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SULIIARY

The axis of a delta wing under sideslip is not aligned
with that of the apex llach cone. In calculating the forces by
first order methods this fact may be ignored when the wing is at
zero incidence, but when it is at incidence first order effects
are introduced due to the distortion of the existing flow, In
the original paper the latter were ignoredy the corresponding

forces are derived in the present addendum.

Neglecting leading edge sucfion the terms in the
three sideslip derivatives dependent on incidence are discontin-
uous in changing from the quasi-subsonic to the definitely super-—
sonic condition, generally involving a marked decrease in the
numerical value and for the rolling derivative always a change

of sign.

The leading edge suction due to incidence drops rapidly
to zero as an edge approaches the apex Mach cone with the res-
ult that the suction contributions to the derivatives become
indefinitely large in the limiting case though the actual forces
are small.
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e Results

To the non-dimensional derivatives quoted in the orig-
inal College of Acronautics Report No. 12 must be added the

following quantitiess-

(a) For the leading edges inside the apex llach cone
1) £ ===
2 &

22 2
(1i) n L hob ke ’KCLZM sec ¥

- . 1
3 E 5 512 /1_>\2

2ad 7 a,ZMZ.sec N tan ¥

(ii1) y_ = - -
v i
o BI% i Y

(The terms in 0,2 are due to leading edge suction)

(b) For the leading edges outside the apex liach conc
; % 20 cot ¥
(1) fv = 3
38
(ii) n. = _8ab_cot: . dsec?y sec” )\ - l—-—,/
v o 3/2 2
. mm(N-1)
& 0 - -1 I g
(iid) Y, = --—-{‘99'*—375 . lsecy secT A\ - -3 /
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In Fige5 the contributions to 'Pv’ n, and % from
the pressure distribution are plotted against liach numbers for
different aspect ratios. In Fig.6 +the contributions to n

and > 28 from the leading edge suction are similarly plotted.

2 PressureDistribution due to Incidence and Sideslip For the

Leading Edges lying within the Apex liach Cone

Consider the linear transformationt-

x' = xch® - pByshé
i y' = —%She -+ yChe o-c-ono-n'vo(1)
g wm

/ The cone 0
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The cone x - 62 y2 - Bz ¥ o and the operator
2 2 a2 3%
- B Sk we b mu ) Em unaltered by the transformation
ox p e 0z

while a delta wing of semi-vertex angle %' in the primed space
with its axis coincident with the x'-axis corresponds to a
~delta wing of semi-vertex angle Y in the unprimed space with

its axis yawed through an angle (}, with respect to the x-axis,

wheres -
tan y' & tan y
1+62tan2 ! 1+62tanzy-1-ii‘2seczy sin2 Ll/
a.nd " sescne (2)
§ e sin (uty+ W) sin (u—y+ &)
b sin(u+y- l{/) sin(u—y- l.'d

where cob i =

It will be notcd that the transformation is real if
LY +(,4,.

Let # =d(',y',2') be the inducecd velocity potential
for the delta wing of angle v' wunyawed but at incidence a.
Under the transformation @ becomes a function of (%, y, 2)
which is clearly the induced potential for a wing of angle ¥
at inecidence o yawed through an angle l}/ with the free stream

along the x-axis.

Now at the acrofoils -
Va\é'ztanzy' —v'z

i i s et ahe
E'(B tan v')

To find the potential for the yawed wing referred to
body axes we substitute from (1) and (2) into (3) and make the

further orthogonal transformations-

cosL//-j-r sin\l/
sin Lf/+§ cos W

X !

J

HloXN1

and obtains -

¢ 5 Vo iztanzj( - 5’2

E'(p tan y' )\ 1 - seczysinl{«(sin‘}qﬁ cosylthe)

/ For small ...
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For small angles of yaw it will be seen from (2) that
) N O(L%?) and that, provided the leading edges both
remain inside the apex Mach cone, for L%/ sufficiently small,

0 = o((,l,).

Hence the potential at the aerofoil referred to. axes

fixed in it remains unaltered by a small yaw,

For a small sideslip ¥ the excess pressure distribu~

tion referred to axes fired in the wing is

-p V.éf{__\-;__f_f‘:'
dx a;-f

so that there arec additiocnal forces due to a sideslip correspond-

ing to the pressurc discribution;- --

TR
-— B"f\f’;”‘“ ‘“‘,_‘::_,y_m clill.l.ll!.(lf‘-)

S Suction Foreces a* the Leading lidpes When Lying within the 2

Apex tMach Cons

At page 10 of the original paper it was quoted that if
the total induced velocily ab the leading edge was of the form
(CA/E + bounded +erms), vhere &£ is the distance in from the
leading edge that the suction force was ﬂpCzcos yvi = )@ per

unit length.

Now cos y~/1 =~ ’? = 1 - Mzsinzy is the compress-

ibility or Glauert factor for the flow normal to the leading
edge of which the Hach number is M sin y.  Tor o yar (f: this
should be M sin Qv+lf% at the leading edge x tan ¥y = y=o and
Il sin CY—LfD a% the other onc.

Now the velue of C was found to be

-
Va 2 v .9 /1
— S o= 4o ©
ks g JZ xteny secy
so that the resultingz suction is

E e .
e 2 : BT Lo G R L
px tan ¥ sec ¥y £ =% 4 . 1 = M sin™y + v siny cos ¥y

oA

vhere Q/ has been replaced by v/V, yiclding an additional term
at the edge x tany ~y = o
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5 (9}
T oV Vd“hzx tan2Y (5)

% L g o8

with oppositec sign at the other edge.

The two results (4) and (5) combine to give the

additions to the sideslip derivatives quoted in Section 1.

4. The Pressure Distribution due to Incidence and Sideslip

ey

for the Leading Zdges Outside the Apex lLiach Cone.

-

Though the method of Section 2 can be employed to
deduce the potential from that corresponding to an unyawed wing,
the pressure distribution in the definitely supersonic case is
more readily derived dircctly. The potential in this case is

no longer independent of the yaw.

Consider the wing to be yawed through an angle
LP/= G/V and the free stream direction to be that of the x—-axis.
If the yaw is such that both leading edges lie outside the apex
liach cone, the potential may be regarded as the result of a
distribution of sources of strength Vo/ms the difference, ¢1,
between the potentials in the yawed and unyawed cases can be
regarded as due to a narrow wedge of sources of strength
+ Va/n between the lines y - x tany =0 and y - x tan(y +-q)= 0
of strength - Vo/x between the lines y + x tany =0 and
y + x tan(y - H/): 0. Tor a small yaw this distribution on
neglecting terms of order (f—z is equivalent to a line of
strength VQI-SI/‘,E /% along the leading edge y 20, and a line
of strength = Val+/£7% along the lcading cdge y<€ O where

is the distance from the apex.

At points inside the apex liach cone the change in

potential due to the sideslip iss-

g, = P AN Sl 5y
SR Ry
; 2 2 2
x 20 \jéx-xo) - B Cy—xotan )
o x
e scczy — o
P

e ;
xg>o\/kx—xo) - B Cy+xotan )

where the limits of integration of either integral are such

that the integrands are rcal.

/ Pubting <.
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Putting x_ (7\2-1)= - (x-Ay) - (Ax-By) sin o,
in the first integral and ;

X (7\2-1)= - (x+pPAy) + (Ax+By) sin 6,

in the second integral wc obtain:-

s %01
g, = R x - BAY + () x-By) sin o,| ae,
: P (7?-1)3/2 -7:/2[ ]

/2
2 E + BNy - (Ax+By) sin e;J as,

%02

where 601 and 602 are the values of 61 and 62 at the

a¢1

Hence the change in pressure p1 = - pV.S;— due to

apex,

sideslip is:~

2 %1 /2
v Va sec‘y ;
Py = e "2 y (1+ Nsin 6)as - (1~ Nsin 8) a6
x(W=1)> 2 —x/2 %5
s o e seczy tag ot 2y tan ¥y \/(7\2-1) (xg-ﬁzyZ),
5 TR L R oD
. 0\2_1)3/2 %= tan“y-(2 N°=1) y

2y tan y V(X-1) (P-p%y?)
2 2 2
x tany - y.

where the inverse tangent takes the valuc zero at y = 0 and

+ % at x =+ By respectively.

At points outside the llach cone the pressure is con-—
stant and since it is continuous it must take the valuc given

by the above expression at the llach cone, that isi-

Py = P v Va seozﬂ{ ) (7\2-1)3/2 s By>x
with opposite sign for PRy<- x.

i P, is the excess pressure resulting fraa inci-
dence in the unyawed condition then the total excess pressure
is (po + p,l). The distribution P, being symmetrical about

the zx-plane is not symmetrical with regard to a yawcd wing

/ and thereforc ...
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and therefore produces contributions to the lateral derivatives.

R & Ps P and p, are the values of Py at the
axis, the leading edge (y>0) and the trailing edge respectively

then the couples and sideforce acting on the wing are to first

tan ¥y c tan'y
2
fj\x (lpgx = pyy) ax ay + | »pyey
oV O

7
i %WPGCBSGCQY tan Yj

ordexr: -

+

' c nx tan y c tan ¥
N =48 (ly p y+p,x)dx dy p, ¥ dy
o) 1 4
1 3o D
3(')pac +3quccsecy
: C nx tany tan vy
Y =4 P, dxdy—q/rptydy
2 o g
-3 LPpac s ‘-‘Jpec secy
2 5
from Rer.2  p_ - - 20ateny gt | /N o
: o, = 5o

The above expressions, together with the values of

Pos Py given, lead to the results quoted in Section 1.
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