Statically Balanced Compliant Mechanisms by Tuned Post-Buckling Behaviour

August 26, 2014
Gerrit Uitslag

Supervisor:
Prof. Dr. ir. A. Van Keulen

Reviewers:
Dr. ir. J.F.L. Goosen
M.E. Aguirre, PhD

Faculty of Mechanical, Maritime and Materials Engineering
Department of Precision and Microsystems Engineering
Section Structural Optimization and Mechanics

Outline

- Compliant Mechanism
- Statically Balancing
- Buckling
- Case study
- Conclusions
Compliant Mechanism

- Single piece structure
- Motion by deformation

- Advantages
 - No friction
 - No hysteresis
 - No backlash
 - Less pieces
- Disadvantages
 - Energy storage
 - Limited elastic motions

- Application
 - precision mechanisms

Statically Balancing

- For every position in equilibrium
- No external force
- Actuation force only for acceleration

Conditions for Statically Balancing

- Constant speed
- Constant kinetic energy
- No actuation force

- Constant potential energy
 - Strain energy, gravity energy, work by other conservative forces
 - Interchange due to motion

- Equilibrium of all forces
 - Continuous equilibrium

- No stiffness
 - Start at equilibrium state
 - No change of force equilibrium
Buckling

- Non-linear behaviour of a structure
- Force as function of deformation
- Geometric non-linearities
 - Shaping
 - Reduced stiffness
- Spring
 - Linear: Shortening
 - Non-linear: Buckling by bending

Buckling of Simple Rod Model

- External force \(\lambda \)
- Equilibrium for position \(\xi \)

 - Pre-buckling
 - axial direction
 - Equilibrium state: \(\xi = 0 \)
 - Post-buckling
 - Rotational direction
 - Deviation \(\delta \xi \) around \(\xi = 0 \)

- Total stiffness
 - Physical stiffness
 - Geometric stiffness

Zero Stiffness: Equilibrium Path

\[c_{\lambda} \delta \xi = (\xi - A \cos \xi) \delta \xi = 0 \]

- Zero total stiffness
- No change of equilibrium due to \(\delta \xi \)
- Geometrical stiffness increases for increasing \(\lambda \)
- Equilibrium path
 - External force for each position
Stability

- Equilibrium path
 - External load for each equilibrium state
- Simple rod
 - Mass exerts constant external load
 - Torsional spring restoring effort

Stable Neutrally stable Unstable

Buckling Applied for Statically Balancing

- Statically balancing:
 - Equilibrium state at a zero stiffness trajectory
- Buckling:
 - Initial pre-buckling equilibrium state
 - External loads that create zero stiffness
- Compliant mechanism
 - Varying external buckling load according to its equilibrium path
 - Statically balanced
- Couple compliant mechanism
 - Total behaviour becomes neutrally stable

Interface

- Force equilibrium at interface
 - Starts with external buckling load $u(ξ)$
 - Adds up equilibrium behaviour of compliant elements
- Requirement
 - Interface displacement
 - Displacement of coupling point $u(ξ)$
Statically Balanced Simple Rod Model

Energy Curves Simple Rod Model

Imperfections

- Assumption: perfectly aligned forces
- Imperfections due to
 - Manufacturing
 - Material irregularities
 - Temperature
- Consequences
 - Perfect equilibrium path is never reached
 - Hard to anticipate since imperfections unpredictable
Conclusions and Recommendations

- A buckling analysis results in an equilibrium path which predicts how to statically balance a mechanism.
- Elements can be combined in the coupling point based on their equilibrium paths, which should be in equilibrium.
- Accurate pre-stressing is required, but the required pre-stressing is difficult to predict due to imperfections.
- Tuning possibilities of the pre-stress elements can help to anticipate on reproducible imperfections.

Questions?

Statically Balanced Compliant Mechanisms by Tuned Post-Buckling Behaviour
Statically Balanced Compliant Mechanisms by Tuned Post-Buckling Behaviour
Conditions for Static Balancing

- Mechanism
 - Isolated system
 - Conservative forces
 - Statically balancing
 - Constant speed
 - No actuation force

- Mechanical energy
 \[E_{mech} = P + K = \text{constant} \]
 - Law of conservation of energy
 - Constant speed
 \[K = \frac{1}{2} m v^2 = \text{constant} \]
 - Potential energy: Total strain energy + external potential energy
 \[P = U(u) + E(u) = \text{constant} \]

Buckling of Simple Rod

- Potential energy
 \[\phi = \frac{1}{2} c \xi^2 + A(L + L \cos \xi) = \text{constant} \]

- Moments
 \[\frac{\partial^2 \phi}{\partial \xi^2} = \Sigma M = c \xi - AL \sin \xi = 0 \]

- Stiffness
 \[\frac{\partial^2 \phi}{\partial \xi^2} = c = - AL \cos \xi = 0 \]

Unique Load per Position

- Unstable
 - Can be statically balanced
 - Requirement: unique load per position

- Snap-buckling
 - Jump to lower branch segment
 - No unique load per position
Displacement field for buckling

- 1 DoF mechanism
- ξ measure for deviation from $\xi = 0$
- More complex displacement field for compliant mechanism
- x_1 and x_2
- Mode shapes --- $FXME$
- 1st mode shape u_1 is initial displacement
- 2nd independent mode shape u_2
- $w(\xi) = u_0 + u_1 \xi + u_2 \xi^2 + ...$

Simply Supported Euler Beam