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SUMMARY,

Expressions are derived for the sideslip
derivatives on the assumptions of the linearised
theory of flow for a delta wing with small dihedral
flying at supersonic speods. A discussion is
included in the appendix on the relation between
two methods that have been ovolved for the treatment
of aerodynamic force problems of the delta wing
lying within its apex Mach conc.

When the leading edges are within the Mach
cone from the apex, the pressurc distribution and
the rolling moment are indopondent of Mach numbor
but dopondont on aspect ratio. There is a leading
edge suction, which is a function of incidence,
aspect ratio and Mach number, thot contributes
as well as tho surface pressurc distribution to
the sideforce and yawing momonte.

When the leading edges are outside the
- apex Mach cone, the non-dimeonsional rolling
derivative is, in contrast to the othor casec,
dopendent on Mach numbor and independent of
aspect ratio: tho othor dorivatives and the
proasure, however, arc dopendent on both variablcs.
There is no leading edge suction force in this case.
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4 1E4 Introduction

The present papor, in which the acrodynamic derivatives
with rospcct to sideslip arc calculatod, is onc of o sorics doaling
with the force coofficionts acting on o delta wing at supersonic
speeds. The investigation will be confined to the case of small
deviations of the wing from the noutral position, so that in particular
it may be assumed that if the wing is initially wholly within the
Mach cone’ emanating from its opex it will remain so in thc disturbed
condition, and vice veorsa.

The problem divides into the two cases in which the wing
protrudes through its apex Mach cone and in which it is entirely
encloged within ite In tho former the task simplifiecs to integrating
a uniform distribution of supersonic sources, since the motion ahcad
of the trailing odge abovo the wing is independont of that bolow the
winge. In the laotter casc rocoursc is made to o method basod on that
introducod by Stowart (rof.l) in his solution of the basic lift problem,
cxcopt that the oxprossion rolating the prossurc distribution to the

boundary conditions is derived in o differont manncr.

Robingon (rof.2) solved thc 1lift problom by other mesns

and & comparison of thc two techniquos omployed is made in tho
appendix to this papor.

A Wotation

V = Froo stroam volocity Y- Semi vertex angle

v = Sideslip velocity ¢ = Max. chord

f = Air density S = c%tan¥ = Wing area

M = Mach nunber s = ctan¥ = Semi span

v N 1 : :
=yM - 1 lv = h4FVVSs = Non-dimensional

rolling derivative

1= /3th

n_ = N%vaSs = Non~dimensionsl
L = Rolling moment

yawing derivative

N = Yawing moment y = Y/ vWSs = Non-dimcnsional
(referred to vertex) x: sidoslip derivativc.
Y = Side force K = Incidoncc

E; = Dihedral angle
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3.  Results

A thin flat delta wing of small dihedral is travelling at

supersonic speed V with sideslip ¥

The forces due to sidecslip are:-

with vertox into wind (Sec Figeda).

Inside Mach Cone (A £ 1) ‘Outside Mach Cone (A>» *)
L +-§-P'Wgcgtan3\('. QPVVS 3't:m s
N~ —‘P—'Vcs'banY{nfftany Xd Jl-)\ sec” 2% g = _@‘PﬁScht&ne‘!PE.?j;}_
E'()\ W Af?_ 9
W K8 fine ) LApahe2i.ly il
& 'W SQMY %5 2-- B%ctan” Y
& { E' (A , s v A2. ¢
The non~dimensional cerodynamic derivatives with respcet to
sideslip arc:~ '
Inside Moch Cone (X & 1) - “Outside Mach Conc (X7 1)
i R 8 :
i -.S tan.wl. = —5~
2 5 8% 43
1 20 VEe IR Y% 8 i
n |~—3%= g( f1—-)\ cot¥eoc” S
4 3{“% E' (M) 3w '1')\¢.’.1'
S PSR . ' R R
22 1 o & 4 C < S SCC 2!
y |~ 2 ££§; tan Y~ — SV 1= A - %S ten Y : :
v %FT"“ E'()«) ‘ m \/ ’)\'.2—11-

It will be notod that tho
transition from one casgo ‘to thc other.

At Fige4 tho quantitics /31
for zero incidonce are plotted agains

At Figs2 tho quantitios 1/§,

sbove quantities are continuous on

AJSQ and ﬁy\/gz

the paramctor .

1 > o
g‘2 and Yo/ &

for zoro incidence arc plottod against Mach number for diffcercnt aspoct

ratios, It will bo sccen that the valucs

of lW/S‘ obtained for tho-

highor aspcet ratios, when the loading ecdges oro within the Mach cone,
arc comparablc with those obtained in incompressible flow,.

At Fig.3 the contributions to
duo to incidonce arc plotted against Moch
ratiose.
incidencs

are off oprodite si

nwéféi and

It will be noted theat the parts of n
gn to the remainder’ &

Vv, 0(15

number for difforont aspoct
and Yy Guc to
and, for incidences

comparable to the dihedral angle, are of the same order.

h¢ suction force at the leading

edge when lying within the
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Mach cone is:-

2
E'(A)

pﬁ%éy 1 -2

The pressure distributions are:-

(a) Leading edges within the Mach cone:-

- R tan Y
—pPwA J an

(b) Leading edges outside the Mach cone:-
(i) At a point outside the Mach cone:-
pWE _tan¥
VA2 -4

(ii) At a point inside the Mach cone:-

2 55 tan Y S & ‘ [>\2 54 .
VO =——=——= tan ycot® .
4 YA2 _ g ( x® -(352

2 Delta Wing Fnclosed within the Apex Mach Cone

4,1 Relating the Pressure Distribution to the Boundary Conditions

In the linearised supersonic theory excess pressurc is
proportional to the induced velocity in the frcostrcam dircction.
Since the angle of dihedral is small, the boundary conditions can
be expressed by equating the wvelocity normal to the yawing plane to
the component of the sideslip velocity along the normal to tho
aerofoil itself.

Using the cartesian axes indicated in Fig.4a we will establish
for the class of problems to which our present one belongs that the
induced velocity components wu, v and w in the %, y and z~ directions
cannbe expressed as the real parts of functions U, V and W of a complex
variable T’ and that there exist relations of the Torm

U f1('r‘) W ang av =f2«—r‘) aw
at aT v - ar

The problem therefore reduces to determining a suitable
transformation. from the x, y, z - spacc to the 7 ~planc and a suitable

function W = 5o that w = R(W) takos up the known valges at the

boundarios. = This is ossentially the method of Stewart (ref.1),
but our derivation of the rclations between U, V and W will be
somewvhat different.

The flow at any point ahead of the trailing edge is
uninfluenced by the trailing edge, so that if we replace the aerofoil
by one of the same shape but of different size the flow at such a
point will be unaltered, Hence the flow at any point along a ray
through the vertex is the samoce.  The induced velocity is therefore
of degree zoro in x, y, z; this type of flow is called conical,

a. term introduced by Busemann.
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In the linearised supersonic theory the equation of
continuity is the Prandtl-Glauert equation:-

-f2R3u v 2w
4x 1 BY i oK

=0 seeevessssscessssccse (1)

For irrotational flow curl (u, v, w) = 0 and there
oxists a velocity potontial & .

It vill therefore be soccen that u, v, w and ?
gatisfy thc oquation:~

- [z “af+"af+ai
)Dxd ay2 EZ |
Under tho transformation (x', y', z') = (x, iRy, iBz

overy solution of Laplace's equation in x', y', z', is also a
solution of equation (2) in x, y, z and vice versa.

i
o

sossessessssssess (2]

It was established by Dol in 1857 that the most general
solution of Laplace's cquation of zero degrec in three dimonsions

is of tho form:-~
' +lZ' +F Sescstvssne 00000(3)
: X' ‘(' T

C.
whoro T =A +y +z.

Honce any anclytic function of &0 is a solution of
equation (2) of degree zerc, where

P i = o 2, 2
W= '!(* +i¥ =(3 L L38  ond whete o= % —-\‘.‘;2 y2 —(3“2:2.

O 3

Therefore wo take u, v, w. to be the roal parts of

Ule), Viw), W), satisfyirg both oquation (2) and Laplace's oguation

n ;Y. It will bc notod that tho vclocity potential is not of
dogréc zoro and cannot thoroforc bo put in this forme

It will be scon that for conical flow the induccd veolocity
potontial is of the form {—- Ty (1‘1,‘; ), so that:-

@ eq2e Ay _1en2e82 o |
(‘3’3’( By 1 - f( -'gd 1{/ \
el DR - S Bty

g

- At 33—:% - #AG TR le—ij‘?‘f

The oquation of continuity (1) beccomos:-

1_412_5212@2:{2\» T}_ BY = 0 ... (5)
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Now since u is the real part of U = U{w) The Cauchy-

Riemann equations give

dU e a u e i .a u
deay ?W{ BS
and similarly for V and W. Therefore:~

: Ay 2
. LJLI - ST SRR (6)
dow 3“ Bn} ~B§u 5

£ 186a - tA) 22¥ L 1 4t vod 25Y L B E
= R0 Davt“ Bt +<) 2t /375:;5“

2 Wi s . . 1+ 5P
& ) —y Y = +2£ : —
T }i?”t "’S% R

and aw = -3 ____.'621’_.‘.1_” 0 Lo SO EIRTE 5
s (2725)2712 zﬁ“'@ )B—;Z—g%; ot 7l __S’Z)%:;JB)
M5 BEERED Y £ LB LTS T -"'i'f_g“ﬁ
+p€1"12’52 : M“}. | i
Hence /3 (1 ~w2) -4 ’ 24w 99 \}
dw dew /
. 2y, %) 8/3
/37(( 72 S’ ) { qz BFQ}. 1—?2"52 Y () ...... )
g (1 -aw?) & +:L(1-=-(m)—§l;‘il

80 that by equation (5)

7o ¢ SRS Nt e . aw

R 3 =ase a

d (3 GeCBPPOOGLIAGCEITOOIIPEOELIO VLAY (lo)
and : _‘_i.Y. R T S __‘_f__ﬂ).)_: ._d_\!

atw 4 -Ww2 gw
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On the Mach cone r° = x° 32 (y2 + z2) = 0, so that

g 2 :
jwlz2 =B° *2) =19, At the serofoil z =0, so S =0,
(r +‘X)£

: ' £ +4t t
and at a leading edge y=¢x’can”3, 80 ’7l e Ao S =%k s

11‘ 1 ~Ften< )y 1 '+ k

12 = 1 ~3%ten27Y.

where k2 =1~k
"The Mach cone and its interior aro, thercfore, ropresontod
in tho tw-planc by tho unit cirelec and its intorior, whilc theo acrofoil
bocomes the roal axis botweon + k'/(1 + k). (Fig.4b rofors).
: 2i @
Consider tho transformation cnlrsk) =T—~;—)—§ Whoro
en(7 ,k) is tho Jacobian elliptic function of modulus k.

The interior of tho unit circlo in the w-planc is troced
on thc T-planc in tho rectangle, vorticos # 2iK*(k), K(k) & 2iK' (k).
In Fige4c tho imaginary axis AA' botwoon T= # 2 iK' reproscats the
Mach cone, while the acrofoil becomes the parcllel line  BBY' betweeti
T=K4#& 2iK', such that CQ is the lowor surfcce, z =~ 0, y<0, -
QB the upper surfeece z =+ 0, y<0, CQ'" tho lower surface, z # ~0,
y>0 and Q'B' tho uppor surface z =+ 0, y>» 0. The leading
edges become the points Q, Q'« The point C corresponds to the
wing axis on the lower surface and the points B,B! both to the
axig on thc upper surface. - The linc 0C roprescnts tho portion
of thc zx~planc, y = 0, z<0, botween tho Mach conc and tho
acrofoil, whilc AB, A' B' both corrcspond to the similer scction
above the acrofoil: +the linc PO corrcsponds to that port of the
xy~planc, y <0, z = 0 botwoen the Mach' conc and the lecading ecdge,
and the linc P'Q'* to tho similar part, y>»O, z @ O.

In 'tha’"r"-plane -d;l-']‘ = —1-' enT -Qﬂ -oooooooooooooooooao..o(11)

aT 3 ar
and V= _jgp7d¥ 5
da at’

4.2 Calculation of Derivatives with respect to Sideslio

As already indicated we assume that the kincuatic boundary
conditions are fulfilled at thc normal projcetion of the acrofail
on the xy~planc rather than at tho corofoil itsolf. The boundary
condition for o sidoslip vclocity ¥ ond dihedral & reduces to
w=VS for y»0 and w=~70 for y<{O0.

From the asymmetry of the configuration it follows that
w =0 at the zx planes 1In addition w =0 at the Mach cone.
: : 3 du dv aw
Prom physical considerations -— , — g S
s ar’ w0
must be finite at the Mach conce  Furthormoro tho acorodynamic forces
must be finite, so that any infinity of u at the acrofoil must be
such that tho integral of u with rospoct to area is finitc.

/WO......




B

We have to choose W 80 that 4U s B uyw o fulfil
aT av . ¥
these conditions and so that u, v, w arc single valucd.

In ordor that Y may be finitc on tho Mach conc and
aT "
w 2ero on thc Mach conc and the zx-planc, A pust bo regular
/ av :
ond rcal on AA' and be imaginary on 0C, AB and A'B' with no

singularitics othor than poles; tho rosiducs of such poles must

bc zoro or real oxcopt at C, B and B' whorc thorc arc discontinuitios

in w Sinco & (=t oW ) ang AV [ ~ienT & §ore t0 bo also
aT\ O ar & a7

finite on the Moch conc, &Y must hove at least o cimplc zero at tho

d
points P and P' (T= 5K h Since w is to bo constant over

\

e .
the two halves of the acrofoil, Q—i—’r must be rcal on BB' and have no
d . : ; ,

singularitios which contributc to w eoxcopt,as before, at C, B and B'.

: ; iy : : =
In intograting Kol along OCB w wmust Jjump in valuc by an ocmount + vé

ar
5 e . L5y A
at C and -v0 in intograting along CCB'. Jlearly, thorofore aw
aw

must have a simplc pole at C of residuc of imeginary part

¥ i 12 - ~ .
%8, Similarly SY must havo simple poles of rosiduc of

AT = aT
imoginary part - S at B and B!, so that w may roturn to
T S

zoro on AB and A'B's In order that u, v, v may bo singlo

valuca U : &AM pust bo rogular within the roctinglo.
87T a1 8T
Functions satisfying thosc conditions anc oguation (11)

R
2%
|

_Z_i—IM acT n’lz i

ar v

_C}_y. :-F—Z-—i'%‘-% sczrnoqd ov.ooouooooooooloou.oot(12)
at G

QU = __&_25.1 k'J sn’rndZ'T"
av /3
It will bo notod that SU is puro imoginary along tho real

4

aT
axis and rogular at T = K, so that:-

2 o 4
T &—V_&Jﬁ j sn(K + is) nd® (K + is)ds, T=K + ior
’ﬁ‘ﬂ :

=_.§£’__ jdn(sk')nc( XV

o
f

- %2- -\75tan\ﬁ30(0: j i
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while

Hence

=0~

y
On the aerofoil = and T =K+ io,

! J:{E-—B‘- z
enT= O tmt k'sd(o'w) R

£ I—"——‘—",. .
1 —/? ‘.0)2 : X2n/3C y2 :

&
gd (@ k) . -
e (¢, k') = o o8 T 2y 2
1-k“gd®( © ,k*) x“tan< Y=y
Therefore u =T-% T&tanY . oss vadensnvansiii]

\{ xdtan2T~ y2

In the linearised theory the pressurc p # const. - ;OL;\-/-

so that the rolling moment duec *to gideslip is:-~

]

j f PV u y dy dx, where integration is over the whole

5 wing

v “dydx

J X 'tanZY-'- 'y? :
|

. ct :
*Tgrpﬁfgtans’fj @ i -t

el o}

+ 2 (o-‘vé:tdn'z‘

i

& o
\;J‘c‘l-
o
Ne]

-

whero x = g/t

qt anYLL%.?‘_

e
i

+ % P W{gojtansx

L - 2 3
Honce the derivative lv = R e s o 65 tanw,

’GW Se

The sideforce duo to the prossurc distribution over the

aorofoil resulting "‘rom a sideslip is:~

(YzS = J EPV&uidydx i
="5'-f4_\l6 ten ¥ j LS ’
ﬁ:gtanzT— =
E e “-f}"VCb ‘ten ):r' dtdq,
= —-.-{_1 PW<SCCﬂ'tCm ?ro
% (¥lg _ 4 82
(yvc5 s o tan V.

Tho corrosponding yowing momont is:-

(N)6 B —‘f‘/{‘2‘079ui8. xdydx

Sesba
_ ,—‘-Tfpvvb‘ tan o Promucz o

,

Iyl xdyax

0]




w30

—_ 0 . i
=~ pWé%an® Y a2 ataq
5 ‘tj
0 ¥ O

"

_-f;:fﬁﬁkggcstanzﬂyi
T

n) = ) /“pﬁs,s ; ;%52 ;

In considering forces in the plane of the delta wing, in this
case sideforce and yawing moment due to sideslip, it is necessary to
take into account the contribution from the infinite suction at the
loading cdge as well as that from the prossure distribution ovor the
winge At zero incidonce the suction forces due to sideslip arc of
second order, but at a finite ineidence there is a cross torm of
first ordor.

It wvill be shown that the inducoed velocity at the leading
edgc is perpendicular to tho leading edge and that it can be
oxprosscd in the form :-

q = 9£§T+ boundod terms

where f is theo distance in from tho lcading cdgo.

The corresgondlng guction forco was shovm in Appendix IV
fo-Refi2 to bolf;;C cos ¥4/l —;\2 per unit lengthe.

Consgidering first thc flow duec to the uldesllp alone,
the indused velocity along a leading edge (y = x tan¥) is
(ucos™ + v 8in¥Y), which is the real part of 1 cos Y {p(ﬂ-L' 2 .
Now from cquations (12) 4 sUf}# k'V} = 2. vSk') (c,n’i ~ ik's .;n'?’z gc T nd"T,
: ar - i )
which, roferring to Fig.4c, is rcal along OP' and puro _muglnary
along P'Q': 4t is, furthormorc, regular at overy point along OP'Q'
including Q', which corrouponds to tho leading edge y = xtan™Y .

Honce the componcont of induccd wvelocity due to sideslip along o
leading edge is zcro.

From Ref.2 we have that the induced veloeity potential at
the acrofoil duc to an incidence 94 is ~

VG( than'?—-y ,
E'(N)

whore B'()\) is tho complcte elliptic integral of thc sccond kind.
It will be noted that the wvelocity componont along thc lcading cdgeo
vanishos.

As tho contributions’ from both fields aro zecro in thc
dircction of the leading cdge, the total induccd vciocity
perpendictlar to the leading edge is cosec™ times the x-wise
component, which we obtain from the above expression and our
previous result (13), giving:-

sec” ¥ kT, R
q= = = : ‘yiﬁA xtaan’i- ﬁ;,v
Jx tan® Y - y©- YE' ()
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Put x=x,+fein?, y=xtm¥ - § cos Y

{ = S-S
80 that q = Y. s 2%8 fx tan"¥secY
B (M) T 2%

+ bounded termse.

Hence the suction due to sideslip at incidence is

mvaﬁ__ x tanY [ 1 - N2
(/)

gideslip at :an:Ldence is:~

~C

s

fl
&s-......_..,...

2o WA = 2, anfiN?

CE(A)

i < ¢ Vs = 2481 -a 2
;. f)“’ (&a/v

The corresponding yawing moment is:~

c
(N‘):(S | j —57%)&- tanTJT - R x sec ’\fdx

4 Wl c3jm1 R
3B (A)

Hay Xe secz"f

: : ol
(%),(5 = (NL&S/FVVSS = 4*{;3 (}); cot Y gect Y

Hence the total side force is

o
1

23’\2 ' ;5!1 ..22
o RRER) -

) ‘cﬁr’-\?c tan’ Y i} 8 ten 15

55 iy 61: N J&\\”-;\

B (A)

~
<
H
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and the total yawing moment is ~

o B 3 o
O tan3 - 40 [ ~)\_2 sec?y

3'ov i o L 4 E' (A)

: - :
ne . ”-431: '2—'8 “'M—H - >\2. cot"Ysec(‘,'Y

U5 E' ()

5« Delta Wing with Leading Bdges Oytside Mach Cone

The boundary condition at the aerofoil is w =+v§&
on one half and" ~v$ on the other. When considering the upper
surface, y > 0, where w = v& we may toke w ® ~F0Q on the
corresponding lower surface, since the flow above the aocrofoil
is indcpendont of the flow below it in the casc under considoration. ;
In this artificial condition thorc is a jump of ~2%0 in tho valuc of pX:
at the surface, so that the surfacc can be roplaced by a uniform 2n
supcrsonic sourcc distribution of density . “’Eré‘. s Hho other halt
of tho eorofoil, y<0, vhoers w = <8 ' c&'n be likowisc roploced by
a sourcc distribition of donsity

T ¢*dxody,
Honce (P (x, y, o) = - lﬁ-jf
? g j(x - %2 - B2 )2

whore &

FI)

+1, vhen y7 O
o = ~1, vhen y £ 0.
LLERE . ,
80 (_P- - 'irjfdpdw ’ whero X, x -/3F cosh'\'/

Yo y - Ps:.nh’q.t .

1]

In Fige4d P is tho point (x,y), OL; and OLp aro tho
looding edgos, and PL; ond PL, arc the boundarics whoere (x - xo)

L5
~f3%ly - y,)° = o,

Tho values of P 5 ‘tf/ vary as follows:-

when (x,, y,) dison (i) PLy , Y o= -
(ll) PL2 5 “l{( = 4 DG'
(1i1) B, Y o= tonn! BY .¢
g P9
v} OX ., @ = P, = ycomsechy
5 SaXtan ¥ e By
P v Accghp-  sinh ¥
(vi} 0L, , P =p, = uton Y + y

,7\ cosh‘t’ + sinhy

ANhonoooooooo-
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When P is inside the Mach cone from the apex, we have

e i e
C}f 2 - 1’,-“5- jP1d\}/ -l-jflodj{;..
-0

e Ry
_5 ,.g‘ 30
so that u = = ay jz’ﬁéd\y

since = 0
x
Sy
and P =-{-‘*1 =P, , when ¥ =€ A
'
e Té tany d W . %5 | tanYawy
i ¥ R , -l - 7 E
_a;z\ucoshly ~ ainh £l G?\Goshl{! + s1nh’\ff

& & )‘tan'fdt _2v5 | tan'¥at

L T LY Wl A+ 2) 4 2t

VJ~1L ‘r’
¢ = 1 gl 1
where -'tanh-z—ﬂf'/ s/ = tanh £ €
g g

&é 'ba.n‘Y P g 5 i A 25_1“+ 1
11'/'% 2 7 ol i Y R
& tany ‘ \/ Azz' 1

tan -1 %
= = tan y cotY ) g a

WA= L Ximgg oy

then P dis outside the apox Mach cone

4) __&.Jrfmd‘{/ ¥y»0

so that u = 1—5—-—1— , by putting € = G in tha 2bOvEee
A -1

When y < 0, w chengos signe

Hence the rolling momont duc to sideoslip isz:-

L = +f/-2to5uydydx
© c gseel ¥
s 40TV Etan Y r %5in®a@ dr
3 s -
A -1 1
0 ot /3

Bsecn“‘l
_'T%{ (wﬁu\n E[Z;_—:l slony qzsinmyd\rdq
¢
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whore x =1 cos®, y =r sin®@ in tho 1st integral

and x = gpcoshy, y =q sinh\‘.l in the 2nd integral
v o ,
46 O tanY ) 2 421 5
T _tan tanesocgf.‘ﬁ' aB + AT tan A sinhy tanh'tfsoch v
SN ARy R A ay
cot"% o
- 5 4
by A 20V 8 cPtan T RO UV L [ cosh\}'t;mhz"\k‘di*
——. ,’\..v 42 . -+ t
5 A ~ 1 Lot con Ao oinh® W + A 2
L o
s
o
Py 2 o
Sk 2£—1V603t:m2 tan Y N_’ﬁ:2__2_ AN A :1 t at
% o gk 3 c ; .2 2
3('%2“1 (3 (1 +1t%) (2 = 1 ¢ +A°)
0 J
where t = sinh i

; - it TR -
= 4 228 Stan Y L e 22\_]\24 o P )\% S tx/A}G ‘i
: : [T . . ot
3V A% e 1 }

o

= + 2J°W603tm27
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The side force due to sidoslip is:-

=~ ( (2 £V hld) dydx
3J

_4pWS tanY

G

‘. ¢ socf .y ;%scch“"" = -
i : rdrde + ;:J j
v

(0]

—0a 2 g f
7 EPVVS ¢ tan T gtan’Y —-% +ﬁ-%[tma~1[.:l_;2f:l sinh'Tﬁ'] sochz‘lffd ‘q)'
- 5 LA |
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R 5 _ A 1 A ?"1 cosh ¥/ tanh Pdyp
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Tho yawing mwoment due to sidoslip is:~

.-jjélp'\'/l ulxb aydx
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T VVG tam;\ r cosG* ara@+ 2 ﬁ'Ztan { Sinlff\lf]
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°°t-ﬂ +o - q co'lh'\t/d'l{/dq
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APPEND IX
The Relation between Two Methods

of Treating Acrodynamic Forco PToblems.
of a Delta Wing at Supersonic Spoeds

& Introduction

te1 Solutions to the problem of thc 1lift at supersonic spceds
of a flat delta wing lying within its apex Mach cone were obtained
independently by Stewart (ref.t) and by Robinson (ref.2) by methods
which at first sight appear very difforonte A transformation will
bo derived that links the two undcr conditions of conical flowe

1«2 Robinson's method of hyperboloido-conal coordinates is
classical in its approach to the problem, for it reduces to the
finding of a system of which the Mach cone end the delta wing arc
coordinate surfacos., Stowart's trootmont is spocial to a
particular set of problems.

1.3 Despite the link betwecn the methods they are different
in scope. Stewart's method is suitable for problems involving
e discontinuity in the boundary conditions, while the other is nots
on the other hand hyperboloido~conal ccordinates are not limited to
solutions of degree zero in x, y, Z. Thus, for cxamplc, Stewart's
mothod is suitablc for calculating tho acrodynamic derivativos with
rospeet to sideslip and tho otheor for pitching momont duc to pitching
and rolling moment duc to rolling, but not vice versa.

2e Hyperboloido~Conal Coordinates

The coordinates developed in ref.2 were as follows:-

vl (M2 P il
/3xx!

r o (M2 1) (4 -¥©&
Rx'

...0‘.......‘......(1)

<
i

f) ~
where ke =1~ 1{2 = 3 tan“7y

/The.........-.....
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The family of surfaces constituting the system are:-

£ -2+ P) =2

z 22 22
& /3 v Z
= 2

= 0 oa.oo.ooooboha.ooa'(z)

X

w2 },(2..'.};

X
) o
“

v«_ V2_k.'_ 1-)/2

L 2_4

It will be observed that these coordinates are analogous to
sphero-conal coordinates; in fact they correspond under the transformation

(x', y' 2') = (x iRy, if3 z).

As gL —» 1, the cones of the sccond family of surfaces
approximate to the delta wing from both sides, and as /\»me they
tend to the Mach cone.

The equation ~/32_3247+.a2lp+32cp ® 0. sracvassseonall)
2 2° 'ayz 2 2°

now becomes:-

J(P“Z”kz) (aa2-1) _%—b__ ﬁ)-LZ"k2) ULE“”?—;:Q' +~{(V2"‘k2) (1‘-}{2)%_
‘ ' & % v “k%) (1-v2) %;’f—}

- (u2-y2) 22 r2'3{>>=0 vessess{d)
D
1

oy k
Writi P s dt 6’- k "
ing = : ¥ > (.
J(£2-K%) (42-1) Ji22?) (142
isee, M =ns(p,k) (5)
V =knd (E’]&l) Ssetsssrctasrser e 5

we have

2 2 '
3.€+3-€ BNPCRVIREeT e 1 TR
‘3‘3‘ ofr 2Dr P

2 e ' :
Hence for conical flow .:3_:%)4. -—a—r% = 0, where ‘Pis a
velocity. 12 '

ks As D varies from 0 to K(k), AL varies from @ to 1,
As @ varies from -2K'(k) to - K'(k), ¥ varies from k to 1 and
back to k as 0 continues through to zero, repeating as @  increases
W 2K

/Bquations.seeces
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Equations (1) and (5) give:-

X = rns (ﬁ,k) nd (G*,k')
y E%ds (ﬁﬁk) sd (Egk') !DO..'OO......000.000...-.(7)
e

z s=cs (f,k) cd (g~,k')

»

To cach valuc of @ ,0 in thc spocifiod intervels of
variation there corresponds just one triplet x, %, z for consgtant
r on the right hand sheet of the hyperboloid =x= - 2 ye -ﬁ2 ze = ri" 5
Previously we ce -plane - =T+ i 22

y we traced the (x, y, z)-plane on the (u-planc @u ’Tz 1;%1—]?— B
8o that ovidently thorc is a onc to ono corrcspondencé botwoen the points
insidc lwl =1 in the w-planc and thc points in the 77 -planc (T =ﬁ+ i )
within the specified intervals of variation of P ard@ .

Equation (6) shows that a function ¢ which satisfies
equation (3) and is of degree zero in x, y, z satisfies Laplace's
equation in & ,0¥ , but any function which satisfies Laplace's
equation in “the w-plane is of zero degree in x, y, 2z and satisfies
equation (3). Hence every potential function in the w-plane is a
potentiol function in the T-planc, provided the W-planc is trcoed

on the latter by means of the transformations given by (w=/3 ¥ * 12 iz
X ¥or.
and equations (1) and (5)s Thorefore the transformation is conformal.

By a transformation based on Stewart's method we proviously
transformed a sot of points in tho w-plonc into the rectangle,vorticcs
T =% 2iK', K # 2iK', but that set of points corrcspondsc to the points
in the (x, y, z)-plane which boccome, by the tronsformation of the
provious paregraph, tho "same" rectangle in the ¥ -plane with tho
vertices corrcsponding. It thorefore follows from tho gonecrel thoory
of conformal rcproscntation that tho two transformations sre identicals

Wec have showvn that Stowart's T -planc is connccted to tho
system of hyperboloido-conal coordinates by the simplo relations
of equations (5)e Furthcermorc we have given at equations (7) a direct
coordinate transformation between (x, y, z) and (p,7 ), by which
Stewart's relation between U, V and W as functions of " could be
cstablished in the same mennor as the rolation botween them as
functions of tho intcrmediate variable w was csfoblishod.

3« Aerodynamic Derivatives Lp and Mg

In the first section of this eppendix it was stated the
rolling moment due to rolling, Lp, and the pitching moment due to
pitching, Mg, could be derived by the mcthod of hyporboloido-conal
coordinatcs in the gquasi-subsonic casce This will now be indicatcd.

By the transformation (x', y', z') = (x, i3y, ifiz)
these coordinates become gphero-conal, whilo cquation (3) roduces to
Laplace's cquation.

Heneo there oxist solutions for the induced potential @ of
the form§= rnEh(V) F (M) where E, and F, are Lamé functions
of the same clasgsg, of degree n and of the first and second kind
rospectively.

/Sucho'ooo--oo
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Such a solution satisfics tho boundary condition at tho
Mach conc, where ML -yco, since F (M) is of order p= B = 1 at
infinity.

To find Lp we choosc the degree and class of the Lamb
functions so that FQUJ-)

2 vz .
By ()
Though at first sight —j— is proportional to y, and thorofore

of thc right form, at 'tho aorofoﬂ. where z =0, 4= 1, we require
some reassurance on ‘the point, for here

; -
li‘2 (ar) J , which is of order (}4_2 - ;s
Ju2 . 1)3(»02 )’
, K. L Folp)
as /u..'bonds to unity; however it may be shovm that Z
R Eo (M)

tendc to a limit that is indepondent of V.

Wo find Mg in a similgbr fashion by taking
? = gz X E—?—.L}ﬂ =2X at - .
B, () 2[(+Z ~ 1) 742 - ?)
| o

Detailed numorical rcsults for those cascs will be
published shortly in the Journal of the Royal Acronautical Sociocty.
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