
Geophysical Journal International
Geophys. J. Int. (2014) 196, 230–242 doi: 10.1093/gji/ggt389
Advance Access publication 2013 November 15

G
JI

M
ar

in
e

ge
os

ci
en

ce
s

an
d

ap
pl

ie
d

ge
op

hy
si
cs

Surface wave retrieval in layered media using seismic interferometry
by multidimensional deconvolution

Karel N. van Dalen,1 Kees Wapenaar1 and David F. Halliday2

1Department of Geoscience and Engineering, Delft University of Technology, Stevinweg 1, NL-2628 CN Delft, The Netherlands.
E-mail: k.n.vandalen@tudelft.nl
2Schlumberger Gould Research, High Cross, Madingley Road, Cambridge, CB3 0EL, UK

Accepted 2013 September 23. Received 2013 September 17; in original form 2013 May 3

S U M M A R Y
Virtual-source surface wave responses can be retrieved using the crosscorrelation (CC) of
wavefields observed at two receivers. Higher mode surface waves cannot be properly retrieved
when there is a lack of subsurface sources that excite these wavefields, as is often the case.
In this paper, we present a multidimensional-deconvolution (MDD) scheme that is based
on an approximate convolution theorem. The scheme introduces an additional processing
step in which the CC result is deconvolved by a so-called point-spread tensor. The involved
point-spread functions capture the imprint of the lack of subsurface sources and possible
anelastic effects, and quantify the associated spatial and temporal smearing of the virtual-
source components that leads to the poor surface wave retrieval. The functions can be calculated
from the same wavefields as used in the CC method. For a 2-D example that is representative of
the envisaged applications, we show that the deconvolution partially corrects for the smearing.
The retrieved virtual-source response only has some amplitude error in the ideal situation of
having the depth of the required vertical array equal to the depth penetration of the surface
waves. The error is due to ignored cross-mode terms in the approximate convolution theorem.
Shorter arrays are also possible. In the limit case of only a single surface receiver, the retrieved
virtual-source response is still more accurate than the CC result. The MDD scheme is valid for
horizontally layered media that are laterally invariant, and includes exclusively multicomponent
point-force responses (rather than their spatial derivatives) and multicomponent observations.
The improved retrieval of multimode surface waves can facilitate dispersion analyses in
shallow-subsurface inversion problems and monitoring, and surface wave removal algorithms.
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1 I N T RO D U C T I O N

Seismic interferometry is a technique that uses observations of a
wavefield to create virtual seismic sources at locations where only
receivers are present. More specifically, by crosscorrelating obser-
vations at two different seismic receivers, one retrieves or recon-
structs an approximation to the Green’s function (i.e. the impulse
response or virtual-source response) as if one of the receivers were
a source (e.g. Campillo & Paul 2003; Larose et al. 2006; Wapenaar
& Fokkema 2006; Schuster 2009; Snieder et al. 2009). This tech-
nique has been used in many different applications. For example,
virtual subsurface sources were created using real surface sources
(Bakulin & Calvert 2006), and virtual-source reflected waves were
retrieved from background noise recordings (Draganov et al. 2007);
both examples show that body waves can be retrieved successfully.

Surface wave retrieval has received relatively wide attention,
which can be explained by the fact that wavefield recordings are
often dominated by surface waves, particularly when the sources
are located close to the Earth’s surface. Applications exist on dif-

ferent scales. In regional seismology, virtual-source surface wave
responses can be retrieved by applying interferometry to so-called
passive wavefields that are excited by ambient noise sources (such as
ocean storms; Shapiro et al. 2005) or by earthquakes (by exploiting
the seismic coda; Campillo & Paul 2003). Using such ambient noise
sources, one can retrieve the virtual-source response at frequencies
that are difficult to generate using active sources (Wathelet et al.
2004; Park et al. 2007). The results are used to determine group ve-
locity images, which is often done based on the fundamental-mode
Rayleigh wave only (e.g. Shapiro et al. 2005; Gerstoft et al. 2006;
Bensen et al. 2007); in general, the surface wave response in a lay-
ered medium consists of a superposition of modes. In exploration
seismology, virtual-source surface waves can be retrieved using ac-
tive sources at the surface. The retrieved surface wave responses are
used to guide filters designed to suppress surface waves in seismic
data as they overshadow the much weaker body waves reflected
at deeper targets of interest (e.g. Halliday et al. 2007, 2010). In
near-surface seismology and geotechnical engineering, retrieved
surface waves, obtained from either active or passive sources, are
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used to determine shear wave velocity profiles of the shallow sub-
surface (Xia et al. 1999; Louie 2001; Wathelet et al. 2004).

One of the issues for surface wave interferometry has been the
source distribution that is required to obtain a reliable interferome-
try result. Ideally, one needs sources along a contour enclosing the
receivers whose observations are crosscorrelated, and the source
distribution needs to be regular (Wapenaar & Fokkema 2006).
Halliday & Curtis (2008) showed that subsurface sources are re-
quired to properly retrieve surface wave responses. In particular,
they showed that higher mode surface waves cannot be correctly
estimated using their approximate correlation theorem when sub-
surface sources are absent. Kimman & Trampert (2010) showed
that spurious arrivals, coming from non-cancelling cross-mode cor-
relations, might even overwhelm the retrieved higher modes when
subsurface sources are absent. The spurious arrivals can be sup-
pressed when there is a homogeneous distribution of sources at
the surface, but amplitude and phase errors remain in the retrieved
signal (Kimman & Trampert 2010). Another way to improve the in-
terferometric result is to separate the modes in the observed data so
that cross-mode correlations are circumvented. In that case, using
only surface sources, mainly amplitude errors remain due to missing
modal scale factors, but this relies on the ability to identify and sepa-
rate the various surface wavemodes in the seismic data (e.g. Nolet &
Panza 1976).

Nevertheless, the correct retrieval of higher mode surface waves
can be beneficial for obtaining information about the subsurface.
In particular, the higher mode surface waves provide information
about greater depth ranges than the fundamental mode, and their
presence enhances the depth resolution of the near-surface veloc-
ity models when joint inversion of the fundamental and higher
modes is applied (MacBeth & Burton 1985; Dost 1990; Beaty et al.
2002; Xia et al. 2003). The retrieval of the higher modes could
be improved by using a recently developed modification to the
seismic-interferometry technique called ‘seismic interferometry by
multidimensional deconvolution (MDD)’ (Wapenaar et al. 2011b).
In heuristic terms, the modification consists of an additional pro-
cessing step where the crosscorrelation (CC) result is deconvolved
by the so-called point-spread function. This point-spread function
captures the lack of equipartitioning of the sources (and the possi-
ble anelastic effects) and quantifies the associated smearing of the
virtual source in space and time; the more smearing, the worse the
correlation result. Deconvolving by the point-spread function can
partially correct for the smearing of the virtual source. The virtual
source then becomes more ideal in space and time, and the retrieved
virtual-source response is expected to become more accurate. The
point-spread function can be calculated from the same wavefields
used in the correlation method. MDD has been shown to improve
the retrieval of the fundamental-mode surface wave for non-ideal
surface-source distribution (Wapenaar et al. 2011a), but has not yet
been applied to improve the retrieval of higher mode surface waves.

In this paper, we apply MDD to retrieve the full surface wave re-
sponse (including the higher modes). We propose an MDD scheme
that is particularly suited for surface waves in horizontally layered
media. It is based on an approximate convolution theorem that
contains exclusively point-force responses rather than their spatial
derivatives, which is advantageous in view of potential field appli-
cations. The performance of the MDD scheme is illustrated using
numerical examples. Results show that the virtual-source response,
including the higher mode surface waves, can be retrieved accu-
rately, especially compared to the results of the CC method.

In Section 2, we evaluate the integral in the convolution-type
reciprocity theorem using a stationary-phase analysis. We use this

analysis to determine the modal scale factors of the proposed ap-
proximate convolution theorem in Section 3. In Section 4, we derive
the MDD scheme; numerical examples are shown in Section 5. The
envisaged applications of the MDD scheme in a geophysical context
are discussed in Section 6. Finally, we summarize our conclusions
in Section 7.

2 S TAT I O NA RY- P H A S E A NA LY S I S O F
C O N V O LU T I O N T H E O R E M

In this section, we apply the convolution-type reciprocity theorem
to surface wave responses and evaluate the associated integral us-
ing the stationary-phase method. Snieder (2004) and Halliday &
Curtis (2008) did a similar derivation for the correlation-type reci-
procity theorem. In the next section, we use the results to derive an
approximate convolution theorem for surface waves.

Throughout this paper, we adopt the following Fourier transform
over time for an arbitrary function f (x, t):

f̂ (x, ω) =
∫ ∞

−∞
f (x, t) exp(−iωt) dt, (1)

where ω denotes angular frequency, t denotes time and
x = [x, y, z]T is a vector containing spatial coordinates. The hat
refers to the (x, ω) domain. From here onwards, the ω dependence
is left out for brevity [i.e. f̂ (x) = f̂ (x, ω)]. All considered func-
tions are real-valued in the space–time domain, and it is therefore
sufficient to consider ω ≥ 0.

The space–frequency domain elastodynamic convolution-type
reciprocity theorem reads (de Hoop 1995; Aki & Richards 2002)

Ĝim(xR, xS) =
∫

S

[
Ĝin(xR, x)n j cnjkl (x)∂k Ĝlm(x, xS)

− n j cnjkl (x)∂k Ĝil (xR, x)Ĝnm(x, xS)
]

dS, (2)

where S denotes the enclosing boundary of a volume V, which has
outward-pointing unit normal nj (see Fig. 1, where we consider the
specific case of a cylindrical volume in view of the analysis below);
summation is invoked over repeated indices, but not over the Greek
indices introduced below. The integral in the convolution theorem
describes forward propagation of a wavefield, which is excited at xS

(located outside V), from observations at x (located at S) to receiver
xR (located inside V). In fact, the receivers along S act as secondary
sources that forward propagate the wavefield to xR . The Green’s
tensors (e.g. Ĝim) in eq. (2) are force-source Green’s tensors for
particle displacement and cnjkl denotes the elasticity tensor. The
partial derivative operators act on x.

In this paper, we only consider the surface wave part of the
Green’s tensors. This could be valid in places where the surface
wave is the dominant wave type. For horizontally layered media
with a free surface and a half-space below the layering, the force-
source surface wave Green’s tensors can be represented in the far
field by a sum over modes (Aki & Richards 2002; Snieder 2002):

Ĝnm(x, xS) = ∑
ν pν

n (z, ϕS)pν∗
m (zS, ϕS)

e−i(kν ξS+ π
4 )

χν

√
π

2 kνξS

, (3)

where the * denotes complex conjugation and the ν indicates a spe-
cific mode; Ĝin(xR, x) has a very similar expression. The horizontal
offsets are given by

ξS = √
(x − xS)2 + (y − yS)2, (4)

ξR = √
(xR − x)2 + (yR − y)2. (5)
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Figure 1. Plan view (a) and cross-section (b) of cylindrical volume V en-
closed by surface S, having outward-pointing unit normal n, used for forward
propagation of a wavefield from xS via x to xR . The medium is horizontally
layered and laterally (x, y plane) invariant.

Furthermore, zS and zR are the depth coordinates associated with xS

and xR , respectively, ϕS and ϕR are angles in the horizontal plane that
indicate the directions from xS to x and from x to xR (see Fig. 1)
and z is the depth coordinate that belongs to x. The pν

m(zS, ϕS)
and pν

n (z, ϕS) are components of polarization vectors at xS and x,
respectively, kν is the wavenumber of surface wavemode and χν is
a factor depending on the phase velocity, the group velocity and the
modal kinetic energy (see Appendix A). The tensors in eq. (2) that
include the partial derivative operator at x represent the traction due
to a force source or the particle motion due to a deformation-rate
source, respectively, depending on whether x represents a receiver
or a source.

Substituting the appropriate Green’s tensors into the convolution
theorem, we obtain

Ĝim(xR, xS) =
∑

ν̄

∑
ν

∫
S

pν
i (zR, ϕR)pν̄∗

m (zS, ϕS)

×Qν,ν̄(z, ϕR, ϕS)
e−i(kν ξR+kν̄ ξS+ π

2 )

π

2 χνχν̄

√
kνkν̄ ξRξS

dS, (6)

where

Qν,ν̄ = pν∗
n (z, ϕR)T ν̄

n (z, ϕS) − T ν∗
n (z, ϕR)pν̄

n (z, ϕS), (7)

and where T ν
n represents a traction vector at x, which has been

obtained using the expression of the stiffness tensor cnjkl for isotropic
media (see Appendix A).

We consider the specific configuration of a cylindrical volume
V with radius r, as displayed in Fig. 1. For convenience, xS and
xR are chosen in the x, z plane with xS = 0 and xR = 	 (centre of

the cylinder), respectively; the analysis below is, however, generally
valid. In addition, we take the limit case of an infinitely long cylinder
so that the integrand of eq. (6) vanishes at the bottom part of S due to
the decay of the surface waves in vertical direction. As the top part of
S lies at the free surface, across which the normal and shear stresses
are zero and hence Qν,ν̄ = 0, only the integration over the vertical
part of S remains. Using cylindrical coordinates (dS = rdϕdz), the
integral in eq. (6), which we denote as 


ν,ν̄
im , can be written as



ν,ν̄
im = e−i π

2

∫ ∞

0
�

ν,ν̄
im dz, (8)

where

�
ν,ν̄
im =

∫ 2π

0
e−ikνrψ(ϕ) Fν,ν̄

im (z, zR, zS, ϕR, ϕS)r dϕ, (9)

with

Fν,ν̄
im = pν

i (zR, ϕR)pν̄∗
m (zS, ϕS) Qν,ν̄ (z,ϕR ,ϕS )

π
2 χνχν̄

√
kν kν̄rξS

. (10)

Here, we used that ξR = r (see Fig. 1a), and

ψ(ϕ) = 1 + kν̄ ξS

kνr
. (11)

We evaluate the integral over ϕ in eq. (9) using the stationary-
phase method (Jeffreys & Jeffreys 1946; Achenbach 1973), which
assumes that kνr is large (far-field assumption) and Fν,ν̄

im varies
relatively slowly with ϕ (note that ϕS and ϕR vary with ϕ); kν̄ ξS is
assumed large as well. Using eqs (4) and (5), and x = 	 + r cos (ϕ)
and y = r sin (ϕ), we can show that the phase of the exponential
factor in eq. (9) is stationary at ϕ = ϕ1 = π and at ϕ = ϕ2 = 0 (i.e.
∂ψ/∂ϕ = 0). At the first stationary point, ϕ

(1)
S = 0, ϕ

(1)
R = 2π and

ξ
(1)
S = 	 − r so that xS , x and xR lie in the same vertical plane (the

x, z plane; see Fig. 1). At the second stationary point, xS , x and xR

also lie in the x, z plane and ϕ
(2)
S = 0, but ϕ

(2)
R = π and ξ

(2)
S = 	 + r

(the second stationary point lies at the opposite side of S, compared
to the first). The integration over ϕ can now be approximated as
(Achenbach 1973)

�
ν,ν̄
im

∼=
2∑

j=1

√
2π

kνr |ψ ′′(ϕ j )| e−ikνrψ(ϕ j )∓i π
4

× Fν,ν̄
im

[
z, zR, zS, ϕ

( j)
R , ϕ

( j)
S

]
r, (12)

where ψ ′′(ϕ j ) = ∂2ψ/∂ϕ2|ϕ=ϕ j , and the upper and lower signs relate
to ψ ′ ′(ϕj) > 0 and ψ ′ ′(ϕj) < 0, respectively. Using

ψ(ϕ j ) = 1 + kν̄

kν

	 ∓ r

r
, ψ ′′(ϕ j ) = ± kν̄

kν

	

	 ∓ r
, (13)

eq. (12) can be written as

�
ν,ν̄
im

∼=
2∑

j=1

pν
i

[
zR, ϕ

( j)
R

]
pν̄∗

m

[
zS, ϕ

( j)
S

]
Qν,ν̄

[
z, ϕ( j)

R , ϕ
( j)
S

]

× 1

χνχν̄

√
8

πkνk2
ν̄ 	

e−i[kνr+kν̄ (	∓r )± π
4 ], (14)

where the upper and lower signs relate to the j = 1 and j = 2,
respectively. Next, we compute the integral over depth z. This re-
duces to the integral of Qν,ν̄[z, ϕ( j)

R , ϕ
( j)
S ] only (cf. eqs 7–10). We

separate between the cases ν 
= ν̄ (cross-mode contributions) and
ν = ν̄ (principal contributions). Using the orthogonality relation for
Rayleigh waves (Aki & Richards 2002), we find that∫ ∞

0
Qν,ν̄

[
z, ϕ( j)

R , ϕ
( j)
S

]
dz = 0, ν 
= ν̄. (15)
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The cross-mode contributions thus vanish. Furthermore, it appears
that Qν,ν[z, ϕ(2)

R , ϕ
(2)
S ] = 0. Therefore, the second stationary point

does not contribute to the integral in eq. (6), which is reasonable as
there is no wave travelling from xS to xR via x when the latter lies at
the rightmost side of S (see Fig. 1). For the principal contributions
at the first stationary point, we find (cf. Halliday & Curtis 2008)∫ ∞

0
Qν,ν

[
z, ϕ(1)

R , ϕ
(1)
S

]
dz = 4ikν1cνUν I ν

1 , (16)

where cν , Uν and I ν
1 are the phase velocity, the group velocity and

the kinetic energy of mode ν (see Appendix A), respectively, and

1 = cos(ϕ1)n(1)
x + sin(ϕ1)n(1)

y = 1. (17)

Here, n(1)
x and n(1)

y are the horizontal components of the outward-
pointing unit normal of S at the stationary point (cf. Fig. 1):
n(1)

x = −1 and n(1)
y = 0. In general, n(1)

x = cos(ϕ1), n(1)
y = sin(ϕ1)

and n(1)
z = 0. We note that zS and zR can be different; n(1)

z = 0 as the
normal is always oriented in the horizontal plane. Taking the results
together according to eq. (8) and using eq. (A3), we find



ν,ν
im

∼= pν
i

[
zR, ϕ

(1)
R

]
pν∗

m

[
zS, ϕ

(1)
S

] e−i(kν 	+ π
4 )

χν

√
π

2 kν	
. (18)

Now, using the replacements 	 → ξRS and ϕ
(1)
S = ϕ

(1)
R → ϕRS , where

the subscript RS indicates that ξ and ϕ belong to the straight line
from xS to xR , we obtain (from eqs 6, 8 and 18)

Ĝim(xR, xS) ∼=
∑

ν

pν
i (zR, ϕRS)pν∗

m (zS, ϕRS)
e−i(kν ξRS+ π

4 )

χν

√
π

2 kνξRS

, (19)

which is the point-force response (cf. eq. 3); in the current stationary-
phase analysis, the point-force response is obtained approximately,
because the integral over ϕ has not been evaluated exactly (cf.
eq. 14).

In the next section, we use one of the steps of the above analysis,
particularly the integration over depth (see eq. 16), to derive an
approximate convolution theorem which yields the same Green’s
function in the stationary-phase analysis.

3 A P P ROX I M AT E C O N V O LU T I O N
T H E O R E M

Halliday & Curtis (2008) derived an approximate correlation the-
orem that contains exclusively point-force surface wave Green’s
functions. It can be written as (Kimman & Trampert 2010)

Ĝν
im(xA, xB) − Ĝν∗

im(xA, xB)

∼= −
∫

S
iω Âν Ĝν

in(xA, x)Ĝν∗
mn(xB, x) dS, (20)

where xA and xB are receivers both located inside a volume that
has sources x all over its enclosing boundary S. The approximate
correlation theorem contains modal scale factors Âν = Âν(ω) that
have been determined so that the integral in the right-hand side
gives the same result as that in the original correlation theorem in
the stationary-phase analysis (see Halliday & Curtis 2008). Eq. (20)
holds for each mode separately; if one inserts the entire responses
in the right-hand side (without modal separation), cross-mode con-
tributions are introduced.

Here, we propose an approximate convolution theorem that is
very similar to the approximate correlation theorem

Ĝν
im(xR, xS) ∼=

∫
S
−ikν B̂ν Ĝν

in(xR, x)Ĝν
nm(x, xS) dS, (21)

where the B̂ν are modal scale factors to compensate for the absence
of the spatial derivatives (cf. eq. 2). When all modes are considered
together, the theorem can be written as

Ĝim(xR, xS) + Ĝc
im(xR, xS) ∼=

∫
S

Ŵin(xR, x)Ĝnm(x, xS) dS, (22)

where Ĝc
im(xR, xS) denotes the contribution of the introduced cross

terms, and

Ŵin(xR, x) =
∑

ν

−ikν B̂ν Ĝν
in(xR, x)

=
∑

ν

−ikν B̂ν pν
i (zR, ϕR)pν∗

n (z, ϕR)
e−i(kν ξR+ π

4 )

χν

√
π

2 kνξR

. (23)

Here, Ŵin(xR, x) can be thought of as an approximate propagator
that brings the wavefield from x to xR ; it can be considered as
a weighted dipole response as it can be obtained by applying a
normal derivative nj∂ j (at the source coordinate) to the point-force
Green’s tensor (cf. Wapenaar et al. 2011b), and multiplying by the
factors B̂ν . In this specific case, nj is the outward-pointing unit
normal vector of a vertical plane, and only the far-field term of the
derivative should be included.

To determine the modal scale factors, we perform the same
stationary-phase analysis as in Section 2, but now starting from
the approximate convolution theorem eq. (22). Substituting the ap-
propriate Green’s tensors (eqs 3 and 23), we obtain

Ĝim(xR, xS) + Ĝc
im(xR, xS) ∼=

∑
ν̄

∑
ν

∫
S

pν
i (zR, ϕR)

× pν̄∗
m (zS, ϕS)Rν,ν̄(z, ϕR, ϕS)

e−i(kν ξR+kν̄ ξS+ π
2 )

π

2 χνχν̄

√
kνkν̄ ξRξS

dS, (24)

where

Rν,ν̄ = −ikν B̂ν pν∗
n (z, ϕR)pν̄

n (z, ϕS). (25)

For the cylindrical volume V displayed in Fig. 1, the integral in
eq. (24) can be written in the same way as in eqs (8)–(10);
the only difference lies in the expressions of Qν,ν̄(z, ϕR, ϕS) and
Rν,ν̄(z, ϕR, ϕS). Hence, the integration over ϕ gives a very simi-
lar expression as in eq. (14). For the depth integration at the first
stationary point, we find∫ ∞

0
Rν,ν̄

[
z, ϕ(1)

R , ϕ
(1)
S

]
dz = −2ikν B̂ν J ν,ν̄

1 , (26)

where

J ν,ν̄
1 = 1

2

∫ ∞

0

(
r ν

1 r ν̄
1 + r ν

2 r ν̄
2

)
dz. (27)

This integral is similar to that of the modal kinetic energy I ν
1

(Appendix A). For the principal terms (ν = ν̄), we now choose
the modal scale factors so that the depth integration gives the same
result as that in the analysis associated with the original convolution
theorem. Comparing eqs (16) and (26), we find

B̂ν = −2cνUν

I ν
1

J ν,ν
1

. (28)

Furthermore, we find that Rν,ν[z, ϕ(2)
R , ϕ

(2)
S ] 
= 0. Hence, the sec-

ond stationary point now does have a contribution in the integral
in eq. (24); this is different in the analysis of the original convolu-
tion theorem, where the contribution at the second stationary point
in fact vanished on account of Sommerfeld’s radiation condition.
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For consistency, we therefore replace Ĝnm(x, xS) in eq. (22) by the
inward-propagating wavefield Ĝ in

nm(x, xS) so that the integrand au-
tomatically vanishes at the second stationary point.

The cross-mode contributions (ν 
= ν̄) do not vanish in eq. (26),
as the orthogonality of the modes is not fulfilled due to the ap-
proximation in the convolution theorem. Using eq. (24) and leaving
out the contribution of the second stationary point (consistent with
above-described choice), we can verify that that their contribution
reads

Ĝc
im(xR, xS) ∼= −4

∑
ν̄ 
=ν

∑
ν

pν
i

[
zR, ϕ

(1)
R

]
pν̄∗

m

[
zS, ϕ

(1)
S

]

× B̂ν J ν,ν̄
1

e−i[kνr+kν̄ (	−r )+ π
4 ]

χνχν̄

√
π

2 k2
ν̄ 	/kν

. (29)

Taking all results together, the approximate convolution theorem
thus reads

Ĝim(xR, xS) + Ĝc
im(xR, xS) ∼=

∫
S

Ŵin(xR, x)Ĝ in
nm(x, xS) dS, (30)

where Ŵin(xR, x) is defined in eq. (23), the modal scale factors B̂ν in
eq. (28) and the cross terms Ĝc

im(xR, xS) in eq. (29). Eq. (30) can be
used to approximate forward wave propagation of surface waves in
horizontally layered media when only point-force Green’s functions
are present, but the cross terms cannot be avoided. From their phase,
we observe that they might interfere with the principal terms of the
surface wave tensor, which could be problematic depending on their
strength. It is probably impossible to predict the magnitude of the
cross terms for arbitrary layering. Therefore, we only assess this
issue numerically in the next section.

4 M D D S C H E M E

In this section, we derive an MDD scheme that is particularly suited
for surface waves in horizontally layered media that are laterally in-
variant. We take the approximate convolution theorem as the starting
point rather than the original one, because the former includes ex-
clusively point-force Green’s functions. This is advantageous for
applications with contemporary field-acquisition geometries.

The general configuration for the MDD scheme is displayed in
Fig. 2. The configuration is similar to that in Fig. 1, but now more
sources x( j)

S are present outside V. We also incorporated several
receivers xR to create a virtual-shot record (see Section 5). First,
we consider the approximate convolution theorem for each of the

Figure 2. General configuration for the multidimensional deconvolution
scheme derived in Section 4. Several sources are present outside volume V.
Its enclosing boundary S (having outward-pointing unit normal n) is covered
with receivers x; x′ is an auxiliary coordinate.

sources [eq. 30 with xS → x( j)
S ]. By introducing a new coordinate

x′ (to distinguish it from the integration coordinate x), we correlate
both the left- and right-hand sides with the inward-propagating field
at S and sum over source components. Taking the equations of all
sources together, we obtain

Ĉ ik(xR, x′) ∼=
∫

S
Ŵin(xR, x)�̂nk(x, x′) dS, (31)

where
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Here, P̂
( j,m) = P̂

( j,m)
(ω) is the power spectrum of component m of

source j.
Following Wapenaar et al. (2011b), we address the Ĉ ik(xR, x′) as

the correlation tensor and the �̂nk(x, x′) as the point-spread tensor
(Wapenaar et al. 2011b). The involved correlation functions (in-
dividual components) can be used to estimate the virtual-source
responses, but the result is not ideal (Halliday & Curtis 2008;
Kimman & Trampert 2010); we refer to this as the CC method.
According to eq. (31), each of the correlation functions can be ex-
pressed as a generalized convolution over space and time of prop-
agators and associated point-spread functions, where the latter can
be interpreted as virtual-source components. A poor CC result can
therefore be explicitly linked to smeared point-spread functions: the
more this smearing, the poorer the obtained virtual-source response
(Wapenaar et al. 2011b). Halliday & Curtis (2008) and Kimman &
Trampert (2010) showed that especially higher mode surface waves
are poorly retrieved using the CC method when there is a lack of
physical subsurface sources. In terms of the current analysis, this
implies relatively strong smearing of the point-spread functions. The
MDD process, used to calculate the Ŵin(xR, x) from the correlation
and point-spread tensors (eq. 31), can correct for this smearing so
that the virtual-source components become more ideal in space and
time (Wapenaar et al. 2011b); the retrieved higher mode surface
waves are then expected to become more accurate.

Both the correlation and point-spread tensors can be calculated
directly from the wavefield observations, provided that all required
receivers are present: along surface S and one (or more) inside V. To
calculate the Ŵin(xR, x), we discretize eq. (31). In addition, we need
to consider different combinations of i and k. Otherwise, we only
have more unknowns than equations. We restrict the discussion here
to the 2-D case in view of the envisaged applications (see Sections 5
and 6), but an extension to the 3-D case is straightforward. When
multicomponent sources and observations are present, the following
system of four matrix equations and four unknown submatrices is
obtained:

Ĉ ∼= Ŵ�̂, (34)

where the correlation matrix is organized as

Ĉ =
⎡
⎣ Ĉxx Ĉxz

Ĉzx Ĉzz

⎤
⎦ , (35)

and the propagator matrix Ŵ and the point-spread matrix �̂ are
organized similarly; the matrices are discretized versions of the
corresponding tensors. In eq. (35), the Cik are submatrices with
rows and columns corresponding to discrete xR and x′, respec-
tively (Wapenaar & Berkhout 1989). Now, Ŵ can be obtained
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approximately by matrix inversion of �̂, which should be performed
in a stabilized way (see also Section 5). Hence, we get

Ŵϒ̂ ∼= Ĉ�̂
−1

, (36)

where ϒ̂ = �̂�̂
−1

; this matrix product does not exactly yield the

identity matrix as �̂
−1

is a stabilized inverse. Eq. (36) thus de-
scribes a discretized deconvolution; the deconvolution is referred
to as multidimensional because it employs sources and observa-
tions in different directions/dimensions. Ŵ contains the sought for
Ŵin(xR, x), which can be addressed as virtual-source responses as
they are obtained without using sources at x. It should be noted
that, even if physical sources were available, the Ŵin(xR, x) could
not be directly measured because the propagators are artificial
ones (in fact, the modal scaling by B̂ν makes them unnatural; see
eq. 23). Still, the virtual-source responses can be retrieved from real
observations (as expressed by eq. 36), and they can be modelled
using the well-defined expression given in eq. (23).

In acoustics, the point-spread function converges to a band-
limited spike in space and time when there is a perfect distribution
of sources around the receivers whose observations are correlated
(in that case, MDD does not improve the CC result, unless there are
losses; Wapenaar et al. 2011b). We note, however, that the current
point-spread functions are necessarily distributed/broad in space.
The reason is that the considered surface wave response (eq. 3) is
a far-field approximation. It assumes that the surface waves have
a fully developed depth profile and only propagate horizontally.
Therefore, all functions in eq. (31) (cf. eqs 23, 32 and 33) are neces-
sarily distributed in depth direction (even for zero horizontal offset);
in Appendix B, we verify this mathematically for the point-spread
functions related to surface waves in a homogeneous half-space
with a perfect distribution of sources. Eq. (36) thus expresses that
the depth profile of the propagators is obtained by correcting the
depth profiles of the correlation functions and those of the point-
spread functions. This correction can be significant, depending on
the distribution of the sources (as discussed earlier).

The above-introduced matrix ϒ̂ = ϒ̂(z, z′, ω) can be used to
diagnose the quality of the MDD process. The matrix consists of
four separate matrices ϒ̂xx , ϒ̂xz , ϒ̂ zx and ϒ̂ zz . In the ideal case

where the inversion does not need to be stabilized and �̂�̂
−1 → I,

which is the case when surface S (eq. 31) is covered by a dense
line of receivers and when there is a densely-sampled source line in
depth direction, ϒ̂xx , ϒ̂ zz → I and ϒ̂xz, ϒ̂ zx → O for all ω. This
implies that the corresponding functions ϒ xx(z, z′, t) and ϒ zz(z, z′,
t) have a spike in space and time (i.e. a band-limited Dirac function),
and that ϒ xz(z, z′, t) and ϒ zx(z, z′, t) approach zero. The ϒ xx and
ϒ zz could therefore be interpreted to capture the distributions of the
virtual-source components after MDD, as it is done in acoustics and
elastodynamics when dealing with body waves (van der Neut et al.
2011; Wapenaar et al. 2011b). This still holds true for the temporal
distribution in the current surface wave problem. However, as the
depth profile of the propagators Ŵin(xR, x) is necessarily broad
(as discussed above), it might be confusing to refer to the ϒ xx

and ϒ zz as if they capture the spatial distributions of the virtual-
source components. The spatial distributions of the ϒ xx and ϒ zz just
indicate how well the depth profiles of the Ŵin(xR, x) are obtained
after the MDD process.

We emphasize that the proposed MDD scheme is not restricted
to cylindrical configurations. We used the cylindrical volume V
for simplicity (cf. Sections 2 and 3); the integral over S could be
easily evaluated using cylindrical coordinates and the stationary-
phase approximation. In general, however, it is important that the

receivers at S do sample the stationary point that lies in the plane
of xS and xR , but the specific shape of S is of minor importance.
Furthermore, it is probably easiest to have sources at only one side
of V in applications. Then, in 2-D, a single array of receivers is
sufficient (half of the surface S), and the inward-propagating field
is simply the total field. Otherwise, decomposition into inward- and
outward-propagating waves might be required.

To facilitate comparison of the results obtained using the MDD
and CC methods (Section 5), we indicate here how the virtual-
source responses in the latter method can be estimated using the
correlation integrals in eq. (20). In practical applications, all modes
are taken together, and the modal scale factors Âν are ignored as
they are unknown; only the time derivative is applied. The resulting
expressions are very similar to the correlation functions (eq. 32;
for the integrals, stricter sampling criteria hold). The virtual-source
responses of the CC method can then be estimated as

ûik(xR, x′) ∼= Ĝik(xR, x′)P̂ ∼= −iωĈ ik(xR, x′). (37)

Here, the ûik are displacements and P̂ is some average power spec-
trum of the sources (Wapenaar & Fokkema 2006), indicating that
band-limited Green’s functions are retrieved. The estimated virtual-
source responses obtained from the correlation functions can be
poor due to a lack of sources, their non-uniform distribution, or due
to the missing modal scale factors of the correlation integral. In the
current MDD scheme, we also have unknown modal scale factors,
but they are incorporated in the propagators (eq. 23). Hence, they
are part of the solution we are looking for, and not knowing them
beforehand does not influence the quality of the retrieved virtual-
source responses.

Finally, we note that the current method of retrieving a virtual-
source response by MDD is different from that in Slob et al. (2007)
and Halliday & Curtis (2009). In these papers, the retrieved virtual-
source response is based on (cross-)convolution, which is similar
to the conventional CC method, but based on the convolution-type
reciprocity theorem. Like the current method, the convolutional
method also works for retrieving surface waves in lossy media,
but it requires having sources between the virtual source and the
receiver(s) (cf. Fig. 2). It also requires a regular distribution of
sources, while MDD can handle non-uniform illumination (and
compensate for the associated artefacts in the CC method; Wapenaar
et al. 2011b). To accomplish this, an array of receivers is required
(along S; cf. Fig. 2), while the convolutional method only needs two
receivers (like the CC method).

5 N U M E R I C A L R E S U LT S

In this section, we show numerical examples to verify the perfor-
mance of the MDD scheme and compare the retrieved virtual-shot
responses with those obtained using the CC method. We compare
the distributions of the associated virtual sources and analyse the
required length of the vertical array needed to compute the point-
spread functions. We restrict to a 2-D situation in view of the envis-
aged applications of the MDD scheme (see also Section 6).

To ensure relatively strong higher mode surface waves, we chose
to consider the layered medium used by Halliday & Curtis (2008,
see Table 1). We modelled band-limited surface wave responses
(10 Hz Ricker pulse for all sources) due to five sources distributed
at the surface, with 34 receivers along S (in vertical direction) and 81
receivers xR at the surface(see Fig. 3, where also the sampling inter-
vals are indicated). The propagation distances between the sources
and S, and between S and the receivers xR were chosen so that the
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Table 1. Subsurface layering and corresponding mate-
rial parameters taken from Halliday & Curtis (2008):
compressional wave speed cP, shear wave speed cS and
material density ρ.

Depth (m) cP (m s−1) cS (m s−1) ρ (kg m−3)

0–1 404 101 1400
1–2 504 126 1460
2–4 508 127 1470
4–6 584 146 1520
6–8 688 172 1590

8–12 736 184 1610
12–20 800 200 1650
20–30 928 232 1710
>30 1228 307 1840

Figure 3. 2-D configuration for the numerical experiments described in
Section 5. The virtual source lies at the surface and is indicated by the red
receiver.

far-field criterion is fulfilled, which is required for the use of the sur-
face wave response in eq. (3). For modelling of the 2-D responses,
we used the 3-D responses as in eq. (3), which were computed nu-
merically (Hisada 1994; Lai & Rix 1998), and applied the following
conversion (Aki & Richards 2002):

Ĝν,2D
nm (x, xS) =

√
2πξS

kν

e−i π
4 Ĝν,3D

nm

(
x|y=0, xS |yS=0

)
. (38)

For the considered finite frequency band, the responses contain a
finite number of modes ν. The length of the vertical array was
chosen so that, at the centre frequency of the source, the involved
modal eigenfunctions associated with the highest mode (which has
the largest depth penetration) are decayed over 95 per cent (see
Appendix A for modal eigenfunctions), indicating that the surface
waves have practically vanished at this depth.

We computed all required components (for i, k, n = {x, z}; see
eqs 31–33) to form the correlation and point-spread matrices. Be-
cause the medium is laterally invariant (no scattering), the inward-
propagating fields are the same as the total fields at the left part of S.
The right part can be ignored (fields are outgoing there), so that only
one vertical array suffices. We subsequently applied singular-value
decomposition to compute the inverse of the point-spread matrix,
which has to be done for each of the frequencies separately; to stabi-
lize the inversion (Menke 1989; Minato et al. 2011), we omitted the
very small singular values (see also Section 4). The virtual-source
responses were obtained using eq. (36). In all numerical results
that we discuss in this section, the virtual source x is located at
the surface and indicated by the red receiver in Fig. 3. In partic-
ular, we discuss the band-limited responses wzz(xR, x, t) (MDD)

Figure 4. Virtual-shot record wzz(xR, x, t) retrieved using the MDD scheme
(black line) and the directly modelled response (red line); both responses
have been normalized. The lines overlie to a large extent. We used five surface
sources and 34 receivers along S with 1.5 m spacing. The first receiver is
located at xR = [600, 0]T . For clarity, not all 81 traces are shown.

Figure 5. Retrieved (black line) virtual-shot responses wzz (MDD; upper
panel) and uzz (CC; lower panel), together with the directly modelled re-
sponses (red dashed lines); all responses have been normalized. We used five
surface sources and 34 receivers along S with 1.5 m spacing. The receiver
is located at xR = [800, 0]T .

and uzz(xR, x′, t) (CC), where the former is obtained by convolving
Wzz(xR, x, t) with P(t); P(t) is the zero-phase pulse corresponding
to the power spectrum of the employed sources, which is taken the
same as in the CC method for fair comparison (see eq. 37). Further-
more, the location of the virtual source in the CC method is denoted
as x′ rather than x, but that is only a different notation for the same
points in space (see Section 4).

The retrieved virtual-shot record wzz (MDD) is shown in Fig. 4
together with the directly modelled result (from eq. 23 for a source at
the virtual-shot position). Apparently, the retrieval is quite accurate
(the same is true for the other components). All surface wavemodes
are properly retrieved, and spurious events cannot be distinguished.
The only error is in amplitude, which is confirmed by Fig. 5 (up-
per panel), where a single-offset virtual-shot response is shown; the
phase is correct and the waveform is the same as that of the directly
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Figure 6. Virtual-shot record uzz(xR, x′, t) retrieved using the CC method
(black line) and the directly modelled response (red line); both responses
have been normalized. We used five surface sources. The first receiver is
located at xR = [600, 0]T . For clarity, not all 81 traces are shown.

modelled response. Using another numerical simulation with five
sources along a vertical line and 2.5 m spacing, we verified that
the amplitude error is not caused by missing subsurface sources
(the result is not shown here). Therefore, we conclude that the am-
plitude difference is a result of the ignored cross terms (Section 4).
Even in the case of relatively strong higher modes, ignoring the
cross terms thus only affects the retrieved amplitude.

The retrieved uzz (CC; eq. 37) is less accurate, as can be seen from
Figs 5 (lower panel) and 6 [where eq. 3 was used for the directly
modelled response, with a source of signature P(t) at the virtual-shot
position and a receiver at xR]. Though spurious events cannot be
observed in the latter figure, the amplitude mismatch is stronger, and
there is some phase error for the higher modes (see Fig. 5: around
t = 2 s). This confirms the findings of Halliday & Curtis (2008) and
Kimman & Trampert (2010). Spurious events are suppressed due to
the applied source configuration, which approaches a homogeneous
surface-source distribution.

The wavenumber–frequency (k, f) spectra can be calculated using
the Fourier transform over t (eq. 1) and over xR (receiver array),
where the latter is defined as [similarly for ûzz(xR, x, ω)]

w̃zz(k, zR, x, ω) =
∫ ∞

−∞
ŵzz(xR, x, ω) exp(ikxR) dxR . (39)

Here, k denotes the angular horizontal wavenumber and the tilde
refers to the (k, zR, x, ω) domain. The spectra of the retrieved w̃zz

and ũzz are shown in Fig. 7, together with the directly modelled
equivalents. The higher mode surface waves are clearly present, and
their cut-off frequencies can even be distinguished. As we expect
based on the previous results, the retrieved w̃zz looks very similar
to the true one; all modes are nicely retrieved. The quality of the
retrieved ũzz is less high. In particular, the higher modes cannot be
distinguished that well. This is due to the lack of subsurface sources
(Halliday & Curtis 2008; Kimman & Trampert 2010) and due to
the small amplitudes (Fig. 6), which is related to the missing modal
scale factors (of the correlation integral).

To assess subsurface properties, dispersion analyses of surface
waves are often performed. For a dispersion analysis using k,
f-domain spectra, where the frequency-dependent phase velocities
are picked from the energy maxima (Gabriels et al. 1987), the MDD

Figure 7. The k, f-domain spectra of the retrieved and directly modelled
responses w̃zz and ũzz (‘m’ refers to directly modelled responses); dB
refers to normalized response [i.e. 20log10(. . . ) of normalized k, f-domain
responses]. We used five surface sources and 34 receivers along S with
1.5 m spacing. Note that w̃zz(k, f ) = w̃zz(k, zR , x, f ) and ũzz(k, f ) =
ũzz(k, zR , x′, f ).

result is clearly preferable and will give reliable results. When only
one or a few different virtual-shot responses are present, and the
Fourier transform over xR cannot be applied, it is very important
that the retrieved waveform has the proper phase; errors in the
phase can significantly affect the estimated phase velocity when
based on a single-offset response (Bensen et al. 2007; Kimman &
Trampert 2010; Ruigrok 2012). Group velocities, which are often
estimated using the envelope function of an analytic signal, also
suffer from phase errors (e.g. Bensen et al. 2007).

We can verify that the results obtained using the MDD scheme are
very similar when we use a shorter array consisting of 20 receivers
along S with the same spacing (the results are not shown here).
The amplitude of the fastest modes is then retrieved with a small
amplitude error, which is related to the fact that the surface wave
eigenfunctions are not fully decayed at the deepest receiver, but
the phase is still correct. Shorter arrays can thus be used, but there
is a trade-off. For example, once we take six receivers along S,
phase errors are obtained for the fastest modes. In addition, to
suppress amplitude errors, more singular values need to be omitted
in computing the inverse of �̂. It effectively reduces the bandwidth
in which useful signal is retrieved. This is the most significant when
only one receiver is used at S (at the surface), the results of which
are displayed in Figs 8 and 9. In the latter figure, it can be seen
that some high-frequency information is lost, particularly for the
higher modes. However, the MDD result is still better than the CC
result. In general, the lower accuracy of the current MDD result
compared to that having 34 receivers along S is a consequence of
not having a proper array needed for the integral in eq. (31), and of
cross terms that might become stronger for shorter arrays since the
orthogonality is less well approximated (cf. Sections 2 and 3).

The point-spread function �zz(z, z′, t) associated with the exam-
ple having 34 receivers along S is shown in Fig. 10; both its spatial
and the temporal distributions are displayed (z′ = 0 because the vir-
tual source lies at the surface, as explained above; see also Fig. 3).
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Figure 8. Retrieved (black line) virtual-shot response wzz (MDD), together
with the directly modelled response (red dashed line); both responses have
been normalized. We used five surface sources and one surface receiver at
S. The receiver is located at xR = [800, 0]T . The associated ũzz (CC) is the
same as in Fig. 5.

Figure 9. The k, f-domain spectra of the retrieved and directly modelled
responses w̃zz and ũzz (‘m’ refers to directly modelled responses); dB refers
to normalized response (cf. Fig. 7). We used five surface sources and one
surface receiver at S. Note that w̃zz(k, f ) = w̃zz(k, zR , x, f ). The associated
CC results are the same as in Fig. 7.

Apparently, �zz is distributed in space and time. The fact that it is
broad in space is not only caused by the non-uniform illumination,
like for body waves (Wapenaar et al. 2011b), but is an intrinsic
property of the point-spread function, even for ideal source geome-
tries (see Section 4 and Appendix B). The temporal distribution,
however, is not necessarily broad. In this case, it is quite localized

Figure 10. Normalized spatial and temporal distributions of the point-
spread function �zz (black line) and of ϒ zz (defined in text; red dashed
line). Panel (a): �zz(z, z′, t)|z′=0,t=0 and ϒzz(z, z′, t)|z′=0,t=0; panel (b):
�zz(z, z′, t)|z=0,z′=0 and ϒzz(z, z′, t) ∗ P(t)|z=0,z′=0 [P(t) is defined in the
text]. We used five surface sources and 34 receivers along S with 1.5 m
spacing.

Figure 11. Normalized temporal distributions of the point-spread function
�zz (black line) and of ϒ zz (defined in text; red dashed line): �zz(t) and
ϒ zz(t) ∗ P(t) [P(t) is defined in the text]. We used five surface sources and
one surface receiver at S. �zz(t) is the same as in Fig. 10, but included for
comparison.

due to the applied surface source distribution, which gives relatively
good CC results (Halliday & Curtis 2008). We can verify that the
temporal smearing is much larger when we only incorporate two
surface sources (result not shown here). In Fig. 10, we also display
ϒ zz(z, z′, t), being an indicator of the quality of the retrieved wzz

(see Section 4); we convolved the function with P(t) to facilitate
comparison with the point-spread function �zz. As expected, ϒ zz

has a band-limited spike in space. The temporal spike is obviously
modified by the zero-phase pulse, but the obtained function is better
localized in time than �zz. Though the difference is not so large,
it indicates that the virtual source response obtained using MDD
has higher quality than that obtained using the CC method. This
confirms the results in Figs 5 and 7.

The functions �zz(t) and ϒ zz(t) associated with the extreme case
of only one surface receiver at S are shown in Fig. 11. These func-
tions only depend on time; their spatial distributions are not defined
as they can only be computed at one location. The corresponding
deconvolution is therefore only a temporal one. It is clear from
Fig. 11 that the deconvolution still sharpens up the distribution of
the virtual source (though only in time), which once more confirms
the improved result after MDD (Figs 8 and 9) compared to the CC
method (Figs 5 and 7).

6 D I S C U S S I O N

Here, we make a connection of the current MDD scheme with that
used by Wapenaar et al. (2011a). In addition, we discuss the ap-
plicability in practical situations where the proposed MDD scheme
can be used for improved surface wave retrieval.

Wapenaar et al. (2011a) successfully performed MDD, using a
scalar (single-component) scheme for the specific situation of only
having the fundamental-mode surface wave present in the responses
and only surface receivers to compute a point-spread function. In
fact, the surface wave was treated as a scalar wave that travels
in the surface (x, y) plane. The retrieved result using the scalar
scheme is, in principle, exact for an ideal surface receiver array
and ideal illumination. Using the current elastic (multicomponent)
scheme and choosing only a single surface receiver at S, MDD can
be applied in a similar way (taking only the fundamental mode in
the modelling); the only difference is that we do not incorporate
the y-direction. The results are of slightly less quality than those
of the scalar scheme. The waveform of wzz is retrieved quite well,
as shown in Fig. 12, but there is some phase error at the onset of the
signal. Apparently, particularly the lower frequencies suffer from
the lack of receivers at depth that are required for the elastic scheme
(eq. 31). It is interesting to note that the MDD result has similar
quality as that obtained using the CC method (see also Fig. 12. We
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Figure 12. Retrieved (black line) fundamental-mode virtual-shot responses
wzz (MDD; upper panel) and ũzz (CC; lower panel), together with the directly
modelled responses (red dashed lines); all responses have been normalized.
We used five surface sources and one surface receiver at S. The receiver is
located at xR = [800, 0]T .

Figure 13. The k, f-domain spectra of the retrieved and directly modelled
fundamental-mode responses w̃zz and ũzz (‘m’ refers to directly modelled
responses); dB refers to normalized response (cf. Fig. 7). We used five surface
sources and one surface receiver at S. Note that w̃zz(k, f ) = w̃zz(k, zR , x, f )
and ũzz(k, f ) = ũzz(k, zR, x′, f ).

can verify that the CC result does not get much better when 10 regu-
larly distributed sources are used; hence, the current result seems to
be the best we can get). Therefore, for this specific situation, using
MDD is only advantageous when one has to cope with non-uniform
illumination in lateral (y) direction (which is exactly the case in
Wapenaar et al. 2011a) or with losses. Furthermore, it is clear from
Fig. 13 that the dispersion curves can be retrieved reliably, both for
the MDD and CC methods. Dispersion analyses are thus expected
to give accurate results as long as they are based on the k, f-domain
responses.

We envisage different applications of the proposed elastic MDD
scheme. When only surface receivers are present, the elastic scheme

can be used for multimode surface waves (cf. Figs 8 and 9); for
single-mode surface waves, the scalar scheme of Wapenaar et al.
(2011a) gives superior results (as described earlier). For getting
better accuracy in retrieving the higher modes using subsurface re-
ceivers, we envisage applications of the elastic scheme mainly in
2-D, where only one vertical array is required. A large set of bore-
holes to enable a 3-D application of the scheme is probably too
costly. A 2-D application is reasonable when the available ambi-
ent noise source approximates a line source (e.g. a shore line), or
when a line source can be created by having active sources along a
line in lateral direction (the successively recorded responses should
then be stacked). Nowadays, subsurface arrays are applied more and
more. Bakulin et al. (2012) use buried arrays for seismic monitor-
ing of deep targets on land. Using the recently developed seismic
cone penetrometer (Ghose 2012), a shallow vertical array can be
made relatively easy in soft soil. Instrumented boreholes have be-
come available as well. One large-scale example is the pilot borehole
close to San Andreas Fault in California for monitoring purposes
(Chavarria et al. 2004); it has a 1240-m long array of 40-m spaced
sensors.

Depending on the scale, the MDD scheme can be used for dif-
ferent purposes. In our opinion, possible applications are: disper-
sion analysis used for estimating shallow-subsurface properties (e.g.
shear velocity profile; Wathelet et al. 2004), monitoring of the shal-
low subsurface, and suppressing surface waves from seismic data
to enable investigation of deeper targets using body waves (e.g.
Halliday et al. 2007, 2010; Bakulin et al. 2012). Especially for the
latter two applications, an important advantage of the MDD scheme
is that it can cope with different source signatures and source-to-
ground coupling differences (for the 2-D application, at least in
in-line direction). Source repeatability constraints are thus relaxed
compared to the CC method.

7 C O N C LU S I O N S

Virtual-source surface wave responses can be reconstructed using
the CC of the observed wavefields at two receivers. When there
is a lack of subsurface sources, which is often the case in practical
situations, especially higher mode surface waves cannot be properly
retrieved from the observations.

The aim of this paper was to apply MMD for improving the re-
trieval of the surface wave response. We proposed an approximate
convolution theorem for forward propagation of surface waves in
layered media that are laterally invariant (no scattering), and we de-
termined the involved modal scale factors using a stationary-phase
analysis. Based on the proposed theorem, we derived an MDD
scheme for the retrieval of surface waves. In fact, the scheme intro-
duces an additional processing step compared to the CC method;
the result of the latter is deconvolved by a so-called point-spread
tensor. The involved point-spread functions capture the imprint of
the non-uniform illumination (i.e. the lack of subsurface sources)
and possible anelastic effects, and quantify the associated smearing
of the virtual-source components. Using a 2-D example, we found
that the MDD scheme partially corrects for this undesired smearing
and that the retrieved surface wave response, including the higher
modes, becomes more accurate. In the ideal situation, where the
depth of the required vertical array is equal to the depth penetration
of the surface waves, there is only some amplitude difference com-
pared to the directly modelled surface wave response; this difference
is due to ignored cross-mode terms in the approximate convolution
theorem. Shorter arrays are also possible. In the limit case of only
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a single surface receiver, the retrieved virtual-source response ob-
tained using MDD is still more accurate than the corresponding CC
result.

The required point-spread functions can be calculated from the
same wavefields as used in the CC method. For the envisaged line-
source applications, the scheme requires one shallow vertical array
of multicomponent geophones. Furthermore, the scheme employs
exclusively multicomponent point-force responses rather than their
spatial derivatives, which is advantageous for applications with con-
temporary field-acquisition geometries. Finally, it can cope with dif-
ferences in source spectra and source-to-ground coupling, and gives
accurate results when only surface sources are available. We expect
that the improved retrieval of multimode surface waves can facili-
tate dispersion analyses in shallow-subsurface inversion problems
and monitoring, and surface wave removal algorithms.
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A P P E N D I X A : E X P R E S S I O N S F O R
S U R FA C E WAV E G R E E N ’ S T E N S O R

Here, we list a few expressions that are used in Sections 2 and 3.
The analytical expression of the far-field point-force Green’s tensor
reads

Ĝnm(x, xS) =
∑

ν

pν
n (z, ϕS)pν∗

m (zS, ϕS)
e−i(kν ξS+ π

4 )

χν

√
π

2 kνξS

. (A1)

Here, xS and x denote source and receiver coordinates, respectively,
zS and z are the associated depth coordinates and ϕS is the angle in
the horizontal plane indicating the direction from xS to x (Fig. 1); ξ S

denotes the horizontal distance from xS to x. Furthermore, pν
n (z, ϕS)

is the nth component of a polarization vector associated with mode
ν at the receiver [pν

m(zS, ϕS) is similarly related to the source]:

pν(z, ϕS) =

⎡
⎢⎢⎣

r ν
1 (z) cos(ϕS)

r ν
1 (z) sin(ϕS)

−ir ν
2 (z)

⎤
⎥⎥⎦ , (A2)

where r ν
1 and r ν

2 are the modal eigenfunctions associated with radial
and vertical displacements, respectively. In general, the eigenfunc-
tions can only be calculated numerically; we used an algorithm
based on Hisada (1994) and Lai & Rix (1998). Finally, kν is the
modal wavenumber, and

χν = 8cνUν I ν
1 , (A3)

where cν and Uν denote the modal phase and group velocities,
respectively, which are obtained numerically, using the same al-
gorithm. The modal kinetic energy is given as (Aki & Richards
2002)

I ν
1 = 1

2

∫ ∞

0
ρ(z)

[
(r ν

1 )2 + (r ν
2 )2

]
dz, (A4)

where ρ(z) denotes the mass density.
In Section 2, spatial derivatives ∂k are applied to the point-force

response (cf. eqs 2 and 7). Taking only the far-field terms, we get

n j cnjkl (x)∂k Ĝlm(x, xS) =
∑

ν

T ν
n (z, ϕS)pν∗

m (zS, ϕS)

× e−i(kν ξS+ π
4 )

χν

√
π

2 kνξS

, (A5)

n j cnjkl (x)∂k Ĝil (xR, x) =
∑

ν

pν
i (zR, ϕR)T ν∗

n (z, ϕR)

× e−i(kν ξR+ π
4 )

χν

√
π

2 kνξR

, (A6)

where ∂k thus has been applied at x. The obtained vector T ν
n = τ ν

nj n j ,
where τ ν

nj is related to the modal stress tensor; τ ν
nj is not the full stress

tensor, but only contains its z dependence. Therefore, T ν
n can be

referred to as a traction vector associated with mode ν (Halliday &
Curtis 2008), but actually the vector only captures the z dependence
of the traction. Using cnjkl = λδnjδkl + μ(δnkδjl + δnlδjk) for the
isotropic layers [λ and μ are the piecewise constant (in z-direction)
Lamé parameters], the stress components can be expressed in terms
of the eigenfunctions and read (Aki & Richards 2002; Halliday &
Curtis 2008)

τ ν
xx = −ikν

[
λr ν

1 + λ

kν

∂zr
ν
2 + 2μr ν

1 cos2(ϕS)

]
,

τ ν
xy = −ikν

[
2μr ν

1 cos(ϕS) sin(ϕS)
]
,

τ ν
xz = kν

[
−μr ν

2 cos(ϕS) + μ

kν

∂zr
ν
1 cos(ϕS)

]
,

τ ν
yy = −ikν

[
λr ν

1 + λ

kν

∂zr
ν
2 + 2μr ν

1 sin2(ϕS)

]
,

τ ν
yz = kν

[
−μr ν

2 sin(ϕS) + μ

kν

∂zr
ν
1 sin(ϕS)

]
,

τ ν
zz = −ikν

(
λr ν

1 + λ

kν

∂zr
ν
2 + 2

μ

kν

∂zr
ν
2

)
, (A7)

with, obviously, τ ν
xy = τ ν

yx , τ ν
xz = τ ν

zx and τ ν
yz = τ ν

zy . Note the cor-
rected typos with respect to the corresponding equations of Halliday
& Curtis (2008) and the change in Fourier convention.

A P P E N D I X B : P O I N T - S P R E A D
F U N C T I O N A S S O C I AT E D W I T H
H O M O G E N E O U S H A L F - S PA C E

In this appendix, we derive the point-spread functions associated
with the Rayleigh wave in a homogeneous half-space for ideal
source distribution. We show that the point-spread functions are
necessarily broad in space, as opposed to the point-spread function
of a body wave (Wapenaar et al. 2011b).

To this end, we use an analytical expression for the far-field
Rayleigh wave response in 2-D that reads (ω ≥ 0)

Ĝnm(xR, xS) = 1

β
e−iωsR (xR−xS )

× [(
anme−ωγP zS + bnme−ωγS zS

)
e−ωγP zR

+ (
cnme−ωγP zS + dnme−ωγS zS

)
e−ωγS zR

]
, (B1)

where β = ∂p|p=sR and γP,S = (s2
R − s2

P,S)1/2 > 0, with sP, S, R

being the wave slownesses of the compressional, shear and
Rayleigh waves, respectively. The coefficients anm, bnm, cnm and
dnm are frequency-independent and known in closed form (cf.
Drijkoningen et al. 2006). The Rayleigh wave denominator is

denoted as (p) = (s2
S − 2p2)2 − 4p2

√
p2 − s2

P

√
p2 − s2

S (Achen-

bach 1973). For a homogeneous half-space, the 2-D version of the
response given in eq. (3), which is generally computed numerically
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(Hisada 1994; Lai & Rix 1998), is equivalent to the analytical ex-
pression in eq. (B1). We emphasize that the Rayleigh wave response
only describes horizontal propagation; it assumes that the Rayleigh
wave is instantaneously excited when the source is fired and that
the depth profile is fully developed. It thus ignores vertical wave
propagation, which is only reasonable in the far field.

We consider the situation of N sources (labelled by
superscript j), which all have the same spectrum, being regularly
distributed along a vertical line to the left of V (cf. Fig. 2). In that
case, the point-spread functions can be written as (eq. 33)

�̂nk (z, z′) = P̂

|β|2
N∑

j=1

ζ̂
( j)
nk (z, z′), (B2)

where P̂ is the source power spectrum, and

ζ̂
( j)
nk = A( j)

nk e−ωηP P + B( j)
nk e−ωηSS + C ( j)

nk e−ωηP S + D( j)
nk e−ωηS P . (B3)

Here, ηPP = γ P(z + z′), ηSS = γ S(z + z′), ηPS = γ Pz + γ Sz′,
ηSP = γ Sz + γ Pz′, and the coefficients read

A( j)
nk = anma∗

kme−2ωγP z
( j)
S + bnmb∗

kme−2ωγS z
( j)
S

+ (
anmb∗

km + bnma∗
km

)
e−ω(γP +γS )z

( j)
S , (B4)

B( j)
nk = cnmc∗

kme−2ωγP z
( j)
S + dnmd∗

kme−2ωγS z
( j)
S

+ (
cnmd∗

km + dnmc∗
km

)
e−ω(γP +γS )z

( j)
S , (B5)

C ( j)
nk = anmc∗

kme−2ωγP z
( j)
S + bnmd∗

kme−2ωγS z
( j)
S

+ (
anmd∗

km + bnmc∗
km

)
e−ω(γP +γS )z

( j)
S , (B6)

D( j)
nk = cnma∗

kme−2ωγP z
( j)
S + dnma∗

kme−2ωγS z
( j)
S

+ (
cnmb∗

km + dnma∗
km

)
e−ω(γP +γS )z

( j)
S . (B7)

In the space–time domain, the point-spread functions read

�nk (z, z′, t) = P(t)

|β|2 ∗
N∑

j=1

ζ
( j)
nk (z, z′, t), (B8)

where the asterisk denotes convolution over time, and every individ-
ual term of ζ

( j)
nk (z, z′, t) has been transformed to the time domain.

For example (F−1 denotes inverse Fourier transform; cf. eq. 1)

F−1

{
anma∗

kme
−ω

[
ηP P +2γP z

( j)
S

]}

= 2
Re(anma∗

km)γP

[
z + z′ + 2z( j)

S

]
− Im(anma∗

km)t

γ 2
P

[
z + z′ + 2z( j)

S

]2
+ t2

, (B9)

where ηPP has been substituted, and t can be positive and negative.
Now, we choose the virtual source at the free surface (z′ = 0) and

consider the source profile (z dependence) at t = 0. It turns out that
a specific point-spread function (eq. B8) consists of a summation
of spatial pulses (similar to eq. B9; 12 for each source position)
that decay in vertical direction; for increasing source depth z( j)

S , the
weight of the associated pulses decreases. The total point-spread
function is therefore some broad smooth function in depth direction,
even in the ideal case that many sources (N →∞) with small spacing
are available. The function tends to zero when z → ∞.

In ideal situation, the point-spread function does have some
smearing in time as well. However, that is consistent with the point-
spread function of a body wave, which is also not an exact Dirac
function (Wapenaar et al. 2011b).


