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Summary

Urban areas with many daily commuters often experience a reduction in traffic flow during rush
hours. In rush hours, the number of vehicles on the road often exceeds the capacity of the traf-
fic network, resulting in lower traffic flow and consequently longer travel times. In some urban
areas where daily traffic congestion occurs, there are popular destinations for leisure that have
multiple large parking facilities. On average, vehicles that are searching for a vacant parking spot
drive with a lower speed, reducing the traffic flow further. Traffic flow can be improved by us-
ing a traffic signal control strategy for the urban areas, and a smart parking solution to increase
the speed of vehicles searching for parking spots. The use of Model Predictive Control (MPC)
in traffic signal control has resulted in significant improvements over the last years. A parking
guidance information system can provide information regarding available parking spots to ve-
hicles. This reduces the number of vehicles that drive with a lower speed due to searching for va-
cant parking spots. However, the driving behaviour of vehicles then may change from searching
to competing for parking spots. When a parking guidance information system is reservation-
based, vehicles do not have to compete for a parking area, because it is guaranteed in advance.
Moreover, with the use of resource allocation, the travel routes of vehicles can be influenced.
This can improve the distribution of vehicles in the traffic network. A reservation-based smart
parking solution using resource allocation outperforms a regular parking guidance information
system. However, existing papers use an objective for the resource allocation model based on
the shortest route. To the best of the authors’ knowledge, no resource allocation model to al-
locate parking areas has as objective to minimise overall travel time. If a resource allocation
model to minimise overall travel time and a traffic signal control strategy are exchanging traffic
information, the performance of the traffic network could be further improved.

Therefore, this research proposes a combined MPC and novel Parking Resource Allocation Model
(PRAM) for urban traffic networks. For MPC, the S-model is chosen as the traffic prediction
model. The S-model is a macroscopic traffic prediction model that uses the number of vehicles
and the queue lengths in the traffic network as traffic states. The traffic states are used to predict
the travel time of routes on the traffic network. A linear approximation of the average vehicle
speed on the traffic network is made based on the traffic states, and the average vehicle speed
and road lengths of the traffic network are used to predict the travel time of all travel routes.
Two different PRAMs are created. The first model allocates vehicles to a parking area based on
the predicted travel time. The second model has the same objective with an added objective to
evenly distribute the vehicles over different parking areas. This objective prevents parking areas
to become full, while other parking areas remain nearly empty. If a parking area is full, vehicles
may end up in a full parking area and have to re-enter the traffic network in search of another
vacant parking spot. The future distribution of vehicles on the traffic network changes when
vehicles are allocated a travel route that is different from their initial travel route. The S-model
is therefore modified to consider the future change in the distribution of vehicles.

The performance of the combined MPC and PRAM control strategy is compared using two case
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vi 0. Summary

studies. In both case studies, the traffic network is a simplified representation of the mall of
the Netherlands, located near Leidschendam. The first case study simulates traffic based on
the morning rush hours, and the second case study simulates traffic based on the evening rush
hours. In both case studies, multiple traffic demands are simulated, based on historical traffic
data provided by Rijkswaterstaat. No historical data is provided by the mall of the Netherlands
so fictive data is used. The performance of an MPC control strategy, an MPC control strategy
with the first PRAM, and an MPC control strategy with the second PRAM is compared with a
fixed-time control strategy for these traffic demands.

The results show that the MPC control strategy reduces the total time spent and vehicle time
loss of all the vehicles for the morning rush hours, but not for the evening rush hours. For one
traffic demand, the added PRAMs further reduce the total time spent and vehicle time loss of all
the vehicles, in both case studies. For the other traffic demands, the added PRAMs increased the
total time spent and vehicle time loss. There is no significant difference between the two PRAMs
in terms of the total time spent and vehicle time loss. Furthermore, the distribution of vehicles
to the parking areas is more evenly for the second PRAM. Since the parking demand is fictive,
future research is necessary with accurate parking demand to ensure that the combined MPC
and PRAM further improves the traffic flow on the traffic network of the mall of the Netherlands.
Moreover, future research is needed to more accurately predict the travel time of travel routes.
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1
Introduction

Nowadays, almost every grown person has experience with traffic congestion. As the number
of vehicles on the road exceeds the capacity of the traffic network, the traffic network gets satu-
rated and vehicles slow down. The result often entails longer travel times, frustration, accidents,
and more greenhouse gasses emitted. Moreover, traffic congestion results in negative social,
economic, and environmental effects [3, 33, 43]. Especially during rush hours, urban areas with
many daily commuters experience traffic congestion. Moreover, there are popular destinations
for leisure in urban areas that have multiple large parking facilities. On average, vehicles that
are searching for a parking spot have a lower driving speed than other vehicles, a habit called
cruising. The lower cruising speed during rush hours result in a traffic flow decrease of 25%-40%
[45], causing additional traffic congestion. When traffic congestion in urban areas increases, the
congestion can propagate back to off-ramps of highways, causing dangerous situations. There-
fore, improving the traffic flow in urban areas with destinations for leisure during rush hours is
the objective of this thesis.

Possibilities to improve traffic conditions in urban areas are increasing traffic flow e.g. changing
the physical structure or better managing traffic [20]. In urban areas, physically changing the
road infrastructure to increase the traffic flow is costly, impairs the existing network, and is in
some cases not even possible due to lack of physical capacity within the area. Instead, the traffic
network can be better managed through the use of Traffic Signal Control (TSC) [31]. Over the
years, many different scientific research on TSC strategies has been conducted. At first, TSC
involved fixed-time control strategies, i.e. their control strategy is determined offline based on
historical data. A more efficient TSC strategy is a traffic-response coordinated control strategy.
Traffic-response control strategies can measure the traffic states in the network in real time,
and adapt the control scheme according to the current measured traffic states. Traffic-response
control strategies include model-based control approaches, one of which is Model Predictive
Control (MPC). As one of the most powerful and widely used control technologies, MPC has
been employed in the area of TSC in traffic networks and a series of significant results have
been achieved in the past 20 years [47].

Another way to increase traffic flow in urban areas with leisure destinations is through the use
of smart parking solutions. Smart parking solutions can reduce the amount of cruising for a
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2 1. Introduction

parking area. An example of a smart parking solution is a Parking Guidance Information System
(PGIS). The PGIS provides vehicles with information regarding the parking areas. Although cur-
rent parking guidance systems increase the probability of finding vacant parking spaces, they
have several shortcomings [8]. Drivers may not find vacant parking spots by merely follow-
ing the guidance system. Furthermore, PGISs change the driving behaviour of vehicles from
searching to competing for parking: Several drivers may head towards the same available park-
ing spots resulting in failed parking for some vehicles, forcing re-planning and consequently
competition for other parking spots [7]. To remove competition and re-planning, smart parking
solutions can be reservation-based, i.e. they provide the vehicles with an option to reserve a
parking area in advance of their trip [21]. Moreover, using resource allocation provides more
control on the travel route vehicles take. This can increase the efficiency of the traffic network,
increasing traffic flow. Resource allocation is a form of strategic planning, where various users
(i.e. vehicles) are assigned to a resource (i.e. a parking area or a parking spot). In this strate-
gic planning, the users can have different preferences, while the resource allocation model has
an objective, which it tries to optimise. Users can be allocated to a resource in advance (i.e. a
reservation of that parking area or spot). There is a significant performance improvement over
existing smart parking solutions including the use of a PGIS, when using resource allocation to
reserve a parking area or spot in advance where individual vehicles have a preference for cost
and walking distance [9].

One element that resource allocation smart parking solutions do not have implemented, is com-
bining resource allocation with a TSC strategy. Moreover, TSC strategies do not account for the
use of parking areas on the traffic network. If a TSC and smart parking solution are to commu-
nicate, the traffic flow could be improved further. The smart parking solution could adjust their
objective according to the current state of traffic.

1.1. Thesis objective

Tackling busy urban areas with large parking facilities, where daily traffic congestion occurs due
to daily commuting and the use of these parking facilities remains challenging. Since the num-
ber of daily commuters during rush hours often exceeds the traffic networks’ capacity, traffic
flow decreases. Moreover, the large parking facilities may deteriorate the traffic flow. Combin-
ing a TSC strategy with a smart parking solution may be a viable option to further improve traffic
flow. The main goal of this thesis will be to investigate the possibilities of a TSC strategy com-
bined with a smart parking solution. This goal can be reached by answering the following main
research question:

To what extent can model-based traffic signal control combined with a smart parking
solution based on resource allocation further improve traffic flow in a busy urban traffic

network with large parking areas?

1.2. Thesis outline

In Chapter 2, theoretical background on model-based control strategies, efficient traffic predic-
tion models, and smart parking solutions is provided. In Chapter 3, the smart parking solution
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that is used throughout this thesis and the modifications needed for the control strategy and
prediction model are explained. In Chapter 4, the performance of the different control strate-
gies is compared by performing a case study. Lastly, this thesis is concluded and suggestions for
future work are provided in Chapter 5.





2
Theory behind traffic signal control and

parking models

In this chapter, the background information relevant for this research is provided. Different
Traffic Signal Control (TSC) strategies are elaborated and the TSC used throughout this thesis is
explained in Section 2.1. In Section 2.2, the smart parking solutions are elaborated and the use
of resource allocation in smart parking solutions is explained. Lastly, the chapter is concluded
in Section 2.3.

2.1. Urban traffic signal control

Over the years, many different TSC strategies have been studied [11, 35, 47]. At first, TSC in-
volved fixed-time control for isolated signalised intersections [44]. The fixed-time control strat-
egy consists of a repeating signal cycle, i.e. a sequence of traffic signal phases where each
phase consists of non-conflicting green traffic signals, such that all lanes have enough green
time within a signal cycle for vehicles to pass. Each intersection has its optimal signal cycle
for the sole purpose of increasing the traffic flow or throughput of that particular intersection.
An isolated control strategy can be optimised for one intersection but may lead to congestion
somewhere else. In some situations, the overall traffic network may perform worse when the
intersections are optimised individually.

Over time, a more coordinated control strategy has been employed to further improve the traffic
flow. Instead of optimising an isolated intersection, a chain of intersections is optimised to allow
a continuous traffic flow over the intersections, creating a so-called green wave. Often, fixed-
time coordinated signal control strategies for multiple time periods are constructed, e.g. for the
morning period, the afternoon period, and the late evening or night time period. For these time
periods, priority between different roads can be provided, based on historical data. A popular
example of a coordinated fixed-time control strategy is MAXBAND, developed by Little et al. in
[29]. A downside of fixed-time coordinated signal control strategies is that they cannot cope
with unexpected situations: Day-to-day variations in activities are not accounted for (e.g. when
a traffic accident occurs).

5



6 2. Theory behind traffic signal control and parking models

An alternative TSC strategy is a traffic-response coordinated control strategy. A popular exam-
ple of a coordinated traffic-response control strategy is SCOOT, developed by Hunt et al. [12].
Traffic-response coordinated control strategies can measure the traffic states in the network
in real time, and adapt the control schemes according to the current measured traffic states.
Furthermore, traffic-response coordinated control strategies can be model-based. Aboudolas
et al. concluded that model-based controllers significantly outperform fixed-time controllers
[1]. Model-based control methods (including Model Predictive Control (MPC)) use a traffic pre-
diction model and an online optimisation step to find the best control decisions for the network.
When the traffic prediction model is detailed and accurate, the traffic prediction model can ac-
curately predict the traffic flow dynamics in the future, and as a result, enables the controller to
look into the future to avoid myopic decisions [26]. Nevertheless, the installation and mainte-
nance costs are much larger compared to fixed-time coordinated control strategies. Intersec-
tions with model-based coordinated control strategies require sensors or cameras that provide
real-time measurements and communication methods to a central control system. Further-
more, the optimisation problem of model-based coordinated control strategies can become
computationally complex when the number of controlled intersections increases. Therefore,
the control strategies cannot create the next signal cycle in time and consequently become real-
time infeasible.

Even though model-based coordinated control strategies are harder to implement and more
expensive, the real-time optimal control feature makes them very attractive. Especially in busy
urban areas, model-based coordinated control strategies can further reduce traffic congestion.
As one of the most powerful and widely used control technologies, MPC has been employed in
the area of TSC in traffic networks and a series of significant results have been achieved in the
past 20 years [5, 25, 36]. MPC has some important advantages over traditional optimal control.
Optimal control has an open-loop structure. Errors or disturbances can grow increasingly, as
there is no feedback. The traffic prediction model has to be very accurate to ensure that the
whole simulation has sufficient precision. MPC operates in closed-loop, meaning that the traffic
state and the current demand are regularly fed back to the traffic signal controller. Therefore,
the traffic signal controller can take disturbances into account and can correct prediction errors
resulting from the model mismatch [10]. Moreover, MPC has many degrees of freedom in the
choice of the objective function. For different traffic situations, MPC can implement different
objective functions, whereas other TSC strategies do not have that possibility. Furthermore,
MPC uses a rolling horizon approach. In this rolling horizon approach, traffic is predicted over
a horizon of N prediction time steps, and the traffic signals are optimised for that particular
horizon in the future. Only the first control input is used, after which the process repeats itself
for the next control time step with the same horizon as before. This rolling horizon closes the
control loop and provides current decisions based on a long term point of view. Errors do not
accumulate very much, because of the finite horizon. Another reason MPC is widely used in
TSC is the ability to replace the predictive model. A traffic prediction model that better suits the
purpose of the objective can be implemented with little maintenance cost.

The traffic prediction model and the MPC control strategy that are used throughout this thesis,
are explained in Sections 2.1.1 and 2.1.2.
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2.1.1. Traffic prediction model: S-model

An urban traffic prediction model is introduced to gain more insight into the flow of traffic in
urban areas and the influence traffic signals have. This traffic prediction model aims to replicate
real-life traffic in a simulation. An important choice to make is whether to use a macroscopic or
microscopic traffic prediction model, and whether to use a linear or nonlinear traffic prediction
model.

A microscopic model models the behaviour of individual vehicles in the entire network. An
advantage of microscopic models is that complex behaviour of individual vehicles can be mod-
elled. However, the traffic states of microscopic models grow increasingly when the number of
vehicles increase in the traffic network. For a TSC strategy to be effective in real time, the com-
putation time of the traffic prediction model has to be lower than the sampling time (e.g. if the
control strategy is updated every second, the computation time of the traffic prediction model
has to be lower than a second to be real-time feasible). Macroscopic models are often derived
from the notion of fluid flow [4], or horizontal queuing [18]. In macroscopic vehicles, the indi-
vidual behaviour is aggregated over the traffic network. The flow of vehicles over a particular
road is modelled. The number of traffic states of a macroscopic model grows with the traffic
network, not with the number of vehicles. Modelling a busy traffic network with macroscopic
traffic prediction models results in lower computation times as opposed to microscopic traffic
prediction models. Therefore, for large urban areas, macroscopic models are more suitable.

Another notion to consider is the linearity of the traffic prediction models. As traffic behaves
highly non-linearly [26], linear models cannot capture the traffic behaviour, and therefore have
lower accuracy. However, the online optimisation step of linear traffic prediction models can be
solved using efficient convex optimisation algorithms. Linear traffic prediction models (i.e. [48])
are real-time feasible. Nonlinear traffic prediction models can model complex traffic situations,
which can result in better control performance. Nonetheless, the constraints of a nonlinear
model become nonlinear and non-convex as well. This requires a nonlinear and non-convex
optimisation method that may result in multiple local minima, making the optimisation sub-
optimal. To approximate the global optimum, many local minima have to be examined, which
is rather time-consuming. By increasing the simulation time interval, fewer online optimisation
steps are required in the same time period, and for real-time computation, this relaxes the max-
imum computation time per online optimisation that is required. As a result, larger networks
can be analysed in real time. Hence, for large urban areas, an accurate traffic prediction model
with a large simulation time interval would be ideal for real-time feasibility.

There are various macroscopic traffic models, such as the cell transmission model [4], the link
transmission model [38], the BLX-model [23, 39], and the S-model [26]. Every macroscopic
model has a trade-off between accuracy and computation time. In the link transmission model,
traffic is predicted in a linear fashion. This reduces the computation time significantly. However,
the behaviour of traffic cannot be accurately predicted using a linear traffic prediction model.
Both the BLX-model and the S-model have been used in combination with MPC [24, 25]. It is
preferred to have a traffic prediction model with a larger computation time, as the scope of this
research mainly focuses on large urban areas. The S-model is a simplified model originating
from the BLX-model with a higher sampling time. The sampling time of the cell transmission
model and the BLX-model is somewhere between 1 and 2 seconds, whereas the sampling time
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of the S-model is the signal cycle of an intersection, often ranging between 1 and 2 minutes.
Because of this larger sampling time, fewer computations are needed in the same time interval
lowering the computation time. Therefore, the S-model will be used as the traffic prediction
model throughout this thesis. The S-model is a nonlinear and discrete-time model and is ex-
plained in this section based on [14, 15, 27].

Figure 2.1: A link connecting two traffic-signal-controlled intersections, adopted from [27]

The S-model is defined by a set of nodes J and a set of links L. Each link (u,d) ∈ L is defined by
the upstream node u ∈ J and the downstream node d ∈ J . The sets of input and output nodes
for link (u,d) are Iu,d ⊆ L and Ou,d ⊆ L. Figure 2.1 shows a link connecting two intersections,
where Iu,d = {i1, i2, i3} and Ou,d = {o1,o2,o3}. All intersections are assumed to have equal cycle
time c, which is chosen as the sampling time. The corresponding cycle counter is k is time step
counter. The state variables of the model are the total number of vehicles nu,d (k) and the queue
length qu,d (k) on link (u,d) at time step k. The queue length on link (u,d) can be divided into
the queue length going to specific output node qu,d ,o(k) with o ∈Ou,d . At every time step k, the
total number of vehicles and the queue length are updated:

nu,d (k +1) = nu,d (k)+
(
αe

u,d (k)−αl
u,d (k)

)
c, (2.1)

qu,d ,o(k +1) = qu,d ,o(k)+
(
αa

u,d ,o(k)−αl
u,d ,o(k)

)
c, (2.2)

qu,d (k) = ∑
o∈Ou,d

qu,d ,o(k), (2.3)

whereαe
u,d (k) andαl

u,d (k) are the average entering and leaving flow rates on link (u,d),αa
u,d ,o(k)

the average arriving flow rate at the tail of the queue on link (u,d) going to node o, and αl
u,d ,o(k)

the average leaving flow rate on link (u,d) going to node o, in the time interval [kc, (k +1)c).

The leaving flow rate on link (u,d) at time step k is:

αl
u,d (k) = ∑

o∈Ou,d

αl
u,d ,o(k), (2.4)
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where the leaving flow rate on link (u,d) going to node o at time step k is defined as the mini-
mum of three flow rates: the saturated, under-saturated, and over-saturated flow rate.

αl
u,d ,o(k) = min

{
µu,d ,o

gu,d ,o(k)

c
N lane

u,d ,o ,
qu,d ,o(k)

c
+αa

u,d ,o(k),
βu,d ,o(k)∑

u∈Id ,o
βu,d ,o(k)

Cd ,o −nd ,o(k)

c

}
,

(2.5)
with µu,d ,o the saturated flow leaving link (u,d) going to node o, gu,d ,o(k) the green time length
of link (u,d) going to node o during [kc, (k +1)c), βu,d ,o(k) the relative fraction of the traffic on
link (u,d) turning to node o during [kc, (k +1)c), Cd ,o the capacity on link (d ,o), and nd ,o(k) the
total number of vehicles on link (d ,o) at time step k.

Vehicles entering link (u,d) will arrive at the tail of the queue after some time delay δu,d (k):

δu,d (k) = τu,d (k)c +γu,d (k), (2.6)

where τu,d (k) is the number of complete cycles of the delay δu,d (k), and γu,d (k) the remainder
of the delay:

τu,d (k) =
⌊
δu,d (k)

c

⌋
, (2.7)

γu,d (k) = δu,d (k)−τu,d (k)c, (2.8)

With the time delay, the average arriving flow rate is given by [15]:

αa
u,d (k) =

|τu,d (k)+1−τu,d (k+1)|∑
i=0

Bu,d ,i (k) ·αe
u,d

(
k −max

(
τu,d (k +1),τu,d (k)+1

)+ i
)

, (2.9)

where Bu,d ,i (k) for i > 0 and i < |τu,d (k)+1−τu,d (k +1)| equals 1:

Bu,d ,i (k) = 1 ∀i ∈N, i > 0, i < |τu,d (k)+1−τu,d (k +1)|.

For the end points i = 0 and i = |τu,d (k)+1−τu,d (k +1)| three cases occur:

1. In case of τu,d (k)+1 > τu,d (k +1) :

Bu,d ,0(k) = γu,d (k)

c
,

Bu,d ,|τu,d (k)+1−τu,d (k+1)|(k) = c −γu,d (k +1)

c
,

(2.10)

2. In case of τu,d (k)+1 < τu,d (k +1) :

Bu,d ,0(k) =−γu,d (k +1)

c
,

Bu,d ,|τu,d (k)+1−τu,d (k+1)|(k) =−c −γu,d (k)

c
,

(2.11)

3. In case of τu,d (k)+1 = τu,d (k +1) :

Bu,d ,0(k) = γu,d (k)−γu,d (k +1)

c
,

Bu,d ,|τu,d (k)+1−τu,d (k+1)|(k) = 0.
(2.12)
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This average arriving flow rate is divided over the queues heading in different directions based
on the turning fraction:

αa
u,d ,o(k) =βu,d ,o(k)αa

u,d (k). (2.13)

The time delay in (2.6) represents the time it takes for vehicles entering the link to reach the tail
of the queue and is dependent on the capacity of the link Cu,d , the length of the queue, and the
distance travelled by a vehicle with constant deceleration adec

u,d from the free flow speed v free
u,d to

the idling speed v low
u,d . The capacity of the link (u,d) is given by:

Cu,d =
l lane

u,d N lane
u,d

l veh
, (2.14)

with N lane
u,d the number of lanes in link (u,d), l lane

u,d the length of link (u,d), and l veh the average

length of a vehicle. To ensure the proper time delay, the distance X̄u,d needed for a vehicle
to decelerate from the free flow speed to the idling speed has to be compared to the distance
between the beginning of a link and the tail of the queue ∆xu,d (k). The distance X̄u,d needed
for a vehicle to decelerate from the free flow speed to the idling speed is given by:

X̄u,d = 1

2
adec

u,d

(
v low

u,d − v free
u,d

adec
u,d

)2

+ v free
u,d

v low
u,d − v free

u,d

adec
u,d

. (2.15)

The distance between the beginning of a link and the tail of the queue ∆xu,d (k) is given by:

∆xu,d (k) =
Cu,d −qave

u,d (k)

N lane
u,d

l veh, (2.16)

where qave
u,d (k) is the average length of the queue in link (u,d) during [kc, (k +1)c), and can be

approximated by the queue length at k and k +1, or by the output of a predictor-corrector pro-
cedure [16]. The time delay is calculated for three different cases. The distance between the
beginning of a link and the tail of the queue is either longer, equal, or smaller than the distance
needed for a vehicle to decelerate from the free flow speed to the idling speed:

1. In case ∆xu,d (k) > X̄u,d :

δu,d (k) =
Cu,d −qave

u,d (k)

N lane
u,d v free

u,d

l veh −
(
v low

u,d − v free
u,d

)2

2adec
u,d v free

u,d

. (2.17)

2. In case ∆xu,d (k) = X̄u,d :

δu,d (k) =
v low

u,d − v free
u,d

adec
u,d

. (2.18)

3. In case ∆xu,d (k) < X̄u,d :

δu,d (k) =
v low

u,d

adec
u,d

+
(

v low
u,d

adec
u,d

)2

−2

(
Cu,d −qave

u,d (k)
)

l veh

adec
u,d N lane

u,d

0.5

. (2.19)
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Furthermore, the average flow rate entering link (u,d) is determined by the average flow rate
leaving in direction of link (u,d):

αe
u,d (k) = ∑

i∈Iu,d

αl
i ,u,d (k). (2.20)

Note that the average entering flow rate of link (u,d) is not updated when node u is on the edge
of the traffic network. If that link is getting saturated, the provided demand of the traffic network
could not be reached. Thus an origin queue is implemented to account for the lower average
entering flow rate on source nodes. Suppose that there exists a set of source nodes S ⊂ J . The
entering flow rate of link (s,d) with source node s ∈ S is determined by:

αe
s,d (k) = min

{
αdem

s,d (k)+
qsource

s,d

c
,

Cs,d −ns,d (k)

c

}
, (2.21)

where αdem
s,d (k) is the demand flow of link (s,d) on the traffic network during [kc, (k +1)c) and

qsource
s,d (k) the source queue at source node s at time step k. The update equation of the source

queue is:

qsource
s,d (k +1) = qsource

s,d (k)+
(
αdem

s,d (k)−αe
s,d (k)

)
c. (2.22)

2.1.2. Model predictive control

As was stated earlier, the main advantage of MPC is that the rolling horizon closes the control
loop, unlike many other optimal control methods. Therefore, MPC is robust to uncertainties of
the traffic prediction model. MPC can easily deal with multi-input and multi-output problems
with additional constraints. Another advantage of MPC is that it is modular such that one can
freely select and replace the prediction model based on the control requirements or the trade-
off between accuracy and computational complexity [26]. The prediction model used in the
MPC is the S-model, explained in Section 2.1.1. The states of the S-model are used to calculate
the number of vehicles and queues on each link and exit. At every control time step kc, the
online optimisation is performed. The S-model is used to predict future states and to calculate
a sequence of sub-optimal control inputs over a prediction horizon of Np time steps. Given the
control time interval Tc and the simulation time interval c, there exists an integer a such that

Tc = a · c, (2.23)

where Tc is the least common multiple of all the intersection cycle times. For a given k, the
corresponding value of kc is given by:

kc(k) =
⌊

k

a

⌋
, (2.24)

where bxc for x being a real number denotes the largest integer less than or equal to x. A given
value kc of the control time step corresponds to the set {kca,kca +1, . . . , (kc +1) a −1} of sim-
ulation time steps. A control horizon Nc < Np can be used to reduce the number of decision
variables. If Nc < Np, the control inputs between Nc and Np will be held constant. Then, only
the first control input is implemented in the system. This process is known as the rolling horizon
principle [2], displayed in Figure 2.2.
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past future

variables

time

Figure 2.2: Visualisation of the control and prediction horizon Nc and Np, respectively, and the green times g(kc)
and state update intervals at every control time step kc

At every control time step, the sub-optimal control inputs of MPC are calculated by solving the
following optimisation problem:

min
g(kc)

wTTS
JTTS(kc)

TTSn +wFinal
JFinal(kc)

Finaln +wD
JD(kc)

Dn +wQ
JQ(kc)

Qn ,

s.t. xu,d (kc +1) = f
(
xu,d (kc), ĝd (kc)

)
,

gmin ≤ ĝ(kc) ≤ gmax,

Φ
(
ĝ(kc)

)= 0,

(2.25)

where TTS stands for the total time spent, with ĝ(kc) = [
g>(kc),g>(kc +1), . . . ,g>(kc +Nc −1)

]>
,

in which g(kc) is a column vector with green times gd (kc) of all intersections d ∈ J at control

time step kc, the function f (·) represents the S-model, xu,d (kc) = [
nu,d (kc), qu,d (kc)

]> a vector
with the number of vehicles and the queue of each link (u,d) ∈ L, wTTS, wFinal, wD, and wQ

the weights that describe the importance of the control objectives, TTSn, Finaln, Dn, and Qn

the nominal values of the control objectives, gmin and gmin vectors of the appropriate size with
the minimum and maximum phase times, respectively, and Φ

(
ĝ(kc)

) = 0 is the cycle time con-
straint:

Φ
(
ĝd (kc)

)= cd − yd −
N ph

d∑
j=1

gd , j (kc), (2.26)

where yd and N ph
d are the total yellow time and the number of phases of intersection d , respec-

tively.

The traffic prediction model described in Section 2.1.1 uses green time fractions. Instead of
modelling individual green times as the decision variables, the phase times are used as decision
variables in Section 2.1.2. Figure 2.3 displays the four different phases of each intersection. For
a given network with four intersections that each have four phases, there are 16 · Nc decision
variables.
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1 2 3 4

Figure 2.3: Different phases of an intersection, where the red arrows are traffic lights that have right of way

The control objectives, that the MPC tries to minimise, are split into four different parts. At first,
the total time spent of all vehicles in the network over the prediction horizon Np is:

JTTS(kc) = ∑
(u,d)∈L

kc+Np−1∑
kd=kc+1

cd ·nu,d (kd ), (2.27)

the second part of the objective function is a terminal cost to consider the total time spent at
the end of the horizon:

JFinal(kc) = ∑
(u,d)∈L

cd ·nu,d (kc +Np), (2.28)

and the third part of the objective function is a cost to prevent large fluctuations of the control
inputs between the control time steps:

JD(ĝ(kc)) =
Nc∑
j=0

∥∥ĝ(kc + j )− ĝ(kc + j −1))
∥∥2

2 . (2.29)

For the last part of the objective function, a set of nodes K is defined, with all the nodes i ∈ K ⊆ J
that are an intersection. For each intersection i , a set of nodes Ki ⊆ J is defined with all nodes
u that have link (u, i ) to intersection i . The last part of the objective function is the sum of the
longest queue of each intersection over the prediction horizon Np:

JQ(kc) =
kc+Np∑
k=kc

∑
i∈K

max
u∈Ki

max
o∈Ou,i

qu,i ,o(k), (2.30)

where Ou,i is the set of outgoing nodes of link (u, i ). With the sum of the longest queue of each
intersection, more green time is given to these queues to more evenly distribute vehicles over
the traffic network.

One way to solve the nonlinear optimisation problem of MPC is with a multi-start sequential
quadratic programming algorithm [34]. A major drawback of nonlinear MPC is its computa-
tional complexity. When the computation time for one control time step becomes greater than
the sampling time interval, the MPC becomes real-time infeasible. However, the scope of this
thesis focuses on the combination of MPC with a resource allocation model on parking areas
to improve the traffic flow. Therefore, reducing the computational complexity of MPC such as
[17, 25] will not be considered throughout this thesis.
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2.2. Resource allocation in smart parking solutions

On average, vehicles that are searching for a vacant parking spot drive with a lower vehicle
speed, a habit called cruising [45]. Smart parking solutions may reduce the amount of cruis-
ing and consequently increase the traffic flow. Every driver has their destination and wants to
get there as fast as possible. Most drivers do not consider the travel time of other drivers other
than themselves. To improve the traffic flow further than reducing the amount of cruising for
all drivers, driving behaviour has to be influenced. Smart parking solutions try to influence the
behaviour of individual vehicles by providing alternatives that should benefit them, whether
it be in price, time or any other value. However, to create a smart parking solution, both the
infrastructure (e.g. parking area) and the vehicle have to exchange information.

In general, three types of information flow can be considered in a traffic network: information
flow streaming from vehicle-to-vehicle, streaming from vehicle-to-infrastructure and streaming
from infrastructure-to-vehicle. In current smart parking areas, the number of available park-
ing spots can be measured through the use of sensors. This information can be displayed for
each specific area using a red-yellow-green light, and the total available parking spots can be
displayed using a variable-message-sign located near the parking area entries [28]. This is an
example of infrastructure-to-vehicle information flow. An example of vehicle-to-infrastructure
information flow is to provide information to the parking area where you plan to arrive. An
example of vehicle-to-vehicle information flow is to share your traffic route with other vehi-
cles. If vehicles are to be guided to a parking area, infrastructure-to-vehicle information flow
is essential. Other information flow such as vehicle-to-infrastructure and vehicle-to-vehicle
can be useful to improve the smart parking solution. One example of a smart parking solution
that uses infrastructure-to-vehicle information flow is a Parking Guidance Information System
(PGIS) [46]. The PGIS provides vehicles with information regarding the optimal parking area.
The optimal parking area is derived using the Dijkstra algorithm to find the shortest path. Vehi-
cles are then informed on the optimal path to a parking area. Although current parking guidance
systems increase the probability of finding vacant parking spaces, they have several shortcom-
ings [8]. Drivers may not find vacant parking spots by merely following the guidance system.
Furthermore, the driving behaviour is changed from searching to competing for parking: More
drivers head towards the same available parking spots, and none may be free by the time some
drivers arrive, thus forcing re-planning and competition for other spots [7].

Some smart parking solutions are reservation-based, i.e., they provide the vehicles with an op-
tion to reserve a parking area before the start of their trip [21]. These reservation-based smart
parking solutions reduce the amount of cruising significantly and improve the driver experi-
ence. With the use of sensors at every parking spot, a red light could be displaying a reserved
parking spot, while green light is an available parking spot. A yellow indicator could provide the
arriving vehicle with the information on where to park.

Instead of keeping the choice for the specific parking area with individual vehicles, one could
remove the choice. If the smart parking solution could choose the dedicated parking area for
vehicles, cruising and traffic congestion could be reduced. This can be done using resource
allocation. Resource allocation is a powerful method that is used in many fields of research
(e.g. medical, logistic, energy, and manufacturing fields [6, 22, 30, 32]). Resource allocation
is a form of strategic planning, where various users are assigned to a resource, based on an
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objective. Both users and resources can have different preferences or constraints in strategic
planning. An advantage of resource allocation is that multiple objectives can be implemented in
the model. Resource allocation is therefore very versatile and can optimise the objectives whilst
considering the preferences and constraints of individual users or resources. By implementing
resource allocation in parking areas, vehicles can be spread out more evenly over the traffic
network. Hence, it is interesting to look at the possibilities of resource allocation in urban areas
with parking areas during rush hours, where many daily commuters use the traffic network and
many daily visitors use the parking areas.

In general, there is a set of users U and a set of resources R. The control input is the choice xu,r

to allocate user u to resource r . The cost to allocate user u to resource r is defined as ju,r . An
example of a linear resource allocation controller is:

min
x

Jx

s.t. xu,r =
{

1, if user u is allocated to resource r

0, otherwise

Additional constraints

(2.31)

where x = [
x1,1, . . . , x1,r , x2,1, . . . , xu,r

]> is a column vector with xu,r the allocation of user u to

resource r and J = [
j1,1, . . . , j1,r , j2,1, . . . , ju,r

]>. Note that the cost ju,r of allocation of user u to
resource r may be divided into different control objectives, or preferences of the user (e.g. the
shortest travel distance, additional cost of the use of resource r , etc.). Additional constraints
may be posed for user u or resource r (e.g. a maximum capacity of resource r or a maximum
cost of user u). This optimisation problem is a linear programming problem with binary values,
and can be solved using a branch-and-bound procedure.

Geng and Cassandras presented a dynamic resource allocation model for smart parking [9]. In-
dividual vehicles can notify a parking application to be allocated to a parking area. Every user u
provides a maximum walking distance Du and maximum cost of parking Mu . The user also pro-
vides a preference of their importance to minimise the walking distance over the cost of parking
λ, with λ = 0 only prioritising the walking distance and λ = 1 only prioritising the cost of park-
ing. User experience can improve when users can choose their upper bounds. Nevertheless,
they may end up not having a resource (i.e. the parking spot) that meets their requirements.
If so, the user has to change the constraints and re-apply for allocation to a parking spot. Fur-
thermore, if there is a resource that meets the requirement in time step k, the resource may be
unavailable in k + 1, as the cost of parking is predictive and could change at every time step.
This is a limitation of the dynamic resource allocation model that could cause frustration with
the user as they have to re-apply with different constraints. The optimisation problem is consid-
ered to be a mixed integer linear programming problem that can be solved using a branch-and-
bound procedure. The objective of the dynamic resource allocation model is to minimise the
total travel distance and the cost of parking. One flaw to be pointed out is that the shortest travel
distance may not be the shortest travel time. In partly saturated traffic networks, the shortest
travel path may be saturated, while another travel path avoids these congested areas, resulting
in significantly lower travel times.

Reservation-based smart parking solutions could also reduce traffic congestion by controlling
the parking price [37]. By introducing dynamic pricing in reservation-based smart parking so-
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lutions, the total revenue of the parking areas could go up, while the total effective cost of all
vehicles is significantly cut, and the overall traffic congestion caused by parking could be elim-
inated [19]. Vehicles are spread out more evenly along the day, increasing the potential of the
parking area. Wang and Wang created a flexible parking reservation system with variable pric-
ing that further reduced the reservation failure rate [43]. However, vehicles that use parking
areas for their events (e.g. shopping malls or soccer stadiums) are forced to arrive and leave at
a specific time. When that time is during rush hours, the effect of dynamic pricing may not be
impressive. Individual vehicles will accept higher pricing simply because they have to be there
at a specific time, resulting in higher parking costs. On top of that, some parking areas are free
of charge.

In some smart parking solutions, a parking prediction model is used to predict the parking de-
mand in the future [42, 45]. Implementing a parking prediction model provides a better under-
standing of how to distribute vehicles over the parking areas. In situations where parking spots
need to be available in the future for future demand, it is of added value to incorporate a parking
prediction model in the smart parking solution. Hence, using a parking prediction model may
be beneficial for the smart parking solution, but it is not required.

One thing that is currently not yet implemented in smart parking solutions, is a TSC strategy that
works together with the smart parking solution. Having information regarding the traffic signals
during rush hours could have a significant effect on the optimal parking strategy. During these
rush hours, distributing vehicles evenly along the traffic network can improve the traffic flow
on that network. By using accurately predicted travel times of traffic routes, individual vehicles
are provided with their desired shortest travel time, while also considering the distribution of
the traffic network. Therefore, a novel smart parking solution based on resource allocation that
considers the development of traffic is designed in this thesis.

2.3. Conclusions

By implementing a model-based traffic-response controller, congestion can be reduced in ur-
ban areas. Over the years MPC has proven to significantly improve traffic flow, consequently re-
ducing traffic congestion. MPC in urban areas uses a TSC strategy to optimise the green time of
an intersection. To optimise the green time, an accurate traffic prediction model is needed. One
of the main disadvantages of MPC is its computational complexity. A complex traffic prediction
model may take too long to find the optimal green times, resulting in real-time infeasibility, i.e.
the optimal green times cannot be found within the sampling time of the intersection. There-
fore, a trade-off in accuracy and computational complexity is required for the traffic prediction
model. Increasing the sampling time interval is found to be an effective way of reducing the
computational complexity while still maintaining accuracy. The traffic prediction model used
throughout this thesis is the S-model, explained in Section 2.1.1.

More traffic congestion can occur in urban areas with large parking areas used for leisure (e.g.
shopping malls, soccer stadiums, or concerts). Many vehicles need a vacant parking spot and
often drive slower when searching. The introduction of resource allocation in smart parking
solutions improved the possibilities for parking areas. The parking areas could implement con-
trol objectives such as travel distance, travel cost, or revenue. For parking areas with time-based
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leisure, other control objectives may have more benefit during rush hours. Travel time and park-
ing availability could provide a more even distribution of the traffic network, reducing traffic
congestion.

There is considerable research on the use of resource allocation in parking areas. The main goal
is to minimise the amount of cruising that occurs in the traffic network. Furthermore, individual
preferences such as walking distance and parking cost are considered. However, to the authors’
best knowledge, no research is done on resource allocation in parking areas with the focus on
reducing traffic congestion. Therefore, in Chapter 3, the implementation of a parking resource
allocation model together with the TSC strategy is designed and elaborated.





3
Novel smart parking solution: Parking

resource allocation model

In this chapter, a novel smart parking solution based on resource allocation is introduced and
explained in Section 3.1. The novel parking resource allocation model communicates with the
traffic prediction model and traffic signal control strategy, elaborated in Sections 2.1.1 and 2.1.2,
respectively, to reduce traffic congestion. The traffic prediction model is consequently modified
in Section 3.2 to consider the control strategy of the resource allocation model in the traffic
prediction model.

3.1. Parking resource allocation model

The control scheme of both the traffic signal controller and the parking resource allocation
model is presented in Figure 3.1. In the control scheme, information regarding the traffic net-
work is input for the traffic prediction model. Sub-optimal traffic signals are calculated with
the use of Model Predictive Control (MPC) where the traffic prediction model predicts the traf-
fic states of the future.1 The sub-optimal traffic signals are used in the traffic network and the
process is repeated. After the sub-optimal traffic signals are found, the future traffic states are
used to predict the travel times of all routes to a parking area. Vehicles are then allocated to a
parking area, based on the predicted travel times and other information regarding the parking
areas (e.g. the number of available parking spots).

All vehicles are initialised with a travel route to a parking area based on the shortest distance.
When vehicles are allocated to another travel route, this changes the distribution of vehicles on
the traffic network. The traffic prediction model is therefore provided with this information to
account for the change in the distribution of vehicles.

1The optimisation problem is nonlinear nonconvex and requires a multi-start sequential quadratic programming
algorithm. Since the global optimum cannot be guaranteed, the algorithm provides sub-optimal control inputs.

19
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Parking network

Predict travel times

Optimize allocation

RA

Traffic network

Traffic prediction
model 

(S-model)

Optimize signals

MPC

Figure 3.1: Control schemes of MPC and resource allocation where xu,d are the traffic states from the traffic
prediction model and α̂u,d ,o is the future change in the distribution of the exits

The parking resource allocation model is defined by a set of users U , a set of routes R, and the
same set of nodes J as defined in the S-model presented in Section 2.1.1. The model uses the
state variables nu,d (k) and qu,d (k) of the S-model as input. Furthermore, the length of each link
l lane

u,d and the simulation time interval c with corresponding time step counter k of the S-model
are used. Each user u ∈ U has a starting node su ∈ J , and a real valued starting time tu . Every
starting node su of user u has a set of travel routes R(su) ⊆ R where each travel route rs,p has
a starting node s and the destination of parking area p ∈ P . Each route r ∈ R has a set of links
L(r ) ⊆ L that the travel route uses. The predicted travel time Tr (k) of route r at time step k is:

Tr (k) = ∑
i∈L(r )

l lane
i

vave
u,d (k)

, (3.1)

where vave
u,d (k) is the predicted average vehicle speed of link (u,d) at time step k. The predicted

average vehicles speed is explained in more detail in Section 3.2. Parking area p has a total
capacity Cp , and a number of available parking spots Sp (k) at time step k. The update equation
of the number of available parking spots is:

Sp (k +1) = Sp (k)−αa
p (k)+αl

p (k)−αr
p (k), (3.2)

where αa
p (k) and αl

p (k) are the number of vehicles arriving and leaving parking area p during
the time interval [kc, (k +1)c), and αr

p is the number of vehicles that have a reservation to use
parking area p, but have not yet arrived during the time interval [kc, (k +1)c). Note that αr

p is
controlled by the choice xu,r (k) of the Parking Resource Allocation Model (PRAM) to allocate
user u to travel route r during the time period [kc, (k +N )c). Moreover, the available storage is
constrained:

0 ≤ Sp (k) ≤Cp , ∀k. (3.3)
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At every time step k, a set of users U (k) ⊆U is defined that have a starting time tu in the time pe-
riod [kc, (k +N )c). Note that N is the number of time steps that the parking resource allocation
model considers to allocate users to a parking area. Hence, all users u ∈U (k) are allocated to a
parking area p. Note that N ≤ Np must hold because the prediction of the travel time is limited
by prediction horizon Np of the S-model. The optimal control inputs are calculated by solving
the following optimisation problem:

min
x̂(k)

[
wdrive

cn
drive

cdrive(k)+ wparking

cn
parking

cparking(k)

]>
x̂(k)

s.t.
∑

i∈U (k)

∑
r∈R(si )

xi ,r (k) ≤ Spr (k)−αa
p (k)+αl

p (k),∑
r∈R(su )

xi ,r (k) = 1,

xi ,r ∈ {0,1}, ∀i ∈U (k),r ∈ R(si ),

(3.4)

with x̂(k) = [
x>1 (k), . . . ,x>u (k)

]>
a column vector of xu(k) = [

xu,1(k), . . . , xu,r (k)
]> where xu,r is the

choice of user u to take travel route r with ∀u ∈U (k),∀r ∈ R(su), wdrive and wparking the weights
that describe the importance of the different control objectives, cn

drive and cn
parking the nominal

values of the different control objectives, and Spr (k) the number of available parking spots of
parking area p that is reached by using travel route r .

The different segments of the objective function, cdrive(k) and cparking(k) describe the travel time
of each travel route for each user u, and the number of occupied parking spots of the parking
areas:

cdrive(k) = [
T>

1 (k), . . . ,T>
u (k)

]>
, (3.5)

cparking(k) = [
A>

1 (k), . . . ,A>
u (k)

]>
, (3.6)

where Tu(k) = [
Tu,1(tu), . . . ,Tu,r (tu)

]> is the vector with all travel times of the possible travel

routes for user u ∈U (k) that departs at tu ∈ [kc, (k +N )c) and Au(k) = [
Au,1(k), . . . , Au,r (k)

]> is
the vector of penalties for the number of vehicles occupying the parking area that is reached
using travel route r ∈ R for user u ∈U (k). A penalty of a parking area for a particular travel route
is:

Au,r (k) = Cp −Sp (k)

Cp
. (3.7)

Some users that have been allocated to a parking area and travel route in x̂(k −1) may be allo-
cated to a different parking area and travel route in x̂(k). Furthermore, users that have been allo-
cated to a parking area may have a different travel route than their initial travel route. For these
users, a second optimisation decides if these users need to update their travel route and parking
area destination. However, it may be undesirable for the user experience to switch travel routes
of users after every time step, whilst only a little travel time is lost. Therefore, a weight wswitch

is added in the objective function such that only when there is a considerable improvement in
travel time, the parking area and travel route is updated:

min
x̂switch

[
Tswitch(k)−Tswitch(k −1)+wswitch

]>
x̂switch,

s.t . Tswitch(k) =
[

T switch
1 (k), . . . ,T switch

uswitch (k)
]>

,

(3.8)
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where xswitch
i (k) ∈ {0,1} is the choice to switch the user from the prior allocated parking area to

the newly allocated parking area with x̂switch =
[

xswitch
1 (k), . . . , xswitch

uswitch (k)
]>

and T switch
i (k) is the

predicted travel time of the respective travel route of user i at time step k.

The distribution of vehicles on the network can change, resulting from the novel parking re-
source allocation model. The S-model explained in Section 2.1.1 does not account for this
change. Hence, the S-model is changed.

3.2. Modified S-model

The novel parking resource allocation model changes the travel route of vehicles heading to a
parking spot. Currently, the S-model considers the change in the distribution of vehicles on the
traffic network by using the turning fractions βu,d ,o(k). However, the S-model does not consider
the future change in the distribution of vehicles on the traffic network caused by the novel park-
ing resource allocation. Therefore, the turning fraction βu,d ,o of link (u,d) turning to direction
o at time step k is modified.

Furthermore, from the state variables nu,d (k) and qu,d (k), an average vehicle speed vave
u,d (k) of

link (u,d) at time step k can be predicted. Throughout this thesis it is assumed that the average
vehicle speed has a linear relation to the state variables:

vave
u,d (k) = γ0 +γ1nu,d (k)+γ2qu,d (k). (3.9)

where γ are the weights of each state variable. A linear least-squares method is used to find
optimal values of γ. The travel time of each travel route can be predicted using (3.1). More
complex relations between the average vehicle speed and the traffic states exist, and may have
a better performance. However, the analysis of more complex relations are left for future work.

After the parking allocation model has allocated vehicles to a parking area, the set of choices for
the optimal travel route for each user is defined as X . A new set of optimal travel routes for each
user that deviates from their original travel route is defined as X diff ⊆ X , and the set of exits used
in the travel route is defined as E diff.

Every user has a predicted travel time of the allocated travel route to a parking area. Since the
travel time is based on the average vehicle speed of each link (u,d), it can be predicted when the
user will leave link (u,d) to direction o. Using the starting time tu , together with the travel time
and route of all users u ∈ U (k), the change in distribution of vehicles on the traffic network of
link (u,d) heading to direction o is calculated:

α̂l
u,d ,o(k) =

α̂
l,Opt
u,d ,o(k)

c
−
α̂

l,Orig
u,d ,o (k)

c
, (3.10)

with α̂
l,Opt
u,d ,o(k) the number of vehicles leaving link (u,d) to direction o during the time period

[kc, (k +1)c) travelling according to their optimal travel route and α̂
l,Orig
u,d ,o (k) the number of vehi-

cles leaving link (u,d) to direction o during the time period [kc, (k +1)c) travelling according to
their original travel route.
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Determining the turning fraction βu,d ,o(k) of the S-model during the prediction horizon is chal-
lenging when the turning fractions are time-varying. The case studies of previous research re-
garding MPC with the S-model as the traffic prediction model use a uniform traffic demand
that is time-independent [17, 26, 27]. Consequently, the turning fractions are considered to
be known and constant throughout the simulation. However, the turning fractions are time-
varying, since the number of vehicles on each travel route changes. Note that the turning frac-
tion βu,d ,o(k) is the relative fraction of traffic in link (u,d) heading in direction o during the
time period [kc, (k +1)c). One way to determine time-varying turning fractions is by using the
queue qu,d ,o(k) at each link (u,d) heading in direction o. When the turning fractions are not
known throughout the simulation, the queue qu,d ,o(k) at each link (u,d) heading in direction o
explained in Section 2.1.1 can be used to determine the turning fractions.

βu,d ,o(k) =
qu,d ,o(k)+ α̂l

u,d ,o(k)∑
o∈Ou,d

(
qu,d ,o(k)+ α̂l

u,d ,o(k)
) , (3.11)

where α̂l
u,d ,o(k) is the number of vehicles leaving link (u,d) to direction o during the time period

[kc, (k +1)c).

3.3. Conclusions

The use of the novel parking resource allocation model presented in this chapter can reduce the
amount of cruising vehicles searching for a parking area in urban areas. Moreover, the model
can control the distribution of vehicles on the traffic network. If vehicles are more evenly dis-
tributed along the traffic network, traffic flow is increased. The distribution of the vehicles oc-
cupying the parking areas can be controlled as well using the novel parking resource allocation
model. An even distribution of vehicles over the parking areas prevents one parking area to be
full while the others remain almost empty. When a parking area is full and other parking areas
remain almost empty, vehicles that arrive at the full parking area have to re-enter the traffic net-
work in search of a vacant parking spot, resulting in additional vehicles in the traffic network.
In an already saturated traffic network, additional vehicles on the traffic network reduce traf-
fic flow. The novel parking resource allocation can prevent the unnecessary use of the traffic
network.

If the travel route of the vehicles differs from their original travel route, the distribution of ve-
hicles on the traffic network is changed. The S-model explained in Section 2.1.1 is modified to
consider the change in the distribution of vehicles on the traffic network caused by the novel
parking resource allocation model.





4
Case study: Mall of the Netherlands

The performance of the Model Predictive Control (MPC) control strategy and the Parking Re-
source Allocation Model (PRAM) is assessed using two case studies. The first case study com-
pares the performance during the morning rush hours and the second case study compares the
performance during the evening rush hours. In both case studies, the same traffic network is
used, based on the traffic situations of the Mall Of The Netherlands (MOTN). In Section 4.1, the
traffic network, performance measures, and demand profiles are explained, and the parameters
of both the traffic prediction model and PRAM are identified. The performance of different con-
trol strategies for the morning rush hours and evening rush hours are compared in Sections 4.2
and 4.3, respectively. Lastly, the analysis of the results is explained in Section 4.4, and the chap-
ter is concluded.

4.1. Set-up

The traffic network and demand profile for both case studies, the parameter identification of
both the S-model and the resource allocation model, and the performance measures on which
the different controllers are compared will be discussed in this section.

4.1.1. Urban traffic network

Simulations are performed to compare the performance of the traffic signal controller and the
PRAM. The simulations are performed in the traffic simulator VISSIM. VISSIM is a microscopic
traffic simulator that is used to model and simulate traffic. With the component object model
interface, VISSIM is able to communicate with MATLAB [13]. Information on intersections, links
and vehicles is extracted from VISSIM and the green times of the traffic lights can be adjusted.
The network that is used in both case studies is shown in Figure 4.1. It is a graphical represen-
tation of the situation surrounding the MOTN located in Leidschendam near The Hague. The
MOTN is a new large shopping mall located next to a main road that is congested daily. Dur-
ing rush hours (e.g. the morning rush hours and evening rush hours) traffic congestion occurs.
The N14, located next to the MOTN is connected to the A4 highway, the busiest highway of the
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Netherlands. Rijkswaterstaat is currently investigating new ways of improving the traffic net-
work on the N14. With the opening of the shopping mall, the performance traffic network has
deteriorated. The MOTN is a good example of a situation that may benefit from a combined
traffic signal control strategy and a PRAM. Therefore, two case studies are performed for both
the morning rush hours and the evening rush hours.

The traffic network consists of four controlled four-way intersections, eight entrances and exits,
twelve two-way links with two lanes expanding to five lanes at the intersection. Furthermore,
five parking facilities with entrances and exits connected to other links are implemented, each
with its maximum capacity. The lengths of the links are displayed in Figure 4.1, and the cycle
time of each intersection and the control interval of the network are both 60 seconds. Vehicles
that enter the network and drive with a free-flow speed of 50 km/h can leave the network in less
than 4 minutes. To account for the waiting time in front of the traffic lights, the prediction hori-
zon is chosen to be 8 time steps (i.e. 480 seconds). This prediction horizon is chosen because
the vehicles can leave the network within the horizon. For computational reasons, the control
horizon is chosen to be 5 time steps (i.e. 300 seconds).
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Figure 4.1: Representation of the urban traffic network consistent in the case study

To reproduce the traffic situation of the MOTN during rush hours, historical traffic data of the
intersections are needed. Historical data concerning the parking areas are needed as well (e.g.
the number of vehicles arriving at each parking area, the number of vehicles leaving each park-
ing area, and the number of available parking spots at a given time). However, the MOTN did
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not release the historical data concerning the parking areas. Instead, only an estimate of the
number of vehicles arriving and leaving all the parking areas is provided by the MOTN. Thus,
fictive data is used based on this estimate. The number of vehicles arriving and leaving the
parking areas in both case studies is presented in Figures B.1 and B.2. The initial occupancy of
all parking areas is 30% and 90% of the full capacity, for the morning and evening rush hours,
respectively.

With historical data provided by Rijkswaterstaat regarding the traffic network, an origin-destination
matrix is constructed that represents the traffic situations in real-life. Note that the number of
vehicles that are searching a parking area or leaving from a park area is included in the data
provided by Rijkswaterstaat. Therefore, the distribution of vehicles on the traffic network based
on historical data is changed to consider the number of vehicles interacting with the parking
area. Two origin-destination matrices are thus created for each case study, shown in Tables A.1
and A.2, respectively. Note that both origin-destination matrices of case study B are the trans-
posed of the origin-destination matrices of case study A. Therefore, the total number of vehicles
on the traffic network in both case studies are equal. Figure 4.2 captures the traffic demand
based on the origin-destination matrices of Tables A.1 and A.2, used as identification data set
to identify the parameters of the S-model and the PRAM. After one hour, the traffic demand is
increased. Note that only the number of vehicles interacting with the parking areas is increased
and all ongoing traffic is kept constant.

Figure 4.2: Traffic demand flow of all vehicles used as identification demand for the identification of parameters of
both case studies

To be able to compare the different controllers, three demand scenarios are generated, based
on the origin-destination matrices. The three scenarios i.e. the two-peaks-, declining-, and
inclining demand scenarios, are designed and presented in Figure 4.3. In all three scenarios,
only the traffic demand of ongoing traffic fluctuates.

All vehicles on the traffic network have a travel route initialised based on the shortest path. If
two possible travel routes for an origin-destination pair are of equal length, the travel route that
uses link (4,8) or (8,4) is taken as their travel route. For the control strategies that do not use the
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PRAM, vehicles will not deviate from their travel route.

The first 30 minutes of each scenario is used for initialisation, such that there is enough past
data available for the prediction model.

(a) Two-peaks demand (b) Declining demand (c) Inclining demand

Figure 4.3: Traffic demand flow for the different scenarios in both case studies

4.1.2. Parameter identification

Some parameters should be identified in advance to use both mathematical models of Sec-
tion 2.1.1 en Section 3.2. Since the identified parameters of the PRAM are dependent on the
S-model, the parameters of the S-model are identified first.

In all identification processes, the mean relative error and mean absolute error concerning the
simulator output are used as a performance measure. Both errors are provided for the sake of
completeness:

Relative error = NSim −NMod

NSim
, (4.1)

Absolute error = NSim −NMod, (4.2)

where NSim and NMod are the number of vehicles on the links (u,d) produced by the simulator
VISSIM and the model values, respectively.

The identified parameters are validated on the three scenarios to check if the identified param-
eters can predict correct outputs for unseen data and to check that the model did not overfit the
data on the identification set.

S-model

The following parameters of the S-model are identified: the free-flow and idling speed v free and

v low, the deceleration of vehicles adec, the length of all the links l edge
i , the average length of the

vehicles with headway l veh, and the saturation flow rate µu,d ,o of every link (u,d) to direction o.
Note that the free-flow and idling speed, the deceleration of a vehicle, and the average length of
a vehicle are chosen to be constant on the traffic network, to lower the complexity of the offline
optimisation, and therefore the link subscript (u,d) is removed. The saturation rate is chosen to
vary from exit to exit, instead of link to link, because the traffic network consists of links with 2
lanes increasing to 5 lanes.

For the fixed-time traffic signal controller, the green times of each phase for each intersection
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are shown in Tables A.3 and A.4, and are based on the distribution of vehicles on the traffic net-
work. The cycle time of every intersection is chosen to be 60 seconds. The turning fractions are
measured based on the leaving flow rate αl

u,d ,o . The traffic network is initialised for 30 minutes,
after which the data is extracted for 90 minutes. The traffic demand, shown in Figure 4.2, is
used as calibration data. The number of vehicles and the queue lengths of all the links at every
control time step are collected. A nonlinear least-squares problem that optimises the relative
error is used. In this optimisation, the number of vehicles and queues of the current time step
are used as input to calculate the states for the next 8 time steps. The lsqnonlin solver with the
trust-region-reflective algorithm is used in Matlab to solve the nonlinear least-squares problem.
Because the traffic prediction model is nonlinear, many local minima can be found. Therefore,
multi-start local optimisations are performed, with 1000 random feasible starting points.

Table 4.1: The identified parameters of the S-model during the morning rush hours with
i ∈ {3,4,5,6,9,10,15,16,19,20,23,24}, j ∈ {1,2,21,22}, k ∈ {7,8}, m ∈ {11,12}, n ∈ {13,14}, and o ∈ {17,18}. The link IDs

i , j ,k,m,n, and o correspond to the link numbers in Figure 4.1

Parameter v free [m/s] v low [m/s] adec [m/ s2 ] l edge
i [m] l edge

j [m] l edge
k [m] l edge

m [m] l edge
n [m] l edge

o [m] l veh [m]

Value 19.34 0.08 -1.68 535.14 1039.71 450.22 400.02 403.81 742.89 9.25

Table 4.2: The identified parameters of the S-model during the evening rush hours with
i ∈ {3,4,5,6,9,10,15,16,19,20,23,24}, j ∈ {1,2,21,22}, k ∈ {7,8}, m ∈ {11,12}, n ∈ {13,14}, and o ∈ {17,18}. The link IDs

i , j ,k,m,n, and o correspond to the link numbers in Figure 4.1

Parameter v free [m/s] v low [m/s] adec [m/ s2 ] l edge
i [m] l edge

j [m] l edge
k [m] l edge

m [m] l edge
n [m] l edge

o [m] l veh [m]

Value 19.44 1.39 -2.95 450.28 1049.20 457.84 455.02 420.11 629.37 6.61

The values of the identified parameters of both case study A and B are shown in Tables 4.1
and 4.2, respectively. On the calibrated data set, the S-model with the identified parameters
has a mean relative error of 10.61%, and a mean absolute error of 8.83 vehicles for the morning
rush hours. For the evening rush hours, the mean relative error and mean absolute error on the
calibrated data set is 6.44% and 4.22, respectively. The errors with respect to all scenarios are
displayed in Tables 4.3 and 4.4. The error in the declining scenario is higher than the other sce-
narios for both case studies. This may pose problems for the control strategies in that scenario.
However, the difference between the calibrated data set and the two-peaks demand scenario is
small. Thus the identified parameters are not overfitted on the identification data set. As the
S-model is a macroscopic model, errors below 10% are considered reasonable. The model with
the found parameters has a somewhat larger error. As a result, the performance of the MPC
strategy may be subpar. Note that for another traffic network or traffic demand, the parameters
have to be identified again.
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Table 4.3: Result of 8 step-ahead prediction of traffic states of the S-model with the traffic demand of Figure 4.2 and
Figure 4.3, with the identified parameters of Table 4.1

Error Identification Two-peaks Declining Inclining

Mean relative error [%] 10.61 9.71 15.84 11.92
Mean absolute error [Veh] 8.83 7.53 10.76 9.90

Table 4.4: Result of 8 step-ahead prediction of traffic states of the S-model with the traffic demand of Figure 4.2 and
Figure 4.3, with the identified parameters of Table 4.2

Error Identification Two-peaks Declining Inclining

Mean relative error [%] 6.44 9.05 13.55 9.17
Mean absolute error [Veh] 4.22 5.93 9.15 6.90

Parking resource allocation model

The prediction of the travel time of all travel routes is made using the traffic states nu,d (k) and
qu,d (k) of the S-model. The travel time is calculated by considering an average vehicle speed
vave

u,d (k) on link (u,d) at time step k. On average, the vehicles on link (u,d) at time step k are
driving with that vehicle speed.

The states of the S-model with the identified parameters shown in Tables 4.1 and 4.2 for the
prediction horizon of 8 steps are used to predict the average vehicle speed during the prediction
horizon. The relation between the traffic states of the S-model and the average speed of vehicles
on link (u,d), that is assumed in (3.9) and the relation between the travel time and the average
vehicle speed that is assumed in (3.1), are recited for completeness:

vave
u,d (k) = γ0 +γ1nu,d (k)+γ2qu,d (k), (4.3)

Tr (k) = ∑
i∈L(r )

l lane
i

vave
u,d (k)

. (4.4)

Note that the parameters γ0, γ1, and γ2 are constant over all links (u,d) because the relation
between the traffic states and the average vehicle speed is assumed to be independent of link
(u,d). A linear least-squares problem that optimises the relative error is used. In this optimi-
sation, the number of vehicles and queue lengths of the prediction horizon is used to calculate
the average vehicle speed over the prediction horizon. In Matlab, the fitlm solver is used to solve
the linear least-squares problem.

The values of the identified parameters for both case studies A and B are presented in Tables 4.5
and 4.6, respectively. What is interesting to note is that the maximum average vehicle speed is
much lower than the free-flow speed v free identified in the S-model. The errors of the average
vehicle speed with the identified parameters are presented in Tables 4.7 and 4.8. As there is
no significant difference in the result between the identification and all demand scenarios, the
identified parameters are not overfitted to the identification data set. However, the errors are
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quite high and can pose a problem for predicting the future travel time of travel routes. There-
fore, a comparison of the predicted travel time and actual travel time is needed.

Table 4.5: The identified parameter identification of the parking resource allocation model for the morning rush
hours

Parameter γ0 γ1 γ2

Value 11.303 -0.0264 -0.0354

Table 4.6: The identified parameter identification of the parking resource allocation model for the evening rush
hours

Parameter γ0 γ1 γ2

Value 11.191 -0.0287 -0.069

Table 4.7: Result of the 8 step-ahead prediction of the average vehicle speed with the traffic demand of Figure 4.2
and Figure 4.3, with the identified parameters of Table 4.5

Error Identification Two-peaks Declining Inclining

Mean relative error [%] 18.77 18.87 21.59 18.39
Mean absolute error [m/s] 1.68 1.70 1.76 1.69

Table 4.8: Result of the 8 step-ahead prediction of the average vehicle speed with the traffic demand of Figure 4.2
and Figure 4.3, with the identified parameters of Table 4.6

Error Identification Two-peaks Declining Inclining

Mean relative error [%] 18.96 20.41 22.32 21.36
Mean absolute error [m/s] 1.72 1.75 1.78 1.77

4.1.3. Performance measures

The performance of the controllers is compared. The comparison of the traffic flow is made
using the Total Time Spent (TTS). The lower the TTS is, the higher traffic flow is. Another pa-
rameter that is important and is widely used in the field of traffic engineering is the Vehicle Time
Loss (VTL). The VTL is the total time that is lost by all vehicles in traffic and provides an impor-
tant base to quantify the economical effects on traffic congestion [40]. The lower the VTL is, the
lower the cost of congestion is. The VTL is:

VTL = ∑
r∈R

∑
u∈U

(
TTu,r −TTmin

r

)
, (4.5)

where TTu,r is the travel time of user u that uses travel route r and TTmin
r is the minimum travel

time of travel route r . The VTL is used to compare all the vehicles on the traffic network. More-
over, the VTL of all vehicles that use the parking area may be important to see if the PRAM
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improves the travel time of individual vehicles. Both performance measures of the controllers
are compared, and the relative change is calculated:

TTSrel =
TTSCONTROL −TTSFIX

TTSFIX
·100%, (4.6)

where CONTROL stands for the specific controller to compare and FIX for no control at all. In
the same way, VTLrel is the relative change in VTL. Furthermore, the vehicle distribution on the
traffic network and the occupancy of the parking areas are compared.

Throughout the case studies, the optimisation problem from Section 2.1.2 of MPC will be used.
For clarity, the objective function is recited:

min
g(kc)

wTTS
JTTS(kc)

TTSn +wFinal
JFinal(kc)

Finaln +wD
JD(kc)

Dn +wQ
JQ(kc)

Qn , (4.7)

with wTTS, wFinal, wD, and wQ the weights of the objective function. The main objective is to
minimise the TTS. However, additional control objectives are used to ensure better traffic states
at the end of the horizon, prevent fluctuations of the control inputs, and give extra attention to
the largest queue of an intersection. Therefore, the weight of the TTS over the prediction horizon
is wTTS = 1, the weight of the TTS at the last prediction time step of the horizon is wFinal = 0.1,
the weight of the fluctuations of the control inputs is wD = 0.01, and the weight of the longest
queue of every intersections is wQ = 0.1.

The cost functions of the TTS, the terminal cost, the switching times, and the cost of the longest
queue are as in (2.27), (2.28), (2.29), and (2.30), respectively. For all scenarios, TTSn = 1.00 ·106

[s], Finaln = 150[veh], Dn = 278, and Qn = 600. Note that the nominal values are derived from
their values during one prediction window.

Throughout the case studies, the optimisation problem from (3.4) of the PRAM will be used. For
clarity, the objective function is recited:

min
x̂(k)

[
wdrive

cn
drive

cdrive(k)+ wparking

cn
parking

cparking(k)

]>
x̂(k), (4.8)

where cn
drive = 100 [s] and cn

parking = 1 are the nominal values of the control objectives, and wdrive

and wparking are the weights of the objective function. Two different control strategies are com-
pared. At first, only the shortest travel time is considered as the control objective, resulting in the
weights of wdrive = 1 and wparking = 0. The second control strategy considers both the shortest
travel time, and a uniform distribution of vehicles to the parking areas, resulting in the weights
of wdrive = 1 and wparking = 0.5.

The second optimisation problem from (3.8) of the PRAM is recited for clarity:

min
x̂switch

[
Tswitch(k)−Tswitch(k −1)+wswitch

]>
x̂switch, (4.9)

where wswitch = 30 [s] is the minimum travel time loss needed to switch the users from their
allocation at time step (k −1) to the allocation at time step k.
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4.2. Case study A: Morning rush hours

The effect that different control strategies have on the traffic in the morning rush hours is com-
pared in this case study. The origin-destination matrices shown in Table A.1 will be used to-
gether with the three scenarios presented in Figure 4.3 for the traffic demand. Using the identi-
fied parameters of the S-model and the average vehicle speed shown in Tables 4.1 and 4.7, the
simulation can be performed. The result of the fixed-time control strategy, MPC control strategy,
and MPC with the control strategies of the PRAM are compared. The control strategies of the
PRAM use the weights wdrive = 1 and wparking = 0, and wdrive = 1 and wparking = 0.5, respectively.

4.2.1. Results

In Tables 4.9 to 4.11 the system performance by means of the TTS and VTL of the different con-
trol strategies is compared. In general, using an MPC control strategy results in a decrease in
both the TTS and VTL.

Apart from the declining demand scenario, adding the control strategies of both PRAMs in-
creases TTS and VTL. Only for the declining demand scenario, the TTS is lower when adding
the control strategies of both PRAMs. The PRAM control strategy solely focusing on travel time
outperforms the PRAM control strategy that focuses on travel time and a uniform distribution
the vehicles over different parking areas during the inclining demand scenario.

A reason that the performance of the control strategies of the PRAM does not result in an im-
provement on the traffic network is presented in Table 4.12. The predicted travel time of all
travel routes that are used in the control strategies differs from the actual travel time of all travel
routes. Because the travel time prediction is based on the average vehicle speed prediction,
this concludes that the error of the average vehicle speed is too large to predict the travel time
reasonably.

The development of the occupancy of the parking areas are shown in Figures 4.4, B.3 and B.4,
for the two-peaks-, declining-, and inclining demand scenarios, respectively. Adding the con-
trol strategy to distribute the vehicles along different parking areas based on their occupancy
results in a more even distribution of vehicles over the parking areas. Note that when no control
on the distribution of vehicles on the parking areas is provided, the occupancy of parking area
4 remains constant. When adding a PRAM control strategy, the occupancy of parking area 4 in-
creased. Moreover, the most favourable parking area 5 is used less. This results in one parking
area not becoming overcrowded while other parking areas remain nearly empty. However, the
occupancy of all parking areas never reaches their maximum capacity. Therefore, there are no
vehicles that have to re-enter the traffic network in search of another parking area.

The number of vehicles in the traffic network over time are displayed in Figures 4.5 to 4.7. The
number of vehicles of the MPC control strategy on average is lower than the fixed-time control
strategy. However, during the first half-hour of the simulation, the fixed-time control strategy
performs better.
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Table 4.9: The result of all control strategies for the two-peaks demand scenario of case study A regarding the total
time spent, vehicle time lost, and vehicle time lost of vehicles using parking areas

Controller TTS [veh · h] TTSrel [%] VTL [h] VTLrel [%] VTLpark [h] VTLrel
park [%]

Fixed-time 845.17 0.00 348.25 0.00 109.97 0.00
MPC 735.27 −13.00 281.56 −19.15 74.30 −32.44
MPC + PRAMTT 783.77 −7.26 348.22 −0.01 90.78 −17.46
MPC + PRAMTT+Cap 771.02 −8.77 347.83 −0.12 94.66 −13.92

Table 4.10: The result of all control strategies for the declining demand scenario of case study A regarding the total
time spent, vehicle time lost, and vehicle time lost of vehicles using parking areas

Controller TTS [veh · h] TTSrel [%] VTL [h] VTLrel [%] VTLpark [h] VTLrel
park [%]

Fixed-time 927.50 0.00 398.91 0.00 125.95 0.00
MPC 820.22 −11.57 368.10 −7.72 91.49 −27.36
MPC + PRAMTT 800.83 −13.66 396.99 −0.48 106.63 −15.34
MPC + PRAMTT+Cap 777.33 −16.19 361.69 −9.33 94.00 −25.37

Table 4.11: The result of all control strategies for the inclining demand scenario of case study A regarding the total
time spent, vehicle time lost, and vehicle time lost of vehicles using parking areas

Controller TTS [veh · h] TTSrel [%] VTL [h] VTLrel [%] VTLpark [h] VTLrel
park [%]

Fixed-time 776.63 0.00 302.72 0.00 98.11 0.00
MPC 670.22 −13.70 240.90 −20.42 72.88 −25.72
MPC + PRAMTT 756.90 −2.54 336.34 11.11 96.69 −1.45
MPC + PRAMTT+Cap 763.70 −1.67 342.69 13.20 104.52 6.53

(a) MPC without parking control (b) MPC with parking travel time control
(c) MPC with parking travel time and occupancy

control

Figure 4.4: Development of the parking occupancy of all control strategies for the two-peaks demand scenario of
case study A
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Table 4.12: Error of the predicted travel times of all vehicles for all traffic demand scenarios for both control
strategies of case study A

Controller
Relative error [%] Absolute error [s]

Two-peaks Declining Inclining Two-peaks Declining Inclining

MPC + PRAMTT 28.90 28.75 27.13 51.30 59.66 48.15
MPC + PRAMTT+Cap 29.94 28.64 26.63 58.49 59.93 48.07

Figure 4.5: The total number of vehicles on the traffic network of all control strategies for the two-peaks demand
scenario of case study A

Figure 4.6: The total number of vehicles on the traffic network of all control strategies for the declining demand
scenario of case study A

Figure 4.7: The total number of vehicles on the traffic network of all control strategies for the inclining demand
scenario of case study A
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4.2.2. Conclusions

In this case study, the performance of the control strategies is compared for the morning rush
hours. During the morning rush hours, many vehicles require a parking area, offering the con-
trol strategy many options to adjust the distribution of the traffic network. The MPC control
strategy results in a reduction in TTS of 13.00%, 11.57%, and 13.70% for the two-peaks, declin-
ing, and inclining demand scenarios, respectively. Moreover, the VTL is reduced significantly
with 32.44%, 27.36%, and 25.72%, respectively. However, the proposed PRAM did not result in
an improvement of the traffic network when compared with an MPC control strategy, for the
two-peaks and inclining demand scenarios. An explanation could be that the mean relative er-
ror of the predicted travel times is on average over 25%. Nevertheless, the PRAM distributes the
vehicles to the parking areas more uniform. This potentially reduces the number of vehicles
that are re-entering the traffic network.

4.3. Case study B: Evening rush hours

In this case study, the control strategies are compared with traffic demand of the evening rush
hours. The origin-destination matrices shown in Table A.2 will be used together with the three
scenarios presented in Figure 4.3 for the traffic demand. Furthermore, the identified parameters
of the S-model and the average vehicle speed of Tables 4.2 and 4.8 are used. The control strate-
gies of the PRAM use the weights wdrive = 1 and wparking = 0 and wdrive = 1 and wparking = 0.5,
respectively.

4.3.1. Results

In Tables 4.13 to 4.15 the system performances by means of the TTS and VTL of the different
control strategies is compared. In general, using an MPC control strategy increases the TTS. This
is unexpected behaviour, as a model-based traffic signal controller should be able to outperform
a fixed-time traffic signal controller. A possible explanation is that the accuracy of the S-model is
too low. Therefore, the found sub-optimal control inputs are worse compared to the fixed-time
controller.

Only in the declining demand scenario, the MPC and PRAM control strategy reduced the TTS
and VTL. During the declining demand scenario, the PRAM control strategy that focuses on both
travel time and uniformly distributing the vehicles along different parking areas performed best.

Comparing the predicted travel time with the actual travel time of vehicles on the traffic network
in Table 4.16, the result is unexpected. With a relative error of over 40%, the prediction is worse
than in case study A. However, the results of the MPC control strategy combined with the PRAM
control strategies both outperform the MPC control strategy by means of the VTL for vehicles
interacting with the parking areas. Thus even when the MPC control strategy is not favourable
over the fixed-time control strategy, using a parking resource allocation control strategy reduces
the VTL of vehicles in need of a parking area.

The development of the occupancy of the parking areas are shown in Figures 4.8, B.5 and B.6.
Adding the control strategy to distribute the vehicles along different parking areas based on
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their occupancy provides little effect. Since the number of vehicles that require a parking area
is much smaller than the number of vehicles leaving the parking area during the evening rush
hours, there are fewer vehicles to control.

The number of vehicles in the traffic network over time are displayed in Figures 4.9 to 4.11. The
number of vehicles of all MPC control strategies performs worse than the fixed-time control
strategy. In the first half hour of the two-peaks and declining demand, the combined MPC and
travel time and parking distribution focused PRAM performs better.

Table 4.13: The result of all control strategies for the two-peaks demand scenario of case study B regarding the total
time spent, vehicle time lost, and vehicle time lost of vehicles using parking areas

Controller TTS [veh · h] TTSrel [%] VTL [h] VTLrel [%] VTLpark [h] VTLrel
park [%]

Fixed-time 782.17 0.00 290.61 0.00 55.72 0.00
MPC 798.63 2.11 297.56 2.39 46.23 −17.03
MPC + PRAMTT 829.05 5.99 374.58 28.89 16.51 −70.37
MPC + PRAMTT+Cap 829.20 6.01 369.68 27.21 15.94 −71.39

Table 4.14: The result of all control strategies for the declining demand scenario of case study A regarding the total
time spent, vehicle time lost, and vehicle time lost of vehicles using parking areas

Controller TTS [veh · h] TTSrel [%] VTL [h] VTLrel [%] VTLpark [h] VTLrel
park [%]

Fixed-time 822.28 0.00 377.71 0.00 64.65 0.00
MPC 920.63 11.96 461.04 22.06 40.05 −38.05
MPC + PRAMTT 772.92 −6.00 369.73 −2.11 18.70 −71.07
MPC + PRAMTT+Cap 705.12 −14.25 310.73 −17.73 16.23 −74.89

Table 4.15: The result of all control strategies for the inclining demand scenario of case study A regarding the total
time spent, vehicle time lost, and vehicle time lost of vehicles using parking areas

Controller TTS [veh · h] TTSrel [%] VTL [h] VTLrel [%] VTLpark [h] VTLrel
park [%]

Fixed-time 826.85 0.00 269.20 0.00 51.13 0.00
MPC 905.15 9.47 335.06 24.47 44.30 −13.36
MPC + PRAMTT 908.65 9.89 348.71 29.53 17.83 −65.13
MPC + PRAMTT+Cap 945.45 14.34 423.87 57.46 23.57 −53.89
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(a) MPC without parking control (b) MPC with parking travel time control
(c) MPC with parking travel time and occupancy

control

Figure 4.8: Development of the parking occupancy of all control strategies for the two-peaks demand scenario of
case study B

Table 4.16: Error of the predicted travel times of all vehicles for all traffic demand scenarios for both control
strategies of case study B

Controller
Relative error [%] Absolute error [s]

Two-peaks Declining Inclining Two-peaks Declining Inclining

MPC + PRAMTT 44.80 47.07 40.83 99.62 128.37 95.38
MPC + PRAMTT+Cap 47.44 46.46 48.83 101.76 119.80 105.27

Figure 4.9: The total number of vehicles on the traffic network of all control strategies for the two-peaks demand
scenario of case study A

Figure 4.10: The total number of vehicles on the traffic network of all control strategies for the declining demand
scenario of case study B
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Figure 4.11: The total number of vehicles on the traffic network of all control strategies for the inclining demand
scenario of case study B

4.3.2. Conclusions

In this case study, the performance of the control strategies is compared for the evening rush
hours. The MPC control strategy results in an increase in TTS of 2.11%, 11.96%, and 9.47% for the
two-peaks, declining, and inclining demand scenarios, respectively. However, for the declining
demand scenario, implementing a combined MPC and PRAM control strategy with the focus
of travel time and a uniform distribution of vehicles along different parking areas resulted in a
decrease of the TTS of 14.25%, VTL of 17.73%, and VTL for vehicles interacting with a parking
area of 74.89%. Moreover, the VTL of the control strategies with the PRAM is reduced for vehicles
interacting with the parking area, when compared to the MPC control strategy for all demand
scenarios. Even though the predicted travel time of travel routes has an accuracy of over 40%
over the actual travel times, there is a decrease in VTL.

4.4. Analysis of results

In both case studies A and B (i.e. the simulations of the morning and evening rush hours, re-
spectively), the result for the declining demand scenario is promising. The combined MPC and
PRAM control strategy with the focus on both travel time and a uniform distribution of vehicles
along the parking areas performs best. Moreover, the PRAM control strategy that solely focuses
on travel time outperforms the MPC control strategy without PRAM. For the two-peaks and in-
clining demand scenarios, the MPC control strategy outperforms all other control strategies in
case study A. Consequently, implementing a PRAM control strategy leads to an increase in TTS
and VTL. In case study B, all control strategies perform worse than the fixed-time control strat-
egy, for the two-peaks and inclining demand scenarios. Moreover, both PRAM control strategies
have a negative effect on the TTS and the VTL. Applying a PRAM control strategy in case study
B reduces the VTL of vehicles that are searching for a parking area. Note that in case study B,
the number of vehicles searching for a parking area is lower than in case study A, as shown in
Figures B.1 and B.2. Applying the PRAM with the focus of both travel time and a uniform dis-
tribution of vehicles on the parking areas results in a more uniformly distribution of vehicles
towards the parking areas, shown in Figures 4.4, B.3 and B.4.

Based on the results of this research it is interesting to consider an MPC control strategy with
PRAM, with the focus on both travel time and a uniform distribution of vehicles towards the
parking area. The parking areas are then more uniformly filled with vehicles. This ensures that
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vehicles will not re-enter the traffic network in search of a vacant parking spot. The user expe-
rience of vehicles using the PRAM is increased. Moreover, if the vehicle demand matches the
declining demand scenario, the TTS and VTL are reduced. A lower TTS and VTL implies that
the traffic flow on the traffic network is higher, consequently reducing traffic congestion. The
vehicles on the traffic network, local residents, and the MOTN all benefit from a reduction of
traffic congestion.

However, the results of the two-peaks and inclining demand scenarios with the MPC and PRAM
control strategies are not an improvement on the traffic network. The main reason is the travel
time prediction. The relation assumed throughout this thesis is linear. However, the traffic dy-
namics behave in a highly nonlinear fashion [26]. For example, the traffic network that is used
throughout the case studies has links arriving at an intersection that expands from 2 lanes to 5
lanes. If the traffic network is saturated, the queue of one link can block exits for other vehicles.
An example is presented in Figure 4.12. A large queue of vehicles blocks vehicles for the right
exit. Especially if the queue lengths of a saturated link are different across the exits, one exit can
be blocked by the queue length of another exit. With a relatively low queue length, the average
vehicle speed can be low, due to this blocking behaviour. Hence, the relation between the traffic
states of the S-model and the average vehicle speed on a link that is assumed is simplified too
much. The mean relative error of the travel time prediction and the actual travel time is over
25% and 40% for both case studies, respectively.

Figure 4.12: An example where the long queue of one exit physically blocks another exit

4.5. Conclusions

In this chapter, the control strategies of MPC and MPC combined with the PRAMs are com-
pared. The performance of these control strategies are compared on the TTS, the VTL, and their
distribution of vehicles to the parking areas, by performing two case studies.

For both cases, parameters are identified for the traffic prediction model and the PRAM. The
mean relative error of the predicted 8 step-ahead traffic states of the S-model is around 10%,
which is considered reasonable. The mean relative error of the predicted average vehicle speed
used in the PRAM is over 18%, which may lead to problems in predicting the travel time of travel
routes. In case study A, the MPC outperforms all other control strategies, for the two-peaks
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and inclining demand scenarios. In case study B, all control strategies perform worse than the
fixed-time control strategy, for the two-peaks and inclining demand scenarios. For the declin-
ing demand scenario, the combined MPC and PRAM control strategy focusing on travel time
and a uniform distribution of vehicles towards the parking areas performs best in both case
studies. This control strategy reduces the TTS and the VTL of vehicles on the traffic network
and uniformly distributes the vehicles towards the parking areas. The result is promising be-
cause it consequently reduces traffic congestion and avoids re-entering of vehicles on the traffic
network. Unfortunately, the MPC and PRAM control strategies do not perform well in other de-
mand scenarios. One explanation is that the mean absolute error of the predicted travel time of
travel routes is over 48 [s] and 95 [s] in case studies A and B, respectively. Despite the large er-
ror in predicting the travel time, the MPC and PRAM control strategies in the declining demand
scenario perform well. If the error of the predicted travel time can be reduced, traffic congestion
for other demand scenarios can be reduced as well with this control strategy.





5
Conclusions and discussion

In this thesis, a combined Model Predictive Control (MPC) strategy with Parking Resource Al-
location Model (PRAM) is proposed to improve traffic flow in urban areas with destinations for
leisure. An extensive case study is done on an urban traffic network during rush hours with
multiple parking areas that attract many vehicles. Three different control strategies are com-
pared during the morning rush hours and the evening rush hours. In this chapter the research
question is answered, final conclusions are drawn, and recommendations for future research
are given.

5.1. Conclusions

This research focuses on the combination of the PRAM and model predictive traffic signal con-
trol strategy in urban traffic networks with parking areas. The research question of this thesis is
defined as:

To what extent can model-based traffic signal control combined with a smart parking
solution based on resource allocation further improve traffic flow in a busy urban traffic

network with large parking areas?

The case studies show promising results. The combined MPC control strategy with the travel
time and vehicle distribution focused PRAM outperforms all other control strategies by means
of the Total Time Spent (TTS) and Vehicle Time Loss (VTL), for the declining demand scenario.
A reduction in TTS and VTL generally means an improvement in traffic flow. Moreover, the
distribution of vehicles towards the parking areas is more uniformly when applying the PRAM.
This ensures that vehicles will not arrive at a full parking area, while other parking areas remain
near empty, reducing the re-entering of vehicles on the traffic network. However, the other
demand scenarios are less favourable. The MPC control strategy without a PRAM performs best
for these demand scenarios in case study A, while the fixed-time control strategy outperforms
all other control strategies in case study B. Adding a PRAM to an MPC control strategy results in
an increase in TTS and VTL for both case studies.

43
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The main cause that may have affected the undesired outcome is travel time prediction. The
mean absolute error of the predicted travel time of travel routes is over 48 and 95 seconds in case
studies A and B, respectively. This can affect the choice of travel routes for vehicles searching
for a parking area. One travel route is perceived as the shortest travel time, while in reality,
another travel route has a shorter travel time. Throughout this thesis, the travel time prediction
of travel routes is based on a linear relation between the traffic states of the S-model and the
average vehicle speed of links, and a linear relation between the average vehicle speed of links
and the travel time. A linear relation does not capture the nonlinear traffic behaviours such
as blocking (i.e. the physical blocking of an exit due to a large queue length of another exit,
explained in Section 4.4). A nonlinear relation could be assumed to improve the travel time
prediction. Other information of the S-model (e.g. the time delay or queue length per exit) may
improve the accuracy of the travel time prediction. Therefore, it is recommended for future
research to compare the performance of more complex relations between the traffic states and
the travel time of travel routes.

Implications for practice

The combined MPC control strategy with PRAM cannot be employed directly on the traffic net-
work of the Mall Of The Netherlands (MOTN). Instead, future research on the performance of
the MPC control strategy with PRAM is needed on the traffic network of the MOTN. The traffic
demand used in the case studies is based on real-life traffic demands. However, fictive parking
demand is used. The number of vehicles arriving and leaving the parking areas is uniform. In
real life, the parking demand may change over time. To comprehend the real-time performance
of the traffic network with a combined MPC control strategy and PRAM, a real-life parking de-
mand study has to be performed. Additionally, the traffic demand scenarios based on the traffic
network of the MOTN are simplified. An extensive traffic demand research may provide the
combined MPC and PRAM with more realistic traffic demands. Furthermore, there is a signifi-
cant difference between the number of vehicles using the parking areas during the morning and
evening rush hours. More vehicles are searching for vacant parking spots during the morning
rush hours. Roughly 30% of vehicles on the traffic network is heading towards the parking areas
during the morning rush hours, while roughly 12% of vehicles on the traffic network is head-
ing towards the parking areas during the evening rush hours, based on Figures 4.2, B.1 and B.2.
When more vehicles on the traffic network use the PRAM, the options to uniformly distribute
vehicles over the traffic network increase. Since the combined MPC and PRAM outperforms
the fixed-time control strategy in case study A but not in case study B, it is recommended to
focus mainly on the morning rush hours. Therefore, the main recommendation to the MOTN
is to compare the combined MPC and PRAM with real-life traffic and parking demands for the
morning rush hours.

The same recommendations hold for other urban areas. For urban areas with large time-based
destinations of leisure, a combined MPC and PRAM can be promising. Note that throughout this
thesis, the rush hours of both the traffic demand and the parking demand overlap. Examples of
time-based destinations of leisure are concert halls or soccer stadiums. When the destinations
of leisure are held (e.g. a concert, or a soccer match) during the morning or evening rush hours,
it could be beneficial for the performance of the traffic network to implement a combined MPC
and PRAM. A combined MPC and PRAM may not be necessary for the urban area when the
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destinations of leisure are not held during the morning or evening rush hours. Solely imple-
menting a PRAM to more uniformly distribute vehicles to the parking areas may be enough for
these urban areas to improve the traffic flow, and better distribute vehicles towards the parking
areas.

In conclusion, the main recommendation is to improve the accuracy of the travel time predic-
tions. The performance of more complex relations between the traffic states of the traffic predic-
tion model and the travel time of travel routes have to be compared. Moreover, future research
concerning real-life traffic and parking demands during the morning rush hours is needed for
the traffic network of the MOTN. The combined MPC and PRAM during the morning rush hours
can then be implemented with real-life traffic situations. For other urban areas with time-based
destinations of leisure, it is important to analyse the rush hours of the traffic on the traffic net-
work and the rush hours of vehicles toward the parking areas. When the rush hours of traffic
and the parking areas coincide, the performance of the combined MPC and PRAM with real-life
traffic and parking situations can be analysed and may benefit the performance of the traffic
network.

5.2. Future work

There are multiple suggestions for future work on the topics of this thesis:

Improvements to the framework

The main recommendations would be to improve the framework of MPC with the PRAM. Some
improvements are:

• Alternative relation of travel times: The travel time prediction of this thesis is based on
a linear relation of the traffic states of the S-model. However, there exist more complex
relations that may improve the accuracy of predicting the travel time of travel routes.

An option to consider is to include other variables of the S-model such as the the flow rates
αl

u,d , αe
u,d , and αa

u,d of link (u,d). The time delay δu,d of link (u,d) could also be used.
However, this variable is difficult to validate as there are no measurements available.

Another option is to consider the relation between the traffic states and the average vehi-
cle speed as a linear time-invariant system. A state-space model from input and output
measurements can be identified using subspace identification methods [41, Chapter 9].

• Accurate parking demand: If an analysis of the historical demand of the parking areas
during rush hours could be done, a better match can be made in real-life.

• Adding a blocking parameter: Throughout this thesis, blocking behaviour occurred. Ve-
hicles are physically being blocked by another large queue and are unable to exit the link,
even while the queue of its exit is low. The traffic prediction model perceives the queue
to be small enough that all vehicles leave the intersection. However, this is not possible in
real life. If a blocking parameter is added, results could improve. This blocking parameter
could be an integer that is 1 when a queue qu,d ,o(k) at time step k becomes larger than a
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said threshold:

Blockingu,d ,o(k) =
{

1, if maxi∈Ou,d ,i 6=o qu,d ,i > Threshold,

0, otherwise.
(5.1)

The blocking parameter in turn can restrict the leaving flow rate αu,d ,o(k) of the other
exits.

• Include re-entering of vehicles on the traffic network: It can be assumed that unneces-
sary use of the traffic network results in a lower traffic flow. However, the effect that the
re-entering of vehicles on the traffic network has on traffic flow is unknown, because it is
not implemented in the simulation. If this behaviour is implemented, an extensive study
on the effect that the PRAM will have on reducing the re-entering of vehicles can be done.
Moreover, the effect that the re-entering of vehicles on the traffic network will have on
traffic flow can be studied.

• Consider another traffic prediction model: Instead of using the S-model as the traffic
prediction model, different traffic prediction models could be considered. For instance,
the BLX-model has a lower sampling time [23, 39]. With a lower sampling time, more traf-
fic dynamics could be captured. Moreover, a lower sampling time could take green waves
into account. Especially in busy urban areas where the distance between intersections is
small, green waves could provide an improvement. Moreover, if the BLX model also in-
cludes the blocking of vehicles in their traffic dynamics, complex traffic networks could
be analysed more accurately.

• Study the effect on partial use of PRAM: Throughout this thesis, the assumption is made
that all vehicles participate in the resource allocation model. However, many vehicles do
not always participate. A study on the effect of a PRAM when only a part of the vehicles
uses that model is interesting. It can be interesting to know how many vehicles have to
participate for a PRAM to be effective.

A parking resource allocation model to allocate parking spots

Throughout this thesis, a parking area is considered to have multiple parking spots. If vehicles
arrive at a parking area, they automatically receive a parking spot. The traffic dynamics within
a parking area is not considered. Moreover, only a parking area is provided. It is interesting to
implement traffic routes inside a parking area. Especially for busy parking areas, providing an
optimal traffic route may reduce problems inside the parking area.

Multi-modal traffic networks

When a multi-modal traffic network is considered, the alternative options can be compared.
Moreover, a study can be performed to provide the parking areas with measures to reduce the
use of vehicles on the traffic network and increase the use of public transport.
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Combined MPC and PRAM in freight transport

For freight transport, it can be interesting to use a combined MPC control strategy and PRAM.
Alternative travel routes for trucks may be provided to deliver packages or supplies.

Combined MPC and resource allocation in railway management

The global railway management problems can be solved using an MPC approach. The travel
time of the travel routes can be predicted, and alternative travel routes can be provided to indi-
vidual users through a resource allocation model. Consequently, the delay of individual users
may affect the decision variables of the MPC control strategy.





A
Supportive tables

Table A.1: Traffic demand of case A: Morning rush hours

(a) Traffic demand of first hour of simulation in [veh/h]

OD 1 2 3 6 7 10 11 12 P1 P2 P3 P4 P5

1 0 41 7 45 125 79 651 139 268 0 0 0 0
2 85 0 44 0 7 0 7 0 0 0 32 0 0
3 156 27 0 27 17 58 107 19 101 0 0 0 0
6 135 0 83 0 7 0 81 0 0 0 74 0 0
7 9 7 7 0 0 7 344 0 0 0 0 0 90

10 273 0 179 0 7 0 156 7 0 0 0 0 152
11 359 27 65 474 271 408 0 100 0 0 0 0 421
12 107 0 73 0 7 57 7 0 0 0 0 0 62
P1 278 0 112 0 0 0 0 0 0 0 0 0 0
P2 0 0 0 0 0 0 0 0 0 0 0 0 0
P3 0 23 0 135 0 0 0 0 0 0 0 0 0
P4 0 0 0 0 0 0 0 0 0 0 0 0 0
P5 0 0 0 0 104 151 333 65 0 0 0 0 0

(b) Traffic demand of second hour of simulation in [veh/h]

OD 1 2 3 6 7 10 11 12 P1 P2 P3 P4 P5

1 0 40 7 45 124 79 650 138 460 224 24 7 0
2 85 0 44 0 0 0 0 0 0 0 86 0 0
3 156 26 0 27 16 58 106 18 176 83 9 7 0
6 134 0 82 0 0 0 80 0 0 0 196 7 0
7 8 0 7 0 0 7 344 0 43 67 10 7 120

10 273 0 179 0 7 0 155 7 0 186 10 7 205
11 359 27 64 473 270 408 0 100 230 269 28 7 591
12 106 0 73 0 7 57 7 0 7 81 7 7 77
P1 185 0 74 0 0 0 0 0 0 0 0 0 0
P2 0 0 0 0 0 0 0 0 0 0 0 0 0
P3 0 16 0 90 0 0 0 0 0 0 0 0 0
P4 0 0 0 0 0 0 0 0 0 0 0 0 0
P5 0 0 0 0 70 100 222 43 0 0 0 0 0

Table A.2: Traffic demand of case B: Evening rush hours

(a) Traffic demand of first hour of simulation in [veh/h]

OD 1 2 3 6 7 10 11 12 P1 P2 P3 P4 P5

1 0 85 156 135 9 273 359 107 278 0 0 0 0
2 41 0 27 0 7 0 27 0 0 0 19 7 0
3 7 44 0 83 7 179 65 73 112 0 0 0 0
6 45 0 27 0 0 0 474 0 0 0 117 18 0
7 125 7 17 7 0 7 271 7 0 0 0 0 104

10 79 0 58 0 7 0 408 57 0 0 0 0 151
11 651 7 107 81 344 156 0 7 0 0 0 0 333
12 139 0 19 0 0 7 100 0 0 0 0 0 65
P1 268 0 101 0 0 0 0 0 0 0 0 0 0
P2 0 0 0 0 0 0 0 0 0 0 0 0 0
P3 0 32 0 74 0 0 0 0 0 0 0 0 0
P4 0 0 0 0 0 0 0 0 0 0 0 0 0
P5 0 0 0 0 90 152 421 62 0 0 0 0 0

(b) Traffic demand of second hour of simulation in [veh/h]

OD 1 2 3 6 7 10 11 12 P1 P2 P3 P4 P5

1 0 85 156 134 8 273 359 106 185 0 0 0 0
2 40 0 26 0 0 0 27 0 0 0 16 0 0
3 7 44 0 82 7 179 64 73 74 0 0 0 0
6 45 0 27 0 0 0 473 0 0 0 90 0 0
7 124 0 16 0 0 7 270 7 0 0 0 0 70

10 79 0 58 0 7 0 408 57 0 0 0 0 100
11 650 0 106 80 344 155 0 7 0 0 0 0 222
12 138 0 18 0 0 7 100 0 0 0 0 0 43
P1 713 0 270 0 0 0 0 0 0 0 0 0 0
P2 0 0 0 0 0 0 0 0 0 0 0 0 0
P3 0 86 0 197 0 0 0 0 0 0 0 0 0
P4 0 0 0 0 0 0 0 0 0 0 0 0 0
P5 0 0 0 0 241 404 1124 165 0 0 0 0 0
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Table A.3: Phase time of intersections during morning rush hours

Phase time Phase 1 Phase 2 Phase 3 Phase 4

Intersection 1 6.8 8.5 6.4 26.3
Intersection 2 23.5 9.8 9.8 4.9
Intersection 3 9.4 10.3 7.5 20.8
Intersection 4 26.2 9.7 7.0 5.1

Table A.4: Phase time of intersections during evening rush hours

Phase time Phase 1 Phase 2 Phase 3 Phase 4

Intersection 1 7.9 9.2 9.7 21.2
Intersection 2 26.7 6.4 11.2 3.7
Intersection 3 3.0 8.9 20.6 15.5
Intersection 4 25.4 10.2 5.9 6.5



B
Supportive figures

(a) Arriving flow rate of parking areas (b) Departing flow rate of parking areas

Figure B.1: Arriving and departing flow rate of the parking areas during the morning rush hours

(a) Arriving flow rate of parking areas (b) Departing flow rate of parking areas

Figure B.2: Arriving and departing flow rate of the parking areas during the evening rush hours
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(a) Model Predictive Control (MPC) without parking
control

(b) MPC with parking travel time control
(c) MPC with parking travel time and occupancy

control

Figure B.3: Development of the parking occupancy in scenario 3 during the morning rush hours for each control
strategy

(a) MPC without parking control (b) MPC with parking travel time control
(c) MPC with parking travel time and occupancy

control

Figure B.4: Development of the parking occupancy in scenario 2 during the morning rush hours for each control
strategy

(a) MPC without parking control (b) MPC with parking travel time control
(c) MPC with parking travel time and occupancy

control

Figure B.5: Development of the parking occupancy in scenario 3 during the evening rush hours for each control
strategy

(a) MPC without parking control (b) MPC with parking travel time control
(c) MPC with parking travel time and occupancy

control

Figure B.6: Development of the parking occupancy in scenario 2 during the evening rush hours for each control
strategy
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List of Symbols

Symbols used in S-model

c cycle time of an intersection
J set of nodes
L set of links
K set of intersections

l veh average length of a vehicle
Iu,d set of upstream cells of link (u,d)

Ou,d set of downstream cells of link (u,d)
nu,d (k) total number of vehicles on link (u,d) at time step k
qu,d (k) the queue length of link (u,d) at time step k

qu,d ,o(k) the queue length of link (u,d) at time step k heading to node o
k simulation time step

αe
u,d (k) entering flow rate on link (u,d) during the time interval [kc, (k +1)c)

αl
u,d (k) leaving flow rate on link (u,d) during the time interval [kc, (k +1)c)

αa
u,d (k) arriving flow rate at the tail of the queue on link (u,d) during the time interval

[kc, (k +1)c)
αl

u,d ,o(k) leaving flow rate on link (u,d) heading to node o during the time interval [kc, (k +1)c)

αa
u,d ,o(k) arriving flow rate at the tail of the queue on link (u,d) heading to node o during the

time interval [kc, (k +1)c)
µu,d ,o saturation rate on link (u,d) heading to node o

gu,d ,o(k) green time on link (u,d) heading to node o during the time interval [kc, (k +1)c)
N lane

u,d ,o number of lanes on link (u,d) heading to node o

N lane
u,d number of lanes on link (u,d)

βu,d ,o(k) turning fraction on link (u,d) heading to node o during the time interval [kc, (k +1)c)
Cu,d total capacity of link (u,d)

δu,d (k) time delay on link (u,d) during the time interval [kc, (k +1)c)
τu,d (k) number of complete cycles of time delay on link (u,d) during the time interval

[kc, (k +1)c)
γu,d (k) remaining time delay on link (u,d) during the time interval [kc, (k +1)c)

adec
u,d average deceleration of vehicles on link (u,d)

v free
u,d free flow speed on link (u,d)

v low
u,d idling speed on link (u,d)

l lane
u,d length of link (u,d)

X̄u,d distance needed for a vehicle to decelerate from the free flow speed to the idling speed
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δxu,d (k) distance between the beginning of link (u,d) and the tail of the queue on link (u,d)
qave

u,d average length of the queue on link (u,d) during the time interval [kc, (k +1)c)

αdem
s,d (k) demand flow on link (s,d) with source node s during the time interval [kc, (k +1)c)

qsource
s,d the source queue on link (s,d) with source node s during the time interval [kc, (k +1)c)

vave
u,d (k) average vehicle speed on link (u,d) at time step k

γ weights of the state variables
α̂l

u,d ,o(k) change in distribution of vehicles on link (u,d) heading to node o during the time
interval [kc, (k +1)c)

α̂
l,Opt
u,d ,o(k) number of vehicles leaving link (u,d) heading to node o during the time interval

[kc, (k +1)c) travelling according to their optimal travel route

α̂
l,Orig
u,d ,o (k) number of vehicles leaving link (u,d) heading to node o during the time interval

[kc, (k +1)c) travelling according to their original travel route

Symbols used in Model Predictive Control

kc control time step
Nc control horizon
Np prediction horizon

xu,d vector with the states of the S-model
gd (kc ) vector with the green times of intersection d at control time step kc

JTTS(kc ) part of the objective function that depends on the total time spent at control time step
kc

JFinal(kc ) part of the objective function that includes the final cost at control time step kc

JD(kc ) part of the objective function that calculates the cost of switching times at control time
step kc

JQ(kc ) part of the objective function that calculates the longest queue of intersections at con-
trol time step kc

Φ(gd (kc )) equality constraint on the phase times at intersection d and control time step kc

w weights of the different objectives in the cost function
TTSrel relative change in the total time spent of the controller
VTLrel relative change in the vehicle time lost of the controller
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Symbols used in Parking Resource Allocation Model

R set of travel routes
U set of users
P set of parking areas
tu starting time of user u

vave
u,d (k) average vehicle speed on link (u,d) at time step k

Tr (k) predicted travel time of route r at time step k
Sp (k) the available parking spots of parking area p at time step k

Cp total capacity of parking area p
αa

p (k) number of vehicles arriving at parking area p during the time interval [kc, (k +1)c)
αl

p (k) number of vehicles leaving parking area p during the time interval [kc, (k +1)c)
αr

p (k) number of vehicles reserving parking area p during the time interval [kc, (k +1)c)
xu,r (k) the choice of user u to choose travel route r at timestep k
Jdrive(k) part of the objective function that includes the travel time at time step k

Jparking(k) part of the objective function that ensures an even distribution of vehicles towards the
parking areas at time step k

w weights of the different objectives in the cost function
Au,r penalty for user u to take travel route r by means of the available parking space of the

parking area
xu,r (k) choice of user u to use travel route r at time step k
xswitch

u choice to switch user u from the prior allocated parking area to the newly allocated
parking area

T switch
u predicted travel time of user u that may choose to switch to another parking area





List of Acronyms

MOTN Mall Of The Netherlands
MPC Model Predictive Control
PGIS Parking Guidance Information System
PRAM Parking Resource Allocation Model
SQP Sequential Quadratic Programming
TSC Traffic Signal Control
TTS Total Time Spent
VTL Vehicle Time Loss
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