

1

Msc THESIS

Low Cost Techniques for High-Speed Implementation of Decision

Feedback Equalizers for FPGAs

Charalampos Papadopoulos

4192141

Abstract

In modern digital communications throughput rates in the order of gigabits per second are not

uncommon. Hence there is a need for fast equalizing filters. While all feed forward filters can easily

be pipelined, therefore sped up, the feedback filter (FBF) of decision feedback equalizers is the

bottleneck of its performance. A simple, extremely fast, reformulation of the FBF, based on an

obvious expansion of the Shannon's expansion theorem idea, can easily be devised. This particular

design can be retimed in a straightforward manner to reach its iteration period bound, but is

ultimately limited by the propagation delay of the registers. Even though we can unfold the circuit

in an attempt to limit the register's delay relevance, its hardware overhead is exponentially

dependent on the number of tap coefficients (L), therefore, very costly even for relatively small Ls.

In order to cope with the exponential area growth a two stage pre-computation schema, similar to

the reformulated FBF, will be introduced. We show that the area degrades significantly with the

penalty of decreasing the maximum achievable frequency. To reach its iteration bound, this new

design has to be unfolded. In our experiments we use the Xilinx ISE FPGA synthesizer, targeting

the Virtex 5 family, the XC5VLX20T module, set to speed -2. We will approximate the minimum

needed unfolding factor for an FPGA centric design, considering different word lengths and

number of tap coefficients, to use as a base for the experimental phase. Our experiments with the

unfolding factor will conclude when the performance is comparable with that of the first FBF

reformulation. For that final design we will find the L where the hardware overhead improvement

outweighs the hit in performance. Finally, based on the experimental results, we will show that the

performance can be further increased, with the introduction of a retime approach. However

according to our experiments the retiming transformation enhanced the performance by only 2%.

Keywords: Decision Feedback Equalizer, Feedback Filter, High speed, Low cost, Unfolding

2

3

Low Cost Techniques for High-Speed Implementation of

Decision Feedback Equalizers for FPGAs

THESIS

submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

in

EMBEDDED SYSTEMS

by

Charalampos Papadopoulos

born in Athens, Greece

4

5

Author

 Charalampos Papadopoulos (xaris.papadopoulos@hotmail.com)

Title

 Low Cost Techniques for High-Speed Implementations of Decision Feedback Equalizers

M.Sc. Presentation

 August 6th, 2015

Graduation Committee

 Dr Georgi Gaydadjiev (Supervisor), Delft University of Technology

 Dr van Genderen, Delft University of Technology

 Dr. A Iosup, Delft University of Technology

mailto:xaris.papadopoulos@hotmail.com

6

7

Contents

List of Figures . 11

List of Tables .14

1 Introduction 16

 1.1 Motivation and Problem Statement . 17

 1.2 Thesis Overview . 17

Part I: Background 20

2 Introduction to Channel Equalization 22

 2.1 Inter-symbol Interference . 22

 2.2 Design of Bandlimited Signals for Zero or Controlled ISI 23

 2.2.1 Zero ISI .23

 2.2.2 Controlled ISI . 25

 2.2.3 Data Detection for Controlled ISI . 26

 2.4 System Design in the Presence of Channel Distortion 27

 2.4.1 Known Channel Characteristics . 27

 2.4.2 Unknown Channel Characteristics and Equalization 28

 2.5 Summary . 37

3 Fast Adder and Multiplexer Implementations 38

 3.1 Fast Adder Implementation . 38

 3.1.1 Ripple Carry Adder . 38

 3.1.2 Carry Skip Adder and Linear Carry Look-Ahead Adder 41

 3.1.3 Carry Select Adder . 42

 3.1.4 Square-root Carry Select Adder . 43

 3.1.5 Parallel Prefix Adders .44

 3.1.6 Hybrid Adders . 46

 3.1.7 Carry Save Adder and Multiple Operand Addition 46

8

 3.2 Fast Multiplexer Implementations .47

 3.3 Summary . 49

4 Iteration Bound 51

 4.1 Data Flow Graphs . 51

 4.2 Iteration Period Bound . 52

 4.3 Pipelining and Cut Set Retiming . 52

 4.4 Unfolding .53

 4.5 Summary . 55

Part II: Implementation and Analysis 57

5 FBF Transformations 59

 5.1 Faster Adders and Multiplier Transformation59

 5.2 Complete Circuit Overhaul . 60

 5.3 Partial pre-Computation . 63

 5.4 Two Stage Pre-Computation . 64

 5.5 Summary . 66

6 FPGA Specific Implementations 67

 6.1 Theoretical Estimation of the Unfolding Factor J67

 6.2 Constituent Units for the FPGA Design . 68

 6.2.1 Adders for FPGA Designs . 69

 6.2.2 Multiplexers for FPGA Designs .71

 6.3 Estimation for the Unfolding Factor J for FPGAs72

 6.4 Manual Retiming Approach . 74

 6.5 Summary . 79

7 Simulation Results 80

 7.1 Retimed Multiplexer Design . 80

 7.2 Two Stage Pre-Computation FBF . 81

 7.3 Unfolded Circuits, J=2 through 7 . 83

 7.4 Discussion . 85

 7.5 Retimed circuit. 86

9

 7.6 Validation . 87

8 Conclusions and Recommendations 88

 8.1 Conclusions . 88

 8.2 Recommendations for Future Research .89

Bibliography 90

Part III: Appendices 92

A Unfolded Circuits' Indices .94

B Area and Speed Measurements 97

 B1. Retimed Multiplexer Architecture .97

 B2. Two Stage pre-Computation FBF . 97

 B3. Unfolded Circuits . 98

 B4. Retimed Circuit . . 101

10

11

List of Figures

2.1 Continuous-time Digital Communications' System .22

2.2 Raised-cosine spectrum .24

2.3 Duobinary Signal Pulse in the time and frequency domain .25

2.4 Modified Duobinary Signal Pulse in the time and frequency domain25

2.5 Equivalent discrete-time system model .29

2.6 Equivalent discrete-time white noise system model . 29

2.7 Dicrete-time channel models A,B,C and their amplitude spectra 32

2.8 Decision Feedback Equalizer block diagram .33

2.9 Error rate performance of linear 31 tap MSE equalizer .35

2.10 Error rate performance of DFE with K1=15, K2 =15 taps . 35

2.11 Performance comparison between MLSE simulation and DFE, both for the correct

and estimated symbols feedback . 35

3.1 Ripple carry adder with the inverters shifted away from the critical path39

3.2 Canonical Design division .40

3.3 Ripple carry generator .40

3.4 Group PG cells .40

3.5 Carry-ripple adder group PG network .41

3.6 Manchester carry-chain and its schematic representation . 41

3.7 Propagation predictor with Manchester chain generator . 42

3.8 Linear carry look-ahead adder . 42

3.9 Square-root carry-select adder .43

3.10 Conditional-sum adder .44

3.11 Brent-Kung tree . 45

3.12 Sklansky tree . 45

3.13 Kogge-Stone tree . 45

3.14 Sparse-tree adder . 46

3.15 Carry save adder .47

3.16 In order, static cmos, transmission gate and tri-state multiplexers47

3.17 Delay estimation/ fan-in of 4-to-1 cmos multiplexer and 4-to-1 tree of 2-to-1 cmos

multiplexers .48

4.1 (a) Block diagram and (b) its respective DFG . 51

4.2 Fine grain pipelining where the multipliers where conveniently split in two subunits .

. .53

12

4.3 An application of cut set retiming .53

4.4 The 2-Unfolding of the DFG in (a) into (b) . 54

5.1 FBF's critical path . 59

5.2 FBF transformation to a single multiplexer .61

5.3 The tree structure of the ML-to-1 multiplexer. M multiplexers are the input to one

multiplexer in the next stage . 61

5.4 Retiming of the binary PAM 2-Tap FBF .62

5.5 Application of Shannon's decomposition theorem for iteration bound lowering . . . 63

5.6 2-term partial pre-computation and retiming .64

5.7 Two stage pre-computation of the FBF for binary PAM .65

6.1 Adder delay growth with word length: x-axis(bits) y-axis(ns) 69

6.2 Pipelining cut set for RCAs . 71

6.3 8bit 4Unfolded FBF with 6Tap coefficients .75

6.4 Step1. Move the available registers to all of their branches and Step2. retime the

"feedback" multiplexers' cut sets . 76

6.5 Step3. The ad-hoc chosen cut sets . 77

6.6 Optimally retimed ASIC design for 8bit 4Unfolded FBF with 6Tap coefficients . . .78

7.1 Area growth laws for the Multiplexer FBF design . 81

7.2 Area growth laws for the 2 stage FBF design . 82

7.3 Area and frequency measurements for unfolding factors 2 through 7 and W=883

7.4 Effects of the word length W on the area and frequency for J=484

7.5 Effects of the word length W on the area and frequency for J=784

7.6 Frequency and area comparison for the Multiplexer architecture and 7 Unfolded FBF,

W=8 . 85

7.7 Frequency and area comparison for the Multiplexer architecture and 7 Unfolded FBF,

W=64 . 85

7.8 Testing Board for the J Unfolded FBF .87

13

14

List of Tables

6.1 Iteration bound for the ASIC Design . 68

6.2 Appropriate Unfolding factor for the ASIC Design . 68

6.3 Delay and Area measurements of various Adder Implementations 69

6.4 Logic Delay of Sklansky's tree adder vs. the synthesizer's adder mapping 70

6.5 Logic Delay of CSA/Sklansky's tree adder vs. the synthesizer's adder mapping for 3

operand addition .70

6.6 Multiplexer delay . 72

6.7 Iteration bound for the (6.1) approximation . 72

6.8 Appropriate Unfolding factor for the (6.1) approximation .72

6.9 Iteration bound for the (6.2) approximation . 73

6.10 Appropriate Unfolding factor for the (6.2) approximation73

6.11 Factored form for the indices of y, for unfolding factor J=273

7.1 Area measurements for the Multiplexer FBF Design . 80

7.2 Area measurements of the 2 stage pre-computation FBF . 81

7.3 max Frequency estimation for the 2 stage pre-computation FBF 82
7.4 Area measurements for unfolding factors 2 through 7 and 8 bit words 83

7.5 max Frequency estimation for unfolding factors 2 through 7 and 8 bit words 83
 7.6: Simulation results for the retimed 4 unfolded FBF of figure 6.7 86

15

16

Introduction 1

For most of the early days of communication theory, analogue communications

dominated the field. Noise was, and still is, a major issue and the only way to deal with it

was to raise the transmitter's power a good deal above the noise level. Different

modulations present of course different levels of sensitivity to noise, however, the trade-

off for a more robust transmission per Watt is a larger effective bandwidth. And that is of

great importance since different signals cannot be overlaid within the same bandwidth

unless they are time multiplexed. The effective transmission of data types other than speech

(or image) is also a limitation of analogue communications.

With the advent of digital communications error control became much more

complicated, and yet very efficient. From the choice of channel codes to that of convoluted

error correcting pre-encodings, very low (theoretically infinitesimally small) bit error rates

for large transmission rates have been proven to exist and of course invented and

extensively used in practice. For modern convolution codes error bursts on the scale of

hundreds of words can be effectively corrected, through educated guesses. More than one

signal can also share the same channel, through the advances of network coding theory.

Other degradations like crosstalk, or parasitic bandwidth sharing can also be diminished or

even taken advantage of. And at last, since all kinds of information can be treated in the

same way through proper encoding, data types' limitations are a thing of the past.

Digital communication can in fact date all the way back to the Morse code or even to

ancient times, with the lighting of bonfires signaling the presence of invading armies etc.

However, what we now perceive as digital communications was really founded with the

beginning of C.S. Shannon's work during WWII. Shannon is known as the father of

information theory. Information theory views channels and transmitted data sequences

through the eyes of probability theory. However at the physical level, digital signals, are

still analogue in nature and as such are subject to the same maladies. Most importantly, as

17

we will see in chapter two, the limited bandwidth and channel distortion affect the time

duration of the pulses. That is exactly the spark that lights the fire of our subject matter.

Bandwidth limitations will be shown to naturally lead to the idea of channel equalization.

1.1 Motivation and Problem Statement

The design of Decision Feedback Equalizers (DFEs) is in not a new or even vivid

research area. Their theory is well developed since a few decades ago and their

implementation pretty standard. However, for modern Giga bit transmission rates the

design of the DFE need to go above and beyond the technology limitations to meet the

performance standards. And even thought that is, on first sight, nothing but easily

achievable, this is done at the expense of high hardware complexity cost.

Furthermore, specific DFE application themselves have an extensive enough "audience"

pool to warrant an ideal ASIC implementation. However, the underlying idea of the

adaptive digital decision feedback filter has a broader appeal that extends to many sub-

disciplines of signal processing that do not qualify for such a privilege. For DSP

applications more flexible approaches such as FPGAs are more widespread. For those, as

we will see in later chapters, area is also a big concern.

In this thesis we will specifically develop and compare architectures for the part that

predominately bottlenecks the DFE, the feedback filter. The development will eventually

focus on FPGA applications. The extent of their usefulness will be evaluated using the

Xilinx ISE synthesizer/simulator for our measurements' estimation and research for further

improvements on the designs will be proposed.

1.2 Thesis Overview

The work in this thesis is divided into three main parts:

Part I: Theoretical background of the various fields needed to understand the motivation

behind and the structure of the decision feedback equalizer- Chapter 2. The delay and area

estimates used for the adder and multiplexer components throughout the thesis- Chapter 3.

And the material that is necessary for the understanding of the a priori performance

estimates for the architectures developed in part II and the justification for the various

transformation choices- Chapter 4.

Part II: The development of the two different architectural choices for the FBF of the DFE

and the theoretical estimates of their respective performance and area- Chapter 5. The

necessary reevaluation of the units' design for a more structured FPGA architecture and the

experimental estimation of the performance bound- Chapter 6. And finally a short

18

exposition of the most relevant results of our simulations alongside with their comparative

evaluation- Chapter7.

Part III: A short recapitulation of the conclusions drawn from the experimental results of

Chapter 7 and recommendations for future research on and beyond the subject matter-

Chapter 8.

19

20

__

PART I:
BACKGROUND

__

21

22

Introduction to Channel Equalization 2

Digital Pulse Amplitude Modulation Transmission

Through Bandlimited Additive White Gaussian Noise

Channels

The first step in studying any digital communication system is evaluating its

performance on a single symbol basis. Unfortunately there is always an added level of

complexity following the concatenation of symbols and a brand new array of problems

communication theory has to solve in order to ensure an acceptable bit error rate.

Whenever a string of symbols is passed through a bandlimited channel, whether channel

distortion is present or not, inter-symbol interference arises. That is of course due to the

increased length of the pulses in the time domain and the insufficiently slow amplitude

decrease rate their tails follow. In the following presentation a baseband system will be

considered in order to introduce the basics of the subject unimpeded by further distractions.

2.1 Inter-symbol Interference

Following the signal flow in the block diagram of a PAM communication system

Figure 2.1: Continuous-time Digital Communications' System

23

u(t) =∑𝑎𝑛𝑔𝑇(t − nT)

+∞

−∞

 (2.1)

,where an the k-bit symbol information sequence encoded into the M=2k levels of the M-

ary PAM’s amplitudes and gT the transmission pulse.

r(t) =∑𝑎𝑛ℎ(t − nT) + 𝑛(𝑡)

+∞

−∞

 (2.2)

,whereh(t) = c(t) ∗ gT(t)and n(t) represents the AWGN.

y(t) =∑𝑎𝑛x(t − nT) + v(t) (2.3)

+∞

−∞

,where x(t) = gT(t) ∗ c(t) ∗ gR(t) and v(t) = n(t) ∗ gR(t). Finally the sampler produces

𝑦𝑘 = y(kT) =∑𝑎𝑛x(kT − nT) + v(kT) =

+∞

−∞

x0a0 + ISI + vk (2.4)

Here the pulses are not sufficiently bounded in the time domain due to the finite

bandwidth. This causes neighboring samples to leak into the intended output of the

sampler, causing an additional source of noise known as inter-symbol interference. An

added source of unpredictability is usually the unknown and time varying nature of the

non-constant channel spectrum C(f). In theory the whole symbol sequence contributes to

ISI, however, in practice we can truncate it to the L closest neighbors.

One more thing to note here is that the noise is no longer white and this will significantly

hinder any efforts to evaluate the performance of the various equalization or estimation

techniques. A noise whitening filter will be discussed and worked into the overall

procedure shortly. But let’s take things one step at a time and, for starters, consider a

distortionless channel.

2.2 Design of Bandlimited Signals for Zero or Controlled

Intersymbol Interference (ISI)

2.2.1 Zero ISI: That is,

x(nT) = {
1 n = 0
0 n ≠ 0

 (2.5)

The necessary and sufficient condition for the Fourier transform X(f) in order for x(t)

to satisfy the above criterion is known as the Nyquist pulse shaping criterion or the Nyquist

condition for zero ISI and it is stated as ∑ X(f +
m

T
) =+∞

−∞ T. The proof is easily extrapolated

by following the steps used to prove its more notable sibling, the Nyquist sampling

theorem, to reach

Z(f) =∑X(f +
m

T
) =

+∞

−∞

∑zne
j2πnfT

+∞

−∞

 (2.6)

24

From there,we’ll notice that zn = Tx(−nT) which of course yields the desired

transformation of the zero ISI signal to the Nyquist pulse shaping criterion.

Note that unlike the Nyquist sampling theorem, this time we will aim for overlapping

replicas of X(f) (aliasing) in our effort for a flat frequency response Z(f)=T. In more detail,

suppose the channel has bandwidth W, that is to say X(f)=0 for |f|>W

1. For
1

T
> 2𝑊the replicas are non overlapping therefore there is no way to ensure

Z(f)=T.

2. For
1

T
= 2W(Nyquist rate) only X(f)=TΠ(f/2W) can provide the desired

response. However the sampling function is non-causal and therefore non-

realizable. In practice it can be approximated by a sufficiently delayed and

truncated version. Yet it should be avoided all together as its tail decays

extremely slowly, as 1/t. Hence a small mistiming error in the sampling will

result in an infinite non convergent sum of ISI components.

3. Finally for
1

T
< 2𝑊we get overlapping replicas, which allow for numerous

feasible choices of X(f) that satisfy Z(f)=T.

A widely used spectrum is the raised cosine

Xrc =

{

 T, 0 ≤ |f| ≤

1 − β

2T
𝑇

2
[1 + cos

πT

β
(|f| −

1 − β

2T
)],

1 − β

2T
≤ |f| ≤

1 + β

2T

0, |f| >
1 + β

2T

 (2.7)

which of course is a modified, smoother, version of TΠ(f/2W) and converges to it for 𝛽 →

0. The excess bandwidth beyond the Nyquist frequency is usually expressed as a

percentage, represented by the roll-off factor β (0 ≤ β ≤ 1).

Figure 2.2: Raised-cosine spectrum

25

In the time domain

x(t) = sinc (
t

T
)
cos (

πβt

T
)

1 −
4β2t2

T2

 (2.8)

with its tails decaying as
1

𝑡

1

𝑡2
=

1

𝑡3
, which leads to a summable ISI series in case of

mistiming. Practical transmitter and receiver filters approximating the overall desired

behavior can easily be designed. And ideally 𝐺𝑇(𝑓) = 𝐺𝑅
∗(𝑓) = √|𝑋𝑟𝑐(𝑓)|𝑒

−𝑗2𝜋𝑓𝑡0

(matched filter for maximum SNR).

2.2.2 Controlled ISI: Obviously zero ISI is achieved at the expense of the

transmission rate. But if we were to relax the zero ISI constraint we could raise the symbol

rate to the Nyquist rate. Two commonly used choices are

x(nT) = {
1 n = 0,1
0 otherwise

 and x(nT) = {
1 n = 1

−1 n = −1
 0 otherwise

 (2.9)

, i.e. Z(f) = T + Te−j2πfT or x(t) = sinc(2Wt) + sinc(2W(t − T)) for T =
1

2W
, and

Figure 2.3: Duobinary Signal Pulse in the time and frequency domain

Z(f) = Te+j2πfT − Te−j2πfT or x(t) = sinc(2W(t + T)) − sinc(2W(t − T)) for T =
1

2W

Figure 2.4: Modified Duobinary Signal Pulse in the time and frequency domain

26

which are known as the duobinary signal pulse and the modified duobinary signal pulse,

respectively. Both are (approximately) physically realizable, since filters can be designed

that follow their smooth spectrum very closely. We will note that the modified duobinary’s

spectrum has a zero for f=0, making it applicable to channels that do not propagate signals

with frequency equal to zero (static signals).

In practice a more generalized partial response signal,

X(f) =
1

2W
∑x(

n

2W
)e−jnπf W⁄ for |f| ≤ W (2.10)

can be utilized. However, as we select more nonzero elements, the problem of unraveling

the controlled ISI becomes more cumbersome and impractical.

2.2.3 Data detection for controlled ISI:

The easiest method to implement is symbol by symbol detection. A direct

implementation e.g. for the duobinary signal pulse

 ym = bm + vm = am + am−1 + vm (2.11)

, where let us ignore the noise for the moment, would plainly be to subtract the last

detected symbol from the received sum.

However, errors arising from the additive noise would propagate. Luckily there is an

easy fix. Precoding of the original data at the transmitter instead of subtracting the estimate

at the receiver can eliminate error propagation. In more detail:

Let the M-level data sequence {dn}, with possible values 0,1,2,…,M-1 and the

precoding rule

 pm = dm − pm−1 (mod M) (2.12)

, followed by the renormalization

 am = 2pm − (M − 1) (2.13)

Which will of course translate them into the M-ary PAM levels.

This will give rise to the received (noise -free) sequence

bm = am + am−1 = 2[pm + pm−1 − (M − 1)] (2.14)

Now we only need to notice that

dm = pm + pm−1(mod M) =
bm
2
+ (M − 1)(modM) (2.15)

In the presence of noise, the received sequence is quantized to the nearest possible signal

level before applying the aforementioned rule.

A similar procedure can now be derived for the modified duobinary pulse by noticing that

bm = am − am−2. Therefore, the following precoding rule pm = dm + pm−2 (mod M)

would serve to evaluate pm − pm−2 in the modified duobinary counterpart. And as a result

dm =
bm

2
(modM).

27

However, the symbol by symbol detection ignores the inherent memory contained in

the signal (because of intersymbol interference) and therefore should be expected to be

suboptimal. The optimal method would of course be the maximum- likelihood sequence

detection. Which would lead to none other than a Viterbi search on the corresponding

trellis. Of course, since the noise samples are no longer uncorrelated, the metrics will no

longer be Euclidean in nature. Even though sequential trellis search algorithms for

correlated noise have been developed, the suboptimal procedure of ignoring the correlation

altogether is not uncommon.

Next we will raise the bar and incorporate the effects of channel distortion into our

design.

2.4 System Design in the Presence of Channel Distortion

A system, here a channel, causes distortion when its amplitude is not constant in its

respective bandwidth and/or its phase is nonlinear. A common practice is instead of phase

distortion to use the envelope delay, τ(f) = −
1

2π

dθc(f)

df
, to define delay distortion as the

distortion suffered whenever τ is not constant.

Channel characteristics might be known, unknown but stable over a period of interest,

like a telephone line whose path changes with every connection but is the same until the

end of that connection, or even time varying altogether, like a wireless connection. In the

following section we will consider system design for known and unknown channel

characteristics.

2.4.1 Known channel characteristics :

With the knowledge we have accumulated up to this point we can design transmitting

and receiving filter functions that maximize SNR and result in zero ISI. Obviously in our

pursuit for zero ISI we aim for GT(f)C(f)GR(f) = Xrc(f)e
−j2πft0 , |𝑓| ≤ 𝑊. Then, the noise

spectrum will also be transformed into Sv(f) = Sn(f)|GR(f)|
2.

For M-PAM with distance 2d between levels, the probability of error is

Pe =
2(M−1)

M
Q(√

d2

σv
2), which is minimized by maximizing the SNR = 𝑑2 𝜎𝑣

2⁄ . As we can

see

Pav =
E(am

2)

T
∫ gT

2(t)dt =

+∞

−∞

(M2 − 1)d2

3T
∫ gT

2(t)dt

+∞

−∞

 (2.16)

or
1

d2
=

(M2−1)

Pav3T
∫ |GT

2(f)|df
+∞

−∞
. Hence,

28

σv
2

d2
=
(M2 − 1)

Pav3T
∫ Sn(f)|GR(f)|

2df

W

−W

∫
|Xrc(f)|

2

|C(f)|2|GR(f)|
2
df

+∞

−∞

 (2.17)

and by applying the Cauchy-Schwartz inequality we find that the filters that minimizes the

noise-to-signal ratio are

|GR(f)| = K
|Xrc(f)|

1
2⁄

[Sn(f)]
1
4⁄ |C(f)|

1
2⁄
 , |f| ≤ W and |GT(f)| =

1

K

|Xrc(f)|
1
2⁄ [Sn(f)]

1
4⁄

|C(f)|
1
2⁄

 , |f| ≤ W

,with θT(f) + θc(f) + θR(f) = 2πfto (phase distortion is perfectly compensated).

2.4.2 Unknown channel characteristics and Equalization:

When dealing with an unknown, yet time invariant, channel, methods of lower

complexity can be developed, by measuring its response to an input sequence of finite

length, in comparison to the adaptive equalization techniques that are employed for time

varying systems.

__

Maximum-likelihood sequence detection and noise whitening

Whilst following the usual procedure for designing a maximum-likelihood receiver for

AWGN, we reach the metric

CM(𝐚) = 2Re(∑an
∗ ∫ r(t)

+∞

−∞

h∗(t − nT)dt

n

) −∑∑an
∗ am∫ h∗(t − nT)h(t − mT)

+∞

−∞

dt =

mn

2Re(∑an
∗ yn

n

) −∑∑an
∗ amxn−m

mn

 (2.18)

, which as expected demands the use of a matched (to the combined transmitter and channel

filter) filter at the receiver. All of the equations’ constituents are of course real, but keeping

a generalized notation will pay off shortly.

If we now make the reasonable assumption that in any practical system ISI is affected

only by a finite number of symbols, let’s say 2L, the system can be described as a discrete-

time transversal filter that spans a time interval of 2LT seconds.

29

Figure 2.5: Equivalent discrete-time system model

Of special interest to us would then be the two-sided z transform X(z) = ∑ xkz
−kL

−L ,for

which we should notice xk = x−k
∗ . Therefore, X(z) = X∗(z−1), from which we can easily

infer that if ρ is a root ,1 𝜌∗⁄ is also a root. Hence, X(z) = F(z)F∗(z−1) , from where we’ll

proceed to uniquely define F∗(z−1) as the minimum phase polynomial (the polynomial

having its roots inside the unit circle), thereby making 1 F∗(z−1) ⁄ a physically realizable,

stable, recursive discrete-time filter. With minimal effort it can also be shown that

E(vk
∗vj) =

No

2
xk−j. Therefore, following the whitening transformation 𝐇 = (Cov(𝐕))−

1
2⁄ 𝐕 ,

it turns out this is the noise whitening filter we need to cascade the transmitting filter,

channel, matched filter and sampler combination with, to receive the equivalent discrete-

time white noise filter model, i.e. the L root polynomial F(z).

Figure 2.6: Equivalent discrete-time white noise system model

From here on,the Viterbi algorithm can be used to determine the most probable path

through the ML-state trellis, as usual. However, the computational complexity grows

30

exponentially with the length of the channel time dispersion (ML+1 metrics have to be

computed for each new symbol) and in most channels of practical interest the complexity

is too expensive to implement. Instead, suboptimum methods are usually employed, such

as the linear transversal filters that we’ll describe next. These structures have a

computational complexity that is only a linear function of L.

__

1 Linear Equalizers:

Linear equalizers are linear transversal filters with adjustable coefficients cn. The law of

electing the most appropriate tap coefficients is of course determined by the chosen

performance criterion. And even though the probability of error is the most meaningful

measure of performance, the corresponding function is highly nonlinear. Other criterions

are usually employed in its stead.

a. Peak Distortion Criterion is simply defined as the minimization of the worst–case

inter-symbol interference at the output of the equalizer .

We observe that the cascade of the linear F(z) and the equalizer having an

impulse response {cn} is qn = ∑cjfn−j = cn ∗ fn. Its output, if for convenience we

normalize q0 to unity (after all its nothing more than a universal constant gain

factor), will be ak̂ = ak + ∑ anqk−n + ∑cjηk−j
′
n (2.19)

The peak distortion metric is defined as 𝐷(𝐜) = ∑ |qn|
′
n and with an equalizer

having an infinite number of tap weights it can be minimized to zero. That is,

qn = ∑cjfn−j = {
1 𝑛 = 0
0 𝑛 ≠ 0

 (2.20)

can be uniquely solved through the z-transform 𝑄(z) = C(z)F(z) = 1 or C(z) =

1
F(z)⁄ . This is called a zero-forcing filter. An expected, since the cascade of the

whitening and equalizer filters gives us C′(z) =
1

F(z)F∗(z−1)
=

1

X(z)
 (the filter ’s tap

coefficients can be calculated from the inverse z-transform by complex integration),

and pretty much indifferent result except for its usefulness in calculating the signal

to noise ratio.

For a finite-length equalizer, with 2K+1 taps, the peak distortion has been shown

to be a convex function of c and its minimization can be carried out numerically.

However, when the inter-symbol interference is not severe enough to close the eye

the peak distortion is minimized by the zero-forcing solution in the range 1 ≤ |n| ≤

K.

Before we carry on with our analysis we should note that the channel characteristics are

generally unknown before the design process begins and a common practice is to design

the transmitting and receiving filters to follow |GT(f)||GR(f)| = |Xrc(f)|. This allows for the

simplification of the system to the discrete-time channel only filter which describes the

ISI suffered due to the channel distortion, which in turn is the only source of ISI in this

31

design. This leads to suboptimal but also more elementary results. For the zero-forcing

equalizer, if x(t) is the channel distorted pulse q(mT) = ∑ cnx(mT − nτ)
K
−K and 𝐜𝐨𝐩𝐭 =

𝐗−𝟏𝐪.

b. Mean Square Error Criterion A serious drawback of the zero-forcing equalizer is

that it completely ignores the presence of additive noise and this might result in

significant noise enhancement if the system presents a serious dip within some

frequency range as it will try to compensate for it in order to level the frequency

response.

If we relax the zero-ISI condition, a filter can be designed around the

minimization of the combined ISI and noise power at the output of the equalizer.

This will result in the MSE = E[ak̂ − ak]
2 cost function. The minimization is

obviously achieved when the error is orthogonal to the signal sequence.

Equivalently ∑cjE(uk−juk−l
∗) = E(akuk−l

∗) (2.21)

where un the output of the whitening filter. For the infinite tap case and iid data

sequence {an} this will yield

C(z) =
F∗(z−1)

F(z)F∗(z−1) + No
 or C′(z) =

1

F(z)F∗(z−1) + No
=

1

X(z) + No

But once more, beside the approximation of the SNR (here of the residual ISI plus

noise energy as well), the finite tap solution is the one that interests us the most. For

this case 𝐜𝐨𝐩𝐭 = 𝚪−𝟏𝛏 where Γlj = RU[l − j] = for iid {
xl−j + N0δij , |l − j| ≤ L

0 , otherwise
 and

ξl = RAU[l] = for iid {
f−l
∗ , −L ≤ l ≤ 0

0 , otherwise
. Also J(K) = 1 − 𝛏𝐓∗𝚪−𝟏𝛏 (2.22)

We will once again note that if we had used the discrete time channel filter instead, the

result would plainly be ∑ cnRY[n − k] =
K
−K RAY[k]. We will also note that in practice the

statistics are unknown but the correlation functions can be adequately estimated by

transmitting and measuring a test signal.

RŶ[n] =
1

N
∑ y(kT − n𝜏)y(kT) and RAŶ[n] =

1

N
∑ y(kT − nτ)ak

N

1

N

1
 (2.23)

Lastly the iid hypothesis is unnecessarily restrictive. An uncorrelated symbol sequence

would be just as good. But more importantly, if the unrealistic expectation of uncorrelated

symbols were to strike the reader as a rather odd choice, we would have to remind them

that that theoretical design concerns the equalization of a known channel and that the

statistics of the signal should, ideally, be irrelevant to the design of a flat spectrum for the

system at that point.

32

__

Symbol and Fractionally-spaced Equalizers

The keen reader might have noticed that on occasion we have selectively used a different

sampling period τthan the symbol period T. When the channel characteristics are known

and the receiver can be matched to the cascade of the transmitter and channel filter, the

signaling frequency is the optimal tap spacing. However, in the suboptimal case where the

receiver is only matched to the transmitter, the channel distorted signal is still aliased by

the sub Nyquist symbol rate used for the transmitter-receiver zero ISI signal design. If the

input to the equalizer is sampled on kT+τ0 its spectrum would be YT(f) =
1

T
∑X(f −

n

T
)ej2π(f−

n
T⁄)τ0 and the equalizer would compensate for the frequency

characteristics of the aliased signal and not directly for the channel distortion

characteristics inherent in X(f)ej2πfτ0.

On the other hand a fractionally spaced equalizer, i.e. an equalizer sampling at a fraction

of the symbol period
1

τ
= 2Fmax =

1+β

T
, at least as fast as the Nyquist rate, will prevent the

folding of the spectrum and the equalizer will compensate for channel distortion before the

aliasing effects.

__

Figure 2.7: Dicrete-time channel models A,B,C and their amplitude spectra

33

2 Decision Feedback Equalizers:

As we have already mentioned, the main reason linear equalizers are suboptimal

compared to the trellis search is that they ignore the inherent memory in the data sequence.

Decision feedback equalizers try to mend that by enlisting the last few detected symbols to

try and remove their ISI from the signal. Their structure involves passing the sampled

signal through a feed forward filter, which is a simple linear equalizer, and subtracting a

normalized sum of the last K2 detected symbols from its output before attempting to detect

the next symbol.

Figure 2.8: Decision Feedback Equalizer block diagram

34

ak̂ =∑ cjuk−j +∑ cjak−j̃
𝐾2

0

0

−𝐾1

 (2.24)

Both the peak distortion and the MSE criterion lead to mathematically tractable

solutions for the tap coefficients. But the MSE is more prevalent in practice for the

aforementioned reasons. Based on the assumption that the previously detected symbols are

correct, it yields the same solution for the feed forward filter and, at least for uncorrelated

sequences, the feedback filter coefficients are given in terms of the coefficients of the feed

forward section by ck = −∑ cjfk−j
0
−K1

, k = 1,2,… , K2.

Decision feedback equalizers severely outperform linear equalizers, and are really the

only option, for channels that present a big dip, or even a spectral null, within their

bandwidth. This will manifest in the time domain as severe, not necessarily spanning many

symbols, ISI. Figure 2.9 through 2.11 will compare the performance of a linear MSE and

a decision feedback equalizer of similar complexity on channels B,C, which can be seen in

figure 2.7. And will also quantify the DFE’s slightly suboptimal performance compared to

the ML sequence estimator’s performance. The linear equalizer will be shown to be

adequate for channel A.

3 Adaptive equalizers:

When the channel is time-varying we have no choice but use equalizers with on-line

adaptable tap coefficients .Even when dealing with time invariant channels, matrix

inversion operations are avoided and recursive algorithms, such as the method of the

steepest decent, are used to train the tap coefficients. Therefore the first step in the training

of the adaptive equalizer will be shared by all of the aforementioned filters, too.

Adaptive models for both the peak distortion and MSE criterion are available.

35

Figure 2.9: Error rate performance of linear 31 tap MSE

equalizer
Figure 2.10: Error rate performance of DFE with K1=15,

K2 =15 taps

Figure 2.11: Performance comparison between MLSE simulation and DFE, both for the correct and estimated symbols

feedback

36

a. Zero-forcing Algorithm The idea is, whenever the ISI is not too severe, to

zero-force the cross-correlation between the error sequence and the data sequence.

E(εkak−j
∗) = 0 , εk = ak − ak̂. If the symbols are uncorrelated and uncorrelated with

the additive noise sequence E(εkak−j
∗) = δj0 − qj , j = −K,… , K -equivalent to the

known criterion for peak distortion minimization. The first step would be to train

the network using a predetermined sequence and the simple recursive algorithm

cj
(k+1)

= cj
(k)
+ Δεkak−j

∗ (2.25) where Δ a scale factor that controls the rate of

adjustment and εkak−j
∗ a stand-in estimate for the unknown cross-correlation.

Once the training period has ended the decisions 𝑎𝑘̃ (the output of the detector,

not to be confused with the estimates who are the output of the equalizer) are

sufficiently reliable and will be used instead of the predetermined input sequence.

This is called the decision-directed mode of adaptation .

For a high enough ISI the zero forcing condition is no longer the solution and a

universal optimization technique will be required. At which point we might as well

make use of the superior and mathematically elegant MSE criterion .

b. The LMS Algorithm is the online or recursive version of the MSE

algorithm, which is a batch processing method that requires matrix inversions. The

method of steepest decent will be used instead to reach the minimum of the

quadratic, therefore convex, cost function J.

The method of steepest decent changes the point ck in the direction opposite to

the direction of maximum increase of the cost function at that point, i.e. the gradient

𝐠𝐤 =
1

2

∂J

∂𝐜𝐤
. For the MSE the gradient is of course 𝐠𝐤 = −E[εk𝐔𝐤

∗] and will, once

more, be approximated by 𝐠𝐤̂ = −εk𝐔𝐤
∗ . Therefore 𝐜𝐤+𝟏 = 𝐜𝐤 + 𝛥εk𝐔𝐤

∗ . After the

training period the decided symbols will be trusted to estimate the error εk̃ = ak̃ −

ak̂ .

Several other variations of the LMS are obtained by different gradient estimates.

Popular choices are the average of the last N, −εk𝐔𝐤
∗vectors, 𝐠𝐤̂̅̅ ̅ and a weighted

average 𝐠𝐤̂̅̅ ̅ = w𝐠𝐤−𝟏̂̅̅ ̅̅ ̅̅ + (1 − w)𝐠𝐤̂, that will act as a lowpass filter for the noisy

gradient.

c. Decision-Feedback Equalizer The steepest decent algorithm will be

applied unchanged 𝐜𝐤+𝟏 = 𝐜𝐤 + ΔE[εk𝐔𝐤
∗], however, in accordance with the

assumption that the previously detected symbols are correct, the latter half of 𝐔𝐤
∗

will be composed of the relevant training sequence or detected symbols, for the

training and decision- directed mode respectively.

Many more adaptive filter algorithms are applicable to the problem of channel

equalization which, in essence, isn’t any different from the problems pertaining to

37

other disciplines that develop implementations for, or employ the services of,

recursive algorithms such as the discipline of pattern recognition, neural networks and

learning machines.

2.5 Summary

Since the subject of this thesis will revolve around DFE's this chapter serves a detailed

introduction to the theory of equalizers in general. Specifically, we have presented the

reasons and situations that make the need for channel equalization imperative. We have

discussed popular methodologies for linear and linear adaptive equalizers. And we have

also explained the need for decision feedback equalizers (and their adaptive counterparts),

by comparing their performance with that of linear equalizers of the same size for various

channels (most importantly for channels with a spectral null). For a deeper exposition, [1]

and [2] by Proakis and Salehi are an indispensable read for anyone with an interest in

communications.

38

Fast Adder and Multiplexer Implementations 3

Speed and Area Estimates

Digital filters are composed of adders, multipliers and delay elements (flip-flops). In

the next part of the thesis, we will transform multipliers or even a whole part of the

transverse filter into a composite multiplexer. Hence, any exposition on multiplier design

can be avoided, while speed and area estimations of adder and multiplexer designs will be

instrumental to our reformulation strategies. In this chapter we will aim to produce the

necessary speed and area estimates for our application.

3.1 Fast Adder Implementations

3.1.1 Ripple Carry Adder

The throughput speed-up of adder units covers an extremely diverse array of topics.

From the low-level redesign of full adder cells to carry prediction schemas.

The HA equations every engineer should be familiar with are

 s = a⊕ b and c = ab (3.1)

Two such HA cells are needed for the full a,b,cin addition. The simplest adder design,

the ripple-carry adder, is simply a cascade of FA cells which means that the delay is

bounded by the carry propagating through the whole chain. Even for such a simple design,

the FA cell equations can be reformulated in a way that logic is shared by sum and carry,

the schematic slightly rerouted from the complementary p,n-mos network design and the

layout optimized, for a faster path from input to carry. As an added bonus, the inverter that

follows the output of every cmos function design can be removed if we notice that

complementary inputs produce complementary outputs. Hence, inversions can be shifted

away from the critical path as can be seen in figure 3.1.

39

Figure 3.1: Ripple carry adder with the inverters shifted away from the critical path

Technologies faster than cmos can also be implemented for the physical standard-cell

library. But in the end, long ripple carry chains, cannot be fast enough to rival the higher

level designs that use the same technology for their constituents. The development of a

common descriptive language would benefit the quantification of such comparisons.

Generate, Propagate Equations and Canonical Design

In order to develop a common platform that will allow us to evaluate the performance

of every adder design, the generate and propagate equations will be introduced.

Gi:j = Gi:k + Pi:kGk−1:j (3.2)

Pi:j = Pi:kPk−1:j (3.3)

where Gi:i = Gi = AiBi and Pi:i = Pi = Ai⊕Bi the base case

sand the specially treated G0:0 = Cin, P0:0 = 0.

These simply tell us that a carry generated from j-to-i must have either been generated from

j-to-(k-1) and then propagated to-i or generated from k-to-i and that propagation from j-to-

i is simply the cascade of propagation from j-to the intermediate-(k-1) bit plus propagation

from k-to-i. As a final note these equations define a valency-2 group PG logic. Higher

valency groups can be introduced by replacing Gk−1:j,Pk−1:jwith their respective equations

etc., for fewer levels but slower more complex gates.

Every design can thus be divided into three parts, the bitwise PG Logic where the base

signals are generated, the Carry Generator where the Gi:0 = Ci are computed and finally

the Sum Logic.

40

Figure 3.2: Canonical Design division

For a ripple carry adder, the carry generator will simply be the chain of the figure

below,

Figure 3.3: Ripple carry generator

which will yield tripple = tpg + (W− 1)tAO + txor (3.4)

All of the subsequent design attempts will focus around either breaking up the chain or

trading area for levels of the carry generator, by computing intermediate generate and

propagate signals.

For simplicity's sake, since more complex gates will not be attempted, we will obscure

low level gates in our schematics by introducing black and grey cells representing the

group PG gates (figure 3.4).

Figure 3.4: Group PG cells

41

Figure 3.5: Carry-ripple adder group PG network

The only exception to that rule will be a Manchester carry-chain of short length where

a faster domino gate can be utilized to compute the carries with great speed.

Figure 3.6: Manchester carry-chain and its schematic representation

3.1.2 Carry Skip Adder and Linear Carry Look-Ahead Adder

An elementary, and historically first, attempt to statistically shorten the delay, calls for

breaking the word into shorter parts and using a carry propagation predictor, which is

simply the and gate of all the Pi, to, sometimes, propagate the input rather than the output

carry of the previous stage. This design is called a carry-skip adder and was proposed by

Charles Babbage himself. A Manchester chain can improve upon the objective speed of

this scheme.

42

Figure 3.7:Propagation predictor with Manchester chain generator

In the same vein a linear carry look-ahead adder utilizes a short and fast PG predictor

similar to the Manchester chain by breaking up the word in k groups of n bits each.

Figure 3.8: Linear carry look-ahead adder

This will yield a delay of tcla = tpg + tpg(n) + [(n − 1) + (k − 1)]tAO + txor (3.5)

Of course, this is statistically slower than the carry skip adder of a similar design.

The problem with the aforementioned designs is however, that non cmos logic is being

utilized and a HDL cannot account for that unless custom cell libraries are created and the

components recognized as such by the optimizer.

3.1.3 Carry Select Adder

Alternatively each stage, apart from the first one, can be calculated for both a zero and

unit carry in and the result passed to the output when the last stage’s carry out is ready.

This is known a linear carry-select or carry-increment (if the common logic is factored

out and the output multiplexer is simplified to a grey cell) adder. Its delay can be viewed

either as

tselect = tpg + [n + (k − 2)]tAO + tmux or

tincrement = tpg + [(n − 1) + (k − 1)]tAO + txor (3.6)

43

(a future note will also prove that 2-to-1 and xor delays can be used interchangeably). Or

even as tincrement = tpg + tpg(n) + [(k − 1)]tAO + txor if a faster than ripple-carry n-group

PG logic is used (not necessarily of the variety introduced above as will be explained

shortly).

3.1.4 Square-root Carry Select Adder

We will now notice that the carry chains for the more significant bits complete early.

Therefore it would pay–off if instead of the linear designs we utilized short chains of

variable group size so that the path of the carry through the previous stages and the

computation of that group would be closer together. A notable choice would be for each

group to include one bit more than the previous one. Then if the first group is of M bit and

for a total of k groups, W = M+ (M+ 1) + (M + 2) +⋯+ (M + k − 1) = Mk +
k(k−1)

2
=

k2
2⁄ + k(M − 1 2⁄) or if M ≪ W , k ≈ √2W. Therefore,

 tsqrt ≈ tpg + tpg(M) + √2WtAO + txor (3.7)

whence the name square-root carry-select adder.

Figure 3.9: Square-root carry-select adder

In all of the above, the delay equations do not account for the fan-out that each stage

must drive. Especially in the latter stages of the variable-group length adders the fan-out

becomes large enough for buffering to be a requirement. Also when the subgroup adders

become wide enough we can recursively apply the designs in the latter stages. By taking

this to the limit, we obtain the conditional-sum adder that performs carry select starting

with groups of 1 bit and recursively doubling to W/2 bits.

44

Figure 3.10: Conditional-sum adder

Factoring out the common logic and using AO gates interchangeably (as will be shortly

shown) with 2-to-1 multiplexers results in the Sklansky parallel prefix adder that will be

discussed shortly.

3.1.5 Parallel Prefix Adders

The last but not least category of wide adders to be discussed is that of tree,

logarithmic, parallel-prefix or multilevel look-ahead adders. The characterization will

become apparent in just a moment.

For wide adders, the delay is dominated by the delay of passing the carry through the

look-ahead stages. This can be reduced by looking ahead across the look-ahead blocks or

as we’ve previously stated trade area for computational levels of the carry generator, by

computing intermediate generate and propagate signals. And for wide enough adders even

the O(√W) delay of the square-root carry-select adder cannot match the O(log2W) of this

family.

The many look-ahead trees present different tradeoffs amongst them with the Brent-

Kung tree having a constant fan-out of 2 at each stage and minimal wiring but requiring

2log2W -1 stages,

45

Figure 3.11: Brent-Kung tree

the Sklansky tree with a delay of only log2W stages, but plagued by doubling fan-outs

at each level, hence requiring either transistor sizing that will cut into the regularity of the

layout or sufficient buffering of the critical signals,

Figure 3.12: Sklansky tree

and the Kogge-Stone tree with only log2W stages as well as a constant fan-out of 2, but a

lot of long wiring. Also, in the order presented, the cell count is increased dramatically,

thereby increasing the cost both in area and power consumption.

Figure 3.13: Kogge-Stone tree

All three trees represent deviations from the ideal of log2W delay, constant fan-out of 2

and a single wiring track between each row in one respect. Between these extremes

different compromises exist such as the Han-Carlson, Knowles and Ladner-Fisher trees.

Higher valency tree adders can also be constructed utilizing for instance Manchester carry

chains. These may have fewer stages but each stage is slower.

46

3.1.6 Hybrid Adders

Finally, as have hinted before hybrid tree/select adders can be constructed by using

the tree to compute the carry into each stage, such as the spanning tree adder where the

last level of the valency 3 Brent-Kung tree is saved by the carry select adder, or even utilize

such a tree for each stage if the stages are long enough to warrant the hardware overhead.

The group length should be balanced such that the carry-in and the pre-computed sums

become available at the same time. This structure can be used for instance to battle the

large fan-out of the Sklansky tree with the sparse-tree adder computing the carry-in of

only every fourth bit.

Figure 3.14: Sparse-tree adder

Emphasis should be given to the ease with which the tree adder can be pipelined for a

larger throughput rate. Something that might be of use when we discuss retiming at the end

of this part.

Multiplexer based adders. Mux AO and XOR.

If we were to notice that propagation and generation signals cannot both be true at once,

the generation equation could be rewritten as Gi:j = Pi:k̅̅ ̅̅ Gi:k + Pi:kGk−1:j. Clearly a 2-to-1

multiplexer unit. In the same vein a xor gate can be reworked into a multiplexer unit. The

practical use of all that is of course provisional on a mux implementation, faster than the

and-or or xor cmos implementations, respectively. A multiplexer based tree adder can then

achieve a delay of (log2W+ 2)Tmux (3.8) and just about half that with a singular pipelining

element.

3.1.7 Carry Save Adder and Multiple Operand Addition

When three operands need to be added, an alternative strategy to cascading two adders

can be employed. Noting that a disjoint FA can add 3 bits, if we provide as inputs bits of

the same weight and save both carry and sum (CSA), we then need only add the two words

47

(obviously the carry word needs to be shifted left by one space) with a singular adder to

produce the same outcome. If we approximate the delay of the FA with the two cascading

xor gates of the sum the delay could be about as low as

 (log2W+ 2 + 2)Tmux (3.9)

,as we have already mentioned.

Figure 3.15: Carry save adder

3.2 Fast Multiplexer Implementations

To begin with, we cannot stress enough that for a relatively small fan-in, cmos

components should not be composed of their logic constituents but should be developed as

composite cmos gates. For instance if the 2-to-1 multiplexer were constructed as a 2 level

and-or gate, the capacitive load for the previous stage would have been about 2/3 that of

the static cmos mux, but the propagation delay of each stage, let alone the inverter that

follows positive logic cmos gates, would vastly overshadow that small advantage.

Even faster multiplexers can, probably, be designed by transmission gate logic, tri-state

gates and, as expected, inverted cmos multiplexers have close to half the delay of non-

inverted ones, just by removing the cascading inverter. For the recursive design at hand,

where the output is eventually fed back to the selector, we only need to change the

enumeration of the inputs to its 1’s complement for the multiplexer to make the correct

selection. Unless it passes through an even number of inverted mux stages, in which case

the output is the intended one.

Figure 3.16: In order, static cmos, transmission gate and tri-state multiplexers

48

Yet, eventually, both the effort and parasitic delay of a large composite gate become

large enough to make the multiple stages design a more appealing solution. In more detail,

the linear delay model used for first order calculations defines the propagation delay of the

gate as d=f+p, where f the effort or stage delay, that is the delay emerging from driving h

identical gates or having fan-out h- f=gh, where g the logical effort representing the gate

capacitance -, and p the parasitic delay emerging from the gate driving its internal

capacitances. The delay is given in units of an inverter’s, which can deliver the same output

current, delay. And that of course means that the transistors should be sized accordingly

and that the logical effort and parasitic delay represent the gate capacitance and the inherent

gate load, respectively, in units of the inverter’s gate (or load) capacitance.

It’s worth noting that the over-encumbrance sometimes comes from the increased

logical effort while others from the parasitic delay, or even both. For example the tri-state

multiplexer has a constant logical effort of 2 while the parasitic delay grows linearly, as

2n, with the fan-in. On the other hand the cmos inverted mux’s logical effort grows as

(log2n+1) and the parasitic delay even worse, as n(log2n+1).Therefore, the optimal number

of inputs and stages is highly dependable on the design. For our purposes all multiplexers

will be designed as a tree structure of 2-to-1 multiplexers. This will make depth and area

calculations trivial and will also define a common unit time for the adders’ delay. Besides,

this is the logical choice for cmos multiplexers and for fan-out larger than one.

Figure 3.17: Delay estimation/ fan-in of 4-to-1 cmos multiplexer and 4-to-1 tree of 2-to-1

cmos multiplexers

An M-to-1 multiplexer tree, where M=2k, composed of 2-to-1 multiplexer units would

have one such unit in the final level, two in the one before and 4 in the one before that …up

to 2k-1 in the first level, since pairs are grouped together. Hence, the depth of the unit would

0

5

10

15

20

25

30

0 1 2 3 4 5

d
e

la
y

e
st

im
at

io
n

fan-in

4-to-1

2-to-1 tree

49

be log2M levels and the sum of the geometric series will yield (M-1) 2-to-1 multiplexer

units. An ML-to-1 multiplexer unit can now be seen either as L levels of M-to-1 units and

summed in a similar manner, or we could directly apply the formulas we have just

developed to yield a depth of Llog2M and a total of (ML-1)2-to-1 multiplexer units. Here,

depth is equated to delay, since we decided to universally measure delay in units of 2-to-1

mux delay, Tmux.

3.3 Summary

In this chapter we talked about the pros and cons of various adder units, from the simple

RCA to logarithmic adders, and we calculated their delay. We have also provided a similar

exposition of multiplexer units and sufficient justification for the choice of a tree

architecture. This has also allowed us to develop an area estimate as well as provide a

universal time unit that will allow us to write all delay estimates, for both adder and

multiplexer units, in a normalized form. The reader can review the basics of the

methodology used in 3.2 as well as a more detailed account of adders in [3] by Weste and

Harris. Some complementary notes can also be found in [4] by Rabaey et al.

50

51

Iteration Bound 4

DFGs, Iteration Period, Unfolding and Retiming

While for most circuitry the critical path is easy to determine, for a recursive

algorithm, i.e. a block diagram with loops, the generalization of these techniques is not

straightforward. Different well known techniques such as pipelining and parallel

processing can be applied in order to improve upon the critical delay for a block diagram

represented as a feed forward graph.

Furthermore, before we can commit to a particular realization of said algorithm and try

to optimize it, we need to know its limits. And of course, be able to tell of its superiority

amongst all other implementation or the trade-offs that make it an appealing solution. In

this chapter we shall provide the minimum necessary training that will, in combination

with chapter 3, answer questions of this sort for our application.

4.1 Data Flow Graphs

The data flow graph, or DFG for short, of a circuit is a directed graph whose nodes

represent the various subunits (computations or functions) and the edges represent the

intended flow of the signals. With each node we associate a normalized computation time

and with each edge a non-negative number of delay elements. The DFG doesn't aim to

capture the hardware architecture but rather the data flow among the various subtasks.

Each node fires when all the input data needed are available, therefore, only after its

precedent nodes have produced an output. Hence, the edges describe a precedence

constraint, which we shall call an intra-iteration precedence constraint whenever the edge

has zero delays and inter-iteration precedence constraint otherwise. Of course many nodes

can fire simultaneously and this concurrency is something that we may want to exploit.

Figure 4.1: (a) Block diagram and (b) its respective DFG

Various DFGs describing one algorithm can be derived from one another through high

level transformations.

52

4.2 Iteration Period Bound

The feedback loops in recursive algorithms impose an inherent bound on the achievable

iteration period. This is referred to as the iteration period bound, or even iteration bound

for short, and it is linked to that particular representation of the algorithm. That is, it is the

best case scenario for the sample period, considering any and all transformations of that

DFG (unfolding, retiming) without that untransformed DFG necessarily reaching it.

The IPB (iteration period bound) can be formally defined as the iteration bound of the

critical loop of the DFG. The time needed to execute a loop is determined by the precedence

constraints. That is to say, the precedence constraints tell us how many samples-not input

samples but time delayed signals and specifically how many different time instances -are

present in the loop at any given time and the nodes tell us the computation time of that

loop. The loop can be transformed so that the sample period will be Ti/Di ,where Ti the

loop computation time and Di the number of delays in the loop. This is known as the loop

bound and the critical loop is the one with the largest bound. Therefore, the iteration period

bound is T∞ = maxALL Loops{
Ti

Di
}. For large systems the longest path matrix algorithm or

the minimum cycle mean algorithm can be used to compute the IPB.

4.3 Pipelining and Cut Set Retiming

The idea behind the retime approach is to move some delay elements to other edges of

the data flow graph so that the transfer function is preserved. This could, like all akin

approaches, accommodate faster clock speeds, reduced number of registers, reduced power

consumption through the effect of switching frequencies on it or even logic synthesis. A

formal algorithmic approach to retiming can be devised, however the version that lends

itself the most to back of the envelope calculations is that of cut set retiming. This is a

generalization of pipelining.

The pipelining transform adds a register on each edge of some cut set of a feed forward

DFG (or a feed forward cut set, for more generality). This shortens the path between the

neighboring registers and can therefore be used to shorten the critical path. Of course for

each level of pipelining the latency, i.e. the time from input sample to the respective output,

is increased by one. Pipelining can also be used to "cut across" units that are fired

concurrently, assuming their architecture can be conveniently split in two time dependent

parts and they belong to a common feed forward cut set. This is referred to as fine grain

pipelining.

53

Figure 4.2: Fine grain pipelining where the multipliers where conveniently split in two subunits

For the cut set retime approach the steps to follow after producing a cut set is to simply

remove a set number of delay elements from all the edges that belong to the cut set and

flow into the one half of the graph and add the same number of delay element to the ones

that flow into the other half.

Figure 4.3: An application of cut set retiming

4.4 Unfolding

The unfolding transformation is the equivalent of parallel processing for recursive filters

and as such is used for high-speed and low-power VLSI architectures. To apply the

unfolding transformation we need only write the filter equations for J consecutive

samples/iterations, for unfolding factor J, and factor the terms in the abscissas so that they

correspond to output signals or retarded versions of them. Each delay element is now

obviously J-slow. As is also the case for parallel processing, since in both cases they get a

"fresh" sample every Jth sample period.

Example:

y[n]=ay[n-9]+x[n] (4.1)

will be rewritten as y[2k]=ay[2k-9]+x[2k] and y[2k+1]=ay[2k-8]+x[2k+1] (4.2)

54

for 2 unfolding factor, and they, in turn, will be factored as

y[2k]=ay[2(k-5)+1]+x[2k] and y[2k+1]=ay[2(k-4)]+x[2k+1] (4.3)

The DFG transformation can be seen figure 4.4 below.

Figure 4.4: The 2-Unfolding of the DFG in (a) into (b)

The aforementioned method of tackling the problem will suffice for our needs, however,

it is often tedious and automated algorithmic techniques have been developed. Of the

formal theory, pertaining to sample period reduction, we could make use of theorems and

corollaries referring to path transformations. From them we can infer that the original DFG

can be retimed in a way such that the J-unfolded version of the retimed DFG will meet a

specified achievable critical path bound. Or for low complexity circuitry we could retime

the J-unfolded DFG of the original architecture to fit our needs. In general the following

lemma can be derived.

Lemma: Any feasible clock cycle period that can be obtained by retiming the J-

unfolded DFG, can be achieved by retiming the original DFG directly and then unfolding

by unfolding factor J.

But before all that, the most important thing to understand is, when is unfolding

necessary. In a lot of cases, as we have already mentioned, a DSP program cannot reach its

iteration bound, even with retiming. The case might well be that the computation time of a

node of the DFG exceeds the iteration bound. Therefore, the critical path cannot be retimed

any shorter than that node. In that case ⌈
tnode

T∞
⌉unfolding factor should be used. It might also

happen that the iteration bound is not an integer. The denominator of its irreducible form

could then be used as the unfolding factor. If we encounter both at the same time then the

55

minimum value of J is that for which JT∞ is an integer, greater or equal to the longest

computation node. Creating a perfect rate DFG, i.e. a DFG with 1 delay in each loop will

also achieve the iteration bound, but the unfolding factor required will usually be much

larger than that computed by the previous rules.

The combination of unfolding and retiming is an advanced theoretical topic, usually

excluded from most text books. By retiming the DFG, an acceptable performance can be

achieved for much smaller unfolding factors and by following somewhat more advanced

theoretical results, the critical path can be predicted and minimized before the unfolding

transformation. This and the computation of the smaller unfolding factor required are

beyond the scope of this thesis and a subject unto their own.

4.5 Summary

In this chapter we set the theoretical foundations for the transformations that we will

apply on our circuit in the next part. We introduced the retime and unfolding

transformations and we also tried to justify our expectations of their performance, by ways

of the iteration period bound and by setting the rules by which an acceptable unfolding

factor, that can achieve the iteration bound, can be derived. We purposely avoided referring

to single and multiple rate DFGs as the concept of single rate DFG is the more intuitive of

the two, and it is the only one we will have need of. For the interested reader [5] by Parhi

can serve as a great introduction to the subject matter.

56

57

__

PART II:
IMPLEMENTATION AND ANALYSIS

__

58

59

FBF Transformations 5

Low Cost Techniques for High-Speed Implementation

of Decision Feedback Equalizers

In modern digital communication systems, throughput rates in the order of gigabits per

second are not uncommon. Hence, the need for faster implementations of equalizing filters.

A well-known fact is that the feedback loop limits the achievable speed bound for decision

feedback equalizers, since the feed-forward part can always be pipelined. And in sight of

that particular problem the subject of this thesis will revolve around the reformulation of

said FBF for increased clock and throughput rates. The complexity overhead of the

implementation will also be a major concern.

5.1 Faster Adders and Multiplier Transformation

From the start we shouldn’t fail to notice that the critical path of the FBF is composed

of one multiplier, one slicer and two adders, as noted in bold line in the diagram below.

Figure 5.1: FBF's critical path

60

The critical path delay is also the iteration bound for this design. For recursive filters in

general, a retime approach could shorten the critical path, but it wouldn’t shorten the

iteration bound. Also, more often than not, it cannot even achieve the iteration bound. An

unfolding approach, as we’ll discuss later, possibly in combination with retiming, could

achieve the iteration bound, yet it too wouldn’t improve upon it. As a result, the FBF has

to be reworked into a new design with faster iteration bound before we attempt to reach it.

The first thing to notice is that even though the multiplier can easily be reworked, for

an M-PAM system, as an M-to-1 multiplexer (b0aj,b1aj,…,bM-1aj) the problem of designing

faster adder units remains. By introducing tree adders (see 3.1.5) the iteration bound even

if we were to replace the multipliers with multiplexers would still be T∞ =

(log2W+ 4) + log2M u. t. (see 3.2), where u.t the 2 to 1 mux delay. And even though a better

unit design has significantly reduced the critical path and iteration bound, the results are

still lackluster.

5.2 Complete circuit overhaul

In this chapter we will redesign the filter in order to replace the multipliers with

multiplexers. By observing the diagram we can derive the following equation:

 ŷ[n] = y[n] − ∑ a1ỹ[n − k]
L
1 (5.1)

can be reformulated as ML-to-1 multiplexer with the output selected from all of the

possible sums

bM-1a1+bM-1a2+…+bM-1aL

bM-1a1+bM-1a2+…+bM-2aL

…

bM-1a1+bM-1a2+…+b0aL (5.2)

...

b0a1+bM-1a2+…+bM-1aL

…

b0a1+b0a2+…+b0aL

where bj the j-th M-PAM amplitude, with select vector [ỹ[n − k]]1xL, plus an adder. Or

even ML adders, if we move them away from the critical path, each one preceding an input

to the multiplexer.

The authors of [6] have claimed that according to [7],[8] it could also be reformulated

as an(log2M)
L to 1 multiplexer, however, closer examination of the source material has

deemed such claims to be untrue. The authors of [7],[8] have only formulated the

transformation that we have devised.

61

Figure 5.2: FBF transformation to a single multiplexer

As an added bonus ,we could probably, if we were willing to use 1’s complement

encoding, halve the size of the multiplexer since the amplitudes are symmetrically placed

on either side of zero, hence the multitude of sums is actually half that plus their

complements. It would, therefore, be much beneficial if only ML/2 sums and their bitwise

complements were passed through the multiplexer.

Figure 5.3: The tree structure of the ML-to-1 multiplexer. M multiplexers are the input to one

multiplexer in the next stage

However, the best multiplexer designs are probably not fast enough to provide enough

margins for gigabit systems .A good case scenario for the iteration bound, since each of

the L stages of the multiplexer is of depth log2M, would be T∞ = log
2
M u. t. (see 3.2). We

can achieve this iteration bound by retiming the multiplexer as can be seen for the special

case of 2-Pam and L=2, below. That reformulation alone might provide enough margins in

D

D

ML to 1

62

some technologies however the overhead would be extremely large- ML overhead for the

adders alone- and as we have mentioned in the introduction, that will also be a concern of

ours in this thesis. Furthermore it certainly would not be nearly as fast, if the increase in

the delay caused by the (ML -1) fan-out of the output stage multiplexer and the wiring were

taken into account. And as we will see in the next chapter its performance will also be

limited by the transmission delay of the registers. Unfolding the circuit might let us

sufficiently relax clock period, but then the overhead would be J times that of the previous

transformation.

Figure 5.4:Retiming of the binary PAM 2-Tap FBF

By taking into consideration the exponential cost dependence on L an alternate design

strategy will be introduced, to, at first, improve upon the hardware overhead but as it turns

out, will also yield a low iteration bound.

Functional decomposition

Transformations of this short are a special case (or in this case a slight generalization)

of functional decomposition, which is derived from Shannon’s expansion theorem. The

theorem expresses the simple truth that a function with one or more variables with values

in a countable finite set can be partially pre-computed for all the possible values of said

variable and the true result can be decided when the variable’s true value is available. A

simple case for a Boolean type variable can be seen in the example below.

63

Figure 5.5: Application of Shannon's decomposition theorem for iteration bound lowering.

This technique is commonly used in order to improve upon the iteration bound, just as

the example above or indeed our case. And will be reused time and time again in our thesis.

5.3 Partial Pre-Computation

The first step will be to only partially employ the pre-computation of all the possible

sums strategy. A 2-term pre-computation for 2-Pam can be seen in figure 5.5. The critical

path of this design is about (log2W+ 4) + Nlog2M u.t. (see Chapter 3), where N the number

of pre-computation terms. The computation of the iteration bound seems a little more

involved at first and very much dependent not only on the number of taps L and the number

of pre-computation terms N but also on the word length and the multitude of the encoding

levels. However, after some careful algebraic manipulation we can say that the iteration

will always be bounded by the inner loop to

 T∞ = log2M+
2

N+1
(log2W+ 3)u. t. (5.3)

The N delay elements in the feedback loop can be used to retime the design, breaking

up the critical path and for large enough N the performance will eventually be bounded by

the adders in the rest of the FBF. An expected application of the retime approach for the 2-

term pre-computation design would be to break the critical path within the adders and the

64

multiplexer. The retiming cut sets can be viewed in the following schematic, too. The

registers to be moved are crossed.

Figure 5.6: 2-term partial pre-computation and retiming

In general N, will now be the exponent in L’s stead when it comes to hardware overhead,

and a balance has to be struck between a smaller critical path and a large overhead. In the

next section it will become obvious that N should be about L/2.

5.4 Two-Stage Pre-Computation

Naturally the obvious next step would be to, separately, pre-compute the remaining

terms.

65

Figure 5.7: Two stage pre-computation of the FBF for binary PAM

Worthy of special note is the partition scheme. The different ways of partitioning the

tap coefficients between the two groups lead to different iteration bounds. According to [6]

the best grouping is to put the first terms in one group, and the rest in the other. This time

a simple overview of this grouping will yield an iteration bound of

T∞ = log2M+
1

I + 1
(log2W+ 4)u. t. (5.3)

Also the complexity of the proposed architecture presents only about half the exponent

of the original multiplexer design. Specifically, (MI -1) ,log2M width and (M (L-I) -1),W

width 2-to-1 multiplexers and MI adders (CSA parallel prefix adders but the hardware

overhead compared to the parallel-prefix adder on its own is insignificant) will be needed

for the two-stage design. Whereas (ML -1),log2M width 2-to-1 multiplexers and ML adders

would be needed for the original multiplexer design. The single multiplexer architecture

can use slower, much smaller, adders, however, the path between the feed forward filter of

the DFE and the FBF would become considerably slower. A cost function incorporating

delay and hardware overhead should be invented and minimized in order to determine the

best I per occasion. For our purpose I will be elected about L/2 in order to limit the

complexity of the multiplexers and definitely not larger than L/2 to limit the overhead in

66

adders while keeping the iteration bound fairly low, since the depth of the "feed forward"

multiplexer impacts the iteration bound, while that of the "feedback" multiplexer does not.

Finally the extremely large fan-out of the original multiplexer design has also degraded

exponentially, since the output of the "feedback" multiplexer is only carried to MI adders.

To achieve the iteration bound of the last design we will next need to unroll (and possibly

retime) the loop. The minimum unfolding factor is dependent both on the iteration bound

and the unit design. That is the number of taps, the word length, the number of PAM levels,

adder and multiplexer architecture etc. All of the above will be varied and experimented

upon in the next chapter. An effort will also be made to experimentally approximate the

iteration bound and to, if needed, retime the unfolded architecture in order to reach it.

5.5 Summary

In this chapter we reformulated the FBF in both a single and two stage pre-computation

architectures. The area and iteration bound of both designs were defined. And their area-

speed trade-offs were explained in detail. This has also led to a rule of thumb for the number

of tap coefficients included in each stage of the two stage pre-computation architecture.

However, all these are very ASIC centric and their validity for FPGA implementations will

be discussed in the next chapter.

67

FPGA Specific Implementations 6

Approximations, Estimations and IPB achieving

methodologies

A lot of the theoretical work that has been done thus far is inevitably tied to the

specific unit design. That by itself is not specific to either an ASIC or for instance an

FPGA specific design. It is not even specific to any VLSI technology. The fan-out and

the capacitance of the wiring has not been taken into consideration and neither has the

propagation delay of the registers themselves.

Yet, the optimal unfolding factor, for high speed and low area, is so intricately

dependent on all possible factors, and its fractional form, that even our best estimates

will be crude approximations which cannot possibly account for all real world

phenomena. The most we can hope for is a small dispersion among all of the

theoretical and experimentally approximated results, which will give us a small enough

span to implement and compare.

6.1 Theoretical Estimation of the Unfolding Factor J

As we’ve already mentioned the iteration bound is very much dependent on the number

of PAM levels, word length and the number of tap coefficients through the number of pre-

computed constants (keeping in mind the I = ⌊L 2⁄ ⌋ rule). Following the rules stated

towards the end of paragraph 4.2 the unfolding factor is also dependent on these, through

the form of the iteration bound and the delay of the adders (the slowest node, regardless of

the word length). The iteration bound we will tinker with is that of the last design T∞ =

log2M+
1

I+1
(log2W+ 4)u. t.

To simplify the design of the detector unit, a reasonable 2 level PAM will be used. With

1/-1 PAM levels it will be simplified to a sign check. This will also make its delay

68

insignificant, just the way it was treated during the derivation of the iteration bound. The

combined csa adder and data slicer unit will henceforth be noted as the vector merge unit.

 Moreover, we will only experiment with even tap number multitudes since the added

odd numbered coefficient, according to the I = ⌊L 2⁄ ⌋ rule, will be inserted through the

"feedback" multiplexer, whose delay contribution is expected to be a constant of log2M u.t.

The iteration bounds of the units to be composed are:

𝐓∞ 4 bit 8 bit 16 bit 32 bit 64 bit

6 tap 5/2 11/4 3 13/4 7/2

8 tap 11/5 12/5 13/5 14/5 3

10 tap 2 13/6 7/3 5/2 8/3

Slowest

Node
6 u.t 7 u.t 8 u.t 9 u.t 10 u.t

Table 6.1: Iteration bound for the ASIC Design

Hence, they should be unfolded according to:

J 4 bit 8 bit 16 bit 32 bit 64 bit

6 tap 4 4 3 4 4

8 tap 5 5 5 5 4

10 tap 3 6 6 4 6

Table 6.2: Appropriate Unfolding factor for the ASIC Design

6.2 Constituent Units for the FPGA Design

However, all of the preceding designs have been built around ASIC methodology. The

iteration bound is very much conditional on the use of fast parallel-prefix adders and the

linear growth of the multiplexer’s delay with I. Since Xilinx, which will translate the HDL

code to an FPGA design, will be used for measurements, it would be wise to check how

the proposed component architecture transfers over. The Virtex 5 family , XC5VLX20T

module, set to speed -2, was simulated for the area and delay estimates.

69

6.2.1 Adders for FPGA Designs

To begin with, five different adder architectures will be pitted against the mapping the

synthesizer produces for the HDL unsigned std_logic_vector addition. One bit’s sign

extension was used for the “integrated” design to account for the availability of cout. The

delay is the one that the synthesizer gives.

delay(ns) 4 bit 8 bit 16 bit 32 bit 64 bit 128 bit 256 bit

Ripple carry 4.972 6.136 8.464 13.120 22.431 41.053 78.298

Carry select-4 ** 6.104 8.526 13.372 23.062 42.444 81.207

Carry select-8 ** ** 7.525 9.983 14.899 24.732 44.398

Square root ** 6.550 8.166 11.236 15.940 23.217 **

Sklansky 4.972 6.136 8.061 11.332 16.001 19.897 23.719

integrated 4.616 4.460 4.642 5.006 5.734 7.190 10.102

area(LUTs) 4 bit 8 bit 16 bit 32 bit 64 bit 128 bit 256 bit

Ripple carry 7 13 25 49 97 193 385

Carry select-4 ** 16 32 64 128 256 512

Carry select-8 ** ** 38 76 152 304 608

Square root ** 13 32 70 150 313 **

Sklansky 7 13 28 70 176 416 908

integrated 6 9 17 33 65 129 257

Table 6.3: Delay and Area measurements of various Adder Implementations

Figure 6.1: Adder delay growth with word length: x-axis(bits) y-axis(ns)

0

10

20

30

40

50

60

70

80

90

4 8 16 32 64 128 256

RippleC

Cselect4

Cselect8

Sqrt

Sklansky

Integrated

70

The results seem pretty disheartening at first sight. However, a closer examination of

the logic delay alone will prove that these bard results are probably due to a routing

problem. The synthesizer seems to use application specific software cores to develop a

compact adder when one is clearly described as such, but has serious trouble routing the

added wiring of more complex designs and certainly sufficiently buffer the signal to

account for the ever increasing fan-out of the Sklansky carry gen.

Table 6.4: Logic Delay of Sklansky's tree adder vs. the synthesizer's adder mapping

In reality the tree adder outperforms the "integrated" adder in every step of the way. In

fact its performance is closer to that of the ripple carry adder. The assumption that it

actually is a ripple carry adder is reinforced by its hardware cost (one LUT per bit) and

confirmed by the critical path report of the synthesizer.

The results will further deteriorate for a carry save adder. It is our estimate that this is

due to routing issues, but it is beyond the scope of this thesis to further explore this.

Probably a CSA/RCA is constructed. The hardware of the 3 Op. integrated adder still

doubles as expected, yet it remains lower than the tree adder design’s overhead.

Table 6.5: Logic Delay of CSA/Sklansky's tree adder vs. the synthesizer's adder

mapping for 3 operand addition

For the aforementioned reasons the adder solution that is automatically produced by the

Xilinx tool (when writing behavioral code) will be used and its contribution to the iteration

bound will be approximated by (W-1)+4 u.t. (see equation 3.4). A drawback of this choice

is of course that an elementary solution for pipelining the component, if the need arises, is

not readily available (input and output and intermediate carry wires will be included in the

cut set), and an effective solution for FPGAs is based on a deeper understanding of FPGA

specific design, according to [10], and is beyond the scope of this thesis. If pipelining is

needed towards the end, the simple RCA pipelining scheme will be used.

Delay
(NSec)

4 bit 8 bit 16 bit 32 bit 64 bit 128 bit 256 bit

Sklansky 3.096 3.268 3.526 4.128 4.730 5.246 5.676

integrated 3.010 3.688 3.870 4.234 4.962 6.418 9.330

Delay (Nsec) 4 bit 8 bit 16 bit 32 bit 64 bit 128 bit 256 bit

CarrySave/Sklansky 5.198 6.279 8.606 13.381 17.989 23.198 27.172

3 Op. integrated 5.579 4.838 5.020 5.384 6.112 7.568 10.480

71

Figure 6.2: Pipelining cut set for RCAs

6.2.2 Multiplexers for FPGA Designs

One thing we noticed when we tried to implement AO and XOR gates with multiplexers

is the inability of the synthesizer to successfully map 2-to-1 multiplexers. The suspected

result can become explicit by viewing the technology schematic of a simple 2-to-1

multiplexer, wherefrom we notice that it is implemented by means of and/or gates.

Meanwhile, in the schematic of the 8-to-1we can notice the existence of a muxf7

component which is a dedicated 2-to-1 multiplexer component. However, as it turns out

this is by design. The muxf7 unit is more than twice as slow as a LUT AO gate or even a

4-to-1 LUT mux, which is the largest LUT constructed mux and has exactly the same delay

as the AO gate. And it is only used as the output stage of larger multiplexers, which we

suspect means it has better driving capabilities. The synthesizer can justify the trade-off

between parasitic delay and driving capabilities when a large fan-out is expected. But all

of this is only speculation on our part.

Therefore, multiplexers will not be implemented by explicitly coding mux trees but by

a simple case…is structure, which the synthesizer recognizes as a N-to-1 multiplexer.

This will give us fewer stages, since 4-to-1 LUT multiplexers of exactly the same speed

will be incorporated. Moreover, Xilinx manuals tell of faster implementations for larger

multiplexers by taking advantage of the structure of the FPGA, and we actually stumbled

upon a slightly faster implementation for a 16-to-1 multiplexer, but such designs, once

more, are probably specific to the FPGA used and require an understanding of FPGA

specific design that is beyond the scope of this thesis.

72

Table 6.6: Multiplexer delay

The mux delay results are severely skewed and masked by the IO buffer delays but the

delay increase is sufficiently linearly depended on the length of the select vector to warrant

the use of the log2M u.t. or even I log2M u.t. delay, as before. However since the output

stage of 8-to-1 and larger multiplexers, which is the case with our design, dominates the

delay, while previous stages are of smaller than expected depth and delay, using a full (L-

I)log2M u.t. delay for the "feedback" multiplexer might be closer to the truth. The

experimental approximation of the iteration bound will shortly prove this to be quite true.

6.3 Estimation of the Unfolding Factor J for FPGAs

After all these, the iteration bound and minimum unfolding factor will be computed for

both the T∞ = log2M+
1

I+1
((W − 1) + 4)u. t. (6.1)

𝐓∞ 4 bit 8 bit 16 bit 32 bit 64 bit

6 tap 11/4 15/4 23/4 39/4 71/4

8 tap 13/5 16/5 24/5 8 72/5

10 tap 14/6 17/6 25/6 41/6 73/6

Slowest

Node
7 u.t 11 u.t 19 u.t 35 u.t 67 u.t

Table 6.7: Iteration bound for the (6.1) approximation

J 4 bit 8 bit 16 bit 32 bit 64 bit

6 tap 4 4 4 4 4

8 tap 5 5 5 5 5

10 tap 6 6 6 6 6

Table 6.8: Appropriate Unfolding factor for the (6.1) approximation

and the T∞ =
1

I+1
(Llog2M+ (W− 1) + 4)u. t. (6.2) approximations.

Mux x-to-1 2-to-1 4-to-1 8-to-1 16-to-1 32-to-1

Delay(ns) 3.823 4.124 4.328 4.910 5.261

73

𝐓∞ 4 bit 8 bit 16 bit 32 bit 64 bit

6 tap 13/4 17/4 25/4 41/4 73/4

8 tap 3 19/5 27/5 43/5 15

10 tap 17/6 21/6 29/6 45/6 77/6

Slowest

Node
7 u.t 11 u.t 19 u.t 35 u.t 67 u.t

Table 6.9: Iteration bound for the (6.2) approximation

J 4 bit 8 bit 16 bit 32 bit 64 bit

6 tap 4 4 4 4 4

8 tap 3 5 5 5 5

10 tap 6 6 6 6 6

Table 6.10: Appropriate Unfolding factor for the (6.2) approximation

In any case, all our theoretical approximations do not yield vastly different results and all

unfolding factors from 3 to 6 will be explored.

The multiplexers’ select signals can be extrapolated from the tables in appendix A. These

express the unfolded equation y's indices and their factored form. The J=2 example can be

seen in the table below.

UF 2 2k indices 2k+1 indices

1 a1 2k-1 2(k-1)+1 2k 2k

2 a2 2k-2 2(k-1) 2k-1 2(k-1)+1

3 a3 2k-3 2(k-2)+1 2k-2 2(k-1)

4 a4 2k-4 2(k-2) 2k-3 2(k-2)+1

5 a5 2k-5 2(k-3)+1 2k-4 2(k-2)

6 a6 2k-6 2(k-3) 2k-5 2(k-3)+1

7 a7 2k-7 2(k-4)+1 2k-6 2(k-3)

8 a8 2k-8 2(k-4) 2k-7 2(k-4)+1

9 a9 2k-9 2(k-5)+1 2k-8 2(k-4)

10 a10 2k-10 2(k-5) 2k-9 2(k-5)+1

Table 6.11: Factored form for the indices of y, for unfolding factor J=2

74

6.4 Manual Retiming Approach

Finally we will attempt to retime the circuit for the purpose of shortening its critical

path. This won’t be done by retiming the DFG, but by hand in order to allow for fine grain

pipelining of the assorted units. And even though a few ways of pre-dividing the units into

smaller parts in order to use an automated retiming algorithm for the modified DFG come

to mind, trade-offs between them and ways of accounting for experimental data would be

the subject of much research. In this quest of ours [6] will be used as a guide. For this

purpose we will guess and dissect their procedure of reaching the retimed design, study it

step by step and then reevaluate its success for an FPGA design.

The first thing to notice is that the retiming methodology to follow is, naturally, very

much affected by the unfolding factor and the number of tap coefficients, but also, and to

a lesser extent, by the word length. Their design is for an 8bit 4unfolded FBF with 6Tap

coefficients. And as much of our initial research, it utilizes CSA/parallel-prefix adders and

a mux tree structure.

The critical path follows the dotted line and it has a delay of (7(VM)+8)mux delays. The

first step in retiming the design is to move delays Do through D3 to all of the branches of

their respective edges. This will make clearer the availability of delay elements around

each unit.

75

Figure 6.3: 8bit 4Unfolded FBF with 6Tap coefficients

76

Figure 6.4: Step1. Move the available registers to all of their branches and Step2. retime the

The second step will be to retime all of the "feedback" multiplexers by moving the

delays from their select inputs to their outputs. This step will move the topmost delay along

the critical path. However, a new critical path of only slightly shorter length has now been

created.

77

Figure 6.5: Step3. The ad-hoc chosen cut sets

Finally, retiming will be applied to the cut-sets that can be viewed in figure 6.6. These

were carefully chosen to limit the critical path to (7(VM)+4) mux delays as can be seen by

following the dotted line in the design below. Specifically the third row vector merge was

pipelined in order to truncate the path followed by the red line in figure 6.7, to just under

the length of the critical path. A couple of minor errors were detected and corrected in the

design but the validity of [6]’s results was largely unaffected. Moreover, since the design

is ASIC centered a few more improvements were made (inverted multiplexers- see

previous chapter 3- and driving/buffer elements were used).

78

Figure 6.6: Retimed ASIC design for 8bit 4Unfolded FBF with 6Tap coefficients

For an FPGA centric design, if we were to combine the derived knowledge of this thesis

up to this point, the initial critical path would have a delay of about 3, 8-to-1 multiplexers

plus that of a CSA/RCA. Pipelining of the CSA/RCA mapping that the synthesizer has

produced wouldn’t be straightforward at all, since we need access to the CSA carry signals

in order to produce an appropriate cut set. We would be forced to retime the third row cut

set just like the second row cut set. Besides, the critical path would be the one following

the red line with 3, 8-to-1 multiplexers plus the VM delay. Exactly that of the unfolded

design on its own.

79

Yet, if we assume that a more careful unit redesign for the multiplexer would allow us

to count the delays as an 8-to-1, a 4-to-1 and a 2-to-1 multiplexer an improvement of about

.5 to .7 (if we didn’t retime the 3rd row cut set at all) ns can be expected. And while this is

not insignificant this is not promising either. The aforementioned circuit will be tested and

its improvement (or lack thereof) quantified in the next chapter.

However, absence of significant improvement is not proof of unattainability. It only

means that the retiming scheme we have devised have failed. A rigorous algorithmic

approach could, possibly, vastly improve upon the sample frequency. But as we have

already mentioned, developing the specifics for the application of the method would be a

big undertaking unto its own.

6.5 Summary

In this chapter our unit design decisions were reevaluated to better fit an FPGA

centric design. This also gave rise to two new estimates for the iteration bound. The

latter was experimentally approximated as well. Based on these and in accordance to

the rule of thumb 4.4 the unfolding factored required was estimated between 4 and 6,

depending mainly on the number of tap coefficients L.

80

Simulation Results 7

Area/Speed Metrics and Validation

At the final stage of our thesis the constructed architectures will be simulated by the

Xilinx Ise synthesizer for a Virtex 5 FPGA. Faster FPGAs are available (Virtex 6 for

instance), however we find that the results are less informative. Route delay becomes even

more prevalent and there is a large dispersion between custom architectures and automated

ones. Both facts would hinder speed comparisons. Of course, both area and frequency

comparisons will be made. We will also, briefly at least, talk about our test benching

methodology.

7.1 Retimed Multiplexer Architecture

Firstly, we will test the complete circuit to mux transformation. As we have already

shown in chapter 5 the circuit can easily be retimed to reach its iteration bound. And this,

of course, is the version that we will use.

Area(LUTs) 8 bit 16 bit 32 bit 64 bit

MuxFBF6Tap 639 1151 2175 4223

MuxFBF7Tap 1279 2303 4351 8447

MuxFBF8Tap 2559 4607 8703 16895

MuxFBF9Tap 5119 8210 17407 33791

MuxFBF10Tap 10239 18431 34815 67583

Table 7.1: Area measurements for the Multiplexer FBF Design

As expected, since both the size of the multiplexer and the number of RCAs double, the

size seems to double with L, therefore follow the respective exponential law. Also it seems

to grow linearly with the word length, also as expected, since the size of the RCAs grows

linearly with it. In figure 7.1 (b) the respective growth may seem exponential, but we should

notice that the x-axis is logarithmic.

81

(a) Exponential area growth with the number of

tap coefficients

(b) Growth with the word length

Figure7.1: Area growth laws for the Multiplexer FBF design

The maximum clock frequency, in accordance with the theoretical results, is constant

for all word lengths, since the part they affect has been shifted away from the critical path,

and number of tab coefficients, since the 2L-to-1 multiplexer has been pipelined with all

paths equal to any of its L stages. The maximum frequency is 924.556MHz and as has been

foretold the design is bottlenecked by the delay of the register (82% of the logic delay).

And even though the iteration bound has clearly been reached we can still unroll the loop,

expecting the critical path to pass through J 2-to-1 multiplexers. The register delay,

however, will still contribute only once, therefore limiting its effect to only one Jth .

Keeping in mind the already large hardware overhead, we will delay discussion of that

possibility for a later paragraph.

7.2 Two Stage Pre-Computation FBF

The 2 stage pre-computation FBF is not very interesting by itself, but the speed and area

analysis of this lesser component will significantly decrease the complexity of its unfolded

version's analysis.

Area(LUTs) 8 bit 16 bit 32 bit 64 bit

FBF6Tap 164 316 620 1228

FBF7Tap 189 365 717 1421

FBF8Tap 327 631 1239 2456

FBF9Tap 369 713 1401 2777

FBF10Tap 646 1246 2446 4846

Table 7.2: Area measurements of the 2 stage pre-computation FBF

0

2000

4000

6000

8000

10000

12000

6Tap 7Tap 8Tap 9Tap 10Tap

0

20000

40000

60000

80000

8 16 32 64

6Tap

8Tap

10Tap

82

MaxFreq(MHz) 8 bit 16 bit 32 bit 64 bit

FBF6Tap 360.308 338.135 301.078 246.950

FBF7Tap 360.308 338.135 301.078 246.950

FBF8Tap 301.566 285.876 258.932 217.864

FBF9Tap 301.566 285.876 258.932 217.864

FBF10Tap 282.679 268.847 244.883 207.832

Table 7.3: max Frequency estimation for the 2 stage pre-computation FBF

From the area measurements we can infer two major things. One, since the area grows

significantly only on even multitudes of the number of tap coefficients- that is, when the

"feed forward" part grows - the area is dominated by the adders. The "feed forward"

multiplexer (width 1) doesn't contribute much either , since the contribution of the

"feedback" multiplexer (width W>>1) is insignificant as well. And two, the area once more

grows linearly with the word length. This can also be directly extrapolated from the

dominance of the adders' area, but is also corroborated by the linear grow in the dominant

"feedback" multiplexer.

(a) Significant area growth only on even

multitudes of the number of tap coefficients

(b) Linear growth with the word length

Figure7.2: Area growth laws for the 2 stage FBF design

With regards to the frequency, the difference in the critical path's delay doubles when

the difference in word lengths doubles, therefore revealing the linear dependence on the

word length, through the adders. But the small drop per bit in frequency also reveals the,

once more, significant contribution of the register delay (here of the CSA as well). This

can also be seen in the synthesizer's critical path report. Also, the frequency, naturally, only

drops when the "feed forward" part is affected, since only that enters in the critical path.

And the severe drop in frequency is telling of the impact of growth of the "feed forward"

multiplexer. But not so much the increased fan-out, since the drop is very much

anomalously dependent on the I, just as the construction of multiplexer units by the

synthesizer is (remember, for instance, that 2-to-1 and 4-to-1 multiplexers are both mapped

to a single LUT, which affords them about the same delay, while for an 8-to-1 multiplexer

the output driving element dominates the delay).

0

200

400

600

800

6Tap 7Tap 8Tap 9Tap 10Tap
0

1000

2000

3000

4000

5000

6000

8 16 32 64

6Tap

7Tap

8Tap

9Tap

10Tap

83

7.3 Unfolded Circuits, J= 2 through 7

For the 2 stage pre-computation architecture, unfolded versions with unfolding factors

J=2 through 7 were developed. The theoretical results called for unfolding factors 4,5 and

6, however, we considered measuring a wider range would be the wiser choice. All of the

measurements can be found in appendix B. Only the bare essentials will be displayed here

due to the overwhelming volume.

Area(LUTs) 6Tap 8Tap 10Tap

2Unfolded 312 656 1276

3Unfolded 465 980 1909

4Unfolded 618 1306 2542

5Unfolded 771 1634 3175

6Unfolded 925 2213 3808

7Unfolded 1079 2589 4442

Table 7.4: Area measurements for unfolding factors 2 through 7 and 8 bit words

MasterClk(MHz) 6Tap 8Tap 10Tap

2Unfolded 475.324 411.050 347.164

3Unfolded 625.920 558.150 472.719

4Unfolded 742.444 663.720 576.292

5Unfolded 752.655 782.715 660.245

6Unfolded 819.918 774.804 728.244

7Unfolded 875.567 808.269 777.672

Table 7.5: max Frequency estimation for unfolding factors 2 through 7 and 8 bit words

(a) Area growth proportionate to J (b) Speed-up with J approaching saturation

Figure 7.3: Area and frequency measurements for unfolding factors 2 through 7 and W=8

0

1000

2000

3000

4000

5000

6Tap

8Tap

10Tap 0

200,000

400,000

600,000

800,000

1,000,000

6Tap

8Tap

10Tap

84

Keeping in mind the observations in section 7.2 the area seems to grow proportionally

with J, exactly as expected. The frequency however contrary to the theoretical expectations

steadily grows beyond the expected unfolding factors independently of the number of tap

coefficients L. The growth however seems to be reaching a certain saturation point, with

every hit in hardware overhead yielding diminishing returns. Unfolding factors in excess

of 7 can be explored however as will be discussed in the next section that would be of

limited use. Furthermore, the effect the register delay has already been reduced to 1/7 of

its potency and is therefore, in comparison with the architecture in 7.1, already

inconsequential.

We can also notice a slight anomaly in the maximum achievable frequency of the 5

unfolded FBF. However, since none of the designs is proven optimal, a slightly shorter or

longer critical path here and there, within the margin of error, is nothing that some

elementary retiming cannot invert. Moreover contrary to the results in tables 6.8, 6.10 and

6.13, with the rise in L, even though theoretically higher achievable rates are allowed, they

don't conclusively seem to be achievable in quite as small a rise in J. Unless we disregard

the "tainted" results of J=5. Then the expected performance is more than likely.

(a) Area growth with W (b) Drop in frequency with W

Figure 7.4: Effects of the word length W on the area and frequency for J=4

(a) Area growth with W (b) Drop in frequency with W

Figure 7.5: Effects of the word length W on the area and frequency for J=7

The changes in area and frequency with W seem to follow the laws extrapolated from

the 2 stage FBF in 7.2, as expected.

0

5000

10000

15000

20000

25000

8bit 16bit 32bit 64bit

6Tap4Un

8Tap4Un

10Tap4Un

0

200,000

400,000

600,000

800,000

8bit 16bit 32bit 64bit

6Tap4Un

8Tap4Un

10Tap4Un

0

10000

20000

30000

40000

8bit 16bit 32bit 64bit

6Tap7Un

8Tap7Un

10Tap7Un

0

200,000

400,000

600,000

800,000

1,000,000

8bit 16bit 32bit 64bit

6Tap7Un

8Tap7Un

10Tap7Un

85

7.4 Discussion

While the area estimations were on point the performance of the circuit was largely

underwhelming. The required unfolding factor was vastly underestimated, from the

expected J=4,5 and 6 to larger than 7 for L=8,9 and 10. This, however, is not that notable,

since the iteration bound estimates were very coarse and the rules for electing J too

dependent on the fractional form of the IPB.

(a) Frequency comparison (b) Area comparison

Figure 7.6: Frequency and area comparison for the Multiplexer architecture and 7 Unfolded

FBF, W=8

(a) Frequency comparison (b) Area comparison

Figure 7.7: Frequency and area comparison for the Multiplexer architecture and 7 Unfolded

FBF, W=64

As can be seen in figures 7.6 and 7.7 our best results, for J=7, yield acceptable

performance for smaller word lengths. And since a word length of 8 is much more likely

than 32 or 64 for binary PAM, that is not insignificant at all. Especially for L larger than 8

the exponential growth of the single multiplexer design cannot be contained by the

hardware of even large FPGAs like Virtex 5. Then the unfolded FBF is the only option.

However, for L up to 8 the single multiplexer architecture is by far the superior design.

And even though the performance is expected, according to table 6.13, to improve further

700,000

750,000

800,000

850,000

900,000

950,000

6Tap 8Tap 10Tap

MuxFBF

7Unfolded

0

2000

4000

6000

8000

10000

12000

6Tap 8Tap 10Tap

MuxFBF

7Unfolded

0

200,000

400,000

600,000

800,000

1,000,000

6Tap 8Tap 10Tap

MuxFBF

7Unfolded

0

20000

40000

60000

80000

6Tap 8Tap 10Tap

MuxFBF

7Unfolded

86

for even larger J and eventually outperform the single multiplexer design, this will also

move the L for which its limited size outweighs its suboptimal performance even further,

or make it altogether too large to fit on the FPGA.

Furthermore, as we have already mentioned in 7.2 the performance of the unfolded FBF

seems to be slowly reaching saturation. So to recapitulate, in the next unfolding factor, or

two, the unfolded FBF will probably outperform the previous design, but it will not reach

its full potential until much later. However, its use will be severely limited or nonexistent.

On the other hand, the exponential area growth of the initial design is already prohibitive

of the possibility of unfolding in hope of reducing the effect of the taxing register delay.

And its use is already impossible for L larger than 8.

The lesson to take away from this paragraph is that instead of aiming for optimal results

by unfolding the loop even more, it would be preferable to be content with adequate

performance which satisfies the hardware constraints. We have confidence that a

systematic and well stated retiming of the J=7 (or even 6) can yield results comparable to

that of the first design while keeping the hardware overhead low enough to be of use for

larger Ls.

For a more detailed exposition the reader is referred to chapter 8.

7.5 Retimed circuit

Below we can see the simulation results of the retimed circuit seen in Figure 6.7.

4Unfolded6Tap 8 bit 16 bit 32 bit 64 bit

MasterClk(MHz) 756.660 728.624 678.352 596.100

Table 7.6: Simulation results for the retimed 4 unfolded FBF of figure 6.7

We can compare these results to the results of the non-retimed circuit:

4Unfolded6Tap 8 bit 16 bit 32 bit 64 bit

MasterClk(MHz) 742.444 713.252 669.216 595.664

We can see the the performance only improves by around 2%. We can conlude that

this specific retiming transformation on the given circuit does not manage to achieve

significant improvement in performance.

87

7.6 Validation

The proper function of the various designs was tested with the use of the behavioral

simulator module of Xilinx Ise. Each unit’s input/output was tested separately comparing

it with that of its logical function.

Figure 7.8: Testing Board for the J Unfolded FBF

Another algorithm of just the FBF was then developed, with both its pseudorandom

input and output saved for comparison with the hardware implementation. The testing was

straightforward for most architectures, that is, apart from the unfolded designs. For those a

special validation platform had to be scripted as seen in figure 7.8. The initialization of the

various units had to be done by hand and differs vastly among the various unfolding factors.

Good hardware designs practices were employed, considering the edge on which we pass

data in the input and the output of the J Unfolded FBF, so that there is no conflict off

loading and passing times.

The keen reader who might closely examine the accompanying code supplement may

notice a slight instability of the elementary coding choice of the states in the frequency

divider. This is important in real world application but as we have already mentioned the

simulation is behavioral and does not take into consideration any propagation delays.

 J UNFOLDED FBF

frequency divider : J

parallel to sequential reg

sequential

to parallel

register

Validation

Platform

88

Conclusions and Recommendations 8

8.1 Conclusions

At this thesis we optimized the performance of a Decision Feedback Equalizer circuit.

We focused on the optimization of the Feed Backward Filter, since this is the one that poses

the upper limit to the frequency. We applied the unfolding and retiming techniques that are

well known techniques, invented several years ago. We used FPGAs in order to simulate

the performance of these circuits for several unfolding factors. Then we experimented with

a retimed version of the FBF.

The speed of the FBF was increasing significantly with the increase of the unfolding

factor. However, the area was increasing as well. According to the theory developed by dr

Parhi, there should be an optimal unfolding factor, with which the iteration bound could be

achieved. We computed this optimal unfolding factor to be between 4,5,6 for our circuits.

We then performed measurements for unfolding factors ranging from 3 to 7. The results

were that the frequency continued to increase significantly for unfolding factors bigger

than the optimal one. That might be because the optimal unfolding factor was computed

mathematically for ideal cases and for asic designs. However, for fpga designs, things are

not so simple, since the output of the synthesizer is not totally controllable.

Moreover, the sub-optimally retimed 4 unfolded FBF according to table 7.6 yields a

minor performance improvement, especially for shorter word lengths. The improvement is

much less than the improvement achieved with the unfolding transformation, for this

specific design. With a better optimized automated retiming algorithm, we have confidence

that a vast performance improvement is more than possible. Which naturally brings us to

the recommendations section.

Finally, after optimizing the FBF in order to reach the desired frequency, we will need

to take care of the feed forward filter as well. It probably will have to be pipelined (making

it N-slow) and parallelized to a level close to J to achieve similar performance metrics.

Moreover, the linking adder between the two subunits will probably bottleneck the design.

Additionally, we aimed for throughput rates more appropriate for ASIC centric design

choices. If the volume of the circuits that are going to be produced justifies an ASIC design

cost, then an ASIC implementation would be preferable.

89

8.2 Recommendations for Future Research

As we've already mentioned in chapter 4, the combination of unfolding and retiming is

an advanced theoretical subject. For the researcher willing to invest the time and energy

the performance of the resulting architecture can be estimated a priori to the

implementation and the right retime approach applied to the initial recursive

implementation, before unrolling it, which will significantly decrease the complexity.

However, nothing stops us from blindly applying a critical path minimization retiming

algorithm on a larger collection of already unfolded DFGs, whose implementation satisfies

the area constraint, and then picking the results that best fit our needs. But as we've seen in

chapter 6 the performance and implementation of the multiplexer is not linearly dependent

on its size and the CSA/RCA is hard to pipeline. So the first step would be to solve the

second problem. And then for step number 2 develop a database for the various

nonlinearities and general "quirkiness" of the synthesizer's mapping for various basic units

(adders, multipliers, shifters, multiplexers...) and different FPGAs with widespread use.

The database has a more general appeal and in our case for step 3 it can be used by a

proprietarily modified critical path minimization algorithm to automatically optimize our

search space. As of the date of completion of this thesis the author is not familiar with the

existence of such a module.

90

Bibliography

[1]. Communication Systems Engineering , John G.Proakis ,Masoud Salehi

[2]. Digital Communications , John G.Proakis

[3]. N. H. E. Weste and D. Harris, CMOS VLSI Design, 4th edition, Pearson–Addison-

Wesley, 2011.

[4]. Jan M. Rabaey, AnanthaChandrakasan and BorivojeNicolic, Digital Integrated

Circuits, 2nd edition, Pearson Education,Inc- Prentice Hall 2003

[5]. KeshabK.Parhi, VLSI Digital Signal Processing Systems, Design and

Implementation, Wiley Interscience- John Wiley & Sons Inc., 1999

[6]. Chih-Hsiu Lin and An-Yeu(Andy) Wu “Low cost decision feedback equalizer (DFE)

design for giga-bit systems”,Acoustics, Speech, and Signal Processing, 2005.

Proceedings. (ICASSP '05). IEEE International Conference on, vol.3,2005

[7]. K.K. Parhi, “Pipelining in algorithms with quantizer loops”, IEEE Trans. on

Circuits and Systems ,vol.37, no.7, pp. 745-754, July 1991.

[8]. S. Kasturia and J.H. Winters, “Techniques for high-speed implementation of

nonlinear cancellation”, IEEE J. Select. Areas Commun, vol.9, no.5, pp. 711-717, June

1991.

[9]. M.VenkataDurgaramaraju and A.Deepthi, “Design and implementation of Parallel

Prefix Adders using FPGAs”, IOSR Journal of Electronics and Communication

Engineering, vol.6, no.5, pp. 41-48, July-August 2013

[10]. Florent De Dinechin, Hong Diep Nguyen, BogdanPasca. “Pipelined FPGA

Adders” . 2010.

[11]. K. K. Parhi and D. G. Messerschmitt, “Static rate-optimal scheduling of iterative

data-flow programs via optimum unfolding”

[12]. K. K. Parhi and D. G. Messerschmitt, “Pipeline interleaving and parallelism in

recursive digital filter- Part I and II”

91

92

__

PART III:
Appendices

__

93

94

Appendix A

Unfolded Circuits' Indices

The unfolding factor is displayed in the upper left corner of the table. The factored

indices are on the right side of their respective sub-circuits column with their unfactored

form on the left.

UF 2 2k indices 2k+1 indices

1 a1 2k-1 2(k-1)+1 2k 2k

2 a2 2k-2 2(k-1) 2k-1 2(k-1)+1

3 a3 2k-3 2(k-2)+1 2k-2 2(k-1)

4 a4 2k-4 2(k-2) 2k-3 2(k-2)+1

5 a5 2k-5 2(k-3)+1 2k-4 2(k-2)

6 a6 2k-6 2(k-3) 2k-5 2(k-3)+1

7 a7 2k-7 2(k-4)+1 2k-6 2(k-3)

8 a8 2k-8 2(k-4) 2k-7 2(k-4)+1

9 a9 2k-9 2(k-5)+1 2k-8 2(k-4)

10 a10 2k-10 2(k-5) 2k-9 2(k-5)+1

UF 3 3k indices 3k+1 indices 3k+2 indices

1 a1 3k-1 3(k-1)+2 3k 3k 3k+1 3k+1

2 a2 3k-2 3(k-1)+1 3k-1 3(k-1)+2 3k 3k

3 a3 3k-3 3(k-1) 3k-2 3(k-1)+1 3k-1 3(k-1)+2

4 a4 3k-4 3(k-2)+2 3k-3 3(k-1) 3k-2 3(k-1)+1

5 a5 3k-5 3(k-2)+1 3k-4 3(k-2)+2 3k-3 3(k-1)

6 a6 3k-6 3(k-2) 3k-5 3(k-2)+1 3k-4 3(k-2)+2

7 a7 3k-7 3(k-3)+2 3k-6 3(k-2) 3k-5 3(k-2)+1

8 a8 3k-8 3(k-3)+1 3k-7 3(k-3)+2 3k-6 3(k-2)

9 a9 3k-9 3(k-3) 3k-8 3(k-3)+1 3k-7 3(k-3)+2

10 a10 3k-10 3(k-4)+2 3k-9 3(k-3) 3k-8 3(k-3)+1

UF 4 4k indices 4k+1 indices 4k+2 indices 4k+3 indices

1 a1 4k-1 4(k-1)+3 4k 4k 4k+1 4k+1 4k+2 4k+2

2 a2 4k-2 4(k-1)+2 4k-1 4(k-1)+3 4k 4k 4k+1 4k+1

3 a3 4k-3 4(k-1)+1 4k-2 4(k-1)+2 4k-1 4(k-1)+3 4k 4k

4 a4 4k-4 4(k-1) 4k-3 4(k-1)+1 4k-2 4(k-1)+2 4k-1 4(k-1)+3

5 a5 4k-5 4(k-2)+3 4k-4 4(k-1) 4k-3 4(k-1)+1 4k-2 4(k-1)+2

95

6 a6 4k-6 4(k-2)+2 4k-5 4(k-2)+3 4k-4 4(k-1) 4k-3 4(k-1)+1

7 a7 4k-7 4(k-2)+1 4k-6 4(k-2)+2 4k-5 4(k-2)+3 4k-4 4(k-1)

8 a8 4k-8 4(k-2) 4k-7 4(k-2)+1 4k-6 4(k-2)+2 4k-5 4(k-2)+3

9 a9 4k-9 4(k-3)+3 4k-8 4(k-2) 4k-7 4(k-2)+1 4k-6 4(k-2)+2

10 a10 4k-10 4(k-3)+2 4k-9 4(k-3)+3 4k-8 4(k-2) 4k-7 4(k-2)+1

UF 5 5k indices 5k+1 indices 5k+2 indices 5k+3 indices

1 a1 5k-1 5(k-1)+4 5k 5k 5k+1 5k+1 5k+2 5k+2

2 a2 5k-2 5(k-1)+3 5k-1 5(k-1)+4 5k 5k 5k+1 5k+1

3 a3 5k-3 5(k-1)+2 5k-2 5(k-1)+3 5k-1 5(k-1)+4 5k 5k

4 a4 5k-4 5(k-1)+1 5k-3 5(k-1)+2 5k-2 5(k-1)+3 5k-1 5(k-1)+4

5 a5 5k-5 5(k-1) 5k-4 5(k-1)+1 5k-3 5(k-1)+2 5k-2 5(k-1)+3

6 a6 5k-6 5(k-2)+4 5k-5 5(k-1) 5k-4 5(k-1)+1 5k-3 5(k-1)+2

7 a7 5k-7 5(k-2)+3 5k-6 5(k-2)+4 5k-5 5(k-1) 5k-4 5(k-1)+1

8 a8 5k-8 5(k-2)+2 5k-7 5(k-2)+3 5k-6 5(k-2)+4 5k-5 5(k-1)

9 a9 5k-9 5(k-2)+1 5k-8 5(k-2)+2 5k-7 5(k-2)+3 5k-6 5(k-2)+4

10 a10 5k-10 5(k-2) 5k-9 5(k-2)+1 5k-8 5(k-2)+2 5k-7 5(k-2)+3

UF 5 5k+4 indices

1 a1 5k+3 5k+3

2 a2 5k+2 5k+2

3 a3 5k+1 5k+1

4 a4 5k 5k

5 a5 5k-1 5(k-1)+4

6 a6 5k-2 5(k-1)+3

7 a7 5k-3 5(k-1)+2

8 a8 5k-4 5(k-1)+1

9 a9 5k-5 5(k-1)

10 a10 5k-6 5(k-2)+4

UF 6 6k indices 6k+1 indices 6k+2 indices 6k+3 indices

1 a1 6k-1 6(k-1)+5 6k 6k 6k+1 6k+1 6k+2 6k+2

2 a2 6k-2 6(k-1)+4 6k-1 6(k-1)+5 6k 6k 6k+1 6k+1

3 a3 6k-3 6(k-1)+3 6k-2 6(k-1)+4 6k-1 6(k-1)+5 6k 6k

4 a4 6k-4 6(k-1)+2 6k-3 6(k-1)+3 6k-2 6(k-1)+4 6k-1 6(k-1)+5

5 a5 6k-5 6(k-1)+1 6k-4 6(k-1)+2 6k-3 6(k-1)+3 6k-2 6(k-1)+4

6 a6 6k-6 6(k-1) 6k-5 6(k-1)+1 6k-4 6(k-1)+2 6k-3 6(k-1)+3

7 a7 6k-7 6(k-2)+5 6k-6 6(k-1) 6k-5 6(k-1)+1 6k-4 6(k-1)+2

8 a8 6k-8 6(k-2)+4 6k-7 6(k-2)+5 6k-6 6(k-1) 6k-5 6(k-1)+1

9 a9 6k-9 6(k-2)+3 6k-8 6(k-2)+4 6k-7 6(k-2)+5 6k-6 6(k-1)

10 a10 6k-10 6(k-2)+2 6k-9 6(k-2)+3 6k-8 6(k-2)+4 6k-7 6(k-2)+5

UF 6 6k+4 indices 6k+5 indices

1 a1 6k+3 6k+3 6k+4 6k+4

2 a2 6k+2 6k+2 6k+3 6k+3

96

3 a3 6k+1 6k+1 6k+2 6k+2

4 a4 6k 6k 6k+1 6k+1

5 a5 6k-1 6(k-1)+5 6k 6k

6 a6 6k-2 6(k-1)+4 6k-1 6(k-1)+5

7 a7 6k-3 6(k-1)+3 6k-2 6(k-1)+4

8 a8 6k-4 6(k-1)+2 6k-3 6(k-1)+3

9 a9 6k-5 6(k-1)+1 6k-4 6(k-1)+2

10 a10 6k-6 6(k-1) 6k-5 6(k-1)+1

UF 7 7k indices 7k+1 indices 7k+2 indices 7k+3 indices

1 a1 7k-1 7(k-1)+6 7k 7k 7k+1 7k+1 7k+2 7k+2

2 a2 7k-2 7(k-1)+5 7k-1 7(k-1)+6 7k 7k 7k+1 7k+1

3 a3 7k-3 7(k-1)+4 7k-2 7(k-1)+5 7k-1 7(k-1)+6 7k 7k

4 a4 7k-4 7(k-1)+3 7k-3 7(k-1)+4 7k-2 7(k-1)+5 7k-1 7(k-1)+6

5 a5 7k-5 7(k-1)+2 7k-4 7(k-1)+3 7k-3 7(k-1)+4 7k-2 7(k-1)+5

6 a6 7k-6 7(k-1)+1 7k-5 7(k-1)+2 7k-4 7(k-1)+3 7k-3 7(k-1)+4

7 a7 7k-7 7(k-1) 7k-6 7(k-1)+1 7k-5 7(k-1)+2 7k-4 7(k-1)+3

8 a8 7k-8 7(k-2)+6 7k-7 7(k-1) 7k-6 7(k-1)+1 7k-5 7(k-1)+2

9 a9 7k-9 7(k-2)+5 7k-8 7(k-2)+6 7k-7 7(k-1) 7k-6 7(k-1)+1

10 a10 7k-10 7(k-2)+4 7k-9 7(k-2)+5 7k-8 7(k-2)+6 7k-7 7(k-1)

UF 7 7k+4 indices 7k+5 indices 7k+6 indices

1 a1 7k+3 7k+3 7k+4 7k+4 7k+5 7k+5

2 a2 7k+2 7k+2 7k+3 7k+3 7k+4 7k+4

3 a3 7k+1 7k+1 7k+2 7k+2 7k+3 7k+3

4 a4 7k 7k 7k+1 7k+1 7k+2 7k+2

5 a5 7k-1 7(k-1)+6 7k 7k 7k+1 7k+1

6 a6 7k-2 7(k-1)+5 7k-1 7(k-1)+6 7k 7k

7 a7 7k-3 7(k-1)+4 7k-2 7(k-1)+5 7k-1 7(k-1)+6

8 a8 7k-4 7(k-1)+3 7k-3 7(k-1)+4 7k-2 7(k-1)+5

9 a9 7k-5 7(k-1)+2 7k-4 7(k-1)+3 7k-3 7(k-1)+4

10 a10 7k-6 7(k-1)+1 7k-5 7(k-1)+2 7k-4 7(k-1)+3

97

Appendix B

Area and Speed Measurements

B1. Retimed Multiplexer Architecture

MuxFBF6Tap 8 bit 16 bit 32 bit 64 bit

Area(LUTs) 639 1151 2175 4223

MaxFreq(MHz) 924.556

MuxFBF7Tap 8 bit 16 bit 32 bit 64 bit

Area(LUTs) 1279 2303 4351 8447

MaxFreq(MHz) 924.556

MuxFBF8Tap 8 bit 16 bit 32 bit 64 bit

Area(LUTs) 2559 4607 8703 16895

MaxFreq(MHz) 924.556

MuxFBF9Tap 8 bit 16 bit 32 bit 64 bit

Area(LUTs) 5119 8210 17407 33791

MaxFreq(MHz) 924.556

MuxFBF10Tap 8 bit 16 bit 32 bit 64 bit

Area(LUTs) 10239 18431 34815 67583

MaxFreq(MHz) 924.556

B2. Two Stage Pre-Computation FBF

FBF6Tap 8 bit 16 bit 32 bit 64 bit

Area(LUTs) 164 316 620 1228

MaxFreq(MHz) 360.308 338.135 301.078 246.950

98

FBF7Tap 8 bit 16 bit 32 bit 64 bit

Area(LUTs) 189 365 717 1421

MaxFreq(MHz) 360.308 338.135 301.078 246.950

FBF8Tap 8 bit 16 bit 32 bit 64 bit

Area(LUTs) 327 631 1239 2456

MaxFreq(MHz) 301.566 285.876 258.932 217.864

FBF9Tap 8 bit 16 bit 32 bit 64 bit

Area(LUTs) 369 713 1401 2777

MaxFreq(MHz) 301.566 285.876 258.932 217.864

FBF10Tap 8 bit 16 bit 32 bit 64 bit

Area(LUTs) 646 1246 2446 4846

MaxFreq(MHz) 282.679 268.847 244.883 207.832

B3. Unfolded Circuits

For the Unfolded circuits the master clock will obviously operate at J times the

measured frequency.

2Unfolded6Tap 8 bit 16 bit 32 bit 64 bit

Area(LUTs) 312 600 1176 2328

MaxFreq(MHz) 237.662 225.828 208.455 180.660

MasterClk(MHz) 475.324 451.656 416.910 361.320

2Unfolded8Tap 8 bit 16 bit 32 bit 64 bit

Area(LUTs) 656 1232 2384 4688

MaxFreq(MHz) 205.525 197.818 184.018 161.486

MasterClk(MHz) 411.050 395.636 368.036 322.972

2Unfolded10Tap 8 bit 16 bit 32 bit 64 bit

Area(LUTs) 1276 2460 4828 9564

MaxFreq(MHz) 173.582 167.981 157.798 140.773

MasterClk(MHz) 347.164 335.962 315.596 281.546

99

3Unfolded6Tap 8 bit 16 bit 32 bit 64 bit

Area(LUTs) 465 897 1761 3489

MaxFreq(MHz) 208.640 199.463 185.788 163.384

MasterClk(MHz) 625.920 598.389 557.364 490.152

3Unfolded8Tap 8 bit 16 bit 32 bit 64 bit

Area(LUTs) 980 1843 3571 7033

MaxFreq(MHz) 186.050 179.631 168.035 149.737

MasterClk(MHz) 558.150 538.893 504.105 449.211

3Unfolded10Tap 8 bit 16 bit 32 bit 64 bit

Area(LUTs) 1909 3685 7237 14341

MaxFreq(MHz) 157.573 152.944 144.456 130.057

MasterClk(MHz) 472.719 458.832 433.368 390.171

4Unfolded6Tap 8 bit 16 bit 32 bit 64 bit

Area(LUTs) 618 1194 2346 4650

MaxFreq(MHz) 185.611 178.313 167.304 148.916

MasterClk(MHz) 742.444 713.252 669.216 595.664

4Unfolded8Tap 8 bit 16 bit 32 bit 64 bit

Area(LUTs) 1306 2458 4760 9368

MaxFreq(MHz) 165.930 160.935 148.263 133.459

MasterClk(MHz) 663.720 643.740 593.052 533.836

4Unfolded10Tap 8 bit 16 bit 32 bit 64 bit

Area(LUTs) 2542 4910 9646 19118

MaxFreq(MHz) 144.073 140.193 133.029 120.721

MasterClk(MHz) 576.292 560.772 532.116 482.884

5Unfolded6Tap 8 bit 16 bit 32 bit 64 bit

Area(LUTs) 771 1492 2933 5813

MaxFreq(MHz) 150.531 141.250 127.836 107.600

MasterClk(MHz) 752.655 706.250 639.180 538.000

100

5Unfolded8Tap 8 bit 16 bit 32 bit 64 bit

Area(LUTs) 1634 3074 5954 11714

MaxFreq(MHz) 156.543 152.056 143.664 128.638

MasterClk(MHz) 782.715 760.280 718.320 643.190

5Unfolded10Tap 8 bit 16 bit 32 bit 64 bit

Area(LUTs) 3175 6135 12055 23899

MaxFreq(MHz) 132.049 128.782 122.711 112.163

MasterClk(MHz) 660.245 643.910 613.555 560.815

6Unfolded6Tap 8 bit 16 bit 32 bit 64 bit

Area(LUTs) 925 1789 3517 6974

MaxFreq(MHz) 136.653 128.898 117.529 100.052

MasterClk(MHz) 819.918 773.388 705.174 600.312

6Unfolded8Tap 8 bit 16 bit 32 bit 64 bit

Area(LUTs) 2213 4333 7958 15225

MaxFreq(MHz) 129.134 122.936 112.531 96.718

MasterClk(MHz) 774.804 737.616 675.186 580.308

6Unfolded10Tap 8 bit 16 bit 32 bit 64 bit

Area(LUTs) 3808 7360 14468 28672

MaxFreq(MHz) 121.374 118.608 113.440 104.366

MasterClk(MHz) 728.244 711.648 680.640 626.196

7Unfolded6Tap 8 bit 16 bit 32 bit 64 bit

Area(LUTs) 1079 2087 4104 8136

MaxFreq(MHz) 125.081 118.464 108.643 93.320

MasterClk(MHz) 875.567 829.248 760.501 653.240

7Unfolded8Tap 8 bit 16 bit 32 bit 64 bit

Area(LUTs) 2589 5014 8445 16588

MaxFreq(MHz) 115.467 110.453 104.838 88.946

MasterClk(MHz) 808.269 773.171 733.866 622.622

101

7Unfolded10Tap 8 bit 16 bit 32 bit 64 bit

Area(LUTs) 4442 8586 16875 33451

MaxFreq(MHz) 111.096 106.649 98.743 86.009

MasterClk(MHz) 777.672 746.543 691.201 602.063

B4 Retimed Circuit

4Unfolded6Tap 8 bit 16 bit 32 bit 64 bit

MasterClk(MHz) 756.660 728.624 678.352 596.100

Comparison with non-retimed circuit:

4Unfolded6Tap 8 bit 16 bit 32 bit 64 bit

MasterClk(MHz) 742.444 713.252 669.216 595.664

