delegating (sub)tasks. How-
ever, to coordinate subtasks we should deal with inter-
agent dependencies (Malone & Crowston 1994) to prevent
deadlocks. Currently, multiagent planning methods manage
inter-agent dependencies at a central place (Wilkins & My-
ers 1998), or by constructing and communicating a (partial)
global plan (Decker & Li 2000; von Martial 1992). Obvi-
ously, in many applications, agents are not prepared to share
this kind of information.

In our system, we have a number of agents that first con-
currently plan for a single goal, after which they take part in
an auction (if there is any) to exchange goals and subgoals.
Then, they apply a plan repair technique to add another goal

∗This research is supported by the Technology Foundation
STW, applied science division of NWO, and the technology pro-
gram of the Ministry of Economic Affairs.

to their plan, and take part in an auction again. They con-
tinue to alternatingly perform these steps of adapting a plan
using plan repair and taking part in an auction until a com-
plete and valid plan is computed. When an agent gets a task
assigned on which others depend, we use a heuristic that
lets the agent schedule it early in its plan to prevent cyclic
dependencies. Furthermore, we give the agents some high-
level information about the services others can provide to
reason about which subgoals they should auction.

As an example of a situation in which this type of plan-
ning is required, consider the following logistics problem. In
this domain, a number of independent planning agents have
to transport goods between different locations in different
cities. Each of the agents is capable of only a select num-
ber of actions: for each of the cities, there is an agent that is
capable of transporting goodswithin that city, using trucks.
For transportbetweencities, only one agent can transport
goods by air from one airport to another. Thus, for a typi-
cal transportation order, three agents have to work together:
one to bring the goods from their current location to the air-
port in that city, one to transport the goods to another airport,
and a third and final agent is required for the transport from
that airport to the destination within that same city. As these
agents are different companies, they are self-interested and
competitive. However, they are willing to help each other,
provided adequate compensation is offered.

In this paper we show how such companies can construct
their plans individually, and meanwhile coordinate (some
of) their actions while maintaining their privacy. In the
next section we define an abstract version of this problem
more precisely, and we show how a propositional plan re-
pair method can be combined with a simple auction to deal
with this problem. Also we present solutions to subproblems
such as the prevention of deadlock, and dealing with agents
that do nothing but accepting orders to sell them again. The
given logistics problem is used to show the suitability of
these ideas. Finally, in the discussion we summarize our
findings, compare them with related work, and give away
our ideas for further study.

A Multiagent Planner using Plan Repair
In this paper we propose a method that dynamically creates,
coordinates, and repairs plans for agents that do not want to
share crucial information. We base this work on the work of

propositional planning, see e.g. (Kambhampati 1997). We
focus on problems that can be modeled as aset of distinct
propositional planning problemsΠa = 〈Oa, Ia,Ga〉, one for
each agenta. In such a problem the setOa is the set of
actions that the agenta can perform,Ia is the part of the
initial state the agent can observe, andGa are the goals to
be achieved by the agent. The initial state is described by
propositions, an action by its preconditions and effects, and
goals, preconditions, and effects are all defined by conjunc-
tions of literals. The problems of all agents are mutually dis-
tinct, meaning that we require that there are no agents able to
perform actions using the same resources (i.e., described by
the same propositions) and each agent has complete knowl-
edge about its own problem. At first this may seem too re-
strictive, but in many domains agents (companies) that are
not cooperative can indeed not use each other’s resources.
For some resources of general use where conflicts may oc-
cur (such as cross roads) we may introduce an additional
agent to coordinate the use of such a resource.

Note that in a propositional planning problem there is usu-
ally no realistic model of the costs and duration of actions,
nor of deadlines. Therefore, the length of the plan (i.e., the
number of actions) is used as an indication of the costs.

To render the problem more manageable, we assume that
all actions in the domain can be undone (are reversible), and
that there are no goals that are inherently unattainable. This
assumption ensures that in principle a solution can always be
found. We also assume that agents do not break contracts,
unless they really cannot hold to them, in which case they
inform the other party immediately.

The above-mentioned assumptions help us to focus on the
more interesting and more difficult problem of designing a
system

• that only communicates offers and bids, but little else, and

• in which agents can auction (sub)tasks to other agents,
while preventing

– cyclic dependencies,
– lazy agents, and deal with
– decommitment of subtasks by subcontractors.

In the following section we lay out the design of such a
system and we explain how to deal with problems that
may occur when building it. The crux of our idea is
quite simple: coordinate (single agent) plan repair systems
through a task auction. To implement this idea, we sup-
pose that we have a dynamic planner for such problems at
our disposal, such as the Partial Order Plan Repair system
(POPR) (van der Krogt & de Weerdt 2005), which is based
on VHPOP (Younes & Simmons 2003). Although we use
the same planning system for each of the agents in our dis-
cussion, we do not rely on the specifics of this planner for
the coordination of the agents. This ensures that we truly
simulate a situation in which each agent is free to choose its
plan repair system, although these should be extended with
a common communication module.1 We assume that such a

1Such a plan repair system can be derived from the planning
system that the agent is currently employing by using the tech-
niques of (van der Krogt & de Weerdt 2005).

system includes a heuristic functionU(P,Π, g) that, given a
problemΠ and a planP, estimates the costs of adaptingP to
achieve another goalg. Usually such a system is only able
to solvesingle instances of a propositional planning prob-
lem, not a combination of them. How to combine a number
of these systems to form a multiagent planning system is the
topic of this paper.

Planning The first important decision made to achieve the
properties described above is to process the goals one-by-
one by a plan repair system, instead of in a single batch (as is
usual in planning). This has a number of advantages: firstly,
failure to add a goal to the plan immediately tells us which
goal we should put up for auction, while when planning for
a batch of goals fails, it is not immediately obvious which
of the goals cannot be achieved. Secondly, we get regular
moments at which we can easily make changes in the prob-
lem. Moreover, at these moments we have a valid plan that
partially achieves our goals to base our decisions on. This
means that we can make a more informed decision than if
we would interrupt a regular planner at certain points. There
is one disadvantage, however: we cannot as easily exploit
positive interactions that may exist between goals. In the
section on our experimental work, we shall come back to
this issue.

We now describe the basic steps of this goal-by-goal plan-
ning approach. The process starts by taking the original
planning problemΠ, and creating a goal queueQ from it
(containing all the goals that are to be solved in order to
solveΠ) as well as the problemΠPR, initially identical toΠ,
but without goals. We use this problemΠPR to keep track
of the problem that we are trying to solve in the current it-
eration. Later it may contain additional goals that this agent
has accepted from others, and it does not need to include
all goals fromΠ (as some might not have been planned for
yet, or are currently planned for by other agents). To plan
a single goalg from Q the system performs the following
steps:

1. It queries the planning heuristicU of the plan repair sys-
tem to estimate the cost of addingg to the plan.

2. The heuristic may report that it cannot incorporate the
goal, or that the costs of incorporating are so large that
it is preferable to ask other agents for help. If this is the
case, the agent passes this goal to the blackboard for auc-
tion. Otherwise, it removes itg from Q, adds it as a goal
to ΠPR, and updates its plan for this new planning prob-
lem using the plan repair system.

These steps are interleaved with processing auctions (if any),
as discussed hereafter. Once the goal queue is empty, each
goal of the agent is either planned for in its own plan, or has
been given to another agent (via the blackboard). From this
point on, the agent stays active to respond to auctions until
all other agents are finished as well.

Having described the basic planning loop, we turn to
the multiagent specifics. First we discuss the auctioning of
goals. Then, we describe a way with which we can, during
the planning phase, decompose a goal into subgoals, some
of which the agent might not be able to achieve itself. These

subgoals then can also be auctioned.

Auctions As said, an agent planning a goal first consults
its planning heuristic to discover whether it is advisable to
plan for this goal itself. If it is not, or if it turns out after plan
repair that the goal is unattainable, the agent will put the goal
up for auction. For ease of implementation, this auction is
currently run by a blackboard, but it can be distributed over
the agents as well, of course. The blackboard keeps a list of
auctions, and processes them one-by-one. This prevents ad-
ditional difficulties that agents face when dealing with multi-
ple simultaneous auctions (such as the “eager bidder” prob-
lem (Schillo, Kray, & Fischer 2002)). For each auction, the
blackboard sends out request for bids. Note that we cur-
rently process the auctions in order of arrival. In the future,
we might include a priority which determines the order of
the auctions.

When an agent receives a request to bid on a goal, a
heuristic is applied to discover whether this agent can in-
corporate the new goal in the current plan. If so, this also
tells us what the estimated cost is of adapting the plan. This
value is then sent as our bid for this goal. In the current
system, we have chosen to allow the agents a single, sealed
bid.

The blackboard waits for all bids, and selects the cheapest
bid. The winner is awarded the goal, and receives payment
equal to the second-lowest bid (Vickrey 1961).2 Upon being
awarded a goalg, the agent addsg to the front of its goal
queue. This ensures that this goal is processed next, and that
the agent can actually attaing by repairing its plan. If we
allow other goals to be processed first,g might no longer be
achievable. This would require decommitment of the agent,
a situation that we would rather prevent. Only in the unlucky
event that during plan repair it turns out that the heuristic was
completely wrong, decommitment is performed as discussed
on the next page.

Services Exchanging goals is necessary but not sufficient
for a complete multiagent planning system, for it is often
the case that a certain goal cannot be achieved by a single
agent, but only through cooperation. For example, moving
a package from one city to another in our example logistics
domain requires three agents to work together. Hence, we
also need to be able to decompose goals into subgoals that
may have to be carried out by other agents. To continue our
example, moving a package from one city to another decom-
poses into three subgoals: delivering the good to the airport
in the source city, bringing the good to the airport in the des-
tination city, and finally the delivery to the destination. De-
composition is not trivial, but fortunately, we can do some
decomposition during the planning phase.

To perform decomposition during planning, agents need
some knowledge on the actions (or groups of actions) that
other agents can perform. We encode such knowledge as
services. A serviceis a task that can be achieved by one or

2Note that with a repeated auction the main advantage of a
Vickrey auction (that it is a dominant strategy to bid ones private
value) is lost for agents that reason about future auctions. Other
types of auctions are a topic for future study.

more other agents. It is not required to knowhowa task is
achieved, nor is it required to knowwhocan exactly achieve
portions of a task. For example, in the distributed logistics
domain, a trucking agent in a city might know that other
agents can achieve the task to bring a certain package from
other cities to the airport in his own city.

We model services as regular actions. To distinguish such
actions from regular actions we refer to them asexternal
actions. Like regular actions, external actions can be inte-
grated in the plan during the planning phase to indicate that
help from other agents is required. At the end of a planning
iteration (in which an additional goal from the goal queue is
planned for), the effects of new external actions are sent to
the blackboard for auction. In this way, propositions can be
“exchanged” between agents.

The complete planning loop Having described the fea-
tures of the algorithm in isolation, we now end this section
with the complete algorithm as we have used in our exper-
iments. The algorithm is presented below, and starts with
setting up some data structures, such as the goal queueQ,
and the initial planning problemΠPR. Then, in step 4, it tries
to add a goal from the queue to the current planP. At first,
in step 4.2, we compute the heuristic valueU(P,ΠPR, g) of
establishingg with P. If this is estimated to cost more than
the agent is willing to spend (with an unsatisfiable goal re-
turning∞), we send the goal to the blackboard for auction.
Otherwise, we update the planning problemΠPR, and com-
pute the new plan. If this plan contains any external actions,
the subgoals they satisfy are sent to the blackboard for auc-
tion. Having processed a goal from the queue (if any), we
check whether a goalg′ is currently being auctioned. If so,
we compute our costs for it (using the heuristicU of the
plan repair system), and send this as a bid to the blackboard.
If our bid is winning, we add the goalg′ to the front of our
goal queue.

PLANNING LOOP(Π)
Input: A problem Π = 〈O, I,G〉

begin
1. Setup the goal queue Q containing all goals from Π
2. Create the initial problem description ΠPR = 〈O, I, ∅〉
3. Create the initial (empty) plan P
4. if Q is not empty then

4.1. pop goal g from Q
4.2. Estimate cost for this goal: c =U(P,ΠPR, g)
4.3. if the goal is too expensive then

sendg to the blackboard for auction
4.4. else

4.4.1. Update problem: ΠPR = ΠPR ∪ {g}
4.4.2. Update plan: P = PR(P,ΠPR)
4.4.3. if P contains external actions then

request results (subgoals) of these actions
via an auction (blackboard)

5. if an auction is ongoing for a goal g′ then
5.1. sendbid (which isU(P,ΠPR, g′))
5.2. if goal is awarded then

push g′ onto the front of Q
6. goto step 4

end

AMS AIR BOS

external-transfer P po-bos ap-ams

load P ap-ams

move ap-ams po-ams

unload P po-ams

external-transfer P po-bos ap-bos

load P ap-bos

fly ap-bos ap-ams

unload P ap-ams

load P po-bos

move po-bos ap-bos

unload P ap-bos

Figure 1: The multiagent plan for transporting packageP from po−bos to po−ams using three agents: BOS, AIR, and AMS.

Note that besides the details mentioned in the algorithm
a bit more bookkeeping is necessary. For example, we have
to detect when everybody has finished planning for all their
goals. Currently this is being recorded at the blackboard,
where every agent can declare itself ready (and can remove
that declaration when it accepts a new goal from the black-
board). Also, in step 4.4.3 where the subgoals from external
actions are auctioned, we should only send those subgoals
that were not present in the plan before. Finally, we observe
that, currently, agents do not receive feedback on their goals
that have been sent for auction. That is, if none of the other
agents bids on a (sub) goal, the auctioneer will continue to
periodically try to auction this goal, instead of reporting this
to the original sender who should then try and find another
solution. For the domains that we have used in our experi-
ments, this is no problem, as there is always someone who
can achieve the goal (the goals do not have time limits). For
more complicated domains this does not hold, of course. We
will come back to this issue in our discussion on future work.

Example. Suppose the following logistics problem. There
are two cities, Amsterdam and Boston, each with an airport
(denoted byap−ams andap−bos, respectively). A package
P is to be transported from the post office in Boston (po−bos)
to the post office in Amsterdam (po−ams). In each city,
there is a transportation company that uses trucks to trans-
port goods within the city. Furthermore, there is an airline
company that can transport goods between airports. In the
domain of each agent one external action is present, called
external-transfer , that describes that other agents are
capable of transportation as well.

Initially, the goal (frompo−bos to po−ams) is given to the
trucking agent in Amsterdam (we refer to this agent as AMS,
the trucking agent in Boston is referred to as BOS, and the
airline agent is denoted by AIR). AMS queries its heuristic
and finds out that it can reach this goal. Using plan repair on
the empty plan, it comes up with the following plan:

1. external-transfer P from po−bos to ap−ams

2. load P at ap−ams
3. move from ap−ams to po−ams
4. unload P at po−ams

The effect of the external action is a proposition
at(P, ap−ams), which AMS sends to the blackboard. In the
following auction, BOS bids∞ (it cannot reach this goal)
and AIR bids 4. Hence, the goal is awarded to AIR, which
creates the following plan for it:

1. external-transfer P from po−bos to ap−bos
2. load P at ap−bos
3. fly from ap−bos to ap−ams
4. unload P at ap−ams

This results in the goalap(P, ap−bos) being auctioned, which
is subsequently won by and planned for by BOS. This com-
pletes the multiagent plan for delivering the package from
Boston to Amsterdam using all three agents as shown in Fig-
ure 1.

Coordination problems
Whereas the former section gave an overview of the basics
of our multiagent planning system, in practice one bumps
into some additional difficulties that need to be solved. In
this section we pay attention to three important issues that
we encountered in building the system.

“Lazy” agents The first issue that we encountered in our
initial experiments was that sometimes an agent accepted a
goal from the blackboard, and then planned to use a ser-
vice to have other agents satisfy the exact same goal. We
called these agents “lazy agents”, for they did not want to do
some work themselves. In some experiments, this is a minor
inefficiency, but in other problems two of such lazy agents
were present who were continuously bouncing the same goal
back-and-forth. As a solution we considered goalstabu for
production by external actions. That is, when adapting the
plan to include a goalg, no external actions may be planned

that produceg. We adapted both the planning algorithm and
the heuristic to honor these tabus.

Decommitment of bidders As indicated in the previous
section, agents place their bids based on a heuristic estimate
of the costs of changing their plans. Using a heuristic has
two important repercussions: firstly, an agent may need to
modify its plan in a far greater (and possibly more expen-
sive) way than anticipated, and secondly, an agent may find
that it cannot achieve the goal at all. When an agent discov-
ers that it cannot actually satisfy the goal it has bid on, it in-
dicates this in a message to the blackboard. The blackboard
then re-auctions the goal, disregarding the bids of agents that
have bid on the goal and rejected it before. Under the as-
sumptions we made, there is always at least one agent ca-
pable of achieving the goal. Since bids of agents that have
rejected a goal are disregarded, the goal will eventually be
awarded to the agent that can satisfy the goal. For now, a
decommitting agent pays (as a penalty) the cost difference
between its own bid and the next one.3

Managing dependencies A distributed planning system,
such as presented in the previous section, should ensure the
validity of the proposed plans. For this, it is required that not
only the individual plans are valid, but also that the combi-
nation of plans is valid. In particular, we should verify three
conditions:

1. Actions in different plans may not interfere. As explained
in the previous section, strongly autonomous agents, such
as competitive companies, usually have distinct areas of
control, or an additional agent can be introduced to ensure
mutual exclusion of shared resources.

2. If an agent depends on another agent to provide a subgoal,
another agent should actually provide this subgoal, and

3. the combined plans may not containcyclic dependencies.
That is, it may not be that an actiona is (indirectly) depen-
dent upon an action (of another agent) that is dependent
on an effect ofa.

The second condition is ensured by our assumption that all
agents are sincere: when an agent promises to provide a
subgoal, it will either do so, or inform the blackboard that
it cannot. The last condition is the most difficult to guar-
antee, because in principle agents need to know the details
of the other agents’ plans to ensure this property. In exist-
ing solutions to prevent cyclic dependencies either a central
facility is keeping track of dependencies (Wilkins & My-
ers 1998), or agents communicate to form a so-called partial
global plan (Decker & Li 2000).

In our goal-by-goal approach, however, we can use a so-
called backward planning heuristic. When an agent plans a
task for someone else, it can prevent cycles from occurring
without any additional communications by placing all ac-
tions (possibly including external actions) required for this
taskbeforeall other actions in its plan. This heuristic de-
pends for a great deal on the fact that only one goal is auc-
tioned by the blackboard in a single iteration. Thus, only one

3We are considering leveled-commitment contracting (Sand-
holm 2002) to enable strategic decommitting.

agent can create a new inter-agent dependency at a time. If
we ensure that this new dependency is not dependent upon
previously existing dependencies, we prevent cycles from
occurring. Any additional external actions inserted will be
auctioned only after this part of the plan has been completed.
Note that the need for this heuristic disappears when using a
domain in which time is explicitly represented and a planner
that can reason with time, since time attributes can be used
to prevent cyclic dependencies.

Example.Consider the logistics problem of the previous ex-
ample. Suppose that a second packageP′ would have to
be transferred in the opposite direction, i.e., from the post
office in Amsterdam (po−ams) to the post office in Boston
(po−bos). BOS already had a plan for transportingP from
po−bos to ap−bos, but now it creates the following plan for
this situation:

1. external-transfer P′ from po−ams to ap−bos
2. load P′ at ap−bos
3. move from ap−bos to po−bos
4. unload P′ at po−bos
5. load P at po−bos
6. move from po−bos to ap−bos
7. unload P at ap−bos

After the auctions for transportingP have been dealt with,
AIR and BOS have computed the plans from the previous
example. Then, the auction ofat(P′, ap−bos) takes place,
which is won by AIR. Due to the backward planning heuris-
tic, AIR inserts the actions for this subgoal before its other
actions:

1. fly from ap−bos to ap−ams
2. external-transfer P′ from po−ams to ap−ams
3. load P′ at ap−ams
4. fly from ap−ams to ap−bos
5. unload P′ at ap−bos
6. external-transfer P from po−bos to ap−bos
7. load P at ap−bos
8. fly from ap−bos to ap−ams
9. unload P at ap−ams

Thus, the added actions (related toP′) do not have to wait for
existing actions to finish. Hence, AIR cannot create a cyclic
dependency. Had it tried to reuse part of its existing plan
(like AMS did) by first waiting for the external action related
to P (step 6), it would have created a cyclic dependency,
because BOS firsts waits for the external action related toP′
to finish (step 1).

Experimental Results
For our experiments we applied the method described in the
previous section to thePOPR plan repair system (van der
Krogt & de Weerdt 2005), which is an adaptation of the
VHPOP planner by (Younes & Simmons 2003). We used
a series of benchmark problems from the AIPS competi-
tion (Bacchuset al. 2000) in the logistics domain that was
used as an example before. We took a total of 11 problems,
varying from 2 to 5 cities, and from 4 to 15 goals. The num-
ber of cities grows as the number of goals do: for a problem

 1

 10

 100

 1000

 10000

 4 6 8 10 12 14

tim
e

(m
s,

 lo
ga

rit
hm

ic)

instance (#goals)

one-shot
goal-by-goal

Figure 2: Run times of one-shot planning and goal-by-goal
planning by a single agent.

 20

 30

 40

 50

 60

 70

 80

 90

 4 6 8 10 12 14

siz
e

(s
te

ps
)

instance (#goals)

one-shot
goal-by-goal

Figure 3: Plan lengths of one-shot planning and goal-by-
goal planning by a single agent.

with n goals,
⌈

n
3

⌉
cities are used. Each goal consists of the

transport of a single package from one location to another.
Transportation can be performed by truck (within a city), or
by plane (between airports in different cities). Sometimes,
the transportation orders are within a city, but for most or-
ders, the destination city is different from the starting city.
Because there are no deadlines in this domain, goals can
eventually always be achieved.

Goal-by-Goal Planning
The first question that we posed is the following. In our
current approach, we choose to plan goal-by-goal. That is,
instead of considering all goals at once, in a single planning
problem, we first plan for one goal, then add another, etc.
The question is how this affects the quality of our solutions,
and of course the speed with which we reach these solutions.
To investigate this, we compared the plans produced byVH-
POP (which plans in a single batch) and the plans produced
by POPR, when given a series of plan repair problems in
which the goals were added one by one.

Figures 2 and 3 show the runtime and plan quality respec-

tively when goal-by-goal planning is compared with solving
a single planning problem involving all goals. Although, in
principle, a planning problem can be solved more efficiently
by dividing it into subgoals (Korf 1987), we can see from
Figure 2 that goal-by-goal planning takes quite some more
time than solving a single planning instance. This is due to
the fact that for each goal, a new planning problem is cre-
ated, which invalidates a lot of the structures that were cre-
ated before. For example, part of the heuristic thatPOPR
inherits fromVHPOP relies on a planning graph, which is
currently created completely anew for each planning prob-
lem, whereas it can be reused when we solve multiple goals
within a single problem. In principle, this could be mitigated
by realizing that we are not solvinganyplan repair problem,
but a specific one in which only a single goal is added. This
would allow the unrefinement heuristic (which can be used
to solve general plan repair problems) to reuse some of the
existing structures that are not invalidated.4 For our current
system, we have not done so, however.

Concerning the quality of the plans, we can see from Fig-
ure 3 that one-shot planning for a single problem or goal-
by-goal planning makes hardly any difference. This is to be
expected, asVHPOP (also) uses a LIFO queue for its goal
agenda and hence tries to completely satisfy one goal (in-
cluding all subgoals that lead to this goal) before working
on the next one.

Multiagent Planning
The more important part of our experiments obviously has
to do with multiagent planning. In particular, we want to
verify that our approach is feasible. The planning problems
used in the previous section were translated into their multi-
agent counterparts by introducing a number of agents as fol-
lows: for each city, we introduced an agent that is capable
of transport within that city (using trucks). One additional
agent was given control over the airplanes, and is hence ca-
pable of inter-city transports. We used two types of domains:
one for the inner-city agents and one for the inter-city agent.
The former consisted of the usualload , unload andmove
actions, with which cargo can be loaded, transported and
unloaded. In addition, we added anexternal-transport
action that represents the knowledge of the other agents’ ca-
pabilities. It specifies that any package in any location can
be moved to the local airport by some means. The domain
of the inter-city agent also consisted of four actions:load ,
unload andfly to transport goods from one airport to an-
other, and anexternal-transport action specifying that
other agents are capable of transporting goods between two
locations within the same city.

These logistics problems were used to verify that our ap-
proach is feasible. The run time for three different cases
can be seen in Figure 4. The first case is labelledone-shot.
This shows the run time of the unmodified (central)VHPOP
planner on the benchmark problem. In this case, we have a

4For example, the reason to regenerate the planning graph is
that the initial state or the set of available actions might have been
changed. Since this is not the case in our specific plan repair prob-
lems, the planning graph can be reused.

 1

 10

 100

 1000

 10000

 4 6 8 10 12 14

tim
e

(m
s,

 lo
ga

rit
hm

ic)

instance (#goals)

one-shot (single-agent)
goal-by-goal (single-agent)
multiagent

Figure 4: Run times of multiagent planning compared to
single-agent planning. The time reported for the multiagent
experiments is the time it took the slowest of the agents to
compute its plan (the “make span”).

 0

 20

 40

 60

 80

 100

 120

 140

 4 6 8 10 12 14

siz
e

(s
te

ps
)

instance (#goals)

single-agent (one-shot)
multiagent

Figure 5: Plan lengths of single-agent one-shot planning,
and the cumulative size of the multiagent plans.

single agent that plans for all trucks and airplanes. (Clearly,
this is a hypothetical situation for a domain involving self-
interested companies.) The second case, labelledgoal-by-
goal shows the amount of time it takes a single planner to
create a plan for this problem when it uses a goal-by-goal
approach. The third case is labelledmultiagent. In this case,
we used one planner to plan for the transport of goods in
each of the cities (thus, forn cities, we usedn planners) and
a single planner for the planning of inter-city transportation
orders (thus, a total ofn + 1 planners for problems withn
cities). As we can see, for these problems multiagent plan-
ning is considerably faster than planning centrally using a
goal-by-goal approach, due to the fact that we can have dif-
ferent agents plan in parallel.5 Notice that the differences

5For these easy problems a planning cycle takes about 5-10ms,
while one communication takes about 40ms, because Linux sched-
ules processes in slots of at least 10ms and communication uses at
least 4 different processes. In realistic (i.e. complicated) domains
the planning component is the dominating factor in the total run

are significant (as one might guess from the figure), as can
be seen from the results of paired t-tests we performed:

t p
one-shot goal-by-goal -3.0756 < 0.02
one-shot multiagent -3.106 < 0.01

goal-by-goal multiagent 2.7874 < 0.02

Besides run-time performance, plan quality is also impor-
tant. Figure 5 shows the size of the resulting plans. As ex-
pected, the backward planning heuristic that we employ has
a negative effect on the size of the plans, compared with a
centralized solution. This is because it forces an ordering on
the agents’ plans that is stricter than necessary. As a result,
the plans that we obtain are significantly bigger (a paired
t-test results in t=-5.0344 and p < 0.01). This is the price
one has to pay for not exchanging detailed information on
the structure of the plans. An important question for future
work is whether we can relax the ordering that is imposed
by the heuristic a little, allowing us to reuse a part of the
existing plan.

Discussion
In this paper we gave experimental evidence that self-
interested agents can plan and coordinate their plans while
only exchanging a very small amount of information. Our
method should work with any plan repair algorithm, allow-
ing agents to choose their own dynamic planner. We de-
scribed how to use such an existing plan repair algorithm in
a goal-by-goal setting and a simple auction, we showed how
to prevent cyclic inter-agent dependencies, and how to deal
with lazy agents and decommitment by a bidder that over-
shooted itself.

We studied the difference in both plan size and planning
time between multiagent planning and single-agent plan-
ning. It turns out that our distributed approach produces
longer plans than central solutions. This can be mainly at-
tributed to our cycle-prevention heuristic, which is often too
restrictive. However, it allows us to create valid multiagent
plans without exchanging details about the plans, which is
very important for self-interested agents.

The distribution of the planning problem in a multiagent
planning system leads to an improvement of planning per-
formance compared to a single-agent solving a planning
problem goal-by-goal. We expect that for more realistic
and more complicated domains the difference may be even
larger, since agents can do a lot of work in parallel. Summa-
rizing, from the experiments we conclude that it is indeed
possible to use multiple single-agent plan repair systems to
let self-interested agents plan for their goals individually,
and request (or provide) help when necessary.

Related Work
This system for coordinating self-interested agents using
propositional plan repair is unique in that we do not assume
that the agents arecollaborating. Agents may even be each

time. Therefore we focused on the time required for planning. The
total time including communication is only slightly better than the
single-agent goal-by-goal results for these simple problems.

other’s competitors. Previous work on multiagent planning,
although often more advanced in modeling problems realis-
tically (by involving time constraints, minimizing costs, and
efficient use of resources) assumes that the agents are col-
laborative. For example, in the Cougaar system (Kleinmann,
Lazarus, & Tomlinson 2003) cooperative agents are coordi-
nated by exchanging more and more details of their hierar-
chical plans until conflicts can be resolved (similar to (von
Martial 1992)).

The Generalized Partial Global Planning (GPGP)
method (Decker & Lesser 1992; Decker & Li 2000) de-
scribes a framework for distributedly constructing a (partial)
global plan to be able to discover all kinds of potential con-
flicts. In GPGP agents exchange parts of their plans, so
that each agent can build a partial global plan, containing
the knowledge that this agent has of the other agents’ plans.
Using this partial global plan, the agent can detect possible
positive and negative effects, and deal with them. To use
GPGP, however, the agents need to trust each other with
some of the details of their plans. Self-interested agents are
not prepared to do this. A similar line of reasoning holds
for most of the cooperative (often hierarchical) and mixed-
initiative multiagent planning systems. Of these, the idea
of planner-independent collaborative planning by Kim and
Gratch (Kim & Gratch 2004) is particularly interesting in
view of our idea for planner independence. They use such
planners to solve small problems that can support the deci-
sion process of the user. In their situation there is no need
for plan repair or cooperation.

Thirdly, in (Brenner 2003) a method using partially or-
dered temporal plans is proposed to solve multiagent plan-
ning problems in such a way that agents can ask others about
the state of the world, who will (truthfully) answer as soon as
possible. This work relaxes our assumption that agents have
complete knowledge about the relevant part of the world,
but in all of the above mentioned systems the agents are not
self-interested.

Finally, we would like to compare our method to a multia-
gent planning approach based on theCOMAS system (Cox,
Elahi, & Cleereman 2003). In their approach each agent has
one or moreuniquecapabilities. Each agent can directly re-
quest such a ‘specialist’ when it needs its capability (based
on knowledge about other agents’ capabilities). The request-
ing agent is then sent a complete subplan that it can include
in its plan. Besides the exchange of a lot more information
than in our method (both beforehand and during planning),
their system also takes a rather simple approach to prevent-
ing cyclic dependencies: they assume that actions that can
possibly lead to cyclic dependencies (e.g. the load/unload
pair of actions in logistics) can only be executed (and hence
planned for) by a single agent.

Plan merging systems (Tsamardinos, Pollack, & Horty
2000; de Weerdtet al. 2003) can also be used by self-
interested agents in order to coordinate their plans. In these
systems, each agent builds its own plan, without exchanging
information with the other agents. When all plans have been
computed, limited information is exchanged to detect pos-
sible interactions. Clearly, these approaches are static and
cannot be used to request help from other agents during the

planning process.
Another line of research concerns thereasoningbehind

the creation of multiagent plans. Examples of this type
of research are the work onjoint intentionsby Cohen and
Levesque (1991) and theSharedPlans approach of Grosz
and Kraus (1999). Although both these approaches focus on
collaborative behaviour, some aspects are important to our
work as well. Firstly, when one of our agents carries out an
action to bring about a subgoal of another agent this can be
seen as a particular type of joint intention. Secondly, we are
considering a formalisation of our approach similar to the
theory of elaborating multiagent plans as presented in the
SharedPlans framework

Next to this work on coordinating multiagent plans, there
is also a substantial body of work ontask allocationfor
self-interested agents. For example using market mecha-
nisms (Walsh & Wellman 1999), or using extensions of the
contract-net protocol (Collinset al. 1998; Smith 1980).
Ideas from this work may be used to improve the simple
auction of our approach, for example to enable parallel or
combinatorial auctions. Task (re)allocation, however, can-
not completely be disconnected from planning. In our work
we focus not so much on task allocation, but on coordinating
the agents’planningandplan repair behavior (without the
construction of a global set of constraints).

Future Work
Since our initial experiments showed promising results, we
intend to continue this line of research towards a fully
equipped multiagent planning system. Besides looking at
improvements to our heuristic, one of the first things to do
is to relax some of our assumptions to be able to tackle
more advanced problems. First of all we would like to have
a method to estimate the costs of external actions. Typi-
cally “external” actions are more expensive than your own
actions. If all actions have costs, we can try to optimize
costs instead of plan length. In most domains this may give
more realistic solutions. For example, there may be two air-
ports in a city, each serviced by a different airline company.
Our current system cannot distinguish between the two op-
tions. When the costs of such external actions are known,
the most efficient option can be chosen. Another impor-
tant topic for future study is using a different type of auction
and (de)committing mechanism (e.g. (Hoen & Poutré 2003;
Sandholm 2002)) that matches the specific requirements of
efficiently allocating sets of subtasks to self-interested plan-
ning agents.

Another important issue for further study is to give feed-
back to the agent on their auctioned goals. As we indicated
in a previous section, the agents currently submit their auc-
tions to the auctioneer, and assume they will be successfully
auctioned. However, it may very well be that no other agent
bids on a certain goal, in which case the agent submitting the
auction should reconsider its plan, since its subgoals cannot
be achieved. Also, in many applications, agents may need to
deal with a very dynamic situation where actions may turn
out to be disabled or planned goals may become useless. We
would like to find an efficient coordination mechanism that
can use the plan repair systems of the agents to remove parts

of their plans that become irrelevant.
Furthermore, the algorithm for each agent is currently se-

quential: it processes a goal, then an auction, then a goal
again, and so on. In the future we would like to have two
independent subprocesses per agent taking care of each of
these tasks. The same holds for the blackboard: it auctions
goals one at a time, whereas we might want to have mul-
tiple simultaneous auctions, or smart heuristics for order-
ing the goals before auctioning. Finally, we would like to
investigate whether exchanging just a tiny bit more infor-
mation about the dependencies of actions (or for example
making contracts that include time constraints) can lead to a
more efficient plan and to more individuality by relaxing the
heuristic of ‘planning actions for others first in your plan’.

References
Bacchus, F.; Kautz, H.; Smith, D. E.; Long, D.; Geffner, H.; and
Koehler, J. 2000. The Fifth International Conference on Artificial
Intelligence Planning and Scheduling Systems Planning Compe-
tition. http://www.cs.toronto.edu/aips2000/.

Brenner, M. 2003. Multiagent planning with partially ordered
temporal plans. InProceedings of the Doctorial Consortium of
the International Conferenence on AI Planning and Scheduling.

Cohen, P., and Levesque, H. 1991. Teamwork.Nous25(4):487–
512.

Collins, J.; Tsvetovatyy, M.; Gini, M.; and Mobasher, B. 1998.
MAGNET: A multi-agent contracting system for plan execution.
In Proceeding of the Workshop on Artificial Intelligence and Man-
ufacturing (SIGMAN-98).

Cox, M. T.; Elahi, M. M.; and Cleereman, K. 2003. A distributed
planning approach using multiagent goal transformations. In
Fourteenth Midwest Artificial Intelligence and Cognitive Sciences
Conference, 18–23.

de Weerdt, M. M.; Bos, A.; Tonino, J.; and Witteveen, C. 2003.
A resource logic for multi-agent plan merging.Annals of Mathe-
matics and Artificial Intelligence, special issue on Computational
Logic in Multi-Agent Systems37(1–2):93–130.

Decker, K. S., and Lesser, V. R. 1992. Generalizing the partial
global planning algorithm.International Journal of Intelligent
and Cooperative Information Systems1(2):319–346.

Decker, K. S., and Li, J. 2000. Coordinating mutually exclu-
sive resources using gpgp.Autonomous Agents and Multi-Agent
Systems3(2):113–157.

DesJardins, M. E.; Durfee, E. H.; Ortiz, C. L.; and Wolverton,
M. J. 2000. A survey of research in distributed, continual plan-
ning. AI Magazine20(4):13–22.

Grosz, B. J., and Kraus, S. 1999. The evolution of SharedPlans. In
Rao, A., and Wooldridge, M. J., eds.,Foundations and Theories of
Rational Agency. Dordrecht, The Netherlands: Kluwer Academic
Publishers. 227–262.

Hoen, P.J., t., and Poutré, J.A., L. 2003. A decommitment strategy
in a competitive multi-agent transportation setting. InProceed-
ings of the AAMAS-03 Workshop on Agent Mediated Electronic
Commerce V: Designing Mechanisms and Systems, volume 3048
of Lecture Notes on Artificial Intelligence.

Kambhampati, S. 1997. Refinement planning as a unifying frame-
work for plan synthesis.AI Magazine18(2):67–97.

Kim, H.-S., and Gratch, J. 2004. A planner-independent collab-
orative planning assistant. InProceedings of the Third Interna-

tional Conference on Autonomous Agents and Multi-Agent Sys-
tems, 764–771.

Kleinmann, K.; Lazarus, R.; and Tomlinson, R. 2003. An in-
frastructure for adaptive control of multi-agent systems. InIEEE
Int. Conf. on Integration of Knowledge Intensive Multi-Agent Sys-
tems, 230–236.

Korf, R. 1987. Planning as search: A quantitative approach.
Artificial Intelligence33(1):65–88.

Malone, T. W., and Crowston, K. 1994. The interdisciplinary
study of coordination.ACM Computing Surveys21(1):87–119.

Sandholm, T. W. 2002. Algorithm for optimal winner determina-
tion in combinatorial auctions.Artificial Intelligence135(1–2):1–
54.

Schillo, M.; Kray, C.; and Fischer, K. 2002. The eager bid-
der problem: A fundamental problem of DAI and selected solu-
tions. In Proceedings of the First International Conference on
Autonomous Agents and Multi-Agent Systems, 599–606. ACM
Press.

Smith, R. G. 1980. The contract net protocol: High-level commu-
nication and control in a distributed problem solver.IEEE Trans-
actions on ComputersC-29(12):1104–1113.

Tsamardinos, I.; Pollack, M. E.; and Horty, J. F. 2000. Merging
plans with quantitative temporal constraints, temporally extended
actions, and conditional branches. InProceedings of the Fifth
International Conference on Artificial Intelligence Planning Sys-
tems (AIPS-00), 264–272. Menlo Park, CA: AAAI Press.

van der Krogt, R., and de Weerdt, M. 2005. Plan repair as an
extension of planning. InProceedings of the International Con-
ference on Automated Planning and Scheduling (ICAPS-05).

Vickrey, W. 1961. Computer speculation, auctions, and competi-
tive sealed tenders.Journal of Finance16:8–37.

von Martial, F. 1992.Coordinating Plans of Autonomous Agents,
volume 610 ofLecture Notes on Artificial Intelligence. Berlin:
Springer Verlag.

Walsh, W. E., and Wellman, M. P. 1999. A market protocol for
decentralized task allocation and scheduling with hierarchical de-
pendencies. InProceedings of the Third International Conference
on Multi-Agent Systems (ICMAS-98), 325–332. An extended ver-
sion of this paper is also available.

Wilkins, D., and Myers, K. 1998. A multiagent planning archi-
tecture. InProceedings of the Fourth International Conference
on Artificial Intelligence Planning Systems (AIPS-98), 154–162.
Menlo Park, CA: AAAI Press. Also available as a technical re-
port.

Younes, H. L. S., and Simmons, R. G. 2003. VHPOP: Versatile
heuristic partial order planner.Journal of AI Research20:405–
430.

