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Abstract

This thesis reports on the research and design of a real-time Time-Varying Model Predictive
Control (TVMPC) scheme to stabilize a tilt-rotor aircraft with four independently tilting
rotors. The aircraft design stems from a prototype system constructed by the drone technology
start-up Avy.

First, a motivation is presented for implementation of model-based flight control techniques.
Consequently, TVMPC is introduced as a middle ground between Adaptive Model Predictive
Control (MPC) and fully nonlinear MPC, capturing model variation over the control horizon
while retaining the computational efficiency of quadratic optimization algorithms. In a sim-
ulation of a simple nonlinear system, TVMPC outperforms fixed-model and adaptive MPC
using only a small set of extra models.

Secondly, the tilt-rotor system model is developed. Models for rotor torque and thrust re-
sponses and stepper motor movement are introduced and calibrated using experiments, lead-
ing to a full nonlinear model of 21 states, 8 control inputs and 8 box constraints. Further
envisioned experimental work and its preparations such as aerodynamic testing and tracked
constrained flight are briefly mentioned.

The implementation of TVMPC is tested in simulation. Five scenarios compare the effec-
tiveness of time-varying control versus adaptive and fixed-model MPC, with TVMPC not
outperforming fixed-model control in horizontal vehicle orientations, but improving on oscil-
latory behavior shown by adaptive control. TVMPC outperforms the other two controllers
in a past 90 degree pitch scenario (partial backflip).

In parallel, the setup of Robot Operating System (ROS) in conjunction with a Hardware-
in-the-Loop (HIL) experiment is presented to test tilt-rotor control in real-time. In closed
loop, the system was stabilized for limited degrees of freedom using a combination of PID
controllers, validating the framework and providing more opportunities for research.

It is concluded that TVMPC improves on the predictions of adaptive MPC, but is prone to
oscillatory behavior. Only in highly nonlinear situations, fixed-model MPC is outperformed.
For real-time, embedded results, more research still needs to be performed.
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“Aircraft have all these unnecessary things like tails and rudders and elevators -
not needed. Just gimbal the electric fan. For some weird reason gimbaling motors
is normal in rockets and not in aircraft. Why not?”
— Elon Musk





Chapter 1

Introduction

This chapter serves as an introduction to Vertical Takeoff and Landing (VTOL) aircraft, the
control challenges relating to flight control of such an aircraft and the motivation for this thesis
work. First, a short historical context of VTOL aircraft is given in Section 1-1, connecting
previous work with recent unmanned efforts. The Avy One, which is subject of this thesis,
is presented in Section 1-2. In Section 1-3 the control solutions are laid out. Finally, the
structure of the thesis is outlined in Section 1-4.

1-1 Historical context

VTOL aircraft are a type of aircraft that combines the flight envelopes of helicopters and reg-
ular jets, integrating hovering capability with long-range flight. This hybrid design eliminates
the need for lengthy runways, because the aircraft can take off and land on any unprepared
flat surface with the required minimal dimensions.

Although the first VTOL designs were drawn as early as 1843, it would take until the develop-
ment of jet engines before a sufficient power to weight ratio could be obtained to have liftoff.
In the decades after World War II, a number of designs was flown, with varying degrees of
success [1]. In those days, the majority of research and innovation in these types of aircraft
was driven by military demand, as airfields and landing strips that are damaged during con-
flict could otherwise limit the much needed transportation capabilities. As of today, only four
designs culminated in serial production: the English Hawker Harrier Jump Jet (1967), the
Soviet Yakovlev Yak-38 (1970), the American Bell Boeing V-22 Osprey (1989) and lastly, the
grossly delayed and over budget F-35B (2015) from American Lockheed Martin Aeronautics
(Figure 1-1).

More recently, VTOL has caught the eye of private institutions that are considering com-
mercial applications in data collection, personal transport and (urban) deliveries. With the
low cost and miniaturization of electric components and the infancy stage of official reg-
ulations, the unmanned industry has seen an increase in various VTOL Unmanned Aerial
Vehicle (UAV)’s. There have been successful flights of unmanned VTOL systems of different
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2 Introduction

Figure 1-1: From left to right: Harrier Jump Jet, Yak-38, V-22 Osprey and F-35B

designs, such as tiltrotors (Quantum Systems TRON, 2014), tiltwings (Lilium, 2017), dual
systems (ALTI Transition, 2016) and tailsitters (Atmos Marlyn, 2017). For a full explanation
and other examples for these categories, please consult [2, 3]. The unmanned system which
is the subject of this thesis, is introduced next in Section 1-2.

1-2 Avy One

Another new company entering the VTOL UAV field is the startup Avy, where work for this
thesis was performed for dealing with the control challenges that arise in stabilizing a tiltrotor
drone with four independently tilting rotors. The motivation for this design was to develop an
unmanned system for humanitarian purposes, such as medicine delivery, wildlife monitoring
or rescue operations. The envisioned control system needs to be future-proof, easily adapted
in case the components or aerodynamical design have to change, and an be all-in-one solution
for the full flight envelope.

A physical demonstration prototype, called the Avy One, is shown on the cover page and
rendered in Figure 1-2. Apart from the forward tilting rotors and joined wing design for higher
flight efficiency [4], other features include an electrical propulsion system and the possibility
to ’swap’ payloads to adapt the airframe to different missions. This also increases the direct
applicability of the system to an ever-changing market as a ’one design fits most’-type frame
can used for different customer requests.

Figure 1-2: A render of the preliminary Avy One design

Some of the control challenges are immediately visible upon inspecting the render of Figure
1-2. There is the multivariable aspect of assigning inputs to 8 control channels - 4 rotor speeds
and 4 tilt angles -, the non-linear aspect of the variation of rotor thrust and torque directions
and the aerodynamic influences of joined wings and rotor wakes. Techniques to deal with
these control challenges are discussed in Section 1-3.

J.M. de Jong Master of Science Thesis



1-3 Previous control solutions 3

1-3 Previous control solutions

Classically, cascaded control, comprising inner and outer Proportional Integral Derivative
(PID) loops is applied in automatic flight control. For example, flap angle or engine speed
controllers are lower level systems that receive prescribed input from a higher level navigation
controller. The output of these systems are forces, which are used for position and attitude
control - the so-called outer loop. The separation of these loops is based on the principle of
timescale separation: if the inner loop dynamics are regulated fast enough, the outer loop
control, comprising slower dynamics, can treat the inner closed loop as a simple stabilized
system.

Figure 1-3: Classical Cascaded Control with Inner and Outer loops

However, limitations of classical PID control, not necessarily in cascaded form, are that the
controllers are unaware of physical limits, and are tuned to a specific linear system description.

In reality, state and control limits need to be respected, such as altitude and throttle con-
straints. Hitting control limits in aggressive flight maneuvers or control failure scenarios
causes a simple PID controller integrator to windup, slowing the correction during overshoot.
Additional tuning is required to prevent windup scenarios [5].

The linear system description is also not generally applicable over the full flight envelope
of a VTOL aircraft. The transition of lift from the vertical propulsion system to the wings
introduces nonlinear changes to the system, requiring different input-output behaviour from
an Flight Control System (FCS) and/or human operator. Tilting rotors add further non-
linearities as the control effectiveness in different degrees of freedom is highly affected by the
direction of thrust.

In the case of PID or other linear controllers, it is a tedious work of interpolating and switching
between differently tuned local controllers to stabilize the system around a sufficient amount of
operating points to cover the flight envelope. Additionally, well-tuned controllers for possible
failure modes need to be generated, such as engine failure or stuck control surfaces. This
technique of controller switching is called gain scheduling, and has for example successfully
been applied to F-16 flight control by switching between controllers based on Mach number
and/or altitude [6].

Few details are available on how control systems deal with the additional degrees of freedom in
full-scale VTOL tilt-rotors, as many previous efforts are military and commercial in nature.
Integrated solutions in drones in academic research include the aforementioned PID-based
gain scheduling [7], optimal control-based techniques such as Linear Quadratic Regulator
(LQR) control [8], Model Predictive Control (MPC) [9] and even some more exotic setups
such as neural networks in combination with model inversion [10]
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4 Introduction

Overall, two general cases are possible.

The nacelle and/or rotor tilt angles can be...

...obtained from a human controller, who commands the tilt angles by hand. The desired
angles are then fed to an angle controller and other algorithms that adapt the system
response.

...obtained from a non-human high-level control system in a loop, and given to an angle
controller. The reference angles are calculated or optimized given higher level reference
signals such as pitch angle, forward speed and vertical speed.

In the case of a medium-sized drone with fast tilting dynamics, and multiple individual angles
to be controlled, this mostly argues for the second case, where tilt angle is prescribed by a
high-level FCS.

An augmented MPC approach is selected for investigation in this thesis, for which the moti-
vation and mathematics are introduced in Chapter 2.

1-4 Thesis outline

The introduction is concluded with an overview of the remaining thesis chapters.

In Chapter 2 a case is made for MPC as the future-proof flight control technique of choice.
An extension to the classical implementation of MPC is proposed to deal with non-linear sys-
tem changes, by varying the prediction model based on not only the current state (adaptive
MPC), but also on previously predicted states. This prediction model variation attempts to
approach fully non-linear implementations of MPC while retaining the computational effi-
ciency of Quadratic Programming (QP) optimization.

Chapter 3 introduces and describes the physical models required to describe the flight dynam-
ics of a simplified tiltrotor system. It also contains results from the experimental setups that
were designed and used to acquire model parameters. The chapter concludes with a 21-state
state space description of the experimental system and an outlook on further experimental
work.

Chapter 4 documents the experimental system. First, the external hardware setup is pre-
sented, along with the connections and code that interface with the virtual simulator. Sec-
ondly, the Robot Operating System (ROS) implementation of the simulator along with a
Graphical User Interface (GUI) and visualization is laid out.

Chapter 5 contains the results of off-line Time-Varying Model Predictive Control (TVMPC)
flight tests in different flight scenarios, in comparison with fixed-model and adaptive MPC.
On the real-time co-simulation setup, simple PID control was implemented to validate the
framework, providing more opportunities for research.

Chapter 6 concludes the thesis and Chapter 7 provides ideas and recommendations for further
research.

The thesis also contains a number of Appendices which hold information on mathematical
modeling, as well as a list of symbols and a glossary.
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Chapter 2

Time-varying MPC

In this chapter, a case is made for a model-based flight control technique called Model Predic-
tive Control (MPC) and its ideal, but computationally heavy fully non-linear implementation
(Section 2-1). Finally, a middle ground between a static linear MPC and fully non-linear
MPC controller is presented as Time-Varying Model Predictive Control (TVMPC) (Section
2-2) and mathematically described (Section 2-3).

2-1 The case for model-based control

It is envisioned that over the long term, aircraft control will switch to model-based, optimization-
type methods, that incorporate a mathematical description of the system dynamics, input,
state and output constraints and provide more fault tolerance [11]. Such innovation in manned
systems is often slow due to regulations and extensive testing procedures, but the quick-
moving drone industry has repeatedly proven be a suitable test bed for these types of control
[12]. The challenge here is to adhere to weight and power limits while at the same time being
able to compute the optimized control decision in time.

These contradictory requirements are nowadays already being met by a small number of
minicomputers, which is set to increase in the years to come. They are suited to be carried
on board small unmanned systems and capable of demanding computational tasks such as
vision processing. For this thesis, the NVIDIA Jetson TX2 was purchased, a system that has
previously been applied in unmanned systems successfully [13, 14].

The proposed optimization-type control technique is MPC, originating in slow-moving process
control. MPC, in the general sense, employs a multivariable system description in state space
form to generate step-ahead predictions for the state trajectory, and attempts to match this
prediction with a desired trajectory by optimizing the input signal, subject to any number
of constraints on input, state and output using a quadratic penalty. In the classical sense,
the system description is Linear Time Invariant (LTI) and the constraints are linear matrix
inequalities, allowing for direct computation of the predicted trajectory and optimization
gradients. The resulting Quadratic Programming (QP) optimization problem can hence be
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6 Time-varying MPC

solved efficiently. The benefits of MPC are a near-perfect overlap with the main limitations of
Proportional Integral Derivative (PID): it is multivariable, predictive, takes coupling effects
into account, and is designed to handle constraints.

Figure 2-1: Principle of Model Predictive Control in a discrete scheme

Integrating MPC by varying the model descriptions in time is a straightforward solution to
deal with the changing system dynamics of a non-linear system. It can be implemented in
various ways.

A first extension is to switch between different locally linearized models (which can already
be precomputed) based on the current state. This is the Gain-scheduling equivalent of MPC.

A second extension of LTI-MPC is the use of a locally linearized LTI model computed in real
time at every time step, given current state information. This technique has been introduced
as Adaptive MPC, and eliminates the need to pre-specify the different models [15].

Alternatively, the use of an exogenous (state independent) parameter to select LTI models for
control is called Linear Parameter Varying (LPV) control. Feasibility and stability of LPV-
MPC has been proven in [16], under conditions similar to LTI-MPC in the case of imperfect
models [17].

A second-order time variation effect however, namely the variation of system dynamics and
constraints over the prediction horizon is still not taken into account by either extension. It
is perfectly possible, that a model linearized around the current state, significantly deviates
from a model linearized around a predicted state.

Imagine a lane control system for an automated vehicle in a cornering maneuver, which
predicts that within the time horizon, the vehicle tire will hit an icy surface. The next
time step, it will change the model used at the predicted time of reaching the icy surface by
decreasing the surface friction parameter. Using the new prediction model, it arrives at a
new optimized steering command, possibly increasing the steering angle before hitting the icy
patch to be able to make the corner. The variation of the prediction model may be a better
solution than keeping the high-friction model for the full horizon until parameter changes are
detected.
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2-2 TVMPC as a middle ground 7

2-2 TVMPC as a middle ground

To integrate this second-order effect, future models that are likely to be visited during the
closed-loop evolution of the system need to be determined, either during optimization or
pre-optimization.

During optimization Recalculating future models during trajectory optimization steps, which
is significantly more often than control steps, quickly launches the control engineer into the
field of Non-linear Model Predictive Control (NMPC). This results in optimization routines
that are non-quadratic, and goes hand in hand with exponential and unpredictable increases
in computational effort. Especially in the time-critical field of flight control, the number of
computations needed to obtain a stabilizing control input needs to be limited.

Fortunately, there are other ways to add prediction model variation to an MPC controller
while maintaining the QP structure.

Pre-optimization Should the variation of the prediction model be known pre-optimization,
supplying the MPC controller with precomputed plant models significantly improves the
system response and still results in a QP [15].

In this thesis, the prediction model is varied based on the trajectory prediction result of the
previous time step. Linearization points are selected along the trajectory and used to create
new LTI prediction models in between these points. It is assumed that with sufficiently
accurate models, at least for a short time horizon, the previous state trajectory prediction
is close to the real future trajectory in a closed-loop setting and may be used to anticipate
model variation.

The main research question is whether such an implementation of adaptive MPC is stable in
practice, and if so, how many and which linearization points along the horizon suitably need
to be selected.

2-3 From model to model-based controller

2-3-1 Linearizing a non-linear dynamical system

As the controller is model-based, the controller design starts with a mathematical description
of the full non-linear dynamical system. For the sake of defining the research scope, the
system description is limited to systems for which the state derivative can be described by a
continuously differentiable function in the state and control vectors, as

ẋ = f(x, u), (2-1)

where x is a state vector of dimension NS , u is control input vector of dimension NC , ẋ is the
first derivative of system state x with respect to time, and f(., .) is a state evolution function
continuously differentiable in the elements of x and control vector u.
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8 Time-varying MPC

It is common to approach such non-linear system descriptions by their linearization, which are
generally a good approximation for short time intervals, or, if f(., .) is only weakly dependent
on x and u, for longer periods of time. By a first-order Taylor expansion, we can obtain

ẋ = f(xL, uL) + ∂f(x, u)
∂x

∣∣∣x=xL
u=uL

(x− xL) + ∂f(xL, u)
∂u

∣∣∣x=xL
u=uL

(u− uL) +O(x2, u2, xu), (2-2)

where xL and uL are linearization points of the state and control vectors, respectively, and
O is the error term with elements of second order and higher. Ignoring the error term, the
notation can be simplified to

ẋ = ACx+BCu+ CC , (2-3)

with

AC = ∂f(x, u)
∂x

∣∣∣x=xL
u=uL

BC = ∂f(xL, u)
∂u

∣∣∣x=xL
u=uL

CC = f(xL, uL)−ACxL −BCuL.

The termsAC andBC are commonly referred to as continuous-time state matrix and continuous-
time control matrix, and CC can be considered an offset vector including non-equilibrium
effects.

2-3-2 Discretizing a continuous state-space system

Implementation in a digital controller requires a discrete-time system description. This is
commonly done by difference equations for the current state xk depending on previous state
and control xk−1 and uk−1 at a specific time k, where the sampling time between times k and
k − 1 is equal to τ . Using the derivation of Appendix A-1-1, we can write

xk+1 = ADxk +BDuk + CD, (2-4)

with

AD = eACτ ,

BD = A−1
C (AD − I)BC ,

CD = A−1
C (AD − I)CC ,

(2-5)

where AD, BD and CD are discrete-time equivalents of the state matrix, control matrix and
offset vector. If AC is non-invertible, a Taylor approximation can be used (Appendix A-1-1).
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2-3 From model to model-based controller 9

2-3-3 Writing the state update equation in matrix form

Now that we have established the discrete-time state update equation for a single timestep for
a linearized system, we can extend the equation to a multi-timestep update. This facilitates
computation and optimization in the MPC setting, as we are continuously calculating and
optimizing multiple step ahead predictions. From this point onwards, it is understood that all
state and control matrices refer to discrete-time matrices corresponding to a predetermined
sampling time τ .
Let a system be updated using different linearized state space models at every time step,
generating the following sequence of equations:

xk+1 = CL1 +AL1xk +BL1uk

xk+2 = CL2 +AL2xk+1 +BL2uk+1

xk+3 = CL3 +AL3xk+2 +BL3uk+2

xk+4 = . . .

(2-6)

where ALi , BLi and CLi represent a sequence of state space models.
The state evolution can be expressed using the initial state and control vector by replacing
all xk+i for i ∈ N , i ≥ 2. For the first two substitutions, this becomes

xk+2 = CL2 +AL2CL1 +AL2AL1xk +AL2BL1uk +BL2uk+1,

xk+3 = CL3 +AL3CL2 +AL3AL2CL1 +AL3AL2AL1xk +AL3AL2BL1uk +AL3BL2uk+1 +BL3uk+2.

(2-7)

A linear pattern starts to appear. By defining (for k = 0) the vectors and matrices

X̃ =


x1
x2
...
xNP

 , Ũ =


u0
u1
...

uNP−1

 , C̃L =


CL1 +AL1xk

CL2

...
CLNP

 ,

Ã =


I 0 0 ... 0
AL2 I 0 ... 0

AL3AL2 AL3 I ... 0
...

...
...

...
ALNP

...AL2 ALNP
...AL3 ALNP

...AL4 ... I

 , B̃ =


BL1 0 ... 0

0 BL2 ... 0
0 0 ... 0
0 0 ... BLNP

 ,

with NP being the prediction horizon, X̃ the stacked vector of predicted states, Ũ the stacked
vector of future control inputs, C̃ the stacked vector of offset vectors, Ã the stacked state
prediction matrix and B̃ the stacked control prediction matrix, the total state prediction can
be written in a condensed fashion, as

X̃ = ÃC̃L + ÃB̃Ũ . (2-8)

It can immediately be observed that the prediction is still a linear function of the control
inputs, stacked in vector Ũ .
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10 Time-varying MPC

Identical models

Special attention is paid to the case where the same model is used for multiple horizon steps.
This reduces the number of unique entries in the matrix, speeding up the problem formulation
as the matrix can be filled more efficiently. The copying of entries is computationally less
costly than recalculating a matrix multiplication.

Suppose a 6-step ahead prediction is carried out using only two models, where the model is
switched exactly halfway along the prediction. We would obtain the following Ã matrix,

Ã =



I 0 0 0 0 0
AL1 I 0 0 0 0
A2
L1

AL1 I 0 0 0
AL2A

2
L1

AL2AL1 AL2 I 0 0
A2
L2
A2
L1

A2
L2
AL1 A2

L2
AL2 I 0

A3
L2
A2
L1

A3
L2
AL1 A3

L2
A2
L2

AL2 I


,

where the number of unique sub-matrices (not including zeros and identity) is reduced from
15 to 11. In case of a 12-step ahead prediction with a model switch halfway, the number
of unique sub-matrices is reduced from 66 to 41. A formula to determine the total number
of matrices to compute, depending on the number of models and their respective horizons,
is determined in Appendix A-1-2. The ratio of unique entries to total matrix entries can
be shown to approach 0.5 when the model switch is placed exactly halfway (see Appendix
A-1-2), but is still quadratic in NP .

2-3-4 MPC control in matrix form

Now, following traditional MPC notation, let Qk and Rk respectively be a state weighting
matrix and control weighting matrix at time k, and consider simply bounded linear and
matrix constraints. Let X̃ref be the stacked vector of state reference values and let Q̃ and R̃
be defined as the block diagonalizations of the Qk and Rk, respectively, over the prediction
horizon. Then the MPC problem is formulated as a quadratic programming problem in the
form of

min
X̃,Ũ

(X̃ − X̃ref)T Q̃(X̃ − X̃ref) + ŨT R̃Ũ , subject to

X̃ = ÃC̃L + ÃB̃Ũ .

h̃xl ≤ H̃xX̃ ≤ h̃xu
s̃xl ≤ X̃ ≤ s̃xu
h̃ul ≤ H̃uŨ ≤ h̃uu
s̃ul ≤ Ũ ≤ s̃uu

with
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2-3 From model to model-based controller 11

X̃ref =


xref1
xref2
...

xrefNP

 , h̃xl =


hxl1
hxl2
...

hxlNP

 , h̃xu =


hxu1

hxu2

...
hxuNP

 , h̃ul =


hul1
hul2
...

hulNP

 , h̃uu =


huu1

huu2

...
huuNP

 ,

s̃xl =


sxl1
sxl2
...

sxlNP

 , s̃xu =


sxu1

sxu2

...
sxuNP

 , s̃ul =


sul1
sul2
...

sulNP

 , s̃uu =


suu1

suu2

...
suuNP

 ,

Q̃ =


Q1 0 ... 0
0 Q2 ... 0
0 0 ... 0
0 0 ... QNP

 , R̃ =


R1 0 ... 0
0 R2 ... 0
0 0 ... 0
0 0 ... RNP

 ,

H̃x =


Hx1 0 ... 0

0 Hx2 ... 0
0 0 ... 0
0 0 ... HxNP

 , H̃u =


Hu0 0 ... 0

0 Hu1 ... 0
0 0 ... 0
0 0 ... HuNP −1

 ,

where h̃xl, h̃xu, h̃ul, h̃uu are stacked lower and upper state and control bounds for matrix
constraints defined by stacked matrix constraint matrices H̃x and H̃u for state and control
respectively, and s̃xl, s̃xu, s̃ul, s̃uu are stacked simple state and control bounds.

2-3-5 QP formulation

The implementation of an MPC controller in an embedded system requires a real-time QP
solver. Such solvers exist for various platforms and differ in input formulation, programming
language, underlying algorithm and licensing. For this thesis, the solver qpOases [18] was
used because of its efficiency, free license, and existing interface with Robot Operating System
(ROS).

This solver can not take QP problems with equality constraints, but only of the following
form:

min
z

1
2z

THz + zT g, subject to

cAL ≤ A z ≤ cAU ,
cL ≤ z ≤ cU ,

where z is the optimization vector, H the Hessian, g a bias vector, cAL, cAU , cL and cU vector
lower and upper bounds and A a matrix constraint.

Use substitutions for the following optimization variable independent vectors:
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12 Time-varying MPC

C̃ = ÃC̃L,

C̃R = C̃ − X̃ref.

Substituting the state update equation in the cost function and constraints, we can derive
that

J = (X̃ − X̃ref)T Q̃(X̃ − X̃ref) + ŨT R̃Ũ

= (C̃R + ÃB̃Ũ)T Q̃(C̃R + ÃB̃Ũ) + ŨT R̃Ũ

= C̃TRQ̃C̃R + C̃TRQ̃ÃB̃Ũ + ŨT B̃T ÃT Q̃C̃R + ŨT B̃T ÃT Q̃ÃB̃Ũ + ŨT R̃Ũ

= C̃TRQ̃C̃R + 2ŨT B̃T ÃT Q̃C̃R + ŨT (B̃T ÃT Q̃ÃB̃ + R̃)Ũ

where the first term may be omitted in the optimization, as it is a constant. Rescaling with a
factor 1

2 does not influence the location of the optimum, and hence we obtain for the qpOases
formulation that

H = B̃T ÃT Q̃ÃB̃ + R̃,

g = ŨT B̃T ÃT Q̃C̃R.

For the constraints, we arrive at

cAL =

h̃xl − H̃xC̃

s̃xl − C̃
h̃ul

 ,
cAU =

h̃xu − H̃xC̃

s̃xu − C̃
h̃uu

 ,
A =

H̃xÃB̃

ÃB̃

H̃u

 ,
cL = s̃ul,

cU = s̃uu.

It turns out that calculating the Hessian and bias vector are the largest contributors to com-
putational time for the problem setup. It should be noted that a significant speed reduction
can be obtained by exploiting the symmetrical structure of the problem, for example by
computing only the lower half of a symmetrical matrix, and filling the remaining entries by
mirroring the solution. Several functions are implemented to this end in the Eigen [19] library,
as well as accelerations for multi-threading.
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2-4 Motivating examples

The proposed time-varying MPC controller is compared to non-varying (fixed model) and
adaptive implementations on a simple non-linear system with one state variable and one
control input.
The dynamical equation governing the system is described by (2-9). Both the state and
control dependence are non-linear. We have

ẋ = x2 + u3 + u, (2-9)

where x is the state and u the control input. The model is linearized using a sample time of
τ = 0.025, and the constraints on state and input of (2-10) are introduced.

−5 ≤ x ≤ 5
−2 ≤ u ≤ 2

(2-10)

All three controllers are first evaluated in a simple step scenario where the system initializes
at x = 1 and needs to be controlled to x = 2. State and control weights are 10 and 0.1
respectively. The control horizon is set at NP = 4. The fixed-model MPC is linearized
around (xL, uL) = (2,−1.3), which is close to the equilibrium condition around the target
state. The adaptive MPC uses the current state and control value, and the time-varying
implementation supplements that with previously predicted state and control values over the
full horizon. For the first iteration the time-varying controller is initialized with a repetition
of the current model.
All three controllers show the capability to stabilize the system (Figure 2-2). The overshoot
of the time-varying controller is smaller than that of the adaptive MPC controller.
However, the time-varying controller appears sensitive to the control weighting. When R is
tripled to 0.3, it converges to a steady-state value significantly different from the other two
and the reference. The future control vectors determined at the end of the simulation for all
three implementations show the source of the error.

u0 u1 u2 u3
Fixed Model -1.3821 -1.2446 -1.0471 -0.6913
Adaptive -1.3802 -1.2628 -1.0837 -0.7338
Time-Varying -1.3448 -0.2771 -0.2261 -0.1272

Table 2-1: Optimization result at the end of the simulation, for R = 0.3

The time-varying model shows a large anticipated decrease in control, resulting in a different
prediction model, with reduced control effectiveness for the last time steps. The balance
between tracking accuracy and control effort now tips toward reducing control effort at the
cost of a steady state error.
The controllers are further compared in a scenario where the system is expected to visit
significantly different model regimes, and the controller is able to predict further ahead.
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14 Time-varying MPC
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Figure 2-2: Left: Step scenario with R = 0.1. Right: Step scenario with R = 0.3.

Taking NP = 30, allowing more aggressive control (−3 ≤ u ≤ 3) and using a sine wave
reference signal around x = 0 with period 0.5 and amplitude 1, the advantage of predicting
model changes is directly apparent.
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Figure 2-3: Sine wave tracking with NP = 30 and extended control limits for fixed, adaptive
and full time-varying MPC

This time, the time-varying MPC controller significantly outperforms the adaptive MPC
controller. After a short period needed to converge to the trajectory, it follows the sine wave
closely, with an Root-Mean-Square (RMS) tracking error of only 0.0910 over the full period,
and 0.0197 after t = 0.5 (Table 2-2). The adaptive MPC controller shows adequate tracking
behavior only in the region x < 0 over the first half of the bottom sine crest, but oscillates
heavily when returning to the positive region. Its RMS tracking error equals 0.3522 (0.3582
after t = 0.5). The fixed-model controller performs better with an RMS error of 0.1734 after
t = 0.5 but misses the peaks of the wave signal as it underestimates the control effectiveness.
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An additional comparison is made with time-varying controllers where the model becomes
constant after a set horizon value. This can be seen as an intermediate step between adaptive
MPC and time-varying MPC over the full horizon. Figure 2-4 displays a controller that keeps
the model constant after step 3, and a controller that keeps the model constant after step 7,
in comparison with the full time-varying controller.
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Figure 2-4: Sine wave tracking with NP = 30 and extended control limits for time-varying MPC
with reduced model variation

The controller implementing only three models already shows a large RMS tracking error
improvement over the adaptive MPC (0.0778 after t = 0.5, Table 2-2). Surprisingly, the con-
troller implementing seven models outperforms the full thirty-model time-varying controller
by a post-0.5s tracking error reduction of almost 24%.

The full development of the RMS tracking error under model number increases is displayed
in Figure 2-5. The seven-model controller shows the smallest tracking error overall, but the
performance difference between 6 to 30 models is small.
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Figure 2-5: Post-0.5s RMS tracking error

Motivated by the examples above, the selection of future linearization models presents itself
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16 Time-varying MPC

MPC controller RMSE (full data) RMSE (t > 0.5)
Fixed Model 0.1742 0.1734
Adaptive (TV 1-1) 0.3522 0.3582
Time-Varying 1-2 0.3298 0.3185
Time-Varying 1-3 0.1553 0.0778
Time-Varying 1-4 0.1149 0.0761
Time-Varying 1-5 0.1190 0.0805
Time-Varying 1-6 0.0922 0.0242
Time-Varying 1-7 0.0901 0.0150
Time-Varying 1-8 0.0919 0.0242
Time-Varying 1-9 0.0933 0.0283
Time-Varying 1-10 0.0910 0.0195
Time-Varying 1-30 0.0910 0.0197

Table 2-2: RMS tracking errors for the sine wave tracking case

as a non-trivial field of study, depending on tuning parameters, prediction horizon and system
description. It shows that a reduced, but relatively small set of additional linear prediction
models can result in a significant improvement over non-time-varying MPC.

The thesis continues with the description and results of modeling a multivariable tilt-rotor
system. The system description is non-linear and necessarily larger than the one-state system
from this section, motivating the need to capture variations with as little additional models as
possible, as the computational cost of matrix multiplications grows quadratically with model
size.
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Chapter 3

Model identification

This chapter introduces and describes the physical models required to describe the flight
dynamics of a simplified tilt-rotor system, such as a rotor model (Section 3-1), stepper motor
model (Section 3-2), and the full dynamical equations (Section 3-3. This section concludes
with a 21-state state space description of the test system and its state and control limits.

In the respective modeling sections, results of the experimental setups that were designed and
used to acquire the model parameters are presented. The final section (Section 7), describes
unfinished experimental work and a large guided flight experiment which was designed but
only partly built, providing opportunities for future research.

3-1 Rotor model

3-1-1 System description

Central to the modeling of the drone is an accurate model for the rotor dynamics. The rotors
spin at high speeds, generated by Direct Current (DC) motors and generate thrust and torque
forces. The thrust forces and torque forces combined drive the system’s dynamical evolution.
Higher rotational speeds are coupled to higher forces, but changes in speed introduce torque
effects as well. The speeds are in turn controlled by Electronic Speed Controller (ESC), quick
low-level Proportional Integral Derivative (PID) controllers that take speed commands and
output current to the DC motors. All three components (DC motor, rotor and ESC) are
modeled in respective subsections.

To experimentally determine the input-output behavior of the rotor system, a combined
Thrust and Torque Test (T3) was built. To facilitate coaxial testing and efficiency analysis
in the future, provisions for measurement of individual motor torques, rotational speeds,
electrical currents and the combined thrust were made. A render and of the experiment can
be seen in Figure 3-13.
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18 Model identification

DC Motor

At the core of the rotor system lies the DC motor. In the motor, the stator and rotor (or
armature) contain windings that are excited by DC current, and the interaction of both
magnetic fields of the stator and rotor results in rotation of the rotor. Most commonly, the
stator windings are replaced by permanent magnets, and hence the DC motor is ’armature
controlled’. This type of design is cheaper than designs where the stator has coil windings,
but the design suffers from large currents that may damage the insulation material.

In armature controlled motors, the magnetic field may be assumed constant [20]. Under that
assumption, the motor torque becomes proportional to the current by

TM,i = Ktii, (3-1)

where TM,i is the motor torque of motor i, Kt is the motor torque constant (assumed equal
for all motors used) and ii is the current through motor i. From Faraday’s law, the back
Electromagnetic Force (EMF) by the rotating armature is proportional to the angular speed
by

ei = Keωi = Keθ̇i, (3-2)

where ei is the back EMF of motor i, Ke is the EMF constant (assumed equal), ωi is the
rotor speed, also denoted as the first derivative of the angle θi. In SI units, Kt and Ke are
equal and will from hereon be replaced by K.

From Kirchhoff’s law and Newton’s second law we arrive at the system of linear equations of

JRθ̈i + bf θ̇i = Kii, (3-3)
Li̇i +Riii = Vi −Kθi (3-4)

where JR is the rotor inertia, bf is the motor friction coefficient, L is the motor inductance
(all assumed equal), Ri is the motor resistance and Vi is the motor voltage.

Assuming the voltage as input, and as the back EMF and hence rotor speed are measured
by the Rounds Per Minute (RPM) sensors ((3-2)) the complete system can be written in
state-space form as

d

dt

[
θ̇i
ii

]
=

[
− bf

JR

K
JR

−K
L −Ri

L

] [
θ̇i
ii

]
+
[

0
1
L

]
Vi (3-5)

y =
[
1 0

] [θ̇i
ii

]
, (3-6)

where system output y is the rotor speed i. A classical analysis of observability and control-
lability according to R. Kalman [21] reveals that the system is controllable, observable and
also passively stable.
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3-1 Rotor model 19

For this thesis, the Multistar 5008 KV-330 motor (Figure 3-1) was used, which has a K-value
of 330 RPM/V .

The most important takeaway here however, is not the exact physical system description
in motor parameters, but that the system follows a linear description. From here, the the
coupling to the rotor introduces aerodynamical effects which are in general non-linear.

Rotor

The shafts of the fast-spinning DC motors are rigidly connected to the aircraft rotors, and are
used to displace air to generate thrust and torque. The faster the shaft spins, the faster the
rotor turns and the more air is displaced. For the sake of simplicity, only a single-rotor model
out of ground effect is considered. The ground effect is an increase in thrust and torque when
the rotor spins closely above a surface, leading to a cushion-like effect. However, in normal
flight, the correction factor associated with the ground effect is already smaller than 1% when
the flight altitude is 2.5 times larger than the rotor radius [22].

Thrust Using momentum theory [23], the thrust TR,i generated by a spinning rotor in steady
state in free air may be modeled as

TR,i = CTρArr
2ω2

i , (3-7)

where Ar represents the rotor disk area, r is the rotor radius, ρ is the density of air, ωi is the
angular velocity of rotor i and CT is the thrust coefficient. The thrust coefficient depends
on several parameters of the rotor design, such as blade pitch and curvature. In practice,
a combined thrust coefficient cT is often used for modeling of a specific rotor [24], so that
Eq. (3-7) reduces to

TR,i = cTω
2
i . (3-8)

Torque Similarly, a single rotor reaction torque can be modeled using a combined coefficient
as

QR,i = cQω
2, (3-9)

where QR,i is the rotor torque and cQ is the combined torque coefficient, again dependent on
rotor geometry and air density.

The most important takeaway here is that in steady state, we can model thrust and torque
by quadratic coefficients in the rotor speed. A dynamical system is however not always in
steady state. From the DC motor system, we know that for speed changes, additional torque
needs to be exerted on the rotor. Hence, for an acceleration motion, we can expect thrust to
follow the quadratic relation, but torque to consist of a motor component and a speed-related
component.

For this thesis, the carbon fiber Quanum 18x5.5 propeller was used (Figure 3-1).
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ESC system

The rotor speed control is largely taken care of by a dedicated ESC, which takes speed
reference commands in the form of Pulse Width Modulation (PWM) signals and controls
the motor current to obtain the desired speed without overshoot. In practice, most of these
systems are essentially well-tuned, extremely fast PID controllers. For this thesis, the 30A
AfroESC was used (Figure 3-1), which operates at a frequency of 400 Hz.

Figure 3-1: From left to right: Multistar 5008 KV330, 30A AfroESC and Quanum 18x5.5
propeller

ESC controllers, when turned on, are by default in a so-called "unarmed" state, where they
do not accept command inputs for safety reasons. Sending a constant command signal of a
specific frequency (the "arm" signal) slightly below the minimum speed reference for a short
duration activates the controller. From that point onwards, the motor speed can be regulated.
Loss of signal or sending a throttle signal below the minimum speed reference will disarm the
ESC again.

Although PID controllers constitute linear systems, current commercial solutions like AfroESC
have evolved to implement multiple non-linear advanced features, such as rotor braking, satu-
ration limits, and throttle curves. Rotor braking aims to assist in slowing down the rotor using
the coils in addition to normal aerodynamic drag. Saturation limits help prevent extremely
high currents, and throttle curves can assist the user in achieving the desired responsive-
ness and flight behaviour, and are essentially a mapping between input signal frequency and
desired rotational speed.

3-1-2 Four-parameter combined model

As the total subsystem combination of motor, rotor and controller can definitely not be
considered linear, it was decided to model the system from angular speed reference to output
forces as a single entity, taking one throttle input command and generating two outputs.
The corresponding ESC-specific PWM frequency to a reference angular speed is computed
separately by inverting a measured throttle curve.

The first output of the system is the angular speed, which does not exhibit overshoot behavior
and is modeled according to a first-order response using the time constant of the system. In
the real-time setup, the angular speed can be measured using RPM sensors. The thrust force
can be obtained by squaring the result and multiplying it with cT .
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3-1 Rotor model 21

The second output is the angular speed with an additional overshooting effect, as a result of
the rapid acceleration and deceleration of the rotating mass. It is modeled according to a
same time constant of the thrust rise time and an overshoot parameter influencing the peak
height of the response. The motivation behind this state space variable is that it captures the
torque effect associated with a non-overshooting speed increase within the same time frame,
and is easily squared and multiplied with the torque coefficient cQ, resulting in a model with
a minimum number of parameters. Further motivation comes from fits with experimental
data, showing good correspondence with observed measurements (Section 3-1-6. This variable
however, is not directly observable, but is estimated using a Luenberger observer, which is
further described in Section 4-2-2.
The proposed system model from angular speed reference to forces is represented by

[
ω̇T
ω̇Q

]
=
[
−a 0
−b −a

] [
ωT
ωQ

]
+
[

a
a+ b

]
u

FR = cTω
2
T

QR = cQω
2
Q

(3-10)

where ωT is the rotational speed, ωQ is the rotational speed with overshooting effect and a
and b are model parameters. The effect of these parameters can be seen in Fig. 3-2, with a
being the inverse of the time constant of the first order system, and b significantly influencing
the peak height of the overshoot.
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Figure 3-2: Left: Effect of parameter a on the the step response. Right: Effect of parameter b
on the the step response.

3-1-3 RPM sensor calibration

Experimental Set-up

At the core of the modeling and co-simulation is the time-series measurement of rotational
speed. It is necessary to determine the minimum and maximum motor speeds (and their
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corresponding input signals), the steady-state thrust and torque coefficients, and the dynamic
response behaviour of the system.

The sensors used are simple Eagle Tree RPM sensors for brushless motors. They are lightweight
sensors with a measurement range up to 8000 rpm, and only need to be calibrated for the
amount of poles in the brushless motor (4). The sensor wires are attached to any two of the
three motor wires, which the sensor uses to determine voltage switches associated with the
movement of the magnets inside the motor.

Figure 3-3: Eagle Tree RPM sensor

The calibration is carried out using a small striped marker and a stroboscope. The marker
is stuck to the brushless motor and the motor is spun from minimum to maximum speed in
small steps. At every speed setting, the stroboscope is adjusted so that the marker appears to
stand still. The oscilloscope frequency and timing between sensor spikes are logged to analyze
the sensor linearity.

For the real-time implementation, the timing signal is filtered and analyzed for zero-speed
detection, which occurs when the sensor stops sending spikes. This is motivated by the
hardware-in-the-loop simulation where the system always starts from zero-speed, and possible
future research into fault-tolerant control. The implementation and code is further described
in Section 4-2-2.

Results

The sensor timing values are close to the expected curve for a 4-pole motor. However, the
observed time differences between expected and measured timing values do not seem to follow
the same relation (See left figure of Figure 3-4). The difference values appear to converge to
a 40-45 µs difference, which may be attributed to the internal sensor algorithm or delays in
communication or measurement by the Arduino.

In the right graph of Fig. 3-4, the timing values are converted to RPM. The same small
difference is observed. Should the RPM sensor be used in a stand-alone fashion, a correction
factor of 96% should be used. In this thesis, the same RPM sensor is used for mapping in all
the other experiments, so correction factors need not be applied.
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Figure 3-4: Left: Sensor timing results and difference with expectation. Right: Sensor linearity
analysis

3-1-4 Throttle curve measurement

Experimental Set-up

From the between-spike timings of the sensor, the RPM values of the motor are read. For
every ESC, the throttle curves (as described in Section 3-1-1) are measured by arming the
ESC, increasing the input frequency in small steps, and recording the corresponding RPM
values.

Results

All ESC’s were previously used in flying systems, with the front left (FL), front right (FR)
and rear right (RR) all having been used in one system, and the rear left (RR) in a different
system.

First, the arming signals, and minimum and maximum effective signal inputs for every ESC
were determined. These are mapped to PWM frequencies by an external board via Inter-
Integrated Circuit (I2C), where the full duty cycle corresponds to a signal of 4095. The results
are displayed in Table 3-1.

ESC Arming Signal Min Throttle Max Throttle
Front Left (FL) 1300 1485 2700
Front Right (FR) 2000 2011 3400
Rear Left (RL) 2000 2130 2650
Rear Right (RR) 1750 1810 3350

Table 3-1: Arming frequency and signal limits for all ESC’s

The difference in calibration settings is explained by the practical need to minimize signal
interference. Having differently calibrated ESC’s avoids accidentally arming the wrong motor,
or signal interference when similar throttle values are sent to different motors.
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ESC x3 x2 x 1 R2

Front Left (FL) 3.2262 · 10−6 −0.0225 53.5920 −3.9902 · 104 0.9998
Front Right (FR) 2.2542 · 10−6 −0.0200 60.5950 −5.8576 · 104 0.9997
Rear Left (RL) 3.9594 · 10−6 −0.2959 740.2501 −6.1647 · 105 0.9994
Rear Right (RR) 1.6299 · 10−6 −0.0141 41.8915 −3.8527 · 104 0.9998

Table 3-2: PWM to RPM models

Consequently, a full PWM to RPM mapping is created, by increasing the throttle in steps
from minimum to maximum and recording the RPM value reported by the sensor. The PWM
board takes inputs in the range of 0 to 4096, where 0 corresponds with a 0% duty cycle and
4096 with a 100% duty cycle. The results are visible in Figure 3-5.
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Figure 3-5: PWM board input values to RPM curves

The results show a curved throttle mapping, which is motivated by expectations of a user
during manual flight and the quadratic effect of rotational speed on thrust. By implementing a
throttle curve that develops like a square root, the total throttle-to-thrust map is linearized.
Manual flight for an inexperienced user therefore becomes more intuitive, as the absolute
thrust increase per throttle step is similar in all regions of flight. The upward slope at the
end of the graph can be motivated by an ’emergency’ throttle command, where a high-powered
response is needed for an aggressive maneuver.

The throttle curves are modeled according to a cubic polynomial to capture the S-shape. The
parameters and goodness of fit of the cubic polynomials are included in Table 3-2.

Finally, the throttle curves are modeled by re-scaling them to their respective throttle ranges.
For numerical stability, the rotational speed is divided by 1000 (kRPM = kilo-RPM).

The curves show good agreement, motivating the use of a single averaged model. Its param-
eters are included in Table 3-3. The R2-value of 1 is no accident - the average curve of three
cubic polynomials is again a cubic polynomial.

J.M. de Jong Master of Science Thesis



3-1 Rotor model 25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Throttle value

0.5

1

1.5

2

2.5

3

3.5

4

4.5

kR
P

M

FL
FR
RL
RR
Model

Figure 3-6: ESC PWM to RPM curves

mean std x3 x2 x 1 R2

Average model 0.5 0.293 0.1468 −0.2905 0.668 3.32 1

Table 3-3: Average throttle to RPM model

3-1-5 Thrust and torque coefficient measurement

Experimental Set-up

The thrust and torque coefficients are determined in a steady state measurement using re-
spective load cells. The rotor speed is increased in small steps and allowed to settle. For
every command, the corresponding data points are cut from the data set and plotted with
respect to time. The first quarter of the data points are discarded as they may still include
the acceleration phase. For the remaining data points, the mean and standard deviation are
calculated to obtain a point in the (ω, F )-diagram. Finally, a quadratic curve is fitted in the
(ω, F )-diagram.

Results

For every command step, the dynamic data show a quick convergence to a new steady state
level (Figure 3-7), and warrant the use of the last three quarters of the data set for coefficient
analysis. The mean and standard deviation of the rotational speed and forces are calculated
and displayed in a scatter plot for verification.

Combining the measurements per level, a full thrust curve is generated. In Figure 3-8, the
quadratic relationship is directly visible, save a small deviation for high rotational speed.
Nevertheless, a quadratic model is deemed sufficient. An identical procedure is carried out
for the torque forces, resulting in the figure and fit of Figure 3-9. The model parameters, to
be used as cT and cQ in the four-parameter model (Equation 3-10), are reported in Table 3-4.
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Figure 3-7: RPM and thrust analysis
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Figure 3-8: Thrust coefficient analysis

x2 x 1 R2

Thrust model fit 1.378 · 10−6 0 0 0.9977
Torque model fit 4.824 · 10−8 0 0 0.9830

Table 3-4: Thrust and torque model fits
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Figure 3-9: Torque coefficient analysis

3-1-6 Dynamic response

Experimental Set-up

The state space parameters are determined using a dynamic analysis of step input commands.
Using the same data set, the rise time after a step command is determined for a variety of
operating points by analyzing the RPM changes. From the rise time, the time constant of
the system and corresponding parameter a of the four-parameter model (see Equation 3-10)
is determined.

The overshoot parameter b is modeled by normalizing the load cell measurement values from
0 (before) to after (1) the step input and taking the square root of the forces (as ωQ of the
four-parameter model is later squared again). The overshoot factor is matched by varying b
until the system response roughly corresponds with the observed measurements.

Results

A simple program analyzes the full data set, detects input step changes, isolates the individual
responses and prompts the user to decide whether or not to include the response for rise time
analysis, as some initial steps may have been required to arm the ESC and direct the motor
to its minimum speed.

For a variety of throttle values (with minimum and maximum corresponding to the respective
ESC in Table 3-1), the rise times are determined. The results are displayed in Figure 3-11.

For steps at a low throttle value, the rise time is significantly larger than for higher throttle
values, where the rise time is seen to remain nearly constant. As a drone normally operates
a throttle value around 50%, the six significantly larger rise times in the low-throttle regime
are discarded for modeling. The results are displayed in Figure 3-11, with indication of the
fitted mean of 150± 23 ms, corresponding to a = 15 in the four-parameter model.
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Figure 3-10: User prompt during rise time analysis
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Figure 3-11: Fitted rise times for a variety of target throttle levels
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The load cell measurements are delayed and averaged measurements at a rate of 10 Hz, as
the function library performs internal averaging before reporting a load value. The values are
however still useful to determine the overshoot percentage. As the RPM measurements are
not delayed (Fig. 3-7), and thrust is assumed as a directly coupled and immediate effect of
rotational speed, the load cell measurement delay can be estimated at 300 ms by matching
the first order responses. The precise measurement delay is however not a relevant model
parameter. The overshoot parameter is estimated at b = 80.
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Figure 3-12: Fitting the overshoot parameter to load cell data

3-2 Stepper motor model

3-2-1 System description

For the tilting of the arms that are fitted with the propellers, stepper motors are used. Stepper
motors are DC motors which can be controlled precisely in angular position and exhibit a
high holding torque. They are controlled by a dedicated controller which powers the different
motor coils to attract the rotor to a specific angular position in so-called steps. Using PWM
signals on adjacent coils, a high resolution can be obtained. This technique is called micro-
stepping.
A drawback of stepper motors is that during high acceleration or high torque movements,
angular slip may occur, resulting in a discrepancy between the actual angular position and
the position the motor controller has counted during its successive powering of coils. Advan-
tageously, a stepper motor is coupled with an angular encoder to detect the angular position
even in cases of slip.
The drone test-bed is fitted with four NEMA 17 stepper motors, connected to the propeller
arm by means of toothed pulleys and a toothed belt. The motors are controlled by a commer-
cially available stepper motor shield for the Arduino UNO, with a full-stepping configuration
being associated with 200 steps per rotation. The shield also offers capabilities for micro-
stepping up to 1/16 step size.
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Figure 3-13: Left: perspective render of the T3 CAD design with a single rotor. Right: Con-
structed T3 experiment in a coaxial testing configuration

Figure 3-14: Left: Arduino UNO CNC Shield. Right: Nema 17 stepper motor
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The proposed model is directly related to the code that is implemented on the Arduino.
Every time step, the code checks the current position with the desired position and sends
a step signal to move a single step into the direction that will minimize the error. This is
repeated until the desired position is achieved. The implementation of the code is such that
after the Arduino command has been sent to the shield (and while the motor controller does
its work), new commands can be received via serial communication, thus constituting non-
blocking control. No special features such as speed ramping have been implemented. For
more information, see Section 4-1-3.

The stepper motor including motor controller is a non-linear model. Doubling the control
input (reference angle) does not speed up the movement - as the step sizes are fixed. In fact,
once a specific micro-stepping setting has been chosen, the only variable for consideration is
the loop speed. It needs to be set as high as possible without introducing motor slip.

The angular control model can be summarized as

ui = σ(δi,ref (t)− δi(t))
δi(t+ τM ) = δi(t) + ui∆M ,

(3-11)

where ui is the control direction of motor i, σ(.) is the sign function, δref,i is the reference
angle of motor i, δi is the angle of motor i, τM is the loop time of the motor controller, and
∆M is the angular micro-stepping size.

To implement the stepper motor model in Model Predictive Control (MPC), it is reformulated
to a linear model with input box constraints. These constraints represent the maximum step
size within a specific sampling time, as the motor controller may operate at faster loop rates
than the high-level MPC controller. The model equals

δi,k+1 = δi,k + ui,k,with

− τ

τM
∆M ≤ ui,k ≤

τ

τM
∆M .

(3-12)

Technically, the model would allow for arbitrarily small input commands to be applied. In
reality the motor controller only moves once the angular error is high enough. As a result,
so-called chattering, jumping between two adjacent angular positions, may occur, but the
effect on the propeller arm through a gear-reduced connection is neglected.

3-2-2 Stepper Rate Limit Modeling

Experimental Set-up

The stepper motor is connected to an angular encoder and a sufficiently high angular position
reference input is given. From the time series development of the motor angle, the rate limit
is determined.
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Results

The time series shows near perfect rate-limited behavior. The slope of the graph is fitted with
a straight line, resulting in a rate limit of ∆M

τM
= 50.04± 0.10◦/s (R2 = 0.9992).

Figure 3-15: Time-series evolution of the stepper motor angle
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3-3 Full system model

With the two-state description of the rotor system and the rate limits of the stepper motor
in hand, the system model can be completed. The mass and inertia matrix are taken as m
= 4 kg and I= 0.05I3 (identity matrix), which is modeled after scaling up the corresponding
parameters of an OS4 quadcopter system [25].

Each individual rotor model is summarized by

v1 = u− 0.5
0.293

v2 = 0.1468v3
1 − 0.2905v2

1 + 0.668v1 + 3.32[
ω̇T
ω̇Q

]
=
[
−15 0
−80 −15

] [
ωT
ωQ

]
+
[
15
95

]
v2

TR = 1.378ω2
T

QR = 4.824 · 10−2ω2
Q

0 ≤ u ≤ 1

(3-13)

where ωT and ωQ have been re-scaled to kRPM units, and v1 and v2 are virtual throttle inputs
used in the mapping. The stepper motors are modeled using a pre-determined sampling time
τ according to

δi,k+1 = δi,k + uM,k,with

−50π
180 τ ≤ uM,k ≤

50π
180 τ.

(3-14)

The rotor thrust forces in the body frame are tilted using the stepper motor angles, with the
convention of π/2 rad being upward and 0 rad being forward. For the total directed thrust
FR,B, we can write

FR,B =
4∑
i=1

FRi =


∑4
i=1 TRi cos δi

0
−
∑4
i=1 TRi sin δi.

 (3-15)

The last force acting on the system is gravity. Given the tilt-rotor body orientation in roll (φ),
pitch (θ) and yaw (ψ) coordinates (also see App. B), the gravity force Fg,B can be expressed
in the body frame as

Fg,B = 9.81 ·m

 − sin(θ)
− cos(θ) sin(φ)
cos(θ) cos(φ)

 , (3-16)
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ξ xB yB zB
Rotor 1 1 0.3 -0.3 0
Rotor 2 -1 0.3 0.3 0
Rotor 3 -1 -0.3 -0.3 0
Rotor 4 1 -0.3 0.3 0

Table 3-5: Rotor positions and spinning directions (1 = clockwise, -1 is counterclockwise)

and the total force in the body frame Ft,B finally equals

Ft,B = FR,B + Fg,B. (3-17)

The total torque Mt on the vehicle body consists of the rotor torques QRi and thrust-induced
moments QFi. The rotor spinning direction is indicated by ξi, where 1 is clockwise and -1 is
counterclockwise, seen from above. The rotors are placed in a 0.6 × 0.6 square centered at
the center of gravity (see Table 3-5).

QR,B =
4∑
i=1

QRi =

−
∑4
i=1 ξiQRi cos δi

0∑4
i=1 ξiQRi sin δi


QF,B =

4∑
i=1

QFi =
4∑
i=1

xBiyBi
zBi

× FRi
Mt = QR,B +QF,B

(3-18)

3-3-1 Equations of Motion

The dynamical equations together describe a 21-state system, with 8 inputs and 8 box con-
straints. The first 9 states describe the body velocity, rates and orientation.
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mv̇x,B = 1.378
4∑
i=1

ω2
T i cos δi − 9.81 ·m sin(θ)

mv̇y,B = −9.81 ·m cos(θ) sin(φ)

mv̇z,B = −1.378
4∑
i=1

ω2
T i sin δi + 9.81 ·m cos(θ) cos(φ)

Ixxṗ = −4.824 · 10−2
4∑
i=1

ξiω
2
Qi cos δi − 1.378

4∑
i=1

yBiω
2
T i sin δi

Iyy q̇ = 1.378
4∑
i=1

xBiω
2
T i sin δi

Izz ṙ = 4.824 · 10−2
4∑
i=1

ξiω
2
Qi sin δi − 1.378

4∑
i=1

yBiω
2
T i cos δi

φ̇ = p

θ̇ = q

ψ̇ = r

(3-19)

where Ixx, Iyy and Izz are the respective moments of inertia around the roll, pitch and yaw
axes, and p, q and r are the respective roll, pitch and yaw rates.

The next set of equations describes the evolution of the rotor systems. For the sake of
simplicity during linearization, the inputs ui per rotor are mapped to virtual input v2i as per
(3-13). For every rotor system,

ω̇T i = −15ωT i + 15v2i

ω̇Qi = −80ωT i − 15ωQi + 95v2i,with
0.6046 ≤ v2i ≤ 4.3435.

(3-20)

To recompute throttle input ui(v2i) from the optimization result, the mapping of (3-21) using
the coefficients of Table 3-6 is used.

v1(v2) = 3

√
c1v2i +

√
(c1v2i + c2)2 + c3 + c2 + c4

3
√
c1v2i +

√
(c1v2i + c2)2 + c3 + c2 + c5

u(v1) = 0.293u+ 0.5
(3-21)

The final 4 equations describe the evolution of the stepper motors. For every motor, for a
time step of τ , we have
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Coefficient Value
c1 3.40599
c2 -12.52
c3 1.26565
c4 -1.08169
c5 0.659628

Table 3-6: Virtual throttle mapping function coefficients

δi,k+1 = δi,k + uM,k,with

−50π
180 τ ≤ uM,k ≤

50π
180 τ.

(3-22)

However, for accurately modeling the indirect effects of stepper angle inputs to the vehicle
velocities, rates and angles, the individual discrete-time input matrices can not simply be
appended to the continuous-time model. Therefore, the stepper motor was approximated by
a rate-limited integrator.

During simulation, the real world position vector XW is tracked by integrating the body
velocities and orientation (see App. B).
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Chapter 4

Hardware-in-the-loop

This chapter documents the real-time co-simulation system. First, the external hardware
setup is presented, along with the connections and code that interface with the virtual sim-
ulator (Section 4-1). Secondly, the Robot Operating System (ROS) implementation of the
simulator along with a Graphical User Interface (GUI) and visualization screen is laid out
(Section 4-2).

4-1 Tiltrotor set-up

The hardware part of the co-simulation system is a fixed board which replicates input-output
behavior of the drone for a subset of the total of 21 states. A total of 8 inputs can be
given, through the serial interface (Section 4-1-2), one for each stepper and Electronic Speed
Controller (ESC). The commands are parsed on an Arduino command board (Section 4-1-3)
and sent to the respective actuators. An Arduino sensor board (Section 4-1-4) measures tilt
angle and rotational speed, and returns this to the computer. As the computational power
on the on-board microcontrollers is limited, tasks such as filtering and state estimation are
off-loaded to the computer.

4-1-1 System sketch

The layout of the Hardware-in-the-Loop (HIL) board is motivated by the Avy Zero design,
comprising four rotatable arms at the corners of the vehicle (Figure 4-1). To facilitate full
rotation of the motors, the motor wiring is pulled through the arm tubes and led to the
bottom side of the board. The arms are each held in place by two rotational bearings with
set screws, fixing their position with respect to the board in all degrees except axial rotation.

The stepper motors are connected to the arms via toothed belts. With a 4:1 gear ratio,
precise angular position control is facilitated. The stepper motor angle is tracked using a
coaxial encoder, mounted directly to the motor axis.
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The motor wiring and ESC’s are placed on the bottom side for cable management and re-
duction of interference: high-current motor wires can interfere with digital signals sent to
and from the top-side micro-controllers when placed directly adjacent to each other. The
motor wires are joined using a four-way junction and connected to a Lithium Polymer (LiPo)
battery via a safety switch.

The Rounds Per Minute (RPM) sensors directly connect to any two of each three motor wires
per ESC. Their signals, and those of the coaxial encoders are read via 8 pins on the Arduino
sensor board.

The control signals originate from the Computer Numerical Control (CNC) shield and Pulse
Width Modulation (PWM) breakout board, both associated with the Arduino control board.
The CNC shield contains four A4988 motor controllers with current limits that can be pre-
determined using a variable resistor. The PWM board can output up to 16 signals with a
resolution of 4096 steps between zero and full duty cycle, at a rate of up to 500 Hz.

Figure 4-1: Plan view of the hardware-in-the-loop system

4-1-2 Serial interface

The existing libraries of interfacing positional commands for the CNC board, and exchanging
ROS topic messages with Arduino proved too slow and heavy for implementation. A simple
integer messaging system, both for the command board and sensor board was written, sending
8 integers relating to respective throttle, angle or timing values with a basic form of error
reduction.

Each message is constructed in the form of "<int1, int2, int3, int4, int5, int6, int7, int8>",
where the "<" and ">" symbols signal message start and end, respectively, and int1-int8 are
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4-2 Simulator set-up 39

comma-separated integer values. The message length may vary, depending on the integer
value, but in both cases (commmand and sensor), will never exceed 45 characters. With a
115200 baud, and 10 bits per symbol message, the theoretical maximum messaging frequency
therefore lies around 250 Hz. Realistically, time needs to be reserved for the Arduino to parse
and execute the commands, and for the computer to calculate a new optimization result. In
the implementation, the command messaging rate was set to 20 Hz, with the command board
updating the stepper motors (and being able to listen to new incoming messages) at a rate
of 125 Hz, and the sensor messaging rate was set to 40 Hz.

4-1-3 Command board

The command board listens for new control commands in the form of the aforementioned
8-integer message and splits them into ESC commands and stepper motor commands. ESC
commands get sent over Inter-Integrated Circuit (I2C) as duty cycle ratios to an external
PWM board capable of generating multiple high-frequency PWM signals. The stepper motor
commands get sent to the CNC shield containing four A4988 motor controller chips, with
each individual motor being controlled using a STEP and a DIR signal.

For stepper motors, it is essential to pause between step signals, to allow the motor to move.
The code has been designed to alternate between a first listening and I2C loop segment and
a second stepping segment, where the first loop is used to read and parse new commands and
control the ESC’s, simultaneously serving as a pause for the step commands, and the second
loop is used to determine movement direction and step signals for the four individual stepper
motors. Non-blocking control has been implemented, meaning that set points can be updated
inbetween single steps.

4-1-4 Sensor board

The sensor board tracks the encoder positions and high-to-low signal change timings of the
RPM sensors, indicating a (partial) rotation of the motor has passed. Ideally, all 12 sensor
pins are interrupt pins, being able to trigger timing and increment functions based on their
signal changes, but the Arduino Uno does not possess that many interrupt pins. To maximize
the sampling frequency and detect signal changes as soon as possible, filtering and zero-speed
detection functions are off-loaded to the computer.

The 8 integers are packed into the aforementioned message format and sent to ROS via serial
connection at a rate of 40 Hz.

4-2 Simulator set-up

The software part of the co-simulation system is the ROS kernel, an open-source development
platform for Linux with built-in functionality for a variety of robot-related tasks, such as com-
munication, control, localization and visualization. The software layout of the implementation
in this thesis is explained in Section 4-2-1. The data reception, filtering and state observa-
tion is explained in Section 4-2-2. The measured and observed states are supplemented with
simulated states to recreate a full 21-state simulator (Section 4-2-3). The simulated states
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are then used to generate Proportional Integral Derivative (PID) control signals for various
degrees of motion (Section 4-2-4). The motion of the system is displayed in a visualization
window (Section 4-2-5), and the simulation is controlled with a GUI comprising a variety of
sliders, dials and buttons (Section 4-2-6).

4-2-1 ROS Architecture

The ROS system implements a central "master", which provides a connection between pro-
grams ("nodes") and data passed between them ("topics"). Nodes can be run at instances
triggered by an event, or at specific rates. As the data exchange is handled centrally, the
nodes can be run largely independent from each other. They exchange data by subscribing
or publishing to a topic. The advantage of this structure is that separate functions can easily
be added or edited, and even run on separate hardware - as long as it communicates with the
master.
The nodes are divided into workspaces - for example, code related to the mathematical cal-
culations for simulation is placed into the "sim" space, code related to visualization is placed
into the "viz" space. This is nothing but a handle, like a file folder, but it provides an intu-
itive separation of topics that are relevant within that space only, and the ones being passed
inbetween.
An overview of all the nodes and their associated topics running in the co-simulation setup
is displayed in Figure 4-2. The direction of the arrows indicates the flow direction of data.
The "/HIL/sender" node is easily identified as a virtual sink - only data gets sent to it. It is
the program that exports the commands over Universal Serial Bus (USB) to the command
Arduino. Likewise, the "/HIL/receiver" node is the serial listener, reading sensor messages
from the sensor Arduino, and passing them, via an observer and filter (Section 4-2-2), to the
simulation. The virtual sink "/viz/viz_window" is a screen output, displaying the current
flight situation to a user.
Nodes can be started using a launch file, providing an all-in-one shortcut to launch a complete
network of programs. The launch files can also specify specific parameters to run the nodes
with, such as the associated USB port, their execution rate or PID parameters. Additionally,
nodes can be started and killed at run-time.

4-2-2 Filtering and observing

To maximize sampling frequency, computationally intensive tasks such as filtering, observing
and zero speed detection are handled on ROS rather than on the sensor Arduino.
First, the RPM value is computed for every motor from the timing value. Extreme RPM
values outside the 0-10000 range are dropped to zero. An exponential moving average filter
with 5% weight to the newest data point is implemented to reduce noise as

ωf,new = 0.95ωf,old + 0.05ωnew, (4-1)

where ωnew is the most recent received RPM value in the 0-10000 range, ωf,old is the previous
filter value (initialized at 0) and ωf,new is the new filter value, which is used as the ωT in the
state space model of Chapter 3.
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Figure 4-2: ROS overview of all active nodes and topics
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When the rotor stops spinning, the sensor does not send peaks to the Arduino anymore. In
this case, the last timing value gets repeated as output and the filter will not converge to
0 RPM. To accurately determine this scenario, the most recently received timing value is
compared to the last. Should they be equal, a counter is increased. When the counter reaches
10, it is assumed the motor has stopped, and the corresponding RPM is set to zero. Should
the timing value change again, the counter is reset to 0.

The ωQ of the state space model is not measured directly, but is observable. Using the
fitted state space, observer poles are placed at (-12, -13) and the observer is converted to a
discrete-time state space implemented at 40 Hz.

The stepper motor encoder signals are not filtered.

4-2-3 Internal simulator

From the resulting ωT , ωQ and δ per arm of the HIL board, the evolution of the system can
be simulated. Using the equations of Section 3-3-1, a state update is calculated at 40 Hz
using forward Euler integration.

The simulator can be restricted in degrees of motion (except altitude) and reset using toggle
signals from the control GUI. This facilitates testing and tuning separate controllers, without
having to restart the complete network.

4-2-4 Controllers

The closed loop system is stabilized for limited degrees of freedom using three PID controllers.
The limitations reflect the dynamics of the first envisioned dynamical flight experiment (see
Chapter 7), in which the aircraft can take off, translate in one direction and perform yawing
maneuvers.

1. The first PID controls altitude and outputs the same throttle reference signal to all four
rotors.

2. The second PID controls forward speed and outputs the same tilt reference signal to all
four steppers.

3. The third PID controls yaw rate and outputs a positive tilt reference signal to the left
steppers and an equal but opposite tilt reference signal to the right steppers.

The controllers are implemented using a simple discretisation scheme at 40 Hz. Given the
control gains KP , KI and KD, state reference value xref, current state value xcurr, previous
error value eprev (updated iteratively, initialized at 0), and previous integrator state iprev
(internal state, initialized at 0) the control action is computed every time step as

ePID = xref − xcurr

iPID = iprev + ePID/40
uPID = KP ePID +KIiPID + 40KD(ePID − eprev),

(4-2)
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where ePID is the current PID error value (which updates eprev), iPID is the current PID
integral state and uPID is the computed PID control action.

Integrator states for all three controllers can be individually reset to 0 using three buttons on
the user interface (Section 4-2-6).

4-2-5 Visualization

Using the simulation state, transfer functions and tilt angles are published to a visualization
node. The visualization node places boxes and cylinders, representing the tilt-rotor system
in a 3D space, which is displayed using rViz. Additionally, live directed thrust forces are
displayed using arrows originating at the respective rotor centers.

Figure 4-3: rViz visualization window displaying live position, thrust forces and tilt angles

4-2-6 User Interface

The user interface is a source node for a test engineer to interact with. It contains safety
buttons ("ARM/OFF"), calibration buttons to center the stepper motors, simulation control
toggles and a feedback control switch. The most important buttons are colorized to indicate
their behavior (green is activation or increase, red is deactivation or decrease). These buttons
are always visible in the right part of the window, as they need to be accessed regularly, but
also quickly, in case of emergencies.

The left part of the window contains several clickable tabs. The most important tabs are the
Navigation Tab (Figure 4-4) and the Tuning Tab (Figure 4-5).
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The Navigation Tab contains input boxes for forward speed, yaw rate and altitude. A new
reference level can be set for each variable, and the decision to change it using a step command
or a ramp (linear) command spread out over a time interval. The new levels are published to
the controller at the push of the blue "GO" button.

The Tuning Tab contains input boxes for the altitude, forward speed and yaw rate PID
controllers, along with individual integrator reset buttons and an overall parameter publish
button ("SET"). A provision for Model Predictive Control (MPC) tuning weights has also
been implemented.

Figure 4-4: Navigation Tab
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Figure 4-5: PID and MPC Tuning Tab
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Chapter 5

Results

The time-varying Model Predictive Control (MPC) controller is simulated on the full 21-state
tilt-rotor model and compared to adaptive and fixed-model implementations in Section 5-1.
Five flight scenarios are presented: a forward and upward flight (twice), a yaw-right command,
and a partial backflip. Every scenario is initialized by a mid-air hover condition.

5-1 Simulation

The controller is simulated using a time step of 0.025, corresponding to a 40 Hz control
frequency. The prediction horizon is NP = 5 and state weights are as in Tables 5-1 and 5-2,
unless indicated otherwise. The weights are motivated by penalizing velocity and orientation
errors over the other states, and penalizing input-associated states from an energy perspective
- rotor action is costly whereas stepper angles constitute no change in energy usage. A stepper
motor is namely always energized, irrespective of its orientation.

The time-varying controller uses three models along the horizon, motivated by the example
of Section 2-4.

Five scenarios are simulated. The first scenario, a yaw-right command, highlights the influence
of rotor tilting (Section 5-1-1). The second and third scenarios are related to a combined
liftoff - forward motion command, where both body pitching and stepper action can be used
to achieve reference tracking (Sections 5-1-2 and 5-1-3). The fourth scenario is a pitch-up
command, an orientation change regular drones can not attain without holding their position
(Section 5-1-4). The final scenario is an extension of the pitch-up command, where the vehicle
is commanded to keep pitching up until instability occurs or flying completely upside down
(Section 5-1-5).

As an outer-loop position tracking controller was not implemented, the scenarios do not
include roll angle commands. Moreover, in roll-only scenarios, the performance of a tilt-rotor
can be expected to be similar to normal non-tilting quadrotor systems.
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Q vx vy vz p q r φ θ ψ ωT i ωQi δi
Weight 10 10 10 0.1 0.1 0.1 5 5 5 0.5 0.5 0

Table 5-1: MPC state penalty weights

R v2i uMi

Weight 0.02 0.02

Table 5-2: MPC control penalty weights

5-1-1 Yaw-right

The controller is given the step reference signal of Table 5-3, to indicate a 20 degree yaw
command to the right.

vx vy vz p q r φ θ ψ ωT i ωQi δi
xref 0 0 0 0 0 0 0 0 0.3491 2.6670 2.6670 1.5708

Table 5-3: Step reference signal for the yaw-right scenario
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Figure 5-1: Body velocities, angles and control inputs for fixed-model MPC in a yaw-right
scenario

The difference in weighting between rotor action and stepper action results in a stepper-heavy
maneuver. As visible in Figure 5-1, the rotor input remains virtually on the equilibrium
command, whereas the left stepper motors start tilting forward at the start of the simulation,
and the right stepper motors tilt backward. The initial action is larger than the correction
to slow the yaw rate. During the maneuver, the vehicle however loses some vertical thrust,
resulting in a slow descent rate of 4 cm/s.
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Figure 5-2: Body velocities, angles and control inputs for adaptive MPC in a yaw-right scenario

The adaptive controller shows a similar response, but overuses the stepper motors, tilting
them to maximum angles 3 times as large as the fixed-model controller. The prediction
model variation by relinearizing around the current stepper angles are likely to blame, as yaw
changes or body speed changes do not contribute to a differently linearized model.
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Figure 5-3: Body velocities, angles and control inputs for TVMPC in a yaw-right scenario

The time-varying controller achieves a more satisfactory response, reducing the stepper action
and associated oscillations. The same underlying effect of prediction model variation effects
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through the stepper angle changes is present, especially as the model of the first step is
identical to that of the adaptive controller. Varying the subsequent models according to
previously predicted development however succeeds to mitigate the oscillatory effects of Figure
5-2.
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5-1-2 Forward and upward flight

The controller is given the step reference signal of Table 5-4. The negative vertical body
velocity reference of −0.5 m/s corresponds with upward motion in the world reference frame.

vx vy vz p q r φ θ ψ ωT i ωQi δi
xref 0.5 0 -0.5 0 0 0 0 0 0 2.6670 2.6670 1.5708

Table 5-4: Step reference signal for the lift-off scenario
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Figure 5-4: Body velocities, angles and control inputs for fixed-model MPC in a lift-off scenario

The fixed-model controller achieves quick and satisfactory tracking within 2 seconds. Both
body pitching and stepper motor pitching are utilized to accelerate the vehicle forward. Ver-
tical velocity tracking is achieved faster than forward velocity tracking, which is expected as
the thrust forces are not yet pointing in the forward direction at the start of the simulation.
The adaptive controller overshoots the target reference more than the fixed-model controller
and has significant trouble dampening the pitch oscillations and associated variations in for-
ward velocity. The controller favors stepper motor action heavily over rotor action, but in
doing so, fails to converge.
It appears that using an adaptive but constant prediction model along the prediction horizon
underestimates the pitch and velocity response when the pitch is non-zero and the steppers
are tilting.
The time-varying controller achieves an intermediate tracking performance compared to the
fixed-model implementation and adaptive controller. The observed pitch response is slightly
more aggressive than the fixed-model baseline, and shows convergence within 2 seconds. The
favoring of stepper action versus rotor action is visible in the bottom two figures. It should
be noted that the pitch angle does not return to a zero steady state. This is likely an effect
of mismatched models along the prediction horizon.
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Figure 5-5: Body velocities, angles and control inputs for adaptive MPC in a lift-off scenario
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Figure 5-6: Body velocities, angles and control inputs for TVMPC in a lift-off scenario
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5-1-3 Forward and upward flight 2

Arguably, stepper action is most suited for yaw control such as the simulation of Section
5-1-1, or pitch tracking such as Sections 5-1-4 and 5-1-5. Therefore, the forward and upward
flight scenario is repeated with a reduction in penalties for the rotor states and input (see
Tables 5-5 and 5-6).

Q vx vy vz p q r φ θ ψ ωT i ωQi δi
Weight 10 10 10 0.1 0.1 0.1 5 5 5 0.02 0.02 0

Table 5-5: MPC state penalty weights

R v2i uMi

Weight 0.01 0.01

Table 5-6: MPC control penalty weights
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Figure 5-7: Body velocities, angles and control inputs for TVMPC in a lift-off scenario

This time, the response is much more favorable. The system converges within 1 second and
shows no steady state error. The rotor action peak at the start of the simulation, in order to
generate the forward-upward thrust is also directly apparent.
The choice to alleviate rotor action also has a positive influence on the adaptive controller
response. Although the oscillations are non-negligible in comparison with the fixed-model
implementation, they show better convergence than in Figure 5-5.
In this scenario, the time-varying controller arguably shows the most preferred response of
the three implementations. Although the overshoot ripples in the body speeds are minimally
larger than those of the fixed-model response, convergence is achieved within 0.7 seconds,
whereas the other two controllers have not converged at that time yet.
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Figure 5-8: Body velocities, angles and control inputs for TVMPC in a lift-off scenario
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Figure 5-9: Body velocities, angles and control inputs for TVMPC in a lift-off scenario

The differences of the individual controllers in velocity and pitch tracking between each other
and with the rotor-penalized scenario of Section 5-1-2 are summarized in Figure 5-10.
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Figure 5-10: Left: Vx, Vz and θ for a heavily rotor penalized liftoff scenario. Right: Vx, Vz and
θ for a lightly rotor penalized liftoff scenario.
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5-1-4 Pitch-up

The controller is given the step reference signal of Table 5-7, to indicate a 20 degree pitch up
command. The state penalties are again as in Table 5-1.

vx vy vz p q r φ θ ψ ωT i ωQi δi
xref 0 0 0 0 0 0 0 0.3491 0 2.6670 2.6670 1.5708

Table 5-7: Step reference signal for the pitch-up scenario
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Figure 5-11: Body velocities, angles and control inputs for fixed-model MPC in a pitch-up
scenario

Similar to the yaw scenario, the fixed-model controller achieves fast and stable tracking per-
formance within seconds. The stepper motors tilt forward to an angle of 70 degrees, so that
the thrust is perfectly countering the gravitational force. During its maneuver, the drone
generates a small backwards motion, which is later canceled out. It ends the simulation with
a small steady-state vertical velocity error of 4 cm/s downward.

The adaptive controller shows the recognizable oscillatory behavior, but achieves a stable
position within 2 seconds as well. The time-varying controller shows a reduction of the
oscillation, but similarly converges to a stead-state error. The only improvement over fixed-
model MPC is a slight reduction in settling time.
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Figure 5-12: Body velocities, angles and control inputs for adaptive MPC in a pitch-up scenario
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Figure 5-13: Body velocities, angles and control inputs for TVMPC in a pitch-up scenario
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Figure 5-14: Body velocities, angles and control inputs for fixed-model MPC in a partial backflip
scenario

5-1-5 Partial backflip

The vehicle is commanded to keep pitching up at a rate of 32◦/s until instability occurs or
flying completely upside down. For the last scenario, the control weights are re-tuned to the
weights of Table 5-8, to slow the stepper motor tilting.

R v2i uMi

Weight 0.01 0.10

Table 5-8: MPC control penalty weights

The fixed-model controller shows good tracking performance up until the upright position
of 90◦ (Figure 5-14). At that point, the rotor throttles can be seen to abruptly increase,
destabilizing the system. The fixed model assumes a thrust increase on the forward rotors to
generate a pitch increase, and a thrust increase on the rear rotors to generate a pitch decrease.
But when the vehicle has tilted past 90◦, all rotors are essentially pointing downward with
respect to the body frame, resulting in exactly the opposite behavior, resulting in a wrong
optimization result and system destabilization.

The adaptive controller has little trouble approaching the upright position (Figure 5-15).
With some small initial oscillations, the pitch angle is finally tracked and well and the aircraft
hovers upside down without major body velocity errors.

The time-varying controller also makes it past the upright position towards full upside-down
flying (Figure 5-16). The additional prediction models compared to the adaptive controller do
not prove significantly beneficial compared to the time-varying controller, as the trajectory
graphs are visually very similar. The oscillations of the pitch angle are lightly dampened,
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Figure 5-15: Body velocities, angles and control inputs for adaptive MPC in a partial backflip
scenario

Figure 5-16: Body velocities, angles and control inputs for TVMPC in a partial backflip scenario
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Coefficient Value
τ 0.025
cT 1.33
cQ 0.133
m 4
I I3

Table 5-9: Co-simulation parameters

when compared with the trajectory of the adaptive controller - its variance is 1% less (1.0635
vs 1.0748). On the other hand, vertical velocity tracking has suffered.

5-2 Hardware-in-the-loop

The hardware-in-the-loop system was simulated using the parameters of Table 5-9 and con-
trolled by Proportional Integral Derivative (PID) controllers operating at a rate of 40 Hz.
Three flight scenarios are presented - altitude hold (Section 5-2-1), forward velocity control
(Section 5-2-2) and yaw rate control (Section 5-2-3).

5-2-1 Altitude control

The system is restricted in its roll and pitch during simulation, as if moving along a vertical
axis in the restricted flight experiment of Section 7-1. The system is initialized at its reference
height zref = 1.7m and equilibrium throttle with zero vertical speed, and the vertical position
error is passed to a PID controller copying the input to all four rotors. The PID controller is
tuned at KP = 0.03, KI = KD = 0.05.
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Figure 5-17: Real-time HIL altitude control on a restricted system

Altitude tracking is observed, but with significant disturbances (Figure 5-17). At times,
the Rounds Per Minute (RPM) sensor signal, after filtering, still suffers from interference,
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showing large downward peaks in the measured rotational speed (Figure 5-18). This leads to
a perceived thrust decrease in the model, prompting downward acceleration and an eventual
increase in the controller output. After returning to undisturbed sensor values, the controller
dampens the oscillation and returns to the tracking position.

The equilibrium rotational speed of ω = 9.81
1.333 is indicated in Figure 5-18 for reference, but is

not a tracked value.
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Figure 5-18: Filtered RPM sensor values during the hover test

5-2-2 Forward velocity control

The control is extended with a Proportional Integral (PI) controller providing equal input
to all four stepper motors for forward body velocity tracking (KP = 50, KI = 20). The
integrator is added as a means to compensate if the reference target is overshot, but is limited
to avoid wind-up behavior. The pitch and roll angles are still fixed.

The tilt-rotor succeeds in tracking the forward velocity reference, but shows a persistent
overshoot value (Figure 5-19). This is likely an effect of the integrator winding up quickly
after the reference change has occurred, but not returning to compensate in the opposing
direction fast enough. Removing the I control (making the controller proportional only)
might reduce this behavior.

5-2-3 Yaw rate control

The control is extended with a PI controller providing differential signal input to the left and
right stepper motors for yaw rate tracking (KP = 20, KI = 40). The pitch and roll angles
are still fixed.

A similar behavior to the scenario of Section 5-2-2 occurs. The yaw rate is tracked, leading to
gradual yaw changes. However, the overshoot effect is still present, leading to an orientation
change of approximately a half-turn over the course of a minute.
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Figure 5-19: Real-time HIL forward velocity control on a restricted system
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Figure 5-20: Real-time HIL yaw rate control on a restricted system
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Chapter 6

Conclusions

6-1 TVMPC as a linear extension of adaptive MPC

The simulation of Time-Varying Model Predictive Control (TVMPC) on a small but highly
non-linear system shows promising results, improving on fixed-model Model Predictive Con-
trol (MPC) and adaptive MPC for a sine-wave tracking scenario. For a prediction horizon
of NP = 30, a variation of the number of intermediate linearization models has been investi-
gated, effectively ranging between adaptive MPC and the full TVMPC as proposed by this
thesis. It shows that using a reduced set of models at the start of the prediction significantly
improves on the tracking behavior of adaptive MPC, and performs equally well as having
intermediate models over the full horizon.

The efficiency of quadratic optimization (as the time-varying models are still linear), to-
gether with the minimal increase in computational effort for linearizations, makes TVMPC
a straightforward extension of adaptive control on non-linear systems. However, the optimal
placement of intermediate models over the horizon, as well as optimal horizon length and
time step remain topics for further research.

6-2 TVMPC on a tilt-rotor drone

Through the use of a rotor test bench, stepper motor modeling and estimating the remaining
drone parameters, a full 21-state system with 8 inputs and 8 box constraints is developed. The
non-linearities of the system are captured by augmenting the state space inputs and outputs
with parametrized curve fits such as throttle mappings and quadratic thrust coefficients. The
box constraints reflect physical limits on the rotor thrust and stepper rates.

In simulation, TVMPC does not significantly outperform fixed-model MPC in scenarios where
the rotor thrust directions remain generally vertical. This is explained by the fact that the
cosine of the tilt angles varies little with respect to a linear approximation for a large range
of rotor tilt angles around π/2, hence the model variation and its potential benefits remain
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small. Weighting the stepper motor control also proves a difficult task, as the inputs are
efficient at controlling yaw rate and pitch angle holding, but inefficient at pitch rate damping.

In highly non-linear situations such as hovering in a past-vertical orientation, TVMPC proves
itself as a stable solution, where fixed-model control wrongfully estimates the control effec-
tiveness. Although oscillations are slightly reduced in this scenario compared to adaptive
MPC, the improvement is only marginal.

Caution should be exercised in selecting the prediction horizon and control weights, as adap-
tive and time-varying MPC are prone to oscillatory behavior and steady-state errors when the
prediction models diverge heavily from the current state. A short prediction horizon, higher
control penalty and small discretization time step succeed in dampening these oscillations,
but also reduce the difference between the two approaches and ability to capture predicted
non-linear effects.

6-3 Hardware-in-the-loop

A Hardware-in-the-Loop (HIL) system succeeds in co-simulating physical rotor speeds and tilt
angles with a drone flying in a virtual environment which is rendered in real time. Using simple
Proportional Integral Derivative (PID) control, the system is validated and stabilized for
limited degrees of freedom. Even under heavy Rounds Per Minute (RPM) sensor disturbances,
the physical system is controlled to stable hovering, forward velocity tracking and yaw rate
tracking. Implementing TVMPC on the co-simulation setup remains a topic for further
research. This topic, as well as a number of others are presented in Section 6-4 and Chapter
7.

6-4 Topics for further research

Several aspects of this thesis research project can be considered for further research.

• Improve the rotor model

The thrust and torque of the rotor vary with respect to airspeed and altitude (ground
effect). The existing test bench is usable to measure these effects by placement in front
of a simulated ground surface or within a wind tunnel.

• Simulated failure scenarios

As box constraints can be updated in real time, loss of rotor thrust can be simulated
and investigated by reducing the maximum output constraint. Additionally, stepper
motors can be simulated to be "stuck" in a specific position.

• Attitude in co-simulation

The simulated attitude can be physically reproduced by rotating the HIL system in
a gimbal construction. This way, attitude feedback using an Inertial Measurement
Unit (IMU) and compass can be added to the flight control system.

J.M. de Jong Master of Science Thesis



6-4 Topics for further research 65

• Quaternion attitude controller

Uniquely controlling roll, pitch and yaw at a singularity point (upright hover) is mathe-
matically impossible and problematic for individually tuned PID controllers. Developing
an integrated attitude controller using the quaternion orientation system may overcome
this issue.

• Optimal model placement

The number of additional linearization models and their placement along the horizon is
a broad topic of research. Additionally, model selection may depend on predicted state
evolution only (and not on number of time step), so that fewer models are used if the
state is expected to remain within specific bounds.

• Dynamical flight experiment

An intermediate step between HIL experiments and free flight is constrained flight. In
a constrained flight experiment, controllers can be tuned without the risk of crashing
or the need to replace batteries. Software and hardware work for this experiment was
initiated but not concluded over the course of this thesis. More details are included in
Chapter 7.
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Chapter 7

Future work

The drone modeling and subsequent hardware tests were designed as part of a longer research
plan that could not be fully carried out in this thesis. For the remaining work, a large part
of the hardware design is finished, but only briefly mentioned here.

The controllers, once verified in simulation and in real-time on the test setup, are to be
implemented on an on-board system and tested using a suspended drone in a motion-restricted
flight arena (Section 7-1). The motion of the drone in the arena can be limited to two
translational degrees of freedom and one rotational degree of freedom, or less, to facilitate
tuning for specific maneuvers. The motion can be tracked by self-developed low-cost optical
sensors, wirelessly broadcasting the translational movement to the control system (Section
7-2). Additionally, a wireless control box broadcasting the state of 8 toggle switches can
be added to simulate failure scenarios, implement model changes or change reference values
in real-time (Section 7-3). Finally, the flight arena can be placed in a wind tunnel, to test
aerodynamic effects and simulate forward flight (Section 7-4).

7-1 Flight arena

A flight arena was designed and built to carry out dynamical flight tests with a reduced crash
risk. With a cube form and outer dimension of 2.5x2.5x2.5m, the resulting box provides ample
space for a flying system to lift off, translate forward and back, and perform yawing maneuvers
(Figure 7-1). The design includes only 1 kg of moving parts in the forward direction, as the
bearing connections are milled and lathed from aluminium, the vertical axis is from carbon
fiber and the sensor housings are 3D-printed plastic. In the vertical direction, the total mass
of the altitude sensor including linear bearings is also kept under 1 kg.

The flying system to be suspended in the arena only needs to facilitate a 70x70x70mm sensor
box in its center, and comprise attachments for linear bearings at the body axes.

This setup is sufficient to show the effects of rotor tilting in combination with differential
thrust for a yaw maneuver, while having to overcome gravity. Additionally, the experiment
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is easily taken down and re-positioned on another face. In this fashion, other configurations
can be flown, for example to test pitching in combination with forward motion, or perform a
suspended barrel roll while having to compensate for forward and sideways motion.

Figure 7-1: Left: Sensor track on the X axis of the flight experiment. Right: Partially constructed
flight arena

Bottom plane Drone orientation Translation 1 Translation 2 Rotation Self-lifting?
XY X X Z Yaw Y
XY Y Y Z Yaw Y
XZ X X Y Pitch N
XZ Z X Y Roll N
YZ Y Y Z Pitch Y
YZ Z X Z Roll Y

Table 7-1: Bottom plane configurations for the flight arena, drone orientations (world frame)
and corresponding degrees of freedom (in body frame) for the suspended system

7-2 Optical sensors

Two types of optical sensors (COPS, Cheap Optical Position Sensors) are developed as a
cheaper alternative for current tracking systems. Precision indoor positioning systems such
as OptiTrack [26] easily cost thousands of euros, which can be prohibitive for small-scale
research institutions or start-ups. The proposed alternative is based around multiple KY-033
sensors, commonly used in line follower robots to discriminate between a black line and white
background, and is a low-friction, low-cost solution, both for flat surfaces and freely rotating
axes.

To determine absolute position using N KY-033 sensors, a track of certain length needs to
be divided in to 2N segments which are coded into a binary number using a black and white
pattern. For example, for a track of 2 meters, using 10 sensors, a resolution of 2 mm can
theoretically be obtained.
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The low-cost KY-033 is however only suited to determine differences between larger patches
of light and dark, thus limiting the resolution in absolute position.

Using larger light and dark patches, for example of 10mm in length, and the same number of
sensors, it is however possible to create a relative position sensor with a resolution of 1 mm.
A staggered pattern design aims to reduce cross-lane interference between adjacent sensors.

Figure 7-2: Relative linear position pattern for a 10-sensor tracking device - flat surface solution

Figure 7-3: COPS (Cheap Optical Position Sensor) - linear version

This linear pattern is easily printed and glued to a board running along the length of a track.
The position sensor is an Arduino system counting up or down according to the detecting
pattern shift using low-level bit operations (Figure 7-3.

For position detection along a rotating axis (or a drone rotating around a fixed axis), an
axis-symmetric pattern is used (Figure 7-4), so that the orientation changes do not influence
the position detection along the length of the axis. Here, the sensors themselves are mounted
in a staggered fashion with steps of 1 mm (Figure 7-5.
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Figure 7-4: Relative linear position pattern for a 10-sensor tracking device - freely moving axis
solution

Figure 7-5: COPS (Cheap Optical Position Sensor) - rotating version

7-3 Wireless control box

A control box for use with the flying arena was developed and built to generate simulated
actuator failures. The control box contains 8 toggle switches which can be mapped to con-
straint changes for throttle inputs or stepper angle limits, or any other mapping of 256 states
to discrete system changes, such as model changes, input failures or reference positions.

The box is powered by a small 5V power bank and contains a NodeMCU microcomputer,
which is programmed using the regular Arduino Integrated Development Environment (IDE)
and contains a WiFi chip to broadcast the toggle switch states via User Datagram Protocol
(UDP) packages to a dedicated topic on the Robot Operating System (ROS) master.

7-4 Wind tunnel testing

In a completed flight arena with tracking sensors, aerodynamic effects on the drone can be
modeled during repeatable experiments. For this end, a wind tunnel with variable speed
control was newly built. The wind tunnel is fitted with an array of parallel horizontal tubes
to increase flow laminarity, and a funnel to further increase flow speed.
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Figure 7-6: Wireless control box comprising 8 toggle switches

Figure 7-7: Experimental wind tunnel in the machining hall of Avy
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Appendix A

Mathematical derivations and
definitions

A-1 Time-varying MPC

A-1-1 State space discretization

Discrete-time state space models can be derived from continuous-time state space models by
assuming the system input is constant during a given sample period. The continuous-time
solution for

ẋ(t) = ACx(t) +BCu(t) + CC , x(0) = x0

is

x(t) = eACtx0 +
∫ t

0
eAC(t−s)(BCu(s) + CC)ds (A-1)

with x0 the initial state and s an integration variable. Replacing the system input u by a
zero-order hold which is constant for a sample period τ , we can obtain the following solution:

x(τ) = eACτx0 +
∫ τ

0
eAC(τ−s)(BCu(0) + CC)ds

x(τ) = eACτx0 + eACτ
∫ τ

0
e−ACsds(BCu(0) + CC)

x(τ) = eACτx0 +A−1
C (eACτ − I)(BCu(0) + CC)

(A-2)

under the condition that AC is invertible. From here it is clear that we can write for every
sampling step
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xk+1 = ADxk +BDuk + CD (A-3)

using

AD = eACτ ,

BD = A−1
C (AD − I)BC ,

CD = A−1
C (AD − I)CC .

(A-4)

If AC is non-invertible, the discrete-time matrices can still be computed using the matrix
exponential (see MATLAB’s c2d function).

A-1-2 Prediction matrix entries

The prediction matrix Ã of size NP ×NP is a lower triangular matrix with its diagonal equal
to blocks of NS × NS identity matrices, where NS is the state dimension. The remaining
blocks are multiplications of state matrices, depending uniquely on the number of different
prediction models used, and at what horizon a model switch is implemented.

For a single (non-time-varying) prediction model, the prediction matrix Ã only containsNP−1
unique submatrices that are not zero or an identity matrix. The full strictly lower triangle
is composed of entries already listed on the leftmost column. For a 6-step ahead prediction,
this looks like

Ã =



I 0 0 0 0 0
AAA I 0 0 0 0
A2A2A2 A I 0 0 0
A3A3A3 A2 A I 0 0
A4A4A4 A3 A2 A I 0
A5A5A5 A4 A3 A2 A I


,

where the unique entries are bold faced. Mathematically, the amount of reduction was

NR = 5 · 6
2︸ ︷︷ ︸

full triangle size

−
left column size︷︸︸︷

5 = 10. (A-5)

If a model switch is added halfway along the prediction horizon, the amount of reduction is
relatively smaller. It can best be visualized by a larger matrix of size NP = 10. In the matrix
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Ã =



I 0 0 0 0 0 0 0 0 0
A1A1A1 I 0 0 0 0 0 0 0 0
A2

1A
2
1A
2
1 A1 I 0 0 0 0 0 0 0

A3
1A
3
1A
3
1 A2

1 A1 I 0 0 0 0 0 0
A4

1A
4
1A
4
1 A3

1 A2
1 A1 I 0 0 0 0 0

A2A
4
1A2A
4
1A2A
4
1 A2A

3
1A2A
3
1A2A
3
1 A2A

2
1A2A
2
1A2A
2
1 A2A1A2A1A2A1 A2A2A2 I 0 0 0 0

A2
2A

4
1A2

2A
4
1A2

2A
4
1 A2

2A
3
1A2

2A
3
1A2

2A
3
1 A2

2A
2
1A2

2A
2
1A2

2A
2
1 A2

2A1A2
2A1A2
2A1 A2

2A
2
2A
2
2 A2 I 0 0 0

A3
2A

4
1A3

2A
4
1A3

2A
4
1 A3

2A
3
1A3

2A
3
1A3

2A
3
1 A3

2A
2
1A3

2A
2
1A3

2A
2
1 A3

2A1A3
2A1A3
2A1 A3

2A
3
2A
3
2 A2

2 A2 I 0 0
A4

2A
4
1A4

2A
4
1A4

2A
4
1 A4

2A
3
1A4

2A
3
1A4

2A
3
1 A4

2A
2
1A4

2A
2
1A4

2A
2
1 A4

2A1A4
2A1A4
2A1 A4

2A
4
2A
4
2 A3

2 A2
2 A2 I 0

A5
2A

4
1A5

2A
4
1A5

2A
4
1 A5

2A
3
1A5

2A
3
1A5

2A
3
1 A5

2A
2
1A5

2A
2
1A5

2A
2
1 A5

2A1A5
2A1A5
2A1 A5

2A
5
2A
5
2 A4

2 A3
2 A2

2 A2 I


the unique entries are bold faced again. The appearance of two triangles with non-unique
entries has is caused by the addition of a linearization point, and there is a large block in the
lower left corner comprising only unique entries. The reduction here is

NR = 4 · 5
2︸ ︷︷ ︸

upper triangle size

−
upper triangle height︷︸︸︷

4 + 5 · 6
2︸ ︷︷ ︸

lower triangle size

−
lower triangle height︷︸︸︷

5 = 6 + 10 = 16.

(A-6)

To introduce a formula for this reduction, we consider the prediction horizon per model. Let
there be NL ≥ 2 models with respective prediction horizons NPL

≥ 1 such that the sum
of individual prediction horizons equals the total horizon

∑NL
i=1NPi = NP . The number of

unique entries NU equals

NU = NP1 − 1 +
NL−1∑
i=1

(NPi+1 ·
i∑

j=1
NPj ) (A-7)

To return to the remark made in Section 2-3-3, takeNL = 2, NP even andNP1 = NP2 = NP /2.
The ratio of unique entries over total entries then equals

η = 2 NU

NP · (NP − 1)

= 2
NP1 − 1 +N2

P1

N2
P −NP

=
NP − 2 + N2

P
2

N2
P −NP

= 2
NP

+ 1
2− 2NP

+ 1
2

(A-8)

and so
lim

NP→∞
η = lim

NP→∞

2
NP

+ lim
NP→∞

1
2− 2NP

+ 1
2 = 1

2 . (A-9)
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Appendix B

Coordinate framework

B-1 Reference frames

A minimum of two reference frames is used to describe the motion of the aircraft. The base
frame is the world inertial frame W , fixedly located on the earth surface with the xW -axis
pointed northwards, the yW -axis pointed eastwards and the zW -axis pointed downwards,
hence constituting a right-handed coordinate system. The body frame B is fixed to the
aircraft body, with the xB-axis pointed forward, the yB-axis pointed to the right (starboard)
and the zB-axis again pointed downward. These reference frames are depicted in Fig. B-1.

Figure B-1: Body and world reference frames
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The world position is summarized in position vector XW =
[
xW yW zW

]T
, such that we

can derive

VW = ẊW =

ẋWẏW
żW

 , (B-1)

where VW is the velocity vector in the world frame. The speed in the body frame is denoted
VB, and can be calculated from the world frame velocity vector by means of

VB = RBWVW , (B-2)

where RBW is a rotation matrix from the world frame (W ) to the body frame (B). This
rotation matrix is a member of SO(3), the special orthogonal group, which uniquely describes
all possible rotations in three-dimensional space. A special property of this group is that the
inverse operation, i.e. a rotation in the opposite direction, corresponds to a transpose of the
matrix. Mathematically,

R−1
BW = RTBW = RWB. (B-3)

The rotation matrix can be specified using three or more parameters. The most common
method of representation, Euler angles, is highlighted. An extensive work on representations
and transformations between them can be consulted at [27].

B-1-1 Euler angle representation

Although a Euler angles representation may technically refer to a three-axis rotation in any
order, in aerospace engineering the denomination refers to consecutive body-fixed rotations
about a downward pointing z-axis, a starboard pointing y-axis and a forward-pointing x-axis.
The angles corresponding to these respective axes are referred to as yaw (ψ), pitch (θ) and
roll (φ), or collectively the attitude angles. The rotation order is also referred to as 3-2-1, in
contrast to the common mathematical 3-1-3 rotation.

The rotation matrix corresponding to this representation is the combined matrix product of
the three individual rotations, hence

RBW (φ, θ, ψ) = R1(φ)R2(θ)R3(ψ)

=

1 0 0
0 cφ sφ
0 −sφ cφ


cθ 0 −sθ

0 1 0
sθ 0 cθ


 cψ sψ 0
−sψ cψ 0

0 0 1


=

 cθcψ cθsψ −sθ
sφsθcψ − cφsψ sφsθsψ + cφcψ −cθsφ
cφsθcψ + sφsψ cφsθsψ − sφcψ cθcφ

 , (B-4)
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where BW denotes a rotation from world frame (W ) to body frame (B) as before. Here the
abbreviated notation cα and sα for cos(α) and sin(α) respectively, is adopted.

The body angular rate vector ΩB is commonly specified as a set of derivatives from the Euler
angles, so that

pq
r

 =

φ̇θ̇
ψ̇

 = ΩB. (B-5)
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