
Control of aquadrupedal
manipulator using
hierarchical inverse
dynamics
K. Krämer
Supervised by:
Dario Bellicoso (ETH)
Dr. Christian Gehring (ETH)
Mukunda Bharatheesha (TUDelft)
Prof. Dr. Heike Vallery (TUDelft)

Control of a quadrupedal
manipulator using hierarchical

inverse dynamics
by

K. Krämer
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Wednesday June 20, 2018 at 2:00 PM.

Student number: 4419642
Project duration: July 1, 2017 – December 31, 2017
Thesis committee: Prof. Dr. H. Vallery, TU Delft, supervisor

M. Bharatheesha, TU Delft, supervisor
Dr. J. Alonso-Mora, TU Delft

This thesis is confidential and cannot be made public until December 10, 2018.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

Many robots exist which are fixed to their environment and excel in a specific task. In contrast, the prevalence
of general purpose mobile robots with manipulation capabilities is still low, despite various applications of
such systems such as: disaster response, payload delivery, and assistive/service tasks. A suitable design for
such a robot would be that of a torque-controllable quadrupedal manipulator. Its capability for legged lo-
comotion enables high mobility, specifically on rough terrain, while its quadrupedal morphology provides
a relatively large and stable base of support compared to bipedal robots. Torque-controlled joints allow for
safer and more controllable interaction with the environment.

For such a system a challenge lies in the design of a controller that actually achieves the promising ca-
pabilities for locomotion and manipulation that the mechanical system offers. One of the currently most
promising control frameworks for this purpose is that of hierarchical inverse dynamics. This real-time whole-
body control framework allows for dynamic whole-body motions and compliant interaction with the envi-
ronment while enforcing a strict priority between the desired control tasks. Although promising results have
previously been attained with such controllers, it has not yet been applied for the control of a quadrupedal
manipulator. The focus of this thesis is on the implementation of a hierarchical inverse dynamics controller
for the control of a simulated quadrupedal manipulator, with a particular focus on the design of prioritized
sets of control tasks which generate forms of stationary whole-body manipulation.

First a basic set of prioritized control tasks is presented, which is shown to satisfy the robot’s most crucial
control requirements. Subsequently three extended sets of control tasks are presented, which result in addi-
tional desirable emergent behavior of the robot. The first one of these depends on the inclusion of kinematic
joint limit tasks to prevent kinematic singularities and self-collision, and to trigger whole-body reaching mo-
tion. Secondly a set of tasks is presented which is focused on utilizing motion of some of the torso’s degrees
of freedom to optimize the arm’s posture according to a posture-related cost function. Thirdly a set of tasks
is presented which enables contact force control at the end-effector for force-based manipulation. In ad-
dition to this final set of tasks, a higher-level controller is presented which detects external forces acting on
the robot and computes a desired shift of the position of the robot’s center of mass in order to mitigate the
balance-disturbing effects of external forces. All of the presented sets of tasks do not exclude each other and
allow to be implemented simultaneously in order to combine the individual benefits that they offer.

The results of this research project show that hierarchical inverse dynamics control can be successfully
applied for the control of a simulated torque-controllable quadrupedal manipulator. Moreover, it is shown
that well-designed sets of prioritized control tasks allow for emergent whole-body behaviors which exploit the
advantages that both the robotic system and the control framework offer. Future work will need to investigate
the transferability of these results to a physical robot.

iii

Contents

1 Introduction 1
1.1 Torque-controlled quadrupedal manipulators . 1
1.2 Hierarchical inverse dynamics . 2
1.3 Contribution and outline . 3

2 Theoretical basis 5
2.1 Robotic platform . 5
2.2 Simulation . 6
2.3 Control framework . 6

2.3.1 Model formulation . 6
2.3.2 QP formulation . 7
2.3.3 Prioritized set of tasks . 8
2.3.4 Dynamic consistency . 9

2.4 Equality tasks . 10
2.4.1 Motion tasks . 10
2.4.2 Contact force tasks . 11
2.4.3 Joint torque tasks . 11

2.5 Inequality tasks . 11
2.5.1 Inequality tasks - Motion. 11
2.5.2 Inequality tasks - Contact forces . 12
2.5.3 Inequality tasks - Joint torques . 13

2.6 Research focus and problem statement . 13

3 Basic Implementation 15
3.1 Introduction . 15
3.2 Controller design . 15
3.3 Results . 17
3.4 Discussion . 17

4 Whole-body reaching 21
4.1 Introduction . 21
4.2 Controller design . 21
4.3 Results . 22
4.4 Discussion . 25

5 Posture optimization 27
5.1 Introduction . 27
5.2 Controller setup. 27
5.3 Results . 29
5.4 Discussion . 30

6 Force-basedmanipulation 33
6.1 Introduction . 33
6.2 Controller setup. 33
6.3 Results . 36
6.4 Discussion . 40

7 Balance disturbance rejection 43
7.1 Introduction . 43
7.2 Controller setup. 43
7.3 Results . 45
7.4 Discussion . 46

v

vi Contents

8 Discussion 49
9 Conclusion 53
Bibliography 55

1
Introduction

1.1. Torque-controlled quadrupedal manipulators

Robotics is aimed at providing machines which, instead of humans, can interact with our physical environ-
ment. This field has progressed far in industrial settings, where robots typically are fixed to their environment
and are developed for very specific tasks only. In contrast, mobile robots that can perform a wide variety of
manipulation tasks across an unstructured environment are still rare. This is the case even despite obvious
useful applications that this type of robot would have in fields such as disaster response, payload delivery,
construction and assistive/service robotics. This lack of generally applicable mobile systems became ob-
vious during the 2011 Fukushima disaster in Japan, where an earthquake and subsequent tsunami hit the
Fukushima-Daiichi nuclear power plant. In order to inspect and attempt to mitigate negative effects of the
disaster, various teleoperated mobile robots were sent into the power plant, which was too dangerous for hu-
mans because of high radiation levels [29]. However, these robots turned out to have great difficulties dealing
with: the rough terrain inside the plant, manipulation tasks such as opening doors, and communication is-
sues.

For this reason the US Defense Advanced Research Projects Agency (DARPA) organized the DARPA Robotics
Challenge from 2012 to 2015 to stimulate the development of robots that could interface with environments
designed for humans, use human tools, and be commanded by humans without specialized training [39].
The competition consisted of a variety of tasks that mimicked a disaster response scenario. Tasks included:
traversing rough terrain and stairs, removing rubble, and opening doors and valves. These tasks had to be
performed by robots which were remotely controlled through a low-quality network connection. This com-
petition gave an excellent overview of the current state-of-the-art performance of general purpose mobile
manipulators.

One of the observations that could be made was that many of the robots used some form of legged loco-
motion. Legged robots, in contrast to wheeled robots, have the advantage of being able to negotiate un-
structured, non-smooth terrain. This capability is essential for tasks that lack a structured and predictable
environment, such as disaster areas, typical household settings or natural environments like forests.

Results from the DARPA Robotics Challenge show however that legged locomotion and manipulation are not
easily combined. During the competition one of the main problems turned out to be robots losing balance
and falling as a result of attempting to manipulate their environment [9]. This is especially a problem for hu-
manoid robots, which many of the participating robots were. These robots are designed according to human
morphology in order to function in a human-centered environment, but therefore also have an inherent low
stability because of the relatively small base of support offered by the two feet. This illustrates that there is a
clear need for robots that can combine manipulation with a reliable and stable means of legged locomotion.

This is a requirement that can be met by quadrupedal robots. These have shown to be able to display a wide

1

2 1. Introduction

range of highly mobile gaits [36][51][11], while also having the advantage of being inherently more stable than
bipedal robots because of the large base of support that four legs offer. Quadrupedal robots would therefore
make an ideal base for a general purpose mobile manipulator. A quadrupedal manipulator would be able to
combine manipulation capabilities with a high mobility and a large robustness against external forces.

The concept of a quadrupedal mobile manipulator is not new. [41] provides an overview of previously built
quadrupedal manipulators and contains several notable recent projects. One of these is IIT’s hydraulic torque-
controllable HyQ robot [40]. This robot depends on two discoupled controllers for the arm and the legged
base, where the controller for the legged base takes into account the expected disturbances generated by dy-
namic motions of the arm. A different project is Boston Dynamics’ BigDog platform which is extended with
a 7 DOF arm to create a fully hydraulic torque-controllable robot that can use coordinated whole-body mo-
tion to throw a cinder block [8]. The controller combines an off-line computed throwing motion for the arm
with their on-line trotting controller to achieve impressive whole-body manipulation. However, they only
report on the specific task of cinder block throwing and not on a control framework for general purpose mo-
bile manipulation. Boston Dynamics’ newest quadrupedal manipulator, SpotMini, does show on video to be
able to combine versatile and robust legged locomotion with general purpose whole-body manipulation [6].
Unfortunately, no published results on this robot are currently available.

It is interesting to note that several of the more recent quadrupedal manipulators in this list[41] have been
built with torque-controlled joints instead of traditional position-controlled joints. Compared to position-
control, torque-control allows for more advanced control frameworks and safer interaction between the robot
and its environment. Indeed in recent years the need for inherently safe robots has been answered by an
increasing development of lightweight torque-controllable robots [14][7][5]. As a key feature, these robots
allow for the application of inverse dynamics (ID) control: for desired robot motions, a dynamic model of
the robot is inverted to compute the required joint torques. Because this approach explicitly compensates
for expected gravitational and dynamic disturbances, it only requires relatively low gains for good motion
tracking. This is in sharp contrast with more traditional position-controlled robots, which are characterized
by the need for high gains to ensure proper tracking performance under the exposure of external disturbances
such as gravity. Therefore torque-controlled robots are more adaptable to their environment and safer in
interaction, making them more desirable than position-controlled robots in human-centered environments.

A similar shift towards torque-controlled robots is being seen in the field of mobile manipulation with re-
search being performed on newly developed robotic platforms such as on DLR’s humanoid TORO robot [16],
IIT’s quadrupedal HyQ [44] and humanoid COMAN [49], and ETH’s quadrupedal ANYmal [26]. Although
fully torque-controlled legged manipulators are currently still rare, the aforementioned properties and the
increased availability of torque-controllable actuators, make a compelling argument for future quadrupedal
manipulators to rely on torque-controllable joints. For this reason the focus in this thesis will be on this type
of platform.

1.2. Hierarchical inverse dynamics

This next generation of quadrupedal manipulators will have to be able to deal with rough terrain and be able
to safely and robustly interact with a human-centered environment, while also taking full advantage of all
of the robot’s degrees of freedom (DOFs). This means that the legged base is not only used for locomotion
and that any manipulator arms are not only used for manipulation. Instead these two systems would ide-
ally complement each other where possible, in order to fully exploit all of the robot’s DOFs for an optimal
task performance. The legged base could for example be used to enlarge the manipulator’s workspace reach-
ability, or the manipulator could be used to aid in locomotion by engaging in additional contacts with the
environment. Besides these behavioral requirements, the possible application of quadrupedal manipulators
in for example disaster response would also make it very desirable to have the possibility to teleoperate the
robot in real-time.

A big challenge therefore lies not only in the mechanical design, but also in the control of such a quadrupedal
manipulator such that these requirements are met. As mentioned in [38], there currently exists a large gap
between what legged manipulators can theoretically do, and what they can actually do. A suitable control
framework will enable the robot to perform multiple desirable tasks simultaneously, such as: center of mass

1.3. Contribution and outline 3

motion tracking, manipulator motion tracking, and contact force distribution over the limbs. A control ap-
proach that allows for this is that of (multi-task) operational-space control (OSC) [30]. This approach is aimed
at intuitively specifying motion of specific parts of the robot (e.g. end-effector) and/or contact force tasks in
the Cartesian operational space, after which the control algorithm uses inverse dynamics to compute the re-
quired joint torques at the joint level. This approach provides instantaneous solutions based on a linearized
model of the robot. This makes it necessary to run the controller at a high ms-level control rate, but also
allows for real-time control and direct teleoperation.

One of the key features of multi-task OSC is that it allows for specification of a task hierarchy in which lower
priority tasks are only executed as well as is possible without disturbing the performance of higher priority
tasks. Although these frameworks traditionally depended on analytical computations [30][25], recent ad-
vances have shown a shift towards a numerical optimization-based approach [17][22][10]. The dependence
on an optimization algorithm allows for the explicit incorporation of tasks which are formulated as inequality
constraints. This is very useful for application on a real robot because it allows for incorporation into the con-
troller of the robot’s physical limits, such as kinematic joint limits, actuator torque limits, and the unilateral
and friction-dependent nature of contact forces.

Multi-task OSC can currently be considered the ’de facto’ standard for the control of legged manipulators, as
it is well understood and able to produce practically useable results [38]. This can be illustrated by looking
at the control frameworks used by the teams that performed best in the DARPA Robotics Challenge. Many
of these teams used a form of multi-task OSC, like for example the top three performing teams [32][47][31].
In the last decades, because of a lack of accurately torque-controllable robots, this control framework has
most often been used on an inverse kinematics level for the control of position-controlled robots. However,
in recent years several research groups have also started publishing on the application of hierarchical inverse
dynamics controllers on torque-controllable robots, resulting in some impressive behaviors [15][21][23][10].
These controller implementations have mostly not yet focused on generally usable mobile manipulation, but
usually only focused on subtopics such as multi-contact balance or locomotion. Because most of the few
existing fully torque-controllable legged robots have only recently been developed, the application of hierar-
chical inverse dynamics control is still a strongly developing field of research. Intentions for implementation
of such a multi-task inverse dynamics controller on a torque-controlled quadrupedal manipulator platform
have been expressed in literature [10][40], but to date no published results on actual implementation exist
yet.

1.3. Contribution and outline

Because of their high mobility and inherent stability, torque-controllable quadrupedal manipulators appear
to be an excellent platform to meet the demands of a general purpose mobile manipulator. Despite the
fact that applying hierarchical inverse dynamics for the control of this specific type of robot appears to be
a promising approach, currently no research has yet been published on such an implementation. For these
reasons the objective of the research presented in this thesis is to explore specific forms of implementation
of an optimization-based hierarchical inverse dynamics control framework for the control of a quadrupedal
manipulator, which exploits the characteristic advantages offered by both the control framework and the
robotic platform.

In the next chapter the theoretical background for this research will be provided, followed by a more detailed
problem statement and research focus description. In Chapters 3 till 7 specific controller implementations
will be presented, each of which is focused on meeting a specific set of control requirements for the robot.
These chapters each contain their individual Results and Discussion sections. Chapter 8 provide a general
discussion on the research presented in this thesis, followed by a conclusion in Chapter 9.

2
Theoretical basis

The research presented in this report was performed at the Robotic Systems Lab (RSL) at ETH Zurich, Switzer-
land. This lab has considerable experience with the control of quadrupedal robots, such as StarlETH [24] and
the more recent ANYmal robot [26]. Plans for the near future include extending the ANYmal robot with ma-
nipulation capabilities in order to create a quadrupedal mobile manipulator. It is the simulated version of
this robot that the research of this thesis has been conducted on. A state-of-the-art inverse dynamics control
framework based on hierarchical optimization has already been successfully used for the control of the ANY-
mal robot itself [10]. The same control framework is planned to be used for the control of the quadrupedal
manipulator and is therefore the control framework which is considered in this thesis. This chapter contains
a description of the robot and simulation environment and of the employed control framework.

2.1. Robotic platform

Figure 2.1: Simulated version of the quadrupedal ANYmal robot with 6-DOF Kinova manipulator arm.

The quadrupedal manipulator that is planned to be built by the RSL consists of the existing ANYmal robot,
with the addition of a 6 DOF Kinova manipulator arm [3] attached to ANYmal’s torso, as shown in Figure 2.1.

ANYmal is a quadrupedal robot developed for operation in harsh environments. It has a mass of 30 kg and a
height of 0.5 m, and is built in a modular way for simple maintenance and user-friendly handling. It consists
of a torso with four 3-DOF torque-controllable legs with point-feet. All joints are actuated by the RSL’s in-
house developed ANYdrives [1]. These series-elastic actuators form compliant joint modules with integrated

5

6 2. Theoretical basis

electronics. The ANYdrives allow for precise torque-control and robustness against impulsive loads during
running and jumping. Previous research has demonstrated that ANYmal is capable of executing various gaits
such as dynamic walking and crossing rough terrain [10][11][18].

The manipulator that will be mounted on ANYmal to form a quadrupedal manipulator is the Kinova JACO2 6
DOF-S robotic arm [3]. This robotic arm is equipped with 360 degrees rotatable joints which include torque
sensors that allow for torque-control. Its lightweight carbon-fiber design gives it a mass of 4.4 kg and a reach
of almost 1 m. When combined with the ANYmal robot it will form a fully torque-controllable mobile manip-
ulator.

2.2. Simulation

Because the actual robot has not been built yet at the time of this research, all experiments have been con-
ducted in the open-source physics simulation software Gazebo [2]. Accurate dynamic models for these sim-
ulations were available for both ANYmal and the Kinova arm. Past experiments on the ANYmal robot in the
same simulation environment have shown good transferability to implementation of the same control soft-
ware on the actual robot.

2.3. Control framework

Previous research at the RSL has focused on whole-body control of quadrupedal robots. This was initially
done in the form of a hierarchical inverse dynamics control approach for the robot StarlETH [25]. This con-
troller depended purely on analytical methods. In contrast, recent research has been focused on the imple-
mentation of a numerically-based inverse dynamics controller which utilizes hierarchical optimization. The
main advantage of this approach is that it allows for an easy integration of inequality constraints, for example
to take into account the robot’s physical limits. This recent control framework has shown very satisfactory
results [10][11] and has also been used for the experiments on the quadrupedal manipulator in this thesis.
The following subsections will give an overview of this control framework.

2.3.1. Model formulation

Figure 2.2: Reference frames used to describe the state of the robot. I is an inertial frame that is fixed to the world. The
free-floating base frame B is fixed to the robot’s torso.

Legged robots can dynamically be modelled as a free-floating base B with limbs attached [46][45]. In this
report the same notations for the model are used as in [11]. The state of the robot can be described with
respect to an inertial frame I . The position of the floating base, in this case the robot’s torso, with respect to
the inertial frame and expressed in the inertial frame is written as I rI B ∈R3. The orientation of the base frame
is parametrized as a unit quaternion qI B ∈ SO(3). This is the quaternion that projects the components of a
vector expressed in the base frame B to the same vector expressed in the inertial frame I . The robot’s n j joint
positions are stacked into the vector q j ∈Rn j . The generalized positions vector q and the generalized velocity

2.3. Control framework 7

vector u, which contain all nu = 6+n j degrees of freedom, are then written as

q =
I rI B

qI B

q j

 ∈ SE(3)×Rn j (2.1)

u =
 I vI B

BωI B

q̇ j

 ∈Rnu (2.2)

where I vI B is the linear velocity of the base B with respect to I , expressed in I . BωI B is the angular velocity
of B with respect to I , expressed in B . The reason why an extra variable u is introduced for the generalized
velocities instead of using q̇ is because

∫
BωI B d t 6= qI B . The equations of motion (EOM) of the entire system

can now be written as

M(q)u̇+h(q,u) = STτ+ JT
s λ (2.3)

where M(q) ∈ Rnu×nu is the generalized inertia matrix, h(q,u) ∈ Rnu is the vector of Coriolis, centrifugal and
gravity terms, and the selection matrix S = [

0nr ×(nu−nr) Inτ×nτ

]
selects the nτ degrees of freedom that are

actuated by the joint torques τ. If all limb joints are actuated then nτ = n j . The constraint forces at the end
of the robot’s limbs that are in contact with the environment are stacked in the vector λ. These are related
to the joint space torques through the support Jacobian Js . This matrix is obtained by stacking the Jacobians
that relate the generalized joint velocities to each of the limbs’ end-effector velocity for the limbs that are
in contact with the environment. These are typically some or all of the feet and possibly the manipulator’s
end-effector.

2.3.2. QP formulation

The whole-body control framework used in this research is a form of hierarchical inverse dynamics where a
set of operational-space and joint-space tasks is formulated after which the required joint torques are com-
puted. This is done by using numerical optimization to find a dynamically consistent combination of gener-
alized joint accelerations u̇, joint torques τ and constraints forcesλwhich fulfill the specified tasks as well as
possible in an instantaneous fashion.

These unknown variables are stacked into the optimization vector ξ. All control tasks are formulated as linear
functions of the optimization vector. This task-function formulation [43] describes the instantaneous rela-
tionship between the robot’s control action space and the execution of the operational-space tasks. This can
be done for both equality constraints and inequality constraints in the general form:

Aξ= b (2.4)

Dξ≤ f (2.5)

Examples of these tasks will be given in Section 2.4 and 2.5. Multiple tasks can be stacked vertically into the
A and D matrices and b and f vectors, and can be weighted against each other through the weight matrices
Q and R. By writing the fulfillment of the equality and inequality tasks as vectors, respectively w and v, a QP
problem can be formulated as

minimize
w,v,ξ

1

2
wT Q w+ 1

2
vT R v

subject to w = Aξ−b

v ≥ Dξ− f

(2.6)

Solving this QP problem through numerical optimization yields a solution vector ξ that fulfills the specified
tasks as well as possible and contains the required joint torques. Tasks can be weighted differently with re-
spect to each other when proper execution of some tasks are of higher importance than that of others. This is
particularly relevant when control tasks conflict. Consider a situation where a robot’s reaching task conflicts
with the robot’s center of mass (COM) position tracking task which regulates the robot’s balance. To guaran-
tee the robot’s balance, it would in this situation be desirable that the execution of the COM position tracking
task stays intact, even if it means that this goes at the expense of the execution of the reaching task.

8 2. Theoretical basis

2.3.3. Prioritized set of tasks

Weight matrices can be used to give more importance to good execution of some specific tasks with respect
to others. In order to enforce a strict hierarchy in task priorities a different approach can be taken. Because
the equality tasks are formulated as linear equations it is possible to determine the null-space of these tasks.
By forcing the solution to lower priority tasks to lie within the null-space of the higher priority tasks it can be
guaranteed that the lower priority tasks will get executed as well as possible without corrupting the execution
of any higher priority tasks.

Assume a primary task of the form A1ξ
∗
1 = b1. Here ξ∗1 specifies the specific solution vector that fulfills this

primary task. We now specify an additional solution vector ξ∗2 which will satisfy a secondary task while leaving
the execution of the first task undisturbed:

A2(ξ∗1 +ξ∗2) = b2 (2.7)

A1ξ
∗
2 = 0 (2.8)

We can combine these two requirements by requiring the additional solution ξ∗2 to live within the vector-
space spanned by the null-space basis of the primary task matrix: Z2 = N (A1). This is done by requiring ξ∗2
to be a linear combination of the vectors that make up the null-space basis through multiplication of Z2 with
a solution vector z∗2 , resulting in the following expression:

A2
(
ξ∗1 +Z2z∗2

)= b2 (2.9)

Here ξ∗1 is already known from solving for the primary task. When a vector z∗2 is found that satisfies this
equation, the additional solution vector ξ∗2 for the secondary task is computed as:

ξ∗2 = Z2z∗2 (2.10)

This additional solution will result in an execution of the secondary task that is as good as possible without
disturbing the execution of the primary task. The final solution vector for both tasks can then be computed
as:

ξ2 = ξ∗1 +ξ∗2 (2.11)

This approach can be generalized to a set of tasks with i hierarchy levels such that we can compute the addi-
tional solution ξ∗i for the task at priority level i :

Ai (ξ∗1 +·· ·+ξ∗i) = bi (2.12)

Akξ
∗
i = 0 (∀ k < i) (2.13)

Ai (ξ∗1 +·· ·+ξ∗i−1 +Zi z∗i) = bi (2.14)

Ai (ξi−1 +Zi z∗i) = bi (2.15)

ξ∗i = Zi z∗i (2.16)

wher e :

Zi = N
(
Ai

)
(2.17)

Z1 = I (2.18)

Here Ai is the augmented task matrix which is stacked with all previous priority task matrices:
[
AT

1 · · · AT
i−1

]T
.

By recursively computing the solutions ξ∗ out of (2.15) and (2.16) for hierarchy level 1 till i , the complete so-
lution ξi for an entire hierarchy of i tasks is obtained by adding all individual solutions: ξi = ξ∗1 +·· ·+ξ∗i . In
order to solve (2.15) for one level of the hierarchy it can be formulated as a QP problem as:

minimize
wi ,z∗i

1

2
wT

i Q wi

subject to w = Ai
(
ξi−1 +Zi z∗i

)−bi

(2.19)

The null-space basis Zi can be computed using a QR or SVD decomposition of the augmented task matrix
Ai . Here the QR decomposition is used because it is less computationally intensive. In [10] it is shown that

2.3. Control framework 9

because the complexity of a QR decomposition grows with the cube of the rows of its argument, it is compu-
tationally lighter to compute the null-space basis for each hierarchy level recursively. This is done based on
the previous priority level’s null-space basis Zi−1 and the previous priority level task matrix Ai−1

Zi = Zi−1N (Ai−1Zi−1) (2.20)

The number of columns of Zi and the length of the solution vector z∗i is equal to the nullity of the augmented
task matrix Ai . Because the size of the null-space of Ai decreases with every added priority level, the size of
optimization problem, which is required to live in this null-space, also decreases.

So far the optimization problem formulation only takes into account equality constraints. Because of the
projection into the null-space of the higher priority tasks, this approach results in a cascade of increasingly
smaller QP problems. Unfortunately the inequality constraints cannot benefit from a similar approach and
have to be explicitly added to every QP problem. This means that for every priority level the inequality con-
straints of that level and of all higher priority levels have to be taken into account. This results in the following
general formulation of the QP problem for priority level i :

minimize
wi ,vi ,z∗i

1

2
wT

i Q wi + 1

2
vT

i R vi

subject to wi = Ai
(
ξi−1 +Zi z∗i

)−bi

vi ≥ Di
(
ξi−1 +Zi z∗i

)− fi

vi−1 ≥ Di−1
(
ξi−1 +Zi z∗i

)− fi−1

...

v1 ≥ D1
(
ξi−1 +Zi z∗i

)− f1

(2.21)

The solution for i priorities is computed by recursively solving (2.21) for each priority level and using ξ∗i =
Zi z∗i to compute the final solution as

ξi =
i∑

k=1
ξ∗k (2.22)

2.3.4. Dynamic consistency

In order to guarantee that the final solution for the set of control tasks is dynamically feasible, the EOM can be
incorporated as a top-priority task. When assuming that all dynamic variables are in the optimization vector

such that ξ= [
u̇ τ λ

]T
, the EOM task can be written in the general task form Aξ= b as:[

M −ST JT
s

]
ξ=−h (2.23)

This task by itself has an infinite number of solutions. However its strength lies in the fact that the solutions
of all lower priority tasks then have to be consistent with this EOM task and therefore be dynamically feasible.
Motion tasks can now simply be kinematically formulated as a function of the generalized accelerations u̇,
because compliance with the EOM task means that the corresponding joint torques will also be found during
the optimization for the motion task. Furthermore, the compliance with the highest priority EOM task also
guarantees that different motion tasks do not dynamically interfere with each other, even though they are
only specified on a kinematic level.

In order to reduce the computational burden of the optimization problem several reductions of the problem
have been proposed. A very considerable reduction can be obtained by decomposing the EOM into a part
related to the robot’s floating base (f b) and a part related to the robot’s actuated joints (j) [22]:

M f b u̇+h f b = JT
s, f bλ (2.24)

M j u̇+h j = τ+ JT
s, jλ (2.25)

Equation (2.24) is obtained by just taking the first 6 equations of the EOM, which correspond to the floating
base, and can be interpreted as the Newton-Euler equations of the whole system. It relates the change of

10 2. Theoretical basis

momentum of the system to the external forces. The interesting feature is that the joint torques τ do not
appear in equation (2.24). By rewriting equation (2.25) it can be seen that the joint torques can be expressed
as a linear function of the generalized accelerations and contact forces:

τ= M j u̇+h j − JT
s, jλ (2.26)

This decomposition can be exploited by removing the joint torques from the optimization vector, thereby

reducing it to ξ = [
u̇ λ

]T
. The EOM control task can then be reduced to equation (2.24). This means that

any other control tasks also need to be specified as a linear function of only the generalized accelerations u̇
and contact forces λ. Control tasks as a direct function of the joint torques τ can be written as a function of

the new reduced optimization vector ξ= [
u̇ λ

]T
, by using the relationship from (2.26).

2.4. Equality tasks

Using the described control framework, control tasks can be expressed as a function of the generalized accel-
erations u̇, joint torques τ, and contact forces λ. In the previous section the EOM-based equality task which
is based on all three of these variables was presented. In this section the most common usages of equality
tasks for these three variables individually will be presented.

2.4.1. Motion tasks

The incorporation of the EOM task allows for an easy specification of inverse dynamics motion tasks. Con-
sider a function f(q) that relates the robot’s generalized coordinates to for example the operational-space pose
r of the manipulator’s end-effector in SE(3). By computing the partial derivatives of f(q) with respect to the
generalized coordinates q the Jacobian matrix J(q) is constructed. This matrix represents a configuration-
dependent, linearized relationship between the robot’s generalized velocities u and the end-effector’s linear
and angular velocities in operational-space ṙ. By taking the time derivative of this relationship, an expression
is acquired that describes the relationship between the robot’s generalized accelerations u̇ and end-effector
accelerations r̈.

r = f(q) (2.27)

ṙ = J(q)u (2.28)

r̈ = J(q)u̇+ J̇(q)u (2.29)

(2.30)

Assuming the reduced optimization vector ξ= [
u̇ λ

]T
, equation (2.29) can be rewritten as a function of the

generalized accelerations to arrive at the following general formulation for a motion control task:[
J(q) 0

]
ξ= r̈des − J̇(q)u (2.31)

The desired operational-space accelerations r̈ are typically computed according to a PD-law that can be in-
terpreted as a virtual spring-damper between the actual and the desired pose:

r̈des = r̈F F +kd (ṙdes − ṙ)+kp (rdes � r) (2.32)

where the desired end-effector accelerations are computed based on an optional feed-forward term r̈F F , and
the errors between the current end-effector velocity and position, and corresponding desired values. Note
the box minus operator (�) used to calculate the pose error. This operator is required when it is desired to
control orientation and not just position. Because orientations form a Lie group, namely SO(3), there is no
vector-space in which to perform addition or subtraction. Instead, a special subtraction operator � has to be
defined, which will make it possible to specify a difference magnitude between two orientations [13].

The method described here can be used for the control of any point or frame on the robot for which the
position and/or orientation can be expressed as a function of the generalized coordinates of the robot. It can
therefore also be used for the control of the motion of the robot’s center of mass.

2.5. Inequality tasks 11

2.4.2. Contact force tasks

For the described torque-controllable legged manipulator it is desirable to control the contact forces when
the limbs are in contact with the environment. This can be the linear contact forces at the robot’s point-feet or
the linear and torsional contact forces at the manipulator’s end-effector. By actively controlling these forces
it is for example possible to distribute the robot’s contact forces evenly over its feet, or to achieve force-based
manipulation of the environment.

Control tasks for the contact forces can be easily designed because these forces (λ) appear directly in the
optimization vector ξ. An equality task for desired values of certain contact forces can then be simply written
as [

0 S
]
ξ=λdes (2.33)

where S is a selection matrix that selects the contact forces that are desired to be controlled, and the vector
λdes contains the desired values for those forces.

This can for example be used to specify desired contact forces at the manipulator’s end-effector for a force-
based manipulation task. However, because the contact forces are directly related to the robot’s generalized
accelerations u̇ through the reduced equations of motion (2.24), it is common to not prescribe equality tasks
for the robot’s limbs unless it is strictly necessary such as for a force-based manipulation tasks. Instead it is
common to mostly specify motion-based equality tasks while the required contact forces follow automati-
cally from the compliance with the EOM task. To keep these automatically computed contact forces within
physically feasible bounds, inequality tasks can be designed that describe the limited nature of the contact.
This will be described in Section 2.5.2.

2.4.3. Joint torque tasks

The robot’s joint torques τ are usually left to be computed as a result of the motion and contact force tasks
through compliance with the EOM task. However, it could sometimes still be desirable to directly specify
a desired value τdes for some of the robot’s joint torques. Because the joint torques do no longer appear
in the reduced version of the optimization vector ξ, the equality task has to be expressed as a function of the
generalized accelerations u̇ and contact forcesλ according to (2.26). The equality task can then be formulated
similar to (2.33) by including a selection matrix S that selects the desired joints:

S
[

M j JT
s, j

]
ξ=τdes −Sh j (2.34)

2.5. Inequality tasks

One of the main reasons for choosing optimization-based inverse dynamics controllers over analytical ap-
proaches is that numerical optimization allows for the explicit inclusion of inequality tasks. These are par-
ticularly useful in order to let the controller take into account the robot’s physical limits. Examples of these
limits are kinematic joint limits, inequality constraints on the contact forces, and actuator torque limits. The
following subsections will present how inequality tasks based on the robot’s generalized accelerations u̇, con-
tact forcesλ, and joint torques τ can be formulated.

2.5.1. Inequality tasks - Motion

The motion tracking equality tasks described in Section 2.4.1 implicitly assume limitless joints and uncon-
strained operational-space motion. In reality kinematic joint limits need to be considered and operational-
space collision-avoidance can be desirable. When kinematic limits are desirable to be taken into account by
the controller, they can be written as inequality tasks of the form Dξ≤ f.

Kinematic limits are typically present at the position-level. However, to incorporate these limits into the
control framework they need to be expressed at acceleration-level. This can be done using a Taylor expansion.
Consider the simple example of specifying kinematic limits,φmi n andφmax , on the angleφ of one single joint.
In this case the related control action is the joint acceleration φ̈, which is part of the generalized accelerations

12 2. Theoretical basis

u̇. It is required that the joint acceleration φ̈(t) at the current time step (t) is chosen such that it will not result
in violation of the joint limits by the next time step (t +δt). The joint angle φ(t +δt) at the next time step as a
function of the joint acceleration can be estimated as follows by a Taylor expansion:

φ(t +δt) =φ(t)+ φ̇(t)δt + φ̈(t)
δt 2

2
(2.35)

Here φ(t) and φ̇(t) are known from the current sensor measurements. φ̈(t +δt) is the control variable that
has to be chosen such that φmi n ≤φ(t +δt) ≤φmax . This results in the following inequality task formulations
as a function of the robot’s generalized accelerations:

δt 2

2

[
S 0

]
ξ ≤ φmax −φ−δt φ̇ (2.36)

−δt 2

2

[
S 0

]
ξ ≤ −φmi n +φ+δt φ̇ (2.37)

Here S is a selection vector that selects the generalized acceleration vector entry which corresponds to the
appropriate joint(s). Theoretically δt should be equal to the control period, but in practice the value of δt can
be increased to obtain smoother behavior near the joint limits. When approaching a joint limit, this approach
will result in an earlier activation of the constraint, which will in turn lead to a lower required limit-avoiding
control action. This can help prevent issues where the controller suddenly generates large accelerations in
order to make sure that the inequality constraint is not violated by the next control step.

We can generalize the avoidance of kinematic limits to enforce operational-space motion limits for any physi-
cal or abstract point r on the robot by incorporating an associated Jacobian J such as used for motion tracking
equality tasks (Section 2.4.1). The inequality tasks are then formulated as:

δt 2

2

[
J 0

]
ξ ≤ (rmax − r(t))−

(
J+ J̇

δt

2

)
δtu (2.38)

−δt 2

2

[
J 0

]
ξ ≤ (r(t)− rmi n)+

(
J+ J̇

δt

2

)
δtu (2.39)

These inequality tasks can be used for example to prevent a point on the robot from entering a certain part
of the operational-space; to set limits on the robot’s COM position; or to prevent an end-effector to move too
far or too close with respect to the robot’s torso.

2.5.2. Inequality tasks - Contact forces

Inequality tasks can also be formulated for the robot’s contact forces λ. The most common usage for this is
to describe the physically feasible bounds of the contact forces at the feet. As mentioned in Section 2.4.2, it is
common not to specify any contact force equality tasks for most or all of the robot’s limbs - especially the feet
- that are in contact with the environment. Instead these contact forces then follow from other control tasks,
such as motion tasks, that are related to the contact forces through compliance with the higher priority EOM
task. To guarantee that the computed contact forces at the point-feet are physically feasible, corresponding
inequality tasks can be designed which describe the unilateral and friction-dependent nature of the contact.

Typically a Coulomb friction model is assumed, which asserts that in order to prevent slipping the maximum
allowed tangential component of a contact force is proportional to the normal component. The theoretical
contact force vectors that have this maximum allowable ratio between their tangential and normal compo-
nents form a cone shape, the so-called friction cone [33]. This means that in order to prevent slippage it is
necessary to control the direction of the contact force vectors to lie within their corresponding friction cone.
The unidirectional nature of these friction cones also takes into account the constraint that the feet can only
push, and not pull, on their contact point. The requirement for the contact forces to lie within their friction
cones can be expressed as inequality constraints on the contact forces.

For this purpose the friction cone is typically approximated with a friction pyramid which allows to formulate
linear constraint tasks. Consider a friction pyramid that is oriented such that two of the four sloped sides

2.6. Research focus and problem statement 13

are parallel to the frontal direction of the robot, with the angle of the sides corresponding to the friction
coefficient µ. The contact force vector λ can then be decomposed along the unit vector n̂ in the normal
direction and the tangential unit vectors along the frontal f̂ and lateral l̂ directions. In order to keep the
contact force vectors inside the friction pyramid, the following inequality constraints can be formulated as a
function of each of the individual the contact force vectorsλi in the optimization vector ξ as:

(f̂− n̂µ)Tλi ≤ 0 (2.40)

−(f̂+ n̂µ)Tλi ≤ 0 (2.41)

(l̂− n̂µ)Tλi ≤ 0 (2.42)

−(l̂+ n̂µ)Tλi ≤ 0 (2.43)

2.5.3. Inequality tasks - Joint torques

The most common application of inequality tasks for the joint torques is to design tasks that guarantee that
the computed torques can actually be achieved by the robot’s actuators. Similar to the discussed approach
for the torque equality tasks (Section 2.4.3), the control task will need to be specified as a function of the
generalized accelerations u̇ and contact forcesλ. Inequality tasks that enforce compliance with the actuator’s
torque limits can be formulated as: [

M j JT
s, j

]
ξ≤τmax −h j (2.44)

where τmax is a vector containing the maximum torque values for each actuated joint.

2.6. Research focus and problem statement

This work is focused on the implementation of the described hierarchical inverse dynamics control frame-
work for the control of a quadrupedal manipulator, and presents several specific implementation approaches
that exploit the benefits of both the control framework and the robotic platform.

The focus in this work is on manipulation. A quadrupedal manipulator can be expected to perform two
types of manipulation. First, typical manipulation tasks consist of controlling the end-effector’s motion, for
reaching, picking and placing tasks. The robot should for example be able to bring its end-effector to the floor
or high shelf for object grasping, and be able to move its end-effector or a tool such as a camera or drill to a
desired position and orientation. The second category of manipulation is that of force-based manipulation
tasks, where instead of motion it is required to control the interaction force at the end-effector. An example is
the opening of a heavy door where it is important to control the force that the robot exerts on the door, while
the position of the end-effector is allowed to passively follow the constrained motion of the door. Grasping is
not explicitly addressed in this work, although proper control of end-effector position and orientation already
forms an important aspect of grasping. Finally, to restrict the complexity, the scope of this work is limited to
stationary manipulation, thereby not taking into account the robot’s ability for locomotion.

The control of the robot has to meet several requirements. For the application of hierarchical inverse dynam-
ics on a realistic legged platform standard requirements will have to be met, such as compliance with the
robot’s equations of motion, and respecting of the robot’s physical limitations. Besides these requirements,
several additional requirements where identified to be of special interest for the control of a quadrupedal
manipulator:

1. End-effector pose control

2. End-effector contact force control

3. Maintaining balance (under external disturbances)

4. Exploiting whole-body potential

5. Avoiding/handling singularities

6. Collision avoidance

14 2. Theoretical basis

7. Simple real-time teleoperation

1. End-effector pose control is the control of the position and orientation of the end-effector for effective
manipulation of the environment. 2. End-effector contact force control is the direct control of the contact
forces between the end-effector and the environment such that force-based manipulation tasks can be exe-
cuted. 3. Maintaining balance (under external disturbances) entails that the robot’s COM motion needs to be
controlled in such a way that the robot does not fall over, even when external forces are exerted on the robot.
4. Exploiting whole-body potential refers to behavior in which motion of all joints that could theoretically
aid in the execution of a task are used. 5. Avoiding/handling singularities refers to the kinematically singu-
lar configuration in which the robot can end up and around which unstable or uncontrollable behavior can
emerge. 6. Collision avoidance refers to preventing parts of the robot to collide with each other as a result
of the controller output. 7. Simple real-time controllability refers to the requirement for a user to be able to
intuitively remotely control the robot in real-time.

Furthermore, the morphology of a quadrupedal manipulator offers specific advantages. When all four feet are
in contact with the ground its large base of support allows for a large region of allowable horizontal motion of
the robot’s COM while still maintaining balance. Besides that, it is also possible to exert significant external
forces on the robot without directly jeopardizing balance. Manipulators that are fixed on a wide wheeled
base have similar advantages. However, additionally the legged morphology of a quadrupedal manipulator
also allows the robot to move the manipulator’s base (the robot’s torso) while keeping its contact points with
the ground fixed. These properties create opportunities for robust whole-body manipulation. Finally, the
height and orientation of the robot’s torso can easily be adapted to aid a manipulation task without changing
the position of the COM of the robot, thereby not influencing the robot’s balance.

The described control framework also offers several benefits. It allows for the strict prioritization of control
tasks, ensuring that lower priority tasks will be fulfilled as well as possible without disturbing the execution
of higher priority tasks. Besides that, the dependency on a numerical optimization algorithm allows for the
explicit integration of various types of inequality tasks.

The objective of the research presented in this thesis is

The implementation of an optimization-based hierarchical inverse dynamics control framework for the
control of a simulated quadrupedal manipulator during stationary manipulation, with a specific focus on
the design of prioritized sets of control tasks which allow to exploit the characteristic benefits offered by
both the control framework and robotic platform.

Effectiveness of these controller implementations are measured by their ability to tackle the control chal-
lenges listed above. As a result four promising sets of prioritized tasks were identified:

• A basic task set, for end-effector motion control while maintaining balance.

• Addition of kinematic limits to trigger whole-body reaching

• Optimizing robot posture according to a desired posture measure

• Actively controlling end-effector contact forces while maintaining multi-contact balance

These implementations will be presented in the following chapters. First, Chapter 3 will present the basic
implementation which allows for pose control of the end-effector while keeping the robot balanced. Chapter
4 will show how an extension of the basic implementation with kinematic limit tasks can result in an increase
of workspace reachability by triggering whole-body reaching. In Chapter 5 a method is proposed that takes
advantage of the robot’s base motion in order to optimize the manipulator arm’s posture according to a de-
sired measure. Chapter 6 presents an approach for directly controlling contact forces at the end-effector for
force-based manipulation, while the remaining required external forces are distributed over the feet. Finally,
in Chapter 7, a sensor-based balancing controller is proposed which adapts the robot’s posture when large
external forces are exerted on the robot through for example manipulation. These chapters all contain an
individual Results and Discussion section.

3
Basic Implementation

3.1. Introduction

In this chapter a basic set of control tasks for the hierarchical inverse dynamics control framework is pre-
sented. This task setup will ensure that the most important control requirements are met, such as end-
effector pose control and maintaining balance. The control task hierarchy presented and discussed here
will function as the basis for the more advanced sets of control tasks which are discussed in the following
chapters.

3.2. Controller design

The basic control task setup presented here is based on task setups that have previously been successfully
implemented on the ANYmal robot without a manipulator arm, and depends on the same numerical hier-
archical optimization algorithm that was used for this previous research [10][11]. Figure 3.1 shows this basic
task hierarchy setup which is ordered from high priority (red) tasks to low priority (green) tasks. The highest
control task priority level contains the control tasks which are most crucial to be correctly fulfilled, such as
the EOM task and the inequality tasks that represent the robot’s physical limits. The second priority level
consists of motion tasks which should be executed as well as possible as long as they comply with the ex-
ecution of the high priority tasks. Finally a optimization task is added which removes the robot’s leftover
torque-redundancy after all other tasks have been fulfilled. Although it is possible to give each control task an
individual priority level, it is chosen to group the control tasks in only three priority levels. This reduction of
the number of priority levels in the QP cascade leads to lower computational costs. The highest priority tasks
are grouped together because they are all of very high importance, but are also expected to be simultaneously
feasible at all times.

This task setup shown in Figure 3.1 is similar to task setups previously successfully used for the control of
the ANYmal robot without arm, but includes the addition of a pose tracking task for the arm’s end-effector
for motion control and of a contact force minimization task. This final task is added to remove any torque-
redundancy left in the system after solving the higher priority tasks such that there is only one optimal solu-
tion to the set of control tasks. A brief description of each of these tasks is provided here:

Equations of motion
This is the task described in Section 2.3.4 and will guarantee dynamic feasibility of the other tasks.

Friction cones
This inequality task ensures that the computed contact forces at the feet lie within the friction cones which
describe the unilateral and friction-dependent nature of the contacts (Section 2.5.2).

15

16 3. Basic Implementation

Figure 3.1: The basic task hierarchy for the quadrupedal manipulator. Colors indicate the priority
levels, ranging from top priority (red) to lowest priority (green). This task hierarchy allows for inverse
dynamics motion control of the robot’s torso and limbs while being compliant with the robot’s EOM
and while respecting the robot’s physical limits.

Torque limits
In order to guarantee that all computed torques actually fall within the actuator’s physical torque limits this
inequality task is added (see Section 2.5.3).

No motion feet
This equality motion task prescribes zero motion for the feet that are in contact with the ground. This is done
similar to (2.31) with r̈des = 0 such that the task is formulated as

[
J(q) 0

]
ξ=−J̇(q)u.

Arm pose tracking
The motion tracking equality task for the position and orientation tracking of the end-effector at the end of
the 6 DOF manipulator arm.

COM xy-motion tracking
To control the balance of the robot this motion tracking task controls the horizontal position of the robot’s
COM. Because the COM position is dependent on the entire robot’s configuration, this task will use all (avail-
able) kinematic degrees of freedom.

Torso z-motion tracking
The torso’s horizontal motion is deliberately left uncontrolled so it is available to the COM motion task. Be-
cause the COM height is not relevant for balance an explicit height tracking task for the robot’s torso is added
to give direct control over the torso’s height. This task is easily designed because the torso pose is chosen
as the generalized floating base coordinates, which means that the torso’s vertical acceleration is part of the
optimization vector ξ.

Torso orientation tracking
This equality task controls the torso’s angular motion. This task can also be simply formulated as a function
of the generalized coordinates which contain the torso’s orientation as floating base coordinates.

Foot motion tracking
The motion tracking task which is responsible for the motion tracking of the swing foot/feet along motion
trajectories which are supplied by a higher-level controller. Because locomotion is not considered in this
thesis, this task is not used in any of the provided examples. It is however still included in the presented task
setups for completeness.

3.3. Results 17

Minimize contact forces
This final equality task exploits the leftover torque-redundancy in the system to minimize the robot’s contact
forces. This is done by adding a task that prescribes the contact forces to be equal to zero. Because of the QP
formulation of the control tasks, this will result in the computation of a set of contact forces with a minimum
norm value, which are also compliant with the correct execution of the higher priority tasks. Therefore, un-
necessary tangential components of the contact forces will be absent as much as possible, while the normal
components will be equally distributed over the feet. Without this final task an infinite amount of contact
force distributions are possible while all higher priority tasks are still fulfilled. This can result in the optimiza-
tion algorithm computing significantly different solutions for the contact forces between subsequent control
periods, generating undesirable jumps in the robot’s commanded joint torques.

The motion tasks are chosen such that they cover exactly the 24 kinematic DOFs of the robot, which are
related to the joints (18 DOF) and the floating base (6 DOF). The fact that the robot has exactly as many
DOFs available as the motion tasks require means that the motion tasks can be independently fulfilled. It is
therefore possible to for example control the position and orientation of the torso without interfering with
the position and orientation of the end-effector and vice versa. The presence of the high-priority EOM task
guarantees that even disturbances which result from dynamic effects due to fast motions will be compensated
for such that the executions of the tasks do not disturb each other.

3.3. Results

A simple demonstration of the effectiveness of this task hierarchy is given by inputting a motion reference
trajectory that commands the end-effector to move laterally from side to side while keeping the orientation
constant. The reference position for the robot’s horizontal COM position is also kept constant at the middle of
the support polygon formed by the feet in order to retain balance. This results in a motion of the end-effector
in the desired motion direction, while the robot’s torso will move in the opposite direction in order to also
fulfill the COM position task (Figure 3.2).

Figure 3.2: When the end-effector is commanded to move laterally away from a neutral position in front of the robot,
the robot’s torso will move in the opposite direction so that the COM remains at the same position.

Figure 3.3 shows the results for this experiment. The end-effector is gradually commanded to move from a
neutral position in front of the robot to a position 30 cm to one side, and from there to a new position 30 cm on
the other side. It can be clearly seen that this results in lateral motion of the torso opposite and proportional
to the end-effector motion. Because of this the COM remains at its desired constant position which ensures
the robot’s balance.

3.4. Discussion

The basic task hierarchy presented in this Chapter already meets three of the requirements listed in Section
2.6. It allows pose tracking of the end-effector. It also actively generates motion such that the robot’s COM
remains at a desired position, thereby keeping the robot balanced. Finally, it allows simple real-time teleop-
eration. The only required control input is the desired direction for translation or rotation of the end-effector.

18 3. Basic Implementation

Figure 3.3: While lateral motion is commanded for the end-effector (top plot), the COM position re-
mains constant (bottom plot) through motion of the robot’s torso (middle plot).

Based on this reference input the end-effector will track the desired motion while the robot also uses all joints
to actively keep the COM at its desired position.

The requirement of exploiting the robot’s whole-body potential is not yet considered to be met. When the
end-effector’s reference position is commanded too far away from the base this will result in a full extension of
the elbow joint. This is a well-known problematic kinematically singular configuration of the robot. Around
the extended elbow configuration the shoulder flexion/extension joint and the elbow joint have a similar
effect on the end-effector motion, which means that the arm (nearly) loses an independent DOF. This can be
seen when inspecting the singular values of the motion task Jacobian for the end-effector. Near the extended
elbow configuration one of the singular values will approach zero. This results in the controller computing
very high joint accelerations in order to still utilize the near-uncontrollable DOF. Therefore the robot will
display undesirable jerky and unstable motion around this configuration.

An intuitive theoretical solution would be to use the DOFs of the base to accommodate the end-effector mo-
tion task. This could be done by non-balance-disturbing rotation of the base, or even by sacrificing some
balance margin through translation of the base. However, even when placing the end-effector motion track-
ing task at a higher priority than the base motion tracking tasks, this behavior will not occur. This is the case
because to the optimization algorithm it appears that all 6 DOFs of the arm are still available for the end-
effector pose tracking task, meaning that the DOFs of the floating base can be used for other control tasks.
The fact that one of the DOFs of the arm is not desirable to be used because of its (near-)singular configura-
tion is not taken into account.

This means that for this task hierarchy the robot’s torso will move in order to fulfill the base height and ori-
entation tasks, and the COM position task, but will never contribute directly to the end-effector motion task
because the controller will always attempt to perform that task with the 6 DOFs of the arm regardless of
the arm’s configuration. Because of this, commanded motion of the end-effector will result in coordinated
whole-body motion, but the full potential contribution of all DOFs for the end-effector motion task is not be-

3.4. Discussion 19

ing achieved. The workspace reachability of the end-effector could be significantly enlarged if the base DOFs
would support the end-effector motion when required.

4
Whole-body reaching

4.1. Introduction

The previous chapter showed a basic implementation of a task hierarchy that allowed independent motion
control of the robot’s base and the end-points of all five limbs. However, important limitations were found to
lie in undesirable controller solutions at an extended elbow configuration, and in absence of base motion to
increase end-effector workspace reachability.

This chapter shows how the basic controller implementation can be extended by the addition of kinematic
limits in the form of inequality tasks. When added to the task hierarchy in the right way several of the men-
tioned limitations of the basic controller implementation (Chapter 3) can be overcome by this one adap-
tation. As a result, elegant whole-body motion can emerge which allows the robot’s end-effector to reach
otherwise hard-to-reach places. This allows for controlling only the end-effector motion without having to
take into account the elbow singularity or the whole-body motion that is required to reach difficult positions
such as a high shelf or an object on the floor.

4.2. Controller design

One of the main limitations of the basic task hierarchy discussed in the previous chapter is that motion con-
trol of the torso is unrelated to the motion task for the end-effector. One of the consequences of this is
(over)extension of the elbow when the end-effector is commanded to move too far away from the robot’s
torso. This results in undesirable behavior around this configuration such as unstable motion and awkward
arm configurations. Another consequence is that the workspace reachability of the end-effector is limited by
the prescribed pose of the robot’s torso. The absence of contributing torso motion for the end-effector mo-
tion not only limited end-effector reachability in the horizontal plane, but also made it very difficult for the
end-effector to reach the floor without explicitly ordering the torso height to be lowered first. These problems
can be addressed through the implementation of kinematic constraints in the form of inequality tasks.

In Section 2.5.1 the implementation was presented of inequality tasks which represent kinematic limits such
as joint limits. Although the joints of the Kinova arm used on the robot are limitless, it can still be desir-
able to specify joint limits such that undesirable configurations are avoided and whole-body motion can be
triggered.

In order to address the mentioned issues, two joint limit tasks were implemented according to the method de-
scribed in Section 2.5.1. First a joint limit for the elbow was specified such that (over)extension is prevented.
The elbow joint typically moves between a fully flexed position (0 rad) and fully extended position (π rad). A
maximum joint limit value is set at an angle of 3 rad (Figure 4.1). This allows the elbow to access almost its
full range of motion, while avoiding the unstable behavior that was witnessed at full extension of the joint.

21

22 4. Whole-body reaching

Figure 4.1: Maximal arm joint angles for the joint limit tasks. The maximum elbow angle is set to 3
rad. The maximum shoulder flexion/extension angle is set to 5 rad.

The second joint limit task was designed for the shoulder flexion/extension joint. When the arm points ver-
tically up this shoulder joint is defined to be at an angle of π rad. Positive rotation results in the upper arm
moving to a forward-pointing position. When commanding the end-effector to move towards the floor, two
issues arise. First, without additional motion of the torso, the end-effector can only barely reach the floor.
Second, when attempting to reach the floor it is possible for the upper arm to collide with the torso as a
result. To solve both of these problems a joint limit task was implemented for the shoulder joint which spec-
ifies a maximum joint angle of 5 rad, allowing the upper arm to rotate down only slightly further beyond a
horizontal position (Figure 4.1).

Figure 4.2 shows the new task hierarchy which includes the new kinematic limit tasks. Compared to the basic
implementation (Figure 3.1) from the previous chapter an extra hierarchy level is added. This is done such
that desirable whole-body motion is initiated when one of the kinematic limits of the arm is reached. When
one of the kinematic limit tasks is activated, the arm loses an available DOF for the control of the end-effector
pose. Because the end-effector pose also depends on the 6 DOFs of the floating-base, one or more of these
can be used to contribute to the end-effector motion task. Although accurate tracking of the horizontal COM
position is crucial for balance, accurate tracking for torso height and orientation is less critical. Therefore the
current task hierarchy is designed such that it will result in vertical and angular motion of the torso when the
higher priority end-effector tracking task cannot be fulfilled without that. The torso height and orientation
task will be fulfilled as well as possible in a least squares sense while guaranteeing correct execution of the
end-effector motion task. Individual weights can be set for the torso height task and the rotational directions
of the torso orientation task such that a desirable amount of contribution to the end-effector task can be
attained for each of these torso motions.

The joint limit tasks are designed according to the design discussed in Section 2.5.1. They are combined into
a single task of the following form:

δt 2

2

[
S 0

]
ξ ≤

[
φmax,sh

φmax,el

]
−

[
φsh

φel

]
−δt

[
φ̇sh

φ̇el

]
(4.1)

where the selection matrix S selects the generalized accelerations in the optimization vector that correspond
to the shoulder (sh) and the elbow (el) joints respectively. As mentioned,φmax,sh = 5 rad, andφmax,el = 3 rad.
The value for δt was chosen to be 0.1 s. This value showed to provide a good trade-off between preventing
sudden control jumps when the inequality task is activated (low δt) and a too soft constraint (high δt) which
can cause considerable overshoot and oscillations around the joint limits.

4.3. Results

First, in order to illustrate the effect of the elbow joint limit in the new task hierarchy a situation is considered
where the robot is required to pick up an object from a high shelf (Figure 4.3). When the end-effector is

4.3. Results 23

Figure 4.2: Task hierarchy including arm joint limits. Tasks are grouped and ordered from high (red) to
low (green) priority. The extra priority level (orange) will result in torso motion to accommodate the
end-effector motion tracking task when one of the arm joint limits is activated.

commanded to move vertically up, the maximum elbow angle φmax is reached, which triggers motion of the
torso to accommodate the reaching.

Figure 4.3: Improving workspace reachability as a result of the task hierarchy. When the end-effector is commanded far
away from the torso, e.g. to a high shelf, the maximum elbow angle φmax will be reached which will trigger a whole-
body reaching motion due to torso motion.

The results of this task are presented in Figure 4.4. The top panel shows how the end-effector is commanded
to move up by 20 centimetre along the z-axis. The desired reference trajectory is closely tracked throughout
the entire motion, with a small delay due to damping on the end-effector velocity. However, the second panel
shows that at a moment halfway through the motion (indicated by the black dotted line) the maximum elbow
angle is reached. Around this same moment the torso height and pitch start increasing as a result of the DOF
in the arm that is lost to the elbow joint limit task, even though the torso’s desired position actually remains
constant. This torso motion results in a continuous tracking of the end-effector reference motion.

It is interesting to note that the torso motion starts slightly earlier than the moment at which the joint limit
is exceeded. In fact, it starts about 0.1 seconds earlier, which corresponds to the value of δt in the task for-
mulation (eq. 4.1). This means that the controller computes a control action which can be expected to have
the inequality task fulfilled after 0.1 seconds. However, this reasoning does also result in a small overshoot
of the prescribed joint limit because this 0.1 second horizon moves along as time progresses and therefore

24 4. Whole-body reaching

immediate satisfaction of the constraint is never demanded. Also interesting to note is that the torso pitch
angle shows a small overshoot before settling at a stable value, while the torso height shows critically damped
behavior towards a stable value. This can be attributed to the fact that the vertical torso motion is relatively
strongly damped compared to the torso’s angular motion. The controller sacrifices the performance of the
torso motion tracking tasks in order to fulfill the higher priority tasks, but it tries to keep this performance
sacrifice minimal. In this case a slightly higher position error for the torso pitch was valued of lower cost by
the controller than a higher velocity error of the vertical torso motion.

Figure 4.4: Reaching task with elbow joint limit task. As the end-effector is commanded to move up, the elbow joint
limit is reached when the arm extends. This moment is indicated by the black dotted line. The activation of the joint
limit task triggers motion of the torso such that the end-effector motion task remains unimpaired.

When reaching for a high position, the controller can sacrifice performance of the torso height and pitch
tracking tasks to maintain performance of the end-effector pose tracking task. Similar behavior can also be
seen for other configurations in which the elbow extension limit is reached. Figure 4.5 shows a situation where
the end-effector is commanded to reach laterally. In this case it is mostly the torso roll and yaw motion that
can contribute to the end-effector motion task and therefore the controller chooses to sacrifice performance
of these tasks in this situation. Hereby again preventing overextension of the elbow, while also increasing
workspace reachability, without impairing balance.

When commanding the end-effector to move down towards the ground, similar base motion can be seen to
assist end-effector motion when the maximum shoulder joint angle is reached. This situation is illustrated
in Figure 4.6. When the maximum shoulder angle φmax is reached and the end-effector is still commanded
to move down, the controller will sacrifice the performance of the torso’s height and orientation tasks which
results in a whole-body reaching motion such that the end-effector can reach the ground. The rightmost situ-
ation shows what would happen using the basic controller implementation from Chapter 3. First it is difficult
for the end-effector to reach the ground around the robot because the base pose remains constant. Second,

4.4. Discussion 25

Figure 4.5: When commanding lateral motion for the end-effector, the presented task hierarchy will
result in a roll and yaw motion of the robot’s torso when the elbow’s joint limit is reached. This addi-
tional motion increases the end-effector’s workspace reachability.

when performing this task on the side of the robot the upper arm of the robot risks colliding with the robot’s
torso as a result of the commanded end-effector motion. Both of these problems are solved simultaneously
with the shoulder joint limit task.

Figure 4.6: A joint limit task for the shoulder flexion joint can result in whole-body reaching and preventing self-collision. φmax
indicates the maximum shoulder angle. The middle picture shows whole-body motion to compensate for the loss of the shoul-
der DOF. Because the torso is lowered and tilted, the end-effector can move to the ground. The right picture shows the prob-
lematic self-collision and limited end-effector reach when the joint limit task is not included.

4.4. Discussion

The task hierarchy presented in this chapter results in behavior that addresses six of the seven control re-
quirements listed in Section 2.6. The results in this chapter show that the implementation of simple joint
limit tasks for the elbow and shoulder in the task hierarchy result in avoidance of a kinematically singular
configuration and self-collision, while also resulting in the emergence of whole-body motion in which all of
the robot’s joints are utilized to improve workspace reachability of the end-effector. Furthermore, all this
behavior is attained while the robot’s user only needs to input the desired operational-space motion of the
end-effector.

For this specific implementation the choice was made to only designate certain base DOFs for potential con-
tribution to end-effector motion such that the robot’s COM could remain at the desired location at all times.
However, one of the main advantages of a quadrupedal robot is its large base of support which allows for
considerable COM displacement before balance is compromised. It can therefore be interesting to consider
also allowing some horizontal COM motion when one of the arm’s inequality constraints is activated. This
would allow for an even larger increase in workspace reachability at the expense of the robot’s stability mar-
gin. However, allowing the robot to place all of its mass closely over just one or two of its legs can quickly
cause the actuators to operate near their torque limits. Besides, in many situations it can be expected to be
possible to simply trigger legged locomotion when the end-effector is commanded too far horizontally from

26 4. Whole-body reaching

the robot’s torso. If the robot’s environment allows for this, it would be the more sensible solution because it
avoids operating near actuator torque limits and risking loss of balance. However, because locomotion falls
outside the scope of this work, this option has not been further investigated.

As discussed in Section 4.2, for the Taylor expansion used to estimate the robot’s joint positions at the next
time step a value (0.1 s) for the time step δt is used which is significantly larger than the actual control period
of the robot (0.0025 s). This is done because otherwise as soon as the joint limit inequality task is activated it
would result in the controller computing joint accelerations that would fulfill the task by the next time step.
This results in undesirable jumps in the control signal, which is reported in [19] as a reason not to include such
a joint limit task. Setting the value of δt to a value higher than the actual control period has been mentioned
as a way to soften the constraint [10][38]. The results in this chapter show that by doing this the inequality
task becomes activated a little while before the kinematic limit is actually reached, leading to an early and
smooth initiation of compensatory torso motion. However, this same "soft" implementation also results in a
considerable overshoot of the set joint limit because the controller only computes joint accelerations which
will enforce the inequality constraint after the chosen value of δt , while this horizon keeps moving ahead
while time proceeds. An interesting approach to investigate is to modulate the value of δt depending on the
distance from the kinematic limit. A high value could be chosen on high distances, resulting in early and
smooth anticipatory action, while the value can be lowered when the kinematic limit is closely approached
so that a significant overshoot is prevented.

Another interesting topic for future work is variable limit values. For example the shoulder limit task pre-
sented here does not coincide with a physical limit on the joint. Instead it is chosen partly to prevent the
manipulator arm to collide with the robot’s torso when the arm reaches for the ground next to the robot.
However, when reaching in front of the robot a larger flexion of the shoulder joint would be allowable. In this
case the shoulder joint limit could be determined as a smooth function of the arm’s position.

Originally many of the implementations of multi-task operational-space control frameworks avoided dealing
with kinematic limits because these were difficult to integrate into the analytical control frameworks. The
recent development of numerical optimization-based approaches has allowed for the easy integration of in-
equality tasks such as kinematic limits. Although these tasks are typically integrated purely to prevent the
robot from hitting physical limits, some authors do mention integration into a task hierarchy such that com-
pensatory motion of other joints it triggered once a kinematic limit is reached. In [17] a hierarchical task
implementation is shown that results in a humanoid robot relaxing its COM position control when a reach-
ing motion of the hand leads to hitting a joint limit in the arm, thereby adding motion of additional DOFs for
the execution of the hand motion task. However, this controller is inverse kinematics-based, and therefore
only takes into account positions and velocities. An example of triggering whole-body motion through im-
plementation of kinematic limit tasks in a task hierarchy for an inverse dynamics-based controller is shown in
[10]. There a kinematic limit is specified for the distance between the foot and hip of the torque-controllable
quadrupedal robot ANYmal in order to achieve perception-less terrain adaptation during locomotion. When
the robot reaches an unexpected drop in terrain during locomotion and the swing foot cannot be moved to
the ground without exceeding the specified limit, the robot’s torso pitch control task will be relaxed such that
a whole-body motion is initiated by tilting the torso such that swing foot can be lowered further.

5
Posture optimization

5.1. Introduction

This chapter presents the results of a brief exploration that was done on the topic of posture optimization
tasks in the considered control framework. Posture optimization is a commonly used approach to optimize
the performance of a kinematically redundant robot.

As illustrated in the previous chapter, some DOFs of the robot’s base, such as its orientation, do not require
strict control and therefore offer a kinematic redundancy that can be used for posture optimization of the
robot. This posture optimization can be be focused at improving a desired aspect of performance such as
avoiding kinematic singularities or optimizing actuator efficiency. This chapter presents how equality tasks
can be designed and implemented into the task hierarchy such that a whole-body behavior emerges in order
to optimize the robot’s posture according to a desired measure. This is illustrated by results of a posture
optimization task which is aimed at optimizing the translational manipulability of the arm.

5.2. Controller setup

Posture tasks can be formulated as equality tasks based on configuration dependent cost functions. Consider
a function f (q) as a function of the robot’s generalized coordinates that rates the current configuration of the
robot with a single value according to a desired criterion. A higher posture rating can then be achieved by
motion of the robot’s generalized coordinates along the gradient of this function: ∇ f (q). This was first done
for a torque-based inverse dynamics controller by [45]. Similar to that implementation, the control frame-
work used in this work allows specifying the posture optimization task as a function solely of the generalized
accelerations q̈, while the corresponding required joint torques will be computed due to forced compliance
with the high priority EOM control task. Similar to the control law presented in [45], a control task that results
in a damped motion towards the desired posture is formulated as:

[
S 0

]
ξ = −kd

(
q̇S − kp

kd
∇ f (qS)

)
(5.1)

Here S is a selection matrix that selects the entries in ξ that correspond to the generalized coordinates qS on
which the posture function depends. kp and kd are respectively a proportional and derivative gain. This con-
trol law directly commands joint accelerations such that the desired joint velocities according to the function
gradient are achieved.

The controller implementation in this chapter will focus on arm posture optimization through whole-body
motion. The choice for focusing only on posture measures for the arm is because limitations in the robot’s
performance are more likely to occur at the arm than at the legged base. The 6 DOF arm is expected to have to
perform a wide and varying range of motions which could potentially result in awkward arm configurations

27

28 5. Posture optimization

or (self-)collision. This is in contrast with the simple 3 DOF legs which typically perform the same type of
translational motion to support the torso. Also in terms of joint torques the arm is more limited. While the
ANYdrives[1] in the legged base have torque limits of 40 N, the Kinova arm joints have torque limits of only
30.5 N for the shoulder and elbow joints and 6.8 N for the wrist joints [4].

For implementation of the posture task into the task hierarchy the focus is again on leaving the end-effector
pose tracking task unimpaired while exploiting motion of some of the base DOFs for the posture optimization
of the arm. Following the reasoning presented in the previous chapter, the torso’s height and orientation
DOFs are chosen to be used for the fulfillment of the posture task, because these DOFs do usually not require
strict motion control as long as the COM motion task is still executed properly. Figure 5.1 shows the task
hierarchy designed for arm posture optimization.

Figure 5.1: Task hierarchy for arm posture optimization. The additional posture optimization task
results in a total task set that requires more DOF than the robot has available. In the current hierarchy
this results in conflicting tasks for the base height and orientation DOFs. This will result in a base
height and orientation that partly fulfills their corresponding motion tasks and partly fulfills the arm
posture optimization task.

The arm posture optimization task is placed at the same hierarchy level as the torso height and orientation
tracking task, but at a lower priority than the arm pose and COM position tracking tasks. Because the arm
posture task adds additional DOFs to the total DOF requirement for all tasks, the robot no longer has enough
DOFs available to independently fulfill all tasks. The chosen hierarchy therefore results in proper execution of
the tasks in the first and second priority level for which enough independent DOFs are available, but in con-
flicting tasks in the third priority level because of a lack of remaining independent DOFs. The reason that the
torso height and orientation tracking tasks are left in is because this will result in a regulating effect. Without
these tasks the torso might move to extreme and unfeasible positions to satisfy the arm posture optimization
task. However, in the current case the 4 DOFs of the torso height and orientation will be used such that a least
squares optimal performance will be attained for all three tasks in the priority level. Individual task weights
can be tuned to increase or decrease the regulating effect of the motion tasks.

As a demonstration of this control task hierarchy an arm posture optimization task is designed aimed at
increasing the translational manipulability of the arm. The manipulability measure was first introduced in
[52] and expresses to what extent the joint velocities can result in end-effector velocities in all directions of
the operational-space. Near kinematically singular configurations, which are characterized by the loss of
a controllable operational-space DOF, the manipulability of the robot will be low, whereas it will be high
when all operational-space DOFs of the end-effector are well controllable. The manipulability measure m(q)
for a robotic system and corresponding end-effector can be calculated as a function of the configuration

5.3. Results 29

dependent Jacobian:

m(q) =
√

det
(
J(q)J(q)T

)
(5.2)

In order to formulate the posture optimization control task, the gradient∇m(q) of the manipulability measure
with respect to the generalized coordinates is required. The individual components of this gradient vector can
be computed[37] as:

∂m(q)

∂qk
= m(q)Tr

(
∂J(q)

∂qk
J+

)
(5.3)

J+ denotes the Moore-Penrose pseudo-inverse of the Jacobian matrix J. The total gradient vector can then be
inserted in eq. (5.1) to form the posture optimization task.

Finally the choice of the Jacobian determines which motions of which point on the robot are considered. In
this demonstration the Jacobian is chosen that relates the rotational motion of the two shoulder joints and
the elbow joint to the translational motions of the end-effector. This is done because of the six arm joints,
these three have the strongest relationship to the end-effectors translational motion. The choice for this
manipulability measure means that motion of these joints along the corresponding manipulability gradient
∇m(q) results in an improved ability of the arm to produce translational motion of the end-effector in the
operational-space Cartesian directions.

5.3. Results

To illustrate the behavior as a result of the posture optimization task hierarchy a comparison is made with the
basic implementation from Chapter 3. The task performed with both control setups consists of the tracking
of an upward motion for the end-effector. Figure 5.2 shows the initial and final positions of the robot for
both control setups. The positions of the end-effector and the feet are exactly the same for both setups. The
difference lies in the height and pitch of the torso. For the posture optimization task hierarchy this torso
motion is partly controlled such that it increases the manipulability of the arm. When comparing the arm
configurations for the upward reaching posture, it can be seen that the posture optimization task decreases
the amount in which the arm links are aligned, thereby increasing manipulability and staying away from the
extended elbow singularity.

Figure 5.2: Robot posture without (left) and with (right) arm posture optimization task. When the
posture task is present, the robot’s torso height and orientation is partly controlled such that the end-
effector’s translational manipulability as a function of the lower 3 arm joints is improved. When the
end-effector is commanded away from the body the inclusion of the posture task results in torso mo-
tion that prevents the elbow from overextending.

30 5. Posture optimization

More detailed information about this comparison is given by the plots in Figure 5.3. The top plots show
that both controller implementations result in identical satisfactory motion tracking of the end-effector. The
second row of plots show the manipulability measure of the arm as it moves. It can be clearly seen that the
manipulability of the arm remains significantly higher throughout the task when the posture optimization
task is present. The bottom two rows of plots show the motion of the torso height and pitch during the
reaching motion. In the case where there is no posture optimization task, the torso height and pitch can be
freely controlled to remain at their desired values of respectively 0.41 m and 0 rad. In contrast, when there is
a posture task, the torso height and pitch deviate considerably from their desired values because these DOFs
are also used to increase the arm’s manipulability.

Figure 5.3: Comparison in robot behavior without (left) and with (right) arm posture optimization task when an upwards reach-
ing motion is commanded for the end-effector. Without the posture task the torso height and pitch remain constant at their
desired values while the end-effector follows it desired motion. Before the end-effector motion is initiated, the pose of the
robot’s torso is already different for the case where the posture optimization task is included, resulting in a higher manipulabil-
ity measure of the arm. When the motion of the end-effector starts, the height and pitch of the torso change as well to increase
the arm manipulability for the new end-effector positions. This results in a higher arm manipulability throughout the entire
end-effector motion when the posture task in included compared to when it is not.

Figure 5.4 shows how this controller setup performs on other challenging reaching tasks. The left picture
shows that when reaching for the ground the posture task results in a lowering and tilting of the torso to in-
crease the manipulability of the arm. It hereby prevents the previously mentioned limitations of the basic
controller implementation where the end-effector could not reach the ground, could end up near a singular-
ity, and risked collision with the torso. The right picture shows how a commanded lateral reaching motion of
the end-effector results in a yaw and roll of the torso, which increases the arm’s workspace reachability while
preventing overextension of the elbow.

5.4. Discussion

In this chapter it is shown how posture optimization can be achieved for a quadrupedal manipulator using
an hierarchical inverse dynamics control framework. First a posture optimization task is designed which

5.4. Discussion 31

Figure 5.4: Commanding end-effector motion while optimizing for arm posture results in whole-body reaching motion.
When commanding the end-effector to move to the ground (left panel), the torso’s orientation (primarily roll) and
height are significantly deviating from their desired values in order to keep the arm’s manipulability high. This results
in a whole-body reaching motion, which allows the end-effector to reach the ground without overextension of the
elbow or collisions between the arm and torso. A similar whole-body reaching behavior emerges when commanding to
end-effector to reach laterally (right panel). In this case it is primarily the torso’s yaw and roll angles that deviate from
their desired values in order to keep the arm’s manipulability higher.

prescribes motion of the robot’s joints along the gradient of a desired posture measure function. By placing
this task at the same priority as the motion tasks for the torso’s orientation and height, these DOFs will be
controlled such that they partly fulfill their motion tasks and partly allow for posture optimization of the
robot. By placing the end-effector pose tracking task at a higher priority, the execution of this task will not be
affected by the posture optimization.

The illustration in this chapter, based on a manipulability optimization task for the arm, shows that this set of
control tasks results in smooth reactive torso motion which helps avoiding arm singularities and self-collision
with the torso, and results in an increased workspace reachability of the end-effector. Besides, balance is
maintained at all time, while real-time control input for the motion control of the end-effector is still possi-
ble. Therefore the implementation presented in this chapter successfully addresses six of the seven control
requirements listed in Section 2.6.

Here the implementation of an arm posture optimization task was demonstrated with the use of a posture
measure based on the translational manipulability of the arm. However, any measure which rates the robot’s
posture as a function of some or all of its generalized coordinates can be used in the presented task hierarchy.
For example a similar manipulability measure could be designed which results in optimization of the wrist
joints to maximize rotational manipulability of the wrist. This could then be used to avoid the kinematic wrist
singularity which occurs when the axes of the 1st and 3rd wrist joints align, which results in the loss of an axis
of rotation of the end-effector. Other examples include optimizing posture to distribute gravitational forces
according the individual torque limits of the joints [45], or to attain increased manipulability in a desired
motion direction [12].

A particularly interesting measure is that of directional force manipulability. The velocity-based manipula-
bility that is discussed so far indicates how well end-effector velocities can be obtained as a result of joint
velocities. Here the manipulability is low when only low end-effector velocities can be obtained. However,
the velocity-force duality based on conservation of power prescribes that a direction in which only low end-
effector velocity can be attained, a high force can be generated. Such a measure can be extremely useful to
optimize the robot’s posture in order to increase the magnitude of the force the robot can exert on its envi-
ronment, for example when pulling open a heavy spring-loaded door. Such a posture optimization has been
shown for the control of an excavator boom with one redundant DOF [27]. It has however not yet been shown
on a legged platform where motion of the base would be required, although it has been mentioned as future
work for a quadrupedal manipulator [20].

Similar to the previous chapter the base height and orientation were designated to deviate from their desired
positions in order to accommodate the performance of an additional task. This choice was made because
these DOFs do not require to strictly remain at a specific position and do not directly influence COM position
and balance. However, interesting about the quadrupedal platform is that considerable COM motion would
be allowed without immediately impairing balance. This would particularly be an interesting implementa-
tion to pursue in combination with optimization of the directional force manipulability of the arm and with
corresponding locomotion where footstep locations are planned while taking into account external forces at

32 5. Posture optimization

the arm. Such an approach could result in efficient and robust force-based interaction with the environment,
for which a basis is laid down in Chapter 6 and Chapter 7

When comparing the results from the task hierarchy presented here with the one from Chapter 4 it can be
seen that they solve similar problems. Both controller implementations increase workspace reachability, pre-
vent overextension of the elbow joint and result in whole-body collision-free motion when reaching for the
ground. The advantage of using a posture optimization task is that it results in smooth continuous whole-
body motions, instead of only using torso motion to improve manipulation at the moment when a kinematic
limit is reached. On the downside, this additional torso motion is not always really necessary, and could
perhaps be executed in a way which is not unintuitive or expected. A solution to that would be a variable
weighting factor. As mentioned in Section 5.2 weighting factors can be set for the posture optimization task
and the torso motion tasks. These weights can also be dynamically set as a function of a specific measure.
For example the weight for a manipulability optimization task can be increased as a function of a decreasing
manipulability measure or as a function of the lowest singular value in the arm’s Jacobian. This way torso mo-
tion to optimize arm posture would only be initiated when truly required. Setting this weight as a function of
such a measure which is smooth will also result in a smooth development of the weight factor and therefore
of the computed control signal over time.

In planning-based control approaches for mobile manipulators it is not uncommon to consider the effect that
base motion has on the posture of the manipulator [34]. For control approaches with an instantaneous nature
such as the one considered in this thesis posture optimization is most commonly used as a form of redun-
dancy resolution for otherwise uncontrolled DOFs [45][12][27]. In contrast, the implementation presented
here exploits the fact that some DOFs of the robot require only a soft degree of control and can therefore also
simultaneously be used to optimize a posture.

6
Force-based manipulation

6.1. Introduction

So far the focus of this thesis has been on motion-based manipulation. However, a mobile manipulator can be
expected to have to perform tasks where force-based interaction with the environment is required. This could
be carrying objects around, dragging/pulling/pushing such as opening a spring-loaded door, or handling
tools which require contact force control such as a window-wiper or a drill. One of the major advantages of a
fully torque-controllable robot such as considered in this work is that it allows for the direct control of these
contact forces.

In this chapter a controller implementation will be shown which allows for real-time control of force-based
manipulation. As discussed in Chapter 2 the hierarchical optimization control framework is able to implic-
itly distribute the required contact forces over the robot’s point-feet while taking into account torque limits
and the unilateral and friction-dependent character of the contacts. Here an extension will be presented to
include potential contact forces and torques at the arm when the end-effector is in contact with the environ-
ment. Furthermore, a method is presented that allows for a smooth transition between motion-based and
force-based control of the end-effector.

6.2. Controller setup

As explained in Section 2.3.4 the exact implementation of the EOM control task dictates the composition of
the optimization vector ξ. When using the reduced version of the EOM, as done in this research project, then
the optimization vector only needs to contain the robot’s generalized accelerations u̇ and contact forces τ.
Which contact forces are taken into account is a design choice, but should correspond with the actual state
of the robot for optimal performance. This means that the typical choice is to only include the contact forces
of all the limbs that have their endpoints in contact with the world. As shown in Chapter 2, the EOM of the
entire system are written as:

M(q)u̇+h(q,u) = STτ+ JT
s λ (6.1)

This shows that changes in the choice of incorporated contact forces in λ need to be reflected in the con-
straint Jacobian Js , which is the Jacobian that relates joint velocities to limb endpoint velocities. When taking
into account forces at the arm’s end-effector then these can be added by simply adding these to the contact
forces vectorλ (which is also part of the optimization vector ξ) and updating the support Jacobian Js accord-
ingly. In the implementation presented here only the linear forces at the end-effector are taken into account.
However, in contrary to the point-feet, a gripper at the end of the 6 DOF arm would also be able to exert pure
contact torques on the environment. When desirable, these contact torques can also be added to the EOM
and controller in the same way as described above. In this report only linear contact forces at the end-effector
are considered.

33

34 6. Force-based manipulation

Force-controlled contact between the arm’s end-effector and the environment can be used to aid in balanc-
ing, but it can also be used to perform force-based manipulation tasks. Because the latter is expected to be
more common, the focus on this chapter is on active control of the end-effector contact forces for manipu-
lation tasks. For this a simple equality task can be designed which prescribes the desired values for the arm’s
contact forces. This can be done in the form

[
0 S

]
ξ = λdes , as discussed in Section 2.4.2, where S is a se-

lection matrix selecting the entries of ξ that correspond to the contact forces at the hand. The control of the
contact forces at the feet is left unchanged, which means that for the feet only the inequality task represent-
ing the friction cones is specified, leaving the exact distribution of the required contact forces over the feet
to follow from compliance with the EOM task and the minimal contact forces norm task. This means that
this control setup will solve the difficult task of contact force distribution while taking into account desired
motions, contact forces at the hand, and the robot’s dynamics.

In Figure 6.1 the task hierarchy including the arm contact force task is shown. The contact force task is placed
at a separate priority level between the motion tasks and the final contact force minimization task. This is
done such that the desired contact force will only be tracked as well as possible without interfering with the
performance of any of the other tasks such as the motion tasks. This prevents undesirably high accelerations
to be computed when the desired contact force cannot be tracked correctly otherwise.

Figure 6.1: Task hierarchy including end-effector contact force control task. The additional priority
level at which this task is placed guarantees that when this task will only be executed as well as is
possible without disturbing the execution of any of the higher priority tasks.

Adding and removing control tasks such as the arm contact force task can result in undesirable jumps in the
control signal from one control period to the next. In order to prevent this, special attention has to be payed
to enforce a smooth transition when (de)activating force control at the end-effector. When examining the
equations of motion (6.1) the term JT

s λ can be interpreted as the torque vector containing the joint torques
that are required to attain the desired contact forces λ. When adding a contact force task for the arm with
λdes = 0, then both JT

s and λ have to be adapted, but the vector computed by JT
s λwill remain the same. This

means that a contact force task can be added and removed without any changes in control signal when the
desired contact force for that limb is set to zero.

To take advantage of this the controller is designed such that the arm contact force task is added when a
desired contact force unequal to zero is registered, and removed again when the desired contact force is back
to zero. This desired force value can be a result of for example a planning algorithm, but can also be a direct
result of real-time teleoperation input, such as through a joystick input. A simple first-order discrete-time
filter of the form λdes (t +δt) = αλdes (t)+ (1−α)λdes,i nput (t +δt) is added in order to guarantee that the

6.2. Controller setup 35

desired contact force value will always progress smoothly from and to zero without causing jumps in the
control signal, even when the input signal contains step changes. For a control period δt of 0.0025 s a value
for α of 0.97 shows sufficient smoothing of input step changes.

The motion task for the arm’s end-effector does not need to be removed from the task hierarchy when the
contact force task is added. In fact, it is even desirable to leave it in. When no motion task is specified for
the end-effector the controller will assume that the kinematic DOFs of the arm are available for other tasks,
such as the COM motion task, which results in the computation of accelerations and corresponding joint
torques for the arm. By inspection of the EOM (6.1) it can be seen that the robot’s prescribed joint torques are
a result of the desired generalized accelerations u̇, desired contact forces λ, and of cancellation of dynamic
effects h(q,u). In order to have the computed torques result in accurate tracking of the desired contact force
it is important that the completion of the end-effector motion task does not require any joint torques. As
discussed in Section 2.4.1, a typical motion tracking task is formulated as:[

J(q) 0
]
ξ = r̈des − J̇(q)u (6.2)

r̈des = r̈F F +kd (ṙdes − ṙ)+kp (rdes � r) (6.3)

where for the end-effector motion tracking task r̈F F and ṙdes are set to zero, and ṙdes corresponds to currently
desired position and orientation of the end-effector. When the contact force tracking task is active, rdes can
be set to be follow to the actual end-effector position by setting it equal to r such that r̈des remains zero. This
then corresponds to the no-motion task for the stance legs described in Chapter 3. Besides, when the contact
force task is deactivated again, even when motion has occurred in the meantime, motion control can resume
smoothly by ordering rdes to move away from r again.

In reality there are two reasons why extra attention has to be payed to the end-effector motion tracking task
when the contact force task is activated. First, when a desired contact force is commanded while no actual
rigid contact is present, high accelerations and velocities of the end-effector can result. These high velocities
can be prevented by leaving the damping term kd (ṙdes − ṙ) in the computation of r̈des . The torques computed
as a result of this part of the motion task will likely corrupt the execution of the contact force task, but will
prevent excessive end-effector velocities. The second issue is that at the moment the desired contact force
becomes non-zero and the contact force task is activated, it might be possible that there is a non-zero error
(rdes � r). Immediately setting rdes to r would then result in an undesirable jump in the computed joint
torques. In this case it is necessary to smoothly let rdes approach r before setting them to be equal.

The way this is dealt with is by computing the magnitudes of the position and orientation errors at the mo-
ment the contact force task is initiated and then ramping the desired position and orientation to the actual
ones such that the error magnitudes smoothly decrease to zero within a specified time. For the ramping of
the desired end-effector position rdes first the magnitude of the initial pre-ramping error epr e is calculated
when the contact force task is first activated at t = 0:

epr e = ‖rdes (0)− r(0)‖ (6.4)

From then on a ramping fraction α is calculated based on the time t since the contact force task is initiated,
and a desired ramping time tr amp :

α= t

tr amp
(6.5)

Then, at every next control period the desired position is clipped slightly closer to the actual position by
scaling the normalized leftover error according to

rdes (t) = r(t)+ (1−α)epr e
rdes (t)− r(t)

‖rdes (t)− r(t)‖ (6.6)

When α equals one, or the error between the desired and actual end-effector position falls below a certain
threshold, the desired position is set to be equal to the actual position for as long as the contact force task is
still active. For a smooth but rapid ramping tr amp is set to 0.5 s. The same procedure is followed for the end-
effector desired orientation, except that the minus sign to compute the error in 6.4 and 6.6 has to be replaced
by the boxminus operator � [13], which makes it possible to express the orientation error as a vector with the
axis-angle expression.

36 6. Force-based manipulation

The setup on which the experiments were conducted is shown in Figure 6.2. A dynamical model of a heavy
50 kg door with a fixed door handle is added to the simulation. For most experiments the door is unable to
move and functions as a rigid part of the environment onto which forces can be exerted by the robot. For the
experiments where the door is able to move, the hinge joint limits of the door are set such that it is considered
"shut" in the configuration shown in Figure 6.2, and can be pulled "open" in the direction of the robot. The
hinges have a considerable friction of 10 Nm. Because the hand at the end of the arm is not actuated in the
simulation, the grasping of the door handle by the hand needs to be mimicked. This is done by adding a
"fixed joint" in the simulation software between the hand and the door handle, thereby locking the hand’s 6
DOF pose to that of the handle, similar to when the hand would actually have a tight grip on the door handle.
The forces in this additional joint are obtained from the simulation software to measure the actual contact
forces between the robot and the door handle.

Figure 6.2: Setup in simulation for experiments on end-effector contact force control. The robot’s end-effector is rigidly
attached to the door handle by adding a fixed joint between the two objects in simulation. This allows the end-effector
to transfer contact forces (green vector) onto the door. The door is "shut" in the current configuration but can be pulled
open along the direction of the red vector. The door hinges can also be locked for the door to function as a rigid wall.

6.3. Results

For the first experiments the door’s hinge is fixed such that the door functions as a rigid unmovable object at
which forces can be exerted. As input for the desired contact forces at the hand a ~1 second step input was
given for a desired contact force in x-, y-, and z-direction. Figure 6.3 shows the results of this experiment. The
envelope of the desired contact force signal is a result of the first order filter that is applied to the step input
signal such that jumps in the control signal are avoided. The plots show that the desired contact forces can
all be tracked nicely without interfering with with the measured contact forces in the orthogonal directions.

To demonstrate the effect of the placement of the contact force task in the task hierarchy a situation was
created where the foot friction cone limits prohibit the generation of the ground reaction forces required
for the desired contact force at the hand. The design of the inequality task which enforces ground reaction
forces at the feet to lie within the appropriate friction cone is discussed in Section 2.5.2. This task is based on
an assumed friction coefficient µ and in order for the task to be fulfilled, the ratio between the tangent and
normal components of the contact forces relative to the contacted plane needs to be smaller than the value
of µ:

µ ≥ tangent contact force component

normal contact force component
(6.7)

The value of µ is normally set at a value of 0.5. However, for the experiment this value was reduced to 0.05.
With these much "thinner" friction cones, the magnitude of the allowable tangent components of the contact
forces at the feet is drastically decreased. Figure 6.4 shows what happens when a desired horizontal contact

6.3. Results 37

Figure 6.3: End-effector desired contact force tracking. These plots show that when the end-effector is in fixed contact
with a rigid object any desired contact forces can be accurately tracked for each individual Cartesian direction.

force of 30 N between the hand and the door is prescribed. The top panel shows the desired and actual contact
force of the end-effector along the x-axis. The bottom panel shows the ratio between the frontal and normal
components of the ground reaction force measured at the front left foot. As the desired contact force at the
hand increases, the contact force ratio also increases because the required compliance with the EOM task
demands that the x-direction contact forces at the feet must equal the x-direction contact force at the end-
effector. When the maximum ratio - indicating the edge of the friction cone - is reached, the friction cone
inequality task becomes active, which results in a limitation of the contact force that is exerted at the end-
effector. In other words, the end-effector contact force task is executed as well as possible without violating
any of the higher priority tasks including the friction cone limit task. If the end-effector contact force task
would be placed at any of the higher priority levels then part or all of the action required to avoid the friction
cone limit would be through acceleration of the COM of the robot. Since this is not a sustainable strategy and
quickly results in crashing of the robot, this would be highly undesirable.

A similar demonstration can be given when taking into account the joint torque limits. For this experiment
the robot’s arm is positioned such that the wrist flexion/extension joint has a considerable moment arm with
respect to horizontal contact forces at the end-effector by having the hand point down while it is connected
to the unmovable door. In this case high desired contact forces at the end-effector result in saturation of
the torque that the actual wrist joint can deliver, which is 6.8 Nm [4]. Because the joint torque limits are
integrated into the top level of the task hierarchy, the controller will limit the execution of the contact force
task such that the joint limits are respected. This can be seen by the results presented in Figure 6.5. The
desired contact force at the arm is tracked properly until the wrist joint limit is reached. At that point the
contact force at the end-effector levels off to the maximum achievable magnitude without violating the joint
torque limit.

For the final experiment the door is set to allow motion by pulling it towards the robot, as indicated by Figure
6.6. This experiment will highlight the smooth transition between the motion and contact force tasks. First
the robot’s end-effector is moved towards the door handle, where then a rigid connection is formed between
the hand and handle in order to simulate the door handle being grasped. At this point a motion for the end-
effector is commanded in all three Cartesian directions, which moves the end-effector’s desired position away

38 6. Force-based manipulation

Figure 6.4: Commanding horizontal end-effector contact force while friction cone limits are reached. The bottom plot
shows the ratio between the frontal and normal components of the contact force at one of the robot’s feet. This ratio
increases when the contact force at the end-effector increases. For this a "thin" friction cone assuming a low friction
coefficient of µ = 0.05 is designed. Because the friction cone task is of higher priority than the contact force task, the
desired contact force is no longer tracked when this is impossible without violating the friction cone task.

Figure 6.5: Commanding horizontal end-effector contact force while an actuator torque limit is reached in the wrist
flexion/extension joint. The top plot shows the desired and actual contact force for the end-effector, while the bottom
plot shows the wrist joint torque. Because the of the higher priority of the joint torque limit task, the desired contact
force is only tracked as well as is possible without exceeding the joint torque limit.

from its actual position, and results in the robot pushing against the door because hand motion is restrained
(Figure 6.6, left panel). This can be seen in the first 0.5 seconds of the plots in Figure 6.7. The first three
plots show the actual and the deviating desired positions for the end-effector. The fourth plot shows the total
position error magnitude. The final plot shows the desired contact force and the actually measured contact
force between the robot and the door. It can be clearly seen that the end-effector’s motion task which attempts
to move the end-effector towards its desired position results in a considerable pushing contact force against

6.3. Results 39

Figure 6.6: Experimental setup for demonstration of smooth transition between end-effect motion and contact force tasks. First
the end-effector is rigidly connected in simulation to the door handle. Subsequently a motion of the end-effector is commanded,
resulting in an error (red vector) between the actual end-effector pose and its desired reference frame. Next, an end-effector
contact force is commanded (green vector) which results in motion of the door. When the contact force task is activated the
desired end-effector pose is linearly ramped towards the actual end-effector pose such that the motion tracking task does not
generate torques that interfere with the contact force task.

the rigid contact with the door. After 0.5 seconds a desired pulling contact force of 30 Nm is commanded.
This non-zero desired contact force results in the contact force task being added to the task hierarchy. The
duration for which this task is active is indicated by the green boxes. As soon as the contact force task is active,
the desired position of the end-effector is linearly being ramped towards the actual position, according to
the methods described in the previous section. For demonstrational purposes this ramping time is set to a
relatively long value of 1.5 s for this experiment. The contact force plot at the bottom shows that when the
position error decreases, the contact force at the door starts moving towards its desired value. At around 1.4
seconds the contact force on the door becomes large enough to pull the door into motion, which can be seen
by the change in actual position of the end-effector x-, and y-positions. The period during which the door is
in motion is indicated by the darker green boxes. Despite the fact the the actual end-effector positions are
changing, the ramping control law ensures that the total difference between desired and actual positions still
decreases linearly, after which the desired positions are set to equal the actual positions such that the motion
task no longer disturbs the execution of the contact force task.

The apparent irregularities in the linearly decreasing position error norm plot can be attributed to the fact that
the simulation software does not always manage to run completely in real-time while the logging software
assumes that it does and therefore uses the computer’s time. The reason that the actual contact force in the
bottom plot can be seen to never reach the desired contact force is because the remaining damping term in
the end-effector motion task results in opposite joint torques which slow down the motion of the end-effector
while the door is being pulled open. This prevents the end-effector from reaching undesirably high velocities
as a result of controlling the contact force between the end-effector and a movable object. The behavior for
desired and actual end-effector orientations during the initiation of a contact force task are similar to the
results presented here for positions.

Finally it is interesting to note that by just specifying a desired contact force for the end-effector along the
x-direction (while removing the position error) the robot ends up opening a heavy door. This behavior is
possible because the robot does not experience drawbacks from the fact that the door’s motion constrains the
end-effector motion path because the end-effector is controlled not to track any motion, but just to produce
a desired force. A similar task is considerably harder to execute using position control of the end-effector
because in that the case prescribed end-effector motion needs to closely match the constrained motion path
allowed by the door.

40 6. Force-based manipulation

Figure 6.7: Switching smoothly to an end-effector contact force task with a present position tracking error. The top three plots
show how the end-effector initially has a position tracking in all three Cartesian directions. As soon as the contact force task
is activated (light and dark green boxes) the desired end-effector position is ramped towards the actual end-effector position.
This is done in such a way that the total position error norm reduces linearly to zero over 1.5 seconds, even when the actual
end-effector position starts to change because of motion of the door (dark green box). The reason that the desired contact force
is not being reached is initially because of the conflicting position tracking error. Later it is due to the fact that the end-effector
is in motion and results in motion damping action by the motion tracking task.

6.4. Discussion

In this chapter an implementation of the hierarchical optimization control framework is presented which
enables real-time contact force control at the end-effector for manipulation purposes. By filtering the desired
contact force value input and by ramping down the motion task errors, a smooth transition between the
motion and contact force task for the end-effector can be achieved. The placement of the contact force task in
the task hierarchy guarantees that the execution of this task is only performed as well is as is possible without
corrupting the performance of any of the higher priority tasks. This task hierarchy mainly addresses three of
the seven controller requirements listed in Section 2.6. Most importantly it allows for end-effector contact
force control, which has not been addressed yet in the previous chapters. Secondly, it allows for simple real-
time control of force-based manipulation tasks through online input on the desired contact force direction
and magnitude. Finally it can be concluded that the robot’s whole-body potential is used. The inclusion of
the high-priority EOM task results in the contact force distribution being implicitly solved while taking the
full robot dynamics and all joint torques into account.

Interesting to mention is that although the inequality tasks are added at high priority levels, they still need
to be added explicitly at every priority level’s QP formulation as explained in Chapter 2. Experiments show
that when large horizontal contact forces are commanded at the end-effector, that this can result in a conflict
with the friction cone task because that task does not allow for the required ground reaction forces. This
conflict has shown to sometimes result in unstable behavior with jumps in the computed contact forces that
the controller computes for the feet because of activation and deactivation of the friction cone limit tasks

6.4. Discussion 41

for each of the feet. This behavior can be removed by setting the arm contact force task at a weight factor of
0.0001 with respect to the friction cone task. When a conflict between the two tasks then emerges, almost
all focus of the controller will lie on satisfying the friction cone constraints thereby preventing the unstable
behavior that originates when the two tasks actively compete at the same weight level.

The results shown here were obtained by a setup where the robot’s end-effector was rigidly connected in
simulation to a rigid object in the world. Although not very realistic, it served well to show the performance
of the controller implementation. In real situations the robot will need to rigidly grasp an object such as a door
handle to be able to display similar behavior. Performance might in those cases be limited by backlash in the
grip or by a limited gripping strength of the hand. Also, force-based manipulation does not always coincide
with a fixed grip on an unmovable object, or by only controlling contact forces without controlling motion.
When considering for example a window cleaning task it would be desirable to control contact forces in the
direction of the surface, and control motion of the end-effector tangential to the surface. This corresponds
to hybrid force-motion control such as first described in [30]. Similar to the methods described in that paper
the control framework described in this thesis also allows for decoupled force and motion control. Because
both the motion and contact force task can be active at the same time it is possible to prescribe motion of the
end-effector in a certain direction, while prescribing contact forces in an orthogonal direction.

For proper execution of motion and contact force tasks, these two tasks should never prescribe action with
components in the same direction. Doing so anyway will result in neither of the two tasks being executed
properly because it is physically impossible to simultaneously control both motion and force along the same
direction. This is also the problem with the current method of velocity limiting control of the end-effector
during a contact force task. As explained, upon activation of the contact force task the position error of the
end-effector will ramp to zero such that the motion task does not result in the computation of position-
regulating joint torques. However, the damping component of the motion task is still left intact. This ensures
that when motion of the end-effector is possible, the execution of a contact force task will not result in exces-
sive velocities of the end-effector along that direction. In practice this approach satisfies this requirement.
However, the end-effector motion is not exactly damped as prescribed by the motion task because of the ex-
istence of the contact force task, while the exerted contact force changes both magnitude and direction as a
result of the activation of the damping component of the motion task. It would be more logical to explore
ways to modulate the desired contact force in order to regulate the end-effector’s velocity, while the motion
task is adapted such that it does not result in the computation of additional joint torques. This could for
example be done by limiting the amount by which the desired contact force is allowed to differ from the ac-
tually measured contact force. This way, when the contacted object is not able to deliver a reaction force and
moves instead, the desired contact force is reduced such that high accelerations are prevented. Another op-
tion would be to limit the prescribed desired contact force value as a function of the measured end-effector
velocity, thereby also creating a damping-like behavior.

Contact force distribution for torque-controlled robots is an ongoing field of research. An influential paper
on the topic of contact force distribution for torque-controllable quadrupedal robots suggested the inclusion
of inequality constraints that describe the friction cones which need to be respected [42]. Recently literature
has focused on solving the contact force distribution problem while taking into account the full system dy-
namics and desired motions. In [21] a method is presented to combine numerical contact force distribution
with an analytical hierarchical inverse dynamics controller. In [10] and [23] a control method similar to the
one used in this thesis is used to solve the contact force distribution even during changes in the number of
contacts with the environment. However, all these reported methods focus only on computing a contact force
distribution that satisfies a set of inequality tasks. In addition, the implementation presented here also takes
into account direct contact force control through the implementation of a contact force equality task. Fur-
thermore the work presented here presents a method for smooth transitioning between motion-based and
force-based manipulation.

7
Balance disturbance rejection

7.1. Introduction

For a quadrupedal robot without manipulation capabilities it is common to assume that gravity is the only
balance disturbing force, and therefore the robot’s posture is controlled such that the effects of gravity do
not result in loss of balance. This is done by making sure that the position of the robot’s center of pressure
(COP) remains near the middle of the robot’s support polygon, which is formed by the feet in contact with
the ground. Having the COP on an edge of the support polygon corresponds with inability of the robot to
create a moment to counteract that of gravity, resulting in the robot tipping over. When interacting with
the environment through force-based manipulation, the robot is subject to additional external forces. These
forces, which can for example result from pushing or puling by the robot on the environment, can result in a
shift in position of the COP and therefore in loss of balance. In the previous chapter it was shown how contact
forces at the hand could be controlled in real-time, but the effect on the robot’s balance was not addressed.
In order to examine the possibilities for robustly balanced force-based manipulation a part of this thesis is
focused on estimating and effectively dealing with external disturbing forces. Although the relatively large
base of support of this quadrupedal platform allows for considerable external forces to be exerted on it, it is
still possible for the robot to lose balance as a result of it, or arrive in a state where the margin between being
stable and falling becomes undesirably small. Therefore a controller was developed that exploits the mobility
of the robot’s base and the reasonable tolerance for external forces in order to make the robot more robust to
large external forces.

The controller presented in this chapter is developed to generate a desired COM position reference for the
COM motion task. This position reference is computed based on the measured balance-disturbing effects of
an external force. First, contact forces at the feet are estimated using the leg joint torques, because the actu-
ators provide accurate torque readings, while no accurate contact force measurements are available directly
at the feet. Based on these measured contact forces the position of the COP of the robot is computed. When
this position deviates from the position where the COP is expected to be based on the position and accelera-
tion of the COM, an external force must be acting on the robot. Finally, this difference between the expected
and actual COP position is used to command a shift in the COM position such that the actual COP remains
near the middle of the robot’s support polygon. This way the robot reactively maintains balance when large
external forces are exerted on the robot, either due to a deliberate manipulation task, or due to unexpected
external disturbances such as pushes to the robot.

7.2. Controller setup

This section will present the exact design of the components of the disturbance rejection controller. First,
a method to estimate contact forces based on joint torques is presented. Second a control law is presented
which uses information on the state of COM and the position of the COP to estimate and correct for external

43

44 7. Balance disturbance rejection

disturbing forces.

Knowledge of the position of the COP is crucial to assessing the robot’s state of balance. Therefore the contact
forces at the feet need to be known. The ANYmal robot does currently not possess accurate contact force
sensors at the feet, but does have actuators which provide very accurate torque readings. The torque readings,
in combination with part of the robot’s EOM can be used to estimate the contact forces at the feet. To do this,
assumptions can be made in order to prevent doing full dynamic state estimation of the robot, which can be
complex and sensitive to producing errors. The assumption made here is that each of the four legs is attached
at the hip to a fixed point in space instead of to a floating base. This assumption means that any joint torques
τ would only result in either leg joint (lj) accelerations u̇l j , compensation for dynamic effects at the legs hl j ,
and contact forces λ. Computationally this can be represented by extracting the leg joint-related parts of the
full EOM and rewriting the equation to solve for the contact forces:

λ= JT+
s,l j

(−τ+Ml j u̇l j +hl j
)

(7.1)

Here Js,l j is the part of the support Jacobian that relates only the leg joint velocities to foot velocities, and Ml j

is the 12×12 square part of the mass matrix that corresponds to the robot’s leg joints. With this knowledge
of the actual contact forces at the feet, the position of the robot’s COP (xCOP) can be computed as the sum of
the positions of the feet, weighted by the vertical component of their respective contact forces.

Figure 7.1: When the robot is not moving, its COP will lie underneath the COM, which is typically controlled to remain
above the center of the support polygon such that the COP will be there too (left illustration). When an external force
acts on the robot (red vector in right illustration), the robot’s COP will shift away from the projection of the COM onto
the ground. This shift of the COP towards one of the edges of the support polygon decreases the balance margin of the
robot.

When the robot is in rest and gravity and the ground reaction forces at the feet are the only external forces
acting on the robot, then the COP will be below the robots COM. This state is depicted in the left panel of
Figure 7.1. Therefore, the COM is typically controlled to remain above the center of the support polygon,
such that the COP also remains near the center of the support polygon, resulting in a stable configuration.
However, when there are additional external forces acting on the robot, such as indicated by the red vector
in the right panel of Figure 7.1, the COP position will shift and will no longer lie beneath the robot’s COM. To
compensate, the COM position should move such that the COP position will move towards the center of the
support polygon again, for optimal balance.

The controller presented here assumes that there is already a reference position for the COM which guar-
antees balance when no disturbing forces are acting on the robot. When an error eCOP is detected between
where the expected and actual COP positions (blue arrow in Figure 7.1), then an offset for the desired COM
position reference is computed which compensates for this error and brings the COP back towards a position
which corresponds with stability of the robot. To define the expected COP position, the zero-moment point
(ZMP) is used [50]. This is the point on the ground with respect to which the moment of the inertial and
gravitational forces has no component along the horizontal axis. This point, which can be expressed with the
robot’s state, is proven to coincide with the robot’s COP when it falls within the robot’s support polygon and
no other forces are acting on the robot. In [51] it is shown that for a quadrupedal robot the system can be
modelled as point-mass to simplify the computation of the ZMP. The computation of the ZMP in 2-D (in this
case along the x-axis) can then be done according to:

xZ MP = xCOM − zCOM ẍCOM

z̈COM + g
(7.2)

7.3. Results 45

where x and z indicate positions along the x-, and z-axis respectively. The y-coordinate of the ZMP can be
computed similarly. Note that when the robot is in rest, and ẍCOM and z̈COM are equal to zero and xZ MP

becomes equal to xCOM . Previous research has shown that planning COM motion trajectories based on this
model (7.2) results in actual COP positions close to the planned ZMP positions, such that they fall inside the
predefined support polygons during various quadrupedal walking gaits [51][11].

Using this definition of the ZMP, the error between the expected and actual position of the COP can then be
computed as eCOP = xZ MP −xCOP . This gives a measure of the balance disturbing effect of any external force
or moment on the robot. A heavy first-order filter is applied to eCOP in order to have the controller ignore very
high-frequency variations in the ZMP and COP signals. With a filter constant α = 0.99 and a control period
δt = 0.0025 s, the cop error is computed as:

eCOP (t) =αeCOP (t −δt)+ (1−α) (xZ MP (t)−xCOP (t)) (7.3)

Based on this cop error eCOP a shift δrCOM of the desired COM position is calculated with the following
control law:

δrCOM = kp max(0, ‖eCOP‖−θCOP)
eCOP

‖eCOP‖
(7.4)

where θCOP is the cop error threshold after which the controller becomes active, which is in this case set to
0.02 m. This results in a behavior where the robot retains its original compliant behavior for small external
forces, and only starts actively compensating for external forces once they get larger. Besides that, in combi-
nation with the low-pass filter in (7.3) it ensures that the controller will also not become activated when high
but only short-lasting disturbing forces are exerted on the robot.

7.3. Results

The effectiveness of the described method for contact force estimation is examined with the following ex-
periment. While standing still a forward and then backward pitch change of the robot’s torso is commanded
while estimating and measuring the contact forces at the feet. Figure 7.2 shows the results of this experiment.
In the top panel the red dotted line shows the vertical component of the contact force at the front left foot
which is measured in the simulation software. The solid blue line shows the estimated vertical contact force
at the same foot. The bottom panel shows the desired (red dotted) and actual (blue solid) torso pitch angle.
In order to generate the angular acceleration of the torso, the contact forces at the foot change over time.
It can be seen that the estimated contact forces are a good approximation of the actually measured contact
forces. It is important to note that in this experiment the values of the joint torques which are used for the
estimation are the known joint torques which are applied by the simulation software. In practice the data
of the measured actuator torques might be less representative of the actual torques. However, the ANYdrive
actuators in the robot’s legs have a relatively high torque measurement resolution and have shown precise
torque tracking [14]. Some preliminary experiments on the actual robot have shown that this contact force
estimation method does indeed appear to yield very useable results.

In order to demonstrate the behavior of the COP-controller, an experiment is set up such as displayed in
Figure 7.3. An unmovable door which functions as a rigid wall is added to the simulation. The robot’s hand
is connected rigidly to it in simulation. The green vector between the feet represents the COP and the sum
of contact forces measured at the feet. The middle panel shows that when the COP-controller is not active
and a pulling force is commanded (indicated by the horizontal green vector), the robot’s COP shifts towards
the front edge of the support polygon, while the robot retains its posture. The right panel shows the situation
where the COP-controller is activated. An error between the COP and ZMP is detected and as a result the COM
is commanded to move (indicated by the blue vector). Because of this COM motion the COP moves towards
the center of the support polygon again, resulting in a more stable position for the robot under influence of
the external force.

A detailed overview of the results from this experiment is shown in Figure 7.4. The plots on the left and
right plots respectively show the robot’s behavior without and with the COP-controller being implemented.
For both cases the desired contact force at the hand is linearly ramped up over 1 second to a value of 40 N.
This value remains constant for 2 seconds after which the desired contact force is ramped down to zero 0 N
again. When the COP-controller is not implemented the COP of the robot shifts forward by almost 10 cm.

46 7. Balance disturbance rejection

Figure 7.2: Contact force estimation (at the front left foot) during torso motion. While the torso is com-
manded to pitch forward and then backward, the contact forces at the feet change. The top plot shows
that the contact forces estimated based on joint torques are highly similar to the actually measured
contact forces.

Figure 7.3: Exerting contact forces with the end-effector on a rigid object without and with COP-controller. The leftmost picture
shows the robot’s end-effector in rigid contact with the environment without exerting forces. The robot’s COP, indicated by the
origin of the green vector between the legs, remains underneath the COM. The middle picture shows the robot pulling on the
environment (horizontal green arrow). As a result, the COP shifts towards the front of the support polygon. In the rightmost
picture the COP-controller is active. Because an error between the robot’s ZMP and COP are detected, the COM is commanded
to move (blue vector) such that the COP moves towards the center of the support polygon.

During this the COM, and therefore also the ZMP, stay at a constant position. The plots on the right show
that when the COP-controller is implemented, the error between the COP and ZMP results in a shift of the
desired and actual COM position. As the COM moves, the COP moves back closer to its original position at
0.0 m which is in the middle of the support polygon. Because the COM shows no considerable accelerations,
the ZMP x-position corresponds strongly with the COM x-position. When the contact force at the hand is
lowered again the COP temporarily overshoots the middle of the support polygon because the COM is still
shifted backwards with respect to the polygon center. Finally, while the external force at the hand goes back
to zero, the error between the COP and ZMP position also goes to zero, resulting in the desired COM position
to move back to its original position above the center of the support polygon. A clear difference between the
two situations can be seen for the maximum distance of the COP from the support polygon’s center. When
the COP-controller is active, an equal external force at the hand results in almost a 50% smaller maximum
deviation of the COP, thereby keeping the robot in a more stable configuration.

7.4. Discussion

This chapter showed the design and implementation of a controller that estimates the balance-disturbing
effects of external forces based on estimated foot contact forces, and controls the desired COM position such
that these balance-disturbing effects are mitigated. This works to compensate for balance-disturbing effects

7.4. Discussion 47

Figure 7.4: Response of the robot to external forces without (left) and with (right) the COP-controller. For both situations the
end-effector is connected to the environment while over a time of 1 s the contact force is ramped up to 40 N and then ramped
back down to 0 N. When the COP-controller is not implemented, this external force results in a considerable shift of the COP
while the COM remains at the same place. When the COP-controller is activated, the COP error triggers a shift in desired COM
position, which then results in the COP shifting back towards it’s original stable position.

caused by any planned or unplanned external forces that are exerted on the robot. It specifically generates
elegant behavior when external contact forces are actively commanded between the hand and the environ-
ment. In this case all of the robot’s DOFs are used to adapt the posture of the robot such that balance is im-
proved while the desired contact forces are generated at the hand. Of the seven control requirements listed in
Section 2.6, two are specifically addressed. First, the controller presented in this chapter is focused on main-
taining the robot’s balance, even under large external disturbing forces. Second, the method described here
is reactive in nature and therefore still allows simple real-time teleoperation of the desired contact forces at
the end-effector.

The large base of support of the robot allows for the small initial disturbance of balance which then triggers
this balance-restoring posture change. Therefore it is possible to remotely and in real-time command rela-
tively high desired contact forces at the hand, without requiring complex and delaying planning methods to
ensure balance of the robot. Similar behavior and teleoperation would not be possible for bipedal robots,
which due to their typically small base of support require careful planning of COM motion to retain balance.
Without careful planning, real-time contact force control at an arm would then quickly result in the contact
force pushing or pulling the robot into a fall if locomotion is not initiated. Most wheeled mobile manip-
ulators have a considerably larger base of support than humanoid platforms. However, they often lack to
ability to move the robot’s base/torso with respect to the contact points on the floor. This severely limits the
possibilities to adapt the COM position to adapt for the balance-disturbing effect of external forces. In [9] it
is reported that wheeled mobile manipulators, although expected to be inherently stable, are still prone to
falling as a result of force-based interaction with the environment.

In [48] a method similar to the one in this chapter is presented for the balance control of a humanoid robot.
It depends on integrating the error between the desired and actual COP position of the robot and using that
as a measure for shifting the COM position accordingly. However, it is only shown to be effective in keeping

48 7. Balance disturbance rejection

the robot balanced when small masses are slowly incrementally added to the robot’s hand. The same re-
search group later reports for a similar method applied on a humanoid robot that its effectiveness is limited
to handling only small external forces, or slowly changing larger forces [19]. Besides, the risk for oscillating
responses is mentioned due to not taking into account the robot’s dynamics [48]. The method described in
this chapter does take some of the system dynamics into account by using the ZMP in the control law. This
term, which takes into account the accelerations of the COM, will result in a smaller control action when part
of the registered COP shift can be attributed to COM acceleration instead of a reaction to external forces. Fur-
thermore, the inclusion of the ZMP allows for a fast response to new external forces. This is because such a
force will first result in acceleration of the COM, which is reflected by the ZMP position. Only after position
errors have built up, the COP will start to shift to generate the forces required to fight the position errors.

The COP-controller shown here is a simple approach that generates balance restoring COM motion based on
the symptoms of balance-disturbance which is generated by external forces and moments. This has shown
to be effective and illustrated the ability of the robot the improve its balance reactively when large external
disturbances are present. However, improvements could be made by making use of an external disturbance
observer such that appropriate balance restoring motion can be computed based on the actual position and
nature (force vs torque) of the external disturbance.

Like previous chapters, the implementation shown in this chapter has only been demonstrated while assum-
ing the robot standing still. In reality, the robot will often be walking, and some force-based tasks such as fully
opening a door are not even possible without the robot taking a few steps. Adapting the robot’s walking be-
havior to external forces will be a considerably more challenging task. Currently COM motion of a quadruped
during walking is typically computed through planning of a ZMP trajectory through the upcoming support
polygons of the next steps [28][51][11]. When an external force is detected then this COM motion trajectory
could for example be given an offset similar to the way done in the here presented COP-controller. Alterna-
tively the positions of the footholds could be shifted instead. Finally, the COM motion and foothold positions
could be designed such that a relatively large margin of error of the COP is allowed along the direction of the
perceived external force before the COP reaches one of the edges of the support polygon. This would be a
very interesting topic for future work.

8
Discussion

The objective of this thesis was to explore specific implementations of a hierarchical optimization-based in-
verse dynamics controller for the control of a quadrupedal manipulator. This was done with a focus on com-
bining the benefits of both the control framework as well as those of the robotic platform, such that the list
of specific requirements presented in Section 2.6 could be met. In the individual Discussion sections of the
previous chapters it was discussed to what extent the prespecified objectives were met by the presented con-
troller implementations, and in which direction improvements can be made in future work. This chapter will
provide a general discussion of this thesis, its results, limitations, applications and topics of interest for future
research.

Besides a general implementation of the hierarchical optimization controller, several other extended versions
of this basic implementation were presented. Each of these extended implementations focused on meeting
one or more of the specific control requirements that were identified for this robotic platform. Combined,
the behavior of these specific implementations cover the entire list of requirements, being: end-effector
pose control; end-effector contact force control; maintaining balance under external disturbances; exploiting
whole-body potential; avoiding/handling singularities; collision avoidance; simple real-time teleoperation.
The fact that these approaches followed a similar logic, such as rating end-effector and COM motion control
as higher priority than torso orientation control, enables all the individually presented controller implemen-
tations to be combined into a single task hierarchy, which is shown in Figure 8.1. This is a combination of
the basic implementation (Chapter 3), the joint limit-based whole-body reaching implementation (Chapter
4), the posture optimization implementation (Chapter 5), and the force-based manipulation implementation
(Chapter 6). The functionalities of the individual controller implementations do not necessarily conflict and
therefore combining these implementations is possible in order to combine the benefits that each of these
implementations offer individually.

In the previous chapters implementation-specific limitations were discussed. Besides these, there are also
several global limitations that should be mentioned. Firstly, the experiments presented in this report have all
been conducted in simulation. Previous results from this physics simulation in combination with an accu-
rate dynamic model of the ANYmal robot have shown good transferability to behavior on the actual robot.
However, it is unknown if this would also be the case for the here presented robotic platform consisting of
the ANYmal robot in combination with a 6-DOF Kinova arm. Possible complications for implementation on
a physical robot include inaccuracies in the dynamic and actuator models, sensor data and actuator torque
control. Besides that, other unmodelled consequences could complicate implementation on the actual robot,
such as actuator heat accumulation as a result of high torque demands.

Secondly, an important factor that has not been addressed in this work is that of the computational de-
mands that the hierarchical optimization control framework brings. Compared to other types of multi-task
operational-space controllers, the control framework used in this thesis offers several benefits, but is also one
of the most computationally expensive. This is due to the fact that it allows for a hierarchy of priority levels,
and solves for the specified tasks numerically as a opposed to analytically. Indeed, various authors mention

49

50 8. Discussion

Figure 8.1: Combined task hierarchy containing all individual implementations presented in this the-
sis. This task hierarchy allows for whole-body reaching motion, arm posture optimization, and end-
effector contact force-control.

the need for computationally fast algorithms to make implementation of this type of optimization-based
whole-body control feasible for the control of a high-DOF robot at a desirable ms-level control rate [17][22].
The reason that computational demands were not explicitly considered in this thesis is because the focus was
chosen to be on adapting the control framework to generate useful behavior of the robot. Furthermore, the
computer on which the experiments in this thesis were performed lacked the computational strength to run
the control framework at speeds that the embedded computer on the actual robot would be able to achieve.
However, the challenge of keeping the controller computationally tractable was not ignored. As mentioned
in [23] computation time mainly depends on the number of DOFs of the robot, and the size and composition
of the task hierarchy. Previous literature reports on successfully implementing the framework on physical
robots, such as the 400 Hz control of a 16 DOF quadruped robot [10], and the 1000 Hz control of a 14 DOF
bottom half of a humanoid robot [22]. The latter research group also mentions attaining maximum control
periods of only 3 ms for the control of a 25 DOF full humanoid in simulation. These results suggest that
real-time control of a 18 DOF quadrupedal manipulator should also be feasible, especially considering ongo-
ing improvements in computer processing power and algorithmic efficiencies. For the design of the various
task hierarchies presented in this thesis special attention has been payed to prevent unnecessary computa-
tional load. This has been done by grouping tasks on priority levels wherever possible in order to arrive at
a minimum number of priority levels. Furthermore, the total DOF count of all tasks combined was kept to
a minimum by preventing conflicting tasks and additional inequality tasks which are not strictly necessary.
This does however not guarantee that extra adaptations will not be necessary in order to get the presented
individual or combined task hierarchies running in real-time on the actual robot.

The presented controller implementations have all been tested in experiments to show that they are func-
tional and achieve desirable behavior of the robot. However, because of the exploratory nature of this thesis,
non of these implementations have been investigated truly in-depth. The reason for the exploratory nature
of this thesis is that the field of real-time whole-body control for fully torque-controllable legged manipula-
tors is currently still in development. To date only few fully torque-controllable platforms exist, and research
on them is mostly not yet focused on general mobile manipulation, but instead on specific topics such as
contact force distribution, balance, or locomotion [21][23][10]. Research on whole-body control of a torque-
controllable quadrupedal manipulator has to date not been published.

51

There are two main topics identifiable as general topics for future work on the control of a quadrupedal ma-
nipulator. First is the topic of online model estimation. The control framework presented in this thesis is
highly dependent on an accurate dynamic model of the robot. It depends on this model to compute accurate
joint torques to achieve compensation for dynamic effects such as gravity and Coriolis forces, and to achieve
accurate inverse dynamics-based motion tracking. However, the robot is equipped with manipulation capa-
bilities in order to interact with the environment. A likely task for the robot would be to pick up, carry and/or
handle objects in its environment. This adds unmodeled inertia to the system, which can result in serious
performance deterioration [35]. One simple way of dealing with additionally carried mass is to command a
desired contact force at the end-effector to compensate for the gravity acting on the object [48]. The draw-
backs of this approach are that the additional mass is not taken into account by the balance-preserving COM
motion task and that the effects of the object’s inertia during relatively fast arm motions are ignored. Further-
more, it requires the addition of the arm contact force task to the task hierarchy, which adds extra complexity
and computational load to the controller. An alternative would be to update the robot’s dynamic model. This
could be done either be done through e.g. visual identification of the object when the object’s inertial proper-
ties are known, or through online model estimation of the object. The latter approach would offer the benefit
of being more generally applicable. Future research will indicate whether it would suffice to only update the
gravity compensation terms in the EOM, or whether the translational or even rotational inertias of the carried
object should be taken into account.

The second, and most important topic for future research is that of locomotion. To create a manageable
scope, this thesis has focused only on standing manipulation. However, in order to exploit the excellent
mobility capabilities of the robot, special attention will have to be payed to integrate the robot’s legged lo-
comotion with its manipulation capabilities. When locomotion is the only objective, then this should not
be a considerably more difficult problem for a quadrupedal manipulator compared to only a quadrupedal
base. Indeed, some exploratory experiments during the research for this thesis showed that the methods pre-
viously used for locomotion on the ANYmal robot, could relatively easily be adapted to also generate legged
locomotion for the quadrupedal manipulator. However, the real challenge lies in coordinating locomotion
with the robot’s manipulation capabilities in order to greatly improve the robot’s manipulation performance.
This can be done on two levels: motion and force. In terms of motion a smart algorithm could for example be
be used to trigger appropriate locomotion when this is needed to increase the arm’s workspace reachability.
This way the robot’s torso can almost literally be viewed as a free-floating base that can be commanded to
stay at a certain position relative to the arm’s end-effector. More complex approaches could focus on using
the manipulator directly for locomotion control by engaging in additional contact with the environment, or
by using the manipulator for balance in a tail-like fashion by commanding changes in the angular momen-
tum. In terms of force a different challenge lies ahead for future research. Current methods for quadruped
locomotion assume the only forces acting on the robot to be gravity and the ground reaction forces, or short
balance-disturbing pushes. When manipulation tasks require high forces on the environment, such as dur-
ing the opening of a spring-loaded door, these locomotion controllers are likely to fail in keeping the robot
balanced under the effect of the external forces. In that case it will be necessary to develop methods that
generate locomotion behavior which is adapted to the continuous external forces acting on the robot.

The controller implementations presented in this thesis were specifically designed for the quadrupedal ma-
nipulator introduced in Chapter 2. However, this knowledge can be assumed to be generally applicable on
most quadrupedal manipulators. First, most quadrupedal robots share the morphology of possessing 3 DOF
legs with point-feet, e.g. [24][26][28][44][6]. In order to give the manipulator full control over its pose, it is
an obvious choice to give it 6 DOF, such as is also done in [40]. When more DOFs are present in any of the
limbs such as in the 4 DOF legs of BigDog [8] then an additional task can be specified, such as orientation
tracking or posture optimization to resolve this redundancy. In case fewer DOFs are present, such as in the 5
DOF arm on SpotMini [6], the dimension of the task set should be reduced accordingly. For this example the
choice could be made to formulate a 3 DOF translational motion tracking task, but only a 2 DOF orientation
tracking task.

9
Conclusion

The objective of this thesis was to implement an optimization-based hierarchical inverse dynamics control
framework for the control of a simulated torque-controlled quadrupedal manipulator, with a specific focus
on the design of prioritized sets of control tasks which allow to exploit the characteristic benefits offered by
both the control framework and robotic platform. For the design of the sets of control tasks special atten-
tion was paid to a set of control objectives that were identified specifically for this robotic platform. Initially
a basic controller implementation is presented which satisfies the most crucial control requirements such
as end-effector motion control and maintaining balance by controlling the position of the robot’s center of
mass. Subsequently three extended controller implementations are presented. First a method is presented
that depends on the inclusion of kinematic limit tasks and a specific task hierarchy in order to prevent kine-
matic singularities and self-collision, and trigger whole-body reaching motion when only arm motion is not
sufficient to reach the desired end-effector pose. Secondly an implementation is presented which is focused
on using motion of some of the torso’s DOFs to optimize the arm’s posture according to a desired criterion.
It is shown that this can for example be used to avoid kinematic singularities, self-collision, and to let whole-
body reaching motion emerge. Thirdly a controller implementation is presented which enables active contact
force control at the end-effector for force-based manipulation, while implicitly solving the dynamic contact
force distribution problem. It is demonstrated how such contact force control can be used to perform tasks
such as opening a door, which are known to be complicated for traditional position-controller robots. Fi-
nally, in addition to that implementation, a controller is presented which enables the robot to detect and
reactively respond to external forces acting on the robot in order to mitigate the balance-disturbing effects
of these forces. These different controller implementations do not exclude each other and allow to be im-
plemented simultaneously in order to combine the individual benefits that they offer. Furthermore all these
implementations still allow for simple real-time teleoperation such as controlling the end-effector motion or
contact force with a joystick. These results show that these sets of control tasks allow for completion of all of
the specified control objectives which are listed in Section 2.

It can be concluded that the investigated whole-body control framework can be successfully used for the
control of a simulated quadrupedal manipulator. Furthermore, using carefully designed sets of prioritized
tasks appears to be a promising approach for exploiting the potential benefits that a torque-controllable
quadrupedal manipulator offers. In particular, it is shown that the motion control of the torso’s orientation
and height can be relaxed in order to create kinematic redundancy in the system. These additional degrees of
freedom can then be used by other control tasks. Because of the exploratory nature of this research the con-
troller implementations presented in this report have not been individually investigated in-depth and can
benefit from further research for which various suggestions are made. Most notably this includes the investi-
gation of the transferability of the controller implementations presented here for simulation to the control of
a physical robot.

53

Bibliography

[1] ANYdrive, https://www.anybotics.com/anydrive/, last accessed: 2-3-2018.

[2] Gazebo simulator, http://gazebosim.org, last accessed: 2-3-2018.

[3] Kinova Jaco2 6DOF-S, http://www.kinovarobotics.com/innovation-robotics/products/robot-
arms/#jaco1, last accessed: 2-3-2018, .

[4] Kinova actuators, http://www.kinovarobotics.com/innovation-robotics/products/actuators/, last ac-
cessed: 2-3-2018. .

[5] Rethink Robotics: Sawyer, http://www.rethinkrobotics.com/sawyer/, last accessed: 28-01-2018.

[6] Boston Dynamics: SpotMini, https://www.bostondynamics.com/spot-mini, last accessed: 28-01-2018.

[7] LBR iiwa, https://www.kuka.com/en-de/products/robot-systems/industrial-robots/lbr-iiwa, last ac-
cessed: 28-01-2018.

[8] Yeuhi Abe, Benjamin Stephens, Michael P Murphy, and Alfred A Rizzi. Dynamic whole-body robotic
manipulation. In Unmanned Systems Technology XV, volume 8741, page 87410V. International Society
for Optics and Photonics, 2013.

[9] Christopher G Atkeson, B P W Babu, N Banerjee, D Berenson, C P Bove, X Cui, M DeDonato, R Du, S Feng,
and P Franklin. What happened at the darpa robotics challenge, and why. DRC Finals Special Issue of
the Journal of Field Robotics, 1, 2016.

[10] C Dario Bellicoso, Christian Gehring, Jemin Hwangbo, Péter Fankhauser, and Marco Hutter. Perception-
less terrain adaptation through whole body control and hierarchical optimization. In Humanoid Robots
(Humanoids), 2016 IEEE-RAS 16th International Conference on, pages 558–564. IEEE, 2016. ISBN
1509047182.

[11] C Dario Bellicoso, Fabian Jenelten, Peter Fankhauser, Christian Gehring, Jemin Hwangbo, and Marco
Hutter. Dynamic Locomotion and Whole-Body Control for Quadrupedal Robots. In 2017 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS 2017). IEEE, 2017.

[12] Arjun Bhasin, Rekha Raja, and Ashish Dutta. Non-holonomic mobile manipulator kinematic control
using hybrid simulated annealing. In Electrical and Computer Engineering (WIECON-ECE), 2015 IEEE
International WIE Conference on, pages 435–438. IEEE, 2015. ISBN 146738786X.

[13] Michael Bloesch, Hannes Sommer, Tristan Laidlow, Michael Burri, Gabriel Nuetzi, Péter Fankhauser,
Dario Bellicoso, Christian Gehring, Stefan Leutenegger, and Marco Hutter. A primer on the differential
calculus of 3D orientations. 2016.

[14] Karen Bodie, C Dario Bellicoso, and Marco Hutter. ANYpulator: Design and control of a safe robotic arm.
In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 1119–1125. IEEE,
2016. ISBN 1509037624.

[15] Alexander Dietrich, Thomas Wimbock, Alin Albu-Schaffer, and Gerd Hirzinger. Integration of reactive,
torque-based self-collision avoidance into a task hierarchy. IEEE Transactions on Robotics, 28(6):1278–
1293, 2012. ISSN 1552-3098.

[16] Johannes Englsberger, Alexander Werner, Christian Ott, Bernd Henze, Maximo A Roa, Gianluca Garo-
falo, Robert Burger, Alexander Beyer, Oliver Eiberger, and Korbinian Schmid. Overview of the torque-
controlled humanoid robot TORO. In Humanoid Robots (Humanoids), 2014 14th IEEE-RAS International
Conference on, pages 916–923. IEEE, 2014. ISBN 147997174X.

55

56 Bibliography

[17] Adrien Escande, Nicolas Mansard, and Pierre-Brice Wieber. Hierarchical quadratic programming: Fast
online humanoid-robot motion generation. The International Journal of Robotics Research, 33(7):1006–
1028, 2014. ISSN 0278-3649.

[18] Péter Fankhauser, Marko Bjelonic, Dario Bellicoso, Takahiro Miki, and Marco Hutter. Robust Rough-
Terrain Locomotion with a Quadrupedal Robot. In IEEE International Conference on Robotics and Au-
tomation (ICRA 2018). ETH Zurich, 2018.

[19] Siyuan Feng, X Xinjilefu, Christopher G Atkeson, and Joohyung Kim. Optimization based controller
design and implementation for the atlas robot in the darpa robotics challenge finals. In Humanoid
Robots (Humanoids), 2015 IEEE-RAS 15th International Conference on, pages 1028–1035. IEEE, 2015.
ISBN 1479968854.

[20] Michele Focchi, Andrea Del Prete, Ioannis Havoutis, Roy Featherstone, Darwin G Caldwell, and Claudio
Semini. High-slope terrain locomotion for torque-controlled quadruped robots. Autonomous Robots,
41(1):259–272, 2017. ISSN 0929-5593.

[21] Bernd Henze, Máximo A Roa, and Christian Ott. Passivity-based whole-body balancing for torque-
controlled humanoid robots in multi-contact scenarios. The International Journal of Robotics Research,
35(12):1522–1543, 2016. ISSN 0278-3649.

[22] Alexander Herzog, Ludovic Righetti, Felix Grimminger, Peter Pastor, and Stefan Schaal. Experiments
with a hierarchical inverse dynamics controller on a torque-controlled humanoid. Available online:
http://arxiv.org/abs/1305.2042, 2013.

[23] Alexander Herzog, Nicholas Rotella, Sean Mason, Felix Grimminger, Stefan Schaal, and Ludovic Righetti.
Momentum control with hierarchical inverse dynamics on a torque-controlled humanoid. Autonomous
Robots, 40(3):473–491, 2016. ISSN 0929-5593.

[24] Marco Hutter, Christian Gehring, Michael Bloesch, Mark A Hoepflinger, C David Remy, and Roland Sieg-
wart. StarlETH: A compliant quadrupedal robot for fast, efficient, and versatile locomotion. In Adaptive
Mobile Robotics, pages 483–490. World Scientific, 2012.

[25] Marco Hutter, Hannes Sommer, Christian Gehring, Mark Hoepflinger, Michael Bloesch, and Roland
Siegwart. Quadrupedal locomotion using hierarchical operational space control. The International Jour-
nal of Robotics Research, 33(8):1047–1062, 2014. ISSN 0278-3649. doi: 10.1177/0278364913519834.

[26] Marco Hutter, Christian Gehring, Dominic Jud, Andreas Lauber, C Dario Bellicoso, Vassilios Tsounis,
Jemin Hwangbo, Karen Bodie, Peter Fankhauser, and Michael Bloesch. Anymal-a highly mobile and
dynamic quadrupedal robot. In Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Con-
ference on, pages 38–44. IEEE, 2016. ISBN 1509037624.

[27] Dominic Jud, Gabriel Hottiger, Philipp Leemann, and Marco Hutter. Planning and Control for Au-
tonomous Excavation. IEEE Robotics and Automation Letters, 2(4):2151–2158, 2017. ISSN 2377-3766.

[28] Mrinal Kalakrishnan, Jonas Buchli, Peter Pastor, Michael Mistry, and Stefan Schaal. Fast, robust
quadruped locomotion over challenging terrain. In Robotics and Automation (ICRA), 2010 IEEE Interna-
tional Conference on, pages 2665–2670. IEEE, 2010. ISBN 1424450381.

[29] Shinji Kawatsuma, Mineo Fukushima, and Takashi Okada. Emergency response by robots to
Fukushima-Daiichi accident: summary and lessons learned. Industrial Robot: An International Jour-
nal, 39(5):428–435, 2012. ISSN 0143-991X.

[30] Oussama Khatib. A unified approach for motion and force control of robot manipulators: The opera-
tional space formulation. IEEE Journal on Robotics and Automation, 3(1):43–53, 1987. ISSN 0882-4967.

[31] Twan Koolen, Sylvain Bertrand, Gray Thomas, Tomas De Boer, Tingfan Wu, Jesper Smith, Johannes En-
glsberger, and Jerry Pratt. Design of a momentum-based control framework and application to the hu-
manoid robot atlas. International Journal of Humanoid Robotics, 13(01):1650007, 2016. ISSN 0219-8436.

[32] Jeongsoo Lim and Jun-Ho Oh. Backward ladder climbing locomotion of humanoid robot with gain over-
riding method on position control. Journal of Field Robotics, 33(5):687–705, 2016. ISSN 1556-4967.

Bibliography 57

[33] Richard M Murray, Zexiang Li, S Shankar Sastry, and S Shankara Sastry. A mathematical introduction to
robotic manipulation. CRC press, 1994. ISBN 0849379814.

[34] Keiji Nagatani, Tomonobu Hirayama, Akio Gofuku, and Yutaka Tanaka. Motion planning for mobile ma-
nipulator with keeping manipulability. In Intelligent Robots and Systems, 2002. IEEE/RSJ International
Conference on, volume 2, pages 1663–1668. IEEE, 2002. ISBN 0780373987.

[35] Jun Nakanishi, Rick Cory, Michael Mistry, Jan Peters, and Stefan Schaal. Operational space control: A
theoretical and empirical comparison. The International Journal of Robotics Research, 27(6):737–757,
2008. ISSN 0278-3649.

[36] Hae-Won Park, Patrick M Wensing, and Sangbae Kim. Online planning for autonomous running jumps
over obstacles in high-speed quadrupeds. 2015. ISSN 2330-7668.

[37] Jonghoon Park, Wankyun Chung, and Youngil Youm. Computation of gradient of manipulability for
kinematically redundant manipulators including dual manipulators system. Transactions on Control,
Automation and Systems Engineering, 1(1):8–15, 1999.

[38] Oscar Efrain Ramos Ponce. Generation of the whole-body motion for humanoid robots with the com-
plete dynamics, 2014.

[39] Gill Pratt and Justin Manzo. The darpa robotics challenge. IEEE Robotics & Automation Magazine, 20(2):
10–12, 2013. ISSN 1070-9932.

[40] Bilal Ur Rehman, Michele Focchi, Jinoh Lee, Houman Dallali, Darwin G Caldwell, and Claudio Semini.
Towards a multi-legged mobile manipulator. In Robotics and Automation (ICRA), 2016 IEEE Interna-
tional Conference on, pages 3618–3624. IEEE, 2016. ISBN 1467380261.

[41] Bilal Ur Rehman, Darwin G. Caldwell, and Claudio Semini. Centaur Robots-a Survey. In Human-centric
Robotics-Proceedings Of The 20th International Conference Clawar 2017, page 247. World Scientific, 2017.
ISBN 981323105X.

[42] Ludovic Righetti, Jonas Buchli, Michael Mistry, Mrinal Kalakrishnan, and Stefan Schaal. Optimal distri-
bution of contact forces with inverse-dynamics control. The International Journal of Robotics Research,
32(3):280–298, 2013. ISSN 0278-3649.

[43] Claude Samson, Bernard Espiau, and Michel Le Borgne. Robot control: the task function approach.
Oxford University Press, 1991. ISBN 0198538057.

[44] Claudio Semini, Jonas Buchli, Marco Frigerio, Thiago Boaventura, Michele Focchi, Emanuele
Guglielmino, Ferdinando Cannella, Nikos G Tsagarakis, and Darwin G Caldwell. HyQ-A dynamic lo-
comotion research platform. In International Workshop on Bio-Inspired Robots, Nantes (France), 2011.

[45] Luis Sentis. Synthesis and control of whole-body behaviors in humanoid systems. Stanford university
USA, 2007. ISBN 0549246045.

[46] Luis Sentis and Oussama Khatib. Control of free-floating humanoid robots through task prioritization.
In Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on,
pages 1718–1723. IEEE, 2005. ISBN 078038914X.

[47] Anthony Stentz, Herman Herman, Alonzo Kelly, Eric Meyhofer, G Clark Haynes, David Stager, Brian Za-
jac, J Andrew Bagnell, Jordan Brindza, and Christopher Dellin. Chimp, the cmu highly intelligent mobile
platform. Journal of Field Robotics, 32(2):209–228, 2015. ISSN 1556-4967.

[48] Benjamin J Stephens and Christopher G Atkeson. Dynamic balance force control for compliant hu-
manoid robots. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on,
pages 1248–1255. IEEE, 2010. ISBN 1424466768.

[49] Nikos G Tsagarakis, Stephen Morfey, Gustavo Medrano Cerda, Li Zhibin, and Darwin G Caldwell. Com-
pliant humanoid coman: Optimal joint stiffness tuning for modal frequency control. In Robotics and Au-
tomation (ICRA), 2013 IEEE International Conference on, pages 673–678. IEEE, 2013. ISBN 1467356433.

58 Bibliography

[50] Miomir Vukobratović and Branislav Borovac. Zero-moment point—thirty five years of its life. Interna-
tional journal of humanoid robotics, 1(01):157–173, 2004. ISSN 0219-8436.

[51] Alexander W Winkler, Carlos Mastalli, Ioannis Havoutis, Michele Focchi, Darwin G Caldwell, and Clau-
dio Semini. Planning and execution of dynamic whole-body locomotion for a hydraulic quadruped on
challenging terrain. In Robotics and Automation (ICRA), 2015 IEEE International Conference on, pages
5148–5154. IEEE, 2015. ISBN 1479969230.

[52] Tsuneo Yoshikawa. Manipulability of robotic mechanisms. The international journal of Robotics Re-
search, 4(2):3–9, 1985. ISSN 0278-3649.

	Introduction
	Torque-controlled quadrupedal manipulators
	Hierarchical inverse dynamics
	Contribution and outline

	Theoretical basis
	Robotic platform
	Simulation
	Control framework
	Model formulation
	QP formulation
	Prioritized set of tasks
	Dynamic consistency

	Equality tasks
	Motion tasks
	Contact force tasks
	Joint torque tasks

	Inequality tasks
	Inequality tasks - Motion
	Inequality tasks - Contact forces
	Inequality tasks - Joint torques

	Research focus and problem statement

	Basic Implementation
	Introduction
	Controller design
	Results
	Discussion

	Whole-body reaching
	Introduction
	Controller design
	Results
	Discussion

	Posture optimization
	Introduction
	Controller setup
	Results
	Discussion

	Force-based manipulation
	Introduction
	Controller setup
	Results
	Discussion

	Balance disturbance rejection
	Introduction
	Controller setup
	Results
	Discussion

	Discussion
	Conclusion
	Bibliography

