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ABSTRACT Electromagnetic Relays (Electromagnetic Relay (EMR)s) are omnipresent in electrical sys-
tems, ranging from mass-produced consumer products to highly specialised, safety-critical industrial sys-
tems. Our detailed literature review focused on EMR reliability highlighting the methods used to estimate the
State of Health or the RemainingUseful Life emphasises the limited analysis and understanding of expressive
EMR degradation indicators, as well as accessibility and use of EMR life cycle data sets. Prioritising these
open challenges, a deep learning pipeline is presented in a prognostic context termed Electromagnetic
Relay Useful Actuation Pipeline (EMRUA). Leveraging the attributes of causal convolution, a Temporal
Convolutional Network (TCN) based architecture integrates an arbitrary long sequence ofmultiple features to
produce a remaining useful switching actuations forecast. These features are extracted from raw, high volume
life cycle data sets, namely EMR switching data (Contact-Voltage, Contact-Current). Monte-Carlo Dropout
is utilised to estimate uncertainty during inference. The TCN hyperparameter space, as well as various
methods to select and analyse long sequences of multivariate time series data are investigated. Subsequently,
our results demonstrate improvements using the developed statistical feature-set over traditional, time-based
features, commonly found in literature. EMRUA achieves an average forecasting mean absolute percentage
error of ±12 % over the course of the entire EMR life.

INDEX TERMS Electromagnetic relay, prognostics, prognostics and health management, predictive mainte-
nance, remaining useful life, artificial intelligence, deep learning, temporal convolutional networks, Monte-
Carlo dropout.

ABBREVIATIONS
AT Arcing time.
BT Bounce time.
CAE Convolutional auto encoder.
CC Coil current.
CI Contact current.
CNN Convolutional neural network.
CR Contact resistance.
CT Closing time.
CV Contact voltage.
DCR Dynamic contact resistance.
DI Degradation indicator.
EI Exponential indexing.
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approving it for publication was Sajid Ali .

EMR Electromagnetic relay.
EMRUA Electromagnetic relay useful actuation

pipeline.
EOL End of life.
FC Fully connected layer.
GI Growing-sequence indexing.
LI Linear indexing.
LSTM Long-short-term-memory network.
MAE Mean absolute error.
MAPE Mean absolute percentage error.
MCD Monte-carlo dropout.
MVTD Multivariate time series data.
NN Neural network.
OT Over-travel time.
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PdM Predictive maintenance.
PT Pick-up time.
ReLU Rectified linear unit.
RMSE Root mean squared error.
RNN Recurrent neural network.
RT Release time.
RUA Remaining useful actuations.
RUL Remaining useful life.
SOH State of health.
ST Super-path time.
TCN Temporal convolutional network.

I. INTRODUCTION
The EMR is a versatile component found in many electrical
systems e.g., consumer products or safety critical applications
in the nuclear- or aviation industry. Over several decades,
EMR failure modes and mechanisms in particular relating to
electrical contact degradation have been subject of extensive
studies [1], in order to improve design and material proper-
ties [2]–[4].

Automation has supported an improvement in EMR man-
ufacturing and reliability. Population based methods have
proven to be a cost efficient solution to determine the reli-
ability of bulk produced EMRs [5], [6]. In fact, based on our
analysis of the academic literature and industrial trends - to
the best of our knowledge - the predominant effort to date
aims to quantify the degradation of EMRs using classical reli-
ability theory. However, in many safety and mission critical
applications an EMR will be subjected to direct and indirect
ambient loading that is specific to the application, rather
than being in conformance to generalised operational require-
ments expected of bulk produced quantities. Therefore, these
EMRs are precision engineered for their very specific appli-
cation, cf. [7], [8]. Such applications might not align with the
classical reliability methods that rely on large sample sizes
and run-to-failure data [9]. Furthermore, the use of predefined
life cycle estimates for maintenance management schemes
often results in early replacement of operationally viable
EMRs [10]. Classical reliability based testing methods have
been increasingly challenged in terms of test duration by the
extended durability of the current generation of EMRs [6].
Lastly, the objective of past research centres around the def-
inition of expressive/ representative sDegradation Indicator
(DI)s and the evaluation of those using data e.g., only from
early switching actuation [11], [12]. Hence, our analysis of
the state-of-the-art of EMR reliability and Prognostics and
Health Management (PHM) related models reveals several
distinct shortcomings, namely: computational inefficient for
in-situ deployment; limited transferability as a result of poor
performance generalisation;models have been predominately
trained on constrained data sets and feature selections e.g.,
not representative life cycle data. Our research methodology
addresses these constraints e.g., monitoring strategies that can
support cost effective and application specific data acquisi-
tion and processing for accurate EMR life cycle estimation.

With respect to monitoring EMRs as part of a condition
monitoring programme which sits within operational and
maintenance expenditure, this has been traditionally cost
prohibitive in many applications. However, in line with the
digital industrialisation there is an unprecedented access to
large volumes of system and component monitoring data
e.g., Big Data (BD). BD and subsequent analytics have the
potential to improve the derivation of enhanced EMRmodels
for maintenance strategies [13]. Transitioning to industrial
applications entails barriers though [14], [15]. Among others,
uncertainty and a sensible, efficient embedding of physical,
data-driven or hybrid models into existing digital infrastruc-
ture has to be considered [16]. In this scope, enabling modern
maintenance strategies (cf. PHM as extensively reviewed in
e.g., [17]–[19]) by creating actionable insights from data
through data-driven Condition Based Maintenance (CBM)
or Predictive Maintenance (PdM), is confronted with high
volumes of Multivariate Time Series Data (MVTD). With
the advent of Artificial Intelligence (AI), research is
addressing this challenge using Machine Learning (ML)
and increasingly Deep Learning (DL) for e.g., Remain-
ing Useful Life (RUL) prediction of electronics [20]–[24].
Standalone approaches relying on Convolutional Neural
Network (CNN) architectures or in combination with
Recurrent Neural Network (RNN) elements employing
techniques such as multivariate-time-series imaging [25]
resonate with high volumes of MVTD as recent pub-
lication demonstrate [26]–[32]. In particular, approaches
utilising CNN, typically as Convolutional Auto Encoder
(CAE) for automated feature extraction whilst drawing
on the auto-regressive power from RNN-based architec-
tures e.g., Long-Short-Term-Memory Network (LSTM), are
popular combinations [33], [34]. Though, a substantial
amount of research exploits DL for RUL estimation,
these methods are limited in terms of scalability when
it comes to high data volumes; in addition very long
input sequences pose a challenge. TCN, initially pre-
sented by [35] addresses above shortcomings. TCN per-
forms dilated, causal convolution - transforming CNN to
highly efficient, auto-regressive models as evidenced
by [35]–[37]. Unlike e.g., LSTM, TCN is able to be
trained on input sequences, irrespective of the length
as the number of trainable parameters per layer only
depends on the number of input features, filters and the
kernel-size.

Due to above advantages, TCN is subject to an increasing
interest in PHM as the body of recent literature demonstrates.
TCN has been used for RUL estimation as an alternative
to RNN by [38]–[40] on the turbofan-engine degradation
NASA C-MAPPS data-set [41]. Degradation estimation of
bearings using TCN is evaluated and benchmarked on the
PRONOSTIA bearing data-set [42] presented by [43], [44].
A method based on TCN for State of Health (SOH) and
remaining number of charging cycles estimation of lithium-
ion batteries is presented by [45], evaluated on the NASA
lithium-ion battery data-set [46]. Lastly, [47] proposes a
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combination of CAE and TCN for robust feature extraction
and RUL estimation in the context of critical nuclear power
plant infrastructure, namely electric valves.

However, despite the reported improved performance of
TCN compared to e.g., CNN-LSTM, so far none of the
reviewed approaches considers uncertainty quantification.
Though, without addressing uncertainty the applicability of
any PHM method is questionable [17], [18]. Methods for
uncertainty estimation integrated in DL architectures have
been presented by e.g., [48]. A Bayesian approximation to
estimate predictive uncertainty has been proposed by [49],
referred to as Monte-Carlo Dropout (MCD), evaluated in the
context of PHM by [50], [51].

Extending our earlier work in [52], this research develops a
novel data-centric, streamlined DL prognostics approach for
EMR that reduces the need for tedious Contact Resistance
(CR) measurements, relying solely on Contact Voltage (CV)
and Contact Current (CI) waveform records of switch-on and
switch-off events - monitoring data readily available in many
industrial systems. This research’s central objective is the
estimation of the EMR-Remaining Useful Switching Actu-
ations (RUA) (i.e., the number of remaining useful switching
actuations till the EMR fails) under consideration of predic-
tive uncertainty. Therefore the EMRUA pipeline is proposed.
The hierarchical TCN-based prognostics approach aids the
development of novel data-driven maintenance schemes such
as PdMallowing component-tailoredmaintenance under con-
sideration of past and present operating conditions. To facili-
tate the development of the EMRUA, a set of EMR life cycle
experiments have been conducted. Subsequently a range of
input features is derived and its performance is extensively
evaluated.

This paper is structured as follows: Section II provides an
in-depth discussion of EMR failure modes, failure mecha-
nisms and the types of traditional DIs used to quantify the
state of EMR degradation. Section III reviews the state of
the art on research concerned with EMR reliability, SOH
and RUL for various applications settings. Subsequently,
we elaborate on the developed prognostics methodology in
Section IV. Experimental considerations and the results are
discussed in Section V. Lastly, Section VI summarises the
findings.

II. BACKGROUND
The main task of an EMR is the electrical separation of
the control- from the load-circuit [53]. An EMR typically
consists out of a magnetic coil, a travel armature, a spring
and a contact pair. Though, the EMR has been subject to
considerable design improvements over the past decades, the
core components and working principle remain essentially
unchanged, cf. Fig. 1.

Despite the availability of electrical switching devices
e.g., Metal Oxide Semiconductor Field Effect Transistor
(MOSFET)s or Solid-State-Relays without mechanical parts
exhibiting an improved reliability [7], the EMR puts a set
of distinct characteristics forward. It features an overall low

FIGURE 1. Schematic display of the function and main components of a
traditional EMR, adopted from [53].

CR - typically in the m� range reducing switching losses;
high breakdown voltage of up to 1000 V; total isolation of the
switching and control circuit [53], [54]. Latter one is not the
case for most semiconductor based switching components.
EMRs can be employed where switching is independent from
the current direction. For example, EMR are commonly the
preferred choice in safety critical applications within nuclear
power plants as they can be run in a fail-open fashion [8].
However, despite miniaturisation efforts, EMRs are large
compared to other electrical components and switching speed
is slow - in the ms range compared to MOSFET in the ns or
Solid-State-Relays < 0.2 ms range [1].

A. FAILURE MODES
Due to the electro-mechanical nature of the EMR, its life
is dependent on the mechanical as well as the electrical
life of the individual subcomponents. The mechanical life is
typically in the order of 107 actuations compared to the elec-
trical life at 106 actuations [1]. An EMR is considered failed
i.e., its End of Life (EOL) if it can no longer perform its
specified switching function. Electrical, contact related fail-
ures prevail, such as elevated CR.Making or breaking-contact
related failures are the predominant failure modes in EMR
applications [10], [55]–[57]. Though one can distinguish
failure modes by type, multiple of the failure mechanisms
interact, as the following Section demonstrates.

1) CONTACTS
Contact related failures typically occur over a long duration.
Such failures depend on the applied voltage and current, load
type, the temperature as well as the pollution of the operating
environment. The root-causes for contact failures are exces-
sive material-transfer and -loss due to electrical arc discharge
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TABLE 1. Contact related failure modes and mechanisms.

and contact bouncing [10]. A symptom of contact erosion is
reduced contact force and increased CR. Further, welding,
bridging or sticking of contacts as well as corrosion and con-
tamination - through deposition of isolating and semiconduct-
ing films, stemming from eroded or worn contact material,
carbides dissolved from organic gases - are the governing
failure mechanisms. Such mechanisms lead to making and
breaking failures, impermissible operate and release times
respectively, an increase of CR beyond an acceptable range,
and high levels of contact noise [53]. An overview of the
contact related failure modes is provided in Table 1.

a: MAKING FAILURE
The inability to make a connection whilst the CR remains
below the maximum specified CR. If the application setting
is favourable for electrical arcing, the likelihood of a making
failure due to erosion and the subsequent material transfer is
high [56]. In some instances an increasing CR can point to an
impending making failure. However, the actual failure starts
to develop when erosion has well-advanced and the Over-
Travel Time (OT) respectively the contact force have become
to small to enforce good contact making, often exhibiting an
increase in Bounce Time (BT) [1]. However, making failure
can also be caused by preceding mechanical failures, such as
a spring failure, a bent armature or coil failure.

b: BREAKING FAILURE
The inability to break a connection and interrupt the current
flow within the specified maximum opening time. If contacts

are switched under load, contact bridging due to contact weld-
ing can occur. If contacts are welded together, CR is lower
than specified minimum CR for open contacts. Mechanical
failures preventing the contact from opening can relate to
spring or armature failures.

c: OPERATE- & RELEASE-TIME FAILURE
The duration to make or break contact exceeds a maximum
specified threshold. If the Release Time (RT) increases, this
can be due to the spring degradation, reducing the contact
pull force. However, more likely are local micro-welds across
the contacts surface, causing the EMR contacts to stick. Pick-
Up Time (PT) and RT both can increase if the coil operating
voltage changes due to coil deterioration [58].

d: ELEVATED CONTACT RESISTANCE
Unacceptable high CR while contacts are closed. Manu-
facturers specify the maximum acceptable CR for closed
contacts. Such CR is typically in them� range. In general dif-
ferent interacting factors influence the CR, which can be dis-
tinguished by either having a decreasing or increasing effect.
During operation, under low-load, changes of CR are domi-
nated by mechanical effects, despite occasional increases of
CR through e.g., polymerisation or corrosion on the contact
surface. However, if the amount of carried current increases -
and the contact temperature respectively - continuous elec-
trical fatigue due to arc erosion reduces the contact force
inevitably. In such instances, film formation in combination
with corrosion becomes the dominating degradation regime.
A subsequent reduction of the effective contact area leads
to a significant increase of CR. Unsealed EMRs, operated
in high temperature environments are also liable to serious
rates of contact oxidation. Mechanical actuation i.e., contact
making and breaking, can rupture deposited films reducing
CR [59]. Effects like ion-sputtering might temporally clean
the contact surface and reduce CR. An increase in CR is often
accompanied by contact noise.

2) COIL AND MECHANICAL PARTS
a: COIL
Long-term use impacts the coil resistance. Deposition of
evaporated contact material particles on the coil wire or
combustion of the insulation material due to excessive heat
reduce the coil’s insulation resistance [60]. Further, poorly
welded coil wires might be a failure root-cause. In general,
coil failure is most likely to happen if the ambient temperature
is high causing the coil to overheat. Typical failure modes are
a shorted coil or changes in the pick-up or release voltage.
However, it should be noted, that the likelihood of these fail-
ures is very low in comparison to the failure modes directly
relating to the contacts.

b: MECHANICAL PARTS
The wear of mechanical parts e.g., the armature or spring,
causes a reduction in contact force or variations in contact
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velocity. This wear stems from material fatigue due to vibra-
tions or excessive heat e.g., from high-current arc discharges.

B. FAILURE MECHANISMS
This section elaborates failure mechanisms relevant to the
EMR contacts. Essentially, all failure mechanisms contribute
to a change in CR, ultimately leading to one of the listed
failure modes.

Though, not obvious to the eye, the nominal contact area
is not the true conductive contact area. The inherent micro-
scopic surface roughness restricts the path of the current
flow [1], [61]. The actual contact points are referred to as
a-spots. The observed increase of CR through this limited
interface compared to the resistance via the apparent contact
surface is referred to as constriction resistance and subject
to the elastic and plastic properties of the contact material.
The interested reader can refer to [53], [62] for extensive
discussion of the contact related resistance and appropriate
methods to approximate CR in different contact settings.
In general, low contact forces result in high CR. In industrial
applications CR is deemed unacceptable if the contact force
is below > 0.05N [53].

During contact switching the CR will increase if the power
increases, up until the softening voltage is reached. A temper-
ature differential can be observed between the a-spots and the
contact body. The contact material is subject to plastic defor-
mation at the conducting a-spots as Joule-Heating causes a
local temperature increase. Plastic deformation increases the
effective contact area, causing a drop in CR. If the voltage
continues to rise, the CR increases again, till the melting point
of the contact material has been reached. A rapid increase
in the effective contact area can be observed going hand in
hand with a secondary decrease in CR [53]. This effect is
sometimes referred to as self-healing of contacts [1]. Predom-
inant failure mechanisms are discussed in the remainder of
this Section.

1) DC ARC EROSION
Primarily, due to the heating of the contact material to its
boiling point, electrical arcing consequentially leads to an
electrical erosion across the contact surface, predominantly
affected by the operating mode and the type of electrical
load [1], [2], [63]–[65]. The material redistribution process
electrical contacts in Direct-Current (DC) circuits are sub-
jected to is a continuous net transfer from one contact to the
other resulting in a so-called pip and crater structure on the
surface. Whether the pip and crater are located on the cathode
or anode depends on the duration and energy of the arc, the
circuit inductance, the contact material, the switching speed
of the contacts, the cleanliness of the contact surface, and
the contact dimensions [1]. The rate of material erosion will
increase as the energy and duration of the arc increases.

Erosion during the stage of the metallic-arc and during
the gaseous-arc can be distinguished, cf. Fig. 2. During the
metallic-pseudo-arc, after the rupture of the molten metal
bridge (cf. Appendix D), the gross of current is transferred by

FIGURE 2. Schematic display of the erosion processes at cathode and
anode during the phase of electrical arcing in metallic vapour and in
ambient air.

metal ions. Hence as [66], [67] demonstrate, a material gain
at the cathode stemming from the vaporised and subsequently
ionised metal atoms can be observed. Simultaneously at the
anode electron bombardment leads to electron sputtering
disintegrating anode material. Hereinafter, the electrical arc
will transfer to an arc in ambient air as the density of the
metallic vapour decreases. The arc is now predominantly
ionising the ambient gas atoms. The impact of the ionised
gas atoms will erode material on the cathode, called gaseous
ions sputtering [68]. An increasing net gain at the anode
can be observed as the metallic atoms - separated from
the cathode contact surface through the impacting gaseous
ions - aggregate at the anode region. In general, in DC circuits
a cathode gain - material build up (pip) - can be observed
with short arcing times, as the duration of the arc operating in
ambient air is relatively short in comparison to the metallic-
arc. With increasing arcing duration, an anode pip and a
cathode crater will become more likely.

Bouncing during contact making is a common phe-
nomenon, due to the preserved kinetic energy of the clos-
ing contacts, cf. Appendix C-A. Besides its relevance to
contact welding as elaborated in Section II-B2, erosion
effects stemming from high frequent bouncing - many short
bounces - accelerate erosion through arcing and the formation
of pip and crater structures [69]. However, if bouncing is
neglectable, the bulk of contact erosion will take place during
contact breaking. Shortening the arc duration through higher
opening speeds therefore reduces arc erosion [70]. Though,
this might lead tomore bouncing and therefore erosion during
contact making respectively.

To conclude, the combined material loss and re-deposition
effects during electrical arcing of opening or closing contacts
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FIGURE 3. Schematic display of the welding process of closing contacts
subjected to arcing. (I) Contacts close; (II) due to the preserved kinetic
energy contacts bounce the first time; (III) the voltage drops to the
minimum arc voltage and an arc forms, heating up the contact material
on the anode and cathode fall region; (IV) the contacts close on the
molten metal pools; (V) as the contacts open for the second bounce,
a weld forms; (VI) if a weld establishes and cools down quickly, its
strength might be greater then the remaining kinetic contact force.
It prevents the contacts from closing or opening again.

in DC applications is the sum of material lost through ejected
metal droplets at the arc roots, a continuous material redistri-
bution process, and dispersed metal vapour after the rupture
of the molten metal bridge [2]. Contact erosion leads to a
deterioration of the contact surface and thereby to a reduced
effective contact area when contacts are closed. The problem
is aggravated as the contact force is reduced due to the con-
tacts material loss, likewise contributing to contact welding
as discussed in the following Section.

2) CONTACT WELDING
When the contacts part, local Joule-Heating heats up the
contact material, leading to a locally constrained melt and
a sequential weld, illustrated in Fig. 3. Welding is critical if
the contacts can no longer part i.e., stuck-closed failure [71].
Though, welding during contact breaking is possible, it is not
very likely [72], [73]. On the contrary, the problem of con-
tact welding during contact making is exacerbated if contact
bouncing and pre-strike arcing are present, cf. Appendix C-A.
As the contacts open and close uponmolten metal interfaces a
weld is formed. This weld is problematic if the contact force is
reduced prior to the contacts being fully closed. A reduction
in contact velocity provides more time for the weld to cool
down and harden [74].

Relevant to the welding strength is the load current and the
duration of the bounce. The strength of the weld increases
with the amplitude of the applied current [4]. As bounc-
ing events become shorter with each subsequent bounce
an increase in the weld strength for late bounce events,
somewhat growing exponentially past the 4th bounce can be
observed [75]. Further effects of welding during bouncing are
discussed in [1], [71].

3) CONTACT CONTAMINATION
In addition to the effects of contact shape and constric-
tion resistance, the CR is effected by the film resistance,

a problematic thin film layer build up on the contacts. Such
isolating or semiconducting layers can be deposited on the
contact surfaces through e.g., outgassing of plastic sealings
or insulation materials, material abrasion, and contamination
from the ambient air. Thus, the actual number of conducting
a-spots is further reduced, leading to a CR build up [61]. Sub-
sequently, electrical conduction can only take place at spots
where this film is ruptured during contact making. Isolating
barriers are destroyed either electronically or mechanically
through increased contact forces. As [53] reports, already
very thin films (>10 nm) can cause high CR. However,
semiconducting films can also contribute to an increase of the
effective contact area in some instances. The extent of film
formation depends on the storage duration, the environment,
the operational conditions and the alterations to the contact
surfaces from electrical arcing.

A major source for surface film contamination is silicon.
Its compounds are commonly found in e.g., lubrication, insu-
lation material, paints or plastic components, such as EMR
enclosures. Vapours emitted from those silicon containing
materials can form insulating films, which deposit on the
contact surface [76], [77]. During switching, due to electri-
cal arcing, silicon breaks down to silica (silicon-dioxide),
compromising contact performance, significantly increasing
CR towards the EMR-EOL [78]. Further effects of particles
stemming from contaminated environments and the effects
of fritting - a sudden breakdown of the CR in the presence
of contaminating films are discussed in [1], [79] as well as
Appendix B.

4) FRETTING
Lastly, contact surfaces are liable to fretting [80], [81]. Fret-
ting contributes to the wear of the contacts as the mutual
displacement of the contacts against each other contributes to
the abrasion of the surface producing debris. Fretting can be
due to external vibrations or different rates of thermal expan-
sion of the contact materials. It increases CR and promotes
other degradation mechanisms, contributing to CR fluctua-
tions over the EMR life as well as an increase in contact
noise [53]. The process is detailed in Fig. 4.

C. CONTACT RESISTANCE DI
Various measures to determine and depict degradation, in par-
ticular the electrical life subjected to contact degradation,
in EMR applications have been developed [7], [56]. The
following sections reviews the advantages and disadvantages
of classical DIs.

1) CONTACT RESISTANCE DI
The most popular measure among the developed DIs is
CR [83]. However, as the initial CR is already very small,
the increase till failure is typically within the m�-range.
This poses a challenge for accurately measuring changes
in CR, which can be achieved reliably only with a 4-Wire
or Kelvin-Wire setup [78]. Therefore, presupposing accurate
CR measurements in embedded online health management is
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FIGURE 4. Schematic display of the process of closed contacts subjected
to fretting. (I) Accumulation of partially and fully oxidised metallic
particles on the rough contact interface restricts the current flow to the
current carrying a-spots, affected by the distribution of surface
asperities [82]. Some temporary current carrying paths may establish
through metallic and partially oxidised particles in the debris matrix [1].
(II) Over the course of operation the contact surface further degrades,
reducing the effective contact interface, accumulating debris and
increasing CR. (III) A significant increase in CR is observable. No direct
contact is made due to the amount of accumulated debris. Current
conduction takes place along isolated paths in the debris matrix made up
of non-oxidised particles, subjected to immediate changes as material is
further displaced.

not a viable solution due to the required sensing hardware
and associated costs. In addition, depending on the type
of EMR, CR is subjected to more or less random fluctu-
ations ranging well above the rated maximum acceptable
CR, masking underlying trends and rendering the definition
of a static CR-based EOL threshold unfeasible. The rate
and intensity of these fluctuations depends on the operating
pattern and the load, but foremost on the contact material
and environment [84]. Hence, the overall degradation is often
not reflected in CR [7], [85]. The Appendix E discusses the
aspects of CR fluctuations in detail.

2) ALTERNATIVE DIs
Above mentioned challenges as well as the need to distin-
guish failure modes from recorded data motivated the search
for alternative DIs. Developed DIs depict EMR wear and
can be distinguished in two groups namely (1) non-intrusive
time-based reference DIs and amplitude-based reference DIs,
as well as (2) intrusive DIs which require dissembling the
EMR or extended sensing capabilities.

a: NON-INTRUSIVE DIs
Such DIs predominately rely on the measurement of CV and
Coil Current (CC) waveforms during contact making and
breaking. Processing these signals allows to derive a set of
measures displayed in Fig. 5. As for time-based-reference

FIGURE 5. Selected time-based reference DIs derived for contact making
of a normally open EMR. Pick-Up Time [PT], Bounce Time [BT], Super-Path
Time [ST], Over-Travel Time [OT].

DIs, naming convention throughout literature is some-
what ambiguous and depends on the type of contact
configuration [86].

The trajectory of time-based reference DIs varies in respect
to the experienced failure mechanism and failure mode, the
design of the EMR and the operational environment [6],
[58], [60]. Thus, as Section III demonstrates, no generally
valid non-intrusive DI has been established throughout the
body of research. Nevertheless, DIs can provide application-
specific, valuable information regarding the progress of EMR
degradation. An overview of EMR time-based reference DIs
and amplitude-based reference DIs is provided in Table 2.

b: INTRUSIVE DIs
Various research has utilised intrusive measurements to
describe and quantify EMR contact degradation e.g., themass
transfer by detaching and weighing the contacts at regular
intervals [91]. Alternatively, radioactive tracers can support
understandingmaterial transfer among switching, arcing con-
tacts [1]. Further analysis of contact surface at different
stages using Energy Dispersive X-Ray (EDX) and Scan-
ning Electron Microscopy (SEM) have been used [54], [92].
In [93] the arc discharge is optically monitored. Lastly, mea-
surements of static and dynamic contact pressure enable an
assessment of the contact health [94]. While such DIs are
able to depict the degradation, obtaining these measurements
at scale outside controlled laboratory environments is often
impractical [86], [91].

III. RELATED WORK
A. GENERAL DC EMR
In [95] various contributing EMR failure mechanisms
are analysed, on which basis the authors extend their
research towards a predictive maintenance approach in [85],
focusing on prediction of the CR degradation trajectory.
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TABLE 2. An overview of classical EMR-DIs.

A Moving-Average-Model, an Auto Regressive Inte-
grated Moving Average (ARIMA)-Model, an Exponential-
Smoothing-Model, and a Neural Network (NN)-Model are
compared in terms of predictive performance. Latter one is
found to be best suited to predict EMR-EOL. However, the
authors state that predicting the EOL solely on CR is highly
application dependent and will not generalise well. [10]
is concerned with improving EMR maintenance schemes,
pointing out that in many instances EMR are exchanged
too early, often in accordance with the predetermined life
estimates. Following up on [10], [85] emphasise that dynamic
CR measurements are needed in addition to static CR mea-
surements for RUL estimation. The authors demonstrate that
DCR, recorded during the closing actuation, is a valuable DI.
DCR shows a comparatively more pronounced trend towards
EOL. A statistical regression model to estimate the EMR
life forecasting CR is presented. In [5] the authors refine
their prior work, stressing the importance of alternative DIs.
The authors identify promising indicators from the sensed
waveform, being the DCR, maximum-CR and BT. Based
on the extracted features a fuzzy model is used to evalu-
ate contact reliability. However, no further insight into the
concrete nature of the measurements nor the contact failure
modes is provided. The authors reconsider their approach
in [88], addressing the use of BT for estimation of the EMR
performance. Analysing the entropy of the BT using sequence
encoding, the extracted trend relates to the EMR life cycle and
its EOL, though the analysis is performed on a fairly small
data set.

The research in [6] is motivated by the need for a novel
method to evaluate the EMR life, as traditional reliability
methods have become too time demanding not yielding fail-
ures in reasonable test-time, due to improvements in design
and quality of EMRs. The experiments conducted within
the study reveal that different failure mechanisms change
the shape of DI degradation trajectories, demonstrated for
Closing Time (CT), RT and OT. The potential of a regression
model combining the effects of the identified failure mech-
anisms to predict the EMR degradation process for reliabil-
ity purposes is explored. In [58], the authors confirm prior
findings, highlighting different characteristic trajectories of
DIs for various failure mechanisms such as contact erosion,
contact welding and contact contamination. An expressive DI
is presented, referred to as the fluctuation coefficient i.e., the
correlation between the changes in CR, PT, RT, OT, BT, and
AT. After preprocessing features using wavelet decomposi-
tion a linear-model is derived for DI trajectory forecasting.
The best performance is achieved for either OT and BT
related degradation trajectories if the EMR is subjected to
contact erosion. The subsequent model does not perform as
well for contact welding and contamination failures. The
developed fluctuation coefficient improves the performance
for these failure mechanisms, though the reported accuracy
for contamination related failures remains low. Amore recent
work highlights two key challenges for a broad application
of PHM to EMR [60]: (1) the lack of life cycle data as
there are currently only very few deployed online monitoring
health management solutions for EMR; (2) the uncertainty
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associated with the DIs. To address former one, simula-
tion of EMR life cycle data is proposed. Coil and armature
related failure mechanisms are simulated and e.g., compared
to the measured CC waveform. A diagnostic framework is
proposed using the Mahalanobis distance to discriminate
between EMR operation states and failure modes respec-
tively. [96] investigates DIs of EMRs subjected to contact
welding under a DC lamp-load setting. The representative
probability density distributions of CC and CV for different
states throughout the EMR life are determined.

B. AVIATION & AEROSPACE EMR
In [7], waveform decomposition facilitates DI extraction
for aerospace-EMR reliability models, improving the perfor-
mance over previous methods using PT, OT and RT. In [97]
the authors present a time-series based EMR life prediction
method identifying CR, the CV peak voltage, BT, RT and
ST as valuable DIs. A regression model in combination
with optimised Wavelet-Package decomposition defining a
subset of significant frequencies is derived to forecast the
ST trajectory, predicting ST accurately through the second
half of the EMR life. In [98], the authors show that the
initial mean and variation of CR time-series measurements
can be used to estimate the life of the EMR. The value of the
proposed approach lies in its capability to determine whether
a new EMR will perform within its specification throughout
the rated life under known operational conditions based on
its initial state. [11] combine a physical-model of erosion
related contact degradation with CR measurements obtained
from aviation EMR accelerated life cycle experiments using
Kalman-Filtering. However, as recognised by the authors
in [55] (also compare Appendix E), the feasibility of CR
as the sole measure for the advancing EMR degradation is
highly depended on the application [6], [95]. A regression
model using Grey-System theory is presented in combination
with a CR EOL-threshold. CR fluctuations in combination
with a static threshold cause the proposed model to predict
the EOL too early.

C. HIGH-VOLTAGE DC EMR
The authors in [91] review the failure modes of High-
Voltage-DC EMR. The predominant failure mechanisms are
contact erosion and contact welding which severity can be
determined through contact mass variation measurements.
However, obtaining such measurements is impractical, hence
the authors propose the use of the arc charge which directly
relates to the contact mass loss caused by electrical erosion.
A linear relationship between the cumulative arc-charge and
the EMR life is derived. The methods suitability for low-
voltage application is subject to future research as the authors
point out. Building up on [91], the authors in [99] analyse
the correlation between contact velocity and electrical life.
The authors show that the cumulative arc erosion mass under
different breaking velocities increases linearly. A mean EOL
threshold based on the arc erosion mass is experimentally
determined.

D. RAILWAY EMR
The authors in [56], [90] present diagnostic methods for
railway EMR. Wavelet-Transform for denoising of extracted
DIs prior to failure classification. RUL prediction is per-
formed using ST, BT, AT, and RT. ST and BT are identified
as key DIs relating to contact erosion, contact welding and
contact contamination. To account for the variance in the
derived DIs, the authors propose the use of the Mahalabonis-
Distance (cf. [60]) to classify failure modes. For RUL pre-
diction, a NN is employed, achieving 84 % forecasting
accuracy. However, the study does not provide details on
the extent of the prediction horizon. As before, the authors
emphasise the difficulties when selecting appropriate EOL
thresholds for respective EMR-DIs. In [100], the authors
address previous mentioned issues, whilst emphasising the
non-linearity of the degradation process. Based on RT a
novel EMR life forecasting strategy is proposed, allowing a
prediction horizon of up to 500 actuations ahead. An ensem-
ble of Empirical-Mode-Decomposition in combination with
improved Variational-Mode-Decomposition is proposed to
decompose RT time-series. Derived features are used as input
to a multi-layer NN to predict the trajectory of RT. The
authors demonstrate that using the proposed preprocessing
steps to prime the input features for the NN can improve
model performance. Though, as reported in previous works,
the purpose of accurate prediction of an DI trajectory is sub-
ject to discussion as it is prone to fluctuations and high levels
of variance. Accurately predicting such fluctuations does not
support EMR-RUL prediction. This underpins the need for
uncertainty quantification with any EMR-RUL estimation
methodology as recognised by the authors. [9] propose a
method for PdM as well as for the reduction of test-time of
railway EMRs. CR and CT are obtained from accelerated
life cycle tests at various elevated temperature levels in order
to shorten the required time-to-failure. Two physical models
are derived to describe the CR increase attributed to contact
corrosion and the changes in recorded CT. The models are
fitted to life cycle data using the Least-Square-Method and
used to evaluate the EMR lifetime at lower temperatures,
yielding a low prediction error against the observed EMR life.

E. AUTOMOTIVE EMR
[12] identifies useful DIs for automotive EMRs as CR,
PT, ST, BT, AT, and RT. The authors emphasise the non-
stationary degradation behaviour of the EMR motivating the
choice of NN, due to its capability of learning non-linear
relationships, cf. [100]. The performance with different NN
architectures and training sets to predict the EMR-RUL is
evaluated. The failure mode of the tested automotive EMR is
not specified. In [89] an alternative model to predict EMR life
in automotive applications is proposed, using the Improved-
Fireworks-Algorithm Grey-NN - a swarm optimisation based
algorithm. The method is evaluated with life cycle tests at
different temperatures predicting the EMR-RUL based on the
initial state of the EMR. The authors stress that the model
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could be further refined if more parameters would be consid-
ered e.g., the operating environment.

F. NUCLEAR EMR
In [8] an embedded non-intrusive online health monitoring
method to determine welded EMR contacts from CC wave-
form in safety critical application e.g., nuclear power plants
is presented. The authors demonstrate that welded contacts
prevent the EMR armature from moving altering the distinct
CC waveform characteristics during de-energisation and re-
energisation. It is determined that the distinction between
welded and non-welded contacts based on the shape of the
CCwaveform is possible without requiring the EMR contacts
to open. The authors are aware that the application of the
proposed method heavily depends on the type and design
of the EMR. An integrated circuit for online diagnostic of
EMR contact welding detection referred to as Relay-Output-
Card expands this work in [101]. Similar research has been
conducted by [102]. The authors extend on the non-intrusive
contact welding detection proposed by [8], [101]. A range
of failure criteria aiding the automatic detection of contact
welding is reviewed and the robust determination of a healthy
CC waveform using an embedded circuit is further improved.

G. STORAGE OF EMR
The degradation of EMR storage, in particular the degra-
dation of the contacts during storage, has been subject to
an evolving field of research over the past decade [87],
[103]–[108] and [92], [109]. In [103], the authors subject
aerospace EMRs to accelerated degradation testing under
elevated temperature conditions. It is shown that EMR sub-
jected to temperature stress during storage exhibit a faster
increase in CR. This behaviour becomes significant beyond
100 ◦C . The authors identify temperature accelerated corro-
sion as a root cause for high CR and low conductivity, due
to surface film formation of oxide corrosion films in silver
based contacts. These effects are further analysed in [107],
[108], attributing the increase of CR during extended storage
time not only to oxides but also to sulphides and carbides
depositing on the contact surface. The authors demonstrate
that measurements of PT, RT, OT, and BT exhibit distinct
trends [103]. Exploiting these findings, a method to predict
CR for EMR in storage is developed [104]. The selection
of Grey-NN as prediction model is motivated by the non-
linearity of the degradation process, cf. [12]. Grey-Theory
reduces the effects from fluctuations in the DI on the overall
trend. The proposed, combined Grey-NN is superior to using
either Grey-Theory or NN. A similar approach, employing
Grey-NN for aerospace EMR in storage is presented in [106].
However, instead of CR, CT is the predicted DI. In [105],
the authors link the previous research of elevated temper-
ature testing to storage life prediction at ambient tempera-
ture. In [87] the authors develop a degradation model for
aerospace EMR using PT as DI. PT exhibits a direct linear
relationship with the spring force relaxation. Based on the
Larson-Miller model a method is proposed establishing the

relationship between spring-force decrease and EMR storage
life. Though, no assessment is provided, whether the decrease
in PT and the failure threshold based on CR resemble similar
trajectories for the sampled EMR population i.e., the question
for EOL-threshold selection is left unanswered. [92] presents
a method to predict EMR degradation during storage based
on CR increase. Using Particle-Filtering the unknown param-
eters of a physical-model are determined from experimental
data. Extending on their initial work, the life shortening
effects of increased fretting corrosion due to elevated temper-
ature are considered affecting the estimate of the remaining
storage life, which is based on trend prediction of CR [109].
As the results indicate, the proposed model is capable of
forecasting the storage life accurately. The forecasting per-
formance improves closer to the actual EOL.

H. COMPARISON OF REVIEWED LITERATURE AND
IDENTIFIED CHALLENGES
In Table 3 an overview of the reviewed literature is presented,
comparing various approaches and objectives to diagnose the
operating state of the EMR in order to forecast the EOL or a
DI trajectory.

From above analysis various challenges in monitoring
and maintaining EMR using data-driven techniques have
become evident. Classical DIs do not generalise across
different EMR designs, contact types, contact material,
operational environments or loading scenarios as each
applications results in distinctly different degradation trajec-
tories e.g., [7], [9], [56], [59], [60], [100]. In addition, differ-
ent failure modes cause classical DIs to exhibit incoherent,
opposing trends often even changing within the same batch
of components e.g., [6], [60]. This poses a challenge if those
DIs are used as direct performance metrics. Predicting or
forecasting the trajectory of such DIs is flawed as they are
subject to high levels of variance and fluctuations in the
switching process e.g., the build up and destruction of oxide
films on the contact surface - especially CT and OT - as
adverted by the above review. Further, CR is disregarded
as DI for a wide variety of EMR as it typically does not
exhibit any clear trend or is subject to significant fluctuations
e.g., [7], [55]. Research is further challenged by the lack
of sufficient amount of EMR life cycle data sets to validate
and benchmark the proposed data-driven approaches. Lastly,
uncertainty of the forecast is not considered in the reviewed
approaches. The listed challenges impede the development of
general valid solutions for EMR-SOH or -RUL estimation.

IV. METHODOLOGY
This section presents the EMRUA-Pipeline and formulates
the problem of RUA prediction for EMR. However, first the
principles of TCN are detailed.

A. PRINCIPLES OF TEMPORAL CONVOLUTIONAL
NETWORKS
Proposed by [35], Temporal Convolutional Network (TCN)
is a novel, autoregressive DL architecture incorporating
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TABLE 3. Summary and comparison of reviewed methodologies.

structural elements from RNN, whilst relying on 1D-CNN.
TCN extends the functionality of CNN typically used for

e.g., image classification tasks, towards sequence classifica-
tion and forecasting [111].
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FIGURE 6. (I) Causal 1D casual convolution with multi-channel input c = 2 for a sequence of length l and a kernel of size k = 3, zero-padding p = 2;
(II) 1D causal convolution with k = 3, d = 1, p = 2, no full history coverage as r < l ; (III) 1D causal convolution with k = 3, constant dilation d = 2,
p = 4, full history coverage as r = l ; (IV) 1D causal convolution with k = 3, exponential dilation with db = 2 and d = [2,4,8], full history coverage as
r = l .

FIGURE 7. A TCN consisting out of two residual blocks R = [R0,R1] with filters f = 3 and a kernel size of k = 3. The first residual block R0 employs
two casual 1D-convolution layers with dilation d = 1 and padding p = 2. The second residual block R1 employs two causal 1D-convolution layers
with a dilation of d = 2 and padding p = 4. After each convolution layer, sequentially weight normalisation, activation using ReLU (for non-linearity),
and spatial dropout for regularisation are employed. A residual connection is used to stabilise the network during training.

TCN accounts for the caveats of sequence models, com-
pare RNN e.g., LSTM or Gated-Recurrent-Unit Network
(GRU) when learning very long sequences [36]. Advantages

are the mitigation of the vanishing/exploding gradient prob-
lem when back-propagating through time as often encoun-
tered with LSTM; reduction of memory usage, training

4872 VOLUME 10, 2022



L. Kirschbaum et al.: Prognostics for Electromagnetic Relays Using Deep Learning

and inference time over traditional RNN architectures [37];
compared to LSTM, TCN also requires less trainable
parameters to store intermediate results [35]. To elaborate,
1D-convolution adopted in TCN shares the learned filters
across the entire input feature map of length l per input chan-
nel c. This can be attributed to the parallelism of the convo-
lution operation. Given a sequence xl = [x1, x2, . . . xi−1, xi],
retrieving a result for xi using RNNs depends on the predic-
tion of xi−1 and all previous time steps. However, convolution
can operate in parallel on the entire sequence xl as the same
kernel k is shared across the entire layer. Lastly, controlling
the size of the receptive field r can be accomplished by
different means providing greater flexibility in the design of
the architecture [35].

TCN shares the ability to map an arbitrary-length input
sequence xl to an output sequence yl of the same length
using 1D-convolution. However, in sequence modelling it
is important that an output yi only depends on the current
and previous inputs [x1, x2, . . . , xi−1, xi]. Fig. 6-(I) displays
the principal of so called causal convolution. In case of a
multivariate input sequence X = [X1,X2, . . . ,Xc], the input
feature map is convolved moving a different, learnable kernel
of size k = 3 for each channel c in one direction, along
one axis only across the input sequence. This outputs a 2D
tensor X̂ of the same length l and width c. The learned kernel
of size k is shifted across the input with a step-width of
s = 1 utilising the same kernel weights for each input channel
in each convolution layer. In practice, if c > 1, the 1D-
convolution can be imagined like a 2D-CNN,where the filters
are restricted to the channel. The number of weights used in
the model depends on the kernel size k , the number of filters
f and the network depth n. As one can see in 6-(I), in order
to retain the same sequence length for the output yl , zero
padding at the beginning of the sequence is required. In the
case of simple 1D causal convolution the padding length is
p = k − 1.

The receptive field r , that is the number of elements in
the input xl , which relate to an output yi, is important to
consider. In the case of TCN, the width of r defines how
far back the model’s horizon reaches. If r covers the entire
input length it is termed full history coverage. As one can
see in Fig. 6-(II), the receptive field r grows linearly with the
network depth n as r = 1 + n ∗ (k − 1) if k is constant
throughout the entire network. Therefore, increasing r can
be achieved by either increasing the depth of the network
n or the kernel size k . Hence, due to this linear relationship
between network depth n and receptive field r , achieving full
history coverage for sequences where l is large would require
very deep networks. In turn, this would cause problems with
the vanishing gradient and lever the advantages of TCN over
RNN based architectures.

To circumvent this problem dilation is introduced. Dila-
tion, somewhat similar to the step-width used in CNN,
spreads out the kernel across the input skipping certain ele-
ments depending on the dilation step-width d . A kernel of
size k = 3 and dilation d = 1 would convolve over an input

of l = 3. Contrary, if d = 2, the same kernel would cover
an input of l = 5 with holes at the 2nd and 4th elements.
This concept is introduced in Fig. 6-(III). The receptive field
grows as r = n ∗ (1 + d ∗ (k − 1)), depending not only on
n and k , but also on d . However, if d is a constant r still
grows linearly. Hence, to more effectively increase r along
the network depth, d should grow exponentially as illustrated
in Fig. 6-(IV). This yields a dilation of di = dni−1b and r as
per Equation 1.

r = 1+
n−1∑
i=0

(k − 1) ∗ d ib = 1+ (k − 1) ∗
dnb − 1

db − 1
(1)

Typically, the dilation is increased with the base of db = 2.
To achieve full history coverage i.e., r >= l, the minimum
number of required layers is

n = logdb ∗(
(1− l) ∗ (db − 1)

(k − 1)
+ 1) (2)

where the padding for each layer is pi = dni−1b ∗ (k − 1).
To avoid gridding i.e., an incomplete coverage of the elements
in the input xl within r , the kernel should be chosen as k >=
db [45].
Adapted from [112], the authors in [35] utilise a structural

element referred to as residual block replacing the simple 1D
convolutional layer. TCN encapsulates this structural element
to improve the stability of the architecture as the model learns
a modification of the input feature map [35]. A network using
residual blocksR is displayed in Fig. 7with d = [1, 2], f = 3,
and k = 3 resulting in a network with R = [R0,R1] blocks.

The proposed structure alters the typical CNN building
block, consisting out of h = 2 1D-convolution layers using
the same k and d . The receptive field r which allows full
history coverage for this architecture can be expressed as

r = 1+
n−1∑
i=0

h ∗ (k − 1) ∗ d ib=1+h ∗ (k − 1) ∗
dnb − 1

db − 1
(3)

nl = logdb ∗(
(1− l) ∗ (db − 1)

(k − 1) ∗ h
+ 1) (4)

After each convolution layer, weight-normalisation to nor-
malise the convolution outputs and reduce effects of an
exploding gradient, activation for non-linearity using Rec-
tified Linear Unit (ReLU) and regularisation using channel
dropout to minimise overfitting are employed. Contrary to
spatial dropout i.e., randomly dropping out some feature
maps, channel dropout randomly drops out a set of channels
controlled by the dropout rate. To retain the input sequence
length l between residual blocks, a residual connection using
1 × 1 convolution is performed directly on the blocks input
and element-wise added to the blocks output. This stabilises
the network and counteracts the vanishing gradient problem
encountered when back-propagating the errors through deep
networks [35].
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B. PROPOSED EMRUA PIPELINE
In this section the proposed EMRUA pipeline is introduced.
The pipeline performs a set of sequential steps to estimate
the EMR’s Remaining Useful Switching Actuations (RUA)
at any point during the components life. For the sake of
clarity - rather thanmeasuring the remaining time to failure as
RUL [17], [113] - this work is concerned with the estimation
of the number of Remaining Useful Switching Actuations
(RUA). RUA refers to the number of EMR making and
breaking actuation left, till the EMR is failed due to one of
the reasons discussed in Section II-A. Two general stages
are considered. During training and testing: suitable input
feature representations extracted from the raw data are deter-
mined; a range of sub-sequence selection strategies to sample
from the time-series data are considered; TCN-model com-
binations for RUA predictions are tuned (the aim is to min-
imise the loss between target RUA-sequence and estimated
RUA-sequence). During inference: once the best model has
been determined, RUA estimations under consideration of
uncertainty can be performed. Fig. 8 provides an overview
of EMRUA, cf. Fig. 8-(IV).

1) DATA EXTRACTION
MVTD snippets are recorded during EMR switching.
Together, each contact making and the consecutive con-
tact breaking are constituted as one single actuation A. For
each actuation Aj from c sensors, a set of sensor signals
X = [X1,X2, . . . ,Xc] is recorded. The ith signal is Xi =
[x0, x1, x2, . . . xs] of length s i.e., samples for the contact mak-
ing and breaking respectively. Fig. 8-(I) illustrates the process
of data extraction for the CV and CI. However, one is not lim-
ited to these two signals, and other sensors can be considered
e.g., the CC. The properties of CV and CI for normally open
EMR contacts are detailed in the Appendix C-A and D-A.

2) FEATURE EXTRACTION
The feature extraction process follows a set of consecutive
steps, schematically illustrated in Fig. 8-(II). The aim is
to derive features which depict the underlying degradation
process common among the population of sampled EMR.
The mean of a group of l actuations Aj is taken as Wh
per extracted feature. We differentiate between two sets of
derived features, being time-based reference DIs denoted as
feature-set FT consisting out of cT features e.g., the BT, AT,
RT, etc.; and a feature-set FS consisting out of cS features
representing a combination out of amplitude-based reference
DIs and statistical features, such as the variance, max, min,
etc. extracted from CV and CI. Normalisation of the derived
feature sets is performed to make them suitable inputs for the
TCN. Therefore each feature is scaled to a range of [0, 1] as
per Equation 5

Fnormi =
Fi−min(Fi)

max(Fi)− min(Fi)
(5)

where Fi denotes the ith feature of the feature set F . In addi-
tion to FT and FS , we also consider a combination being
FT ,S = [FT ,FS ]. The changes in the waveforms due to

deterioration of the EMR from switching under load are
presented in the Appendix C-B and D-B. The respective set
of features is introduced in Appendix C-C and D-C.

3) SEQUENCE SELECTION
As explained in section IV-A, TCN performs causal-
convolution over the input feature map F , to estimate a RUA
target sequence of the same length. As the kernel is shared
across the entire input sequence, the number of trainable
parameters in the model is independent of the sequence
length ls. It only depends on the number of considered input
features c, the number of filters f , the kernel-size k , and the
number of residual blocks R. However, different strategies
can be employed to select a subset of representative windows
W from the interval T = [0, t]. The different processes of
sequence selection are pictured in Fig. 8-(III).

a: GROWING-SEQUENCE INDEXING
This selection strategy of an input sequence of length ls = t ,
will consider every actuation for the entire interval T = [0, t].
Hence, the sequence will grow over the course of life of the
EMR till EOL. In practice this poses a challenge as the exten-
sion of the sequence length needs to be considered during
training. As input to the model serves a randomly selected
batch B containing b examples, which vary in their length
ls but remain constant in regard to the number of features c,
cf. [114]. However, all sequences within one training batch
need to have the same length. Hence, all b randomly selected
sequences are padded to themaximum sequence length ls(max)
encountered in the batch B, as displayed in Fig. 9. A sequence
ranges always from the first switching actuation to an actua-
tion at time t relative to the EOL of the respective sample.

b: LINEAR INDEXING
In the case of linear indexing, the entire degradation sequence
is equally considered. ls ∈ Z+ actuations are selected, evenly
spaced in the interval of T = [0, t]. Hence, even as t
increases, ls remains constant. We can express the selection
of ls actuations as

A = {A0,A t
li−1
, . . . ,At } (6)

c: EXPONENTIAL INDEXING
Contrary to Section IV-B3.b, this selection strategy favours
recent degradation trends as ls actuations are selected in the
interval T = [0, t], expressed as

A = {A0,At−( t2
li−1

)2
. . . ,At } (7)

4) RUA ESTIMATION
RUA is linear, considering the actuation passed against the
actuation left till the EOL. Equation 8 defines RUA for the ith

actuation ai,

RUA(ai) = aEOL − ai where ai ≤ aEOL, ai ∈ Z+ (8)

However, as the TCN is capable of mapping each input
X[1,i] to an output Y[1,i], the problem at hand considers a
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FIGURE 8. (I) The sampling strategy for CV and CI from the EMR opening and closing waveform during switching; (II) the process of feature
extraction and preparation as TCN input feature map; schematic display of the three sequence selection strategies GI, LI and EI; (IV) the
EMRUA pipeline. (1) The extracted statistical features are detailed in the Appendix C-C and D-C.

sequence to sequence mapping task. Hence, RUA can be
considered as a vector, cf. Equation 9.

RUA(a[1,i]) = aEOL −


a1
a2
...

ai

 (9)

All prognostics related applications addressing RUL are
inevitably concerned with the uncertainty of the forecast.
Hence, uncertainty needs to be explicitly addressed in order
to provide a verifiable, robust diagnostic or prognostic
method [17]. This becomes especially important, if DL
approaches are selected as they are considered to be black-
boxmodels [115]. Sources of inherent uncertainty stem from
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FIGURE 9. (I) The input batch B of batch-size b = 5 with a maximum
sequence length ls(max) and features c = 3; (II) the RUA target sequence
for each instance in the input batch.

production variance within the same type of monitored sys-
tem or component as well as the unknown exact operational
conditions. Equally, uncertainty induced by measurement
errors should be considered. Selection of appropriate sen-
sors can reduce this type of uncertainty [17]. Beside sensor
noise, measurement errors and uncertain state estimations,
the future loading pattern might be unknown. Additionally,
uncertainty from modelling errors and selection of model
parameters has to be considered. One might be able to reduce
model uncertainty by increasing the sample-size.

Monte-Carlo Dropout (MCD) can be used to determine
uncertainty during inference in DL. MCD has been proposed
by [49]. MCD approximates the Bayesian Gaussian Process,
providing a highly computational efficient solution for DL
to estimate the posterior distribution [48]. The effect of the
model’s input dimension on the computational complexity is
an important aspect to consider [17]. The number of used
features during inference has a neglectable effect, however,
the length of the input time seriesmight be of concern in terms
of computational efficiency as well as full history coverage.

MCD achieves uncertainty estimation by utilising dropout
during inference on the trained model f , which results in
a different prediction of Yt = [y0, y1, . . . yt ] for an input
sequence Xt = [x1, x2, . . . , xt ] at each forward pass as the
dropout-mask δi is selected at random, yielding:

Y it = f (Xt |δi)+ ε (10)

where ε ∼ N (µ, σ 2) represents the Gaussian distributed
process noise stemming from e.g., measurement errors. The
distribution derived from averaging over N forward passes
is somewhat similar to an ensemble of N trained models.
One can compare this to estimating a distribution of the
learned weights per layer which can be approximated using a
relative small number of forward passes i.e., N ≤ 1000 [50].
To facilitate MCD, [116] suggests to employ dropout after
each layer. [48] points out it is important that the dropout rate
is kept constant and not tuned during training.

Making use of a batch B with the size b (i.e., the number
of passed feature maps) during inference, we can effectively
forecast the RUA for N forward passes in parallel so that
b = N , where each feature map Xt in B is the same input,
resulting in a total input Bt = [X0

t ,X
1
t , . . .X

b
t ]. This allows

us to estimate the posterior distribution of Yt in parallel as the
dropout mask 1N = [δ0, δ1, . . . , δb] for each X it is chosen
at random across the input Bt . Therefore Equation 10 can be
amended to

YNt = f (Bt |1N )+ ε (11)

The process is illustrated in Fig. 10. It is evident that DL
methods deploying convolution are especially well suited
architectures for using MCD to quantify uncertainty, due to
the parallel computing capabilities exhibited by those archi-
tecture. However, one should be careful with a combination of
very long sequences and a large N as this requires significant
memory overhead, due to the size of the input feature map.

The RUA is estimated from YNt , as summarised in Fig. 10.
The best linear fit for each predicted RUA sequence Y it is
determined reducing the residual sum of squares. The mean
as in Equation 12 and the variance as in Equation 13 for
each ai is then calculated from the N extrapolated linear
RUA trajectories - ranging from a0 till the aEOL - to derive
a confidence interval. Within this interval the model is 95%
confident that the true mean of the population i.e., the true
RUA, is contained.

µ(ai) =
1
N

N∑
j=0

mj(ai)+ bj (12)

σ (ai)2 =

∑N
j=0((mj(ai)+ bj)− µ(ai))

2

(N − 1)
(13)

C. MODEL CONFIGURATION AND SCORING
An overview of the model hyperparameters is provided in
Table 4. The model consists out of a number of stacked
residual blocks, depending on the final width of the receptive
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FIGURE 10. Parallel sampling of RUA from an input Xt using a batch B
with b different dropout masks during inference, predicting Y N

t posterior
RUA sequences.

TABLE 4. Evaluated TCN model hyperparameters.

field r ; followed by a final FC layer using linear activa-
tion. Dropout is employed within each residual block. Model
performance is evaluated using Mean Absolute Error (Mean
Absolute Error (MAE)), Mean Absolute Percentage Error
(Mean Absolute Percentage Error (MAPE)) and Root Mean
Squared Error (Root Mean Squared Error (RMSE)) where
RUAi denotes the target and RUA∗i the estimated RUA.

MAE(RUA∗i ,RUAi) =
1
N

N∑
i=0

|RUA∗i − RUAi| (14)

MAPE(RUA∗i ,RUAi) =
100%
N

N∑
i=0

|RUA∗i − RUAi|

RUAi
(15)

RMSE(RUA∗i ,RUAi) =

√√√√ 1
N

N∑
i=0

(RUA∗i − RUAi)2 (16)

In addition to the RMSE, a scoring metric proposed
by [117] is adopted to evaluate the performance under con-
sideration of the models’ estimated uncertainty, cf. for a
prognostics use case [23], [118]. An accuracy zone α is
defined providing bounds of allowed deviation from the
targeted RUA limited by an upper threshold α+ and a
lower threshold α−. α is selected according to the needs
of the specific application. Here, α = 0.2 is chosen for
evaluating the EMRUA. The αsc is calculated by count-
ing the frequency of RUA estimates within the α± bounds,
cf. [117], [119].

V. EXPERIMENTS AND RESULTS
This section discusses the design and results of the EMR life
cycle experiment. Furthermore, the results of the EMRUA are
presented.

A. EMR LIFE CYCLE EXPERIMENTS
As previously stated, the contacts of EMR are most liable
to failure, hence the EMR life is - in most cases - deter-
mined by the contact life or so to speak the electrical life.
In comparison, the mechanical life of the EMR is signif-
icantly higher [1]. Therefore, the focus of the life cycle
experiments are contact related failure modes. To under-
stand the factors affecting the EMR contact life, a Design
of Experiment (DOE) provides statistical control to select
the test parameters under consideration of the operational
thresholds. In particular, when testing EMR it is important not
to induce uncharacteristic failure modes through poor choice
of test-parameters. Hence, a popular approach to test only
the contacts is a model switch i.e., a device which allows
to precisely control the switching parameters [120], [121].
However, whilst yielding results applicable to the con-
tact material, carefully tuning such replica to match the
properties of an EMR under test is challenging [1]. Fac-
tors such as closing velocity of the contacts, bounce, etc.
need to be considered. Further guidance and considera-
tions in regard to EMR life cycle tests is provided in the
Appendix B.

As one can see in Fig. 11-(I) the experimental setup relies
on a National-Instruments PXIe8880 controller for data col-
lection operatingwith LabVIEW-RealTime andmonitored on
a separate Control-PC. In combination with the Real-Time
controller a PXI-2567 module is used to precisely trigger
switching of the EMR under test. Experimental data is col-
lected using the PXIe-6365 module at a sample rate of 25 kHz
for CV, CI and CC. Sampling starts prior to, and ends after
eachmaking and breaking actuation respectively. The interval
in between an actuation is not recorded, cf. Section IV. CC
is directly recorded whilst the amplitude of the CV signal is
reduced using a voltage divider prior, due to the limited volt-
age range of themeasurement hardware. Lastly CI is recorded
with a hall-effect current sensor. As shown in Fig. 11-(III) all
recorded data is then streamed to the Control-PC. To facili-
tate CR-measurements, a secondary circuit can be switched
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FIGURE 11. (I) Overview of the developed EMR life cycle test platform. The power supply is directly connected to the Control-PC to allow for an
automatic setup of the test parameters. (II) The EMR test-PCB is situated in the oven and allows quick exchange of the test-sample. The infrared
sensor (IR), and the Ohmmeter (4-Wire-Measurement) are placed in the oven as well. (III) A simplified schematic of the test-setup using the
PXIe-8880 module to collect and stream data to the Control-PC. This allows deterministic control of the experiment using LabVIEW-RealTime.
(IV) The tested EMR, top- and side-view of coil and moving armature, static contact carrier and the silver-plated contact rivet, the moving contact
carrier realised as contact spring.

in using a Double-Pole-Double-Throw (DPDT)-EMR posi-
tioned as close as possible to the EMR under test. This
circuit is connected to the Ohmmeter 4-wire measurement
setup which is in turn directly linked to the Control-PC.
CR measurements are taken at regular intervals. Therefore,
switching of the contacts is paused, the EMR under test is
then closed. The DPDT-EMR - controlled via a secondary
channel on the PXI-2567 - switches from the test-circuit to the
CR-measurement-circuit. Simultaneously, using an infra-red
temperature sensor the EMR casing temperature is recorded
in close proximity to the EMR contacts. A dedicated PCB
has been developed to house the necessary sensors and com-
ponents and facilitate the exchange of the EMR under test,
once failed. The test-PCB is shown in 11-(II). It is placed
in an oven to control the operating temperature. The ambi-
ent temperature within the oven is monitored as reference.
An external power supply in combination with two parallel,
variable resistors set up with opposing winding to reduce
effects of load inductance is used to provide a nearly resistive
test-load. This setup is displayed in Fig. 11-(I). The interested
reader is referred to [52] for further considerations of this
experiment.

The tested component is displayed in Fig. 11-(IV).
A general-purpose Single-Pole-Single-Throw-Normally-
Open (SPST-NO), unsealed EMR has been selected as test
component. Its specifications are listed in Table 5.

TABLE 5. Test EMR specifications.

B. CONDUCTED EXPERIMENTS AND OBSERVED FAILURE
MODES
EMR life cycle experiments have been conducted at 30 VDC,
6 A, 0.25 Hz switching frequency, 50 % duty cycle and
60 ◦C ambient temperature. All tested EMRs were sub-
jected to the same failure mechanism: prior to failure, various
contact-sticking events occurred, whereas continuous mate-
rial loss due to electrical erosion led to diminishing contact
material thickness. Combined with a reduction in contact
over-travel and spring-force due to ageing, an increase in
poor contact making - as the effective contact area is con-
tinuously reduced - resulted in strenuous heat accumulation
within the contact carriers and contact rivets. The parting
velocity of contacts decreased and bounce duration increased,
cf. Appendix C, Fig. 21 and 23. Such alterations in the
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FIGURE 12. (I) Example of stuck-closed EMR contacts (unsealed), due to contact welding; (II) (a) photography of the static contact carrier (anode)
after failure; (b),(c) and (d) CT-Scans and cross-sections (the brighter coloured grey area on the contact rivet is oxidised silver and the silver contact
plating material, while the darker grey area is the copper contact rivet body); (*) sputtered, eroded contact material; (**) dashed red line represents
the contact height of the new EMR contact; (III) photography and CT-Scan of the moving contact carrier (cathode) after failure, cf. (II).

switching pattern favour micro-welding between the con-
tacts, which manifests in an increasing number of contact
sticking events towards the EOL. Further, bouncing duration
lengthens, with an increasing duration between the bounce
events, whilst bouncing intervals shorten. Late, short bounc-
ing events increase the likelihood of contacts to close directly
on the molten surface and small welds to harden prior to
rupture from the next bounce [71], [75]. Ultimately the
contacts weld during bouncing whilst contacts close. The
strength of the weld exceeds the spring force of the reverting
contact carrier. The EMR is subjected to a stuck-closed fail-
ure. As further indication of an imminent failure the contact
temperature can be considered. Appendix A, Fig. 18 depicts
the changes in EMR casing temperature, whilst the ambient
temperature is kept constant, recognising a clear upwards
trend in the last third of the EMR life following a relative
stable phase. The heat build-up can be attributed to a set
of interrelating mechanisms. The increased AT is the most
significant contributor, cf. Appendix D-C, Fig. 27. Another
factor contributing to contact degradation, accelerated by
the increasing heat dispersed from the electrical arcing, is a
reduction in stiffness of the moving contact carrier. Hence,
a reduction in contact force and contact velocity is to be
expected, relating to an increasing AT. Accelerated heat-build
is promoted by the design of the EMR under test as the
moving contact carrier is significantly thinner than the static
contact carrier, cf. Fig. 11-(IV).
Analysis of the stuck-closed EMR contacts provide further

insights into the failure mode and mechanism. Fig. 12-(I)
shows an example of welded contact rivets. Sputtered contact
material is distributed around the contact rivets, consisting out
of partially oxidised contact plating material and carbons.

Fig. 12-(II) and 12-(III) show cross-sections of a welded
moving and static contact rivet respectively using a CT scan.
Both failed contacts exhibit severe damage across the entire
contact surface, with a near complete loss of the origi-
nal plating material and structure. Fig. 12-(I), 12-(II-a-*),

and 12-(III-a-*) show the deposition of sputtered black
material on the contact carrier surface in the vicinity of
the contact rivet. This material consists out of silver-oxides
and carbons as EDX analysis suggests. The moving contact
carrier displays an increasing material loss towards the upper
edges of the contact rivet, but essentially no loss of material
towards the bottom of the contact body, cf. Fig. 12-(II-d-**).
The static contact on the contrary shows significant loss of
contact material towards the bottom. Electrical arcing from
the static contact carrier rivet - the anode - to the moving
contact carrier rivet - the cathode - is the root cause for the
observed distribution of contact material and the concurrent
net-loss of material during switching. The craters on the static
contact, typical for the anode in a DC setting, can be seen
in the cross sections of Fig. 12-(II-d). This is an indication
for a relative short duration of the ambient arc, being pre-
dominantly in the anodic arc phase as material build-up and
pip formation would be expected on the anode with longer
duration gaseous-arcs.

C. TCN PERFORMANCE COMPARISON
This section discusses the models’ performances, under
consideration of the number of trainable parameters, the
kernel-size k , the number of residual blocks R, and the
dilation-base db for the three extracted feature-sets FT , FS
and FT ,S . Further the effects of the sequence-selection strate-
gies GI, LI and EI are investigated. The model performance
is evaluated on the life cycle of 10 representative EMR test
samples subjected to stuck-closed failures, cf. [52]. Thus, all
displayed results are averaged over the test set unless stated
otherwise.

Themodel configuration in conjunction with the size of the
receptive field r affects model performance. Whilst increas-
ing the size of the receptive field r , increasing the kernel-
size k or the number of residual blocks R also increases the
number of model parameters as can be seen in the bottom
of Fig. 13-(I). The model performance does not necessarily
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FIGURE 13. (I) Kernel k against Residual-Blocks R, with constant dilation-base db = 2 for sequence-selection strategy GI; (II) Dilation-base db
against Residual-Blocks R, with constant Kernel k = 3 for sequence-selection strategy GI; average performance on all test samples.

improve with an increase in model complexity. In fact, appar-
ent for data set FT , an increase of stacked residual blocks R
beyond 5 leads to performance deterioration increasing the
MAPE respectively. For both FS and the combined data set
FT ,S , all tested configurations exhibit similar results, though
some dependency on the architecture can be recognised.

Altering the dilation base db to increase the size of the
receptive field r without increasing the number of model
parameters does not improve performance, cf. Fig. 13-(II).
This might suggest that increasing the receptive field r
beyond a certain threshold only improves performance with
a parallel increase of trainable parameters. However, care
should be taken to avoid overfitting.

As pointed out in the review of related literature in
Section III traditional features i.e., time-based reference DIs
have been incorporated in the data set FT . Its performance
is displayed in Fig. 14. Across all selection strategies GI,
LI and EI performance varies over the tested EMR sam-
ples. However, selection strategy EI exhibits less variance.
Comparing LI and EI, the prior one exhibits slightly better
performance for the model LI-k = 7-db = 2-R = 6; model
EI-k = 3-db = 2-R = 6 yields similar results having consid-
erable less trainable parameters due to the smaller kernel-size
(k = 3 instead of k = 7).
Evaluating the performance of the statistical data set FS ,

displayed in Fig. 15 consistent results for the LI and EI

FIGURE 14. Performance results on all test samples of selected model
configurations - FT - Left: GI, middle: LI, right: EI.

sequence selection strategy are achieved reducing the vari-
ance in performance compared to FT . Only FS -GI exhibits
considerable higher levels of variance among all tested con-
figurations compared to FS -LI and FS -EI.

Combining the data sets FT and FS as a joint feature set
FT ,S does not generally improve the model performance.
On the contrary, adding FT seems to impair the overall per-
formance in some instances. This can be seen in an increase
in performance variance, cf. Fig. 16.
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FIGURE 15. Performance results on all test samples of selected model
configurations - FS - Left: GI, middle: LI, right: EI.

FIGURE 16. Performance results on all test samples of selected model
configurations - FT ,S - Left: GI, middle: LI, right: EI.

With respect to the results in Fig. 14, 15 and 16, we report
performance averaged over all tested EMR samples for dif-
ferent model configurations in Table 6. The best performing
model achieves a MAPE=12.39 % using the configuration
EI-k = 7-db = 2-R = 6 trained on FT ,S (87169 train-
able parameters). With αsc = 92% the gross of all pre-
dictions resides within the α± confidence zone. The best
performing model using only statistical features FS is of
similar configuration with k = 5 instead of k = 7
EI-k = 5-db = 2-R = 6. This model requires slightly
less parameters due to the reduced size of the input feature-
map and kernel size (85889 trainable parameters). As already
demonstrated, in general EI and LI in combination with FS or
FT ,S are superior to GI or FT .
The findings - in terms of the selected feature sets - confirm

the challenges of time-based reference DIs in a prognostics
scope, pointed out in the literature review, cf. Section II-C.
The same type of EMR yields high variance within time-
based reference DIs, partially due to fluctuations of e.g. AT,
RT, or PT during the fast contact making and breaking.
Hence, such features do not necessarily provide the best per-
formance nor robust result. The set of statistical features FS
provides somewhat more stable results among all tested EMR
and TCN configurations. Combining FT and FS as a joint

TABLE 6. Average results of the best performing models using
sub-sampling strategy S - EI or LI; sorted ascending to MAPE; k - kernel;
db - dilation base; R - Residual blocks; r - receptive field; F - data set;
validation metrics MAE, MAPE, RMSE and αsc with alpha = 0.2.

feature set FT ,S does not reflect a significant improvement.
Considering sequence-selection strategies - the performance
of GI is worse than LI or EI. This might be attributed to the
comparably smaller history coverage of each sequence point
of GI selected inputs in TCN. No significant difference in per-
formance between LI and EI can be recognised, suggesting
that recent changes in the degradation might not contribute
significantly more to the average degradation rate and RUA
estimation respectively.

Based on the strategy presented in Section IV, RUA
forecasts can support timely decisions for maintenance
scheduling. The performance of different sequence-selection
strategies and data sets in terms of RUA prediction is illus-
trated through an example in Appendix A, Fig. 19. The
forecasting performance matches our prior findings, where a
combination of data sets and the LI or EI sequence selection
strategies yield stable results. Again, purely relying on tra-
ditional time-based reference DIs might produce misleading
results.

In order to evidence the performance gains through TCN,
the proposed DL architecture is compared to a reference
LSTM model previously employed in RUL forecasting pro-
posed by [122]. The results are displayed in Table 7. TCN
significantly improves performance as the feature space
increases i.e., using FS or FT ,S , despite using less parameters.

Fig. 17 visualises the inference phase of the EMRUA
pipeline, which can provide timely RUA estimation in order
to be embedded in a maintenance solution e.g., PdM. The
RUA and the associated confidence interval is estimated at
three different times t during the EMR life. As the true
RUA decreases, the model’s estimation improves, assured
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FIGURE 17. Exemplary predicting RUA for one EMR at time t prior to: (top) 80000 actuations till failure; (centre) 50000 actuations till failure; and
(bottom) 25000 actuations till failure. The EI sequence selection strategy and the data set FT ,S are used.

TABLE 7. Comparison of the best performing TCN and a reference LSTM
architecture for the LI sub-sampling strategy.

through narrowing confidence intervals and matching mean
RUA prediction.

D. DISCUSSION AND FUTURE WORK
As the above analysis demonstrates, high variance among
samples in the data set is present, despite the same failure
modes. However, within the limitations of the considered
scenario of continuous EMR switching, the proposed con-
figuration of TCN exhibits promising results based on the
captured life cycle data. Sources of uncertainty can be further
reduced through collection of additional data. EMRUA as a
prognostics method can drive PdM, complementing existing
EMRmaintenance decisionmaking paradigms. It can provide
additional confidence in EMR performance, important within
critical systems. EMRUA has the capability of efficiently
providing real-time insights in the individual EMR health

with the associated uncertainty estimate, rather than blindly
relying on conventional maintenance measures. EMRUA
only relies on CV and CC measurements, which are already
commonly collected in many safety critical systems. How-
ever, only stuck-closed failures were considered. Though,
as our literature review has indicated, failure precursors are
subject to specific failure mechanisms in turn responsible
for different failure modes. Time-based reference DIs are
especially liable to such changes and could therefore develop
distinctly different trajectories for various failure modes.
Towhat extent this is also the case for the developed statistical
DIs contained in the developed feature set FS is subject to
speculation at this point. Thus, training individual models for
different failure modesmight be necessary and will be subject
of future work. In addition, further investigation of the meth-
ods’ robustness to changes in the volume and granularity of
available training data as well as the sampling rate is needed.
Optimisation of the hyperparameter selection through
e.g. grid search or randomised search should be then con-
sidered. Transfer learning is an area of interest, bearing the
potential to reduce training time not only among models for
different failure modes but also in respect to reducing the
amount of training data required when changing the EMR
type e.g., a different contact material or design. Of spe-
cial interest is the investigation of alternative measurements
e.g., the contact temperature using an infrared temperature
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sensor. Sensing such waveforms and extracting meaningful
features could improve the model’s performance, though the
practicality of such method might be limited. Lastly, we aim
to benchmark the concept of EMRUAon various high volume
PHM related data sets.

VI. CONCLUSION
EMRs are omnipresent in electrical systems. A data-driven
maintenance paradigm has the potential to improve EMR
reliability within these systems.

To facilitate the development of a prognostics method,
we first discussed the EMR’s failure modes (e.g., high
CR, stuck-closed and stuck-open contacts) and mechanisms
(e.g., electrical arcing, contact welding, contact contamina-
tion, fretting) acting predominantly on the electrical con-
tacts. We reviewed and explained the limitations of current
practices in EMR reliability modelling - relying solely on
traditional time-based reference DIs or CR for determining
the EMR SOH and RUL - in regard to their applicability in a
data-centric context.

Based on this state-of-the-art analysis, our methodology
presents a novel approach including but not limited to EMRs.
Our method is aligned to the challenge and opportunities of
high volumes of MVTD and efficient monitoring of EMRs.
Our proposed DL-pipeline EMRUA utilises the increasing
volumes of aggregated EMR data sampled from CV and CI
switching waveforms, to provide an accurate RUA estimation
throughout the EMR life. TCN has been adopted as autore-
gressive DL strategy incorporating MCD based uncertainty
quantification as a computationally efficient implementation
during inference. To support online maintenance decision
making, the trade-off between model complexity and model
performance were studied. Therefore, the effects of vari-
ous model hyper-parameters on the predictive performance
under consideration of the amount of trainable parameters
has been investigated. Additionally, three different feature
combinations and subsampling strategies have been explored.
The results indicate that TCN achieves the best performance
and the lowest forecasting error (MAPE = ±12%) using a
combination of time-based and statistical features and either
EI or LI subsampling. However, it is demonstrated that in
some instances classical, time-based reference DIs can have
adverse effects on performance. We developed an EMR life
cycle test platform to facilitate training, testing, and vali-
dation of the EMRUA pipeline through the generation of
high volumes of accurate and representative EMR run-to-
failure data. Further, we addressed the challenge of limited
availability of EMR life cycle data in a research context.

Summarising, based on EMR life cycle data we col-
lected, it is demonstrated how TCN can be fused into a
prognostic method. The proposed approach emphasises the
adoption of DL for PHM, considering high volumes of
data. This aids future research utilising DL - in particu-
lar for EMR - to develop novel, data-driven maintenance
solutions.

FIGURE 18. Average changes in EMR temperature throughout the EMR
life measured with an infrared temperature sensor on the EMR casing.

APPENDIX A
SUPPORTING FIGURES
A. CONTACT TEMPERATURE
Refer to Fig. 18.

B. TCN PERFORMANCE
Refer to Fig. 19.

APPENDIX B
EMR TESTING CONSIDERATIONS
Despite the fact that alterations in CR are not necessarily
reliable indicators for EMR wear, it remains a key-measure
to judge EMR performance. [57], [123] specify dry-contact
measurements preferable at low test currents and voltages
of less than 80 mV to mitigate effects of electromagnetic-
force. Dry contact measurements might not return accurate
CR measurements if the contacts are under load. Fritting can
be the cause for significantly higher CR measurements. The
presence of films on the contact surface can relates to this phe-
nomenon. As electrical destruction of the isolating layer can
be achieved by switching at higher voltage, an instantaneous
change of CR can be observed when increasing the voltage
across contacts. The voltage at which this breakdown takes
place is referred to as wetting-voltage. The initial drop in CR
is commonly referred to as A-fritting. Its extend depends on
the thickness of the insulating layer. The CR then settles on
a plateau and the current flows to isolated, scattered a-spots
creating constricted regions of high current density. In turn
a heat up of the vicinity around the current carrying paths
thermally destroys the adjacent isolation barrier. This process
increases the effective contact area until a sufficiently large
contact area is established. Latter process is termed B-fritting.
In regard to contact testing [1] points out that, though it is
industry standard to test at maximum rated specifications,
no assurance can be given that the degradation behaviour of
electrical contacts at lower loads will be similar. For example,
testing using high loadswill circumvent problems like contact
film contamination encountered only at lower loads.
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FIGURE 19. Performance of various TCN configurations 20000 actuations before EOL for one EMR sample.

In order to accelerate the general degradation or one partic-
ular degradation type, one can explore different means. The
most apparent approach is an increase in switching frequency
under the assumption that this does not alter the overall degra-
dation behaviour of the contacts and the EMR. Alternatively,
an increase of the contacts stress through elevated current lev-
els can be considered. In DC testing, the effects of switching
the anode and cathode among the contacts in the test setup
alters the degradation pattern as e.g., cost-efficient consumer-
EMRs tend to have a thicker stationary contact carrier and a
thinner movable contact carrier i.e., realised as an integrated
spring. The moving contact carrier experiences much more
severe heating andmelting effects as it is much thinner, which
might accelerate failure in an unintended way. The thinner,
moving spring contact carrier melts due to increased heat
build-up. However, such failure should be carefully examined
as it significantly depends on the design and dimension of
the contact-carriers in the EMR. To reduce the heat build-up
whilst testing in a DC setting, the experimental design can
specify the static contact carrier side as anode [1]. Testing
under elevated ambient temperature, will reduce arcing and
erosion respectively, but might increases degradation effects
like contact corrosion or the possibility of coil failure [9].
Parameters in order to accelerate EMR degradation are dis-
cussed in Table 8

APPENDIX C
CONTACT MAKING
A. WAVEFORM
An arc establishes, if the voltage across two contacts is higher
than the breakdown voltage and the travel time to make
contact is longer than the minimum time necessary for the
discharge. This type of arc is sometimes termed pre-strike arc
and it might be of very short duration. It can be observed, that
a voltage increase relates to a decreased time to discharge,
allowing for sufficient arcing already in closely-spaced, fast-
closing contacts.

In Fig. 20 the first contact making is established at 0.5 ms.
The voltage drops and the current increases as the contact
is established among the conducting a-spots. However, due
to the kinetic energy preserved in the contacts the moving-
contact-carrier bounces back as can be seen around 0.6 ms.
A molten metal bridge forms and ruptures causing a very
short metallic-arc. As the contact gap is widening, the arc
transfers to an ambient-gaseous-arc, which is accompanied
by a voltage spike prior to settling around the minimum arc
voltage of 13 V at 0.65 ms. The voltage spike is caused by
the high pressure metal vapour region between the closely
space contacts, initially allowing no conduction to be estab-
lished within the metallic particle cloud [126]–[128]. The
arc reaches its maximum length approximately at 0.7 ms
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TABLE 8. Parameters to consider when testing EMR.

FIGURE 20. Voltage and current waveform for a making actuation; EMR (AgSnO2In2O3)-plated copper contacts; measurements obtained during the
experiment.

as the contacts start to close again. The contribution of the
first arc to the degradation will be comparably higher than
those of any following bouncing related arc events during
one actuation if it is the predominant arcing event [1]. As the
contacts touch the 2nd time at 0.8 ms, the arc is extinct
as the voltage drops. On this second bounce, the contacts
essentially close on a molten metal surface, due to the heat-
ing of the arc. This damps the impact of the contacts and

further reduces the kinetic energy. However, it is here where
contact welding might occur. The duration of the continuing
bounces decreases - one can observe a second and third
arc, each shorter in duration than the previous one - as the
preserved kinetic energy of the contacts decreases. Due to
the effects of electric arcs, the decrease of kinetic energy of
the contacts is accelerated compared to a decrease by purely
mechanical bouncing. Lastly the contacts settle at 1.8 ms as
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FIGURE 21. Contact making waveform from the first actuation (yellow) to EMR-EOL (green). CC (left), CV (centre), CI (right).

the contact force becomes larger than the remaining kinetic
energy.

B. DETERIORATION
In Fig. 21, the changes of the raw CV and CI waveform of the
making actuation throughout the EMR life are displayed. The
change in time-based reference DIs during making is appar-
ent if compared to the CC waveform. Further, the intensity
and frequency of contact bouncing becomes more prominent
towards the EOL.

C. FEATURES
Fig. 22 displays statistical features extracted from one sample
in the selected FS data sets. Fig. 23 depicts the trends of time-
based reference DIs.

APPENDIX D
CONTACT BREAKING
A. WAVEFORM
When metallic, current carrying contacts separate, an instan-
taneous sequence commences. A large number of research
projects have dealt with this topic, trying to empirically
understand the processes involved and to determine the
underlying physical phenomena [66], [129], [130]. In general
EMR contacts break as follows: 1st , as the contact force
decreases and the contacts part, the voltage increases due
to a reduction in the number of current carrying a-spots.
Hence, the effective contact area is reduced. This process of
opening is accelerated by the so called blow-off force, which
is a result of the increasingly restricted current flow through
the diminishing effective contact area [131]. This force will
reduce quickly as the contacts further open and is substituted
by forces stemming from the electrical arc. During the initial
phase the voltage increases above the static voltage of the
closed contacts; as the contact surface decreases further, the
local restriction of the current flow heats up the remaining
contact spots. Reaching themelting temperature at the contact
spots, a bridge of molten metal will form and span between
the parting contacts. Meanwhile a steady voltage increase can

be observed, whereas the melting voltage is comparable with
the quasi-static voltage for currents below 100 A [126]. 2nd ,
during the stable phase, the voltage increases. This can be
observed for all current-levels, in an air environment as well
as in vacuum [128]. Different mechanism contribute to the
material transfer as the contacts separate, some attributed to
the Thomson-Effect [53]. However, [132] argues, the gross
of material transfer is subject to electromigration. It is rea-
soned that electromigration will be predominant as molten
metal bridges typically have small diameters. Hence, high
current densities and elevated temperatures increase the rate
of diffusing ions, where the temperature varies between the
melting and boiling point of the metal. As the contacts further
separate the 3rd regime commences. The bridge becomes
increasingly unstable, ultimately leads to its rupture. This
phase distinguishes itself by its oscillating voltage fluctua-
tions, spiking up to the minimum arc voltage and dropping
down to the melting voltage. Though, such voltage spikes can
have a stabilising effect on the bridge. Due to the increased
power more metal is molten at the bridge root and sustaining
the elongating bridge, whilst increasing its diameter. Vice
versa, the current density is reduced, which minimises ther-
mal stress. However, a set of interacting processes excite the
moltenmetal bridge rupture e.g., the temperature in the bridge
might reach the boiling temperature of the material, hydro-
dynamical-instabilities in the material, dynamic changes in
surface tension as the bridge stretches as well as magnetic
pinch forces depending on the carried current [126], [133].
Following the rupture of the molten metal bridge, the 4th

phase commences as an initial arc forms, also referred to
as bridge-column arc or pseudo-arc [133]. However, is it
important to emphasise that the arc will only form, once the
bridge has ruptured [128]. Metal vapour, consisting out of
around 5 % of the particles from the molten bridge rupture,
remains in the contact gap. At this very initial stage and prior
to the bridge-column arc, a non-equilibrium high pressure
zone establishes, characterised by the high density metal
vapour and very low conductance [124], [128]. Thereby, the
voltage rapidly increase between the contacts and peaks as the
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FIGURE 22. Selected statistical features of one EMR contained in FS (from contact making).

FIGURE 23. Selected time-based reference DIs of one EMR contained in FT (from contact making). Arcing Time (AT), Pick-Up Time (PT), Bounce
Time (BT).

pressure begins to fall to 2 − 3 bar decaying as quickly [1].
Now, the area between the contacts acts like a capacitor
with a very small capacitance [128]; remaining charges from
the circuit inductance, which prevent such an instantaneous
change in current, flow into this capacitor. At last, the bridge-
column arc is established as the current carrying ions impact
the cathode at the origin of the molten metal bridge. High
erosion rates resulting in material transfer from anode to
cathode can be observed during this phase as most current
is carried by ions. Because the pressure continues to fall,
the bridge column arc changes into a normal arc operating
predominantly in the ambient gas rather than themetal vapour
at a voltage around the material dependent minimum arc-
voltage. Material transfer continues from anode to cathode,
though the transfer rate decreases.

Following the breakdown of the molten metal bridge,
detailed above, exemplary one can see the process of ambient
air arc establishment, sustainment and extinguishment in the

recorded breaking actuation in Fig. 24. First, the contact gap
increases, the voltage spikes, then settles around 13 V across
the contacts - the minimum arc voltage for copper-contacts as
reported in [1]. An instantaneous current drop to 5 A follows,
the initial arc establishes at 0.95 ms. Now, the metallic-arc
starts transferring to an arc burning in ambient air. The arc
begins to lengthen, due to the contact parting. Simultaneously
the arc diameter shrinks. This causes an increase in voltage.
The waveform of the current and voltage behave increas-
ingly linear and smooth at higher current levels during con-
tact breaking. Though, at relatively low current-levels, as in
Fig. 24, a distinct sequence of voltage steps and fluctuation
can be differentiated. [134] report the occurrence of those
distinct steps. The initial voltage step can always be observed,
though, the probability of subsequent steps decreases as the
circuit voltage is increased. However, the steps observed in
Fig. 24 are not as distinct despite the relatively low switching
voltage. This can be attributed to the fast switching of the
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FIGURE 24. Voltage and current waveform for a breaking actuation; EMR (AgSnO2In2O3)-plated copper contacts; measurements obtained during
the experiment; refer to Section V-A.

EMR contacts (around 0.6 ms to complete the opening of the
contacts). The spike of voltage and current at around 1.0 ms
might be attributed to the ongoing transfer from metallic to
ambient air arc [135], because the metal vapour in the contact
gap is still diffused by the molecules of the ambient air and no
longer able to maintain the discharge of the electric arc. How-
ever, [136] shows that such behaviour can also be observed
in vacuum and therefore the explanation of this phenomenon
given by [135] does not yet provide a satisfactory answer.
Prior to 1.6 ms, one can observe a sharp decrease in current
turning the energy balance of the arc negative i.e, the arc
loosesmore energy than supplied through the cathode. Hence,
it becomes unstable, the current drops below 1 A, and the
voltage reaches 30 V. Subsequently the arc is extinct at 0.5 A
which agrees with the measurements reported by [137].

B. DETERIORATION
Fig. 25 presents the changes of the breaking actuation.
An increase in RT can be observed.

C. FEATURES
Fig. 26 displays selected features from the data set FS
attributed to contact breaking. As shown in Fig. 27, AT
increases during contact breaking, as the longer duration of
the arc increases the rate of electrical erosion on the contact
surface. This accelerates the degradation process throughout
the EMR life. A reason for this increase in AT is the growing
surface roughness of the contacts, a decreasing contact spring
force, reduction in the contact thickness leading to longer
contact travel, and contamination on the contact surface low-
ering the required minimum arcing-voltage. Likewise, the RT
exhibits an increase in duration, either indicating an increase
in coil resistance and delaying the travel of the armature, or a
more frequent sticking of the contacts (sometimes referred to
as micro-welding) in combination with a decreasing spring
force, causing a slower retraction of the contacts from each
other.

APPENDIX E
CR FLUCTUATIONS IN SILVER-PLATED CONTACTS
Silver contacts - designed as pure silver, silver-alloy or silver-
metal oxide contacts - are widely used as EMR contacts,
either welded on the contact carrier or as contact-rivet. Beside
economical factors, silver-based contacts exhibit low CR, due
to low oxidation rates despite the temperature increase on
the contact surface initiated through electrical arcing [138].
Additionally, the oxides formed from silver are unstable at
higher temperatures. However, as pure silver has a high ten-
dency for contact welding, typically silver-composite materi-
als are used. Internal oxidation of these materials can reduce
the weld strength, increase the material hardness, reduce con-
tact sticking and material loss [3], [4]. However, an operating
temperature increase can be observed relating to a decrease
of the electric conductivity as the material’s oxidisation rate
and its resistance against arcing rises [139]. Manufactured
using internal-oxidisation, EMR applications typically utilise
these silver-metal oxides in low power applications of up
to 20 A [3]. Up to 15 % oxides are found in these types
of contacts [65]. Predominant failure mechanisms are due
to arcing leading to contact erosion. The surface material
decomposes, through evaporation, splattering or welding as
the silver and the oxidised metal dissociates [140]. Con-
tact material improvement is an active field of research
e.g., [62] and [2] reporting results of contact erosion rates for
silver-oxide contacts subjected to higher load currents. Toxic
Silver-Cadmium-Oxide (AgCdO) contacts exhibit lower ero-
sion rates than Silver-Tin-Oxide (AgSnO2) contacts. This is
due the comparably higher energy required for arcing on
AgSnO2 contacts. Hereinafter, oxidised Silver-Tin-Indium
(AgSnO2In2O3) contacts show even further reduced rates of
erosion in comparison to e.g., AgCdO contacts [139].

Certainly, silver-based contact material improves the per-
formance of the contact-material. However, in terms of
contact health monitoring, such contacts pose a challenge.
Research has shown that EMRs equipped with silver-based
contacts operating in normal, ambient air are prone to erratic
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FIGURE 25. Contact breaking waveform from the first actuation (yellow) to EMR-EOL (green); CC (left), CV (centre), CI (right).

FIGURE 26. Selected statistical features of one EMR contained in FS (from contact breaking).

FIGURE 27. Selected time-based reference DIs of one EMR contained in FT (from contact breaking). Arcing Time (AT), Release Time (RT).

fluctuations of CR. [1] provides some references, demonstrat-
ing that for load currents beyond 0.2 A the CR either starts

fluctuating after an initially stable phase or from the start
throughout the entire duration of the experiment. The rate and
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FIGURE 28. Examples of CR measurements recorded during the life cycle experiments. (I) an unsealed EMR (operated in ambient air); (II) a sealed
EMR (no exposure to the ambient air).

amplitude of the fluctuations increases as the load increases.
This can be linked to the growing fretting rate as well as
contact erosion if arcing becomes the dominant degradation
driver over the plastic deformation encountered at lower load
currents. High CR values can be observed after several, long-
duration gaseous-arcing events (> 1 ms) [59], [141]. If arc-
ing is only of short duration e.g., an electric arc operating
only in metal vapour at very low load current, the ampli-
tude of CR fluctuations is comparably lower. If shorter arc-
ing changes to extended arcing, an almost instantaneous
increase in CR can be observed, remaining high as long
as the arc does not shorten [141]. The reduction in CR as
the arcing duration shortens appears gradually. Relying on
surface roughness measurements, the authors conclude that
this increase and subsequent decrease of CR is attributed to
changes in the contact surface. Nonuniform deposition of
transferred material alters the contact morphology and the
effective contact area respectively, chaining the contact spots
at each making and breaking operation. However, as [59],
[63] experimentally demonstrate, these CR fluctuations are
dominated by non-conductive oxide film formation on the
contact surface surpassing the effects of contact morphol-
ogy alterations as the contact load increases. An analysis
of the contact surface reveals build-up of absorbed oxy-
gen contaminating the contact surface; these oxidised spots
being preferable hit by the arc root, due to the electric field-
enhancement effect [64]. Metallic- and gaseous-arcs exhibit

different deposition mechanisms relevant to contact oxidisa-
tion and CR fluctuations. If the load current is high, the dura-
tion of the gaseous-arc following the metallic-arc lengthens
and degradation mechanisms during the gaseous-arc phase
become predominant. During the relative short metallic-arc,
anode contamination films are removed due to electron sput-
tering as elaborated in Section II-B1, which leads to amaterial
transfer from anode to cathode. Respectively, this contam-
inates the cathode surface during the metallic-arc. As [64]
demonstrate, the presence of oxygen affects the metallic
phase arc. The minimum arc voltage to sustain a metallic-
arc is lowered in an oxygen atmosphere compared to the
minimum arc voltage in a nitrogen atmosphere. The authors
find this to be true even for very small concentrations of oxy-
gen. Recall, however, that the metallic-arc is operating in a
high-pressure zone within the metal-vapour matrix, hence the
type of atmosphere should be insignificant for the required
minimum-arc voltage. Therefore, it can be concluded that
preceding oxidation of the contact surface must have taken
place e.g., during storage or during a previous gaseous-arc.
The direction of material transfer is reversed during the
gaseous-arc phase. Unlike the metallic-arc, the gaseous-arc is
exposed to higher concentrations of oxygenwithin the contact
gap. Such arcing regimes leave visible, dark oxidation films
on the anode surface, forming non-conductive contamination
layers. Nonetheless, oxide films can also form around the
arcs vicinity on the cathode, in a circular pattern. In case the
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cathode is subjected to ion-sputtering, the cathode’s surface
is cleaned. A reduction in thickness of the developed oxide
contact films promotes the formation of metallic clusters at
the contact surface [63]. Further material accumulates on the
anode, because it is transferred from the cathode to the anode
during arcing. The silver-oxides are only stable at lower
temperature, the majority of silver-oxides stems from silver
being oxidised in the extinguishing gaseous-arc.

The CR fluctuations depend on a multitude of factors. [63]
demonstrate that the contamination film thickness on the
anode as well as the CR increases with increasing oxygen
concentration and arc-duration. As per silver-based contacts,
the gross of the CR fluctuation can be attributed to the depo-
sition of silver-oxide films on the contact surface, increasing
CR and on the other hand ion-sputtering cleaning the con-
tacts, thus, reducing CR. The presence of even small traces of
oxygen reduces theminimum required arcing-voltage extend-
ing the arcing duration whilst producing highlighted spots
for electrical arcing. Slower contact velocity or switching
frequency promotes higher rates of oxidation and can be
linked to CR fluctuations [11], [99]. Further, CR fluctua-
tions manifest as contact degradation which is accelerated
by the reduction of conducting paths i.e., a-spots, due to
shifting oxide contamination patches and the oxide debris
deposited on the surface. Mechanical rupture of oxide films
might increase or decrease CR. However, [1] annotates, that
oxide film formation is only dominant when small amounts
of carbons are available i.e., contact activation does not play
a significant role. Otherwise, the oxide layer is replaced by
silver carbonate layers. Its further worth mentioning, that
fluctuations of CR can also be caused by silicon-vapours
dissolved from e.g., the EMR enclosure [78].

To illustrate the challenges when relying on CR as DI
(discussed in Section II-C), we consider the effect of the
environment in which silver-based EMR contacts are oper-
ated in. Therefore, a comparison of CR recorded during
the conducted EMR life cycle experiments for a sealed
and unsealed EMR is presented. First, CR measurements
for (AgSnO2In2O3) plated EMR contacts exposed to ambi-
ent air (unsealed), operating at 6 A restive load are shown
in Fig. 28-(I). Significant CR fluctuations up to 100 m�
throughout the entire EMR life are evident, exceeding the
maximum rated CR. Such anomalies are indistinguishable
from the final rise in CR prior to the EOL and mask any
underlying trend as reported in [55]. The findings align with
results in [59], [63], [95], [141].

On the contrary, in Fig. 28-(II), the same contact type of
(AgSnO2In2O3) plated EMR contacts is operated in a sealed
enclosure, without exposure to oxygen from the ambient air.
Initially, the contacts also exhibit high CR fluctuations, due
to the burn-in phase, where small trace amounts of residue
oxygen have already been deposited on the surface. This
has been reported by [142], stating that oxide deposition can
occur on EMR contacts despite sealing. However, at around
10 % of the EMR the CR stabilises and increases contin-
uously till EOL. Concluding, the operating environment in

combination with the contact material and electrical arcing
renders CR unsuitable as DI for silver-based EMR contacts
exposed to ambient air. In the case of sealed EMR, CR holds
value for maintenance purposes, though obtaining accurate
CR measurements is laborious.
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