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smagARY 

Expressions are derived for the sideslip 
derivatives on the assumptions of the linearised 
theory of flow for a delta wing vd.th small dihedral 
flying at supersonic speods» A discussion is 
included in the appendix on the relation betv/eon 
two methods that have boon ovolvod for the treatment 
of aerodynamic force problems of the delta wing 
lying vithin its apex Mach cone» 

When the leading edges are within the Mach 
cone from the apex, the pressure distribution and 
the rolling moment are indopondont of Mach number 
but dopcndont on aspect ratio. There is a leading 
edge suction, which is a function of incidence, 
aspect ratio and Mach number, that contributes 
as woll as tho surface pressure distribution to 
the sidoforco and yawing moment. 

When the leading edges are outside the 
apex Mach cono, the non-diraonsional rolling 
dorivativo is, in contrast to tho other case, 
dependent on Mach numbor arid independent of 
aspect ratio: tho othor derivatives and tho 
pressure, however, are dependent on both variables, 
There is no leading edge suction force in this case» 



1. Introduction 

The present pr.por, in v/hich the acrodyncjnic derivatives 
with respect to sidoslip arc calculated, is one of a sorios dealing 
vd.th tho force coefficients acting on a delta -./ing at supersonic 
speeds. The investigation will be confined to the case of small 
deviations of the wing from the neutral position, so that in particular 
it may be assumed that if tho v/ing is initially wholly v;ithin tho 
Maoh cone'emanating from its apex it will remain so in tho disturbed 
condition, and vice versa. 

The problem divides into the two cases in v/hich the wing 
protrudes through its apex Mach cone and in which it is entirely 
enclosed within it» In tho former the task'simplifies to integrating 
a uniform distribution of supersonic sources, since tho motion ahead 
of the trailing edge abovo tho wing is independent of that bolo\/ tho 
wing. In the latter case recourse is made to a method based on that 
introduced by Stowart (rof.l) in his solution of the basic lift problem, 
except that the expression relating the pressure distribution to tho 
boundary conditions is derived in e. different mrmner. 

Eobinson (rof,2) solved the lift problem by other means 
and a comparison of the tv/o techniques employed is made in tho 
appendix to this papor. 

2. Notation 

V = 

V = 

M = 

L = 

N = 

V = 

Froc streran velocity 

Sideslip velocity 

Air density 

Mach number 

Jlf- - 1 

/QtanY 

Foiling moment 

Yav/ing moment 
(referred to vertex) 

Side force 

Dihedral angle 

' = Semi vertex angle 

c = Max. chord 

S = c^tan< = Wing a r ea 

s = o taxiy= Semi span 

1 = L/PVVSS = Non-dimensioneil 
r o l l i n g d e r i v a t i v e 

n . = N/IJVVSS = Non-dimensional 
yawing d o r i v a t i v o 

y = Y/QVVSB = Non-dimensional 
"̂  s i d o s l i p d e r i v a t i v e , 

^ = Inc idence 

/3. Resul t^ 
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3» Eesults 

A thin flat delta wing of small dihedral is travelling at 
supersonic speed V with sideslip v with vertex into wind (Seo Fig.4a]. 

The forces due to sidoslip are:-

L 

N 

Y 

Inside I/Iach Cone ( X •C 't) 

+ ~ pvVÓc tan-^ Y . 

- ^ pvYc^ tonY^^^ tanV- ^ ^ ^l-X^sec^Yi 

^ ( E'(A) ^ 

/ ' :. .,„. N 

- 2cWc^tai:Yi4s2tanY-^'^'^ /l-X2 1 
• \ ' ^ E' (X) y 

'Outside Mach Cone ( X > ') | 

+ ~qp~^ S c^tan^- Y . 

- ^ p-W(S c^tan^ Y sec~^ X. 

2 '^ VX2™1: 

^ ^ y X 2 - 1 
• 

The non-dimensional aorodynr-jm-c derivatives with respect to 
sidoslip are:-

Fv 

"v 

k 

Inside Itich Gone ( X < 1) ' 

^5 tanY. 
3 

„ it ( '2^;._ _ i _ _ ^ g ^ _ p^2 ,otYsoc^Y>. 

3(1T E ' ( X ) J 

- 2 Ê < : ; - t a n Y - ' 0 ( 6 / i - x ' ) 
( 'T" E'(,X:) ) 

Outside Mach Cono ( X > 1) 

2 B; 
3 /s 

3 ^^2 s^c"^ ^ . 

3-nr ^ > - 2 _ ^ -

It will bo noted that tho above quantities are continuous on 
transition from one case to tho othor. 

At Fig. t the quantities /jlVS", " ^ S and /5y /g"^ 
for zero inoidonco aro plotted against tho parrjiiotor X • 

At Fig. 2 the quantities -̂-rn/S > "̂ s'̂ S ^̂ ^̂  ̂ v/S 
for zero incidence aro plotted against Ivfcich number for different .aspect 
ratios. It vdll be'soon that the values of ly/S obtained for tho' 
higher aspect ratios, when the leading odges r:.ro within the Mach cono, 
are comparable with those obtained in incompressible flow. 

At Fig.3 the contributions to r\^<K'S '^^^ jy/oC S-
duo to incidence aro plotted against Mach numbor for different aspect 
ratios. It vdll be noted that tho parts of n and y„ duo to 
incidonco r.re of op;, o site sign to the remainder and, ''or 1 :cidéiicoG 
comparable to the dihedral angle, are of the same order. 

Tho auction force at the leading edge when lying -within the 

Aiaoh......> 
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Mach cone i s : -

E ' ( X ) 
pvV<?<<5 y / l - A 2 

The pressure distributions are:-

(a) Leading edges within the Mach cone:-

'T yx2tan2-3'' _ y2 

(b) Leading edges outside the Mach cone:-

(i) At a point outside the Mach cone:-

/ ) vv6 . ^ - ^ ^ 

( i i ) At a point inside the Mach cone:-

2 _ - t a n Y . r K 2 _ . 
-pvVÓ . = tan"^ (ycotr - t i :^ 

"M 

4, Delta Wing Enclosed within the Apex Mach Cone 

4.1 EelatinA' the Pressure Distribution to the Boundary Conditions 

In the linearised supersonic theory excess pressure is 
proportional to the induced velocity in the frecstream direction. 
Since the angle of dihedral is small, the boundary conditions can 
be expressed by equating the velocity normal to the yawing plane to 
the component of the sideslip velocity along the normal to the 
aerofoil itself. 

Using the cartesian axes indicated in Fig.4a we will establish 
for the class of problems to which our present one belongs that the 
induced velocity components u, v and w in the X, y and z- directions 
cannbe expressed as the real parts of functions U, V and W of a complex 
variable T" and that there exist relations of the form 

<iu « f / r ) 
dT" 

dW ^nd dV 

dr dT 
^fjrr\ dW 

d-r 

The problem therefore reduces to determining a suitable 
transformation, from the x, y, z - space to the T-planc and a suitable 

function dW go that w *̂  E (W) takes up the knovm valjjos at the 
boundaries. This is essentially the method of Stewart (rof.l), 
but our derivation of tho relations between U, V and W will be 
somewhat different. 

The flow at any point ahead of the trailing edge is 
uninfluenced by the trailing edge, so that if we replace the aerofoil 
by one of the same shape but of different size the flow at such a 
point will be unaltered. Hence the flow at any point along a ray 
through the vertex is the same. The induced velocity is therefore 
of degree zero in x, y, z; this type of flow is called conical, 
a term introduced by Busemann. 

/In 
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In the linearised supersonic theory the equation of 
continuity is the Frandtl-Glauert equation:-

-f5 2 V u ^_>v; ̂ :3 w = 0 (1) 

For irrotational flow curl (u, v, w) = 0 and there 
exists a velocity potential ^ . 

It vdll therefore bo soon that u, v, M and "j" 
satisfy the oquation:-

-f^2jff^J^^^ ^^ 
l>x dy" ^z^ 

(2) 

Under the transformation (x', y', z'j -~ (x, iBy, il̂ ẑ) 
ovory solution of Laplace's equation in x', y', z', is also a 
solution of equation (2) in x, y, z and vice versa. 

It was established by Do"''.i..vi in 1857 that tlie most general 
solution of Laplace's oquation of zero degree in three dimensions 
is of tho form:-

F V •»• iz'V p./y* - iz*'' 

^ x' + r / I x' + r 
(3) 

2 2 2 2 
7/horo r = x + y + z . 

Hence any analytic function of f-O is a solution of 
equation (2) of degree zero, where 

,,o=7j + i;̂  =a^ y + iz and \7here r" 
_ 2 n 2 2 f> 2 2 
~ X -\i y Ai z . 

X + r 

Therefore wo take u, v, w to be the real parts of 
\i{o.'], V {'•o), W(u,'), satisfying both oquation (2) and Laplace's oquation 
in "OjY* It will be notod that the velocity potential is not of 
degree zero and cannot therefore bo put in this form» 

It vdll be soon that for conical flow the induced velocity 
potential is of the form 3; = r "ü/ (TK^ ), so that:-

+ 5'2 

( 
T-

2/Zv 

^^ ^ ^-^J 1-7/^-52! 

Tho oquation of continuity (1) becomes:-

. . ( 4 ) 

-y-S'-

/^ow. 

file:///7here
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Nov/- s ince u i s t h e r e a l p a r t of U = U (w) The CauclTy-
Eiemiann equa t ions g ive 

dU ^ , u ,. _ • > u 
d w "h-^ 

and similarly for V and VI. Therefore:-
5̂ 

and 

and 

in 
dt*i 'ht)'^ 'n 

, ^ "* !?^ i : i^_ÏJVi | 
•f 's' in "^ 

i r - ^ . . . . . (6) 

41 ^̂ -̂ ''-f-p̂ ŷ  is) 

• ^ M T - : ^ . i„i (3:? - i ̂ v m^^^^ 

Hence / 3 (1 - O J 2 dU - - 2 i i ^ J S 
dlU dco 1 

^'.1 

^^ ^ i ^ -̂0̂ 2 ^^2J. i„^2„p f (...,..(7) 
(1 - U ^ ) dV ^ - (̂  , . ^ 2 j dW 

dco da» 

so t h a t by oqiaation (5) 

and 

dU 

dW 

dV 

dU> 

1 ^ 2 iC0 ^ dW 
(9 ' 1 - CU 2 ' dW 

= " 1 e 
1 -i- faj 

t - U3 2 
dW 

dOJ 

(10) 
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On the Maoh cone r = x -p (y*̂  + z ) - 0̂  BO that 

!»>>{ 2 -.iÜj£_j_z!i = 1. ĵt the aerofoil z = O, so $ = O, 
(r +x)2 -̂  

•. X -1 j • • -, X Of- ^^ ± / ? t a n ' > ' • _ ± k ' 
ana at a leading edge y = ± x tan '' , so n - —'-- ' - •= , 

^ 1 ̂  1 ~ff^tcxn^7 1 > i: 

where k^ « 1 - k« ^ = i -/^^'tan^T. 

•Tho Mach cone and i t s interior aro, therefore, roprosontod 
in tho Cu-plane by tho unit circle cjid i t s interior, Vv'hilc tho aorofoil 
becomes t?ie real axis between + k*/(1 + k). (Fig.4b roxors). 

, , 2iu> 
Consider tho transformation cn(T',fc) = ~, whore 

1 - «AJ^ 
cn(f*,k) is tho Jacobion elliptic function of modulus k. 

The interior of the unit circlo in tho cu-p].rJio i.s traced 
on tho 'T-plano in tho rcctrmgle, vortices ± 2iK' (k)^ K(k) ±- 2 iK'(k),-. 
In Fig»4o the imaginary axis AA' botv^on '^= + 2 iK' represents tho 
Maoh cone, \?hilG the aorofoil becomes tho parcj-lol line' BB' bctwoch 
T = ïü ± 2iK', ouch that CQ is the lov/er surface, z = - 0', y-i 0, ' 
QB the upper aurfaco z = + 0, y < 0 , CQ'' tho lower surface, z ̂  - 0 , 
y> 0 and Q'B' tho upper surface z = + 0, y> 0. The leading 
edges become the points Q, Q'. Tho point C Corresponds to tho 
wing axis on the lower surface and the points B,B' both to tho 
axis on t?iO upper surface. ' The line OC roproscnts tho portion 
of tho zx-plano, y - 0.. z < 0, botwoon tho lifc-ch cone and tho 
aerofoil, v M l o AB, A' B' both correspond to tho similej section 
abovo tho aerofoil: tho lino PQ corresponds to that part of the 
xy~plano, y <0, s = 0 botwoon tho Mach' cone and tho loading odgc, 
and tho line P'Q' to the similar part, y> 0, z e o. 

In thcvT'-plane lU = 1 cnT M (11 
dT f3> dr 

and iY ~ - isnr dW , 

dX' dT' 

4.2 Calculation of Derivatives vdth respect to Sideslip 

Aö already indicated we asstmo that tho kinematic boundary-
conditions' arc fulfilled at tho normal projection of the aerofoil 
on the xy-plroac ratlicr than at the aorofoil itself. The boundftry 
condition for a sideslip velocity v and dihedral 0* reduces to 
w =v<5 for y ? 0 ajid w = " v6 for y < 0 ^ 

From the asymmetry of the configuration it follov/s that 
w = 0 at the zx -plane. In addition v; s 0 at the Mach cono, 

From physical considerations ~ , ~ and ~ 
d-r ' cV>-' dT' 

must bo finite' at 'bho Ifetch cono. Furthermore tho aorodynajrdc forces 
must bo finite, so that any infinity of u at tho aerofoil must be 
such that the integral of u ^dth rospoot to area is finite. 

/IVc 
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V/e have to choose M so that M , dV u, w fulfil 
d T d T d T 

these conditions and GO that u, v, w are single valued. 

In order that ^1/ may be finite on the Mach cone and 
dr 

w zero on tho Mach cono and tho zx-planc, -SÜLI liiust bo regular 
d T 

and real on AA' and bo imaginary on OC, AB and A'B' with no 

singularities othor than polos; the residvics of such poles must 

be zero or real except at C, B and B' where there arc disoontinuitios 

in w. Since - ^ / = ! cnTÜ^ V-jid iY /= - i snTi^^ V x 
d T V ^o d T J d-rS^ ^)^ 

finite on tho Ifcch cone, ^ must h.'.ve at least o. simple zero at tho 

points P .and P' (T̂ = + i K' ). Since w is to bo constant over 

the two halves of the aorofoil, ̂ ^ must be real on BB' cjid have no 
' d T - • • 

singularities which contribute to w except ,as boforo, at C, B and B'. 

In integrating -^ rdong OCE w muat -jump in value by an ojnount + v O 
OCT 

o.t C and -vü in integrating rdong CCB' • Clearly, thcroforo ^ 
dT 

must hr.ve a sim,ple polo at C of residue of imaginary part 

2v<S , Sindlcjrly ^ must have simplo poles of residue of 
T T . * _. J. d T 

imaginary part ~ '̂ 7.0, . at B and B', so that w may return to 
'TT • • 

zero on AB raid A'B', In order th:.T.t u, v, v? may bo singlo 

valued ~ , ~ ÉÉ. must be regular vdthin tho root .riglc. 
dT d T dT 
Functions satisfying those conditions and equation (11) 

a r o : -

^ = 2 i v$k '3 g^Y ^.^r 
dT TT 

dV :. ^ 2 v é k ' ^ s c V n c T \ (12) 

d T '^ 

dU = 2 i v 5 k ' 3 £3nTnd2T 

dT '^/^ 

I t -«dll bo notod that ilLI i s pure imaginary along tho rea l 
dT 

axis and regular at T s K, so t h a t : -

— '̂  r^ 
u = 2v6k'-^ Dn(K + i s ) nd'' (K + i s ) d s , T - K + i T 

•^o 

= ^rX dn(B,k') nc2(a,k ' )ds 

'•' >/B J 

-'o 

^ I v<5tanrsc(a; k ' ) . ^^^^^^ 
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On the aerofoil Oj^ • j,,- . . . - ajid T= ^ + icr , 
:.• r?r x+yx^-/3V ^ ^ ' 

while cnr= 2 i / ^ U> ^ ^^ ^^^^ k'sd(a-,k') = ,- • ^[ —--
1 -/3''0>2 ^y?^f^^ y2-

Hence sc2(^,k ') = ^ ' ^ 2 ' " ' ' ' = . f . 
' ' ' ' 1-k'̂ sd'̂ ( I3',k') x'^tan-V-/ 

Therefore u =̂  —, v" 6 t a n T - = = = 2 ; 
TV </ x'-^tan^r-

In the linearised theory the pressure p <•? const, - /OuV 

so that tho rolling moment duetto sideslip i s : -

L = + I j 2p V u y dy dx, v̂ here integration is ovor tho v/holo 

J J r •̂  '^^"^ 

JJ ct J 

•f J p yV-Ó^tan^T 2 /, 72 dt 
q ^^ - t — dq, 

whore X = q/t 

5̂ 

= . | p W 5 o 3 t a n 3 T . 

Hence t?ie derivative 1 
^v7 Sf= 

y = qtan w1-t 
t 

= — Q tan G \ 

The sideforce due to the pressure distribution over the 
aorofoil resulting from a sideslip i s : -

(YL - - i I 2p761u(dydj 

'?r T A •an'^T- y' 

= -- : | rpVÓ'^tan^rr f ' -g dtdq, 
Jo "̂ o 

4 „ —A'^ 2, 2 . ^ = - =; p-7VC> c tan 9 . 

" ^ 5 |QVVS 'T̂  

The corresponding ya^wing moment i s : -

! u 1 ^ . xdydx (N) = - I 1 2jOV!i 

4 ,„ - -C2 
^T 

•pvvS tan"y 
tyl y^ rrl ÜX 

y; -J- '- - v ' 
tan a - y 
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t-
0 Jo 

_ J_ jüvVd'tan^lr ILI dtdq 

^--^p^^S^^tan^T. 

K I = (N) /pvVSs = - 8_(52 ^ 

^6 bl ^ 3Tr 

In considering forces in the plane of the delta, wing, in this 
case sideforce and yawing moment due to sideslip, it is necessary to 
take into account the contribution from, tho infiidto suction at tho 
leading edge as woll as that from the pressure distribution ovor the 
vdng. At zero incidence tho suction forces due to sidoslip eiro of 
second order, but at a finite incidence there is a cross term of 
first order. 

It rdll be shown that tho induced velocity at 'the leading 
odge is perpendicular to the loading edge and that it can be 
expressed in tho form :-

q = Cfr- + bounded terms 

whore 5 is the distance in from tho loading edge. 

Tho corresponding suction force was 3hov,-n in Appendix IV 
to EGf,2 to bo T p C cos Y1/I - X"̂ ' pĉ " unit length, 

Considering first the flow due to the sideslip .ilono, 
the induced velocity along a leading edge (y = x tanT) is .̂  
(U cosT-f V sin'V'), which is tho real part of J. oosT ^U(>-k'V/ . 

Now from equations (12) i_ (u|> k'v) = — iv6''k'-' (cnT - ik'sht] scT'nd 

dr j J -TT- .' ) 
which, referring to Fig.4c, is real along OF' and pure imaginary 
along P'Q' : it is, furthcrmiore, regular at ovory point along OP'Q' 
including Q', which corresponds to the loading edge y = xtcji'T . 
Hence tho component of induced velocity due to sideslip along a 
loading edge is zero. 

From Eef.2 we have that the induced velocity potential at 
tho aorofoil duo to an incidence o4 is -

V <X / 2, 2^x- 2 
-i~^—Vx tan & - y , 
E'(M 

whore E' ()\) is tho complete elliptic integral of tho second kind. 
It vdll bo notod that tho velocity component along the loading edge 
vanishes. 

As tho contrlbvitions' from both fields aro acre in tho 
direction of tho loading edge, tho total induced velocity 
perpendicular to tho leading edge is cosecT times the x-wise 
component, v/hich v/e obtain from the abovo oxprossion and our 
previous result (13), giving:-

q =• ,-n --.J .•• .̂•.. V -* xtan T + ,r,vü 
/x^taii^ -r _ y2 S B' ( A ) ^ 

* /Put • • « • 6 
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Put X = i- + F s in 'T , y = X tan 'ff - b cos T 
/ - ^ _ ~̂  • „ , ., 9 

30 tha t q 4 _ Z £ ^ -f 1 vo)/iCotanTseoT 

|E'(X) -n P ^ 2 | 

+ bounded terms. 

Hence the suction due to sideslip at incidence is 

2p^V<f..b 
E' ( A ) 

X tanV y 1 ^X^' 

Tho side force due to leading edge suction resulting from a 
sideslip at incidence is:-

(Yh = • I 4pyy4(5' tan.l^r:x2 ^ ,j^ 

^P-^^^^^ o\un7\l7~P 
^ • ( ^ ) 

^r/è ^ 0 / E» (A ) 

Tho corresponding yawing moment i s : -

.o 

A £ ^ ^ tanT. / i~r r^ . x^secVdx 
B ' O ) 

'o 

4 v V ^ ö 3 / , i 2 , -^ 2..^ 
c w 1 - A t a n T . sec f 

3E' ( X ) 

Kk^ = (̂ l̂ /p^^^ = '"'SMV^^ -̂ ^̂  -^'^ 

Hence the total side force it 

Y = -2p-vVc''̂ tanT / '(T "^^ " E' ( A ) 

ana 

Jv = -2 rn' E'(A) J 

/and. * * A * » o » C 
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and the total yawing moment is -

N = " ^ ( O v V o - ^ t a n T l ^ S t a n T - -^^-^ / l - X^ sea^l 
3 / ^ ^ . E'(A) 

and 

4 Î-Ŝ  . _i2<A./rnr2. cot Yseĉ  Y' 
^ ^ " 3 ?'^' E ' (X) 

5» Delta Wing vdth Leading EdR'os Outside Mach Gone 

The boundary condition at the aerofoil ±a v/ s v ^ 
on one half and' -*v(5̂  on the other, V/hen considering the upper 
surface, y > 0, where w - vS we may take w «* -TCj on the 
corresponding lower surface, since the flô / abovo the aorofoil 
is independent of the flow 'belov.': it in tho caso under consideration. -. 
In this artificial condition there is a jump of -2v6* in tho value of ̂ *̂-
at the surface, so that the surface can be rojplacod by a uniform ^ n 
Euporsonic source distribution of density . ~z£. ; tho other half 

of tho aorofoil, y-^O, v/horo w _f f̂ -v <S ̂  can bo likovdsc replaced by 
a source distribition of density JLU— . 

f(x.y. o) " ^ J j j 
X - Xo)̂  - e2(y - y„f 

v/horo 'ST = +1, v;hen y > 0 

<f - - 1 , v/hcn y < 0. 

so $= - ^laTdpdy , where x^ = x -/3 p cosh-vj/ 

yo = y - p s i n h l V • 

In Fig»4d P is tho point (x,y), 0L> and OLg aro tho 2 
loading odgos, and PL^ and PLQ ai'o 'the boundaries v/hcro (x - x ) 

- / ^ M y - y o ) " ^ = 0 . 

The va lues of £> , 'Ti/' vary as fol lows : -

when (XQ, y^) i s on ( i ) EL^ , ^ = _ t» 

( i i ) ELg , IjT = + 0 0 

(iii) OP , Y "" tanh'*^ ^ =€ 

( iv) OX , ^ = p = y c o s o c h ' ' ^ 

(vi) 0L2 , /^ =/=>2 = ^- '^-"Y + y 
Acosh'Y + s i n h Y 

///lion. 
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v/hen p i s i n s i d e t h e Mach cone from t h e apex, we have 

so t h a t u I £ i ,r-.i. „ I ^P^2 ^^,, I ^ 3ince ^^ î£^ s 

" y 
f^ d ^ - 2 i ± 2 d-vf ( , s ince -^iJ:^ R 0 
OX 1 o x • ( "^ X 

and Po =f'^ ^P2 ' ^̂ "̂̂  Y 

u 
VÖ 
7j 

^ V Q 

tan Yd y 
Acoshlj/ - sinh-^' 

"V 
t a h T d t 

yS I t a n ^ d Y 
tT J 7k cosh'li/ + sinh"l|' 

1̂ 
2vS 

' ' / ^ ( 1 + t 2 ) _ ^ 2 t 
IT 

- I 

2 v ^ t a n T 

t a n ' / d t 

X ( 1 + t2) + 2t 

where t - tanh -g- ""l̂ /" ,1 - tanh -g- €. 

+ -1 X T - ^ _, , -1 AT-t- 1 
t a n -7 ^ :.. - + t a n / F ^ • ™ ^ . ^ ^ 

y c o t T / - 2 - 2 T 
N X - / J y 

Vilien P i s o u t s i d e the apex Mach cone 

'03 

i- # I ,̂ 1 '̂ -f' oo 

so t h a t u 
v6tan-Y , by putting € s Oj in the abovo, 

When y < 0, u changes sign, 

Hence tho rolling momont duo to sidoslip is; 

L = + // « 

UJ 
2 ̂  Vuydydx 

= + 
4/2 vY Stem 9 

f a aocQ f-Y 

^ ' - 1 

r sinödödr 

)0t̂ J 

-̂1 
f̂ seGi:i'yrO:> 

o slo 

X 
q̂ sinli'yd'VI'dq 

/whore, 
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whore x = r cos<9, y = r sinO in tho 1st integral 

and x = q^poshf, y = q sinh'^ in tho 2nd integral 

^ 4pvv5c3t3n7 
.r 

3 V A 2 . , 1 i 

Y .430 .„ 
f / 2 ' 

tanOsocT9dG^ +——^(tan' ' ' ï(-A_zl sinhY 
TT/G 

/ Jcot*'y3 

ihY tanh **̂ t? och'ï|/J 

dlfi 

3/X^~ ^'^^^m^im 2 
X V?: 1 c £. i 

osh'xl^t.aih # d u 
^ 

X - l . r dnh^U +A 

^ 2/. 'vvgo^tc>nT / t , ^ 2 - y 2_ 
G? 

X-/X^'<'1 t dt 
L 2 . , ^ : ^ (1 + t ^ ) ( > ? X T t2 -fX^) 

•where t = sinh 

^ 2/:'vV(?c3t.an7' L^n^y + 2 > y X ^ 

3/X fT/e^ 
. a n - U - . . ^ , traa-^' ^ ^ " " ^ ' 

inhT^ 

-t tA^-1 1 
r\ 

/x^ X 

2,OvV<S'c-^t.an^'y 

3/3 

Henco 1^ 
/^vVSs 

. ^ . 

3̂ 3 

/The 
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The side force due to s idos l ip i s : -

Y = - f f 2 p v y è dydx 
- L / --• 

4^vv5^ ' tan 'V \ 

.O SOC'9-,')-'' ^ech-! | ix> 

lot' -1 

rd rdS + :^l j/3tan'"^^AjiLcinh^'jqd^'dqj ^'ic 

_ - o 2 2 oo 
2 ^ v v S c t a n r / ^ ^ y - ^ + 1 . tan"^: ,4!̂  - ^ s i n h # 

A ' , 
a och ' l^dY ] 

2pvv^'c'ta.irL,^r ;. • ^ 
/-CO 

I L „ A /A '-1 CO sh y t anh y d y; 

X^-1 ryxnh^ W+X''~ 

Kr>j~r~} ^ ^ A'̂ -1 t ^ . i 

V 

t = co«h r 

-•^<^^^ •^-' ^or"\ . _ - C 2 2 2^ . 
= - 4 pvvO c ton î  , 

- ^ - 4 C^+^^ry G0c""'X 

/OyVS 

/ T 

/PTi 

Tho yawing moment duo to sidoslip is:-

N = - 2 PVlulxO dydx 

„ 4>p v v 6 tan A 

/v. A ' - i 

c socö -v-

r ' 
r coaG drdjlS'+ _ 

co t - )3 J 

:̂ 75' poch-Y' 

{ 
CO 

2 11 /'T— 
/3 tan" WX - t sinh'ii/ 

L X ''̂ ^ 
q'"ooahYdY'<^q 
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4,^-W^'^c\anr(tan-Y-l. . j^ [tai;.-'̂  ; ^ sinh^ 
' / "X^ /3 Tr/3 ^ X 

sech^^'dy 

• ^ p w S ' c ^ t a n ^ l ^^°"^ > 

3^' / > ^ 1 

N 
.OTVSs 

8 £ ' sec Û  . 
3Tf / x ^ 
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APEENDIX 

The E o l a t i o n between Two Methods 

of Trea t ing Aerodynamic Force Problems 

of a D e l t a Wing a t Supersonic Speeds 

1, Introduction 

1.1 Solutions to the problem of tho lift at supersonic speeds 
of a flat delta wing lying within its apex Mach cone were obtained 
independently by Stev/art {ref,1) and by Eobinson (ref.2) by methods 
which at first sight appear very different, A transformation will 
bo derived that links the two under conditions of conical flow, 

1.2 Eobinson's method of hyperboloido-conal coordinates is 
classical in its approach to the problem, for it reduces to the 
finding of a system of which the Mach cono and tho delta wing arc 
coordinate surfaces. Stewart's troatir.ent is special to a 
particular set of problem.s. 

1.3 Despite the link between the methods they are different 
in scope. Stewart's method is suitable for problems involving 
a discontinuity in the boundary conditions, while the other is not* 
on the other hand hyperboloido-conal coordinates are not limited to 
solutions of degree zero in x, y, z. Thus, for example, Stev/art's 
method is suitable for, calculating tho aerodynamic derivatives v/ith 
respect to sideslip and the other for pitching mcmont duo to pitching 
and rolling moment due to rolling, but not vice versa. 

2. Hyperboloido-Conal Coordinates 

The coordinates developed in ref.2 wore as follows:-

r/«, V 
X = —^ 

k 

y = 

/3kk' 

r 7(̂ 2- 1) (1 -v\ 
z = * — >• 

/3k' J 
whoro k'2 - 1 - k^ ^/^^ocn^T 

0 ^ r ̂ c o 

1 ^74.-<^<50 

Is C V <. •• 

/The 
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The family of surfaces constituting the system are:-

^' -/3'{y2 + z2) =^2 

- /Q2 2 /o2 2 
2 fi y fi z 

C..2 ,.2 /^2 ^«^„k" /L^-1 

2 /3^y^ /3^^^ 

V^ v^ - 3î  1 - v ^ 

= 0 

= 0 

(2) 

It will bo observed that these coordinates are analogous to 
sphero-conal coordinatesj in fact they correspond under the transformation 
(x', y', z') = (x, i/?y, i^z). 

As /<-—5> 1, the cones of the second family of surfaces 
approximate to tho delta wing from both sides, and as /J^-^oo they 
tend to the Mach cone. 

The equation -/B^ ̂ ^ £ £ + 3 i £ + J ^ l ^ := 0 .«.(3) 
-a x^ -a y2 1) z2 

now becomes:-

r<x) 

2 2_£ ^ (̂.̂'̂ -̂V'̂) _.^ (r'^-£Jl]= 0 (4) 
'3 r , V ^ r 

Writing D-
dt 

>/(t2-k2) (t^-i) 
, ^ = 

dt 

y(t2-k2) (i_t2) 
J/i-

.e,, /^ = ns (j5,k) 

V = k n d (r,k')I 

we have 

Hence for oonioal 
velocity. 

"X̂ cp -^2£, 
flow -̂ 2—iy + - ~ ^ = 0, where V i s 

•^p2 ^ ^ - ' 

m 

(6) 

_. As p varies from 0 to K(k), >C varies from oa to 1. 
As Q^ varies froni -2K'(k) to - K' (k), V Varies from k to 1 and 
back to k as CT continues through to zero, repeating as QT increases 
to 2K'. 

/fequations 
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Equations |1) and (5) givo:-

X = rns (p,k) nd {Q',k' 

y sXds (p,k) sd (ö=-,k')V (7) 

z s ~ CS (p ,k) cd (ör,k' ) 

To each value ofp ,(t in the spocifiod intervals of 
variation there corresponds just one triplet x, y, z for constant 
r on the right hand sheet'of the hyperboloid x2 --̂  2 •y2 _^32 ̂ 2 E r . _-S, 

Previously we traced the (x, y, z)-plane on tho (cf-planc (üJ='n+ iCoSLjIÜSI, 
\ \ -*' X •̂  r / 

so that evidently there is a one to one corrcspondencG between the points 
insido \üj\ -^ 1 in the ^y-planc and the points in the nP-piano (f =p + ±<r ) 
within the specified intervals of variation of p andö* . 

Equation (6) shov/s that a function (^ vdiich satisfies 
equation (3) and is'of degree zero in x, y, z satisfies Laplace's 
equation in /ö ,0^ , but any function which satisfies Laplace's 
equation in the ĉ j-plane is of zero degree in x, y, z and satisfies 
equation (3). Hence evor^potential function in the it/-plane is a 
potential function in tho T-plono, provided the U)-planc is traced 
on the latter by means of tho transformations given by U>"/3 J .t ^̂ . 

:: + r • 
and equations (1) and (5). Therefore tho transformation is conform̂ al. 

By a transformation based on Stev/art's method wo previously 
transformed a sot of points in tho OJ-plane into tho rectangle,vortices 
T = + 2ilv', K ± 2xK', but that sot of points corresponds to the points 
in tho (x, y, z)-plane which become, by the transformation of tho 
previous paragraph, tho 'bamo" rectangle in the T-plano v/ith the 
vertices corresponding. It therefore follows from tho general thoor3/ 
of conformal representation that tho tv/o transformations aro identical» 

Wo have shovm that Stev/art's T-plano is connected to the 
system of hyperboloido-conal coordinates by tho simple relations 
of equations (5)» Furthormoro we have given at equations (7) a direct 
coordinate transformation between (x, y, z) and (^,0^)5 hy v/hich 
Stewart's relation between U, V and W as functions ofT could bo 
established in tho same manner as the relation botv/eon them as 
functions of tho intermediate variable óuv/as osfablishod. 

3» Aerodynamic Derivatives Lp and Mq 

In the first section of this appendix it was stated the 
rolling moment duo to rolling, Lp, and the pitching moment due to 
pitching, Mq, could bo derived by tho method of hyporboloido-conal 
coordinates in the quasi-subsonic case. This v/ill nov/ bo indicatod. 

By 'bhe transformation (x', y', z' ) » (x, i/3 y, i/3 z) 
these coordinates become sphero-conal, while equation (3) reduces to 
Laplace's oquation, 

Hence there exist solutions for the induced potential Ó of 
the form^= r" E^(V ) 'P^i'^M-) v/here E^ and F„ are Lam.e f unctions 
of the same class, of degree n and of the first and second kind 
respectively, 

/Such 
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Such a solution satisfies tho boundary condition at tho 
Mach cone, where yfJ. -^>oo, since F (/».) is of order w-~ "• ~ "I at 
infinity. ^ 

To find Lp we choose tho degree and class of tho Lamo 
functions so that _ -n i ., \ 

^^ yz 12iiil_ . 

Though at first sight — ^ L is proportional to y , and therefore 

of the right form, at the aerofoil where z - 0,X*-a 1, v/e require 
some reassurance on tho point, for here 

^ 2 ! ^ ^ j dt ^ v/hich is of order {^'^' - 1 ) ~ ^ 

^2'H J.^y(t2-i)3(t2-1.2)3 
A 1) / FO(/JL1 

as A.<^tends to u n i t y ; hov/ever i t may bo shov/n t h a t > 3 -^ 
^ D z ) E2(yU)' 

tends to a lijrdt that do independent ofV. 

V/c find Mq in a similar fashion by taking 

F2(yM.) = 1 dt 
Z X • '--'••—- = 2 X 

E2(M.) J t ^ ( t 2 - I)3(.t2_k2j 

Detailed numerical results for these cases v/ill bo 
published shortly in the Journal of the Eoyal Aeronautical Society. 

oOo 
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