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Abstract 

 

In modern digital communications throughput rates in the order of gigabits per second are not 

uncommon. Hence there is a need for fast equalizing filters. While all feed forward filters can easily 

be pipelined, therefore sped up, the feedback filter (FBF) of decision feedback equalizers is the 

bottleneck of its performance. A simple, extremely fast, reformulation of the FBF, based on an 

obvious expansion of the Shannon's expansion theorem idea, can easily be devised. This particular 

design can be retimed in a straightforward manner to reach its iteration period bound, but is 

ultimately limited by the propagation delay of the registers. Even though we can unfold the circuit 

in an attempt to limit the register's delay relevance, its hardware overhead is exponentially 

dependent on the number of tap coefficients (L), therefore, very costly even for relatively small Ls. 

In order to cope with the exponential area growth a two stage pre-computation schema, similar to 

the reformulated FBF, will be introduced. We show that the area degrades significantly with the 

penalty of decreasing the maximum achievable frequency. To reach its iteration bound, this new 

design has to be unfolded. In our experiments we use the Xilinx ISE FPGA synthesizer, targeting 

the Virtex 5 family, the XC5VLX20T module, set to speed -2. We will approximate the minimum 

needed unfolding factor for an FPGA centric design, considering different word lengths and 

number of tap coefficients, to use as a base for the experimental phase. Our experiments with the 

unfolding factor will conclude when the performance is comparable with that of the first FBF 

reformulation. For that final design we will find the L where the hardware overhead improvement 

outweighs the hit in performance. Finally, based on the experimental results, we will show that the 

performance can be further increased, with the introduction of a retime approach. However 

according to our experiments the retiming transformation enhanced the performance by only 2%. 
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Introduction 1 

 

 

 

For most of the early days of communication theory, analogue communications 

dominated the field. Noise was, and still is, a major issue and the only way to deal with it 

was to raise the transmitter's power a good deal above the noise level. Different 

modulations present of course different levels of sensitivity to noise, however, the trade-

off for a more robust transmission per Watt is a larger effective bandwidth. And that is of 

great importance since different signals cannot be overlaid within the same bandwidth 

unless they are time multiplexed. The effective transmission of data types other than speech 

(or image) is also a limitation of analogue communications.  

With the advent of digital communications error control became much more 

complicated, and yet very efficient. From the choice of channel codes to that of convoluted 

error correcting pre-encodings, very low (theoretically infinitesimally small) bit error rates 

for large transmission rates have been proven to exist and of course invented and 

extensively used in practice. For modern convolution codes error bursts on the scale of 

hundreds of words can be effectively corrected, through educated guesses. More than one 

signal can also share the same channel, through the advances of network coding theory. 

Other degradations like crosstalk, or parasitic bandwidth sharing can also be diminished or 

even taken advantage of. And at last, since all kinds of information can be treated in the 

same way through proper encoding, data types' limitations are a thing of the past.  

Digital communication can in fact date all the way back to the Morse code or even to 

ancient times, with the lighting of bonfires signaling the presence of invading armies etc. 

However, what we now perceive as digital communications was really founded with the 

beginning of C.S. Shannon's work during WWII. Shannon is known as the father of 

information theory. Information theory views channels and transmitted data sequences 

through the eyes of probability theory. However at the physical level, digital signals, are 

still analogue in nature and as such are subject to the same maladies. Most importantly, as 
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we will see in chapter two, the limited bandwidth and channel distortion affect the time 

duration of the pulses. That is exactly the spark that lights the fire of our subject matter. 

Bandwidth limitations will be shown to naturally lead to the idea of channel equalization.  

 

1.1 Motivation and Problem Statement 

 

The design of Decision Feedback Equalizers (DFEs) is in not a new or even vivid 

research area. Their theory is well developed since a few decades ago and their 

implementation pretty standard. However, for modern Giga bit transmission rates the 

design of the DFE need to go above and beyond the technology limitations to meet the 

performance standards. And even thought that is, on first sight, nothing but easily 

achievable, this is done at the expense of high hardware complexity cost. 

Furthermore, specific DFE application themselves have an extensive enough "audience" 

pool to warrant an ideal ASIC implementation. However, the underlying idea of the 

adaptive digital decision feedback filter has a broader appeal that extends to many sub-

disciplines of signal processing that do not qualify for such a privilege. For DSP 

applications more flexible approaches such as FPGAs are more widespread. For those, as 

we will see in later chapters, area is also a big concern. 

In this thesis we will specifically develop and compare architectures for the part that 

predominately bottlenecks the DFE, the feedback filter. The development will eventually 

focus on FPGA applications. The extent of their usefulness will be evaluated using the 

Xilinx ISE synthesizer/simulator for our measurements' estimation and research for further 

improvements on the designs will be proposed. 

 

1.2 Thesis Overview 

 

The work in this thesis is divided into three main parts: 

 

Part I: Theoretical background of the various fields needed to understand the motivation 

behind and the structure of the decision feedback equalizer- Chapter 2. The delay and area 

estimates used for the adder and multiplexer components throughout the thesis- Chapter 3. 

And the material that is necessary for the understanding of the a priori performance 

estimates for the architectures developed in part II and the justification for the various 

transformation choices- Chapter 4. 

 

Part II: The development of the two different architectural choices for the FBF of the DFE 

and the theoretical estimates of their respective performance and area- Chapter 5. The 

necessary reevaluation of the units' design for a more structured FPGA architecture and the 

experimental estimation of the performance bound- Chapter 6. And finally a short 
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exposition of the most relevant results of our simulations alongside with their comparative 

evaluation- Chapter7. 

 

Part III:  A short recapitulation of the conclusions drawn from the experimental results of 

Chapter 7 and recommendations for future research on and beyond the subject matter- 

Chapter 8.   
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Introduction to Channel Equalization 2 

Digital Pulse Amplitude Modulation Transmission 

Through Bandlimited Additive White Gaussian Noise 

Channels 

 

 

 

The first step in studying any digital communication system is evaluating its 

performance on a single symbol basis. Unfortunately there is always an added level of 

complexity following the concatenation of symbols and a brand new array of problems 

communication theory has to solve in order to ensure an acceptable bit error rate.  

Whenever a string of symbols is passed through a bandlimited channel, whether channel 

distortion is present or not, inter-symbol interference arises. That is of course due to the 

increased length of the pulses in the time domain and the insufficiently slow amplitude 

decrease rate their tails follow. In the following presentation a baseband system will be 

considered in order to introduce the basics of the subject unimpeded by further distractions.  

 

2.1 Inter-symbol Interference 

 

Following the signal flow in the block diagram of a PAM communication system  

Figure 2.1: Continuous-time Digital Communications' System 
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u(t) =∑𝑎𝑛𝑔𝑇(t − nT)

+∞

−∞

                                                            (2.1) 

,where an the k-bit symbol information sequence encoded into the M=2k  levels of the M-

ary PAM’s amplitudes and gT the transmission pulse. 

r(t) =∑𝑎𝑛ℎ(t − nT) + 𝑛(𝑡)

+∞

−∞

                                                 (2.2) 

,whereh(t) = c(t) ∗ gT(t)and n(t) represents the AWGN. 

y(t) =∑𝑎𝑛x(t − nT) + v(t)                                                 (2.3)

+∞

−∞

 

,where x(t) = gT(t) ∗ c(t) ∗ gR(t) and v(t) = n(t) ∗ gR(t). Finally the sampler produces 

𝑦𝑘 = y(kT) =∑𝑎𝑛x(kT − nT) + v(kT) =

+∞

−∞

x0a0 + ISI + vk                       (2.4) 

Here the pulses are not sufficiently bounded in the time domain due to the finite 

bandwidth. This causes neighboring samples to leak into the intended output of the 

sampler, causing an additional source of noise known as inter-symbol interference. An 

added source of unpredictability is usually the unknown and time varying nature of the 

non-constant channel spectrum C(f). In theory the whole symbol sequence contributes to 

ISI, however, in practice we can truncate it to the L closest neighbors.  

One more thing to note here is that the noise is no longer white and this will significantly 

hinder any efforts to evaluate the performance of the various equalization or estimation 

techniques. A noise whitening filter will be discussed and worked into the overall 

procedure shortly. But let’s take things one step at a time and, for starters, consider a 

distortionless channel. 

 

2.2 Design of Bandlimited Signals for Zero or Controlled 

Intersymbol Interference (ISI) 

 

2.2.1 Zero ISI: That is, 

x(nT) = {
1    n = 0
0    n ≠ 0

                                                            (2.5) 

The necessary and sufficient  condition for the Fourier transform X(f) in order for x(t) 

to satisfy the above criterion is known as the Nyquist pulse shaping criterion or the Nyquist 

condition for zero ISI and it is stated as ∑ X(f +
m

T
) =+∞

−∞ T. The proof is easily extrapolated 

by following the steps used to prove its more notable sibling, the Nyquist sampling 

theorem, to reach 

Z(f) =∑X(f +
m

T
) =

+∞

−∞

∑zne
j2πnfT

+∞

−∞

                                             (2.6) 
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From there,we’ll notice that zn = Tx(−nT) which of course yields the desired 

transformation of the zero ISI signal to the Nyquist pulse shaping criterion. 

Note that unlike the Nyquist sampling theorem, this time we will aim for overlapping 

replicas of X(f) (aliasing) in our effort for a flat frequency response Z(f)=T. In more detail, 

suppose the channel has bandwidth W, that is to say X(f)=0 for |f|>W 

1. For 
1

T
> 2𝑊the replicas are non overlapping therefore there is no way to ensure 

Z(f)=T. 

2. For 
1

T
= 2W(Nyquist rate) only X(f)=TΠ(f/2W) can provide the desired 

response. However the sampling function is non-causal and therefore non-

realizable. In practice it can be approximated by a sufficiently delayed and 

truncated version. Yet it should be avoided all together as its tail decays 

extremely slowly, as 1/t. Hence a small mistiming error in the sampling will 

result in an infinite non convergent sum of ISI components. 

3. Finally for 
1

T
< 2𝑊we get overlapping replicas, which allow for numerous 

feasible choices of X(f) that satisfy Z(f)=T. 

 

A widely used spectrum  is the raised cosine 

Xrc =

{
 
 

 
 T,                                                                      0 ≤ |f| ≤

1 − β

2T
𝑇

2
[1 + cos

πT

β
(|f| −

1 − β

2T
)],            

1 − β

2T
≤ |f| ≤

1 + β

2T

0,                                                                              |f| >
1 + β

2T

                           (2.7) 

which of  course is a modified, smoother, version of TΠ(f/2W) and converges to it for 𝛽 →

0. The excess bandwidth beyond the Nyquist frequency is usually expressed as a 

percentage, represented by the roll-off factor β (0 ≤ β ≤ 1).  

 
Figure 2.2: Raised-cosine spectrum 
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In the time domain  

x(t) = sinc (
t

T
)
cos (

πβt

T
)

1 −
4β2t2

T2

                                                      (2.8) 

with its tails decaying as 
1

𝑡

1

𝑡2
=

1

𝑡3
, which leads to a summable ISI series in case of 

mistiming. Practical transmitter and receiver filters approximating the overall desired 

behavior can easily be designed. And ideally 𝐺𝑇(𝑓) = 𝐺𝑅
∗(𝑓) = √|𝑋𝑟𝑐(𝑓)|𝑒

−𝑗2𝜋𝑓𝑡0 

(matched filter for maximum SNR). 

 

2.2.2 Controlled ISI: Obviously zero ISI is achieved at the expense of the 

transmission rate. But if we were to relax the zero ISI constraint we could raise the symbol 

rate to the Nyquist rate. Two commonly used choices are 

x(nT) = {
1      n = 0,1
0 otherwise

   and   x(nT) = {
1 n = 1

−1 n = −1
       0 otherwise

                             (2.9) 

, i.e. Z(f) = T + Te−j2πfT or x(t) = sinc(2Wt) + sinc(2W(t − T)) for T =
1

2W
, and 

 

Figure 2.3: Duobinary Signal Pulse in the time and frequency domain 

 

Z(f) = Te+j2πfT − Te−j2πfT or x(t) = sinc(2W(t + T)) − sinc(2W(t − T)) for T =
1

2W
 

 

 

Figure 2.4: Modified Duobinary Signal Pulse in the time and frequency domain 
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which are known as the duobinary signal pulse and the modified duobinary signal pulse, 

respectively.  Both are (approximately) physically realizable, since filters can be designed 

that follow their smooth spectrum very closely. We will note that the modified duobinary’s 

spectrum has a zero for f=0, making it applicable to channels that do not propagate signals 

with frequency equal to zero (static signals). 

In practice a more generalized partial response signal, 

X(f) =
1

2W
∑x(

n

2W
)e−jnπf W⁄  for |f| ≤ W                                     (2.10) 

can be utilized. However, as we select more nonzero elements, the problem of unraveling 

the controlled ISI becomes more cumbersome and impractical. 

 

2.2.3 Data detection for controlled ISI: 

The easiest method to implement is symbol by symbol detection. A direct 

implementation e.g. for the duobinary signal pulse 

  ym = bm + vm = am + am−1 + vm                                                                           (2.11) 

, where let us ignore the noise for the moment, would plainly be to subtract the last 

detected symbol from the received sum.  

However, errors arising from the additive noise would propagate. Luckily there is an 

easy fix. Precoding of the original data at the transmitter instead of subtracting the estimate 

at the receiver can eliminate error propagation. In more detail: 

 

Let the M-level data sequence {dn}, with possible values 0,1,2,…,M-1 and the 

precoding rule 

 pm = dm − pm−1 (mod M)                                                  (2.12)  

, followed by the renormalization 

 am = 2pm − (M − 1)                                                       (2.13)  

 

Which will of course translate them into the M-ary PAM levels. 

 

This will give rise to the received (noise -free) sequence 

bm = am + am−1 = 2[pm + pm−1 − (M − 1) ]                           (2.14) 

Now we only need to notice that  

dm = pm + pm−1(mod M) =
bm
2
+ (M − 1)(modM)                      (2.15) 

In the presence of noise, the received sequence is quantized to the nearest possible signal 

level before applying the aforementioned rule. 

 

A similar procedure can now be derived for the modified duobinary pulse by noticing that 

bm = am − am−2. Therefore, the following precoding rule  pm = dm + pm−2 (mod M) 

would serve to evaluate pm − pm−2 in the modified duobinary counterpart. And as a result 

dm =
bm

2
(modM). 
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However, the symbol by symbol detection ignores the inherent memory contained in 

the signal (because of intersymbol interference) and therefore should be expected to be 

suboptimal. The optimal method would of course be the maximum- likelihood sequence 

detection. Which would lead to none other than a Viterbi search on the corresponding 

trellis. Of course, since the noise samples are no longer uncorrelated, the metrics will no 

longer be Euclidean in nature. Even though sequential trellis search algorithms for 

correlated noise have been developed, the suboptimal procedure of ignoring the correlation 

altogether is not uncommon. 

 

Next we will raise the bar and incorporate the effects of channel distortion into our 

design. 

 

2.4 System Design in the Presence of Channel Distortion 

 

A system, here a channel, causes distortion when its amplitude is not constant in its 

respective bandwidth  and/or its phase is nonlinear. A common practice is instead of phase 

distortion to use the envelope delay, τ(f) = −
1

2π

dθc(f)

df
, to define delay distortion as the 

distortion suffered whenever τ is not constant. 

Channel characteristics might be known, unknown but stable over a period of interest, 

like a telephone line whose path changes with every connection but is the same until the 

end of that connection, or even time varying altogether, like a wireless connection. In the 

following section we will consider system design for known and unknown channel 

characteristics. 

 

2.4.1 Known channel characteristics : 

With the knowledge we have accumulated up to this point we can design transmitting 

and receiving filter functions that maximize SNR and result in zero ISI. Obviously in our 

pursuit for zero ISI we aim for GT(f)C(f)GR(f) = Xrc(f)e
−j2πft0 , |𝑓| ≤ 𝑊. Then, the noise 

spectrum will also be transformed into Sv(f) = Sn(f)|GR(f)|
2. 

For M-PAM with distance 2d between levels, the probability of error is 

Pe =
2(M−1)

M
Q(√

d2

σv
2), which is minimized by maximizing the SNR = 𝑑2 𝜎𝑣

2⁄ . As we can    

see 

Pav =
E(am

2 )

T
∫ gT

2(t)dt =

+∞

−∞

(M2 − 1)d2

3T
∫ gT

2(t)dt

+∞

−∞

                         (2.16) 

or  
1

d2
=

(M2−1)

Pav3T
∫ |GT

2(f)|df
+∞

−∞
. Hence, 
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σv
2

d2
=
(M2 − 1)

Pav3T
∫ Sn(f)|GR(f)|

2df

W

−W

∫
|Xrc(f)|

2

|C(f)|2|GR(f)|
2
df

+∞

−∞

                     (2.17) 

and by applying the Cauchy-Schwartz inequality we find that the filters that minimizes the 

noise-to-signal ratio are  

|GR(f)| = K
|Xrc(f)|

1
2⁄

[Sn(f)]
1
4⁄ |C(f)|

1
2⁄
 , |f| ≤ W and |GT(f)| =

1

K

|Xrc(f)|
1
2⁄ [Sn(f)]

1
4⁄

|C(f)|
1
2⁄

 , |f| ≤ W 

,with θT(f) + θc(f) + θR(f) = 2πfto (phase distortion is perfectly compensated). 

 

2.4.2 Unknown channel characteristics and Equalization: 

When dealing with an unknown, yet time invariant, channel, methods of lower 

complexity can be developed, by measuring its response to an input sequence of finite 

length, in comparison to the adaptive equalization techniques that are employed for time 

varying systems.  

 

________________________________________________________________________ 

 

Maximum-likelihood sequence detection and noise whitening 

 

Whilst following the usual procedure for designing a maximum-likelihood receiver for 

AWGN, we reach the metric 

CM(𝐚) = 2Re(∑an
∗ ∫ r(t)

+∞

−∞

h∗(t − nT)dt

n

) −∑∑an
∗ am∫ h∗(t − nT)h(t − mT)

+∞

−∞

dt =

mn

 

2Re(∑an
∗ yn

n

) −∑∑an
∗ amxn−m

mn

                                       (2.18) 

, which as expected demands the use of a matched (to the combined transmitter and channel 

filter) filter at the receiver. All of the equations’ constituents are of course real, but keeping 

a generalized notation will pay off shortly.  

If we now make the reasonable assumption that in any practical system ISI is affected 

only by a finite number of symbols, let’s say 2L, the system can be described as a discrete-

time transversal filter that spans a time interval of 2LT seconds.  
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Figure 2.5: Equivalent discrete-time system model 

 

Of special interest to us would then be the two-sided z transform X(z) = ∑ xkz
−kL

−L ,for 

which we should notice xk = x−k
∗ . Therefore, X(z) = X∗(z−1), from which we can easily 

infer that if  ρ is a root ,1 𝜌∗⁄  is also a root. Hence, X(z) = F(z)F∗(z−1) , from where we’ll 

proceed to uniquely define  F∗(z−1) as the minimum phase polynomial (the polynomial 

having its roots inside the unit circle), thereby making  1 F∗(z−1) ⁄ a physically realizable, 

stable, recursive discrete-time filter. With minimal effort it can also be shown that 

E(vk
∗vj) =

No

2
xk−j. Therefore, following the whitening transformation 𝐇 = (Cov(𝐕))−

1
2⁄ 𝐕 , 

it turns out this is the noise whitening filter we need to cascade the transmitting filter, 

channel, matched filter and sampler combination with, to receive the equivalent discrete-

time white noise filter model, i.e. the L root polynomial F(z). 

 

 
Figure 2.6: Equivalent discrete-time white noise system model 

 

From here on,the Viterbi algorithm can be used to determine the most probable path 

through the ML-state trellis, as usual. However, the computational complexity grows 
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exponentially with the length of the channel time dispersion (ML+1 metrics have to be 

computed for each new symbol) and in most channels of practical interest the complexity 

is too expensive to implement. Instead, suboptimum methods are usually employed, such 

as the linear transversal filters that we’ll describe next. These structures have a 

computational complexity that is only a linear function of L. 

________________________________________________________________________ 

 

1   Linear Equalizers: 

Linear equalizers are linear transversal filters with adjustable coefficients cn. The law of 

electing the most appropriate tap coefficients is of course determined by the chosen 

performance criterion. And even though the probability of error is the most meaningful 

measure of performance, the corresponding function is highly nonlinear. Other criterions 

are usually employed in its stead.  

a. Peak Distortion Criterion is simply defined as the minimization of the worst–case 

inter-symbol interference at the output of the equalizer . 

We observe that the cascade of the linear F(z) and the equalizer having an 

impulse response {cn} is qn = ∑cjfn−j = cn ∗ fn. Its output, if for convenience we 

normalize q0 to unity (after all its nothing more than a universal constant gain 

factor), will be                   ak̂ = ak + ∑ anqk−n + ∑cjηk−j
′
n                              (2.19) 

The peak distortion metric is defined as 𝐷(𝐜) = ∑ |qn|
′
n  and with an equalizer 

having an infinite number of tap weights it can be minimized to zero. That is,  

qn = ∑cjfn−j = {
1 𝑛 = 0
0 𝑛 ≠ 0

                                           (2.20)  

can be uniquely solved through the z-transform 𝑄(z) = C(z)F(z) = 1 or C(z) =

1
F(z)⁄ . This is called a zero-forcing filter. An expected, since the cascade of the 

whitening and equalizer filters gives us C′(z) =
1

F(z)F∗(z−1)
=

1

X(z)
 (the filter ’s tap 

coefficients can be calculated from the inverse z-transform by complex integration), 

and pretty much indifferent result except for its usefulness in calculating the signal 

to noise ratio. 

For a finite-length equalizer, with 2K+1 taps, the peak distortion has been shown 

to be a convex function of c and its minimization can be carried out numerically. 

However, when the inter-symbol interference is not severe enough to close the eye 

the peak distortion is minimized by the zero-forcing solution in the range 1 ≤ |n| ≤

K. 

 

Before we carry on with our analysis we should note that the channel characteristics are 

generally unknown before the design process begins and a common practice is to design 

the transmitting and receiving filters to follow |GT(f)||GR(f)| = |Xrc(f)|. This allows for the 

simplification of the system to the discrete-time channel only filter which describes the 

ISI suffered due to the channel distortion, which in turn is the only source of ISI in this 
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design. This leads to suboptimal but also more elementary results. For the zero-forcing 

equalizer, if x(t) is the channel distorted pulse q(mT) = ∑ cnx(mT − nτ)
K
−K  and 𝐜𝐨𝐩𝐭 =

𝐗−𝟏𝐪. 

 

b. Mean Square Error Criterion A serious drawback of the zero-forcing equalizer is 

that it completely ignores the presence of additive noise and this might result in 

significant noise enhancement if the system presents a serious dip within some 

frequency range as it will try to compensate for it in order to level the frequency 

response. 

If we relax the zero-ISI condition, a filter can be designed around the 

minimization of the combined ISI and noise power at the output of the equalizer. 

This will result in the MSE = E[ak̂ − ak]
2 cost function. The minimization is 

obviously achieved when the error is orthogonal to the signal sequence. 

Equivalently                   ∑cjE(uk−juk−l
∗ ) = E(akuk−l

∗ )                                          (2.21)  

where un the output of the whitening filter. For the infinite tap case and iid data 

sequence {an} this will yield 

C(z) =
F∗(z−1)

F(z)F∗(z−1) + No
 or C′(z) =

1

F(z)F∗(z−1) + No
=

1

X(z) + No
 

But once more, beside the approximation of the SNR (here of the residual ISI plus 

noise energy as well), the finite tap solution is the one that interests us the most. For 

this case 𝐜𝐨𝐩𝐭 = 𝚪−𝟏𝛏 where Γlj = RU[l − j] = for iid {
xl−j + N0δij , |l − j| ≤ L

0                     , otherwise
 and 

ξl = RAU[l] = for iid {
f−l
∗ , −L ≤ l ≤ 0

0  , otherwise
. Also      J(K) = 1 − 𝛏𝐓∗𝚪−𝟏𝛏          (2.22) 

 

We will once again note that if we had used the discrete time channel filter instead, the 

result would plainly be ∑ cnRY[n − k] =
K
−K RAY[k]. We will also note that in practice the 

statistics are unknown but the correlation functions can be adequately estimated  by 

transmitting and measuring a test signal. 

RŶ[n] =
1

N
∑ y(kT − n𝜏)y(kT)  and  RAŶ[n] =

1

N
∑ y(kT − nτ)ak

N

1

N

1
       (2.23) 

Lastly the iid hypothesis is unnecessarily restrictive. An uncorrelated symbol sequence 

would be just as good. But more importantly, if the unrealistic expectation of uncorrelated 

symbols were to strike the reader as a rather odd choice, we would have to remind them 

that that theoretical design concerns the equalization of a known channel and that the 

statistics of the signal should, ideally, be irrelevant to the design of a flat spectrum for the 

system at that point. 
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________________________________________________________________________ 

 

Symbol and Fractionally-spaced Equalizers 

 

The keen reader might have noticed that on occasion we have selectively used a different 

sampling period τthan the symbol period T. When the channel characteristics are known 

and the receiver can be matched to the cascade of the transmitter and channel filter, the 

signaling frequency is the optimal tap spacing. However, in the suboptimal case where the 

receiver is only matched to the transmitter, the channel distorted signal is still aliased by 

the sub Nyquist symbol rate used for the transmitter-receiver zero ISI signal design. If the 

input to the equalizer is sampled on kT+τ0 its spectrum would be YT(f) =
1

T
∑X(f −

n

T
)ej2π(f−

n
T⁄ )τ0 and the equalizer would compensate for the frequency 

characteristics of the aliased signal and not directly for the channel distortion 

characteristics inherent in X(f)ej2πfτ0. 

On the other hand a fractionally spaced equalizer, i.e. an equalizer sampling at a fraction 

of the symbol period 
1

τ
= 2Fmax =

1+β

T
, at least as fast as the Nyquist rate, will prevent the 

folding of the spectrum and the equalizer will compensate for channel distortion before the 

aliasing effects. 

________________________________________________________________________ 

 

 

Figure 2.7: Dicrete-time channel models A,B,C and their amplitude spectra 
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2   Decision Feedback Equalizers: 

As we have already mentioned, the main reason linear equalizers are suboptimal 

compared to the trellis search is that they ignore the inherent memory in the data sequence. 

Decision feedback equalizers try to mend that by enlisting the last few detected symbols to 

try and remove their ISI from the signal. Their structure involves passing the sampled 

signal through a feed forward filter, which is a simple linear equalizer, and subtracting a 

normalized sum of the last K2 detected symbols from its output before attempting to detect 

the next symbol.  

 
Figure 2.8: Decision Feedback Equalizer block diagram 



 
 

 
34 

 

 

ak̂ =∑ cjuk−j +∑ cjak−j̃
𝐾2

0

0

−𝐾1

                                         (2.24) 

Both the peak distortion and the MSE criterion lead to mathematically tractable 

solutions for the tap coefficients. But the MSE is more prevalent in practice for the 

aforementioned reasons. Based on the assumption that the previously detected symbols are 

correct, it yields the same solution for the feed forward filter and, at least for uncorrelated 

sequences, the feedback filter coefficients are given in terms of the coefficients of the feed 

forward section by ck = −∑ cjfk−j
0
−K1

, k = 1,2,… , K2. 

Decision feedback equalizers severely outperform linear equalizers, and are really the 

only option, for channels that present a big dip, or even a spectral null, within their 

bandwidth. This will manifest in the time domain as severe, not necessarily spanning many 

symbols, ISI. Figure 2.9 through 2.11 will compare the performance of a linear MSE and 

a decision feedback equalizer of similar complexity on channels B,C, which can be seen in 

figure 2.7. And will also quantify the DFE’s slightly suboptimal performance compared to 

the ML sequence estimator’s performance. The linear equalizer will be shown to be 

adequate for channel A. 

 

3   Adaptive equalizers:   

When the channel is time-varying we have no choice but use equalizers with on-line 

adaptable tap coefficients .Even when dealing with time invariant channels, matrix 

inversion operations are avoided and recursive algorithms, such as the method of the 

steepest decent, are used to train the tap coefficients. Therefore the first step in the training 

of the adaptive equalizer will be shared by all of the aforementioned filters, too.  

Adaptive models for both the peak distortion and MSE criterion are available. 
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Figure 2.9: Error rate performance of linear 31 tap MSE 

equalizer 
Figure 2.10:  Error rate performance of DFE with K1=15,  

K2 =15 taps 

 

 

Figure 2.11: Performance comparison between MLSE simulation and DFE, both for the correct and estimated symbols 

feedback 
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a. Zero-forcing Algorithm The idea is, whenever the ISI is not too severe, to 

zero-force the cross-correlation between the error sequence and the data sequence. 

E(εkak−j
∗ ) = 0 ,  εk = ak − ak̂. If the symbols are uncorrelated and uncorrelated with 

the additive noise sequence E(εkak−j
∗ ) = δj0 − qj ,   j = −K,… , K  -equivalent to the 

known criterion for peak distortion minimization. The first step would be to train 

the network using a predetermined sequence and the simple recursive algorithm 

cj
(k+1)

= cj
(k)
+ Δεkak−j

∗  (2.25) where Δ a scale factor that controls the rate of 

adjustment and εkak−j
∗  a stand-in estimate for the unknown cross-correlation. 

Once the training period has ended the decisions 𝑎𝑘̃ (the output of the detector, 

not to be confused with the estimates who are the output of the equalizer ) are 

sufficiently reliable and will be used instead of the predetermined input  sequence. 

This is called the decision-directed mode of adaptation . 

For a high enough ISI the zero forcing condition is no longer the solution and a 

universal optimization technique will be required. At which point we might as well 

make use of the superior and mathematically elegant MSE criterion . 

 

b. The LMS Algorithm is the online or recursive version of the MSE 

algorithm, which is a batch processing method that requires matrix inversions. The 

method of steepest decent will be used instead to reach the minimum of the 

quadratic, therefore convex, cost function J. 

The method of steepest decent changes the point ck in the direction opposite to 

the direction of maximum increase of the cost function at that point, i.e. the gradient 

𝐠𝐤 =
1

2

∂J

∂𝐜𝐤
. For the MSE the gradient is of course 𝐠𝐤 = −E[εk𝐔𝐤

∗ ] and will, once 

more, be approximated by 𝐠𝐤̂ = −εk𝐔𝐤
∗ . Therefore 𝐜𝐤+𝟏 = 𝐜𝐤 + 𝛥εk𝐔𝐤

∗ . After the 

training period the decided symbols will be trusted to estimate the error  εk̃ = ak̃ −

ak̂ . 

Several other variations of the LMS are obtained by different gradient estimates. 

Popular choices are the average of the last N, −εk𝐔𝐤
∗vectors, 𝐠𝐤̂̅̅ ̅ and a weighted 

average 𝐠𝐤̂̅̅ ̅ = w𝐠𝐤−𝟏̂̅̅ ̅̅ ̅̅  + (1 − w)𝐠𝐤̂, that will act as a lowpass filter for the noisy 

gradient. 

 

c. Decision-Feedback  Equalizer The steepest decent algorithm will be 

applied unchanged  𝐜𝐤+𝟏 = 𝐜𝐤 + ΔE[εk𝐔𝐤
∗ ], however, in accordance with the 

assumption that the previously detected symbols are correct, the latter half of 𝐔𝐤
∗  

will be composed of the relevant training sequence or detected symbols, for the 

training and decision- directed mode respectively.  

 

Many more adaptive filter algorithms are applicable to the problem of channel 

equalization which, in essence, isn’t any different from the problems pertaining to 
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other disciplines that develop implementations for, or employ the services of, 

recursive algorithms such as the discipline of pattern recognition, neural networks and 

learning machines. 

 

2.5 Summary 

 

Since the subject of this thesis will revolve around DFE's this chapter serves a detailed 

introduction to the theory of equalizers in general. Specifically, we have presented the 

reasons and situations that make the need for channel equalization imperative. We have 

discussed popular methodologies for linear and linear adaptive equalizers. And we have 

also explained the need for decision feedback equalizers (and their adaptive counterparts), 

by comparing their performance with that of linear equalizers of the same size for various 

channels (most importantly for channels with a spectral null). For a deeper exposition, [1] 

and [2] by Proakis and Salehi are an indispensable read for anyone with an interest in 

communications.   
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Fast Adder and Multiplexer Implementations 3 

Speed and Area Estimates 

 

 

 

Digital filters are composed of adders, multipliers and delay elements (flip-flops). In 

the next part of the thesis, we will transform multipliers or even a whole part of the 

transverse filter into a composite multiplexer. Hence, any exposition on multiplier design 

can be avoided, while speed and area estimations of adder and multiplexer designs will be 

instrumental to our reformulation strategies. In this chapter we will aim to produce the 

necessary speed and area estimates for our application. 

 

3.1 Fast Adder Implementations 

 

3.1.1 Ripple Carry Adder 

The throughput speed-up of adder units covers an extremely diverse array of topics. 

From the low-level redesign of full adder cells to carry prediction schemas. 

The HA equations every engineer should be familiar with are 

 s = a⊕ b and c = ab                                                      (3.1) 

Two such HA cells are needed for the full a,b,cin addition. The simplest adder design,  

the ripple-carry adder, is simply a cascade of FA cells which means that the delay is 

bounded by the carry propagating through the whole chain. Even for such a simple design, 

the FA cell equations can be reformulated in a way that logic is shared by sum and carry, 

the schematic slightly rerouted from the complementary p,n-mos network design and the 

layout optimized, for a faster path from input to carry. As an added bonus, the inverter that 

follows the output of every cmos function design can be removed if we notice that 

complementary inputs produce complementary outputs. Hence, inversions can be shifted 

away from the critical path as can be seen in figure 3.1. 
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Figure 3.1: Ripple carry adder with the inverters shifted away from the critical path 

 

Technologies faster than cmos can also be implemented for the physical standard-cell 

library. But in the end, long ripple carry chains, cannot be fast enough to rival the higher 

level designs that use the same technology for their constituents. The development of  a 

common descriptive language would benefit the quantification of such comparisons. 

_____________________________________________________________________ 

 

Generate, Propagate Equations and Canonical Design 

 

In order to develop a common platform that will allow us to evaluate the performance 

of every adder design, the generate and propagate equations will be introduced.  

Gi:j = Gi:k + Pi:kGk−1:j                                                    (3.2) 

Pi:j = Pi:kPk−1:j                                                             (3.3) 

where Gi:i = Gi = AiBi    and    Pi:i = Pi = Ai⊕Bi  the base case 

sand the specially treated G0:0 = Cin, P0:0 = 0. 

 

These simply tell us that a carry generated from j-to-i must have either been generated from 

j-to-(k-1) and then propagated to-i or generated from k-to-i and that propagation from j-to-

i is simply the cascade of propagation from j-to the intermediate-(k-1) bit plus propagation 

from k-to-i. As a final note these equations define a valency-2 group PG logic. Higher 

valency groups can be introduced by replacing Gk−1:j,Pk−1:jwith their respective equations 

etc., for fewer levels but slower more complex gates. 

Every design can thus be divided into three parts, the bitwise PG Logic where the base 

signals are generated, the Carry Generator where the Gi:0 = Ci are computed and finally 

the Sum Logic. 
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Figure 3.2: Canonical Design division 

_____________________________________________________________________ 

 

For a ripple carry adder, the carry generator will simply be the chain of the figure 

below, 

 
Figure 3.3: Ripple carry generator 

which will yield                   tripple = tpg + (W− 1)tAO + txor                                      (3.4) 

All of the subsequent design attempts will focus around either breaking up the chain or 

trading area for levels of the carry generator, by computing intermediate generate and 

propagate signals.  

_____________________________________________________________________ 

 

For simplicity's sake, since more complex gates will not be attempted, we will obscure 

low level gates in our schematics by introducing black and grey cells representing the 

group PG gates (figure 3.4). 

 
Figure 3.4: Group PG cells 
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Figure 3.5: Carry-ripple adder group PG network 

 

The only exception to that rule will be a Manchester carry-chain of short length where 

a faster domino gate can be utilized to compute the carries with great speed. 

 
Figure 3.6: Manchester carry-chain and its schematic representation  

_____________________________________________________________________ 

 

3.1.2 Carry Skip Adder and Linear Carry Look-Ahead Adder 

An elementary, and historically first, attempt to statistically shorten the delay, calls for 

breaking the word into shorter parts and using a carry propagation predictor, which is 

simply the and gate of all the Pi, to, sometimes, propagate the input rather than the output 

carry of the previous stage. This design is called a carry-skip adder and was proposed by 

Charles Babbage himself. A Manchester chain can improve upon the objective speed of 

this scheme. 
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Figure 3.7:Propagation predictor with Manchester chain generator 

 

In the same vein a linear carry look-ahead adder utilizes a short and fast PG predictor 

similar to the Manchester chain by breaking up the word in k groups of n bits each.  

 
Figure 3.8: Linear carry look-ahead adder 

This will yield a delay of    tcla = tpg + tpg(n) + [(n − 1) + (k − 1)]tAO + txor            (3.5) 

Of course, this is  statistically slower than the carry skip adder of a similar design. 

The problem with the aforementioned designs is however, that non cmos logic is being 

utilized and a HDL cannot account for that unless custom cell libraries are created and the 

components recognized as such by the optimizer. 

 

3.1.3 Carry Select Adder 

Alternatively each stage, apart from the first one, can be calculated for both a zero and 

unit carry in and the result passed to the output when the last stage’s carry out is ready. 

This is known a linear carry-select or carry-increment (if the common logic is factored 

out and the output multiplexer is simplified to a grey cell) adder. Its delay can be viewed 

either as 

tselect = tpg + [n + (k − 2)]tAO + tmux  or 

tincrement = tpg + [(n − 1) + (k − 1)]tAO + txor                                   (3.6) 
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(a future note will also prove that 2-to-1 and xor delays can be used interchangeably). Or 

even as tincrement = tpg + tpg(n) + [(k − 1)]tAO + txor if a faster than ripple-carry n-group 

PG logic is used (not necessarily of the variety introduced above as will be explained 

shortly). 

 

3.1.4 Square-root Carry Select Adder 

We will now notice that the carry chains for the more significant bits complete early. 

Therefore it would pay–off if instead of the linear designs we utilized short chains of 

variable group size so that the path of the carry through the previous stages and the 

computation of that group would be closer together. A notable choice would be for each 

group to include one bit more than the previous one. Then if the first group is of M bit and 

for a total of k groups, W = M+ (M+ 1) + (M + 2) +⋯+ (M + k − 1) =  Mk +
k(k−1)

2
=

k2
2⁄ + k(M − 1 2⁄ ) or if M ≪ W , k ≈ √2W. Therefore, 

 tsqrt ≈ tpg + tpg(M) + √2WtAO + txor                                            (3.7) 

whence the name square-root carry-select adder. 

 
Figure 3.9: Square-root carry-select adder 

 

In all of the above, the delay equations do not account for the fan-out that each stage 

must drive. Especially in the latter stages of the variable-group length  adders the fan-out 

becomes large enough for buffering to be a requirement. Also when the subgroup adders 

become wide enough we can recursively apply the designs in the latter stages. By taking 

this to the limit, we obtain the conditional-sum adder that performs carry select starting 

with groups of 1 bit and recursively doubling to W/2 bits. 
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Figure 3.10: Conditional-sum adder 

 

Factoring out the common logic and using AO gates interchangeably (as will be shortly 

shown) with 2-to-1 multiplexers results in the Sklansky parallel prefix adder that will be 

discussed shortly. 

 

3.1.5 Parallel Prefix Adders 

The last but not least category of wide adders to be discussed is that of tree, 

logarithmic, parallel-prefix or multilevel look-ahead adders. The characterization will 

become apparent in just a moment. 

For wide adders, the delay is dominated by the delay of passing the carry through the 

look-ahead stages. This can be reduced by looking ahead across the look-ahead blocks or 

as we’ve previously stated trade area for computational levels of the carry generator, by 

computing intermediate generate and propagate signals. And for wide enough adders even 

the O(√W) delay of the square-root carry-select adder cannot match the O(log2W) of this 

family. 

The many look-ahead trees present different tradeoffs amongst them with the Brent-

Kung  tree having a constant fan-out of 2 at each stage and minimal wiring but requiring 

2log2W -1 stages, 



 
 

 
45 

 

 
Figure 3.11: Brent-Kung tree 

the Sklansky tree with a delay of only log2W stages, but plagued by doubling fan-outs 

at each level, hence requiring either transistor sizing that will cut into the regularity of the 

layout or sufficient buffering of the critical signals, 

 
Figure 3.12: Sklansky tree 

and the Kogge-Stone tree with only log2W stages as well as a constant fan-out of 2, but a 

lot of long wiring. Also, in the order presented, the cell count is increased dramatically, 

thereby increasing the cost both in area and power consumption.  

 
Figure 3.13: Kogge-Stone tree 

All three trees represent deviations from the ideal of log2W delay, constant fan-out of 2 

and a single wiring track between each row in one respect. Between these extremes 

different compromises exist such as the Han-Carlson, Knowles and Ladner-Fisher trees. 

Higher valency tree adders can also be constructed utilizing for instance Manchester carry 

chains. These may have fewer stages but each stage is slower.  
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3.1.6 Hybrid Adders 

Finally, as have hinted before hybrid tree/select adders can be constructed by using 

the tree to compute the carry into each stage, such as the spanning tree adder where the 

last level of the valency 3 Brent-Kung tree is saved by the carry select adder, or even utilize 

such a tree for each stage if the stages are long enough to warrant the hardware overhead. 

The group length should be balanced such that the carry-in and the pre-computed sums 

become available at the same time. This structure can be used for instance to battle the 

large fan-out of the Sklansky tree with the sparse-tree adder computing the carry-in of 

only every fourth bit. 

 
Figure 3.14: Sparse-tree adder 

Emphasis should be given to the ease with which the tree adder can be pipelined for a 

larger throughput rate. Something that might be of use when we discuss retiming at the end 

of this part. 

_____________________________________________________________________ 

 

Multiplexer based adders. Mux AO and XOR. 

 

If we were to notice that propagation and generation signals cannot both be true at once, 

the generation equation could be rewritten as Gi:j = Pi:k̅̅ ̅̅ Gi:k + Pi:kGk−1:j. Clearly a 2-to-1 

multiplexer unit. In the same vein a xor gate can be reworked into a multiplexer unit. The 

practical use of all that is of course provisional on a mux implementation, faster than the 

and-or or xor cmos implementations, respectively. A multiplexer based tree adder can then 

achieve a delay of (log2W+ 2)Tmux  (3.8) and just about half that with a singular pipelining 

element. 

_____________________________________________________________________ 

 

3.1.7 Carry Save Adder and Multiple Operand Addition 

When three operands need to be added, an alternative strategy to cascading two adders 

can be employed. Noting that a disjoint FA can add 3 bits, if we provide as inputs bits of 

the same weight and save both carry and sum (CSA), we then need only add the two words 
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(obviously the carry word needs to be shifted left by one space) with a singular adder to 

produce the same outcome. If we approximate the delay of the FA with the two cascading 

xor gates of the sum the delay could be about as low as 

 (log2W+ 2 + 2)Tmux                                                        (3.9) 

,as we have already mentioned. 

 
Figure 3.15: Carry save adder 

 

3.2 Fast Multiplexer Implementations 

 

To begin with, we cannot stress enough that for a relatively small fan-in, cmos 

components should not be composed of their logic constituents but should be developed as 

composite cmos gates. For instance if the 2-to-1 multiplexer were constructed as a 2 level 

and-or gate, the capacitive load for the previous stage would have been about 2/3 that of 

the static cmos mux, but the propagation delay of each stage, let alone the inverter that 

follows positive logic cmos gates, would vastly overshadow that small advantage. 

Even faster multiplexers can, probably, be designed by transmission gate logic, tri-state 

gates and, as expected, inverted cmos multiplexers have close to half the delay of non-

inverted ones, just by removing the cascading inverter. For the recursive design at hand, 

where the output is eventually fed back to the selector, we only need to change the 

enumeration of the inputs to its 1’s complement for the multiplexer to make the correct 

selection. Unless it passes through an even number of inverted mux stages, in which case 

the output is the intended one. 

 

 

 

 

 

 

 

 

Figure 3.16: In order, static cmos, transmission gate and tri-state multiplexers  
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Yet, eventually, both the effort and parasitic delay of a large composite gate become 

large enough to make the multiple stages design a more appealing solution. In more detail, 

the linear delay model used for first order calculations defines the propagation delay of the 

gate as d=f+p, where f the effort or stage delay, that is the delay emerging from driving h 

identical gates or having fan-out h- f=gh, where g the logical effort representing the gate 

capacitance -, and p the parasitic delay emerging from the gate driving its internal 

capacitances. The delay is given in units of an inverter’s, which can deliver the same output 

current, delay. And that of course means that the transistors should be sized accordingly 

and that the logical effort and parasitic delay represent the gate capacitance and the inherent 

gate load, respectively, in units of the inverter’s gate (or load) capacitance. 

It’s worth noting that the over-encumbrance sometimes comes from the increased 

logical effort while others from the parasitic delay, or even both. For example the tri-state 

multiplexer has a constant logical effort of 2 while the parasitic delay grows linearly, as 

2n, with the fan-in. On the other hand the cmos inverted mux’s logical effort grows as 

(log2n+1) and the parasitic delay even worse, as n(log2n+1).Therefore, the optimal number 

of inputs and stages is highly dependable on the design. For our purposes all multiplexers 

will be designed as a tree structure of 2-to-1 multiplexers. This will make depth and area 

calculations trivial and will also define a common unit time for the adders’ delay. Besides, 

this is the logical choice for cmos multiplexers and for fan-out larger than one. 

 

 
Figure 3.17: Delay estimation/ fan-in of 4-to-1 cmos multiplexer and 4-to-1 tree of 2-to-1 

cmos multiplexers 

 

An M-to-1 multiplexer tree, where M=2k, composed of 2-to-1 multiplexer units would 

have one such unit in the final level, two in the one before and 4 in the one before that …up 

to 2k-1 in the first level, since pairs are grouped together. Hence, the depth of the unit would 
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be log2M levels and the sum of the geometric series will yield (M-1) 2-to-1 multiplexer 

units. An ML-to-1 multiplexer unit can now be seen either as L levels of M-to-1 units and 

summed in a similar manner, or we could directly apply the formulas we have just 

developed to yield a depth of Llog2M and a total of (ML-1)2-to-1 multiplexer units. Here, 

depth is equated to delay, since we decided to universally measure delay in units of 2-to-1 

mux delay, Tmux. 

 

3.3 Summary 

 

In this chapter we talked about the pros and cons of various adder units, from the simple 

RCA to logarithmic adders, and we calculated their delay. We have also provided a similar 

exposition of multiplexer units and sufficient justification for the choice of a tree 

architecture. This has also allowed us to develop an area estimate as well as provide a 

universal time unit that will allow us to write all delay estimates, for both adder and 

multiplexer units, in a normalized form. The reader can review the basics of the 

methodology used in 3.2 as well as a more detailed account of adders in [3] by Weste and 

Harris. Some complementary notes can also be found in [4] by Rabaey et al. 
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Iteration Bound 4 

DFGs, Iteration Period, Unfolding and Retiming  

While for most circuitry the critical path is easy to determine, for a recursive 

algorithm, i.e. a block diagram with loops, the generalization of these techniques is not 

straightforward. Different well known techniques such as pipelining and parallel 

processing can be applied in order to improve upon the critical delay for a block diagram 

represented as a feed forward graph.  

Furthermore, before we can commit to a particular realization of said algorithm and try 

to optimize it, we need to know its limits. And of course, be able to tell of its superiority 

amongst all other implementation or the trade-offs that make it an appealing solution. In 

this chapter we shall provide the minimum necessary training that will, in combination 

with chapter 3, answer questions of this sort for our application. 

4.1 Data Flow Graphs 

The data flow graph, or DFG for short, of a circuit is a directed graph whose nodes 

represent the various subunits (computations or functions) and the edges represent the 

intended flow of the signals. With each node we associate a normalized computation time 

and with each edge a non-negative number of delay elements. The DFG doesn't aim to 

capture the hardware architecture but rather the data flow among the various subtasks.  

Each node fires when all the input data needed are available, therefore, only after its 

precedent nodes have produced an output. Hence, the edges describe a precedence 

constraint, which we shall call an intra-iteration precedence constraint whenever the edge 

has zero delays and inter-iteration precedence constraint otherwise. Of course many nodes 

can fire simultaneously and this concurrency is something that we may want to exploit.  

 
Figure 4.1: (a) Block diagram and (b) its respective DFG 

 

Various DFGs describing one algorithm can be derived from one another through high 

level transformations. 
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4.2 Iteration Period Bound 

 

The feedback loops in recursive algorithms impose an inherent bound on the achievable 

iteration period. This is referred to as the iteration period bound, or even iteration bound 

for short, and it is linked to that particular representation of the algorithm. That is, it is the 

best case scenario for the sample period, considering any and all transformations of that 

DFG (unfolding, retiming) without that untransformed DFG necessarily reaching it.  

The IPB (iteration period bound) can be formally defined as the iteration bound of the 

critical loop of the DFG. The time needed to execute a loop is determined by the precedence 

constraints. That is to say, the precedence constraints tell us how many samples-not input 

samples but time delayed signals and specifically how many different time instances -are 

present in the loop at any given time and the nodes tell us the computation time of that 

loop. The loop can be transformed so that the sample period will be Ti/Di ,where Ti the 

loop computation time and Di the number of delays in the loop. This is known as the loop 

bound and the critical loop is the one with the largest bound. Therefore, the iteration period 

bound is T∞ = maxALL Loops{
Ti

Di
}. For large systems the longest path matrix algorithm or 

the minimum cycle mean algorithm can be used to compute the IPB. 

 

4.3 Pipelining and Cut Set Retiming 

 

The idea behind the retime approach is to move some delay elements to other edges of 

the data flow graph so that the transfer function is preserved. This could, like all akin 

approaches, accommodate faster clock speeds, reduced number of registers, reduced power 

consumption through the effect of switching frequencies on it or even logic synthesis. A 

formal algorithmic approach to retiming can be devised, however the version that lends 

itself the most to back of the envelope calculations is that of cut set retiming. This is a 

generalization of pipelining. 

The pipelining transform adds a register on each edge of some cut set of a feed forward 

DFG (or a feed forward cut set, for more generality). This shortens the path between the 

neighboring registers and can therefore be used to shorten the critical path. Of course for 

each level of pipelining the latency, i.e. the time from input sample to the respective output, 

is increased by one. Pipelining can also be used to "cut across" units that are fired 

concurrently, assuming their architecture can be conveniently split in two time dependent 

parts and they belong to a common feed forward cut set. This is referred to as fine grain 

pipelining.  
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Figure 4.2: Fine grain pipelining where the multipliers where conveniently split in two subunits 

 

For the cut set retime approach the steps to follow after producing a cut set is to simply 

remove a set number of delay elements from all the edges that belong to the cut set and 

flow into the one half of the graph and add the same number of delay element to the ones 

that flow into the other half.  

 
Figure 4.3: An application of cut set retiming 

 

 

4.4 Unfolding 

 

The unfolding transformation is the equivalent of parallel processing for recursive filters 

and as such is used for high-speed and low-power VLSI architectures. To apply the 

unfolding transformation we need only write the filter equations for J consecutive 

samples/iterations, for unfolding factor J, and factor the terms in the abscissas so that they 

correspond to output signals or retarded versions of them. Each delay element is now 

obviously J-slow. As is also the case for parallel processing, since in both cases they get a 

"fresh" sample every Jth sample period. 

 

Example:  

y[n]=ay[n-9]+x[n]                                              (4.1)  

 

will be rewritten as     y[2k]=ay[2k-9]+x[2k] and y[2k+1]=ay[2k-8]+x[2k+1]        (4.2) 
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for 2 unfolding factor, and they, in turn, will be factored as 

 

y[2k]=ay[2(k-5)+1]+x[2k] and y[2k+1]=ay[2(k-4)]+x[2k+1]     (4.3)  

 

The DFG transformation can be seen figure 4.4 below. 

 
Figure 4.4: The 2-Unfolding of the DFG in (a) into (b) 

 

The aforementioned method of tackling the problem will suffice for our needs, however, 

it is often tedious and automated algorithmic techniques have been developed. Of the 

formal theory, pertaining to sample period reduction, we could make use of theorems and 

corollaries referring to path transformations. From them we can infer that the original DFG 

can be retimed in a way such that the J-unfolded version of the retimed DFG will meet a 

specified achievable critical path bound. Or for low complexity circuitry we could retime 

the J-unfolded DFG of the original architecture to fit our needs. In general the following 

lemma can be derived.  

 

Lemma: Any feasible clock cycle period that can be obtained by retiming the J-

unfolded DFG, can be achieved by retiming the original DFG directly and then unfolding 

by unfolding factor J. 

 

But before all that, the most important thing to understand is, when is unfolding 

necessary. In a lot of cases, as we have already mentioned, a DSP program cannot reach its 

iteration bound, even with retiming. The case might well be that the computation time of a 

node of the DFG exceeds the iteration bound. Therefore, the critical path cannot be retimed 

any shorter than that node. In that case ⌈
tnode

T∞
⌉unfolding factor should be used. It might also 

happen that the iteration bound is not an integer. The denominator of its irreducible form 

could then be used as the unfolding factor. If we encounter both at the same time then the 
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minimum value of J is that for which JT∞ is an integer, greater or equal to the longest 

computation node. Creating a perfect rate DFG, i.e. a DFG with 1 delay in each loop will 

also achieve the iteration bound, but the unfolding factor required will usually be much 

larger than that computed by the previous rules.  

The combination of unfolding and retiming is an advanced theoretical topic, usually 

excluded from most text books. By retiming the DFG, an acceptable performance can be 

achieved for much smaller unfolding factors and by following somewhat more advanced 

theoretical results, the critical path can be predicted and minimized before the unfolding 

transformation. This and the computation of the smaller unfolding factor required are 

beyond the scope of this thesis and a subject unto their own. 

 

4.5 Summary 

 

In this chapter we set the theoretical foundations for the transformations that we will 

apply on our circuit in the next part. We introduced the retime and unfolding 

transformations and we also tried to justify our expectations of their performance, by ways 

of the iteration period bound and by setting the rules by which an acceptable unfolding 

factor, that can achieve the iteration bound, can be derived. We purposely avoided referring 

to single and multiple rate DFGs as the concept of single rate DFG is the more intuitive of 

the two, and it is the only one we will have need of. For the interested reader [5] by Parhi 

can serve as a great introduction to the subject matter. 
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PART II: 
IMPLEMENTATION AND ANALYSIS 

________________________________________________________________________ 
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FBF Transformations 5 

Low Cost Techniques for High-Speed Implementation 

of Decision Feedback Equalizers 

 

In modern digital communication systems, throughput rates in the order of gigabits per 

second are not uncommon. Hence, the need for faster implementations of equalizing filters. 

A well-known fact is that the feedback loop limits the achievable speed bound for decision 

feedback equalizers, since the feed-forward part can always be pipelined. And in sight of 

that particular problem the subject of this thesis will revolve around the reformulation of 

said FBF for increased clock and throughput rates. The complexity overhead of the 

implementation will also be a major concern. 

 

5.1 Faster Adders and Multiplier Transformation 

 

From the start we shouldn’t fail to notice that the critical path of the FBF is composed 

of one multiplier, one slicer and two adders, as noted in bold line in the diagram below. 

 

 
Figure 5.1: FBF's critical path 
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The critical path delay is also the iteration bound for this design. For recursive filters in 

general, a retime approach could shorten the critical path, but it wouldn’t shorten the 

iteration bound. Also, more often than not, it cannot even achieve the iteration bound. An 

unfolding approach, as we’ll discuss later, possibly in combination with retiming, could 

achieve the iteration bound, yet it too wouldn’t improve upon it. As a result, the FBF has 

to be reworked into a new design with faster iteration bound before we attempt to reach it.  

The first thing to notice is that even though the multiplier can easily be reworked, for 

an M-PAM system, as an M-to-1 multiplexer (b0aj,b1aj,…,bM-1aj) the problem of designing 

faster adder units remains. By introducing tree adders (see 3.1.5) the iteration bound even 

if we were to replace the multipliers with multiplexers would still be T∞ =

(log2W+ 4) + log2M u. t. (see 3.2), where u.t the 2 to 1 mux delay. And even though a better 

unit design has significantly reduced the critical path and iteration bound, the results are 

still lackluster.  

 

5.2 Complete circuit overhaul  

 

In this chapter we will redesign the filter in order to replace the multipliers with 

multiplexers. By observing the diagram we can derive the following equation: 

 

 ŷ[n] = y[n] − ∑ a1ỹ[n − k]
L
1                                                   (5.1)  

 

can be reformulated as ML-to-1 multiplexer with the output selected from all of the 

possible sums  

 

bM-1a1+bM-1a2+…+bM-1aL 

bM-1a1+bM-1a2+…+bM-2aL 

… 

bM-1a1+bM-1a2+…+b0aL                                                                                                                                               (5.2) 

... 

b0a1+bM-1a2+…+bM-1aL 

… 

b0a1+b0a2+…+b0aL 

 

where bj the j-th M-PAM amplitude, with select vector [ỹ[n − k]]1xL, plus an adder. Or 

even ML adders, if we move them away from the critical path, each one preceding an input 

to the multiplexer.  

The authors of [6] have claimed that according to [7],[8] it could also be reformulated 

as an(log2M)
L to 1 multiplexer, however, closer examination of the source material has 

deemed such claims to be untrue. The authors of [7],[8] have only formulated the 

transformation that we have devised. 
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Figure 5.2: FBF transformation to a single multiplexer 

 

As an added bonus ,we could probably, if we were willing to use 1’s complement 

encoding, halve the size of the multiplexer since the amplitudes are symmetrically placed 

on either side of zero, hence the multitude of sums is actually half that plus their 

complements. It would, therefore, be much beneficial if only ML/2 sums and their bitwise 

complements were passed through the multiplexer.  

 

Figure 5.3: The tree structure of the ML-to-1 multiplexer. M multiplexers are the input to one 

multiplexer in the next stage 

 

However, the best multiplexer designs are probably not fast enough to provide enough 

margins for gigabit systems .A good case scenario for the iteration bound, since each of 

the L stages of the multiplexer is of depth log2M, would be T∞ = log
2
M u. t. (see 3.2). We 

can achieve this iteration bound by retiming the multiplexer as can be seen for the special 

case of 2-Pam and L=2, below. That reformulation alone might provide enough margins in 

D 

D 

ML to 1 
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some technologies however the overhead would be extremely large- ML overhead for the 

adders alone- and as we have mentioned in the introduction, that will also be a concern of 

ours in this thesis. Furthermore it certainly would not be nearly as fast, if the increase in 

the delay caused by the (ML -1) fan-out of the output stage multiplexer and the wiring were 

taken into account. And as we will see in the next chapter its performance will also be 

limited by the transmission delay of the registers. Unfolding the circuit might let us 

sufficiently relax clock period, but then the overhead would be J times that of the previous 

transformation. 

 

 
Figure 5.4:Retiming of the binary PAM 2-Tap FBF 

  

By taking into consideration the exponential cost dependence on L an alternate design 

strategy will be introduced, to, at first, improve upon the hardware overhead but as it turns 

out, will also yield a low iteration bound. 

_____________________________________________________________________ 

 

Functional decomposition 

 

Transformations of this short are a special case (or in this case a slight generalization) 

of functional decomposition, which is derived from Shannon’s expansion theorem. The 

theorem expresses the simple truth that a function with one or more variables with values 

in a countable finite set can be partially pre-computed for all the possible values of said 

variable and the true result can be decided when the variable’s true value is available. A 

simple case for a Boolean type variable can be seen in the example below. 
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Figure 5.5:  Application of Shannon's decomposition theorem for iteration bound lowering. 

 

This technique is commonly used in order to improve upon the iteration bound, just as 

the example above or indeed our case. And will be reused time and time again in our thesis.  

_____________________________________________________________________ 

 

5.3 Partial Pre-Computation 

 

The first step will be to only partially employ the pre-computation of all the possible 

sums strategy. A 2-term pre-computation for 2-Pam can be seen in figure 5.5. The critical 

path of this design is about (log2W+ 4) + Nlog2M u.t. (see Chapter 3), where N the number 

of pre-computation terms. The computation of the iteration bound seems a little more 

involved at first and very much dependent not only on the number of taps L and the number 

of pre-computation terms N but also on the word length and the multitude of the encoding 

levels. However, after some careful algebraic manipulation we can say that the iteration 

will always be bounded by the inner loop to 

 T∞ = log2M+
2

N+1
(log2W+ 3)u. t.                                            (5.3) 

The N delay elements in the feedback loop can be used to retime the design, breaking 

up the critical path and for large enough N the performance will eventually be bounded by 

the adders in the rest of the FBF. An expected application of the retime approach for the 2-

term pre-computation design would be to break the critical path within the adders and the 
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multiplexer. The retiming cut sets can be viewed in the following schematic, too. The 

registers to be moved are crossed.   

 

 
Figure 5.6: 2-term partial pre-computation and retiming 

 

In general N, will now be the exponent in L’s stead when it comes to hardware overhead, 

and a balance has to be struck between a smaller critical path and a large overhead. In the 

next section it will become obvious that N should be about L/2. 

 

5.4 Two-Stage Pre-Computation 

 

Naturally the obvious next step would be to, separately, pre-compute the remaining 

terms. 
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Figure 5.7: Two stage pre-computation of the FBF for binary PAM 

 

Worthy of special note is the partition scheme. The different ways of partitioning the 

tap coefficients between the two groups lead to different iteration bounds. According to [6] 

the best grouping is to put the first terms in one group, and the rest in the other. This time 

a simple overview of this grouping will yield an iteration bound of  

T∞ = log2M+
1

I + 1
(log2W+ 4)u. t.                                            (5.3) 

Also the complexity of the proposed architecture presents only about half the exponent 

of the original multiplexer design. Specifically, (MI -1) ,log2M width and (M (L-I) -1),W 

width 2-to-1 multiplexers and MI adders (CSA parallel prefix adders but the hardware 

overhead compared to the parallel-prefix adder on its own is insignificant) will be needed 

for the two-stage design. Whereas (ML -1),log2M width 2-to-1 multiplexers and ML adders 

would be needed for the original multiplexer design. The single multiplexer architecture 

can use slower, much smaller, adders, however, the path between the feed forward filter of 

the DFE and the FBF would become considerably slower. A cost function incorporating 

delay and hardware overhead should be invented and minimized in order to determine the 

best I per occasion. For our purpose I will be elected about L/2 in order to limit the 

complexity of the multiplexers and definitely not larger than L/2 to limit the overhead in 
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adders while keeping the iteration bound fairly low, since the depth of the "feed forward" 

multiplexer impacts the iteration bound, while that of the "feedback" multiplexer does not.  

Finally the extremely large fan-out of the original multiplexer design has also degraded 

exponentially, since the output of the "feedback" multiplexer is only carried to MI adders. 

To achieve the iteration bound of the last design we will next need to unroll (and possibly 

retime) the loop. The minimum unfolding factor is dependent both on the iteration bound 

and the unit design. That is the number of taps, the word length, the number of PAM levels, 

adder and multiplexer architecture etc. All of the above will be varied and experimented 

upon in the next chapter. An effort will also be made to experimentally approximate the 

iteration bound and to, if needed, retime the unfolded architecture in order to reach it. 

 

5.5 Summary 

 

In this chapter we reformulated the FBF in both a single and two stage pre-computation 

architectures. The area and iteration bound of both designs were defined. And their area-

speed trade-offs were explained in detail. This has also led to a rule of thumb for the number 

of tap coefficients included in each stage of the two stage pre-computation architecture. 

However, all these are very ASIC centric and their validity for FPGA implementations will 

be discussed in the next chapter. 
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FPGA Specific Implementations 6 

Approximations, Estimations and IPB achieving 

methodologies 

 

 

 

A lot of the theoretical work that has been done thus far is inevitably tied to the 

specific unit design. That by itself is not specific to either an ASIC or for instance an 

FPGA specific design. It is not even specific to any VLSI technology. The fan-out and 

the capacitance of the wiring has not been taken into consideration and neither has the 

propagation delay of the registers themselves.  

Yet, the optimal unfolding factor, for high speed and low area, is so intricately 

dependent on all possible factors, and its fractional form, that even our best estimates 

will be crude approximations which cannot possibly account for all real world 

phenomena.  The most we can hope for is a small dispersion among all of the 

theoretical and experimentally approximated results, which will give us a small enough 

span to implement and compare.  

 

6.1 Theoretical Estimation of the Unfolding Factor J 

 

As we’ve already mentioned the iteration bound is very much dependent on the number 

of PAM levels, word length and the number of tap coefficients through the number of pre-

computed constants (keeping in mind the I = ⌊L 2⁄ ⌋ rule). Following the rules stated 

towards the end of paragraph 4.2 the unfolding factor is also dependent on these, through 

the form of the iteration bound and the delay of the adders (the slowest node, regardless of 

the word length). The iteration bound we will tinker with is that of the last design T∞ =

log2M+
1

I+1
(log2W+ 4)u. t. 

To simplify the design of the detector unit, a reasonable 2 level PAM will be used. With 

1/-1 PAM levels it will be simplified to a sign check. This will also make its delay 
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insignificant, just the way it was treated during the derivation of the iteration bound. The 

combined csa adder and data slicer unit will henceforth be noted as the vector merge unit. 

 Moreover, we will only experiment with even tap number multitudes since the added 

odd numbered coefficient, according to the I = ⌊L 2⁄ ⌋ rule, will be inserted through the 

"feedback" multiplexer, whose delay contribution is expected to be a constant of log2M u.t. 

 

The iteration bounds of the units to be composed are: 

 

𝐓∞ 4 bit 8 bit 16 bit 32 bit 64 bit 

6 tap 5/2 11/4 3 13/4 7/2 

8 tap 11/5 12/5 13/5 14/5 3 

10 tap 2 13/6 7/3 5/2 8/3 

Slowest 

Node 
6 u.t 7 u.t 8 u.t 9 u.t 10 u.t 

Table 6.1: Iteration bound for the ASIC Design 

 

Hence, they should be unfolded according to: 

 

J 4 bit 8 bit 16 bit 32 bit 64 bit 

6 tap 4 4 3 4 4 

8 tap 5 5 5 5 4 

10 tap 3 6 6 4 6 

Table 6.2: Appropriate Unfolding factor for the ASIC Design 

 

6.2 Constituent Units for the FPGA Design 

 

However, all of the preceding designs have been built around ASIC methodology. The 

iteration bound is very much conditional on the use of fast parallel-prefix adders and the 

linear growth of the multiplexer’s delay with I. Since Xilinx, which will translate the HDL 

code to an FPGA design, will be used for measurements, it would be wise to check how 

the proposed component architecture transfers over. The Virtex 5 family , XC5VLX20T 

module, set to speed -2, was simulated for the area and delay estimates.  
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6.2.1 Adders for FPGA Designs 

To begin with, five different adder architectures will be pitted against the mapping the 

synthesizer produces for the HDL unsigned std_logic_vector addition. One bit’s sign 

extension was used for the “integrated” design to account for the availability of cout. The 

delay is the one that the synthesizer gives. 

 

delay(ns) 4 bit 8 bit 16 bit 32 bit 64 bit 128 bit 256 bit 

Ripple carry 4.972 6.136 8.464 13.120 22.431 41.053 78.298 

Carry select-4 ** 6.104 8.526 13.372 23.062 42.444 81.207 

Carry select-8 ** ** 7.525 9.983 14.899 24.732 44.398 

Square root ** 6.550 8.166 11.236 15.940 23.217 ** 

Sklansky 4.972 6.136 8.061 11.332 16.001 19.897 23.719 

integrated 4.616 4.460 4.642 5.006 5.734 7.190 10.102 

area(LUTs) 4 bit 8 bit 16 bit 32 bit 64 bit 128 bit 256 bit 

Ripple carry 7 13 25 49 97 193 385 

Carry select-4 ** 16 32 64 128 256 512 

Carry select-8 ** ** 38 76 152 304 608 

Square root ** 13 32 70 150 313 ** 

Sklansky 7 13 28 70 176 416 908 

integrated 6 9 17 33 65 129 257 

Table 6.3: Delay and Area measurements of various Adder Implementations  

 

 
Figure 6.1: Adder delay growth with word length: x-axis(bits) y-axis(ns) 
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The results seem pretty disheartening at first sight. However, a closer examination of 

the logic delay alone will prove that these bard results are probably due to a routing 

problem. The synthesizer seems to use application specific software cores to develop a 

compact adder when one is clearly described as such, but has serious trouble routing the 

added wiring of more complex designs and certainly sufficiently buffer the signal to 

account for the ever increasing fan-out of the Sklansky carry gen.   

 

Table 6.4: Logic Delay of Sklansky's tree adder vs. the synthesizer's adder mapping 

 

In reality the tree adder outperforms the "integrated" adder in every step of the way. In 

fact its performance is closer to that of the ripple carry adder. The assumption that it 

actually is a ripple carry adder is reinforced by its hardware cost (one LUT per bit) and 

confirmed by the critical path report of the synthesizer. 

The results will further deteriorate for a carry save adder. It is our estimate that this is 

due to routing issues, but it is beyond the scope of this thesis to further explore this. 

Probably a CSA/RCA is constructed. The hardware of the 3 Op. integrated adder still 

doubles as expected, yet it remains lower than the tree adder design’s overhead. 

 

 

 

Table 6.5: Logic Delay of CSA/Sklansky's tree adder vs. the synthesizer's adder 

mapping for 3 operand addition 

 

For the aforementioned reasons the adder solution that is automatically produced by the 

Xilinx tool (when writing behavioral code) will be used and its contribution to the iteration 

bound will be approximated by (W-1)+4 u.t. (see equation 3.4). A drawback of this choice 

is of course that an elementary solution for pipelining the component, if the need arises, is 

not readily available (input and output and intermediate carry wires will be included in the 

cut set), and an effective solution for FPGAs is based on a deeper understanding of FPGA 

specific design, according to [10], and is beyond the scope of this thesis. If pipelining is 

needed towards the end, the simple RCA pipelining scheme will be used.  

 

 

 

Delay 
(NSec) 

4 bit 8 bit 16 bit 32 bit 64 bit 128 bit 256 bit 

Sklansky 3.096 3.268 3.526 4.128 4.730 5.246 5.676 

integrated 3.010 3.688 3.870 4.234 4.962 6.418 9.330 

Delay (Nsec) 4 bit 8 bit 16 bit 32 bit 64 bit 128 bit 256 bit 

CarrySave/Sklansky 5.198 6.279 8.606 13.381 17.989 23.198 27.172 

3 Op. integrated 5.579 4.838 5.020 5.384 6.112 7.568 10.480 
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Figure 6.2: Pipelining cut set for RCAs 

 

6.2.2 Multiplexers for FPGA Designs 

One thing we noticed when we tried to implement AO and XOR gates with multiplexers 

is the inability of the synthesizer to successfully map 2-to-1 multiplexers. The suspected 

result can become explicit by viewing the technology schematic of a simple 2-to-1 

multiplexer, wherefrom we notice that it is implemented by means of and/or gates. 

Meanwhile, in the schematic of the 8-to-1we can notice the existence of a muxf7 

component which is a dedicated 2-to-1 multiplexer component. However, as it turns out 

this is by design. The muxf7 unit is more than twice as slow as a LUT AO gate or even a 

4-to-1 LUT mux, which is the largest LUT constructed mux and has exactly the same delay 

as the AO gate. And it is only used as the output stage of larger multiplexers, which we 

suspect means it has better driving capabilities. The synthesizer can justify the trade-off 

between parasitic delay and driving capabilities when a large fan-out is expected. But all 

of this is only speculation on our part. 

Therefore, multiplexers will not be implemented by explicitly coding mux trees but by 

a simple case…is structure, which the synthesizer recognizes as a N-to-1 multiplexer. 

This will give us fewer stages, since 4-to-1 LUT multiplexers of exactly the same speed 

will be incorporated. Moreover, Xilinx manuals tell of faster implementations for larger 

multiplexers by taking advantage of the structure of the FPGA, and we actually stumbled 

upon a slightly faster implementation for a 16-to-1 multiplexer, but such designs, once 

more, are probably specific to the FPGA used and require an understanding of FPGA 

specific design that is beyond the scope of this thesis. 
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Table 6.6: Multiplexer delay 

 

The mux delay results are severely skewed and masked by the IO buffer delays but the 

delay increase is sufficiently linearly depended on the length of the select vector to warrant 

the use of the log2M u.t. or even I log2M u.t. delay, as before. However since the output 

stage of 8-to-1 and larger multiplexers, which is the case with our design, dominates the 

delay, while previous stages are of smaller than expected depth and delay, using a full (L-

I)log2M u.t. delay for the "feedback" multiplexer might be closer to the truth. The 

experimental approximation of the iteration bound will shortly prove this to be quite true. 

 

6.3 Estimation of the Unfolding Factor J for FPGAs 

 

After all these, the iteration bound and minimum unfolding factor will be computed for 

both the T∞ = log2M+
1

I+1
((W − 1) + 4)u. t.   (6.1) 

 

 

𝐓∞ 4 bit 8 bit 16 bit 32 bit 64 bit 

6 tap 11/4 15/4 23/4 39/4 71/4 

8 tap 13/5 16/5 24/5 8 72/5 

10 tap 14/6 17/6 25/6 41/6 73/6 

Slowest 

Node 
7 u.t 11 u.t 19 u.t 35 u.t 67 u.t 

Table 6.7: Iteration bound for the (6.1) approximation 

 

J 4 bit 8 bit 16 bit 32 bit 64 bit 

6 tap 4 4 4 4 4 

8 tap 5 5 5 5 5 

10 tap 6 6 6 6 6 

Table 6.8: Appropriate Unfolding factor for the (6.1) approximation 

 

 

and the T∞ =
1

I+1
(Llog2M+ (W− 1) + 4)u. t.   (6.2) approximations. 

 

 

 

 

Mux x-to-1 2-to-1 4-to-1 8-to-1 16-to-1 32-to-1 

Delay(ns) 3.823 4.124 4.328 4.910 5.261 
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𝐓∞ 4 bit 8 bit 16 bit 32 bit 64 bit 

6 tap 13/4 17/4 25/4 41/4 73/4 

8 tap 3 19/5 27/5 43/5 15 

10 tap 17/6 21/6 29/6 45/6 77/6 

Slowest 

Node 
7 u.t 11 u.t 19 u.t 35 u.t 67 u.t 

Table 6.9: Iteration bound for the (6.2) approximation 

 

J 4 bit 8 bit 16 bit 32 bit 64 bit 

6 tap 4 4 4 4 4 

8 tap 3 5 5 5 5 

10 tap 6 6 6 6 6 

Table 6.10: Appropriate Unfolding factor for the (6.2) approximation 

 

In any case, all our theoretical approximations do not yield vastly different results and all 

unfolding factors from 3 to 6 will be explored. 

 

The multiplexers’ select signals can be extrapolated from the tables in appendix A. These 

express the unfolded equation y's indices and their factored form. The J=2 example can be 

seen in the table below. 

 

UF 2 2k indices 2k+1 indices 

1 a1 2k-1 2(k-1)+1 2k 2k 

2 a2 2k-2 2(k-1) 2k-1 2(k-1)+1 

3 a3 2k-3 2(k-2)+1 2k-2 2(k-1) 

4 a4 2k-4 2(k-2) 2k-3 2(k-2)+1 

5 a5 2k-5 2(k-3)+1 2k-4 2(k-2) 

6 a6 2k-6 2(k-3) 2k-5 2(k-3)+1 

7 a7 2k-7 2(k-4)+1 2k-6 2(k-3) 

8 a8 2k-8 2(k-4) 2k-7 2(k-4)+1 

9 a9 2k-9 2(k-5)+1 2k-8 2(k-4) 

10 a10 2k-10 2(k-5) 2k-9 2(k-5)+1 

Table 6.11: Factored form for the indices of y, for unfolding factor J=2  
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6.4 Manual Retiming Approach 

 

Finally we will attempt to retime the circuit for the purpose of shortening its critical 

path. This won’t be done by retiming the DFG, but by hand in order to allow for fine grain 

pipelining of the assorted units. And even though a few ways of pre-dividing the units into 

smaller parts in order to use an automated retiming algorithm  for the modified DFG come 

to mind, trade-offs between them and ways of accounting for experimental data would be 

the subject of much research. In this quest of ours [6] will be used as a guide. For this 

purpose we will guess and dissect their procedure of reaching the retimed design, study it 

step by step and then reevaluate its success for an FPGA design.  

The first thing to notice is that the retiming methodology to follow is, naturally, very 

much affected by the unfolding factor and the number of tap coefficients, but also, and to 

a lesser extent, by the word length. Their design is for an 8bit 4unfolded FBF with 6Tap 

coefficients. And as much of our initial research, it utilizes CSA/parallel-prefix adders and 

a mux tree structure. 

The critical path follows the dotted line and it has a delay of (7(VM)+8)mux delays. The 

first step in retiming the design is to move delays Do through D3 to all of the branches of 

their respective edges. This will make clearer the availability of delay elements around 

each unit.  

 



 
 

 
75 

 

 

 

Figure 6.3: 8bit 4Unfolded FBF with 6Tap coefficients 
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Figure 6.4: Step1. Move the available registers to all of their branches and Step2. retime the 

 

The second step will be to retime all of the "feedback" multiplexers by moving the 

delays from their select inputs to their outputs. This step will move the topmost delay along 

the critical path. However, a new critical path of only slightly shorter length has now been 

created. 
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Figure 6.5: Step3. The ad-hoc chosen cut sets 

 

Finally, retiming will be applied to the cut-sets that can be viewed in figure 6.6. These  

were carefully chosen to limit the critical path to (7(VM)+4) mux delays as can be seen by 

following the dotted line in the design below. Specifically the third row vector merge was 

pipelined in order to truncate the path followed by the red line in figure 6.7, to just under 

the length of the critical path. A couple of minor errors were detected and corrected in the 

design but the validity of [6]’s results was largely unaffected. Moreover, since the design 

is ASIC centered a few more improvements were made (inverted multiplexers- see 

previous chapter 3- and driving/buffer elements were used). 
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Figure 6.6: Retimed ASIC design for 8bit 4Unfolded FBF with 6Tap coefficients 

 

For an FPGA centric design, if we were to combine the derived knowledge of this thesis 

up to this point, the initial critical path would have a delay of about 3, 8-to-1 multiplexers 

plus that of a CSA/RCA. Pipelining of the CSA/RCA mapping that the synthesizer has 

produced wouldn’t be straightforward at all, since we need access to the CSA carry signals 

in order to produce an appropriate cut set. We would be forced to retime the third row cut 

set just like the second row cut set. Besides, the critical path would be the one following 

the red line with 3, 8-to-1 multiplexers plus the VM delay. Exactly that of the unfolded 

design on its own. 
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Yet, if we assume that a more careful unit redesign for the multiplexer would allow us 

to count the delays as an 8-to-1, a 4-to-1 and a 2-to-1 multiplexer an improvement of  about 

.5 to .7 (if we didn’t retime the 3rd row cut set at all) ns can be expected. And while this is 

not insignificant this is not promising either. The aforementioned circuit will be tested and 

its improvement (or lack thereof) quantified in the next chapter. 

However, absence of significant improvement is not proof of unattainability. It only 

means that the retiming scheme we have devised have failed. A rigorous algorithmic 

approach could, possibly, vastly improve upon the sample frequency. But as we have 

already mentioned, developing the specifics for the application of the method would be a 

big undertaking unto its own. 

 

6.5 Summary 

 

In this chapter our unit design decisions were reevaluated to better fit an FPGA 

centric design. This also gave rise to two new estimates for the iteration bound. The 

latter was experimentally approximated as well. Based on these and in accordance to 

the rule of thumb 4.4 the unfolding factored required was estimated between 4 and 6, 

depending mainly on the number of tap coefficients L. 
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Simulation Results 7 

Area/Speed Metrics and Validation 

 

At the final stage of our thesis the constructed architectures will be simulated by the 

Xilinx Ise synthesizer for a Virtex 5 FPGA. Faster FPGAs are available (Virtex 6 for 

instance), however we find that the results are less informative. Route delay becomes even 

more prevalent and there is a large dispersion between custom architectures and automated 

ones. Both facts would hinder speed comparisons. Of course, both area and frequency 

comparisons will be made. We will also, briefly at least, talk about our test benching 

methodology. 

 

7.1 Retimed Multiplexer Architecture 

 

Firstly, we will test the complete circuit to mux transformation. As we have already 

shown in chapter 5 the circuit can easily be retimed to reach its iteration bound. And this, 

of course, is the version that we will use. 

 

Area(LUTs) 8 bit 16 bit 32 bit 64 bit 

MuxFBF6Tap 639 1151 2175 4223 

MuxFBF7Tap 1279 2303 4351 8447 

MuxFBF8Tap 2559 4607 8703 16895 

MuxFBF9Tap 5119 8210 17407 33791 

MuxFBF10Tap 10239 18431 34815 67583 

Table 7.1: Area measurements for the Multiplexer FBF Design 

 

As expected, since both the size of the multiplexer and the number of RCAs double, the 

size seems to double with L, therefore follow the respective exponential law. Also it seems 

to grow linearly with the word length, also as expected, since the size of the RCAs grows 

linearly with it. In figure 7.1 (b) the respective growth may seem exponential, but we should 

notice that the x-axis is logarithmic. 
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(a) Exponential area growth with the number of 

tap coefficients 

(b) Growth with the word length 

Figure7.1: Area growth laws for the Multiplexer FBF design 

 

The maximum clock frequency, in accordance with the theoretical results, is constant 

for all word lengths, since the part they affect has been shifted away from the critical path, 

and number of tab coefficients, since the 2L-to-1 multiplexer has been pipelined with all 

paths equal to any of its L stages. The maximum frequency is 924.556MHz and as has been 

foretold the design is bottlenecked by the delay of the register (82% of the logic delay). 

And even though the iteration bound has clearly been reached we can still unroll the loop, 

expecting the critical path to pass through J 2-to-1 multiplexers. The register delay, 

however, will still contribute only once, therefore limiting its effect to only one Jth . 

Keeping in mind the already large hardware overhead, we will delay discussion of that 

possibility for a later paragraph.  

 

7.2 Two Stage Pre-Computation FBF 

 

The 2 stage pre-computation FBF is not very interesting by itself, but the speed and area 

analysis of this lesser component will significantly decrease the complexity of its unfolded 

version's analysis.  

Area(LUTs) 8 bit 16 bit 32 bit 64 bit 

FBF6Tap 164 316 620 1228 

FBF7Tap 189 365 717 1421 

FBF8Tap 327 631 1239 2456 

FBF9Tap 369 713 1401 2777 

FBF10Tap 646 1246 2446 4846 

Table 7.2: Area measurements of the 2 stage pre-computation FBF 
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MaxFreq(MHz) 8 bit 16 bit 32 bit 64 bit 

FBF6Tap 360.308 338.135 301.078 246.950 

FBF7Tap 360.308 338.135 301.078 246.950 

FBF8Tap 301.566 285.876 258.932 217.864 

FBF9Tap 301.566 285.876 258.932 217.864 

FBF10Tap 282.679 268.847 244.883 207.832 

Table 7.3: max Frequency estimation for the 2 stage pre-computation FBF 

 

From the area measurements we can infer two major things. One, since the area grows 

significantly only on even multitudes of the number of tap coefficients- that is, when the 

"feed forward" part grows - the area is dominated by the adders. The "feed forward" 

multiplexer (width 1) doesn't contribute much either , since the contribution of the 

"feedback" multiplexer (width W>>1) is insignificant as well. And two, the area once more 

grows linearly with the word length. This can also be directly extrapolated from the 

dominance of the adders' area, but is also corroborated by the linear grow in the dominant 

"feedback" multiplexer. 

  

  
(a) Significant area growth only on even 

multitudes of the number of tap coefficients 

(b) Linear growth with the word length 

Figure7.2: Area growth laws for the 2 stage FBF design 

 

With regards to the frequency, the difference in the critical path's delay doubles when 

the difference in word lengths doubles, therefore revealing the linear dependence on the 

word length, through the adders. But the small drop per bit in frequency also reveals the, 

once more, significant contribution of the register delay (here of the CSA as well). This 

can also be seen in the synthesizer's critical path report. Also, the frequency, naturally, only 

drops when the "feed forward" part is affected, since only that enters in the critical path. 

And the severe drop in frequency is telling of the impact of growth of the "feed forward" 

multiplexer. But not so much the increased fan-out, since the drop is very much 

anomalously dependent on the I, just as the construction of multiplexer units by the 

synthesizer  is (remember, for instance, that 2-to-1 and 4-to-1 multiplexers are both mapped 

to a single LUT, which affords them about the same delay, while for an 8-to-1 multiplexer 

the output driving element dominates the delay).  

0

200

400

600

800

6Tap 7Tap 8Tap 9Tap 10Tap
0

1000

2000

3000

4000

5000

6000

8 16 32 64

6Tap

7Tap

8Tap

9Tap

10Tap



 
 

 
83 

 

 

 

 

7.3 Unfolded Circuits, J= 2 through 7 

 

For the 2 stage pre-computation architecture, unfolded versions with unfolding factors 

J=2 through 7 were developed. The theoretical results called for unfolding factors 4,5 and 

6, however, we considered measuring a wider range would be the wiser choice. All of the 

measurements can be found in appendix B. Only the bare essentials will be displayed here 

due to the overwhelming volume. 

 

Area(LUTs) 6Tap 8Tap 10Tap 

2Unfolded 312 656 1276 

3Unfolded 465 980 1909 

4Unfolded 618 1306 2542 

5Unfolded 771 1634 3175 

6Unfolded 925 2213 3808 

7Unfolded 1079 2589 4442 

Table 7.4: Area measurements for unfolding factors 2 through 7 and 8 bit words 

 

MasterClk(MHz) 6Tap 8Tap 10Tap 

2Unfolded 475.324 411.050 347.164 

3Unfolded 625.920 558.150 472.719 

4Unfolded 742.444 663.720 576.292 

5Unfolded 752.655 782.715 660.245 

6Unfolded 819.918 774.804 728.244 

7Unfolded 875.567 808.269 777.672 

Table 7.5: max Frequency estimation for unfolding factors 2 through 7 and 8 bit words 

 

  
(a) Area growth proportionate to J (b) Speed-up with J approaching saturation 

Figure 7.3: Area and frequency measurements for unfolding factors 2 through 7 and W=8 
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Keeping in mind the observations in section 7.2 the area seems to grow proportionally 

with J, exactly as expected. The frequency however contrary to the theoretical expectations 

steadily grows beyond the expected unfolding factors independently of the number of tap 

coefficients L. The growth however seems to be reaching a certain saturation point, with 

every hit in hardware overhead yielding diminishing returns. Unfolding factors in excess 

of 7 can be explored however as will be discussed in the next section that would be of 

limited use. Furthermore, the effect the register delay has already been reduced to 1/7 of 

its potency and is therefore, in comparison with the architecture in 7.1, already 

inconsequential. 

We can also notice a slight anomaly in the maximum achievable frequency of the 5 

unfolded FBF. However, since none of the designs is proven optimal, a slightly shorter or 

longer critical path here and there, within the margin of error, is nothing that some 

elementary retiming cannot invert. Moreover contrary to the results in tables 6.8, 6.10 and 

6.13, with the rise in L, even though theoretically higher achievable rates are allowed, they 

don't conclusively seem to be achievable in quite as small a rise in J. Unless we disregard 

the "tainted" results of J=5. Then the expected performance is more than likely.  

 

  

(a) Area growth with W (b) Drop in frequency with W 

Figure 7.4: Effects of the word length W on the area and frequency for J=4 

 

  
(a) Area growth with W (b) Drop in frequency with W 

Figure 7.5: Effects of the word length W on the area and frequency for J=7 

 

The changes in area and frequency with W seem to follow the laws extrapolated from 

the 2 stage FBF in 7.2, as expected. 
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7.4 Discussion 

 

While the area estimations were on point the performance of the circuit was largely 

underwhelming. The required unfolding factor was vastly underestimated, from the 

expected J=4,5 and 6 to larger than 7 for L=8,9 and 10. This, however, is not that notable, 

since the iteration bound estimates were very coarse and the rules for electing J too 

dependent on the fractional form of the IPB. 

 

  
(a) Frequency comparison (b) Area comparison 

Figure 7.6: Frequency and area comparison for the Multiplexer architecture and 7 Unfolded 

FBF, W=8 

  
(a) Frequency comparison (b) Area comparison 

Figure 7.7: Frequency and area comparison for the Multiplexer architecture and 7 Unfolded 

FBF, W=64 

 

As can be seen in figures 7.6 and 7.7 our best results, for J=7, yield acceptable 

performance for smaller word lengths. And since a word length of 8 is much more likely 

than 32 or 64 for binary PAM, that is not insignificant at all. Especially for L larger than 8 

the exponential growth of the single multiplexer design cannot be contained by the 

hardware of even large FPGAs like Virtex 5. Then the unfolded FBF is the only option. 

However, for L up to 8 the single multiplexer architecture is by far the superior design. 

And even though the performance is expected, according to table 6.13, to improve further 
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for even larger J and eventually outperform the single multiplexer design, this will also 

move the L for which its limited size outweighs its suboptimal performance even further, 

or make it altogether too large to fit on the FPGA. 

Furthermore, as we have already mentioned in 7.2 the performance of the unfolded FBF 

seems to be slowly reaching saturation. So to recapitulate, in the next unfolding factor, or 

two, the unfolded FBF will probably outperform the previous design, but it will not reach 

its full potential until much later. However, its use will be severely limited or nonexistent. 

On the other hand, the exponential area growth of the initial design is already prohibitive 

of the possibility of unfolding in hope of reducing the effect of the taxing register delay. 

And its use is already impossible for L larger than 8. 

The lesson to take away from this paragraph is that instead of aiming for optimal results 

by unfolding the loop even more, it would be preferable to be content with adequate 

performance which satisfies the hardware constraints. We have confidence that a 

systematic and well stated retiming of the J=7 (or even 6) can yield results comparable to 

that of the first design while keeping the hardware overhead low enough to be of use for 

larger Ls.  

For a more detailed exposition the reader is referred to chapter 8. 

 

7.5 Retimed circuit 

 

Below we can see the simulation results of the retimed circuit seen in Figure 6.7. 

 

4Unfolded6Tap 8 bit 16 bit 32 bit 64 bit 

MasterClk(MHz) 756.660 728.624 678.352 596.100 

Table 7.6: Simulation results for the retimed 4 unfolded FBF of figure 6.7 

 

We can compare these results to the results of the non-retimed circuit: 

 

4Unfolded6Tap 8 bit 16 bit 32 bit 64 bit 

MasterClk(MHz) 742.444 713.252 669.216 595.664 

 

We can see the the performance only improves by around 2%. We can conlude that 

this specific retiming transformation on the given circuit does not manage to achieve 

significant improvement in performance. 
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7.6 Validation 

 

The proper function of the various designs was tested with the use of the behavioral 

simulator module of Xilinx Ise. Each unit’s input/output was tested separately comparing 

it with that of its logical function.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.8: Testing Board for the J Unfolded FBF 

 

Another algorithm of just the FBF was then developed, with both its pseudorandom 

input and output saved for comparison with the hardware implementation. The testing was 

straightforward for most architectures, that is, apart from the unfolded designs. For those a 

special validation platform had to be scripted as seen in figure 7.8. The initialization of the 

various units had to be done by hand and differs vastly among the various unfolding factors. 

Good hardware designs practices were employed, considering the edge on which we pass 

data in the input and the output of the J Unfolded FBF, so that there is no conflict off 

loading and passing times.  

The keen reader who might closely examine the accompanying code supplement may 

notice a slight instability of the elementary coding choice of the states in the frequency 

divider. This is important in real world application but as we have already mentioned the 

simulation is behavioral and does not take into consideration any propagation delays. 
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Conclusions and Recommendations 8 

8.1 Conclusions 

 

At this thesis we optimized the performance of a Decision Feedback Equalizer circuit. 

We focused on the optimization of the Feed Backward Filter, since this is the one that poses 

the upper limit to the frequency. We applied the unfolding and retiming techniques that are 

well known techniques, invented several years ago. We used FPGAs in order to simulate 

the performance of these circuits for several unfolding factors. Then we experimented with 

a retimed version of the FBF. 

The speed of the FBF was increasing significantly with the increase of the unfolding 

factor. However, the area was increasing as well. According to the theory developed by dr 

Parhi, there should be an optimal unfolding factor, with which the iteration bound could be 

achieved. We computed this optimal unfolding factor to be between 4,5,6 for our circuits. 

We then performed measurements for unfolding factors ranging from 3 to 7. The results 

were that the frequency continued to increase significantly for unfolding factors bigger 

than the optimal one. That might be because the optimal unfolding factor was computed 

mathematically for ideal cases and for asic designs. However, for fpga designs, things are 

not so simple, since the output of the synthesizer is not totally controllable. 

Moreover, the sub-optimally retimed 4 unfolded FBF according to table 7.6 yields a 

minor performance improvement, especially for shorter word lengths. The improvement is 

much less than the improvement achieved with the unfolding transformation, for this 

specific design. With a better optimized automated retiming algorithm, we have confidence 

that a vast performance improvement is more than possible. Which naturally brings us to 

the recommendations section. 

Finally, after optimizing the FBF in order to reach the desired frequency, we will need 

to take care of the feed forward filter as well. It probably will have to be pipelined (making 

it N-slow) and parallelized to a level close to J to achieve similar performance metrics. 

Moreover, the linking adder between the two subunits will probably bottleneck the design. 

Additionally, we aimed for throughput rates more appropriate for ASIC centric design 

choices. If the volume of the circuits that are going to be produced justifies an ASIC design 

cost, then an ASIC implementation would be preferable. 
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8.2 Recommendations for Future Research 

 

As we've already mentioned in chapter 4, the combination of unfolding and retiming is 

an advanced theoretical subject. For the researcher willing to invest the time and energy 

the performance of the resulting architecture can be estimated a priori to the 

implementation and the right retime approach applied to the initial recursive 

implementation, before unrolling it, which will significantly decrease the complexity. 

However, nothing stops us from blindly applying a critical path minimization retiming 

algorithm on a larger collection of already unfolded DFGs, whose implementation satisfies 

the area constraint, and then picking the results that best fit our needs. But as we've seen in 

chapter 6 the performance and implementation of the multiplexer is not linearly dependent 

on its size and the CSA/RCA is hard to pipeline. So the first step would be to solve the 

second problem. And then for step number 2 develop a database for the various 

nonlinearities and general "quirkiness" of the synthesizer's mapping for various basic units 

(adders, multipliers, shifters, multiplexers...) and different FPGAs with widespread use. 

The database has a more general appeal and in our case for step 3 it can be used by a 

proprietarily modified critical path minimization algorithm to automatically optimize our 

search space. As of the date of completion of this thesis the author is not familiar with the 

existence of such a module.  
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Appendix A 

Unfolded Circuits' Indices 

The unfolding factor is displayed in the upper left corner of the table. The factored 

indices are on the right side of their respective sub-circuits column with their unfactored 

form on the left. 

 

UF 2 2k indices 2k+1 indices 

1 a1 2k-1 2(k-1)+1 2k 2k 

2 a2 2k-2 2(k-1) 2k-1 2(k-1)+1 

3 a3 2k-3 2(k-2)+1 2k-2 2(k-1) 

4 a4 2k-4 2(k-2) 2k-3 2(k-2)+1 

5 a5 2k-5 2(k-3)+1 2k-4 2(k-2) 

6 a6 2k-6 2(k-3) 2k-5 2(k-3)+1 

7 a7 2k-7 2(k-4)+1 2k-6 2(k-3) 

8 a8 2k-8 2(k-4) 2k-7 2(k-4)+1 

9 a9 2k-9 2(k-5)+1 2k-8 2(k-4) 

10 a10 2k-10 2(k-5) 2k-9 2(k-5)+1 

 

UF 3 3k indices 3k+1 indices 3k+2 indices 

1 a1 3k-1 3(k-1)+2 3k 3k 3k+1 3k+1 

2 a2 3k-2 3(k-1)+1 3k-1 3(k-1)+2 3k 3k 

3 a3 3k-3 3(k-1) 3k-2 3(k-1)+1 3k-1 3(k-1)+2 

4 a4 3k-4 3(k-2)+2 3k-3 3(k-1) 3k-2 3(k-1)+1 

5 a5 3k-5 3(k-2)+1 3k-4 3(k-2)+2 3k-3 3(k-1) 

6 a6 3k-6 3(k-2) 3k-5 3(k-2)+1 3k-4 3(k-2)+2 

7 a7 3k-7 3(k-3)+2 3k-6 3(k-2) 3k-5 3(k-2)+1 

8 a8 3k-8 3(k-3)+1 3k-7 3(k-3)+2 3k-6 3(k-2) 

9 a9 3k-9 3(k-3) 3k-8 3(k-3)+1 3k-7 3(k-3)+2 

10 a10 3k-10 3(k-4)+2 3k-9 3(k-3) 3k-8 3(k-3)+1 

 

UF 4 4k indices 4k+1 indices 4k+2 indices 4k+3 indices 

1 a1 4k-1 4(k-1)+3 4k 4k 4k+1 4k+1 4k+2 4k+2 

2 a2 4k-2 4(k-1)+2 4k-1 4(k-1)+3 4k 4k 4k+1 4k+1 

3 a3 4k-3 4(k-1)+1 4k-2 4(k-1)+2 4k-1 4(k-1)+3 4k 4k 

4 a4 4k-4 4(k-1) 4k-3 4(k-1)+1 4k-2 4(k-1)+2 4k-1 4(k-1)+3 

5 a5 4k-5 4(k-2)+3 4k-4 4(k-1) 4k-3 4(k-1)+1 4k-2 4(k-1)+2 
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6 a6 4k-6 4(k-2)+2 4k-5 4(k-2)+3 4k-4 4(k-1) 4k-3 4(k-1)+1 

7 a7 4k-7 4(k-2)+1 4k-6 4(k-2)+2 4k-5 4(k-2)+3 4k-4 4(k-1) 

8 a8 4k-8 4(k-2) 4k-7 4(k-2)+1 4k-6 4(k-2)+2 4k-5 4(k-2)+3 

9 a9 4k-9 4(k-3)+3 4k-8 4(k-2) 4k-7 4(k-2)+1 4k-6 4(k-2)+2 

10 a10 4k-10 4(k-3)+2 4k-9 4(k-3)+3 4k-8 4(k-2) 4k-7 4(k-2)+1 

 

UF 5 5k indices 5k+1 indices 5k+2 indices 5k+3 indices 

1 a1 5k-1 5(k-1)+4 5k 5k 5k+1 5k+1 5k+2 5k+2 

2 a2 5k-2 5(k-1)+3 5k-1 5(k-1)+4 5k 5k 5k+1 5k+1 

3 a3 5k-3 5(k-1)+2 5k-2 5(k-1)+3 5k-1 5(k-1)+4 5k 5k 

4 a4 5k-4 5(k-1)+1 5k-3 5(k-1)+2 5k-2 5(k-1)+3 5k-1 5(k-1)+4 

5 a5 5k-5 5(k-1) 5k-4 5(k-1)+1 5k-3 5(k-1)+2 5k-2 5(k-1)+3 

6 a6 5k-6 5(k-2)+4 5k-5 5(k-1) 5k-4 5(k-1)+1 5k-3 5(k-1)+2 

7 a7 5k-7 5(k-2)+3 5k-6 5(k-2)+4 5k-5 5(k-1) 5k-4 5(k-1)+1 

8 a8 5k-8 5(k-2)+2 5k-7 5(k-2)+3 5k-6 5(k-2)+4 5k-5 5(k-1) 

9 a9 5k-9 5(k-2)+1 5k-8 5(k-2)+2 5k-7 5(k-2)+3 5k-6 5(k-2)+4 

10 a10 5k-10 5(k-2) 5k-9 5(k-2)+1 5k-8 5(k-2)+2 5k-7 5(k-2)+3 

 

UF 5 5k+4 indices 

1 a1 5k+3 5k+3 

2 a2 5k+2 5k+2 

3 a3 5k+1 5k+1 

4 a4 5k 5k 

5 a5 5k-1 5(k-1)+4 

6 a6 5k-2 5(k-1)+3 

7 a7 5k-3 5(k-1)+2 

8 a8 5k-4 5(k-1)+1 

9 a9 5k-5 5(k-1) 

10 a10 5k-6 5(k-2)+4 

 

UF 6 6k indices 6k+1 indices 6k+2 indices 6k+3 indices 

1 a1 6k-1 6(k-1)+5 6k 6k 6k+1 6k+1 6k+2 6k+2 

2 a2 6k-2 6(k-1)+4 6k-1 6(k-1)+5 6k 6k 6k+1 6k+1 

3 a3 6k-3 6(k-1)+3 6k-2 6(k-1)+4 6k-1 6(k-1)+5 6k 6k 

4 a4 6k-4 6(k-1)+2 6k-3 6(k-1)+3 6k-2 6(k-1)+4 6k-1 6(k-1)+5 

5 a5 6k-5 6(k-1)+1 6k-4 6(k-1)+2 6k-3 6(k-1)+3 6k-2 6(k-1)+4 

6 a6 6k-6 6(k-1) 6k-5 6(k-1)+1 6k-4 6(k-1)+2 6k-3 6(k-1)+3 

7 a7 6k-7 6(k-2)+5 6k-6 6(k-1) 6k-5 6(k-1)+1 6k-4 6(k-1)+2 

8 a8 6k-8 6(k-2)+4 6k-7 6(k-2)+5 6k-6 6(k-1) 6k-5 6(k-1)+1 

9 a9 6k-9 6(k-2)+3 6k-8 6(k-2)+4 6k-7 6(k-2)+5 6k-6 6(k-1) 

10 a10 6k-10 6(k-2)+2 6k-9 6(k-2)+3 6k-8 6(k-2)+4 6k-7 6(k-2)+5 

 

UF 6 6k+4 indices 6k+5 indices 

1 a1 6k+3 6k+3 6k+4 6k+4 

2 a2 6k+2 6k+2 6k+3 6k+3 
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3 a3 6k+1 6k+1 6k+2 6k+2 

4 a4 6k 6k 6k+1 6k+1 

5 a5 6k-1 6(k-1)+5 6k 6k 

6 a6 6k-2 6(k-1)+4 6k-1 6(k-1)+5 

7 a7 6k-3 6(k-1)+3 6k-2 6(k-1)+4 

8 a8 6k-4 6(k-1)+2 6k-3 6(k-1)+3 

9 a9 6k-5 6(k-1)+1 6k-4 6(k-1)+2 

10 a10 6k-6 6(k-1) 6k-5 6(k-1)+1 

 

UF 7 7k indices 7k+1 indices 7k+2 indices 7k+3 indices 

1 a1 7k-1 7(k-1)+6 7k 7k 7k+1 7k+1 7k+2 7k+2 

2 a2 7k-2 7(k-1)+5 7k-1 7(k-1)+6 7k 7k 7k+1 7k+1 

3 a3 7k-3 7(k-1)+4 7k-2 7(k-1)+5 7k-1 7(k-1)+6 7k 7k 

4 a4 7k-4 7(k-1)+3 7k-3 7(k-1)+4 7k-2 7(k-1)+5 7k-1 7(k-1)+6 

5 a5 7k-5 7(k-1)+2 7k-4 7(k-1)+3 7k-3 7(k-1)+4 7k-2 7(k-1)+5 

6 a6 7k-6 7(k-1)+1 7k-5 7(k-1)+2 7k-4 7(k-1)+3 7k-3 7(k-1)+4 

7 a7 7k-7 7(k-1) 7k-6 7(k-1)+1 7k-5 7(k-1)+2 7k-4 7(k-1)+3 

8 a8 7k-8 7(k-2)+6 7k-7 7(k-1) 7k-6 7(k-1)+1 7k-5 7(k-1)+2 

9 a9 7k-9 7(k-2)+5 7k-8 7(k-2)+6 7k-7 7(k-1) 7k-6 7(k-1)+1 

10 a10 7k-10 7(k-2)+4 7k-9 7(k-2)+5 7k-8 7(k-2)+6 7k-7 7(k-1) 

 

UF 7 7k+4 indices 7k+5 indices 7k+6 indices 

1 a1 7k+3 7k+3 7k+4 7k+4 7k+5 7k+5 

2 a2 7k+2 7k+2 7k+3 7k+3 7k+4 7k+4 

3 a3 7k+1 7k+1 7k+2 7k+2 7k+3 7k+3 

4 a4 7k 7k 7k+1 7k+1 7k+2 7k+2 

5 a5 7k-1 7(k-1)+6 7k 7k 7k+1 7k+1 

6 a6 7k-2 7(k-1)+5 7k-1 7(k-1)+6 7k 7k 

7 a7 7k-3 7(k-1)+4 7k-2 7(k-1)+5 7k-1 7(k-1)+6 

8 a8 7k-4 7(k-1)+3 7k-3 7(k-1)+4 7k-2 7(k-1)+5 

9 a9 7k-5 7(k-1)+2 7k-4 7(k-1)+3 7k-3 7(k-1)+4 

10 a10 7k-6 7(k-1)+1 7k-5 7(k-1)+2 7k-4 7(k-1)+3 
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Appendix B 

Area and Speed Measurements 

B1. Retimed Multiplexer Architecture 

MuxFBF6Tap 8 bit 16 bit 32 bit 64 bit 

Area(LUTs) 639 1151 2175 4223 

MaxFreq(MHz) 924.556 

 

MuxFBF7Tap 8 bit 16 bit 32 bit 64 bit 

Area(LUTs) 1279 2303 4351 8447 

MaxFreq(MHz) 924.556 

 

MuxFBF8Tap 8 bit 16 bit 32 bit 64 bit 

Area(LUTs) 2559 4607 8703 16895 

MaxFreq(MHz) 924.556 

 

MuxFBF9Tap 8 bit 16 bit 32 bit 64 bit 

Area(LUTs) 5119 8210 17407 33791 

MaxFreq(MHz) 924.556 

 

MuxFBF10Tap 8 bit 16 bit 32 bit 64 bit 

Area(LUTs) 10239 18431 34815 67583 

MaxFreq(MHz) 924.556 

 

B2. Two Stage Pre-Computation FBF 

FBF6Tap 8 bit 16 bit 32 bit 64 bit 

Area(LUTs) 164 316 620 1228 

MaxFreq(MHz) 360.308 338.135 301.078 246.950 
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FBF7Tap 8 bit 16 bit 32 bit 64 bit 

Area(LUTs) 189 365 717 1421 

MaxFreq(MHz) 360.308 338.135 301.078 246.950 

 

FBF8Tap 8 bit 16 bit 32 bit 64 bit 

Area(LUTs) 327 631 1239 2456 

MaxFreq(MHz) 301.566 285.876 258.932 217.864 

 

FBF9Tap 8 bit 16 bit 32 bit 64 bit 

Area(LUTs) 369 713 1401 2777 

MaxFreq(MHz) 301.566 285.876 258.932 217.864 

 

FBF10Tap 8 bit 16 bit 32 bit 64 bit 

Area(LUTs) 646 1246 2446 4846 

MaxFreq(MHz) 282.679 268.847 244.883 207.832 

 

B3. Unfolded Circuits 

For the Unfolded circuits the master clock will obviously operate at J times the 

measured frequency. 

2Unfolded6Tap 8 bit 16 bit 32 bit 64 bit 

Area(LUTs) 312 600 1176 2328 

MaxFreq(MHz) 237.662 225.828 208.455 180.660 

MasterClk(MHz) 475.324 451.656 416.910 361.320 

 

2Unfolded8Tap 8 bit 16 bit 32 bit 64 bit 

Area(LUTs) 656 1232 2384 4688 

MaxFreq(MHz) 205.525 197.818 184.018 161.486 

MasterClk(MHz) 411.050 395.636 368.036 322.972 

 

2Unfolded10Tap 8 bit 16 bit 32 bit 64 bit 

Area(LUTs) 1276 2460 4828 9564 

MaxFreq(MHz) 173.582 167.981 157.798 140.773 

MasterClk(MHz) 347.164 335.962 315.596 281.546 
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3Unfolded6Tap 8 bit 16 bit 32 bit 64 bit 

Area(LUTs) 465 897 1761 3489 

MaxFreq(MHz) 208.640 199.463 185.788 163.384 

MasterClk(MHz) 625.920 598.389 557.364 490.152 

 

3Unfolded8Tap 8 bit 16 bit 32 bit 64 bit 

Area(LUTs) 980 1843 3571 7033 

MaxFreq(MHz) 186.050 179.631 168.035 149.737 

MasterClk(MHz) 558.150 538.893 504.105 449.211 

 

3Unfolded10Tap 8 bit 16 bit 32 bit 64 bit 

Area(LUTs) 1909 3685 7237 14341 

MaxFreq(MHz) 157.573 152.944 144.456 130.057 

MasterClk(MHz) 472.719 458.832 433.368 390.171 

 

 

4Unfolded6Tap 8 bit 16 bit 32 bit 64 bit 

Area(LUTs) 618 1194 2346 4650 

MaxFreq(MHz) 185.611 178.313 167.304 148.916 

MasterClk(MHz) 742.444 713.252 669.216 595.664 

 

4Unfolded8Tap 8 bit 16 bit 32 bit 64 bit 

Area(LUTs) 1306 2458 4760 9368 

MaxFreq(MHz) 165.930 160.935 148.263 133.459 

MasterClk(MHz) 663.720 643.740 593.052 533.836 

 

4Unfolded10Tap 8 bit 16 bit 32 bit 64 bit 

Area(LUTs) 2542 4910 9646 19118 

MaxFreq(MHz) 144.073 140.193 133.029 120.721 

MasterClk(MHz) 576.292 560.772 532.116 482.884 

 

 

5Unfolded6Tap 8 bit 16 bit 32 bit 64 bit 

Area(LUTs) 771 1492 2933 5813 

MaxFreq(MHz) 150.531 141.250 127.836 107.600 

MasterClk(MHz) 752.655 706.250 639.180 538.000 
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5Unfolded8Tap 8 bit 16 bit 32 bit 64 bit 

Area(LUTs) 1634 3074 5954 11714 

MaxFreq(MHz) 156.543 152.056 143.664 128.638 

MasterClk(MHz) 782.715 760.280 718.320 643.190 

 

5Unfolded10Tap 8 bit 16 bit 32 bit 64 bit 

Area(LUTs) 3175 6135 12055 23899 

MaxFreq(MHz) 132.049 128.782 122.711 112.163 

MasterClk(MHz) 660.245 643.910 613.555 560.815 

 

 

6Unfolded6Tap 8 bit 16 bit 32 bit 64 bit 

Area(LUTs) 925 1789 3517 6974 

MaxFreq(MHz) 136.653 128.898 117.529 100.052 

MasterClk(MHz) 819.918 773.388 705.174 600.312 

 

6Unfolded8Tap 8 bit 16 bit 32 bit 64 bit 

Area(LUTs) 2213 4333 7958 15225 

MaxFreq(MHz) 129.134 122.936 112.531 96.718 

MasterClk(MHz) 774.804 737.616 675.186 580.308 

 

6Unfolded10Tap 8 bit 16 bit 32 bit 64 bit 

Area(LUTs) 3808 7360 14468 28672 

MaxFreq(MHz) 121.374 118.608 113.440 104.366 

MasterClk(MHz) 728.244 711.648 680.640 626.196 

 

 

7Unfolded6Tap 8 bit 16 bit 32 bit 64 bit 

Area(LUTs) 1079 2087 4104 8136 

MaxFreq(MHz) 125.081 118.464 108.643 93.320 

MasterClk(MHz) 875.567 829.248 760.501 653.240 

 

7Unfolded8Tap 8 bit 16 bit 32 bit 64 bit 

Area(LUTs) 2589 5014 8445 16588 

MaxFreq(MHz) 115.467 110.453 104.838 88.946 

MasterClk(MHz) 808.269 773.171 733.866 622.622 
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7Unfolded10Tap 8 bit 16 bit 32 bit 64 bit 

Area(LUTs) 4442 8586 16875 33451 

MaxFreq(MHz) 111.096 106.649 98.743 86.009 

MasterClk(MHz) 777.672 746.543 691.201 602.063 

 

 

B4 Retimed Circuit 

4Unfolded6Tap 8 bit 16 bit 32 bit 64 bit 

MasterClk(MHz) 756.660 728.624 678.352 596.100 

 

Comparison with non-retimed circuit: 

4Unfolded6Tap 8 bit 16 bit 32 bit 64 bit 

MasterClk(MHz) 742.444 713.252 669.216 595.664 

 


