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Abstract

A lack of cohesion is often associated with bad software quality, and could lead
to more changes and bugs in software. In this thesis the impact of cohesion on
the change-proneness of Java interfaces is investigated. Showing the existence of a
relation between these concepts can lead to better change prediction models that can
support software developers in defect prediction and prevention tasks. An empirical
study is performed on several open source projects to test three hypotheses.

The first hypothesis investigates whether cohesion metrics correlate with the
number of fine-grained source code changes. The results of the correlation analysis
show a correlation between two cohesion metrics and the number of changes in Java
interfaces.

The confounding effect of class size is a possible explanation for the correlation
between the cohesion metrics and the number of fine-grained changes. This idea is
investigated through the second hypothesis, which studies the correlation between
the cohesion metrics and interface size metrics. The hypothesis is accepted for the
same two metrics.

The third hypothesis of this thesis tries to answer whether cohesion metrics
can improve change prediction models based on size. By performing three different
experiments with multiple classification algorithms, we have found no evidence that
supports the final hypothesis.

Concluding, cohesion metrics can be used to predict changes in source code.
However, they are not better predictors than size metrics, and we have found no
evidence to support the idea that they can improve change prediction models based
on size.
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Chapter 1

Introduction

1.1 Introduction

When a software product is released, it often still contains bugs and problems that have
to be fixed. It has been estimated that software maintenance costs account for forty to
eighty percent of the total software development costs [19]. This implicates that reducing
the need for maintenance could prove to be very profitable.

We think that improving software quality can reduce maintenance costs. This leads
to the following questions: what is software quality, and how can we improve it? There
are numerous ideas and theories about good software design and quality, but do these
ideas lead to better software?

One of these ideas is that software should be “Loosely coupled and highly cohesive”.
Stevens et al. defined the concepts of coupling and cohesion in 1979:

• Coupling can be defined as the measure of strength established by a connection
from one module to another [40].

• Cohesion can be defined as a measure of the degree to which the elements of a
module belong together [40].

The goal of this research is to investigate the impact of cohesion on the change-proneness
of Java interfaces. Our expectation is that non-cohesive classes are more likely to be
change-prone than cohesive classes. Note that this research focuses on the cohesion in
interfaces, which includes Java interface classes and the interfaces of concrete classes (i.e.
the exposed methods of concrete classes).

Figure 1.1 illustrates the global idea of this research. We study a hypothesized
relation between cohesion and software quality by investigating the relation between
cohesion metrics and the number of changes in a class. The cohesion metrics that are
investigated in this research are described in Chapter 3.

We perform an empirical study using several open source projects to investigate the
relation between cohesion and the change-proneness of interfaces.

The next section describes the motivation of this research. Section 1.3 formulates
the research questions, and Section 1.4 describes the structure of this report.
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(1) Conceptual investigation

Figure 1.1: Research idea

1.2 Research motivation

As described in the previous section, the goal of this research is to investigate the impact
of cohesion on the change-proneness of Java interfaces.

An interface can be seen as a contract between two components. If this contract is
changed for some reason, every class that uses or implements the interface has to adapt
to that change. In effect, this means that one change can lead to numerous other changes
in other parts of the system. Therefore, we think that reducing the amount of interface
changes can lead to more stable software.

There are many reasons for an interface to change. A lack of cohesion is one of the
possible reasons we investigate in this thesis. If we find a relation between cohesion and
the change-proneness of interfaces, we can use this information to predict and maybe
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1.3. Research questions

even prevent future changes.
Currently, many change prediction models are based on size metrics [18, 45]. These

models are based on the idea that larger classes change more frequently than smaller
classes. Better change prediction models can lead to better change- and fault-detection
tools. This can eventually lead to a reduction in software maintenance and development
costs.

Previous work by Romano and Pinzger [36] shows a relation between the Interface
Usage Cohesion (IUC) metric and the change-proneness of Java interfaces. We extend
the work by Romano and Pinzger by including more cohesion metrics, investigating more
projects, and performing more extensive experiments.

1.3 Research questions

The relation between cohesion metrics and the change-proneness of classes is investigated
with an empirical study. We apply several statistical methods on the data of the selected
projects to test our hypotheses. The first hypothesis of this research is:

H1: The cohesion metrics are correlated with the number of fine-grained
changes in Java classes.

Besides interface classes, we look at the interfaces of concrete classes as well. We
have two reasons for including them: As we expect different usage and change behavior
of interfaces and concrete classes, it is interesting to analyze the differences between
interfaces and concrete classes. The second reason for analyzing concrete classes is that
it allows us to work with much larger datasets.

Previous research has shown that the number of changes in a class is related to the
size of the class[13, 18, 33, 44, 45]. If we assume a uniform distribution of changes in
the source code of a project, then indeed larger classes will have more changes.

If there is a correlation between the number of changes and a cohesion metric, that
correlation could be explained by the fact that there is another correlation between
the cohesion metric and the size of a class. In other words, do less cohesive classes
change more often because they are less cohesive, or just because they tend to be larger?
Obviously we cannot easily prove or disprove this causal relation, but we can investigate
how the different metrics relate to each other. This leads to the definition of the second
hypothesis:

H2: The cohesion metrics are correlated with the size of Java classes.

The correlation coefficients indicate just one aspect of the relation between the metrics
and the changes. An interesting question is whether cohesion metrics can improve change
prediction models:

H3: The cohesion metrics can improve the performance of prediction models
to classify Java classes into change- and not change-prone.

5



1. Introduction

To evaluate this final hypothesis we will employ a number of machine learning
techniques.

1.4 Structure

This report is split into four parts. The overview of the research structure is shown in
Figure 1.2.

The first part starts with the introduction, which describes the goal, research questions,
motivation and structure of the thesis. The second chapter describes related work in the
research field and provides background information. Chapter 3 describes the selection
and definition of the cohesion metrics investigated in this thesis.

The second part describes how the research questions are investigated. Chapter 4
describes the research framework, and how the data required for the investigations is
acquired. Chapter 5 describes the approach to the first two hypotheses. It describes
how the correlation analyses are performed, and how the results should be interpreted.
Similarly, Chapter 6 describes how the third hypothesis is investigated using classification
models.

Part III describes the execution of the empirical study. In this part, Chapter 7
describes the selection of projects for the empirical study. Then, Chapters 8 and 9
describe the results of respectively the correlation analysis and the prediction models.

Finally, Part IV concludes this thesis. Chapter 10 discusses the results of the
empirical study and the threats to the validity of these results. Conclusions and future
work are described in the final chapter.
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1.4. Structure

Part I: Introduction

1. Introduction 2. Related Work 3.Cohesion Metrics

Part II: Approach

4.Research 
Framework

5. Correlation 
Analyses 6. Prediction Models

Part III: Empirical study

7. Project Selection 8. Results of the 
Correlation Analyses

9. Results of the 
Prediction Models

Part IV: Conclusions

10. Discussion 11.Conclusions and Future Work

Figure 1.2: Thesis structure
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Chapter 2

Related Work

Much research has been done on source code metrics and their relation with the change-
and fault-proneness of source code. In this chapter, we give an overview of the research
that has been done in this field, and the contributions of this research.

2.1 Overview

As an introduction to some of the concepts and terminology used in this thesis, Section 2.2
provides background information. Section 2.3 describes research that investigates software
design and the impact on change- and fault-proneness. In Section 2.4, related work on
the impact of software design on quality aspects other than change- and fault-proneness.

The final section discusses the contributions of this research, in relation to the related
work. Research on cohesion metrics is described in the next chapter.

2.2 Background

2.2.1 Modularization, Coupling and Cohesion

Modularization is an important concept in object-oriented programming. Parnas [34]
discussed criteria that can be used to decompose systems into modules. In his paper, he
coined the term of information hiding. Information hiding is the idea of hiding different
design decisions from another. If a design decision is changed, this means that only one
module has to change instead of multiple modules.

Stevens et al. [40] argue that strong coupling between modules complicates a system.
By reducing coupling between modules, the number of paths along which changes and
errors can propagate are reduced as well. Coupling is defined as the measure of strength
established by a connection from one module to another [40].

Similarly, cohesion is defined as a measure of the degree to which the elements of a
module belong together [40]. It is argued by Eder et al. [12] that cohesion is one of the
most important software quality criteria. “Modules with strong cohesion, are easier to
maintain, and furthermore, they greatly improve the possibility for reuse” [12]. Stevens
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et al. [40] identified six categories of module cohesion, later extended by Yourdon et
al. [43]: Coincidental, Logical, Temporal, Procedural, Communicational, Sequential and
Functional. They give an indication of the cohesiveness starting from coincidental (weak)
to functional (strong).

Eder et al. [12] identify three types of cohesion: Method cohesion describes how good
the elements of a method belong together, whereas class cohesion describes how well the
elements of a class belong together. Finally, inheritance cohesion takes into account the
inheritance hierarchies.

2.2.2 Object-Oriented design patterns and principles

In software design, a design pattern is a re-usable solution that can be applied in
commonly occurring situations. The idea of design patterns originated in architecture,
where it was introduced by Christopher Alexander in 1977 [2]. In software engineering,
the book by Gamma et al. [17] introduced the concept of design patterns in software
engineering to a wider public. In practice, a design pattern is a known good solution
for specific situations. If a designer recognizes a situation and the appropriate pattern,
applying the pattern will be a good an quick solution. If he applies a wrong pattern for
the wrong situation, this will obviously not be the case.

In contrast to design patterns, design principles do not provide concrete solutions.
Instead, design principles are guidelines that should be followed in software design.
In [27], Martin describes several of these principles. One of these design principles is the
Interface Segregation Principle (ISP), which states that: “Clients should not be forced to
depend upon interfaces they do not use”. More concrete, if a client of an interface only
invokes half of the methods of the interface, it might be an idea to split the interface.
The Interface Usage Cohesion (IUC) metric we investigate in this thesis is related to this
principle.

Another design principle proposed by Martin is the Single Responsibility Principle
(SRP). It states that: “There should never be more than one reason for a class to
change” [27]. Martin argues that if a class has multiple responsibilities, it will have
more reasons to change. Note that SRP is related to cohesion, as classes with multiple
responsibilities are by definition non-cohesive.

2.3 Software design and the impact on change- and
fault-proneness

This thesis research is based on earlier work by Romano and Pinzger [36]. In their
work, they show a relation between the IUC metric and the change-proneness of Java
interfaces. The relation between software design and change- and fault-proneness
has been researched intensively. In 1993, Li and Henry investigated the relation between
several object-oriented metrics and required maintenance effort in terms of Lines Modified
(LM) [26]. They found that there is a relation between the two, and that the required
maintenance effort can be predicted using source code metrics. Similar results are found
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by Khoshgoftaar and Szabo [25] in 1994, who use several metrics to train a neural
network that can predict the required maintenance.

More recently, Khomh et al. investigate the relation between code smells and
software change-proneness [23]. Their study shows that classes with code smells are more
change-prone than classes without code smells. Similarly, Khomh et al. investigate the
impact of anti-patterns on class change- and fault-proneness [24]. In this study they show
that anti-patterns have an impact on class change- and fault-proneness. Interestingly,
they also find that size alone cannot explain the higher odds of classes with anti-patterns
of being changed.

The relation between code metrics and size is investigated further in several papers.
El Emam et al. [13] find a relation between several object-oriented metrics and the
fault-proneness of classes. However, when controlled for class size, this relation disappears.
Olbrich et al. [33] study god and brain classes in the evolution of three open source
systems. Their study shows that god and brain classes do tend to change more often
and contain more defects than other classes. However, when normalized for size, the
classes show fewer changes and fewer defects. Similar results are found by Zazworka et
al. [44].

Similarly, Zhou et al. investigate the potentially confounding effect of class size on
the associations between object-oriented metrics and change-proneness [45]. They show
that for many metrics, the relation between the metric and class size can completely
explain their relation with the change-proneness of classes. Interestingly, the set of
metrics investigated by Zhou includes cohesion metrics we include in this research as
well. In Chapter 10, we will compare the results of Zhou [45] with our own results.

Moser et al. [29] compare the performances of change metrics and source code metrics
as fault-predictors. Their results suggest that change metrics are more effective change
predictors than complexity metrics. In other words, a class that has changed in the past
is likely to change in the future, and, a class that is complex does not mean it will change
often.

The investigation of D‘Ambros et al. [9] shows a relation between the presence of
design flaws and software defects. They find that that an increase in design flaws is
related to an increase in bugs, although they could not point out one design flaw that
consistently correlates more than others with the number of bugs.

2.3.1 Defect prediction

Im some cases, changes in software can cause new bugs. Sliwerski et al. [39] describe how
to automatically detect these changes, and find that fix-inducing changes show distinct
patterns. They find that fix-inducing changes can be up to three times the size of a
non-fix-inducing change.

Hassan [20] tests the idea that if a file has more complex changes, the chances are
higher it will contain faults. Through an empirical study of six open source projects, he
finds that the number of prior faults is a better predictor of future faults in comparison
to the number of prior modifications.
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Nagappan et al. [30] find in an empirical study that failure-prone software entities
are statistically correlated with code complexity measures. However, they could not find
a universal set of defect predicting complexity metrics. Furthermore, they show that
a set of metrics that can effectively predict failure-prone entities is project dependent.
Similarly, [47] investigates the idea of cross-project defect prediction. The results show
that it is very difficult to apply prediction models on another project than they were
constructed for.

Nagappan and Ball [31] show that system defect density can be predicted using
relative code churn measures. Code churn measures the extent of change made to a
component over a period of time.

Furthermore, Nagappan et al. [32] introduce the concepts of change- bursts. A
change-burst occurs when the same code changes often in a period of time. Naggapan
shows that change-bursts have a high predictive power for defect-prone components.

Zimmerman et al. [46] have researched the detection of change-couplings. If two
entities often change in the same transaction, they are coupled through their changes.
This information can be used to guide programmers, and make suggestions to the
programmer (e.g. if you change class A, there is a high probability you should change
class B as well). Zimmermann presents the ROSE tool which is able to make these kinds
of suggestions.

In [38], Schröter et al. construct prediction models with failure history and design
data to predict post-release failures. They find that the likelihood of a component to
fail is significantly determined by the set of components that it uses.

2.4 Software design and the impact on other software
quality aspects

The impact of software design on and software quality aspects other than the change- and
fault-proneness have been researched as well. For example, Rombach [37] investigated the
impact of software structure on comprehensibility, locality, modifiability and reusability.
Deligiannis et al. study the effect of god classes on the maintainability of software
systems [10]. The experiment is performed by several students and questionnaires seem
to support the hypothesis that god classes are harder to understand. Similarly, Du Bois
et al. investigated the effect of god classes on program comprehensibility [11]. The
results of their study show evidence that comprehensibility is affected by the presence
of god classes, although the precise effects are not clear.

The research performed by Abbes et al. [1] investigates the relation between the
presence of anti-patterns and program comprehensibility. The results show that programmers
usually can cope with a single anti-pattern, but that comprehensibility is affected by a
combination of two anti-patterns.
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2.5 Contributions of this work

Similar to most work described in this chapter, our research has the goal to assess
whether source code metrics have an impact on the change-proneness of software. More
generally, we try to validate our ideas about software quality in general. This work
differentiates itself in at least two ways. First of all, this research is focused on the
investigation of the cohesiveness of interface classes. Many of the work described in this
chapter focuses on the investigation of code smells and anti-patterns, where we focus
specifically on cohesion metrics for interfaces. Note that Zhou et al. [45] include several
cohesion metrics, which we investigate as well. Based on the research by Romano and
Pinzger [36], we include the IUC metric.

Furthermore, in this research we investigate fine-grained Source Code Changes (SCC).
Much of the discussed work investigates the number of lines modified (also called code
churn), or the number of commits in a repository. Using the Evolizer framework (see
Chapter 4), we are able to calculate the changes between each revision, and distinguish
between significant and non-significant changes.
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Chapter 3

Cohesion Metrics

In the previous chapter, the concepts of coupling and cohesion are described. Recall the
definition of cohesion used in this thesis: Cohesion is a measure of the degree to which
the elements of a module belong together [40].

This chapter describes the definition of cohesion metrics for interfaces. These metrics
allow us to give an indication of the cohesiveness of an interface. Note that we focus
on interface cohesion, which means we pay attention only to the externally exposed
method signatures within Java interfaces and classes, while ignoring method bodies and
attributes.

3.1 Overview

The main focus of this thesis is on the IUC metric, which is defined in Section 3.2. The
choice for this metric is based on the promising results of the previous study by Romano
and Pinzger [36]. Based on the research of Perepletchikov et al. [35] on service interface
cohesion, we analyze three different types of cohesion:

3.2. Usage cohesion

3.3. Data cohesion

3.4. Implementation cohesion

The last section of this chapter presents an overview of the selected cohesion metrics.

3.2 Usage cohesion

As the name indicates, usage cohesion metrics measure the cohesiveness of interfaces,
based on how they are used. A class C1 is considered to be a client of class C2 when
some method in C1 invokes at least one method on an instance of C2. Similarly, the
usage of a class by a client can be defined as how many of the class methods the client
invokes.
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3.2.1 Interface Usage Cohesion

The Interface Usage Cohesion (IUC) metric [35, 36] is a measure of how much clients
use the interface. For each client, the number of methods invoked divided by the total
Number of Methods (NOM) indicates the interface usage ratio. If we divide the sum of
these ratios by the Number of Clients (NOC), IUC is calculated.

IUC =

∑NOC
i=1

used methods
NOM

NOC

If all clients invoke all of the methods of a class, IUC = 1. If a class has no clients,
IUC is undefined. This decision means min(IUC) = 1

NOM , making the range of IUC
[ 1
NOM − 1].

The IUC metric has several limitations. First of all the IUC metric is an average
of the usage ratios. Averages give no information about the distribution of the data.
A second limitation is the fact that IUC does not reveal anything about the similarity
between the clients. This is illustrated in Figure 3.1 where in both situations IUC=0.5.
While it can be discussed if one of the classes is more cohesive than the other, it is an
aspect that could or maybe even should be included in a cohesion metric.

1: IUC=0.5 LCOIC=0 2: IUC=0.5 LCOIC=1

Figure 3.1: Same IUC, different cohesion?

3.2.2 Lack of Cohesion of Interface Clients

An alternative to IUC is the Lack of Cohesion of Interface Clients (LCOIC) metric.
It is based on the original Lack of Cohesion of Methods (LCOM) metric defined by
Chidamber & Kemerer [6] which is described in Section 3.3.2.
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The difference with the original LCOM is that we use LCOIC to measure the cohesion
of an interface through the method usage of its clients, instead of measuring the cohesion
of a class through the attribute usage of its methods. LCOIC is defined as follows:

P=0;Q=0;

for each pair of clients

{

if shareMethods(Client1,Client2)

Q++;

else

P++;

}

LCOIC=(P>Q) ? P-Q : 0;

The idea is that if the sets of invoked methods two clients share any method, Q is
increased. Else, P is increased. Whenever P is larger than Q, the class is considered not
cohesive, and the value of LCOIC is P-Q. In other cases, LCOIC is 0, and thus the range
of LCOIC is [0−∞]. In the situation sketched in Figure 3.1, LCOIC=0 in Figure 3.1.1,
and LCOIC=1 in Figure 3.1.2.

Several limitations of LCOM have been identified which apply to LCOIC as well.
First of all, the metric assigns a value of zero to very different classes. Similarly,
the metric can assign the same value to very different violations. To overcome these
limitations, several alternative metrics have been constructed [5, 21, 22]. These alternatives
include a metric that is (if applied to interface usage) similar to IUC.

3.3 Data cohesion

Another aspect that can be used to measure the cohesiveness of classes is data cohesion.
Methods in classes access data in several ways, such as through their parameters or
through field accesses. If all methods of a class operate on the same data, a class can be
considered cohesive in terms of data usage.

3.3.1 Parameter usage cohesion

There are several different metrics that can be constructed to measure the cohesiveness of
an interface through the parameter usage of its methods. An example of this is Cohesion
among Methods in a Class (CAMC), proposed by Bansiya et al [4]. It is calculated by
simply counting all distinct parameter types in a class, and dividing that by the product
of all methods and parameters. If all methods use all data types CAMC = 1, in other
cases CAMC will have any value between [0− 1].

CAMC =

∑NOM
i=1 used params

NOM ·NOP
In the original definition, CAMC is the average of the entries in the parameter

occurrence matrix. When the formula is rewritten, it becomes visible that CAMC is
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very similar to IUC. However, there are a few decisions that influence the calculation of
CAMC:

• We have chosen the CAMC metric that does not include the datatype of the
container class in the parameter list.

• Primitive types are included in the calculation.

CAMC suffers from limitations similar to the limitations of IUC, as described by
Counsell et al. [7]. Furthermore, there are several other limitations that are worth
mentioning. First of all, getters and setters are not recognized as similar, as the return
type is not included in the parameter list. A solution could be to look at the function
names and/or return types. Second, only looking at the data types assumes that every
use of a data type is the same. Two methods that both have a string as input, could be
completely unrelated. To resolve this, it might be worth to look at parameter names.
Including parameter names can also solve the third limitation: multiple occurrences of
data types are ignored.

Counsell et al. [7] propose another metric similar to CAMC. The Normalized Hamming
Distance (NHD) metric calculates the average hamming distance over the parameter
occurrence matrix. In other words, it calculates the parameter agreement between each
pair of methods. Formally:

NHD =
2

lk(k − 1)

k−1∑
j=1

k∑
i=j+1

aij

Each of the l columns of the parameter occurrence matrix represents a unique data type,
and the k rows represent the methods. The value of aij is the number of entries in rows
i and j that are equal. The values of NHD are between [0− 1]. Counsell et al. [7] show
that NHD can be formulated differently, which can be easier to compute:

NHD = 1− 2

lk(k − 1)

l∑
j=1

cj(k − cj)

where cj is the number of 1s in the jth column of the parameter occurrence matrix.

NHD has limitations similar to CAMC. First of all, it gives similar values for classes
that seem to be different in terms of cohesiveness [8]. Furthermore, the limitations for
primitive types, getters and setters and return types apply to NHD as well.

3.3.2 Attribute usage cohesion

The attribute usage of methods can be used as a cohesion metric for classes that
implement methods. Chidamber & Kemerer [6] defined Lack of Cohesion of Methods
(LCOM), which is similar to the definition of LCOIC as discussed in Section 3.2.2. The
difference is that the methods now are the clients, and for each pair of methods we check
whether they share attributes or not. In pseudo code:
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P=0;Q=0;

for each pair of methods

{

if shareAttributes(Method1,Method2)

Q++;

else

P++;

}

LCOIC=(P>Q) ? P-Q : 0;

The limitations of LCOM are described in several publications [5, 21, 22], and several
variations and alternatives for this metric have been proposed. As the focus of this paper
lies on the cohesiveness of interfaces, we will not describe them here.

3.4 Implementation cohesion

Implementation cohesion metrics measure the cohesiveness of a class based on how
interfaces are implemented. Similar to the SSIC metric defined by Perepletchikov et
al. [35], we define the Interface Implementation Cohesion (IIC) metric. The IIC metric
measures how much of an interface is actually implemented by classes. Java forces
concrete classes to implement all abstract methods that are declared in its inheritance
tree, but not yet implemented. Although this makes sure all interfaces are completely
implemented, in practice empty implementations often occur.

IIC is calculated by dividing the number of methods by the Number of Implementing
Classes (NOIC) for each implementer, and dividing the sum by the number of implementing
classes. If an interface is completely implemented, IIC=1.

IIC =

∑NOIC
i=1

implemented methods
NOM

NOIC

Note that this definition of IIC is similar to IUC and CAMC.

There are several aspects to consider when calculating IIC:

• Only concrete classes that appear in the inheritance tree of the interface are
included as implementing classes.

• To find which class in the inheritance tree implements a function, the inheritance
tree is walked upwards starting at the concrete class.

• For interfaces that do not have implementing classes IIC is undefined.

A consequence of this approach is that when an abstract class completely implements
an interface, it can be included multiple times in the metric if it is extended by more
than one concrete class.
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3.5 Overview of cohesion metrics

In the previous sections several cohesion metrics have been described. Table 3.1 gives a
short overview of the metrics. The next chapters will investigate the relation between
these metrics and the number of changes in interfaces and classes.

Type Metric Description

Usage cohesion
IUC Interface Usage Cohesion
LCOIC Lack of Cohesion of Interface Clients

Data cohesion
CAMC Cohesion Among Methods in a Class
NHD Normalized Hamming Distance
LCOM Lack of Cohesion of Methods

Implementation Cohesion IIC Interface Implementation Cohesion

Table 3.1: Overview of cohesion metrics.
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Chapter 4

Research Framework

The goal of this thesis is to investigate the relation between cohesion metrics and the
change-proneness of Java interfaces and classes. The investigation is formalized through
the definition of hypotheses in Section 1.3. This chapter describes the research framework
used to investigate the hypotheses.

4.1 Overview

The research framework of the empirical study can be broken down in three components:

1. Source code metric computation (Section 4.2)

2. Source Code Changes (SCC) extraction (Section 4.3)

3. Correlation and prediction analysis (Chapter 5 and Chapter 6)

Figure 4.1 is an illustration of the research framework. Most of the tasks described in
this chapter are performed using the Evolizer framework [16].1 The Evolizer framework
provides functionalities to extract a meta-model from Java source code, as is described
in Section 4.2.1. This model can then be used to calculate the source code metrics.

To compute the fine-grained changes, Evolizer can import file revisions from software
versioning systems (Section 4.3.1). This information is then used by the Change Distiller
to extract fine-grained source code changes (Section 4.3.2).

Before the experiments to investigate the research questions can be performed, the
metrics have to be mapped to the changes, which is described in Section 4.4. The
correlation analyses that are used to answer the first two hypotheses are described in
Chapter 5, the prediction models are described in Chapter 6.

1The Evolizer framework, http://www.evolizer.org
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Repository

CVS, SVN, GIT

4.2 Metric computation 4.3 Source Code Change 
extraction

4.2.1 FAMIX Model 
extraction

4.2.2 Model to metrics

4.3.1 Versioning 
history importer

4.3.2 Change Distiller

4.4 Mapping metrics 
to SCC

Metrics SCC

FAMIX Model File revisions

Statistical analyses

5. Correlation 
analyses

6. Prediction models

Figure 4.1: An overview of the research framework

4.2 Metric computation

The computation of source code metrics consists of a three step process. First, the source
code of the selected project has to be imported in Eclipse.2 Then, using the Evolizer
FAMIX Importer, a FAMIX meta-model can be extracted from the source code. The
FAMIX model is a representation of the source code which allows us to easily compute
the source code metrics. Finally, the model can be used to calculate the source code
metrics.

2The Eclipse project, http://www.eclipse.org
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4.2.1 FAMIX model extraction

The Evolizer framework contains functionalities to extract a FAMIX meta-model from
a Java project. Using Java source code as input, a FAMIX model can be extracted. A
FAMIX model can be seen as a description of the static structure of a projects source
code. Figure 4.2 shows the simplified structure of the FAMIX model, as it is implemented
in the Evolizer framework. A complete UML diagram of the FAMIX model can be found
at the moose website.3 The elements of the FAMIX model used in Evolizer can be found
in Table 4.1.

AbstractFamixEntity

FamixAccess

FamixAttribute

FamixCastTo

FamixCheckInstanceOf

FamixMethodFamixClass

FamixInvocation

FamixPackage

FamixAssociation

AbstractFamixObject

FamixSubtyping

AbstractFamixGeneralization

AbstractFamixVariable

FamixLocalVariable
FamixInheritance

FamixModelFamixParameter

Figure 4.2: The FAMIX meta-model as implemented in Evolizer

The extracted model can be stored in a relational database, allowing access to
the model through SQL queries. Alternatively, the data can be accessed through the
provided Hibernate model of the Evolizer framework.

4.2.2 Model to metrics

In this thesis research, we compute most of the metrics through a combination of
SQL queries and MATLAB4 scripts. This combination allows us to quickly make
changes to the metric computation, and directly process the new values in the data
analysis. In contrast, using the Hibernate model would require us to recompile the
metric computation code, run it, and then export the data to a statistical analysis
toolkit. The disadvantage is that the FAMIX model in the database does not include
all ‘friendly names’ for the constants and enumerations defined in the Hibernate model,
but instead requires their ordinal representation.

3FAMIX model, http://www.moosetechnology.org/docs/famix
4MATLAB, http://www.mathworks.com
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Entity Description

FAMIXModel Container holding references to the parsed entities and
associations. Is the topmost entity that represents the
imported project.

FAMIXPackage The entity representing a Java package.

FAMIXClass The entity representing a Java class. Interfaces are also
represented by this entity.

FAMIXMethod Represents a method.

FAMIXAttribute Represents an attribute.

AbstractFAMIXVariable Supertype of three variable types: FAMIXParameter,
FAMIXLocalVariable and FAMIXAttribute

FAMIXAssociation Supertype of all types of associations. Includes
FAMIXInvocation, which is the invocation of a method.
FAMIXAssociation is also a supertype for inheritance
relations.

Table 4.1: Overview of FAMIX entities.

We use the Understand5 tool for calculating several reference metrics. These include
Lack of Cohesion of Methods (LCOM), Number of Methods (NOM), Lines of Code
(LOC) and Weighted Method per Class (WMC). The definition of LCOM can be found
in Section 3.3.2. NOM and LOC are self-explanatory. WMC is a metric proposed
by Chidamber & Kemerer [6]. It is defined as the sum of the complexities of the
methods within a class. Here, complexity is measured as using McCabe’s cyclomatic
complexity [28].

The cohesion metrics are computed using the definitions in Chapter 3, and for the
interfaces and classes described in Section 4.4. This information is combined in metric
computation tables, which describe how each metric is computed, and for which classes
it is defined. These tables can be found in Appendix A.

4.3 Source Code Change extraction

There are several different approaches to analyze source code changes. One way is to
simply count the number of revisions of a file. A disadvantage of this method is that it
contains no information about the extent and nature of the changes. A slightly better
approach is to count the number of Lines Modified (LM). It gives a better indication
of the extent of the changes, but unfortunately not of the nature of the changes. For
example, a documentation update is treated in the same way as a structural change.

5Understand, http://www.scitools.com/
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In this research we analyze fine-grained Source Code Changes (SCC). Fine-grained
SCC contain information about both the extent and the nature of the changes; they allow
us to distinguish between a documentation update and the addition of a method. Using
this information, we can filter out changes we consider less significant. Furthermore,
previous work shows that SCC outperforms Lines Modified (LM) for learning bug prediction
models [18].

To calculate the fine-grained changes, all revisions of all source code files from the
versioning repository of a project have to be imported and compared. Section 4.3.1
describes how project repositories are imported, and Section 4.3.2 describes the extraction
of SCC.

4.3.1 Version history importer

The Evolizer framework provides functionalities to import versioning histories of CVS,
SVN and GIT projects. Evolizer can import the complete versioning history of a project,
including every revision of every file and the attached log messages. The imported data
is stored in a database, which data model can be seen in Figure 4.3. A versioned file can
have one or more revisions, with the attached source code stored in the content table.
Modification reports contain the attached log messages, with information about the
commit date, author, and commit messages. Besides the elements in Figure 4.3, the data
model can also store information about branches, releases, modules and transactions.

VersionedFile
Revision

ModificationReport

File

1

file

Content

1

content

Person
1

author

Figure 4.3: A part of the Evolizer version history importer model

The Evolizer framework has CVS, SVN and GIT versioning history importers. In this
research, we have used the CVS and SVN importers. Simplified, they work as follows:

1. Import all log messages of all versions.

2. For each file, import all revisions.
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During our research, we have encountered several performance limitations of especially
the SVN importer. Importing large projects often took days or even weeks to complete.

We have found two methods to improve performance:

• Using the backup functionalities of SourceForge6 and similar repositories, we were
able to quickly download complete repositories.

• Custom lightweight CVS and SVN importers have been developed.

CVS projects hosted on SourceForge can be downloaded as one single file through
the provided backup functionalities. This has the advantage that we do not require
a connection with the Source Forge server during the entire import process. After
downloading the repositories, we used a custom importer that is able to import the
downloaded backups directly in the Evolizer database. More information on this importer
can be found in Appendix F.

The SVN importer provided by Evolizer turned out to be quite slow. We suspect that
the performance limitations are caused by the number of commands that are sent to the
SVN server. The custom SVN importer has a slightly diffferent approach, reducing the
number of commands issued to the SVN server.More information on the SVN importer
can be found in Appendix F.

Once all data from the versioning histories is imported, we have easy access to all
revisions of all source code files within the repository.

4.3.2 Change Distiller

When the complete source code history of the selected project is imported, Change
Distiller [15] is used to extract the fine-grained Source Code Changes (SCC). It uses a
tree differencing algorithm to compare the Abstract Syntax Trees (ASTs) between all
subsequent revisions of a file. This process extracts the structural changes made between
two revisions, which makes it possible to distinguish between different change types.

The data extracted by the Change Distiller is stored in the database using a hibernate
model, of which the class diagram can be seen in Figure 4.4. Each Java class has its own
history, which contains links to each of its revisions, and all structural changes made in
those revisions.

6http://www.sourceforge.net
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AbstractHistory

AttributeHistory ClassHistoryMethodHistory

StructureEntityVersion

SourceCodeEntity

SourceCodeChange

1

11

Move Delete
Insert

Update
1

1

Figure 4.4: Simplified class diagram of Evolizer’s Change Distiller.

In this study, we count all significant SCC. We consider all changes to documentation
and comments to be insignificant. Appendix B presents a complete list of all changes that
we consider to be significant. For the remainder of this thesis, we use the abbreviation
SCC for the significant source code changes.

Although the Change Distiller is a powerful tool, there are several limitations that
are worth noting:

1. If source code files are moved, it does not compare the file at the old location with
the file at the new location. Instead, it considers the two files as two different
entities.

2. With some complex changes, Change Distiller fails to recognize a modification
operation properly. Instead, it recognizes an entity removed change, and an entity
addition change.

3. The tree differencing algorithm performs badly on some very complex source files,
due to enormous ASTs.

The first limitation poses a threat to the usefulness of several open source projects.
Even though a project might have a sufficiently large revision history, some of the changes
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cannot be used in the analysis. The second limitation has an impact on the change
count for some classes, as the actual change count might be less than the calculated
change count. The third limitation means that some complex source code files cannot be
imported, and are excluded for analysis. These limitations are discussed in Chapter 10.

4.4 Mapping metrics to SCC

Once all metrics are computed and the number of SCC for each class has been calculated,
the metrics have to be mapped to the number of SCC. Although this might seem a trivial
task, there are some important decisions that can influence the results of the experiments
in the next chapters.

For each class, the calculated metrics are mapped to the number of SCC through the
uniquename of the class. The uniquename is defined in the FAMIX model, and consists
of the Java package name and Java class name, separated by a dot (e.g. java.lang.Object
for the Object class in the package java.lang). Inner classes are separated by a dollar
sign, and anonymous classes are identified through their type and a number.

The following sections describe how the metrics are mapped to the SCC for both
interfaces and concrete classes.

4.4.1 Interfaces

As described in Section 4.2.2, some of the cohesion metrics are not defined for all classes.
For instance, Interface Usage Cohesion (IUC) is only defined for classes that have at
least one method that is invoked by another class. If these entries are used in statistical
methods, we have two options:

• Give the classes for which the metric is undefined a constant value, such as -1.

• Exclude the classes for which the metric is undefined.

The first option reduces the accuracy of the statistical methods, as obfuscating values
are included, while the second option reduces the size of the dataset. Consider we want
to calculate the correlation between NOM and number of fine-grained changes (SCC).
We found that it makes a great difference whether we:

• Calculate NOM for all classes.

• Only include classes with at least one method.

• Only include classes with one method that is invoked by another class.

If we want to compare this correlation with the correlation of IUC and SCC, the best
comparison can be made if both metrics are calculated on the same dataset. As the
focus of this research is on the IUC metric, we decided to calculate as many metrics as
possible on the same dataset as IUC:
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• IUC, NOM,Cohesion among Methods in a Class (CAMC) and Lack of Cohesion
of Interface Clients (LCOIC) are calculated for interfaces that have at least one
method that is invoked by another class.

• Interface Implementation Cohesion (IIC) is calculated for the same interfaces,
except the ones that do not have implementing classes.

• Normalized Hamming Distance (NHD) is calculated for classes with at least two
methods.

Note that the IIC metric is undefined for interfaces that do not have an implementing
class. For similar arguments as above, we could also exclude these classes from the
analysis. We have decided not to do this because many of the datasets contained too
few remaining entries to produce significant results.

4.4.2 Concrete classes

As described in Section 1.3, concrete classes are included in the analysis. We apply the
same selection and filtering rules for concrete classes as for interfaces. However, there
are a few other aspects that are worth noting.

IUC calculates the ratio of methods invoked by external classes. We know that no
external class will ever invoke a private method of a class, as private methods are not
visible to external classes. We calculate IUC and LCOIC using the number of public
non-static methods to handle this issue.

This decision has at least one consequence: What is the IUC value for concrete
classes that do not have any public non-static methods? We handle this in the same
way as earlier in this section, we only include concrete classes with at least one public
non-static method, that is invoked at least once by another class.
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Chapter 5

Correlation Analyses

This chapter describes the investigation of the first two hypotheses. The first hypothesis
defined in Chapter 1 investigates the correlation between cohesion metrics and the
number of Source Code Changes (SCC). The second hypothesis investigates the correlation
between cohesion metrics and the size of an interface.

5.1 Overview

As both of the hypotheses are investigated using a correlation analysis, they are investigated
using the same methodology. The next section describes how the correlation analyses
are performed, and how the results should be interpreted. Section 5.3 describes the
investigation of the first hypothesis, and Section 5.4 describes the investigation of the
second hypothesis.

5.2 Methodology

In this section we describe the methodology used in the correlation analyses. First, we
describe how we calculate correlation coefficients, and how a single result is interpreted.
In this research, we perform an empirical study, which means we calculate correlation
coefficients for several projects. Section 5.2.2 describes how several correlation coefficients
can be combined, and how we draw conclusions from these results.

5.2.1 Calculating the correlation coefficient

For both hypotheses, we calculate Spearman’s rank correlation coefficient for each project.
Spearman’s rank correlation coefficient is a measure of statistical dependence between
two variables, without assuming a specific type of relation. This is very useful when the
relationship under investigation is not assumed to be linear. In both hypotheses under
investigation, we have no reason to assume a linear dependency, and thus we calculate
Spearman’s rank correlation.
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Spearman’s rank correlation coefficient is a value between 0 and ±1, indicating the
strength of the relationship. When the relation is negative, this is indicated by a negative
sign. In our case we are only interested in the strength of the relation, and not the sign.
Table 5.1 shows how the coefficients are interpreted, similar to [18].

The statistical significance of the correlation coefficients can be measured with the
P-Value. Small P-values indicate that the correlation coefficient is significantly different
from zero. In this research, if the P-Value of a correlation is larger than 0.05, we assume
that there is no significant correlation.

Value Type

0 No correlation
< 0.5 Weak correlation
0.5− 0.7 Substantial correlation
> 0.7 Strong correlation
1 Perfect correlation

Table 5.1: Interpretation of correlation coefficients

5.2.2 Interpreting the results

After computing correlation coefficients for the selected projects, we want to make
general statements about the investigated hypothesis. Having a correlation coefficient
for each project under investigation, it is likely that some of the calculated correlation
coefficients will support the hypothesis, while others will not.

Assume we investigate a hypothesis which claims the relation between to metrics is
substantial. A possible criterion is to accept the hypothesis if the median value of all
correlation coefficients is substantial (> 0.5, see Table 5.1). A maybe better criterion
would be to apply a One Sample Wilcoxon Signed-Ranks Test on the data. This test
allows us to test the correlation coefficients of a metric against a hypothesized median
value. In other words, it is a measure of how likely the median value of the correlation
coefficients is smaller or greater than a particular value.

We can apply the lower-tailed One Sample Wilcoxon Signed-Ranks Test with the null
hypothesis (Hn : Median ≥ 0.5) against the alternative hypothesis (Ha : Median < 0.5).
If the chance that Hn is true is smaller than the significance level(0.05), then the null
hypothesis is rejected in favour of Ha. In the case that Hn is accepted, this means that
we have no evidence that suggest that the median is less than 0.5.

Please take note of the subtle formulation of the previous statement. If we have no
evidence that the median is less than 0.5, this does not mean we have evidence that the
median is greater than 0.5. To provide more solid evidence, we want to be sure that the
median cannot be less than 0.5. To test this, we can perform an upper-tailed One Sample
Wilcoxon Signed-Ranks Test with the null hypothesis (Hn : Median ≤ 0.5) against the
alternative hypothesis (Ha : Median > 0.5). If Hn is rejected we can be confident that
the median is at least 0.5. To summarize, we have three possible output scenarios:
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1. Hn : Median ≥ 0.5 is rejected in favor of Ha : Median < 0.5: The median
correlation is very unlikely substantial.

2. Hn : Median ≤ 0.5 is rejected in favor of Ha : Median > 0.5: The median
correlation is very unlikely not substantial.

3. Both tests accept the null hypothesis: We cannot exclude that the median correlation
is substantial, nor can we exclude that it is weak.

There is one more thing worth noting about the correlation analysis. A strong
correlation should not be confused with causality. Neither does a correlation coefficient
provide information about the type of relation. We provide scatter plots and data tables
to provide information about the distribution of the values. Based on these results, we
can then decide to accept or reject a hypothesis.

5.3 Correlation analysis between metrics and changes

We apply the methodology described in the previous section to investigate the first
hypothesis. Recall the definition of the first hypothesis from Chapter 1:

H1: The cohesion metrics are correlated with the number of fine-grained
changes in Java classes.

The goal of this hypothesis is to investigate the relation between the cohesion metrics
and the number of SCC. We investigate this for each metric independently, both for
interfaces and concrete classes. The process below is executed for each metric under
investigation:

1. For each project: calculate Spearman’s coefficient between the cohesion metric and
the number of SCC.

2. Check for each project whether the correlation is significant and substantial according
to the definitions.

To acceptH1 for a cohesion metric, we have to be confident that the cohesion metric is
substantially correlated with the number of SCC. To do this, we follow the methodology
described in the previous section. Based on the median correlation coefficient, the results
of the Wilcoxon tests and the supporting scatter plots and tables, we can either accept or
reject the hypothesis.The same process is repeated for concrete classes. It is interesting
to see whether the cohesion metrics correlate differently with SCC for concrete classes.

5.4 Correlation analysis between metrics and size

Similar to the investigation of the first hypothesis, we investigate the second hypothesis:

H2: The cohesion metrics are correlated with the size of Java classes.
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We investigate the relation between cohesion metrics and size metrics, to see if
possible correlations between metrics and changes can be caused by size. In other
words, if a cohesion metric correlates with the number of changes, is this because a
lack of cohesion causes more changes, or because larger classes tend to be less cohesive?
The interface size metric we investigate is Number of Methods (NOM). For concrete
classes, we include two different size metrics: Lines of Code (LOC) and NOM.

This study aims to find proof to accept H2. H2 can be accepted if there is a
substantial correlation between the cohesion metrics and the size metrics. Again, One
Sample Wilcoxon Signed-Ranks Tests can be performed to test the correlation coefficients
against a hypothesized median value. Based on the results of the Wilcoxon tests and
the supporting data, H2 can be accepted or rejected for a metric.
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Chapter 6

Prediction Models

The previous chapter described the approach to the investigation of the first two hypotheses.
This chapter describes the approach to the investigation of the third hypothesis, which
is defined as follows:

H3: The cohesion metrics can improve the performance of prediction models
to classify Java classes into change- and not change-prone.

6.1 Overview

In this chapter we describe the methodology applied to assess whether cohesion metrics
can improve change prediction models. A change prediction model is a model that is
able classify interfaces as being change-prone or as not change-prone, based on several
input variables.

To explain some of the basic concepts and terminology used in this chapter, Section 6.2
gives a short introduction to classification models.

We found that our initial experimental setup has several underlying assumptions. To
perform a thorough analysis, we have designed three different experiments. Section 6.3
describes the common characteristics of these experiments. We consider the entire
process of constructing one or more prediction models and the comparison of performances
as a single experiment.

The selected experiments are described in Section 6.4. Finally, the last section
presents a summary of the chapter.

6.2 Introduction to classification models

Classification is defined as a systematic arrangement in groups according to established
criteria.1 In the field of machine learning, classification models are often constructed to
automatically create such an arrangement. To explain the use of classification models
in this thesis, we start with a small example.

1http://www.merriam-webster.com/dictionary/classification
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Assume we have a dataset D of a single software project consisting of several Java
classes and interfaces. For each interface i in D, we have gathered the following information:

• The name of the interface Ni.

• A set of metric values Xi.

• The number of changes of the interface Ci.

The goal is to construct a prediction model M that is able to predict whether an
interface i is change-prone or not using the metric values Xi. The process is illustrated
in Figure 6.1. First we convert the number of changes of each interface to a label yi.
Based on the number of changes Ci and the definition of change-proneness, yi = 1
(change-prone) or yi = 0 (not change-prone). Then, the dataset is split in a training set
Dtrain and a test set Dtest.

10-fold cross-validation

Split data in test 
and training set

Metric 
data

Model 
performance 

data

Change 
data

Train prediction 
model

Dtest

Test prediction 
model

M

Dtrain

Performance data

Figure 6.1: The prediction model framework

A selected classification algorithm is applied on the training set Dtrain, to train a
model which is able to predict a label ŷi using the metrics Xi for any interface in D. In
other words, we are generating a function ŷi = M(Xi).

Note the distinction between the actual label yi and the predicted label ŷi. Applying
the classification model on the test set Dtest results in a predicted value ŷi for each
interface i ∈ Dtest. This prediction indicates whether the interface is expected to be
change-prone or not change-prone.
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Once all labels are predicted for the interfaces in the test set, we can compare the
actual labels yi with the predicted labels ŷi. This comparison can be used to compute the
performance of the classification model, making it possible to compare different models.
This is discussed in more detail in Section 6.3.5.

The process of training and testing is often repeated K times with different subsets
of the data. This process is called cross-validation, and is used to reduce the variability
of the dataset. In this research, we apply 10-fold cross-validation.

6.3 Construction of a single experiment

In this section we describe how a single experiment is constructed. A single experiment
is the complete process that can be used to assess whether cohesion metrics can improve
prediction models, but then for a specific configuration. This section describes how each
experiment is constructed, and the steps out of which an experiment consists:

1. Dataset selection.

2. Definition of change-proneness.

3. Construction of prediction models.

4. Selection of classification algorithms.

5. Definition of performance criteria to compare the prediction models.

6. Application of prediction models.

6.3.1 Dataset selection

Similar to the correlation analyses, we have to select a model on which we compute the
source code metrics, and period of time on which we analyze the changes. We investigate
the correlation between the cohesion metrics of the most recent version of the project
and all available changes that have been made in the past. The advantage of this method
is that we have as much data as possible to analyze. The disadvantage is that we assume
that classes will change in the future the same way as they have changed in the past.

An idea is to select different releases of a project, and assess whether a project can
predict future changes based on metrics computed with an earlier release. In Section 6.4
we will describe experiments that take into account different releases and change sets.

6.3.2 Definition of change-proneness

Similar to [36], an interface is considered change-prone if the number of changes of that
interface exceeds the median value for that project. A more formal definition:

interface =

{
change-prone if#SCC > median

not change-prone else
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Note here that we choose the median as the cut-off point. A valid question is whether
another cut-off point will provide different results. Due to limited time, we could only
do limited research with different cut-off points. Section 6.4 describes experiments with
different cut-off points.

6.3.3 Construction of prediction models

The experiments described in this chapter are performed by comparing classification
models using different metric sets as input. The baseline model for this study is a
prediction model based on size metrics. The expectation is that larger classes are likely
to have more changes, and are thus more often change-prone than small classes.

Recall the size metrics used in the correlation analysis (Chapter 5): NOM for
interfaces; NOM, LOC and Weighted Method per Class (WMC) for concrete classes.
We define the input set for the baseline model as Xi = {NOM} for interfaces, and the
input set for the baseline model for concrete classes as Xi = {NOM,WMC,LOC}.

Based on the constructed baseline model, we can construct at least one extended
model based on cohesion metrics. The first model we construct is an extended model
using all size and cohesion metrics. Furthermore, we create a second alternative model
based on the performed correlation analysis. All cohesion metrics that produce sufficient
significant results are included in that model. All constructed models can be seen in
Table 6.1.

Model Input metrics

Baseline Size metrics
All All size and cohesion metrics
Promising Size metrics and promising cohesion metrics

Table 6.1: Baseline and extended prediction model

6.3.4 Selection of classification algorithms

Different algorithms can be used for classification purposes. In this research, we have
selected several algorithms. They all work as described earlier in this section, and
illustrated in Figure 6.1. The following paragraphs describe the algorithms in more
detail.

Logistic Regression Logistic regression is a type of model that is able to predict
the probability that an instance belongs to a certain class, based on several predictor
variables. For example, it can be used to determine the probability that a person will
get a certain disease based on his age, sex and other variables. As the name indicates,
logistic regression is related to linear regression. A typical linear regression function
looks as follows:
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f(X) = β0 + β1x1 + β2x2

The function above tries to estimate the value of yi with the predictive function f(X).
It multiplies the input variables X = {x1, x2, ...} by the calculated regression coefficients
βi to estimate y. β0 is the intercept. By transforming the linear regression function to
a logistic function, the output values lie within the range 0-1. This way it can be used
as a binomial classification algorithm. An example:

z = β0 + β1x1 + β2x2

f(z) =
1

1 + exp−z

When the classification algorithm is trained, the coefficients βi are calculated. A larger
coefficient βi indicates a stronger relation between the input variable xi and the predicted
variable y.

Decision Tree Although the input and output variables are similar, the decision tree
algorithm is a quite different from logistic regression. A decision tree can be described
as a set of rules that is used to predict an output value( e.g. if X > 5 then Y = A
else Y = B). There are several algorithms that can be used to generate a decision tree
based on training data. Usually, these algorithms consist of grow and prune operations.
A tree is grown when new splits are added to the tree. Pruning is the act of removing
nodes from the tree whenever they do not provide sufficient new information. This is
often done to avoid overfitting the model.

Random forest The random forest algorithm is a variation of the decision tree learning.
The idea is to grow N decision trees. For each tree, a random subset of input variables is
selected to construct the tree. All trees can be grown using the training dataset. When
the generated model is applied on the test data, the algorithm decides a classification
based on a voting model. For example, if 8 out of 10 decision trees predict the label
A, the algorithm will very likely select A as the final prediction. There are several
different criteria that can be used for growing the trees, selecting input variables and
voting models.

Naive Bayes The Naive Bayes (NB) algorithm is a classifier that is based on Bayes
theorem. The algorithm ‘Naively’ assumes independence of the input parameters, and
uses them to predict a class for an entity.

Support Vector Machine The Support Vector Machine (SVM) algorithm creates a
model that represents points in space. It classifies by mapping an entity in that space,
and then checking to which class it is closest.
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Neural Network The Neural Network (NN) algorithm is an algorithm inspired by
the biological neural network, and uses neurons and weights to classify an entity.

6.3.5 Definition of performance criteria to compare prediction models

To test whether cohesion metrics can improve prediction models, objective performance
criteria have to be defined to compare prediction models. The criteria should indicate
how accurate the prediction models are. Based on previous work [18, 36], we have
selected the following performance metrics to compare the different classification models:
Precision and recall, F-measure and area under the curve (AUC). Furthermore, we have
selected Matthews Correlation Coefficient (MCC) based on research by Baldi [3]. These
metrics provide us with information about the differences between the classification
models, and are explained in more detail in this section.

Precision, Recall and the F-Measure There are several performance metrics that
can be used to compare classifcation models. Table 6.2 gives an overview of the possible
outcomes of a prediction change-prone (CP) or not change-prone (NCP). Besides the
correctly predicted True Positive (TP) and True Negative (TN), there are two types of
incorrect predictions: False Positive (FP) and False Negative (FN). These errors can be
used to calculate several performance metrics, such as precision and recall.

Class
CP NCP

Predicted Class
CP TP FP

NCP FN TN

Table 6.2: Possible classification outcomes.

precision =
TP

TP + FP

recall =
TP

TP + FN

Related to precision and recall is the F-measure[42], which is defined as follows:

F = 2 · recall · precision
recall + precision

Matthews Correlation Coefficient In machine learning, the MCC can be used to
measure the quality of a binary classification [3]. It takes into account all values of
the contingency table, where the F-Measure does not include the true negatives. An
interesting property is that it does not care about which class is positive, and which
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class is negative. In other words, if we invert the two classes, the F-Measure would get
a different value, where the MCC value remains the same. It is defined as follows:

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

ROC Curves Receiver Operating Characteristic (ROC) curves are a more graphical
method of comparing the performance of different classification models. It is a plot of
the True Positive (TP) rate versus the False Positive (FP) rate, which are defined as:
tpr = TP

TP+FN × 100% and fpr = FP
FP+TN × 100%.The diagonal line of an ROC curve

represents a random classifier. Any classifier below that line performs worse than a
random guess. If the output of that classifier is inverted it becomes a good classifier.

A single classifier can be represented by a point in the ROC curve. By varying the
discrimination threshold, a curve can be constructed for a classifier. For example, a
logistic regression classifier could classify a sample as A whenever P (X = A) ≥ 0.5.
Varying this threshold (0.5) can increase the TP rate, while decreasing the FP rate, and
vice versa.

ROC curves can be used to compare different classification models. The AUC can be
calculated to compare different classifiers. The AUC gives an indication which classifier
generally performs better. It is argued [42] that AUC provides very limited information
to compare classifiers. For example, it does not distinguish between classifiers tending
to provide a higher TP rate and classifiers that provide a lower FP rate. Depending on
the type of research, a lower FP rate could be more valuable than a higher TP rate.

6.3.6 Application of the prediction models

Combining the information from the previous sections, we can fill in the framework
illustrated in Figure 6.1. The figure illustrates the cycle we perform for a single classification
model. The output are the 4 selected performance metrics: Precision and Recall,
F-Measure and the area under the curve (AUC) of the ROC.

For each input model (baseline and extended), we train and test the three selected
classification models. This is repeated for each project, which means we have 3 pairs of
models per project. The models are trained and tested using RapidMiner.2 Information
about the configuration of the different models can be found in Appendix C. Ten-fold
cross-validation is applied to the models in order to reduce the variability.

Finally, the output metrics of the two different input models have to be compared.
Similar to the correlation analysis, we can use the Wilcoxon Signed-Ranks Test to see
whether the models produce significantly different results. In order to accept H3, we
have to be confident that the extended model is significantly better than the baseline
model.

2RapidMiner http://www.rapidminer.com
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6.4 Selection of experiments

The previous section describes many different options for constructing prediction models,
selecting datasets and the definition of change-proneness. To perform a thorough investigation
of the hypothesis, it is necessary to investigate several different configurations. As it
is nearly impossible to try all configurations, we have selected several experiments.
Table 6.3 shows an overview of the selected experiments, and they are described in
the following sections.

Experiment Goal

Core experiment Base experiment to investigate the hypothesis.
Different change-prone cutoff points Do different cutoff points for the change-prone

definition lead to better prediction models?
Predict between releases Investigate H3 between releases of a software

project.

Table 6.3: The selection of experiments.

6.4.1 Core experiments

The core experiments have the following characteristics:

• Metrics are computed on the latest version of the source code.

• Changes are computed over the complete versioning history.

• The median of the number of SCC is selected as cutoff point for the definition of
change-prone. (see Section 6.3.2)

The core experiments are executed for both interfaces and concrete classes separately.

6.4.2 Different change-prone cutoff points

As described in Section 6.3.2, taking the median value of the number of SCC is just one
cutoff point. In this experiment, we investigate whether the results are different if we
use different cutoff points. We perform the experiment with the following alternative
cutoff points:

• Respectively the top 25%, the top 10% and top 5% of all classes is considered
change-prone.

• All classes with at least one change are considered change-prone.
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6.4.3 Predicting between releases

The core experiments investigate the capabilities of source code metrics to predict the
number of SCC that have been made in the past. The actual goal of this entire
investigation is to predict future changes, where the core experiments can explain changes
in the past at best. Many software projects have different releases throughout their
history. We can calculate the source code metrics on a release R1, and see whether these
metrics can be used to predict the changes between R1 and R2.
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Empirical study
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Chapter 7

Project Selection

This chapter describes the selection of the projects for the empirical study. Using these
projects, the analyses and experiments in the previous chapters can be executed.

7.1 Overview

The next section of this chapter describes the basic requirements for the project selection.
After that, the final section describes the projects selected for the empirical study. In
that section we also analyze the composition of the projects in terms of versioning history
and software structure.

7.2 Project requirements

As previous research [36] focused primarily on projects from the Eclipse and Hibernate
frameworks, this empirical study includes both standalone and framework open source
projects. We have located several projects using the open source project repositories of
Eclipse, Apache and SourceForge.1

In order to assure that the results of the analysis are statistically significant, we
found that a project should meet the following requirements:

• Projects should be of sufficient size, preferably more than 500 classes.

• The project should have a long revision history, with at least 2000 revisions.

Note that these requirements give no guarantee for statistical significant results, but it
is a good starting point for the project selection. During our selection, we found that
projects with less data did not produce significant results. In some cases we noticed
that the limitations of the research framework (see Chapter 4) resulted in less usable
projects.

1www.eclipse.org, www.apache.org, www.sourceforge.net
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7.3 Selected projects

The final selection can be found in Table 7.1. For each project, it shows the following
statistics:

• The number of interfaces and concrete classes (CClasses) measured at the latest
version.

• The dates between which all file revisions are gathered and the number of revisions
between those dates.

• The number of significant fine-grained Source Code Changes (SCC) (see Section 4.3.2).

Project Interfaces CClasses From To File Revisions SCC

ArgoUML-app 108 1,598 2/2008 10/2011 6,811 21,876
Eclipse.debug.ui 136 1,259 5/2001 9/2011 22,468 75,388
Eclipse.jdt.core 196 1,194 6/2001 9/2011 80,303 401,415

Eclipse.team.core 48 177 11/2001 5/2011 4,625 6,600
Hibernate3 205 1,508 6/2004 2/2006 12,456 49,019

Jabref 39 1,395 10/2003 10/2011 6,919 53,140
JEdit 63 1,065 9/2001 10/2011 10,708 90,001
Jena2 204 2,062 12/2002 5/2011 30,298 91,713

JFreechart 85 682 8/2004 7/2007 8,076 20,576
Joone 36 481 3/2001 10/2008 5,194 21,224
Log4J 23 413 12/2000 9/2011 2,831 10,218

Lucene 44 973 9/2001 11/2011 19,655 36,600
Rapidminer 205 4,045 1/2010 10/2011 11,165 20,613

Sweet Home 3D 27 1,395 11/2005 9/2011 22,445 45,924
TripleA 104 1,812 1/2002 11/2011 8,753 22,453

Vuze 1,054 6,391 7/2003 4/2010 54,713 376,910
Xerces 160 914 11/1999 9/2011 14,871 117,462

Table 7.1: The project selection for the empirical study,

We observe that some statistics vary greatly per project, such as the interfaces/CClasses
ratio and the number of significant changes per revision. This is an indication that the
project selection is diverse, and it might be interesting to look at the differences between
the projects. In the next section the differences between the distributions of changes is
analyzed in more detail.

7.3.1 Project change distribution

Table 7.2 shows several statistics about the change sets of the interfaces for the different
projects. Note the distinction between interfaces that have 0 SCC and interfaces that do
have significant changes. These statistics will influence the analyses in the next sections.

Table 7.3 shows the same statistics for the concrete classes. Observe that Jena2
has around 48,000 changes linked to the concrete classes and interfaces, while Table 7.1
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Project Size Max SumChanges Mean NonZero Median(6= 0)

Argouml-app 108 28 76 0.70 11 (10%) 3
Eclipse.debug.ui 136 270 1014 7.46 58 (43%) 4
Eclipse.jdt.core 196 785 2753 14.05 110 (56%) 6

Eclipse.team.core 48 30 171 3.56 23 (48%) 3
Hibernate3 205 346 1610 7.85 96 (47%) 5

Jabref 39 23 60 1.54 15 (38%) 1
JEdit 63 24 100 1.59 20 (32%) 3.5
Jena2 204 187 2005 9.83 117 (57%) 5

JFreeChart 85 51 145 1.71 18 (21%) 3
Joone 36 25 117 3.25 18 (50%) 4
Log4J 23 65 125 5.43 10 (43%) 7.5

Lucene 44 25 65 1.48 10 (23%) 3.5
RapidMiner 205 13 83 0.40 28 (14%) 1.5

Sweet3D 27 56 142 5.26 10 (37%) 4
TripleA 104 54 295 2.84 42 (40%) 3

Vuze 1054 701 8994 8.53 546 (52%) 5
Xerces 160 56 454 2.84 63 (39%) 2

Table 7.2: Statistics of the SCC of the interfaces.

Project Count Max SumChanges Mean NonZero Median(6= 0)

Argouml-app 1598 367 16764 10.49 486 (30%) 12
Eclipse.debug.ui 1259 3189 44320 35.20 465 (37%) 23
Eclipse.jdt.core 1194 27612 342287 286.67 845 (71%) 59

Eclipse.team.core 177 471 2131 12.04 65 (37%) 15
Hibernate3 1508 2297 26456 17.54 530 (35%) 17

Jabref 1395 1772 45741 32.79 404 (29%) 30.5
JEdit 1065 6123 60719 57.01 301 (28%) 46
Jena2 2062 4188 46773 22.68 793 (38%) 17

JFreeChart 682 783 18160 26.63 504 (74%) 10
Joone 481 976 16414 34.12 248 (52%) 27.5
Log4J 414 680 8741 21.11 144 (35%) 21

Lucene 973 1124 11292 11.61 318 (33%) 10
Rapidminer 4045 637 17508 4.33 887 (22%) 5

Sweet3D 1395 4200 32974 23.64 151 (11%) 73
TripleA 1812 1229 17271 9.53 260 (14%) 24

Vuze 6391 7012 247181 38.68 1685 (26%) 28
Xerces 914 3510 62253 68.11 543 (59%) 18

Table 7.3: Statistics of the SCC of the concrete classes.
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7. Project Selection

shows that the project should have around 91,000 changes. Even when we include
abstract classes, about 40% of all changes remain unlinked. This is a perfect illustration
of one of the limitations of the research framework. Apparently, much of the source code
has been moved, which means Change Distiller is unable to relate these changes to the
latest version of the source code.

Another interesting project is RapidMiner. The linked changes for interfaces and
concrete classes are in total close to the total number of imported changes (20,613),
which means the imported history can actually be used. When we compare RapidMiner
to Log4J, we see that RapidMiner has about 10 times the number of interfaces Log4J has,
while the total number of interface changes is higher for Log4J. This can be explained by
the fact that the imported RapidMiner history is relatively short, only from 2010-2011,
where Log4J has a history of over 10 years.

Concluding, we have selected a variety of open source projects for the empirical study.
Even though the projects adhere to the minimal requirements for selection, some of the
projects have limited data available. This is something that should be considered in the
statistical analyses.
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Chapter 8

Results of the Correlation
Analyses

In this chapter we investigate the first two hypotheses defined in Section 1.3:

H1: The cohesion metrics are correlated with the number of fine-grained
changes in Java classes.
H2: The cohesion metrics are correlated with the size of Java classes.

The previous chapters described the research framework and the process designed to
investigate these hypotheses. Chapter 5 described how the correlation analyses are
performed, and how the results should be interpreted. This chapter describes the
execution of the correlation analyses using the open-source projects selected in Chapter 7.

8.1 Overview

As described in Chapter 5, the first two hypotheses are investigated by performing a
correlation analysis. Each of the two investigations follows the following structure:

1. Results: the direct results from the study.

2. Analysis: this section analyzes the results for each metric.

3. Conclusion: evaluate the hypothesis under investigation.

Section 8.2 describes the results of the correlation analysis between the cohesion
metrics and the number of changes. To analyze the effects of size, in Section 8.3 the
relation between cohesion and size metrics is investigated. In each section the hypotheses
are investigated primarily for the Java interfaces. The concrete classes are described in
the same sections, and are included for support. This chapter ends with a summary of
the results in Section 8.4.
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8. Results of the Correlation Analyses

8.2 Correlation analysis between cohesion metrics and
SCC

We investigate the relation between interface cohesion metrics and the number of fine-grained
Source Code Changes (SCC) by performing a correlation analysis. In this section, we
try to find evidence to accept or reject the first hypothesis:

H1: The cohesion metrics are correlated with the number of fine-grained
changes in Java classes.

8.2.1 Results

Table 8.1 shows the results of the correlation analysis between the cohesion metrics and
the number of SCC of Java interfaces. Recall from Chapter 5 that a correlation of -1
and 1 indicate very strong correlations, and a correlation of 0 indicates no correlation.
The metric that scores best for a single project is highlighted in bold.

Note that the number of interfaces under analysis is smaller than the available number
of interfaces in the project. This is due to the fact that interfaces without methods or
clients are excluded from the analysis, as is described in Section 4.4.

Project NOM IUC CAMC NHD IIC LCOIC

Argouml-app 0.19 -0.27* -0.32** -0.03 -0.22 0.24*
Eclipse.debug.ui 0.43** -0.52** -0.40** 0.11 -0.13 0.15
Eclipse.jdt.core 0.59** -0.48** -0.46** 0.31* -0.35** 0.26**

Eclipse.team.core 0.44** -0.44** -0.22 0.29 -0.17 0.53**
Hibernate3 0.61** -0.60** -0.51** 0.43** -0.16* 0.40**

Jabref 0.67** -0.69** -0.31 0.42 -0.58** 0.66**
JEdit 0.22 0.04 -0.20 0.16 -0.22 0.15
Jena2 0.68** -0.64** -0.61** 0.37** 0.05 0.46**

JFreeChart 0.15 -0.01 -0.17 0.13 -0.17 -0.04
Joone 0.69** -0.51** -0.59** 0.55* -0.35 -0.05
Log4J 0.52* -0.49* -0.67** 0.89* -0.31 -0.01

Lucene 0.60** -0.45** -0.46** 0.53** -0.20 0.31*
RapidMiner 0.34** -0.35** -0.32** 0.17 -0.07 0.42**

Sweet3D 0.57** -0.56** -0.61** 0.48 -0.34 0.33
TripleA 0.51** -0.48** -0.41** 0.43** -0.39** 0.28**

Vuze 0.74** -0.67** -0.62** 0.35** -0.28** 0.51**
Xerces 0.48** -0.47** -0.34** 0.24* -0.15 0.32**

Table 8.1: Spearman’s rank correlation between number of SCC and cohesion metrics
and NOM for interfaces. (* indicates a significant correlation at α = 0.05, ** at α = 0.01)

Table 8.2 shows the correlation analysis of cohesion metrics and SCC for concrete
classes, and Table 8.3 shows the similar correlations for four other OO metrics that are
only defined for classes.

Note the distinction between the Number of Public Methods (NOPM) and Number
of Methods (NOM). This distinction is made to see the differences between the two

54



8.2. Correlation analysis between cohesion metrics and SCC

metrics, as Interface Usage Cohesion (IUC) is only calculated for all non-static public
methods. This will be described in more detail in Section 8.3.

Project NOPM IUC CAMC NHD LCOIC

ArgoUML-app 0.32** -0.32** -0.45** 0.43** 0.20**
Eclipse.debug.ui 0.32** -0.27** -0.56** 0.30** 0.28**
Eclipse.jdt.core 0.52** -0.45** -0.63** 0.56** 0.32**

Eclipse.Team.core 0.56** -0.31** -0.64** 0.58** 0.24*
Hibernate3 0.20** -0.36** -0.26** 0.19** 0.28**

Jabref 0.47** -0.38** -0.51** 0.40** 0.23**
JEdit 0.32** -0.25** -0.34** 0.35** 0.18**
Jena2 0.54** -0.41** -0.56** 0.40** 0.17**

JFreeChart 0.58** -0.39** -0.62** 0.49** 0.14*
Joone 0.53** -0.47** -0.54** 0.51** 0.19**
Log4J 0.47** -0.30** -0.49** 0.41** 0.24**

Lucene 0.40** -0.31** -0.43** 0.37** 0.22**
RapidMiner 0.28** -0.28** -0.33** 0.28** 0.23**

Sweet3D 0.48** -0.52** -0.60** 0.37** 0.49**
TripleA 0.27** -0.26** -0.36** 0.29** 0.26**

Vuze 0.47** -0.44** -0.54** 0.27** 0.31**
Xerces 0.38** -0.29** -0.52** 0.30** 0.22**

Table 8.2: Spearman’s rank correlation between the number of SCC and cohesion
metrics and NOPM for concrete classes. (* indicates a significant correlation at α = 0.05,
** at α = 0.01)

Appendix D contains additional results in the form of tables and scatter plots, which
we can use for further analysis. Section D.2 contains scatter plots of the cohesion metrics
versus SCC, to support the correlation coefficients. Section D.1 contains information
about the distribution of the metrics.

8.2.2 Analysis

The correlation data shows interesting results, which are summarized in Tables 8.4
and 8.5. The last column of those tables indicates the results of a One Sample Wilcoxon
Signed-Ranks Test on the correlation coefficients. As explained in Chapter 4, the One
Sample Wilcoxon Signed-Ranks Test tests the null-hypothesis that the median of a
collection of values is equal to a specified value, against the alternative that the median
is not equal, less, or greater than the specified value. Recall from the previous chapter
that we consider a correlation between 0.5 and 0.7 to be substantial. The column
‘IsSubstantial’ is the result of the two Wilcoxon tests as described in Section 5.2.2,
and tests the null hypothesis median(correlation) = 0.5. The significance level of the
Wilcoxon tests is 0.05.
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8. Results of the Correlation Analyses

Project NOM LOC WMC LCOM

ArgoUML-app 0.47** 0.54** 0.49** 0.27**
Eclipse.debug.ui 0.60** 0.71** 0.72** 0.53**
Eclipse.jdt.core 0.67** 0.83** 0.82** 0.43**

Eclipse.Team.core 0.70** 0.64** 0.66** 0.39**
Hibernate3 0.28** 0.54** 0.45** 0.08*

Jabref 0.47** 0.65** 0.59** 0.43**
JEdit 0.38** 0.54** 0.43** 0.30**
Jena2 0.68** 0.68** 0.70** 0.41**

JFreeChart 0.65** 0.77** 0.77** 0.34**
Joone 0.53** 0.53** 0.55** 0.39**
Log4J 0.39** 0.47** 0.47** 0.16

Lucene 0.37** 0.43** 0.42** 0.32**
RapidMiner 0.38** 0.43** 0.38** 0.28**

Sweet3d 0.57** 0.83** 0.75** 0.46**
TripleA 0.38** 0.36** 0.35** 0.31**

Vuze 0.39** 0.55** 0.45** 0.66**
Xerces 0.55** 0.71** 0.70** 0.41**

Table 8.3: Spearman’s rank correlation between the number of SCC and reference
metrics for concrete classes. (* indicates a significant correlation at α = 0.05, ** at
α = 0.01)

Metric Significant Substantial Median IsSubstantial

IUC 15 7 -0.48 Possibly
CAMC 13 6 -0.41 No
LCOIC 11 3 0.31 No

NHD 9 3 -0.35 No
IIC 5 2 0.22 No

Table 8.4: Summary of the correlation between SCC and cohesion metrics for interfaces.

Metric Significant Substantial Median IsSubstantial

CAMC 17 10 -0.52 Possibly
NHD 17 3 0.37 No
IUC 17 1 -0.32 No

LCOIC 17 0 0.23 No

Table 8.5: Summary of the correlation between SCC and cohesion metrics for concrete
classes.
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8.2. Correlation analysis between cohesion metrics and SCC

General observations

For interfaces, the projects Argouml-App, JEdit and JFreechart show few significant
correlations. This can be partially explained by a lack of data in the projects, which
emphasizes the need for large projects with many interfaces and many significant changes.
Note that these projects are not the smallest projects in terms of the number of interfaces
and classes. Some smaller projects do have significant correlations with the cohesion
metrics, such as Joone, Log4j and Sweet Home 3D.

Another interesting project is RapidMiner: it has relatively many interfaces, but has
few substantial correlations with the metrics. Table 7.2 shows that only 1 out of 10
classes has one or more significant SCC. Figure 8.1.2 shows that RapidMiner has few
unique data points in the plot of Interface Implementation Cohesion (IIC) and SCC.
This makes it difficult to draw conclusions about a correlation. In Appendix D, similar
results are found for other metrics and other projects.

For concrete classes we see more significant correlations. This can primarily be
explained by the size of the datasets; most projects have significantly more concrete
classes than interfaces. Furthermore, we have seen in Chapter 7 (see Table 7.3) that
each project has over 100 concrete classes with at least one SCC.

The second observation for concrete classes is that the correlation coefficients for
most of the cohesion metrics are lower than those of the interfaces. We think that there
are at least two explanations for this.

First of all, concrete classes contain more information than interfaces. Where interfaces
primarily contain method declarations, concrete classes also contain attributes and
method bodies. These extra elements give concrete classes more reasons for change.
As cohesion is another reason for change, we think the ratio of the cohesion related
changes versus all changes is much less for concrete classes than for interfaces.

Another explanation for the low correlation coefficients lies in the definition of the
cohesion metrics. For instance, we calculate IUC only over public non-static methods,
which means it is only calculated over a part of the class. This means that IUC ignores
the private and protected methods, where changes will be made as well. The next
sections analyze the results per metric.

Interface Implementation Cohesion

In general, IIC shows weak correlations with the number of changes. The correlations
are often insignificant as well. Our analysis finds multiple causes:

• As indicated in Section 4.4, some interfaces do not have any implementing classes.
By excluding these cases in the analysis, the dataset becomes smaller which results
in even less data to analyze.

• IIC=1 for many interfaces (see Appendix D), which indicates that many interfaces
are completely implemented. These interfaces often do have changes, and thus
have an impact on the correlation. In fact, for each project at least half of all
interfaces has an IIC value of 1.
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Figure 8.1: Scatter plots that show the relation between IIC and SCC for interfaces of
three projects.

IIC has only one substantial correlation with the number of SCC, for the project
Jabref. Looking at the scatter plot in Figure 8.1.1, we can see that this correlation is
based on few data points, and thus may be less reliable.

Analyzing the scatter plots of larger projects shows us something interesting. Most
of the correlation coefficients are negative, which indicates that an interface with a lower
IIC value will likely have more changes. The scatter plots seem to show more of a relation
in the other direction, as can be seen in Figure 8.1.3. Interfaces with many changes seem
to have higher IIC values, which seems to be the case for Vuze.

To explain this phenomenon, we observe that the scatter plots give only insight in
the unique data points, and the correlation values can be explained by the fact that
there are very much interfaces with high IIC values.

Usage Cohesion

IUC and Lack of Cohesion of Interface Clients (LCOIC) are the two usage cohesion
metrics we investigate. Tables 8.1 and 8.4 show that IUC has more significant and more
substantial correlations with the number of changes than LCOIC.

In Tables 8.4 and 8.5 it can be seen that the median values for LCOIC are low. Based
on the One Sample Wilcoxon Signed-Ranks Tests the hypothesis that the correlation is
substantial can be rejected. The scatter plots and distibution tables in Appendix D show
that LCOIC has many 0 values, and support the conclusion that LCOIC does not seem
to be substantially correlated with SCC.

IUC shows stronger correlations with both interfaces and concrete classes. For
interfaces, the median is 0.48 and the One Sample Wilcoxon Signed-Ranks Test accepts
the null hypothesisMedian(LCOIC) ≥ 0.5 in favor of the alternativeMedian(LCOIC) <
0.5 at a significance level of 0.05. Similarly the Wilcoxon tests accept the null hypothesis
Median(LCOIC) ≤ 0.5 in favor of the alternative Median(LCOIC) > 0.5. The first
test implies that the median can be substantial, where the second test implies the median
does not have to be substantial, as described in Chapter 5.
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8.2. Correlation analysis between cohesion metrics and SCC

Further investigations of IUC show that there are many interfaces with IUC=1.
Especially the interface scatter plots of larger projects such as Vuze hint at a relation
between the number of SCC and IUC. Classes with low IUC values tend to have many
changes, and there are few classes with high IUC values and many changes.

For concrete classes the correlation coefficients for IUC are less high than those of
interfaces, with a median value of -0.32. We identify two causes for these lower values:

• The calculation of IUC for concrete classes only takes into account public methods,
while concrete classes contain more methods. In other words, for interfaces IUC
is directly related to NOM, where for concrete classes it is related to Number of
Public Methods (NOPM).

• As described earlier, concrete classes contain more data than interfaces, and thus
have more reasons for change.

Note that the first cause hints at the relation between IUC and NOM, which is investigated
in Section 8.3.

Parameter Cohesion

In this investigation we have included two parameter cohesion metrics: Cohesion among
Methods in a Class (CAMC) and Normalized Hamming Distance (NHD).

Analysis of CAMC shows that for both interfaces and concrete classes, CAMC
often has substantial correlations with SCC. Table 8.4 shows us that CAMC does have
substantial correlations, but the median value is not substantial. The Wilcoxon test
rejects the hypothesis that the median could be substantial. Interestingly, Table 8.5
shows that the median correlation for the concrete classes for CAMC is 0.52, and the
Wilcoxon test accepts the hypothesisMedian(CAMC) = 0.5 againstMedian(CAMC) <
0.5 at a significance level of 0.05.

Further analysis learns us that there are few classes with a high CAMC and many
changes. Furthermore, the metric distribution table (Table D.2) shows that a large
percentage of all classes has a CAMC value of 1.

Although the Wilcoxon indicates that CAMC does not have substantial correlations
with SCC, the project selection does have an impact on the results. As we have seen
earlier in this chapter, the projects ArgoUML-app, JEdit and JFreeChart do not have
any substantial correlations for the interfaces. It thus might seem fair to exclude these
projects from the analysis. The null-hypothesis that the correlation can be substantial
can be accepted based on the outcome of the Wilcoxon test on the reduced dataset.

NHD has a median of 0.35 for interfaces and 0.37 for concrete classes. As can be
expected with a low median value, the Wilcoxon test rejects the hypothesis that the
median correlation is substantial.

An interesting difference between CAMC and NHD appears when we compare the
scatter plots for the project Vuze for the interfaces, see Figure 8.2. If we invert the
x-axis for one of the two scatter plots, the figures seem to look very similar. However,
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Figure 8.2: Scatter plots that show the difference between NHD and CAMC for interfaces
of Vuze.

the correlation coefficient computed for CAMC is nearly twice as large as the one for
NHD. This can be explained by the following causes:

• The NHD metric is undefined for interfaces with only a single method.

• CAMC has a relation with NOM as lower bound, where NHD has values of 0.

8.2.3 Conclusions

In the previous section we have investigated the correlation between cohesion metrics
and the number of SCC. Based on the analysis, we are now able to accept or reject the
first hypothesis for each cohesion metric:

• IIC: reject H1.

• IUC: partially accept H1.

• LCOIC: reject H1.

• NHD: reject H1.

• CAMC: partially accept H1.

The rejection of IIC, LCOIC and NHD can be directly justified by the data. These
metrics have few significant correlations with the number of SCC, and even less correlation
coefficients are substantial. IUC is partially accepted as the data hints at a substantial
correlation between IUC and SCC for interfaces. The fact that IUC correlates less with
SCC for concrete classes can have multiple causes, such as the relation with the size of
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a class. CAMC is partially accepted as it does have a substantial correlation with SCC
for concrete classes, and because it is substantially correlated with SCC for interfaces if
we remove the projects that do not correlate with any of the metrics.

For our other experiments, the outcomes have the following implications:

• We should keep in mind that some of the projects are less useful in the statistical
analysis.

• The metrics for which H1 is accepted are the primary focus of the rest of the
investigation.

8.3 Correlation analysis between cohesion metrics and
size

In the previous section the cohesion metrics IUC and CAMC showed a promising correlation
with the number of fine-grained changes. Interestingly, the correlation coefficients often
seem to be similar to NOM, hinting at a dependency between these metrics. In Chapter 3
the definitions for the metrics are defined. As described in that chapter, the minimum
value for IUC is min(IUC) = 1

NOM , and a similar minimum value applies to CAMC.
Hypothesis 2 investigates the relation between the cohesion metrics and size metrics in
more detail:

H2: The cohesion metrics are correlated with the size of Java classes.

8.3.1 Results

The correlation coefficients between the size and cohesion metrics are calculated. Recall
from Chapter 4 that NOM is the size metric for interfaces, and NOM and LOC are the
size metrics for concrete classes. The results of this analysis can be found in the following
tables:

• Table 8.6: Cohesion metrics and NOM for interfaces.

• Table 8.8: Cohesion metrics and LOC for concrete classes.

• Table 8.7: Cohesion metrics and NOM for concrete classes.

Statistics about the correlations per metric are found in Tables 8.9 and 8.10.

8.3.2 Analysis

General observations

The cohesion metrics seem to be strongly correlated with NOM for interfaces. Most
correlations are significant, although differences between some metrics become visible.
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Project IUC CAMC NHD IIC LCOIC

ArgoUML-app -0.76** -0.63** 0.44** -0.36** 0.52**
Eclipse.debug.ui -0.78** -0.70** 0.22 -0.45** 0.38**
Eclipse.jdt.core -0.74** -0.79** 0.64** -0.30** 0.40**

Eclipse.Team.core -0.90** -0.78** 0.71** -0.38* 0.56**
Hibernate3 -0.82** -0.82** 0.62** -0.32** 0.46**

Jabref -0.87** -0.66** 0.37 -0.48** 0.69**
JEdit -0.57** -0.53** 0.22 -0.49** 0.25
Jena2 -0.79** -0.82** 0.56** -0.03 0.58**

JFreeChart -0.83** -0.70** -0.15 -0.19 0.35**
Joone -0.86** -0.66** 0.78** -0.03 0.30
Log4J -1.00** -0.83** 0.37 -0.05 0.51*

Lucene -0.87** -0.64** 0.68** -0.24 0.42**
RapidMiner -0.83** -0.83** 0.66** -0.47** 0.52**

Sweet3D -0.89** -0.78** 0.58 -0.67** 0.60**
TripleA -0.86** -0.75** 0.61** -0.50** 0.57**

Vuze -0.84** -0.78** 0.46** -0.37** 0.58**
Xerces -0.82** -0.70** 0.70** -0.29** 0.44**

Table 8.6: Spearman’s rank correlation between cohesion metrics and NOM for
interfaces. (* indicates a significant correlation at α = 0.05, ** at α = 0.01)

Project IUC CAMC NHD LCOIC LCOM

ArgoUML-app -0.71** -0.80** 0.88** 0.32** 0.49**
Eclipse.debug.ui -0.60** -0.83** 0.95** 0.40** 0.76**
Eclipse.jdt.core -0.50** -0.79** 0.94** 0.33** 0.66**

Eclipse.team.core -0.46** -0.79** 0.91** 0.27* 0.56**
Hibernate3 -0.52** -0.77** 0.86** 0.17** 0.78**

Jabref -0.62** -0.70** 0.93** 0.39** 0.80**
JEdit -0.63** -0.80** 0.94** 0.42** 0.69**
Jena2 -0.70** -0.86** 0.81** 0.23** 0.60**

JFreeChart -0.58** -0.84** 0.92** 0.11 0.30**
Joone -0.70** -0.85** 0.93** 0.27** 0.50**
Log4J -0.61** -0.84** 0.95** 0.26** 0.57**

Lucene -0.55** -0.80** 0.82** 0.25** 0.70**
RapidMiner -0.73** -0.75** 0.93** 0.39** 0.49**

Sweet3D -0.74** -0.87** 0.92** 0.57** 0.74**
TripleA -0.63** -0.75** 0.92** 0.34** 0.81**

Vuze -0.48** -0.51** 0.39** 0.19** 0.41**
Xerces -0.73** -0.79** 0.90** 0.28** 0.60**

Table 8.7: Spearman’s rank correlation between cohesion metrics and NOM for concrete
classes. (* indicates a significant correlation at α = 0.05, ** at α = 0.01)
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Project IUC CAMC NHD LCOIC LCOM

ArgoUML-app -0.58** -0.71** 0.74** 0.24** 0.49**
Eclipse.debug.ui -0.41** -0.80** 0.79** 0.38** 0.70**
Eclipse.jdt.core -0.45** -0.72** 0.77** 0.32** 0.53**

Eclipse.Team.core -0.19 -0.69** 0.69** 0.24 0.46**
Hibernate3 -0.46** -0.66** 0.68** 0.18** 0.60**

Jabref -0.36** -0.55** 0.72** 0.30** 0.72**
JEdit -0.42** -0.68** 0.76** 0.36** 0.61**
Jena2 -0.52** -0.77** 0.69** 0.17** 0.67**

JFreeChart -0.45** -0.75** 0.76** 0.08 0.41**
Joone -0.51** -0.75** 0.72** 0.24** 0.43**
Log4J -0.46** -0.81** 0.83** 0.28** 0.54**

Lucene -0.41** -0.71** 0.61** 0.17** 0.67**
RapidMiner -0.44** -0.61** 0.69** 0.29** 0.41**

Sweet3D -0.38** -0.71** 0.60** 0.34** 0.55**
TripleA -0.39** -0.68** 0.77** 0.25** 0.76**

Vuze -0.51** -0.62** 0.65** 0.30** 0.68**
Xerces -0.48** -0.80** 0.75** 0.19** 0.54**

Table 8.8: Spearman’s rank correlation between cohesion metrics and LOC for concrete
classes. (* indicates a significant correlation at α = 0.05, ** at α = 0.01)

Metric Median IsSubst IsStrong

IUC -0.83 Yes Yes
CAMC -0.75 Yes Yes

NHD 0.58 Possibly No
LCOIC 0.51 Possibly No

IIC -0.36 No No

Table 8.9: Summary of the correlation between NOM and cohesion metrics for
interfaces.

Metric Median IsSubst IsStrong

IUC -0.62 Yes No
CAMC -0.80 Yes Yes

NHD -0.92 Yes Yes
LCOIC -0.28 No No
LCOM 0.60 Yes No

(a) Metrics versus NOM

Metric Median IsSubst IsStrong

IUC -0.45 No No
CAMC -0.71 Yes Yes

NHD 0.72 Yes Yes
LCOIC 0.25 No No
LCOM 0.55 Yes No

(b) Metrics versus LOC

Table 8.10: Summary of the correlation between size and cohesion metrics for concrete
classes.
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Figure 8.3: Scatter plots that show the relation between NOM and IUC for interfaces of
two projects.

If we look at the individual projects, recall that ArgoUML-app, JEdit and JFreechart
are three projects with low correlations between the cohesion metrics and SCC. As we
can see in Table 8.6, JEdit is the project which has weak correlations. The comparison
of Figures 8.3.1 and 8.3.2 shows us that JEdit has few unique data points in the scatter
plot, which hints at a lack of data.

Implementation cohesion

As can be seen clearly from Tables 8.6 and 8.9, IIC has relatively few significant correlations
-even less substantial correlations- with the interface size metric NOM. The Wilcoxon
tests for the median reject the hypothesis that the correlation is substantial.

The low correlations between IIC and NOM can be explained by the same reasons
IIC correlates weakly with SCC. Many of the interfaces are completely implemented, and
thus IIC=1. Other interfaces do not have any implementing classes, and are excluded
from the analysis. Smaller datasets are likely to result in less significant correlations.

Usage cohesion

IUC is strongly correlated with NOM for interfaces. Figure 8.3.1 shows the scatter plot
for the project Vuze. Especially the minimum value for IUC (min(IUC) = 1

NOM ) is
visible in the scatter plot. For concrete classes, the correlation between IUC and the size
metrics is less strong. This can be explained by the relation between IUC and NOM,
and the calculation method of IUC explained in Chapter 4. IUC is calculated for only
the public methods of concrete classes, and thus the relation between IUC and NOM is
less strong for concrete classes.
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Similarly, LCOIC does have a relation with the NOM for interfaces and NOPM for
concrete classes. However, the correlation between LCOIC and NOM seems less strong
than the correlation between IUC and NOM.

Based on the results of the Wilcoxon tests, we accept the hypothesis that IUC is
substantially correlated with NOM. For LCOIC, we reject H2.

Parameter cohesion

In line with the results of IUC, CAMC seems to be strongly correlated with the NOM.
The Wilcoxon tests reject the hypothesis that the correlation between CAMC and NOM
is not strong, for both interfaces and concrete lasses.

Interestingly, Tables 8.9 and 8.10 show us that NHD seems to correlate substantially
with NOM for interfaces, but strong for concrete classes. Note that NHD is calculated
using all methods, where IUC and LCOIC are calculated for only the public methods.
Although the range of NHD is [0-1], NHD and NOM seem to have a similar relation as
IUC and NOM, which is illustrated in Figure 8.4.

One possible explanation for the different correlations for concrete classes and interfaces
lies in the dataset size. In Table 8.6 we can see that NHD has relatively high correlations
for RapidMiner, Vuze and Hibernate3. For the smaller projects Log4J and JFreeChart
the correlation is less strong, and not even significant.
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Figure 8.4: Scatter plot that shows the relation between NOM and NHD for interfaces
of Vuze.

8.3.3 Conclusions

Based on the results of the correlation analyses, we draw the following conclusions for
Hypothesis 2:

• IUC: accept H2 for interfaces and concrete classes.
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• CAMC: accept H2 for interfaces and concrete classes.

• NHD: partially accept H2 for interfaces, accept for concrete classes.

• LCOIC: partially accept H2 for interfaces, reject for concrete classes.

• IIC: reject H2 for interfaces.

8.4 Summary of the results

In this chapter we have performed the correlation analyses described in Chapter 5.
First we investigated the correlation between the cohesion metrics and the number

of SCC. Based on the results of the analysis, we partially accept H1 for IUC and CAMC
For the other metrics, the hypothesis is rejected.

The second investigation is the correlation analysis between the cohesion metrics and
size metrics. Although the results are different for interfaces and concrete classes, we
accept H2 for IUC and CAMC. The metrics LCOIC and NHD also show substantial
correlations with the class size metrics, and thus the hypothesis is partially accepted.

Concluding, the correlation analyses show promising results for the cohesion metrics
IUC and CAMC. They are correlated with the #SCC, and the supporting plots show a
clear relation between the two. However, the reason for these correlation might be the
fact that the cohesion metrics are correlated with the size of classes. The acceptance
of H2 for the two metrics seems to support this theory. The next chapter investigates
whether the cohesion metrics can improve change prediction models based on size.
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Chapter 9

Results of the Prediction Models

Based on the correlation analyses, we construct change prediction models to investigate
whether cohesion metrics can improve prediction models based on size metrics. In this
chapter, we try to find evidence to accept or reject the third hypothesis:

H3: The cohesion metrics can improve the performance of prediction models
to classify Java classes into change- and not change-prone.

9.1 Overview

Table 9.1 shows the input models we compare in this investigation, as described in
Chapter 6. Note that IUC and CAMC are selected as promising metrics, based on the
partial acceptance of H1 for these metrics.

Model Input metrics

Baseline Size metrics.
All All size and cohesion metrics.
Promising Size metrics, IUC and CAMC.

Table 9.1: Baseline and extended prediction model

Using these input models, we perform the three experiments described in Chapter 6.
Each of the experiments has a different goal, as can be seen in Table 9.2.

Section 9.2 and Section 9.3 describe the core experiments for respectively interfaces
and concrete classes. In Section 9.4 the experiments with different cutoff points for
the definition of change-proneness are described. The third experiment is described in
Section 9.5, which investigates whether cohesion metrics of an early release can predict
‘future’ changes. We report on the results of the experiments in the same structured
way as with the correlation analyses: Results, Analysis and Conclusions.

Finally, Section 9.6 gives a short summary of the results of this chapter.
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Experiment Goal

Core experiment Base experiment to investigate the hypothesis.
Different change-prone cutoff points Do different cutoff points for the change-prone

definition lead to better prediction models?
Predict between releases Investigate H3 between releases of a software

project.

Table 9.2: The selection of experiments.

9.2 Core experiments

This chapter investigates if cohesion metrics can improve the performance of classification
models that are able to classify interfaces as change-prone or not change-prone. The core
experiments investigate this goal, using the following characteristics:

• A class is considered change-prone if it has more changes than the median number
of changes of all classes in that project.

• The source code metrics are computed on the latest version of the project.

• All available significant changes in the versioning history are included.

Based on the results of the correlation analysis and sizes of the datasets, we have
performed the core experiments for the following projects:

Project Size MedianSCC

Combined* 194 1
Eclipse** 129 1

Hibernate3 106 1
Jena2 111 4
Vuze 517 4

Table 9.3: Selected projects for core experiments (*Combination of ArgoUML-app,
Jabref, Joone, Log4J, Sweet Home 3D, TripleA and Xerces, ** Combination of
Eclipse.debug.ui, Eclipse.jdt.core and Eclipse.team.core).

Note that we have combined the datasets of several projects in order to be able to
analyze them. We have excluded some of the larger projects with few interface changes,
such as RapidMiner, JEdit and JFreeChart.

9.2.1 Results

Figure 9.1 shows the area under the curve (AUC) of the Receiver Operating Characteristic
(ROC) curves for this experiment. The abbreviations on the X-axis stand for the
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9.2. Core experiments

following classification algorithms: Logistic Regression (LR), Support Vector Machine
(SVM), Decision Tree (DT), Neural Network (NN), Random Forest (RF) and Naive
Bayes (NB).

For each classification algorithm, the graphs show three bars. The most left bar is the
performance of the baseline model, the middle bar is the ‘all model’ and the right bar is
the ’promising model’. If we find that one of the extended models performs significantly
better than the baseline model, we have evidence that supports H3.

LR SVM DT NN RF NB
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
U

C

 

 

Baseline
All
Promising

1: Eclipse(combined)

LR SVM DT NN RF NB
0

0.2

0.4

0.6

0.8

1
A

U
C

 

 

Baseline
All
Promising

2: Combined

LR SVM DT NN RF NB
0

0.2

0.4

0.6

0.8

1

A
U

C

 

 

Baseline
All
Promising

3: Jena2

LR SVM DT NN RF NB
0

0.2

0.4

0.6

0.8

1

A
U

C

 

 

Baseline
All
Promising

4: Hibernate3

LR SVM DT NN RF NB
0

0.2

0.4

0.6

0.8

1

A
U

C

 

 

Baseline
All
Promising

5: Vuze

Figure 9.1: AUC values for the prediction models of the core experiments. (Classes:
interfaces; Source code model: latest version; SCC: All; Change-prone cutoff point:
median)

9.2.2 Analysis

The combined Eclipse projects show low AUC values for all prediction models. In some
cases, the AUC value is actually less than 0.5, which indicates that the prediction model
performs worse than a random classifier. As described in Chapter 6, negative predictors
can be inverted and thus we can interpret the value as 1−AUC.

An interesting observation is that the alternative models seem to have higher AUC
values compared to the baseline models for the combined Eclipse projects. This might
indicate that the cohesion metrics are indeed able to slightly improve the prediction
model for this specific project. The figures in Appendix E.1 of the other performance
metrics F-Measure and Recall support this theory. However, the improvement can be
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9. Results of the Prediction Models

explained by the fact that the baseline models for the Eclipse projects provide predictors
that have hardly more predictive power then a random guess.

Vuze is by far the largest project in this experiment, and thus might be one of the
most interesting projects. The AUC values show an improvement for the Random Forest
algorithm, while the other algorithms perform similar or worse with the additional input
metrics. Interestingly, the Matthews correlation coefficient is higher for the baseline
model than the other two models for the RF algorithm.

The other three projects show AUC values around 0.8 for most projects. The
Random Forest algorithm is the only algorithm that sometimes seems to benefit from the
additional cohesion metrics as input. The AUC, F-Measure and recall seem to support
this theory, while MCC and precision do not.

9.2.3 Conclusions

The performances of the different algorithms and models show that in some specific cases,
the cohesion metrics seem to improve the prediction models. However, when analyzed
in more detail, the improvements on the baseline model seem too small to draw any
solid conclusions. The random forest algorithm seems to produce better models with
the cohesion metrics in some cases, but does not perform significantly better than other
algorithms without cohesion metrics. Concluding, the core experiments provide no solid
evidence that supports our hypothesis.

9.3 Concrete classes

The projects selected for this experiment are shown in Table 9.4. Observe that the
median SCC is higher for concrete classes than we have seen in the previous section
for interfaces. Compared to the experiments with interfaces, there are more classes and
there is more change data available for the experiment with concrete classes.

9.3.1 Results

All bar plots of the concrete prediction models can be found in Appendix E.2. As the
results for most projects are similar, we present the AUC plots for three projects in
Figure 9.2.

9.3.2 Analysis

The results of the concrete classes show no convincing evidence to support the theory
that the interface cohesion metrics improve the performance of the selected change
prediction models. Figure 9.2 shows three of the AUC values for concrete classes. The
Eclipse.jdt.core project shows similar AUC values as the project Vuze. The extended
models seem to improve AUC for the prediction models, but only by a very small value.
Interesting is the difference of the performance of the Eclipse projects for interfaces,
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9.3. Concrete classes

Project Size MedianSCC

ArgoUML-app 615 5
Eclipse.debug.ui 288 7
Eclipse.jdt.core 737 9

Hibernate3 724 7
JabRef 331 5

JEdit 235 7
Jena2 431 7

JFreeChart 280 10
Joone 155 9
Log4J 100 8

Lucene 214 9
RapidMiner 1255 5

Sweet Home 3D 126 1
TripleA 434 7

Vuze 1268 26
Xerces 314 10

Table 9.4: Selected projects for core experiments (concrete classes).
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Figure 9.2: AUC values for the prediction models of three projects. (Classes: concerete
classes; Source code model: latest version; SCC: All; Change-prone cutoff point: Median)
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and the Eclipse projects for concrete classes. We think there are three causes for the
differences:

• The combination of three projects leads to bad prediction algorithms. As described
by Zimmermann, cross-project prediction models often does not show good results [47].

• The dataset of the combined Eclipse interfaces is still too small to train and test
proper prediction models.

• The interfaces change less often than the concrete classes. Chapter 7 shows for
Eclipse.jdt.core an average of 15 changes for interfaces, 300 for concrete classes.

Sweet Home 3D is an example of a project where the prediction models perform badly
if we look at AUC and MCC. This can be explained by the fact that Sweet Home 3D
has few changes available.

In general, the Random Forest algorithm seems to benefit from the cohesion metrics
if we look at the different performance metrics. The AUC value for an extended
model produced by RF is higher than the AUC value all baseline models of the other
classification algorithms for 7/16 projects. However, the differences are never larger than
0.05.

9.3.3 Conclusions

The conclusions are similar to the findings for the experiments for the interfaces. Although
some models seem to benefit from the cohesion metrics, the differences in the performance
metrics are small. We cannot conclude that the cohesion metrics improve the prediction
models.

9.4 Different definitions of change-proneness

The goal of this experiment is to investigate whether other definitions of change-proneness
can produce better prediction models. We have selected four different cutoff points for
this analysis: Top 25%, top 10%, top 5% and > 0. We have performed this analysis for
two projects, which can be seen in Table 9.5.

Project Size Median > 0 75% 90% 95%

Vuze 517 4 0 12 34 71
Hibernate3 106 2 0 7 24 34

Table 9.5: Selected projects and cutoff points for change-proneness definition.

9.4.1 Results

Figure 9.3 shows the AUC values for the selected models. The supporting metrics can
be found in Appendix E.4.
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Figure 9.3: AUC values for different cutoff points. (Classes: interfaces; Source code
model: latest version; SCC: All)

9.4.2 Analysis

As we can see for the project Hibernate3, most of the prediction models for the top 10%
and top 5% do not even have an AUC value. This can be explained by the size of the
datasets. The top 5% of the dataset is so small that the prediction models do not work
properly.

It is interesting to see that the 75% models perform much better than the > 0 models.
This can easily be explained by the fact that even small non-cohesive classes do have
changes, even though we expect them to change less often than other classes. The > 0
models for Hibernate3 seems to benefit from the cohesion metrics, but the differences
are small.
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9.4.3 Conclusions

We have found no evidence that the cohesion metrics can improve the performance of
change prediction models. Using different change-prone cutoff points does influence the
prediction models, but do not show evidence in favor of accepting H3.

9.5 Predicting between releases

As described in Chapter 6, all of our metrics are calculated using the latest version of
the source code of a project. The prediction models are then trained and tested with
changes that have happened before that version. This experiment takes into account
different releases of the projects, by calculating the cohesion metrics on an early release
of the software. The prediction models are then trained and tested with all changes that
have occurred after that release.

During the execution of this experiment, we found that the datasets of the projects
become much smaller in earlier releases. For many projects, this means we cannot
effectively train and test the prediction models, as we do not have enough data to work
with.

Since some metrics are undefined for some classes, this is another limitation on the
size of the dataset. To cope with this problem, we have used different input models
for this analysis. Both the ‘All’ and the ‘Promising’ models now only include IUC and
NOM.

We have performed the analysis for Eclipse.jdt.core and Vuze. For Eclipse.jdt.core,
we have selected the 2.1 and 3.0 releases. We have extracted a snapshot of Vuze on the
first of January 2004.

Project Version Changes Size MedianSCC

Eclipse.jdt.core Latest All 142 1
Eclipse.jdt.core 2.1-3.0 2.1 2.1-3.0 118 0

Eclipse.jdt.core 2.1-now 2.1 All since 2.1 118 0
Eclipse.jdt.core-now 3.0 All since 3.0 117 0

Vuze Latest All 935 1
Vuze 2004-now 2004 All since 2004 112 1

Table 9.6: Selected projects and releases for the prediction models

9.5.1 Results

Table 9.4 shows the AUC values of all models in this experiment. As the results show
no clear improvements, the other metrics are found in Appendix E.3.
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Figure 9.4: AUC values for prediction models on different releases. (Classes: interfaces;
Source code model: latest version; SCC: between releases; Change-prone cutoff point:
median)

9.5.2 Analysis

A quick look at the AUC values for the different models shows us similar results as
in the previous experiments. Only for Eclipse.jdt.core 2.1-now and Eclipse.jdt.core
3.0-now show that the NB algorithm performs significantly better with IUC. However,
the AUC value is not higher than the AUC values for the baseline models using different
algorithms.

An interesting result is that the prediction models for Eclipse.jdt.core 2.1-3.0 perform
better than the prediction models for 2.1-now. The AUC values are significantly higher,
which can be explained by the fact that there are more interfaces with 0 changes, as the
change history is shorter.

9.5.3 Conclusions

Although it was quite difficult to get large enough datasets, we managed to find projects
that were suitable for this experiment. We have not found any evidence that the
prediction models perform better when IUC is added as an input variable.
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9.6 Summary of the results

In this chapter we have performed four different experiments to investigate if cohesion
metrics can improve the performance of prediction models that are able to classify
Java interfaces and classes as change-prone or not change-prone. We have applied
several classification algorithms and compared several performance metrics to perform
a thorough investigation of the hypothesis.

The first experiment investigates prediction models for Java interfaces using the
latest source code and the complete history as input. Although we have found that
some algorithms produce slightly better predictors when the cohesion metrics are used as
input, the results are too small and can hardly be generalized. Thus, the first experiment
provides no solid evidence that cohesion metrics can improve predictors based on size
metrics. Similarly, the results of the core experiments for concrete classes show no solid
evidence that cohesion metrics can improve these prediction models.

Our second experiment investigates the effects of using different cutoff points for the
definition of change-prone. Although the experiment is only executed on one dataset
that is large enough, the results do not show that the prediction models benefit from the
use of cohesion metrics. Finally, taking into account different releases of the projects do
not show any significant improvements on the baseline model.

Based on the results of all the experiments performed, we have found no solid evidence
that supports H3. Therefore, we reject this hypothesis.
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Chapter 10

Discussion of the Results

The previous chapters have presented the results of the empirical study performed in
this thesis. These results have led to the acceptance and rejection of hypotheses defined
in Chapter 1. In this chapter, we discuss the implications of these results in more detail.
During the research, we have encountered several potential threats to the validity of the
results. Each of these threats will be discussed in Section 10.2.

10.1 Implications of the results

In the previous chapters several results have been presented, and their impact on the
hypotheses have been discussed. The question we would like to answer is now: What do
these results mean?

We started this thesis research with a baseline model which is illustrated in Model 0
in Figure 10.1. It illustrates the idea that a portion of all changes in interfaces are related
to size. This model is based on research performed in the past, including [13, 33, 44, 45].

As described in Chapter 2, there are several publications that show a relation between
source code metrics and the change- and/or fault-proneness of classes [25, 26]. Other
work shows that this relation can often be explained by the confounding effect of size [13,
33, 44, 45].

The research by Romano and Pinzger [36] shows a promising relation between the
Interface Usage Cohesion (IUC) metric and the change-proneness of Java interfaces. This
research investigates this relation extensively, and analyzes whether the relation might
be caused by the confounding effect of size as well.

The first hypothesis investigates whether cohesion metrics are correlated with the
number of fine-grained Source Code Changes (SCC). We have partially accepted H1 for
IUC and Cohesion among Methods in a Class (CAMC). Based on this partial acceptation
we have constructed different scenarios of the effect of cohesion on change-proneness, as
depicted by the Models 1-3.

Hypothesis 2 investigates the correlation between size and the cohesion metrics. The
goal is to investigate whether Model 1 can be accepted, or that maybe Model 2 or Model 3
are more accurate representations of the relation between cohesion and change-proneness.
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Figure 10.1: Four different change models

The investigation of H2 is particularly interesting for IUC and CAMC, as H1 is rejected
for the other metrics. As shown in Chapter 8, we have accepted H2 for both IUC and
CAMC. Based on these results, we reject Model 1.

The final hypothesis is constructed to find a definitive answer to the question which
model is most accurate. It investigates whether cohesion metrics can improve change
prediction models based on size metrics. To investigate the hypothesis, we have designed
several experiments to eliminate as many underlying assumptions as possible. Based
on the results of the prediction models described in Chapter 9, we have rejected H3.
Apparently, there are not enough changes related to cohesion that are not related to size
to significantly improve the prediction models. This implies that there are either very
few, or maybe even none of these changes.

Concluding, we have rejected Model 1 based on the (strong) correlation between the
cohesion metrics (IUC and CAMC) and the interface size metrics. Based on the results
of the prediction models, we did not find evidence for the existence of cohesion related
changes that are not size related. Model 3 thus seems the most accurate model.

These results confirm the findings of Zhou [45] on CAMC, and show that IUC
behaves similarly. Metrics that seem to be good change predictors, often are unable
to improve prediction models based on size metrics. This emphasizes that investigating
the confounding effect of class size is an essential aspect of researching change and fault
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prediction models.

10.2 Threats to Validity

There are several threats to the validity of the results of this research. Formally, the
following threats to validity are discussed in this section:

• Construct validity: Do the operational definitions properly reflect the theoretical
meaning of the concepts?

• Internal validity: Are there any confounding variables threatening the results?

• External validity: Can we generalize the findings of the empirical study?

• Statistical validity: Are the correct statistical methods chosen, and are their results
interpreted correctly?

Each of the sections below describes a category of threats.

10.2.1 Construct validity

There are several aspects that threaten the construct validity of this research. The
threats to construct validity are depicted in Figures 10.2 and 10.3. Figure 10.2 is the
conceptual framework presented in the introduction, but now introduces two threats.
Similarly, Figure 10.3 illustrates the threats to the operational framework.

(C1) Quality measurement

The first threat challenges the motivation behind this research. The goal of this research
is to investigate the relation between cohesion and the change-proneness of classes.
The motivation for this goal contains two assumptions. First, we assume that more
maintenance is a bad thing. Secondly, we assume that the number of changes is a good
reflection of the amount of maintenance performed.

The first assumption is justified in Chapter 1, where we describe that software
maintenance costs can account for 40% to 80% of software development costs [19]. The
second assumption is more difficult to counter, as each software developer knows that
sometimes smaller changes can take up most of the time. This assumption could be
mitigated by taking into account the maintenance effort, which is often reported in bug
reports. Earlier work by Weiss et al. [41] shows how this can be done.

(C2) Cohesion measurement

In Chapter 3, we have discussed several cohesion metrics. It is a valid question whether
the chosen metrics are a good representation of cohesion for interfaces.

The selected cohesion metrics are evaluated in previous research, and the limitations
of these metrics are discussed [8, 5, 7, 22]. To our knowledge, Interface Implementation
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10. Discussion of the Results

Cohesion (IIC), IUC and Lack of Cohesion of Interface Clients (LCOIC) have not been
evaluated.

(C3) Model selection

For the correlation analyses, we calculate the source code metrics on the latest version of
the projects. Then, we calculate the correlation between those metrics and all changes
that have led to that version of the source code. A valid question is whether the latest
source code model is a good representation of a project. It is not unlikely that a project
in an early development phase has a different structure than a project that has been
‘stable’ for several years.

We deal with this threat in two ways. First of all we include several projects from
different sources and in different development phases. Furthermore, in Chapter 6 we
describe an experiment that trains prediction models between different releases of a
software project.

(C4) Model extraction

The Evolizer framework is able to extract a FAMIX model from the source code. The
Evolizer framework has been used in various publications [14, 15, 16, 18, 36], and we
have no reason to assume a significant threat.

(C5) Availability

Chapter 7 described the difference between the actual complete versioning history and
the versioning history that is in the repository. This difference can have several consequences:

• Limited size of the datasets.

• Some classes might not change anymore, as they have stabilized in an earlier phase.

During the research, we have identified several of these projects, and even excluded some
from the empirical study. Others are included, and the results for these projects show
low correlations and bad performance of the prediction models.

(C6) Importer

The Evolizer framework that is used to import versioning histories and extract changes
is described in Chapter 4. For the importers of the versioning history, we have no reason
to assume that they do not import the complete history.

For the Change Distiller, we identified three limitations:

1. If source code files are moved, it does not compare the file at the old location with
the file at the new location. Instead, it considers the two files as two different
entities.
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10.2. Threats to Validity

2. With some complex changes, Change Distiller fails to recognize a modification
operation properly. Instead, it recognizes an entity removed change, and an entity
addition change.

3. The tree differencing algorithm performs badly on some very complex source code
files, due to enormous ASTs.

The first limitation poses a threat to the usability of the data, as we have seen and
discussed in several chapters. For each of the limitations, we have no reason to assume
that they create a bias in the data.

(C7) Change selection

When we calculate the number of SCC, two decisions are made that could influence the
results:

1. We calculate fine-grained SCC, and select only the significant changes.

2. The time interval between which the changes are calculated.

Code churn (i.e. Lines Modified (LM)) could be used as an alternative change metric.
Giger et al. [18] show that SCC outperforms code churn in learning bug prediction
models.

As described earlier, we calculate the correlation between the metrics on the latest
source code, and all available changes of a project. We have trained prediction models
between different releases of software to mitigate this threat.

10.2.2 Internal validity

The threats for internal validity concern factors that threaten the independent variables.
The relation between size metrics and IUC is a good example of such a threat, which is
the reason we have thoroughly studied the relation between the metrics. Furthermore,
the datasets are fixed and the metrics are calculated using deterministic algorithms.
This ensures that the results can be reproduced.

10.2.3 External validity

(E1) Project selection

The fact that only open source projects have been studied is a threat to external validity.
In previous research [36], primarily eclipse framework projects were analyzed. In this
study, much effort has been put in the project selection. The goal was to get a dataset
that is diverse, and we have included several different projects from different sources
and communities. For future work, it is interesting to repeat this study on commercial
projects.
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Figure 10.2: Conceptual framework of this research. Each gap represents a threat to the
validity of the results.

10.2.4 Statistical validity

Several statistical methods have been applied in this study. For the correlation analysis,
Spearman’s correlation has been used as it does not make any assumption on the
underlying distribution of the data. The statistical significance of the results is described,
and One Sample Wilcoxon Signed-Ranks Tests are performed to test the median value
of the results.

To ensure the validity of the prediction models, we have taken several measures:

• We have included several classification algorithms to avoid a possible bias introduced
by one specific algorithm.

• 10 fold Cross-validation is applied.

• Projects with less than 100 data entries have been excluded, as classification models
might not produce significant results in those cases.

• We have reported several performance metrics, to avoid reliance on one specific
metric.
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Figure 10.3: Operational framework of this research. Each gap represents a threat to
the validity of the results, and each setting represents a threat that we controlled during
this research.
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Chapter 11

Conclusions and Future Work

11.1 Conclusions

The goal of this thesis is to investigate the impact of cohesion on the change-proneness
of Java interfaces. If cohesion has an impact on the change-proneness of interfaces, this
information can be used to improve change prediction models based on size metrics. In
this thesis, we have performed an empirical study consisting of several experiments to
investigate the relation between cohesion and changes.

We have divided the investigation into three hypotheses:

H1: The cohesion metrics are correlated with the number of fine-grained
changes in Java classes.

H2: The cohesion metrics are correlated with the size of Java classes.

H3: The cohesion metrics can improve the performance of prediction models
to classify Java classes into change- and not change-prone.

The first hypothesis investigates the correlation between interface cohesion metrics
and the number of changes of both interfaces and classes. Based on the results of the
correlation analysis, we found that:

• Interface Usage Cohesion (IUC) and Cohesion among Methods in a Class (CAMC)
are correlated with the number of Source Code Changes (SCC), leading to a partial
acceptation of the first hypothesis for these metrics.

• The first hypothesis is rejected for the other cohesion metrics.

We accepted the first hypothesis partially for the two metrics, because the statistical
experiments did not provide conclusive evidence to fully support the hypothesis. The
results for IUC confirm similar results by Romano and Pinzger [36].

Previous work shows that the relation between source code metrics and change-proneness
can often be explained by the confounding effect of size [13, 33, 44, 45]. The fact
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11. Conclusions and Future Work

that larger interfaces change more frequently is not surprising, and this could be an
explanation for the correlation between the cohesion metrics and the number of changes.

The second hypothesis investigates the correlation between the cohesion metrics and
size metrics. The results of this correlation analysis show that IUC and CAMC are
indeed correlated with Number of Methods (NOM) for interfaces and concrete classes.

To complete this research we investigate whether cohesion metrics can improve
change prediction models based on size metrics. These models are able to classify
classes as change-prone or not change-prone, based on selected input metrics. We have
performed a thorough investigation using several open source projects, but could not
find any evidence to accept the third hypothesis.

Concluding, we have not found significant evidence that cohesion metrics can improve
change prediction models based on size. Similar to the results of Zhou [45], the relation
between cohesion metrics investigated in this research and change-proneness can be
explained by the confounding effect of size.

11.2 Future work

This work is an extension of earlier work by Romano and Pinzger [36], as we include
more projects, more metrics and more experiments. Still, there is room for improvement.

We have selected several open source projects from different sources and communities,
but we have not yet performed this study on proprietary software. Besides analyzing
more projects, it might be valuable to improve the research framework. We found that
some of the projects did have sufficient data available, but the data could not be used
due to limitations in the research framework.

Other improvements to this research include the investigation of other cohesion
metrics, and extending the experiments described in this thesis research. Some of the
cohesion metrics used in this thesis have limitations which could be resolved through
the development of variations on these metrics. However, we think the cohesion metrics
selected in this thesis cover most aspects of interface cohesion and we do not expect
different results with adjusted cohesion metrics. The experiments with prediction models
between different time periods and releases were performed on a limited dataset, and
could be extended with more projects and intervals.

Looking at the results of this study, we think that the chances of finding evidence
in favor of the third hypothesis are low. In fact, we think the impact of cohesion on
change-proneness can be almost fully measured by size metrics, as we have seen in this
study. To actually find improvements for prediction models, a different approach might
be required.

We think that a qualitative analysis might be a good starting point for finding actual
improvements on change prediction models. For instance, it could be interesting to study
small classes that change very often, or large classes that rarely change. Analysis of
the evolution of such classes should give us answers to questions as: What happened?
Did something go wrong, and why? Then, maybe patterns can be detected and even
prediction models can be constructed.
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Acronyms

AUC area under the curve.

CAMC Cohesion among Methods in a Class.

DT Decision Tree.

FN False Negative.

FP False Positive.

IIC Interface Implementation Cohesion.

IPC Interface Parameter Cohesion.

IUC Interface Usage Cohesion.

LCOIC Lack of Cohesion of Interface Clients.

LCOM Lack of Cohesion of Methods.

LM Lines Modified.

LOC Lines of Code.

LR Logistic Regression.

MCC Matthews Correlation Coefficient.

NB Naive Bayes.

NHD Normalized Hamming Distance.

NN Neural Network.

NOC Number of Clients.

NOIC Number of Implementing Classes.

NOM Number of Methods.

NOPM Number of Methods.
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Acronyms

RF Random Forest.

ROC Receiver Operating Characteristic.

SCC Source Code Changes.

SVM Support Vector Machine.

TN True Negative.

TP True Positive.

WMC Weighted Method per Class.

Appendix
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Appendix A

Metric Computation Tables

This appendix contains the computation tables for each cohesion metric. The information
presented in the tables is discussed in Chapters 3 and 4.

Metric IUC

Dataset selection Interfaces: All interfaces that have at least 1 method, that is invoked
by at least one client.
Concrete classes: All concrete classes that have at least 1 public
non-static method that is invoked by at least one client.

Method selection Interfaces: All methods that are invoked at least once.
Concrete classes: All public nonstatic methods that are invoked at least
once.

Metric computation

for each interface i in interfaces

{

methods=getMethods(i);

clients=getUniqueClients(methods);

total_usage=0;

for each client c in clients{

invoked=getUniqueInvocations(c,i);

total_usage+=invoked.size()/methods.size();

}

IUC=total_usage/clients.size();

}

Table A.1: IUC computation
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A. Metric Computation Tables

Metric CAMC

Dataset selection Interfaces: All interfaces that have at least 1 method, that is invoked
by at least one client.
Concrete classes: All concrete classes that have at least 1 public
non-static method that is invoked by at least one client.

Method selection All methods.

Parameter selection All distinct parameter types. Includes primitive types.

Metric computation

for each interface i in interfaces

{

methods=getMethods(i);

param_types=getDistinctParams(methods);

param_usage=0;

for each method m in methods{

params=getDistinctMethodParams(m);

param_usage+=params.size()/param_types.size();

}

CAMC=param_usage/methods.size();

}

Table A.2: CAMC computation

Metric NHD

Dataset selection Interfaces: All interfaces that have at least 1 method, that is invoked
by at least one client.
Concrete classes: All concrete classes that have at least 1 public
non-static method that is invoked by at least one client.

Method selection All methods.

Parameter selection All distinct parameter types. Includes primitive types.

Metric computation

for each interface i in interfaces

{

methods=getMethods(i);

param_types=getDistinctParams(i);

param_usage=0;

for each param_type t in param_types{

params=getDistinctMethodParams(m);

type_usage=countMethodsThatUse(t,i);

param_usage+=type_usage*

(methods.size()-type_usage);

}

denominator=param_types.size()*

methods.size()*(methods.size()-1);

NHD=(2*param_usage)/denominator;

}

Table A.3: NHD computation
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Metric IIC

Dataset selection Interface criteria:

• Should have at least 1 method, that is invoked by at least one
client.

• Should be implemented by at least one concrete class.

This metric does not exist for concrete classes.

Method selection All non-static methods.

Metric computation

for each interface i in interfaces

{

methods=getMethods(i);

implementers=getAllImplementingClasses(i);

impl_usage=0;

for each implementer j in implementers{

nonempty_bodies=0;

for each method m in methods{

method_body=findImplementation(m,j)

if isnotempty(method_body){

nonempty_bodies ++;

}

}

impl_usage=nonempty_bodies/methods.size();

}

IIC=param_usage/methods.size();

}

Find implementation The findImplementation method walks the inheritance tree starting at
the concrete class until it reaches the interface. If the concrete class
does not define the method that is declared in the interface, it is likely
defined by one of its super classes.

Definition of empty methods A method is considered empty if it does not have any attached
associations in the Famix model, such as field accesses.

Table A.4: IIC computation

99



A. Metric Computation Tables

Metric LCOIC

Dataset selection Interfaces: All interfaces that have at least 1 method, that is invoked
by at least one client.
Concrete classes: All concrete classes that have at least 1 public
non-static method that is invoked by at least one client.

Method selection Interfaces: All methods that are invoked at least once.
Concrete classes: All public non-static methods that are invoked at
least once.

Metric computation

for each interface i in interfaces

{

P=0;Q=0;

clients=getInvokingClasses(i);

for each pair of clients{

if shareMethods(Client1,Client2)

Q++;

else

P++;

}

LCOIC=(P>Q) ? P-Q : 0;

}

shareMethods The shareMethods function returns true if two clients share at least one
method..

Table A.5: LCOIC computation

Metric LCOM

Dataset selection Interfaces: This metric is undefined for interfaces.
Concrete classes: All concrete classes that have at least 1 public
non-static method that is invoked by at least one client.

Method selection Interfaces: All methods that are invoked at least once.
Concrete classes: All public non-static methods that are invoked at
least once.

Metric computation

for each class c in classes

{

P=0;Q=0;

clients=getMethods(c);

for each pair of clients{

if shareAttributes(Client1,Client2)

Q++;

else

P++;

}

LCOM=(P>Q) ? P-Q : 0;

}

shareAttributes The shareAttributes function returns true if two methods share at least
one attribute..

Table A.6: LCOM computation
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Change Distiller Changetypes
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B. Change Distiller Changetypes

Changetypes Significant

ADDING ATTRIBUTE MODIFIABILITY Yes
ADDING CLASS DERIVABILITY Yes

ADDING METHOD OVERRIDABILITY Yes
ADDITIONAL CLASS Yes

ADDITIONAL FUNCTIONALITY Yes
ADDITIONAL OBJECT STATE Yes
ALTERNATIVE PART DELETE Yes
ALTERNATIVE PART INSERT Yes

ATTRIBUTE RENAMING Yes
ATTRIBUTE TYPE CHANGE Yes

CLASS RENAMING Yes
COMMENT DELETE No
COMMENT INSERT No

COMMENT MOVE No
COMMENT UPDATE No

CONDITION EXPRESSION CHANGE Yes
DECREASING ACCESSIBILITY CHANGE Yes

DOC DELETE No
DOC INSERT No

DOC UPDATE No
INCREASING ACCESSIBILITY CHANGE Yes

METHOD RENAMING Yes
PARAMETER DELETE Yes
PARAMETER INSERT Yes

PARAMETER ORDERING CHANGE Yes
PARAMETER RENAMING Yes

PARAMETER TYPE CHANGE Yes
PARENT CLASS CHANGE Yes
PARENT CLASS DELETE Yes
PARENT CLASS INSERT Yes

PARENT INTERFACE CHANGE Yes
PARENT INTERFACE DELETE Yes
PARENT INTERFACE INSERT Yes

REMOVED CLASS Yes
REMOVED FUNCTIONALITY Yes

REMOVED OBJECT STATE Yes
REMOVING ATTRIBUTE MODIFIABILITY Yes

REMOVING CLASS DERIVABILITY Yes
REMOVING METHOD OVERRIDABILITY Yes

RETURN TYPE CHANGE Yes
RETURN TYPE DELETE Yes
RETURN TYPE INSERT Yes

STATEMENT DELETE Yes
STATEMENT INSERT Yes

STATEMENT ORDERING CHANGE Yes
STATEMENT PARENT CHANGE Yes

STATEMENT UPDATE Yes
UNCLASSIFIED CHANGE No

Table B.2: Changetypes recognized by Evolizer change distiller
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Appendix C

Configurations of the
Classification Algorithms

This appendix describes the configuration of the classification algorithms in RapidMiner,
as well as the configuration of the cross-validation operator. All experiments have been
performed on RapidMiner version 5.2.001. We report on the parameter values only to
allow validation of the results. The meaning of the parameters can be found on the
website of RapidMiner.1

C.1 Logistic Regression

Parameter Value

R 1.0E-8
M -1.0

Table C.1: Parameters for operator W-Logistic: Class for building and using a
multinomial logistic regression model with a ridge estimator.

C.2 Support Vector Machine

1RapidMiner, http://www.rapidminer.com
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C. Configurations of the Classification Algorithms

Parameter Value

svm type C-SVC
kernel type rbf

gamma 0.0
C 0.0

cache size 80
epsilon 0.0010

shrinking true
calculate confidences false

confidence for multiclass false

Table C.2: Parameters for operator SVMlib: This operators is an SVM Learner based
on the Java libsvm, an SVM learner.

C.3 Decision Tree

Parameter Value

criterion information gain
minimal size for split 4

minimal leaf size 2
minimal gain 0.05

maximal depth 20
confidence 0.1

number of prepruning alternatives 3
no pre pruning false

nu pruning false

Table C.3: Parameters for operator Decision Tree: Generates decision trees to classify
nominal data.

C.4 Neural Network

Parameter Value

training cycles 500
learning rate 0.3

momentum 0.2
decay false

shuffle true
normalize true

error epsilon 1.0E-5
use local random seed false

Table C.4: Parameters for operator Neural Net: Learns a neural net from the input
data..
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C.5. Random Forest

C.5 Random Forest

Parameter Value

I 20.0
K 0.0
S 1.0

depth
D false

Table C.5: Parameters for operator W-Random Forest: Class for constructing a forest
of random trees.

C.6 Naive Bayes

Parameter Value

laplace correction true

Table C.6: Parameters for operator Naive Bayes: Returns classification model using
estimated normal distributions.

C.7 X-Validation

Parameter Value

average performances only true
leave one out false

number of validations 10
sampling type stratified sampling

use local random seed false
parallelize training false
parallelize testing false

Table C.7: Parameters for operator X-Validation: X-Validation encapsulates a
cross-validation in order to estimate the performance of a learning operator.
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Appendix D

Metric Distributions

This appendix contains tables and plots to support the investigation of the correlation
analysis between cohesion metrics and the number of SCC. Section D.2 contains scatter
plots for the cohesion metrics for all metrics, and Section D.1 contains tables with
information about the distribution tables.

D.1 Metric statistics

Project Count Min Median Mean Ones Median( 6= 1)

Argouml-app 86 0.03 1 0.78 53 0.35
Eclipse.debug.ui 123 0.09 1 0.72 62 0.40
Eclipse.jdt.core 142 0.03 0.5 0.60 50 0.33

Eclipse.team.core 39 0.08 0.75 0.67 17 0.47
Hibernate3 182 0.03 0.86 0.67 87 0.31

Jabref 32 0.11 1 0.83 22 0.50
JEdit 57 0.13 1 0.85 40 0.50
Jena2 173 0.02 0.67 0.65 74 0.36

JFreeChart 72 0.03 1 0.75 39 0.44
Joone 26 0.05 0.47 0.60 11 0.33
Log4j 20 0.14 1 0.77 13 0.25

Lucene 40 0.04 0.71 0.69 19 0.50
Rapidminer 187 0.04 1 0.71 102 0.33

Sweet Home 3D 25 0.04 1 0.73 15 0.34
TripleA 92 0.07 0.75 0.72 44 0.50

Vuze 935 0.02 0.8 0.67 440 0.36
Xerces 92 0.07 0.5 0.59 26 0.41

Table D.1: IUC metric distribution statistics for interfaces.
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Project Count Min Median Mean Ones Median( 6= 1)

Argouml-app 72 0.10 1 0.87 55 0.42
Eclipse.debug.ui 107 0.11 1 0.79 64 0.50
Eclipse.jdt.core 79 0.15 1 0.73 40 0.50

Eclipse.team.core 29 0.17 0.75 0.72 12 0.50
Hibernate3 160 0.06 0.75 0.70 74 0.50

Jabref 24 0.20 1 0.88 17 0.56
Jedit 48 0.33 1 0.86 32 0.53

Jena2 141 0.06 0.75 0.67 67 0.33
JFreeChart 62 0.07 1 0.80 41 0.50

Joone 23 0.11 0.5 0.64 9 0.33
Log4j 18 0.17 1 0.84 14 0.25

Lucene 34 0.17 1 0.87 27 0.33
Rapidminer 162 0.11 1 0.76 91 0.44

Sweet Home 3D 17 0.09 1 0.76 10 0.50
TripleA 79 0.19 1 0.77 41 0.50

Vuze 753 0.06 1 0.71 386 0.40
Xerces 64 0.10 0.53 0.67 27 0.50

Table D.2: CAMC metric distribution statistics for interfaces

Project Count Median Mean Zeros Ones

Argouml-app 47 0.50 0.52 8 9
Eclipse.debug.ui 75 0.60 0.58 5 13
Eclipse.jdt.core 66 0.68 0.64 3 3

Eclipse.team.core 24 0.53 0.47 5 0
Hibernate3 119 0.60 0.58 11 7

Jabref 14 0.50 0.59 0 1
Jedit 36 0.50 0.54 6 9

Jena2 114 0.62 0.61 8 8
JFreeChart 40 0.67 0.68 1 14

Joone 18 0.64 0.61 0 0
Log4j 7 0.52 0.52 2 1

Lucene 25 0.40 0.39 10 2
Rapidminer 103 0.53 0.51 17 6

Sweet Home 3D 9 0.67 0.59 2 1
TripleA 56 0.46 0.45 13 4

Vuze 584 0.62 0.58 68 61
Xerces 102 0.44 0.44 24 3

Table D.3: NHD metric distribution statistics for interfaces.
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D.1. Metric statistics

Project Count Min Median Mean Zeros Ones Median( 6= 1)

Argouml-app 77 0 1 0.85 3 44 0.67
Eclipse.debug.ui 103 0 1 0.91 3 75 0.75
Eclipse.jdt.core 129 0.08 1 0.91 0 87 0.76

Eclipse.team.core 29 0.42 1 0.91 0 21 0.71
Hibernate3 170 0 1 0.89 2 107 0.75

Jabref 31 0.42 1 0.91 0 19 0.79
Jedit 54 0 1 0.85 1 32 0.67

Jena2 171 0 1 0.87 3 102 0.73
JFreeChart 67 0 1 0.89 2 47 0.75

Joone 24 0.33 0.99 0.91 0 12 0.92
Log4j 20 0.31 1 0.85 0 12 0.64

Lucene 38 0 1 0.89 2 27 0.67
Rapidminer 166 0 1 0.86 2 95 0.75

Sweet Home 3D 25 0.2 1 0.93 0 19 0.90
TripleA 92 0 1 0.91 1 71 0.63

Vuze 879 0 1 0.86 14 521 0.72
Xerces 91 0.38 1 0.91 0 63 0.68

Table D.4: IIC metric distribution statistics for interfaces

Project Count Max Median Mean Zeros Median(6= 0)

Argouml-app 86 8391 0 109.81 74 3
Eclipse.debug.ui 123 221 0 2.33 104 3
Eclipse.jdt.core 142 514 0 10.27 115 3

Eclipse.team.core 39 10 0 0.67 31 2.5
Hibernate3 182 6312 0 71.97 142 10

Jabref 32 21 0 1.16 27 3
Jedit 57 8 0 0.26 50 1

Jena2 173 27536 0 479.31 137 46.5
JFreeChart 72 3 0 0.18 65 2

Joone 26 571 0 22.96 20 1.5
Log4j 20 17 0 1.00 17 2

Lucene 40 165 0 4.33 34 1
Rapidminer 187 33814 0 279.93 154 13

Sweet Home 3D 25 253 0 21.52 20 79
TripleA 92 138 0 4.10 73 3

Vuze 935 21698 0 90.56 721 9
Xerces 92 36 0 0.85 82 3.5

Table D.5: LCOIC metric distribution statistics for interfaces
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D. Metric Distributions

D.2 Scatter plots

This appendix contains scatter plots of the cohesion metrics versus SCC for the selected
projects. They give insight in the distributions of both the cohesion metrics and SCC,
and show us the type of the relation between the two. Note that the scatter plots do
not give any information about the occurrences of the values. For instance, (0, 0) values
or (0, 1) values occur relatively often. That information is found in the tables presented
in Section D.1.

• Figure D.1 (page 113): IUC versus SCC for all interfaces.

• Figure D.2 (page 116): CAMC versus SCC for all interfaces.

• Figure D.3 (page 119): Normalized Hamming Distance (NHD) versus SCC for all
interfaces.

• Figure D.4 (page 122): Interface Implementation Cohesion (IIC) versus SCC for
all interfaces.

• Figure D.5 (page 125): Lack of Cohesion of Interface Clients (LCOIC) versus SCC
for all interfaces.

• Figure D.6 (page 129): IUC versus SCC for all concrete classes.

• Figure D.7 (page 132): CAMC versus SCC for all concrete classes.

• Figure D.8 (page 135): NHD versus SCC for all concrete classes.

• Figure D.9 (page 138): LCOIC versus SCC for all concrete classes.

D.2.1 Scatter plots for interfaces
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D.2. Scatter plots
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Figure D.1: IUC distribution scatter plots
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Figure D.1: IUC distribution scatter plots (2)
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D.2. Scatter plots
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Figure D.1: IUC distribution scatter plots (3)
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Figure D.2: CAMC distribution scatter plots
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Figure D.2: CAMC distribution scatter plots (2)

115



D. Metric Distributions

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

CAMC

S
C

C

13: Rapidminer

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

CAMC

S
C

C

14: Sweet Home 3D

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

CAMC

S
C

C

15: TripleA

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

160

180

200

CAMC

S
C

C

16: Vuze

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

CAMC

S
C

C

17: Xerces

Figure D.2: CAMC distribution scatter plots (3)
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Figure D.3: NHD distribution scatter plots
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Figure D.3: NHD distribution scatter plots (2)
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Figure D.3: NHD distribution scatter plots (3)
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Figure D.4: IIC distribution scatter plots
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Figure D.4: IIC distribution scatter plots (2)
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Figure D.4: IIC distribution scatter plots (3)
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Figure D.5: LCOIC distribution scatter plots
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Figure D.5: LCOIC distribution scatter plots (2)
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Figure D.5: LCOIC distribution scatter plots (3)

125



D. Metric Distributions

126



D.2. Scatter plots

D.2.2 Scatter plots for concrete classes
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Figure D.6: IUC distribution scatter plots
127



D. Metric Distributions
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Figure D.6: IUC distribution scatter plots (2)
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D.2. Scatter plots
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Figure D.6: IUC distribution scatter plots (3)
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D. Metric Distributions
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Figure D.7: CAMC distribution scatter plots
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D.2. Scatter plots

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

160

180

200

CAMC

S
C

C

7: Jedit

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

160

180

200

CAMC

S
C

C
8: Jena2

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

160

180

200

CAMC

S
C

C

9: JFreeChart

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

160

180

200

CAMC

S
C

C

10: Joone

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

160

180

200

CAMC

S
C

C

11: Log4j

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

160

180

200

CAMC

S
C

C

12: Lucene

Figure D.7: CAMC distribution scatter plots (2)
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D. Metric Distributions
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Figure D.7: CAMC distribution scatter plots (3)
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D.2. Scatter plots
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Figure D.8: NHD distribution scatter plots
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D. Metric Distributions
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Figure D.8: NHD distribution scatter plots (2)
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D.2. Scatter plots
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Figure D.8: NHD distribution scatter plots (3)
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D. Metric Distributions
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Figure D.9: LCOIC distribution scatter plots
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D.2. Scatter plots
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Figure D.9: LCOIC distribution scatter plots (2)
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D. Metric Distributions
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Figure D.9: LCOIC distribution scatter plots (3)
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Appendix E

Detailed Prediction Model
Results

E.1 Core experiments
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Figure E.1: MCC prediction models core experiment.
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E. Detailed Prediction Model Results
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Figure E.2: F-Measure prediction models core experiment.
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Figure E.3: Precision prediction models core experiment.
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E.2. Concrete classes
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Figure E.4: Recall prediction models core experiment.
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Figure E.5: Prediction model results concrete classes.
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E. Detailed Prediction Model Results
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Figure E.5: Prediction model results concrete classes.
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E.2. Concrete classes
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Figure E.5: Prediction model results concrete classes.
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E. Detailed Prediction Model Results
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Figure E.5: Prediction model results concrete classes.
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E.3. Prediction models for different releases

LR SVM DT NN RF NB
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
U

C

 

 

Baseline
All
Promising

40: TripleA: AUC

LR SVM DT NN RF NB
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F
M

E
A

S
U

R
E

 

 

Baseline
All
Promising

41: TripleA: F-Measure

LR SVM DT NN RF NB
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

M
C

C

 

 

Baseline
All
Promising

42: TripleA: MCC

LR SVM DT NN RF NB
0

0.2

0.4

0.6

0.8

1

A
U

C

 

 

Baseline
All
Promising

43: Vuze: AUC

LR SVM DT NN RF NB
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
M

E
A

S
U

R
E

 

 

Baseline
All
Promising

44: Vuze: F-Measure

LR SVM DT NN RF NB
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
C

C

 

 

Baseline
All
Promising

45: Vuze: MCC

LR SVM DT NN RF NB
0

0.2

0.4

0.6

0.8

1

A
U

C

 

 

Baseline
All
Promising

46: Xerces: AUC

LR SVM DT NN RF NB
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
M

E
A

S
U

R
E

 

 

Baseline
All
Promising

47: Xerces: F-Measure

LR SVM DT NN RF NB
0

0.1

0.2

0.3

0.4

0.5

M
C

C

 

 

Baseline
All
Promising

48: Xerces: MCC

Figure E.5: Prediction model results concrete classes.
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E. Detailed Prediction Model Results
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Figure E.6: Prediction model results for different releases:MCC and F-Measure
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E.4. Prediction models for different change-proneness definitions
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E. Detailed Prediction Model Results
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4: Vuze 75%
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Figure E.7: Prediction model results for different change-proneness definitions:MCC and
F-Measure
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Appendix F

Custom Versioning History
Importers

In this research, we found that the CVS and SVN importers provided in the Evolizer
framework suffer from performance issues. As this thesis research requires the versioning
histories of many open source projects, the development of faster importers turned out
to be worth the investment. Section F.1 describes the custom SVN importer, and
Section F.2 describes the custom CVS importer.

F.1 Custom SVN importer

Importing SVN repositories can take up to days or even weeks for large projects. To deal
with these problems, we have developed a custom SVN importer. It works as follows:

1. Import all log messages.

2. Checkout the first version, and import all files to the Evolizer database.

3. For each revision, update to that revision and import all file contents.

The main advantage of this approach is the reduction of SVN commands that are
sent to the server. The Evolizer SVN importer manually checks out each revision of each
file, and thus sends many more commands to the SVN server. Although this does not
directly have to be a performance limitation, our initial experiments showed that the
custom SVN importer was much faster.

F.1.1 Implementation

Currently, the custom SVN importer is implemented as a standalone Java application
using two libraries:

• SVNkit, an open source SVN client implemented in Java.1

1SVNKit: http://svnkit.com/
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F. Custom Versioning History Importers

• MySQL Connector/J, the MYSQL JDBC driver.2

F.1.2 Limitations and future work

The custom SVN importer was developed as a support tool for the research in this thesis,
and thus is implemented as an experimental project. Current limitations include:

• Only imports the trunk of the repository, excluding other branches.

• Does not use the Evolizer Hibernate model.

• The SVN importer is not integrated in the Evolizer framework.

For future work, we plan to integrate the custom SVN importer in the Evolizer
framework.

F.2 Custom CVS importer

Although the CVS importer in the Evolizer framework is much faster than the SVN
importer, there is room for improvement. The Evolizer CVS importer fetches each
revision of each file in the repository, requiring a continuous connection with the CVS
server during the import process.

Using the backup functionalities of SourceForge3 and other project repositories, we
are able to download a complete CVS history through one command. Then, we can run
our own custom importer to import the repository to the database.

F.2.1 Implementation

Currently, the CVS importer is written as a standalone Java application. To store files
to the MYSQL database, it uses the MYSQL Connector/J.

F.2.2 Future work

The CVS importer in Evolizer does not suffer from the same limitations as the SVN
importer. We think it is possible to use the backup systems to setup a mirror CVS
server on a local server. Then, the Evolizer CVS importer can be used to import the
repository as usual. An improvement on the current CVS importer could be to add
functionalities that automatically create such a mirror.

2MYSQL Connector/J: http://dev.mysql.com/downloads/connector/j/
3http://www.sourceforge.net
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