
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Master Thesis
Contrast-Agnostic Groupwise Registration by
Robust PCA for Quantitative Cardiac MRI

Xinqi Li



Master Thesis
Contrast-Agnostic Groupwise Registration by

Robust PCA for Quantitative Cardiac MRI

by

Xinqi Li

Student Name Student Number

Xinqi Li 5478073

Thesis advisor: Jan van Gemert
Co-supervisor: Qian Tao
Project Duration: November 2022 - June 2023
Institution: Delft University of Technology
Faculty: Faculty of Electrical Engineering, Mathematics Computer Science
Research Group: Pattern Recognition and Bioinformatics



Preface

This thesis report summarises my thesis work, which is the final part of the Master of Science
in Computer Science at the Delft University of Technology. Two-year master’s study passed
so fast and I’m really happy to have the chance to continue my research about medical image
analysis as my thesis topic.

I really appreciate the help from my co-supervisor, Qian Tao, who guided me throughout
the project. I learned a lot about how to find the problem during the research and how to
properly analyse and solve them. Besides, thanks my thesis supervisor Jan van Gemert for
always insightful suggestions.

Finally, I would like to thank my parents and friends for all your support and help!

Xinqi Li
Delft, June 2023

i



Contents

Preface i

1 Introduction 1

2 Scientific Paper 3

3 Quantitative Cardiac MRI 13
3.1 Quantitative Cardiac MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 T1 mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.2 Modified Look-Locker Pulse Sequence . . . . . . . . . . . . . . . . 14

4 Deformable Image Registration 16
4.1 DIR frameworks: Pairwise and groupwise . . . . . . . . . . . . . . . . . . . 16
4.2 DIR frameworks: Conventional and Deep Learning-based . . . . . . . . . . 17
4.3 Similarity Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3.1 Mean Square Error . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3.2 Cross Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3.3 Mutual Information . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3.4 Total Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.4 B-spline Transform Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.5 Robust Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . 20

5 Numerical Phantoms Synthesis 22

6 Additional Experiments 24
6.1 Round Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2 Comparison of different similarity metrics . . . . . . . . . . . . . . . . . . . 25

6.2.1 SD Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2.2 Examination of potential artefacts . . . . . . . . . . . . . . . . . . . 25

References 27

ii



1
Introduction

Magnetic resonance imageing (MRI) is a radiational-free medical imaging technique that pro-
vides excellent soft tissue contrast for diagnostic purpose. In cardiovascular disease diagnosis,
quantitative cardiac magnetic resonance (CMR), particularly T1 mapping, plays a vital role.
T1 mapping is derived from fitting exponential recovery curves of multiple T1-weighted im-
ages on a pixel-by-pixel basis. However, the presence of uncorrected cardiac and respiratory
motion artifacts in the baseline images poses a challenge in generating precise, reliable, and
high-quality quantitative mappings. To enhance the quality of quantitative Cardiac MRI, mo-
tion correction using deformable image registration is a crucial step in the post-processing
pipeline.

Deformable image registration aims to establish voxel-to-voxel correspondences among
a series of acquired images. Traditional methods, such as subject-specific approaches, typi-
cally optimize a cost function (e.g., an energy equation) iteratively for each subject, yielding
promising results but requiring considerable time. Recently, deep learning-based methods
have gained popularity in medical image registration due to their robust performance and fast
inference process. However, several challenges exist in building a deep-learning deformable
image registration method for quantitative cardiac MRI:

• The deep-learning-based registration methods are usually implemented in a pairwise
manner, posing difficulties in selecting a best fixed image and propagating registration
errors, especially for cardiac MRI. An alternative approach to register quantitative Car-
diac MRI is groupwise image registration, which registers all images simultaneously.
The groupwise methods register a series of images by optimizing a global registration
metric, such as the normalized cross-correlation (NCC) and mutual information (NMI).

• Quantitative cardiac MRI involves rapid changes in image contrast and intensity across
a series of images, which makes it challenging to design a consistently reliable optimiza-
tion metric. Widely-used metrics like NCC and NMI can still be sensitive to contrast
changes and may fail.

• To evaluate the quality of generated T1 maps, a common method is to measure the es-
timated standard deviation (SD) error, which is only an indication of the curve fitting
error. However, real datasets often lack gold standard T1 maps, making it necessary to
validate the method using synthetic datasets with known true T1 maps.
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In this work, we proposed a modular, groupwise image registration framework based on
robust principle component analysis (rPCA) for fast, robust motion correction in contrast-
agnostic sequences. We evaluate the proposed method on both pre-contrast and post-contrast
cardiac MRI images and further validate it using numerical phantoms with gold standard T1
maps.

The rest of this thesis report is structured as follows: Chapter 2 presents the scientific arti-
cle describing the proposed method in this thesis, Chapter 3 provides essential technical details
of quantitative cardiac MRI, Chapter 4 introduces basic information regarding deformable im-
age registration, Chapter 5 illustrates the fundamental information of phantom synthesis and
Chapter 6 includes additional experiment results. The github repository for the whole project
can be found here: https://github.com/lixinqi98/Master-thesis/tree/master-thesis

https://github.com/lixinqi98/Master-thesis/tree/master-thesis
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Abstract

Quantitative cardiac MRI is an increasingly important
diagnostic tool for cardiovascular diseases. Yet, it is es-
sential to have correct image registration for good accu-
racy and precision of quantitative mapping. Registering all
baseline images from a quantitative cardiac MRI sequence,
however, is nontrivial because the patient is moving, lead-
ing to simultaneous changes in motion, intensity, and con-
trast. The changes in image contrast, in particular, make it
challenging to design a reliable registration metric for op-
timization.

In this paper, we propose a novel approach based on
robust principle component analysis (rPCA) that decom-
poses quantitative cardiac MRI into low-rank and sparse
components, in combination with a groupwise CNN-based
registration backbone. The proposed framework aims for
fast, robust motion correction for contrast-agnostic se-
quences, which benefits registration. We evaluated our pro-
posed method on cardiac T1 mapping sequences, both pre-
contrast and post-contrast. Additionally, we synthesize the
numerical phantoms with gold standard to test the perfor-
mance. Our experiments showed that our method effectively
improved registration performance over baseline methods
without rPCA, and reduced quantitative mapping error in
both in-domain and out-of-domain MRI sequences. The
proposed rPCA framework is generic and can be easily
incorporated into existing registration methods and other
clinical applications.

1. Introduction

Quantitative cardiac MRI, such as T1 mapping [26], is
an increasingly important cardiovascular imaging modal-
ity to examine cardiac tissue [11]. However, the quality
of quantitative mapping is negatively affected by respira-
tory and cardiac motion during the MR acquisition proce-
dure [32]. Such motion leads to misalignment of MR sig-

nals across baseline images and results in deteriorated accu-
racy and precision of quantitative mapping [21]. To improve
the quality of quantitative cardiac MRI, motion correction
by deformable image registration is an essential part of the
post-processing pipeline [2, 9, 25].

Conventionally, the deformable image registration is im-
plemented in a pairwise fashion where two images are regis-
tered, with one designated as fixed and one moving. How-
ever, for quantitative cardiac MRI, the number of images
is highly variable (ranging from 3 to > 20), depending
on the specific sequence. This makes pairwise registra-
tion non-intuitive, as the “best” fixed image is hard to de-
fine. Moreover, registration error easily propagates across
the baseline images given all pairwise registration steps are
independently performed. An alternative approach called
groupwise image registration, which instead registers all
images simultaneously, has gained popularity for quantita-
tive MRI [15, 16, 20, 30]. Groupwise registration promises
improved robustness across a sequence of images by op-
timizing a global registration metric, such as normalized
cross-correlation (NCC) and mutual information (NMI).
However, an under-studied problem is that degenerated so-
lutions, in the format of ghosting artifacts or pixel col-
lapse [12], may occur during groupwise registration and
severely undermine the clinical application. In this paper,
we will follow the groupwise registration principle and in-
vestigate the susceptibility of NCC and NMI to artifacts.

An additional challenge related to quantitative cardiac
MRI is that the change in image contrast and intensity can
vary drastically across baseline images with different signal
models, and agnostic to the image registration pipeline [32].
Even with the same signal model, the contrast in individual
baseline images still depends on the exact scheme of ac-
quisition, which differs among vendors and centers. This
makes it difficult to design a consistently reliable registra-
tion metric for optimization. Conventional registration met-
rics, such as NCC and NMI, can still be sensitive to agnostic
contrast changes and fail [5, 12, 22]. Therefore, it’s of great
interest to find a robust registration metric that can work



Figure 1. Overview of the proposed framework for contrast-agnostic registration. The dotted rectangle denotes the iterative registration
pipeline that progressively corrects motion from round 2 to maximal round R.

despite agnostic contrast changes.

Another one long-standing problem in evaluating the im-
age registration is that there is no perfect T1 mapping for
real dataset, as all quantitative cardiac MRI are a estima-
tion of the perfect result. Due to the lack of the gold stan-
dard, the existing measurement can only be treated as in-
dicator of the performance. Recently, physics-based digi-
tal phantom simulations are proposed as a powerful tool to
evaluate and test the medical image analysis. 4D eXtended
CArdiac Torso(XCAT) [29] is developed to provide a re-
alistic and flexible anatomical model of the human, which
captures phantoms of varying ages from newborn to adult.
MRXCAT2.0 [6] phantom framework further enables the
demonstration of cine [23] and first-pass [31] myocardial
perfusion imaging with adjustable tissue percentage, dy-
namic contrast, signal models, multiple receiver coils and
noise.

In this paper, we aim to tackle the agnostic con-
trast change in quantitative cardiac MRI by designing a
generic registration framework, which integrates robust
PCA (rPCA) [7] with state-of-the-art image registration
modules. Our rationale is as follows: firstly, the signal
model, which is typically governed by physics principles,
has a limited degree of freedom [10, 26], and underlies
the low-rank component of rPCA. Secondly, the motion of

quantitative cardiac MRI is peculiar in the sense that it is
only concentrated around the heart, induced by non-ideal
breath-hold and heart rate variability, while the background,
e.g., rib cage and lung, stay largely static. The motion field
is therefore sparse, corresponding to the sparsity compo-
nent of rPCA. In addition, by taking all baseline images into
account, rPCA naturally fits in the groupwise registration
regime.

Groupwise image registration can be divided into two
paradigms: classical iterative optimization methods that are
relatively slow [15, 18–20, 24, 30] and deep-learning-based
methods that promise fast inference [1,8,13,17,33]. In this
paper, we propose to integrate rPCA with the state-of-the-
art deep-learning groupwise registration backbone [33] for
fast, reliable motion correction of quantitative cardiac MRI.
Our main contributions are:

1. We propose a novel groupwise image registration
framework, which is, to the best of our knowledge, the
first attempt to utilize rPCA in groupwise registration
with a deep learning backbone.

2. We offer a modular framework, which can be incor-
porated into any existing registration methods, either
classical optimization or modern deep learning meth-
ods.



3. We evaluated and demonstrated the generalizability of
our contrast-agnostic method on out-of-domain quan-
titative MRI sequences.

4. We evaluated our contrast-agnostic method with syn-
thetic numerical phantoms thoroughly.

In addition, we further investigated the fitness of two
popular metrics, NCC and NMI, for groupwise registration.
With our experiments, we showed that NCC could lead to
potential artifacts in quantitative mapping, which are detri-
mental to the clinical application and often overlooked.

2. Methods
2.1. Problem Formulation

Given a sequence of images IN = {Ii ∈ RH×W |i =
1, ..., N}, the goal of groupwise registration is to align
all Ii into one common coordinate system by obtaining a
set of deformation fields TN = {Ti ∈ R2×H×W |i =
1, ..., N}. In our framework, an implicit reference Iref =
1
N

∑N
n=1(Tn ◦ In), is generated and help optimize the neu-

ral network. Therefore, each Ti should align anatomical
structures in quantitative cardiac MRI, between Ii and an
implicit reference Iref .

We strive for robust motion correction in a sequence of
varying contrasts using rPCA iteratively in our framework.
The image sequence IN is first decomposed with rPCA to
low-rank matrix LN and sparse matrix SN . Then LN is
used for training the deep learning backbone and generating
deformation field TN . Then TN is applied to raw images
IN to get warped images TN ◦ IN . The warped images are
processed with rPCA again and the previous processing is
repeated until the maximal iteration number is reached. An
overview of our proposed method is shown in Figure 1.

2.2. Robust Principal Component Analysis

Robust principal component analysis (rPCA) [7], as its
name suggests, is a more robust matrix decomposition com-
pared to PCA: For a given data matrix M , where in our case,
M is the matrix of vectorized grouped images IN , the rPCA
decomposes M ∈ Rm×n into the sum of a low-rank matrix
L and a sparse matrix S via solving the following optimiza-
tion problem:

minimize ∥L∥∗ + λ∥S∥1, subject to L+ S = M, (1)

where ∥ · ∥∗ denotes the nuclear norm, ∥ · ∥1 denotes the
l1 norm, and λ is a hyperparameter used for the trade-off
between the two components, which is often set by default
as λ = 1/

√
max (m,n). Such optimization problems can

be solved by well-established algorithms, such as proximal
(stochastic) gradient descent methods [14].

For quantitative cardiac MRI, the motion has a low de-
gree of freedom and thus can be captured by a low-rank

component L, while the signal changes can be captured by
the sparse part S as it is mostly concentrated around the
heart boundary. An illustration of rPCA on pre-contrast car-
diac MRI is shown in Figure 2.

2.3. Loss Functions

The optimization problem for finding the deformable
mapping TN can be formulated as follows:

TN = argmin
TN

Lsimilarity + λ0Lsmooth + λ1Lcyclic, (2)

where Lsimilarity, Lsmooth, and Lcyclic denote similarity
function, smoothness regularization, and cyclic consistency,
respectively, with trade-off parameters λ0 and λ1.

Similarity Functions: We employed normalized mutual
information (NMI) to measure the similarity between the
input images IN to the warped images TN ◦ IN , which is
robust when a linear relation between image intensities does
not exist [12]. The NMI between two images is defined as:

NMI(I1, I2) =
2MI(I1, I2)

H(I1) +H(I2)
, (3)

where MI(I1, I2) denotes the mutual information between
I1 and I2, H(I1) is the entropy of image I1, and H(I2)
for image I2, respectively. For groupwise registration, the
similarity loss Lsimilarity is then defined as:

Lsimilarity = − 1

N

N∑
n=1

NMI(Tn ◦ In, Iref ). (4)

Another similarity loss is also considered and discussed,
which is the local normalized cross-correlation (NCC) [3],
defined as:

NCC(I1, I2) =
1

H ×W∑
i,j∈H,W

∑
x∈Ω(I1(x)− Ī1(i, j))(I2(x)− Ī2(i, j))√

Î1(i, j)Î2(i, j)
,

where Ω indicates the neighborhood voxels around the
voxel at position (i, j) and Ī(i, j) and Î(i, j) denote the lo-
cal mean and variance.

Smoothness Regularization: The smoothness of the
deformation field is regularized through B-spline registra-
tion [28]. We adopted B-spline because it can prevent the
image from folding and inherently lead to smooth deforma-
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Figure 2. Decomposition of pre-contrast MOLLI cardiac time-series images using rPCA. Each MOLLI sequence consists of 11 pre-contrast
time frames in our setting. SI denotes signal intensity. The intensity inconsistency of the sequence is mitigated as shown in low-rank matrix,
for example, image I4, I5 and I8.

tion fields:

Lsmooth =
1

H ×W

N∑
n=1

∫ H

0

∫ W

0(∂2T̂n

∂x2

)2

+

(
∂2T̂n

∂y2

)2

+ 2

(
∂2T̂n

∂xy

)2
 dxdy,

where T̂n = Tn+
∑k

l=0

∑k
m=0 Bl(u)Bm(v)ϕi+l,j+m, and

where Bl is the l−th B-spline basis function, k is the or-
der of B-spline, and ϕi,j denotes the control points with
uniform space across the image. The control points of the
B-spline affect the surrounding deformation fields only the
B-spline basis functions.

Cyclic Consistency: For groupwise registration, the
cyclic consistent regularization keeps the estimated implicit
reference at the center of all input images in the manifold
by minimizing the deformation field to the implicit refer-
ence [33]:

Lcyclic(T
N ) =

√√√√ 1

2(H ×W )

∑
i,j∈H,W

(∑
n

Tn(i, j)

)2

,

(5)
where Tn(i, j) denotes the value of Tn at coordinate (i, j).
This term prevents the degenerated solution where textures
in all images collapse.

2.4. CNN-based Neural Network Architecture

The convolution neural network architecture follows that
of the VoxelMorph [4], and GroupRegNet [33], based on the
UNet [27] architecture consisting of encoding and decoding
layers with skip connection. Both the encoder and decoder
use convolutional blocks consisting of a 2D convolution and
a Leaky ReLU layer. The encoder captures the hierarchi-
cal features of the input images with multiple convolution

blocks. The number of decoder layers was controlled by B-
spline degree k [27], the number of control points for dense
bspline transform. This enables the coarse-to-fine represen-
tation of the two-channel deformation field. The final defor-
mation field is computed by B-spline free form deformation
(FFD) transformation model [28] based on the decoder out-
put.

2.5. Evaluation Methods

Quatitative cardiac MRI: In this paper, we used my-
ocardial T1 mapping, one of the most widely used quantita-
tive mapping modalities in clinic [26]. T1 mapping follows
a three-parameter model, expressed by

y(TI) = A−Be−TI/T1∗ , (6)

where y denotes the signal intensity, TI denotes the inver-
sion time for acquisition of each baseline image, and A, B,
and T1∗ are parameters to be estimated. Since motion cor-
rection leads to a better fitting of this MR physics model at
each pixel, here we measure the performance through the
T1 mapping within the ROI (myocardium and left ventri-
cle) and the standard deviation (SD) error [21] as an indi-
cation of the fitting error. A lower SD error indicates better
motion correction. We used both the native (pre-contrast)
T1 mapping and post-contrast T1 mapping sequences (af-
ter Gadolinium administration). To test the generalizability
of our framework, we trained our NN exclusively on pre-
contrast T1 mapping, while testing it on both pre-contrast
(in-domain) and post-contrast (out-of-domain) sequences.

Dissimilarity metrics DPCA: We evaluate the warped
images using DPCA, the ratio of the top-K eigenvalues to
the sum of eigenvalues of the correlation matrix [20]. The
higher the ratio, the better the performance of registration.

Baseline methods: We compared our proposed frame-
work with two methods: (1) the conventional PCA-based
groupwise registration method [20], and (2) the group-
wise registration method [33] without rPCA, denoted by
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(b) One random sample of numerical phantoms. The contrast changes and the cardiac motion follow the real influence of MOLLI sequences.

Figure 3. Synthesis of realistic numerical phantoms. Fig. 3a illustrates the experimental workflow of data synthesis. Figure 3b demonstrates
an example of synthetic data.

GroupRegNet∗. The conventional PCA method minimizes
a PCA-based cost function. The groupwise registration
method follows [33], but using NMI as the optimization
metric. We also performed experiments on GroupRegNet∗

using the NCC metric as in the original work and compared
the results with NMI.

Synthesis of realistic numerical phantoms: Previous
approaches of CMR registration usually measure the per-
formance without the real ground truth, relying instead on
metrics such as the standard deviation (SD) error and dis-
similarity metric DPCA to approximately indicate the per-
formance. In our work, we address this limitation by gener-
ating an auxiliary validation dataset, including realistic nu-
merical phantoms and corresponding real T1 maps T1real.
The synthesis pipeline is illustrated in Figure 3a. To gener-
ate the ground truth T1 maps, we utilize MRXCAT2.0 [6],
which provides known and detailed functional ground truth
of LV morphology and function. In the synthetic process,
we add the Gaussian noise to the map and subsequently
generate synthetic data following the MOLLI contrast agent
dynamics as follows:

T1(x, y) = (
B

A
− 1)× T1∗(x, y) (7)

S(x, y, tn) = |A(x, y)−B(x, y)× e
−TI

T1∗(x,y) |, (8)

where A(x, y), B(x, y) are user-defined parameters and TI
inversion times can be obtained from the real data. The de-

formation fields from the real data is applied on the syn-
thetic series with contrast changes to generate the synthetic
series with motion and contrast changes. For example, Fig-
ure 3b shows one random sample of the realistic numerical
phantoms. The performance evaluation of image registra-
tion on numerical phantoms extends beyond previous met-
rics and includes the calculation of the Root Mean Square
Error (RMSE) over the region of interest (ROI) between the
real T1 maps T1real and the estimated T1 maps.

3. Experiments and Results

Dataset: We used a cardiac MRI dataset including 48
subjects’ pre-contrast and post-contrast MOLLI sequences
(Philips 3.0T). Each subject had 1 to 3 different slices ac-
quired at the base, mid-ventricular, and apex levels. In
total 120 pre-contrast and 120 post-contrast MOLLI se-
quences were included. All images were resampled to a
224 × 224 × 11 grid with 1mm3 isotropic resolution and
then cropped to 112 × 112 × 11 at the center. The training
comprised 100 random images from only the pre-contrast
MOLLI sequences. The rest 20 pre-contrast MOLLI se-
quences and their corresponding post-contrast sequences,
in total 40, formed the test set. We note here that the
pre-contrast sequences are the in-domain test data, while
the post-contrast sequences are the out-of-domain test data,
given their contrast changes follow a vastly different pat-
tern.



Table 1. Experiment results on T1 mapping. We compare T1 SD and DPCA(K = 1) before and after registration and report the percentage
of change. The SD diff measures the T1 mapping quality within the ROI (myocardium and left ventricle). Higher values indicate better
performance of registration and quantitative mapping. Our method (w/ rPCA) outperforms the GroupRegNet∗ on both pre-contrast and
post-contrast data according to the SD diff and DPCA.

Method Modality SD diff DPCA Time (s)

ConventionalPCA Pre-Gd (in domain) 0.33 -0.03 ≈ 600
GroupRegNet∗ Pre-Gd (in domain) 0.33 0.64 1.28
Ours (w/ rPCA) Pre-Gd (in domain) 0.34 0.76 7.11

ConventionalPCA Post-Gd (out of domain) 0.26 0.07 ≈ 600
GroupRegNet∗ Post-Gd (out of domain) 0.11 -0.31 1.28
Ours (w/ rPCA) Post-Gd (out of domain) 0.18 0.52 7.11

0

1000

2000

Original Registered,
NCC

Registered,
NMI

(a) An exemplar case of the original and registered images using NCC
(middle) and NMI (right). The second row shows the resulting T1 map.
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(b) The correlation and Bland-Altman plot of the quantitative T1 estima-
tion within the myocardium ROI.

Figure 4. Comparison between NCC and NMI on T1 mapping.
Red arrows in Fig. 4a point to the potential deformation artifact of
the NCC-guided registration, in the form of implausible anatomi-
cal deformation and biased T1 estimation Fig. 4b.

Implementation Details: Robust PCA was imple-
mented with the GoDec algorithm [34]. In each round,
the rank of L was set to be half of the sequence length,
which was 5 in our case. Empirically we applied a de-

coder with 4 layers. In this case, the decoder included 2
convolution blocks and the output deformation field was
31 × 31 × 11 × 2. The final deformation field was trans-
formed to 112 × 112 × 11 × 2 using B-spline FFD, where
the number of control points for dense bspline transform
was set 4 and the number of smooth vector field (SVF) in-
tegration steps was set 7. The smooth regulation’s weight
λ0 is set to 0.001 and cyclic regulation’s weight λ1 is set to
0.01 empirically. We chose to run 3 rounds for our rPCA
based method because the performance didn’t change a lot
after 3 rounds to save the running time.

Choice of Similarity Functions: Two similarity func-
tions, NCC and NMI, are evaluated. We compared the
metrics by training on the same training data and checked
the result after registration and parametric fitting. We ob-
served that the NCC loss led to undesirable deformation of
the ROI, as well as altered distribution of the T1 values, as
illustrated in Figure 4. As suggested in [12], NCC might fa-
vor homogeneous distribution of pixel intensities and lead
to over-smooth myocardium textures that fail the purpose
of quantitative mapping. In comparison, NMI better main-
tained the shape and texture of the ROI.

Results of Real Data: The quantitative results of reg-
istration and quantitative mapping are shown in Table 1.
Note that to demonstrate the generalizability of the learned
model, we train the model only on pre-contrast data (de-
noted as Pre-Gd) and tested on both pre- and post-contrast
data. Our method performs best on pre-contrast datasets
according to the percentage of SD diff within the ROI
and outperforms the GroupRegNet∗ on post-contrast data.
The conventional PCA gives better performance on post-
contrast data due to the subject-based optimization nature.
However, it takes around 10 minutes for each subject, which
is much slower compared to our method, with an average
inference time of 7.1 s per sequence with 11 images. One
random result of T1 mapping with different methods can be
seen in Figure 5.

Numerical Phantoms Synthesis and Results: Given
the limited availability of public data from MRXCAT2.0,
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Figure 5. T1 fitting maps and SD errors for the MOLLI series. The first row shows the T1 maps, and the second row is the SD error.
From left to right: original images, conventional PCA, naive groupwise, and our rPCA-based method. As the red arrows show, our method
effectively corrects the motion in the boundary.

Table 2. Experiment results on T1 mapping of numerical phan-
toms. The RMSE measures the difference between the estimated
T1 maps and real T1 maps, which means the lower the better. Our
proposed method (w/ rPCA) ourperforms the GroupRegnet∗ in all
metrics.

Method RMSE ↓ SD diff ↑ DPCA ↑
ConventionalPCA 48.42 0.53 0.05

GroupRegNet∗ 46.72 0.01 0.01
Ours (w/ rPCA) 48.34 0.14 0.02

we were constrained to generating only one basic T1 map.
In this case, we adopted the inversion time TI and learned
deformation field of 11 real testing data and set the fit-
ting parameter A(x, y) = 2, B(x, y) = 75 × A(x, y) for
each pixel to generate the synthetic data. The trained model
based on the pre-contrast data was used to register the syn-
thetic phantoms without any fine-tuning. By utilizing real
groundtruth data, our proposed method demonstrated supe-
rior performance compared to the GroupRegNet∗, as evi-
denced by the results presented in Table 2. The SD diff
results were consistent with the results on real data, Con-
ventionalPCA gave best results because it was a subject-
specific method. However, comparing the RMSE of ROI
demonstrated that our proposed method performed simi-
larly and even slightly better than ConventionalPCA.

4. Conclusion and Discussion
In conclusion, we proposed a novel framework based on

rPCA for robust motion correction of quantitative cardiac
MRI. We aim for robust performance in the face of agnos-
tic image contrast, which is typical of quantitative MRI. We
showed that the introduction of rPCA, which separates low-
rank and sparse components of baseline images, led to im-
proved registration performance and facilitated the general-
ization of the trained network on out-of-domain data.

This work also compared the two commonly used met-
rics for groupwise registration, namely, NCC and NMI, and
showed that NCC might give rise to potential artifacts in
heart anatomy and quantitative mapping, both of which are
detrimental to clinical application. Future investigations are
warranted to focus not only on the performance of image
registration but also on the fidelity of quantitative mapping.

Significantly, we validated our method using a realistic
numerical phantom, which further proved the efficacy of
our proposed approach. Noticeably, our method is addition-
ally validated with a realistic numerical phantom and the re-
sults further prove the effectiveness of our proposed meth-
ods. While the synthetic data generated with MRXCAT2.0
already possesses a higher degree of realism compared to
solely relying on physical anatomical data, in the future the
incorporation of generative models, such as GANs, VAEs,
and diffusion models, can yield even more diverse and re-
alistic data. By utilizing these realistic and diverse digi-



tal phantoms, we not only establish a standardized dataset
but also alleviate the challenges associated with acquiring
labeled cardiac MRI images. This approach enables more
comprehensive evaluations and facilitates the development
of robust and generalizable registration techniques.
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[5] Mikael Brudfors, Yaël Balbastre, and John Ashburner.
Groupwise multimodal image registration using joint
total variation. In Medical Image Understanding and
Analysis: 24th Annual Conference, MIUA 2020, Ox-
ford, UK, July 15-17, 2020, Proceedings 24, pages
184–194. Springer, 2020. 1

[6] Stefano Buoso, Thomas Joyce, Nico Schulthess, and
Sebastian Kozerke. Mrxcat2. 0: Synthesis of realis-
tic numerical phantoms by combining left-ventricular
shape learning, biophysical simulations and tissue tex-
ture generation. Journal of Cardiovascular Magnetic
Resonance, 25(1):25, 2023. 2, 5

[7] Emmanuel J Candès, Xiaodong Li, Yi Ma, and John
Wright. Robust principal component analysis? Jour-
nal of the ACM (JACM), 58(3):1–37, 2011. 2, 3

[8] Tongtong Che, Yuanjie Zheng, Jinyu Cong, Yanyun
Jiang, Yi Niu, Wanzhen Jiao, Bojun Zhao, and Yanhui
Ding. Deep group-wise registration for multi-spectral
images from fundus images. IEEE Access, 7:27650–
27661, 2019. 2

[9] Xiang Chen, Andres Diaz-Pinto, Nishant Ravikumar,
and Alejandro F Frangi. Deep learning in medical im-
age registration. Progress in Biomedical Engineering,
3(1):012003, 2021. 1

[10] Kelvin Chow, Jacqueline A Flewitt, Jordin D Green,
Joseph J Pagano, Matthias G Friedrich, and Richard B

Thompson. Saturation recovery single-shot acquisi-
tion (sasha) for myocardial t1 mapping. Magnetic res-
onance in medicine, 71(6):2082–2095, 2014. 2

[11] Albert de Roos and Charles B Higgins. Cardiac radi-
ology: centenary review. Radiology, 273(2S):S142–
S159, 2014. 1

[12] Bob D de Vos, Bas HM van der Velden, Jörg Sander,
Kenneth GA Gilhuijs, Marius Staring, and Ivana
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3
Quantitative Cardiac MRI

Magnetic Resonance Imaging (MRI) employs a powerful magnet and radio waves to examine
the human body and generate visual representations. Unlike various other imaging techniques,
MRI does not employ ionizing radiation, which is associated with potential long-term risks. By
producing high-resolution images, MRI proves particularly advantageous in intricate scenar-
ios, notably for cardiac evaluations such as the detection of coronary heart disease and cardiac
tumors. Furthermore, MRI offers a commendable safety profile, making it especially valu-
able for patients requiring multiple scans over an extended period, including individuals with
complex congenital heart conditions. Cardiac MRI means the images relating to the heart.

In this chapter, we present the background of quantitative cardiac MRI, the fundamental
theory of T1 mapping and the MOLLI sequences used in our project.

3.1. Quantitative Cardiac MRI
ConventionalMagnetic Resonance Imaging (MRI) primarily relies on the acquisition ofweighted
images, which primarily aim to enhance local image contrast. However, these conventional
MRI techniques often struggle to detect significant morphological abnormalities or focal ir-
regularities that result in regional variations in signal intensities [14]. This limitation arises
due to their insensitivity towards subtle global changes. Additionally, Carlo’s report [14] high-
lights that conventional MRI techniques face challenges in distinguishing between different
physiological and pathological patterns if their alterations in image contrast are similar.

To address these limitations, quantitative MRI techniques are proposed, aiming to provide
information about the local microstructural environment of protons. Quantitative MRI tech-
niques offer specific physical parameters related to the nuclear spin of protons in water, such
as relaxation times [20]. A significant advantage of quantitative MRI is its ability to establish
normative measurements within a healthy population. This allows for enhanced sensitivity
in clinical MRI by comparing measurements from a single subject to these novel reference
values. By quantifying these parameters, quantitative MRI facilitates a more comprehensive
understanding of the underlying tissue characteristics. This approach proves particularly valu-
able in monitoring subtle changes attributed to disease progression or remission.

For diagnosis, quantitative MRI often refers to true relaxation times T1, T2 or T2∗ [9]. In
this project, according to our dataset, we use the estimated T1 mapping for evaluation. There-
fore, we will mainly introduce the technical details regarding T1 mapping.

13
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3.1.1. T1 mapping
Cardiac magnetic resonance imaging is sensitive to the soft tissue image contrast, providing
insights into physiology and pathophysiology. The T1 relaxation time serves as a crucial
biomarker for various pathological conditions, measuring how fast the nuclear spin magne-
tization returns to its equilibrium state after a radiofrequency (RF) pulse in the MRI scanner.
The resulting T1 map is a color-encoded image, where each pixel value represent the T1 relax-
ation time for each voxel. High-quality T1 maps can reveal small variations of T1 within the
heart to highlight tissue pathology.

Figure 3.1: Magnetization Inversion Recovery for T1 mapping [19]. The T1-Weighted source images
(bottom-row) are acquired using different T1 weightings during the scan, taken at different inversion time (TI)
after an inversion pulse. The T1 recovery curves (top-left) shows 2 curves for two example regions, orange

curve for the blood pool region on T1 map (top-right) and blue curve for septal region.

Accurate measurement and mapping of T1 relaxation time require a series of images with
different T1 weightings to fit the signal intensities of the images to the equation for T1 re-
laxation. As shown in Figure 3.1, a sequence of T1-weighted source images are acquired at
different times after the pulse. For the pixel at every position, the signal intensity can be fit to
the equation:

y(θ) = A− Be−t/T1 , (3.1)

where θ = (A,B, T1), A,B are fitting parameters and t represents the time after the prepara-
tion.

3.1.2. Modified Look-Locker Pulse Sequence
The modified Look-Locker sequence (MOLLI) [13] is a widely used and advanced clinical
technique for T1 mapping, which is also the sequences we used in our experiments. In MOLLI,
multiple inversions with slightly different TIs are used to evenly sample the recovery curve
and the data is acquired at end-diastole when the heart is reasonably stationary. The Figure 3.2
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Figure 3.2: MOLLI sequence scheme shows two sets of inversions were performed with increasing inversion
time (TI) [23]. The trigger delay (TD) is used to acquire the image at end-diastole phase.

shows an example of MOLLI sequences, where additional inversions are employed, and all
images are acquired at the same end-diastolic phase.

Compared to the T1 recovery curves shown in Figure 3.1, MOLLI technique affect the T1

recovery curve, resulting in an apparent T1, denoted as T ∗
1 . The estimation of T1 relaxation

will be:
y(θ) = A− Be−t/T ∗

1 , (3.2)

T1 = (
B

A
− 1)× T ∗

1 , (3.3)

where θ = (A,B, T ∗
1 ), A,B are still the fitting parameters and t denotes the inversion time.

The MOLLI technique reduces the influence of cardiac motion as all images are acquired
during the same cardiac phase. However, unintended patient movements and breathing in-
troduce errors in pixel-wise T1 estimation, resulting in inaccurate final T1 maps. Therefore,
motion correction is essential to generate reliable T1 mapping.



4
Deformable Image Registration

Deformable image registration (DIR) is a popular topic in medical imaging analysis, aiming
to estimate the non-linear transformation between a pair or a series of images to align them.
The term deformable instead of linear or global is used because the observed motions are non-
linear dense transformation. Let Ω be an n-D spatial domain and x be the corresponding n-D
coordinate, IN = {Ii(x) ∈ RΩ|i = 1, ..., N} denote a series of N images. When a spatial
coordinate x does not correspond to the same anatomical location in each of the images, it
becomes necessary to correct for motion or geometric distortion using DIR methods. A set of
deformation fields T (x)N = {Ti(x) ∈ R|i = 1, ..., N} is learned and the motion-corrected
images are generated using Ti(x) ◦ Ii(x), where ◦ represents the spatial transformation. The
registration framework can be categorized into pairwise and groupwise methods [11].

This chapter introduces main categories of deformable image registration frameworks,
widely used similarity metric and the theory of robust principal component analysis used in
our project.

4.1. DIR frameworks: Pairwise and groupwise
For pairwise methods, the transformation is modeled by a set of transform parametersµ. Each
image Ii(x) has a corresponding deformation field Ti(x;µi). One reference image IR(x) is
selected and all other images Ii(x), i ̸= R, are registered to the reference IR(x). The pairwise
DIR aims to minimize a dissimilarity metricD in terms of µi [11]:

µ̂i = argmin
µi

D(µi; IR(x), Ii(x)), (4.1)

which is calculated for all images i ̸= R. The dissimilarity metricD can be relevant definition
measuring the dissimilarity of reference image IR(x) and registered images Ti(x,µi) ◦ Ii(x).

For groupwise methods, the series of images Ii(x) are registered simultaneously to a com-
mon space. The deformation field is modeled by transform parameter µ, where µ contains all
µi. The groupwise registration can be formulated as the minimization of a dissimilarity metric
D in terms of µ:

µ̂ = argmin
µi

D(µ; I(x)), (4.2)

where the parameters µi are simultaneously optimized for all i [24].

16
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4.2. DIR frameworks: Conventional and Deep Learning-
based

Most conventional DIR algorithms optimize a transformation by iteratively minimizing an
energy function [18]. The energy function typically consists of two components:

Lsim(I, T ) +Lsmooth(T ), (4.3)

where Lsim(I, T ) measures the level of alignment and Lsmooth(T ) is the regularization term,
ensuring spatial smoothness and homogeneity of the deformation fieldT . Here the deformation
field T is unique for each subject as the energy function is optimized subject-specific. Each
image pair has its own unique deformation field, making the optimization process subject-
specific. However, this approach becomes time-consuming, particularly for high-resolution
images.

In recent years, deep learning-based DIR frameworks have emerged and give promising
results, offering an alternative to traditional methods. These frameworks replace the subject-
specific parameters with shared parameters which are optimized by a global optimization. The
neural network is trained on a dataset of image pairs, enabling the fast generation of deforma-
tion fields for a given image during inference. In deep learning-based method, we model a
function gθ(If , Im) = µ, where θ represents the network parameters and output µ estimates
the deformation field’s parameters. The network takes a pair of images If (fixed image) and
Im (moving image) as the input (for pairwise methods as an example, while groupwise image
registration only requires a series of input image). The deformation field T is calculated as
follows :

T = Id+ µ, (4.4)

where Id is the identity transform. Once the deformation field is obtained, the moving image
Im is warped to T ◦ Im using a spatial transformation function. To find optimal parameters θ̂
unsupervised loss function is defined as follows [2]:

Lsim(If , T ◦ Im) + λLsmooth(T ), (4.5)

where If and Im are two continuous frames from an image series, and in each step, two frames
are randomly selected from the dataset.

Deformable image registration, a critical task in medical image analysis, employs vari-
ous neural network architectures for optimizing the deformation parameters. A diverse range
of architectures have demonstrated efficacy in this field. For instance, the popular UNet ar-
chitecture [15] including encoder and decoder sections with skip connections, widely used
in medical image analysis, has been successfully applied in VoxelMorph [2]. Alternatively,
transformer-based architectures, such as the Swin-Voxelmorph [25], offer another viable op-
tion. These transformer-based models, inspired by the success of the transformer architecture
[12] in various domains, have shown promise in deformable image registration tasks. The
UNet architecture implemented in our work is shown in Figure 4.1. The encoder in the left
section uses several convolutions with a stride of 2 to capture the hierarchical features and re-
duce the spatial dimension. The decoder section leverages the upsampling and skip connection
to propagate the features.
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Figure 4.1: UNet architecture [2].

4.3. Similarity Criterion
The similarity term penalizes the differences and several popular functions exist. In the fol-
lowing section, mean square error, cross correlation, mutual information and total correlation
are introducced.

4.3.1. Mean Square Error
Mean Square Error (MSE) measures the voxel-wise/pixel-wise mean squared difference and
is useful when If and Im have similar intensity distribution and local contrast [8]:

MSE(If , T ◦ Im) =
1

Ω

∑
x∈Ω

||If (x)− [T ◦ Im](x)||2. (4.6)

4.3.2. Cross Correlation
Cross Correlation (CC) is a similarity metric more robust to intensity variations [1], only esti-
mating the local image average variance. We define Îf (x) and [T ◦ Îm](x) as the local mean
intensity image, which is computed over a local nD window centered at each position x. We
use a variable to represent the image with its local mean subtracted as Ī(x) = If (x) − Îf (x)

and J̄(x) = [T ◦Im](x)− [T ◦ Îm](x) for simplicity. The cross-correlation is defined as follow:
[8]:

CC(Ī(x), J̄(x)) =
⟨Ī , J̄⟩2

⟨Ī⟩⟨J̄⟩
, (4.7)

where ⟨⟩ means the inner product computing over a nD window.

4.3.3. Mutual Information
Mutual Information(MI) is a voxel-based similarity measurement which is insensitive to the
intensity changes. Derived from information theory, MI quantifies the statistical dependency
between two images, making it a valuable tool for alignment purposes. The MI between two
images, Im and If , is computed as follows [16]:

MI(Im, If ) = H(Im) +H(If )−H(Im, If ), (4.8)

whereH(Im), H(If ) denotes the marginal entropy of image Im and If , respectively. The term
H(Im, If ) denotes their joint entropy, which is calculated from the joint histogram of Im and
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If . The joint entropy is calculated from the joint histogram of image Im and If . The entropy
of an image A is defined as:

H(A) = −
∑
a

pA(a) log pA(a), (4.9)

and the joint entropy between two images A and B is:

H(A,B) = −
∑
a,b

pA,B(a, b) log pA,B(a, b). (4.10)

MI measures the amount of shared information between the two images. Consequently, when
two images are well aligned, the MI value increases, indicating a higher degree of mutual
information between them.

4.3.4. Total Correlation
Total Correlation(TC) is used in conventional DLR framework as groupwise dissimilarity met-
ric. The image series Ii can be represented as a G × N matrix M , where N is the number of
frames in the series, G is the number of voxels in one image Ii. Each row ofM denotes a data
point in a N -dimensional space.

The correlation matrix of the data points inM is defined as:

K =
1

N − 1
Σ−1(M − M̄)T (M − M̄)Σ−1, (4.11)

where M̄ is a average matrix that each of its column is the column-wise average of M and Σ
is a diagonal matrix that its diagonal elements are the standard deviation of the column of M .
The diagonal matrix Σ is used to make this metric robust to the linear intensity scalings and
offsets. The idea is that once the images are aligned, the higher eigenvalues increase.

The dissimilarity metric based on total correlationDTC measuring the amount of informa-
tion shared between any subset of image IN , is defined as follows [10]:

DTC(I) = H(I)−
N∑
i=1

H(Ii)

=
N

2
+

N

2
ln(2π) +

1

2
ln(det(K))−

N∑
i=1

H(Ii)

=
N

2
+

N

2
ln(2π) +

1

2
ln(det(K))−

N∑
i=1

(
1

2
+

1

2
ln(2π)

)
=

1

2
ln(det(K)))

=
1

2

N∑
i=1

lnλi,

(4.12)

where det(K) =
∏N

i=1 λj and λj represents the j th eigenvalue of correlation matrix K.
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4.4. B-spline Transform Model
The linear transformation is the simplest transformation model, describing the transform di-
rection and size. For example, project the point (x1, y1, z1) to (x1 + µx, y1 + µy, z1 + µz) in
3-D spatial domain. The linear model can only capture the global image motion, where the
free form deformation (FFD) model based on B-spline provides a local deformation model that
offers more flexibility and precision.

The B-spline model treats local feature separately because it generates spline basis func-
tions for each feature independently. Consider a 3D FFD B-spline transform as an example,
where the spatial domain Ω = {(x, y, z)|0 ≤ x ≤ X, 0 ≤ y ≤ Y, 0 ≤ z ≤ Z} and we use
Ψi,j,k to denote a control point. The FFD transformation is expressed using a cubic B-spline
as follows[22]:

Tnonrigid(x, y, z) =
3∑

l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(u)Bn(u)Ψi+l,j+m,k+n. (4.13)

Here, the B-spline model defines the corresponding kernel functions as:

B0(u) = (1− u)3/6,
B1(u) = (3u3 − 6u2 + 4)/6,

B2(u) = (−3u3 + 3u2 + 3u+ 1)/6,
B3(u) = u3/6.

(4.14)

By parameterizing the B-spline transformation with control points, the FFD model allows for
local modifications in number of control point. This approach proves to be effective and natu-
rally smooths the deformation field, enabling accurate modeling of local deformations.

In contrast to linear transformation models that primarily capture global image motion, the
FFD model based on B-spline transforms offers enhanced flexibility and the ability to repre-
sent intricate local deformations. Consequently, this model is particularly suitable for medical
image registration tasks where precise alignment of local anatomical structures is critical.

4.5. Robust Principal Component Analysis
The fact that high-dimensional data usually lies on on some low-dimensional manifold [3]
makes it possible to decompose the large matrixM into two sub-matrix:

M = L0 + S0, (4.15)

where the L0 is a low-rank matrix and S0 is sparse. Compared the classical Principal Compo-
nent Analysis (PCA) which seeks the best (in an l2 sense) rank-k estimate of L0 by solving
[7]:

minimize ||M − L||
subject to rank(L) ≤ k.

(4.16)

This problem is effectively solved through the singular value decomposition (SVD), decom-
posing the matrixM = L0+N0, whereN0 is a small perturbation matrix. In Robust Principal
Component Analysis (rPCA), instead of using the small noise term N0, a sparse matrix S0 is
estimated. The rPCA is solved using Principal Component Pursuit (PCP) estimate solving

minimize ||L||∗ + λ||S||1
subject to L+ S = M.

(4.17)



4.5. Robust Principal Component Analysis 21

The ||A||∗ :=
∑

i σi(A) denotes the nuclear norm of the matrix A, i.e. the sum of the singular
values of A, ||A||1 =

∑
ij |Aij| denotes the l1-norm of A seen as a long vector in Rn1×n2 [5].

PCA is known to be sensitive to outliers in data while rPCA is more robust with robust
errors. By robustly decomposing data into low-rank and sparse components, as shown in
Figure 4.2, rPCA enables the extraction of meaningful information from noisy or corrupted
datasets, enhancing the reliability and interpretability of the results.

Figure 4.2: Schematic diagram of the robust PCA problem, which combines a low-rank matrix with sparse
errors. Robust PCA aims to decompose the matrix back into these two components. [6]



5
Numerical Phantoms Synthesis

MRI image acquisition, particularly for cardiac magnetic resonance (CMR) imaging, is known
to be expensive and time-consuming. To mitigate these limitations, the utilization of in-silico
phantoms has emerged as a powerful tool for testing and validating various tasks in MRI, such
as image reconstruction, image registration, and image segmentation. Generating synthetic
images from digital phantoms offers several advantages, including the availability of corre-
sponding anatomical labels and functional ground truth, facilitating evaluation and analysis.

Voxel-based methods in the context of phantom synthesis rely on labeled voxelized repre-
sentations derived from real patient data, yielding highly realistic phantoms. However, these
methods often suffer from limited generalizability due to their dependence on specific patient
datasets. On the other hand, analytical models are based on mathematical descriptions of tis-
sue structures, which enable accurate phantoms but may sacrifice some realism. To overcome
these inherent limitations, hybrid methods have been proposed, combining the strengths of
voxel-based and analytical approaches.

In our research project, we have chosen to utilize the MRXCAT2.0 framework [4], an new
version of the previous MRXCAT software [21], for digital phantom synthesis in the field
of MRI. MRXCAT2.0 provides a comprehensive and versatile platform that allows for the
generation of synthetic images that are both anatomically accurate and realistic, facilitating
the evaluation of various imaging techniques.

MRXCAT2.0 is a hybrid method aiming to address the two limitations: lack of variability
and realism. It combines a statistical model to generate realistic left ventricular anatomy and
function with the XCATmodel [17] for the surrounding tissue structure. Additionally, a trained
neural network is utilized to generate realistic tissue maps and relaxation times, among other
parameters. The overall pipeline from MRXCAT2.0 can be seen in Figure 5.1.

The input of the MRXCAT2.0 includes two parts: one is the selection of physiological
characteristics of anatomy, another is the parameters for the XCAT phantom. The first part is
employed to generate the foreground through the biophysical simulation and the second part is
used to generate the background, defining the torso anatomy and the displacement field. The
foreground and background components are subsequently combined and undergo warping and
tissue texturization processes to calculate tissue properties. The ground truth data in our work,
specifically the T1 map, is generated based on these tissue properties. While MRXCAT2.0
typically utilizes the balanced steady-state free precession (bSSFP) signal model, we have
replaced it with the synthetic process described in our previous work Chapter 2. In our project,
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Figure 5.1: MRXCAT2.0 workflow [4].

our personalized signal model (The T1 exponential fitting curve) to generate the synthetic T1

maps.



6
Additional Experiments

In this chapter, we present the ablation studies that are not written in the academic paper in
Chapter 2.

6.1. Round Selection

Figure 6.1: SD difference changes over rounds on pre-contrast (in-domain) data optimized using normalized
mutual information. The SD difference compares the decrease of SD error in each round to the original data,
where a larger difference indicates better registration. The performance of our method (w/ rPCA) improves at
the beginning and decreases after a few rounds, which means it successfully corrects most of the motion through
multi-rounds. The naive method (w/o rPCA) stays stable over rounds and performs worse than our method in

our selected round (round 3).

24
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6.2. Comparison of different similarity metrics
6.2.1. SD Difference
Different similarity metrics (NMI, NCC and TC) are compared according to the SD difference
on our proposed rPCA-based method. The results are shown in Table 6.1 on pre-contrast data
and Table 6.2 on post-contrast data. The results on both in-domain and out-of-domain data
indicate our proposed method perform best using normalized mutual information.

Table 6.1: SD difference changes over rounds on pre-contrast (in-domain) data optimized using on
normalized mutual information (NMI), normalized cross correlation (NCC) and total correlation (TC).

Round 1 2 3 4 5 6 7
NMI 0.3262 0.3206 0.3401 0.319 0.2973 0.2643 0.2280
NCC 0.3245 0.3214 0.2978 0.2758 0.2589 0.2471 0.2437
TC 0.3312 0.3353 0.331 0.3165 0.2998 0.2781 0.2531

Table 6.2: SD difference changes over rounds on post-contrast (out-of-domain) data optimized using on
normalized mutual information (NMI), normalized cross correlation (NCC) and total correlation (TC).

Round 1 2 3 4 5 6 7
NMI 0.1045 0.1325 0.1756 0.1615 0.1779 0.1638 0.1658
NCC 0.0995 0.1196 0.1146 0.1154 0.1181 0.1009 0.0978
TC 0.1123 0.1344 0.1593 0.1895 0.1880 0.1828 0.1674

6.2.2. Examination of potential artefacts
To evaluate whether undesirable deformation within the ROI exists, in addition to the correla-
tion plot shows in Chapter 2, we measure the average T1 value of estimated T1 map within the
ROI. The large shift from the original average value might indicate the unintentional motion
artefacts. The results of each subject and the average value are shown in Table 6.3, where
the normalized mutual information contains the smallest shift from the original data. Com-
bined with the results in Section 6.2.1, normalized mutual information is finally selected as the
similarity metric in our project.
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Table 6.3: Average T1 value of estimated T1 maps. Each row indicates averaged T1 value using different
metrics. The orig indicates the T1 mapping without any registration, normalized mutual information (NMI),

normalized cross correlation (NCC) and total correlation (TC) are listed. The last row is the averaged value over
20 test subjects. The average value using mutual information is the nearest to the origina value.

Subject Orig NMI NCC TC
MOLLI_0379217_20131018_1 1486.58 1349.83 1341.26 1360.14
MOLLI_0387056_20140416_3 1357.46 1328.84 1324.90 1346.26
MOLLI_0387056_20140423_1 1452.84 1452.52 1503.66 1442.63
MOLLI_0440522_20140409_2 1261.96 1446.33 1438.62 1460.58
MOLLI_1328040_20131002_1 1467.56 1467.72 1491.55 1503.75
MOLLI_1328081_20140129_1 1221.37 1218.37 1138.46 1244.15
MOLLI_1351763_20131030_1 1461.45 1356.11 1369.45 1502.56
MOLLI_2265167_20140212_2 287.95 279.86 284.98 274.62
MOLLI_2550514_20140219_1 1318.23 1360.93 1366.55 1369.74
MOLLI_3355043_20140305_2 1448.49 1469.61 1456.02 1478.71
MOLLI_3386874_20140528_1 1524.44 1499.78 1474.46 1536.80
MOLLI_4143835_20140402_2 1496.25 1443.78 1449.47 1456.87
MOLLI_5179318_20131106_2 1472.56 1568.73 1582.90 1564.61
MOLLI_5639272_20131204_3 1664.31 1452.76 1445.87 1466.47
MOLLI_6157978_20140115_2 1495.37 1448.45 1445.78 1464.35
MOLLI_7324776_20140416_1 1194.77 1342.65 1308.72 1373.07
MOLLI_8101167_20140611_2 1346.84 1237.35 1229.46 1237.49
MOLLI_8559809_20140402_3 1385.99 1379.78 1377.53 1397.30
MOLLI_9034739_20140528_2 1326.32 1476.25 1472.23 1482.35
MOLLI_9353628_20140129_2 1450.30 1506.55 1523.96 1509.32

Average 1356.05 1354.30 1351.29 1373.58
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