
ABSTRACT

Edge loading of an semi-infinite elastic sheet is of interest
to many engineering applications. In this paper the penetra-
tion problem involving a rigid indentor and an elastic semi-
infinite sheet of uniform thickness is addressed using a com-
bined analytical and numerical approach. The tenth-order
approximate theory of stretching of an isotropic sheet is
applied to formulate the governing differential equations.
Solutions arc then obtained using Fourier transforms for vari-
ous loading conditions and numerical schemes are employed
to calculate the three dimensional state of stress throughout
the sheet. The influence of the aspect ratio on the resulting
stress state is studied. Limit solutions for thin sheet and thick
sheet are presented. Finite element analyses of the same load-
ing conditions are also performed. Results are compared with
those of the tenth-order theory and ft.e stress distribution
assumptions of the tenth-order theory are examined.

INTRODUCTION

Solution for the state of stress in an edge loaded scnhi-inIi-
nile plate or sheet is a Lical elasticity prohlem and it is also
of interest to many engineering applications such as ollshore
engineering and environmental engineering, For example. the
solution 01' this prohleni cotid ' elastic apprxiia-
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tion for the indentation process between ice sheets and off-
shore structures (Kaff and Sun. 1995). When the plate is
extremely thin or thick, the problem is often idealized to a two
dimensional plane stress or plane strain problem and the solu-
tions are readily presented in most elasticity text books such
as Elasticity (Barber, 1992). Here, we consider the three
dimensional indentation problem in which the homogeneous
and isotropic sheet is bounded by two parallel planes z = ±c
which are considered traction free, see Fig. I. The tenth-order
theory derived by Reissner and Clark (Reissner, 1942; Clark
and Reissner, 1984) uses a set of two-dimensional differential
equations for approximating the three dimensional Poisson's
ratio corrections to the generalized plane stress theory of
stretching of sheets. The problem with sheet subjected to nor-
mal varying sinusoidal loading has been studied by Clark
(1985) using the tenth-order theory. Kaff and Choi (19S9
solved the problem with the applied stress being constant
through the thickness of the sheet and extending from
to x = a . In this study. a similar approach is used and more
general loading conditions are considered. Solutions arc pre-
sented in the general t'orm of Fourier transforms. Numerical
solutions for three loading conditions are presented with solu-
(ions involving three Bessel Functions of the first kind. More
accurate schemes arc applied to evaluate the Fourier trans-
fornì and its inverse transtorrii m order to get the converged
three dimensional state of stress,
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A study is presented of numerical results for the stresses
that develop for various aspect ratios and various loading con-
ditions. Solutions (for the stresses at the center of the load-
ings) are also obtained in the limit as the aspect ratio
approaches zero. Clark (1985) obtained solutions for sinusoi-
daily varying edge loading; analytic solutions for this loading
were obtained for the limit condition as the thickness to wave
length ratio approaches infinity. This limit condition is analo-
gous to the condition for vanishing aspect ratio in this study.
In contrast with what was presented in Kan and Choi (1989)
for the limit solution, this study shows that the tenth-order
theory is less accurate as the plate thickness increases (or as
the width of loading decreases, i.e. knife loading). This is
because the assumed stress variation across the thickness is no
longer true, and therefore the limit solution does not converge
to the plane strain solution.

GOVERNING DIFFERENTIAL EQUATIONS

In order to generalize the two dimensional plane stress
solution to three dimensional sheet, Clark and Reissner
(1984) assumed the stresses vary across the plate thickness in
a parabolic variation. Since the upper and lower surfaces of
the sheet are traction free, this assumption is compatible with
equilibrium requirement and the boundary conditions. Based
on these assumptions, the stress distributions are expressed in
terms of stress resultants as:

.
t) N) (R , RxY)7,()
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= _rZ(). (2)
- 2c

(r1, tr.) = -(S, S)Z'(z),

where, Z(z) = _(i z2]2
Z(z) = z[l -

The resulting governing differential equation for the stress
field can he reduced to three uncoupled partial differential
equations involving three stress functions p. 1 and s (Clark,
1985):

Z(z) = 1 - 3.
C

given i n the tollowi ng (Clark. and Rcissncr. 1984):

A0=,A1 =(6970j.A2=_. (6)

in which y is the Poisson's ratio. The stress resultants on the
right hand side of equations (1) and (2) are found by first
introducing the auxiliary functions:

2v 2K(x,y) = ç--c w.

l-69v/70 2 2 ' V 2(x,y) = [(2_v)W 3(1 +v)
C V \11J

6(1 +v)V P(8)

The equilibrium requirements for the stress resultants are
then:
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From these equations we can see that, for a thin sheet, if
one formally puts c = O, then from equations (4) and (5),

= 0, w = O and all quantities except N1, vanish.
K = q is a biharmonic function which represents the Airy
stress function of elementary plane stress. As discussed in the
following sections, edge loadings are considered which arc
applied over an edge distance of 2a (Fig. 1). The aspect ratio
is defined as the ratio of the width of the loading to the sheet
thickness, y a/c. For a thick plate, i.e. c » a. the aspect
ratio y approaches zero. Numerical solutions for a thick sheet
have been obtained in this study as y - O.

APPLIED TRACTIONS AND BOUNDARY CONDI-
TI O NS

We consider three kinds 01 loadings as illustrated in Fig.
2. General loading conditions can also he applied to the edge
using the formulation shown below. The stress distributions
along the plate edge corresponding to the three loading condi-
tions are:

(7)

(9)

(IO)

74(p = O. (3)

4V2 - = O. (4)

Aie4 V4 + Ae \7 = (5)

The cocllicienis A,. A and A for an isotropic sheet arc
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The boundary conditions are the followings:

O, z) = P.(x) j = 1, 2, 3 (15) 3(1+ v)'iI +
2 2(1_69v2/70)-2 2]

t(x.O.z) = 0, t(x.0,z) = 0. (16)
+[1+(2_v 63(1+v) D()

The edge tractions in equations (12)-(14) represent two
dimensional parabolic stress distribution, the distribution cor-
responding to a frictionless rigid cylindrical indentor(2-D
Hertz problem) and the distribution corresponding to a rigid
flat indentor respectively (Timoshenko and Goodier, 1970;
Barber, 1992).

Substituting of equation (1) into equation (15) yields:

O) R(x, O)Z"(z) = P.(x) j = 1,2,3 (17)

Hence we have:

N(x, 0) = 2c P1(x), (18)

l-2 " - T-2 - - -
(19) + iD() + + 1iE(E) - i,C(Ej = 0. (27)R(x.o) = O.

Equations (1 8)-(22) represent live boundary conditions i n
terms of the two dimensional stress resultants.

RESULTING SYSTEM OF EQUATIONS

The method of Fourier transform is applied to a smi il ai
prohlcnì with constant edge traction by Karr and Choi (I 989).
Here, a more general loading coud 1(1011 ¡'(y) can he applied
and we use the three edge loadings discussed above as humer-

(jxja)

(1x1 a) (14)

ical examples. The development of the governing equations
(12) for general edge load can be performed in a similar manner;

for completeness of this presentation the Fourier transforms
of the stress resultants are presented in the Appendix.

Substituting equations (A.l)-(A.9) in the Appendix to the
boundary conditions (18-22), a system of five by five equa-
tions can he derived in terms of the normalized variables:
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"70lî21E(Ej = 0,[21(2 V)
63(1 +v) j

2v-2 I-2 , -- B() + [ + D() 2
+ 2E()] = 0,(26)

(23)

in which, E is the variable introduced through the Fourier
transform, p and 1 are complex conjugates as defined in
Clark (1985), R. is the Fourier transform of the edge loading
P,. and the overlined variables are the variables normalized
with respect to a or c:

= eE, i = x/a. = y/a.

Evaluating the integrals for the Fourier transforms 01 the
three edge loadings (Gradshteyn and Ryzhik. 1980). we have:

R1 J P1(x)e"d.t = _a(1.[_)J(u): (28)

R f !'2(x)e" dt = -(l(1,1t (29)

In addition, the shear stresses and t must vanish on the

boundary y=0 and therefore:

N(x. 0) = 0. (20)

R(x,O) = 0. (21)

S(x,O) = O. (22)



A() + 2[D() +E()]
J1(y)

= -alt -
(Ey)

(23 b)

A() + j2ED() + E()] = -alti (Y) (Thc)

Equations (23 a,b.c)-(27) are the five normalized boundary
condition equations involving five unknown functions
A(Ej, ß(E), C(), D(), E().

NUMERICAL SCHEMES AND RESULTS

The five by five system of equations (23-27) is solved in
terms of E explicitly using the symbolic software MAPLE.
Having A(e), B(E), C(), D(), E(Ej, the Fourier transform of
the stress resultants Ñ,.. and
Ï'(see equations A.l-A.9) can be evaluated numerically for a
certain y location in the sheet for all E values in the integra-
tion range. Theoretically the range of integration for Fourier
transform should be - <E < , but practically a smaller
range can be used based on the shape of the integrand. Karr
and Choi (1989) carried out their computation for the range of
-60 < 60 and their solution is not stable as y approaches
zero. In this study, convergence study has been performed and
it is found that the minimum converged upper and lower
bounds for integrations are = ±1000. The stress resultants
are then determined by integrations of the inverse Fourier
transforms and finally the stresses throughout the entire sheet
can be calculated using equations (I) and (2). Numerical inte-
gration s employed to evaluate the inverse Fourier trans-
turms. The Bessel functions on the right hand sides of
equations (23a.h.c) are also evaluated lr each integration
point (Watson. 1966). The integrals tor the first two kinds of
loadings are relatively easy to evaluate and the Computation
tinte used is moderate. The third kind of loading, because of
the singularity of the stress distribution at x = ±a . needs
more integration points inside the upper and lower hounds
and theretore requires more computation tinte to ohiatu satis-
tactory answers. Several Fortran codes have been developed
to pertorni the computations.

.1

The numerical results for the stress (î, . 0) are shown
in Fig. 3 for cases with the aspect ratio y = 1.5 and Poisson's
ratio y = 0.3 . Figure 3(a) shows the results for the parabolic
distribution of the applied traction stress. Results for loading
conditions P2(x) and P3(x) are shown in Fig. 3(b) and 3(c)
respectively. The stress in the middle layer of the sheet

, 0) decays more rapidly with respect to for the para-
bolic loading than for the loadings P2(x) and P3(x). lt is also
obvious that with the improved integration range for E, the
calculated stress distribution presented here are more accurate
than that of Karr and Choi (1989) and the stress distributions
for = O converge to those prescribed in equations (12)-(14).

The results for the stress 0) are shown in Fig. 4.
For all these loading cases, P1(x), P2(x) and P3(x), the
stresses i decay more rapidly with respect to than do the
stresses It is also interesting to note the zone of tensile
stress at the edge of the sheet ( = O )just beyond the edge of
the loaded area. These tensile stresses are in the order of one
tenth of the applied traction stress.

Figure 5(a,b,c) shows the transverse normal stress
, 0) developed for the three kinds of loading conditions

for an aspect ratio y = 1.5 and Poisson's ratio V = 0.3 . It is
worthwhile to notice that a significant amount of tensile stress

builds up near the location of (i = ±1, = 0, = 0) on the
edge of the sheet for all the three kinds of loadings. Thus if
the sheet is made of brittle material, a spalling mode of failure
may initiate at these locations. It is also noted that ,(.t, j, 0)
decays more rapidly with respect to than the other two nor-
mal stresses and therefore the state of stress away from the
indentor is very closed to that of plane stress. This indicates
that the tenth-order theory correction to a plane problem rep-
resent an edge zone correction which is only important within
a certain distance from the indentor.

En order to verify the results obtained by the tenth-order
theory, finite element analyses of the same problem have also
been performed using the commercial FEA code ABAQUS.
Eight node three dimensional brick element C3D8 is used
near the contact region. The far field is modeled with an eight
node infinite element CIN3DS. Only one-quarter of the semi-
infinite sheet is modeled and symmetry conditions are
imposed on the planes of x = O and z=O. The model is shown
in Fig. 6. iThe above discus sed three loading conditions are
applied as pressure distributions along the plate edge y=O.
Results compared with those of the tenth-order theory are
plotted as discrete points in Fig. 3a.h,c)-Fig. 5(a.b.c). As
shown in Fig. 3(a.h.c) and Fig. 4(a.h.c). very good correla-
lions are achieved between the tenth-order theory and the
huile clenueiit analysis tor normal stresses and on the
symmetry laiuc z=O However. results tir between tite
t\vo nethods are not consistent uit niagiu itude. as showui un Fi i

R3 J P3(x)e dx = -aa0tJ0(Ea). (30)

In equations (28)-(30), J312, J1 and J0 represent the first kind
Bessel functions of orders 3/2, 1 and O. Substituting equations
(28)-(30) into equation (23) we get:

A() + j2[D() + E(e)] _a,[1(_)2J3(y); (23a)



5(a,h,c) This is due to the fact that only 4 elements are used
in the through thickness direction. Should more elements be
used in the z direction, more accurate results will be achieved.

By examining the FEA results, it is also found that the
assumed parabolic distributions of and o along z direc-
tion are very close to the true stress distributions, with the
magnitude of being very small throughout the sheet and
eventually becoming zero at the plate edge y=O. This is con-
sistent with equation (19) and it ensures that the resulted
stress distribution on edge y=O converges to the prescribed
condition of c being constant through the thickness.

CONCLUSIONS

We now discuss the effect of aspect ratio y. 1f the plate
thickness 2c is much smaller than the loading region 2a,
goes to infinity and the solution degenerates to the solution of
a plane stress case as discussed previously. On the other hand,
if the plate thickness 2c is very large or if the loading region is
very small, i.e. a « c, y goes to zero. Under such conditions,
the assumed stress distribution in the z-direction no longer
represents the true stress distribution and therefore the limit-
ing solution should not converge to a plane strain case. This
conclusion is in contrast to Kan and Choi's y -*0 conclusion.
In this study, larger integration limit and more integration
points are used to achieve more stable and accurate numerical
results as y approaches zero. Moreover, as shown in the fol-
lowing discussions, the same limit solution is obtained for dif-
ferent loading conditions.

The stress 0, 0) at the center of the edge of the sheet
for four loading cases is shown in Fig. 7 as a function of the
aspect ratio ï. Poisson's ratio is y = 0.3 . The uniform load-
ing case addressed by Karr and Choi (1989) is shown together
with the three loading cases addressed here. The peak stresses
occur near an aspect ratio of -y 0.5 for all loading cases; the
maximum compressive stresses are approximately 20%
higher than the value obtained for plane stress and plane strain
in which the value of 0, 0) is unity (Timoshenko and
Goodier, 1970). For all loading conditions the limit value of

(O. 0,0) = -1.09 is approached as y -*0. Since larger E,
range and more integration points have been used in this
study, the limit stress values as y approaching zero can he car-
ned oui very close to -y=O without the numerical instabilities
experienced by Karr and Choi(l989).

Results for the stress at the corner ut the plate. (0, O. ±e)

arc shown in Fig. X. The minimum compressive stresses occur
in the range ut y between 0.3 and 0.8 depending on the load-
ing conditions. These minimum compressive stresses range
Ironi about fi5(% of the applied stress to about 56% oF the
applied stress tor load condition P( y) . The limit condition

for *0 is a(0,0,±c) = -0.815 for all three loading condi-
tions.

The transverse normal stress at the center of the loading
is shown as a function of in Fig. 9. No significant tensile
stresses develop at this point for loading conditions P (i) or
P2(x). The limiting value for ,(0, 0, 0) is -0.809. Significant
transverse stresses essentially vanish for aspect ratios above 3
or 4.

In addressing the transition from plane stress, three
dimensional effects regarding are initially more pro-
nounced for loading condition P1 (x), followed by P2(x), the
uniform loading, and the condition P3(x). However, as the
aspect ratio continues to decrease, below say y = 1.0, the rel-
ative influence of the three dimensional effects changes. The
loading condition P3(x) shows the most significant three
dimensional effects on 0, ±c) and (0, 0. 0). Deviation
from plane stress occurs less rapidly (as 'y decreases) for
OZ(0. 0, 0) than for 0, ±c) or 0, 0). For example,
for loading condition P(x), a change in of 10% of the
applied stress occurs for an aspect ratio of 3; a change in

Z(0' o, O) of 10% of the applied stress occurs near a value of
y = 1.5.

The solutions for 0. 0) and (O, 0, 0) obtained in
Fig. 7, 8 and 9 for vanishing aspect ratio are different from the
plane strain solutions suggested by Kan and Choi (1989).
Again, the underlying assumptions of the tenth-order theory
involve a prescribed parabolic distribution of the transverse
stress which vanishes at z = ±c. These assumptions preclude
obtaining the plane strain condition for which it is assumed
that there is no functional dependency with respect to the z
coordinate.
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APPIWflIX muitr TRANSFORM MFTI-1Ofl

The Fourier transform and its inverse transform are defined
+ C22[(2 - V) 1 - 69V2/70ft21E()_Yj2 (/)2

to be (Sneddon, 1951):
21 3(1 +v) J]

y) = J e'q(x, y)dx (p(x, y) eIXj y)d '
2 J

4c 2

As shown in Kan and Choi (1989), the Fourier transforms + 2c
of the stress resultants expressed in terms of the five functions
A(E),B(E), C(E), D(Ej and E(e) are:

1xy = _2i26(lVV)c2B()et+
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f 21-yIç +-j
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+ (2D + ( J2

+ ()2E(
-J ()2

(A.8)+
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:' 0.0
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- -0.4
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o= i[2D()Y +(Ic)
g - ..- /-0.o --.---- r

In equations (A.1)-(A.9), the notations N0 = 2c0,
2

= (- A2 + iJ4A - A)/(2A ) have been introduced and

is the complex conjugate of .t2.

Fig. I Semi-infinite sheet with compceive edge liding.
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FIg 4(c) 1(i.,0) (or y=l 5 and ¡'=0.3 for loading condition P1(x) FIg. 5(c) ff2(i.,0) (or 7=1.5 and ¡'=0.3 for loading condition P,(x).



Fig. 6 Finite element mesh used for analysis.
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Fig.? ff5(0,0.0) versus aspect ratio y for i=0.3.
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Fig 9 a(0,O,0) Versus aspect ratio 7 for v=0.3.
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rig.8 ä1(0,0.±c) versus aspect ratio y for vO.3.
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