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Summary 
 
 

This dissertation deals with extreme loads on wind turbines due to 
turbulence. For the determination of the ultimate loads some specific 
deterministic, coherent, i.e. constant over the rotor plane, gust shape is specified 
in the IEC standard. The gust shape is mainly based on a single gust 
measurement. Some gust amplitude is taken which should represent a 50-year 
wind condition. Only in case of linear systems one may assume that the 50-year 
response corresponds to the 50-year input. However, a wind turbine is a non-
linear system, so the maximum response could well result from another load 
case.  Another main disadvantage is that the deterministic approach in the 
standards does not reflect the stochastic nature of turbulence. To overcome 
these disadvantages an alternative approach is proposed in this thesis. The main 
idea behind the method is that the extreme responses occur only during severe 
wind gusts. So, in theory the simulations can be restricted to wind gusts which 
lead to the extreme response, which saves a lot of simulation time compared to 
simulation of long term turbulence. 
 

The method of so-called constrained stochastic simulation is introduced. 
This method specifies how to efficiently generate time series around some 
specific event in a normal process. All events which can be expressed by means 
of a linear condition (constraint) can be dealt with. On the basis of the presented 
theory it can be stated that the stochastic gusts produced in this way are, in a 
statistical sense, not distinguishable from gusts selected from a (very long) time 
series. Two examples are given: the generation of stochastic time series around 
local maxima and the generation of stochastic time series around a combination 
of a local minimum and maximum with a specified time separation (“extreme rise 
time gust”). The constrained time series turn out to be a combination of the 
original process and several correction terms which includes the autocorrelation 
function and its time derivatives. For the application concerning local maxima it is 
shown that the presented method is in line with properties of a normal process 
near a local maximum as found in literature. Simplification of the expression for 
maximum amplitude gusts leads to an expression that in previous work has been 
coined NewGust. This expression also corresponds to the NewWave expression 
for the mean shape of an extreme wave in a random sea. 
 

The mean gust shape of maximum amplitude gusts has a rather sharp 
peak, in contradiction to the gust shape given in standards. The verification of the 
mean gust shape is done by means of wind measurements from the Cabauw 
(The Netherlands) site. On the basis of a statistical analysis an expression of the 
mean gust shape is obtained. This theoretical gust shape is compared with the 
mean gust shape determined from both simulated and measured turbulence. The 
resemblance is remarkably good which demonstrates the viability of the method 
of constrained simulation. 
 



It may be anticipated hat the extreme loading for pitch regulated turbines 
is caused by gusts with an extreme rise time rather than a local maximum. 
Constrained stochastic simulation is applied in order to generate the desired 
gusts. Just as wind field simulation for fatigue purposes it is assumed that 
turbulence is Gaussian; a possibility is mentioned how to deal with non-Gaussian 
behavior. An example of a spatial gust as well as the mean spatial gust shape is 
shown. For a reference turbine the maximum blade root flapping moment have 
been determined as function of the gust centre in the rotor plane; the maximum 
response is obtained in case the gust hits one of the rotor blades at 75% of the 
radius. In case the gust duration is large compared to the integral time constant 
of the controller, the controller can handle the gust as expected. However even 
for small rise times it turns out that the maximum flap moment due to the gust is 
not significantly higher than due to the background turbulence and 1P excitations. 
This indicates that extreme rise time gusts do not lead to extreme loading of pitch 
regulated wind turbines. 

 
Next, constrained stochastic simulation is used in order to generate 

specific wind gusts which will in fact lead to local maxima in the response of 
(pitch regulated) wind turbines. This is done by considering constraints on the 
wind input but also on the wind turbine response. For this purpose the power 
spectrum of turbulence as well as the transfer function from wind input to load is 
required. The method is demonstrated on basis of a linear model of a wind 
turbine, inclusive pitch control. The mean gust shape as well as the mean shape 
of the response, for some gust amplitude, is shown. By performing many 
simulations (for given gust amplitude) the conditional distribution of the response 
is obtained. By a weighted average of these conditional distributions over the 
probability of the gusts the overall distribution of the response (for given mean 
wind speed) can be obtained. Analytical expressions for the conditional 
distribution of the response (for given gust amplitude) as well as the overall 
distribution are specified. These form an ideal test case of tools (e.g. fitting to an 
extreme value distribution) to be used for non-linear wind turbine models. The 
analytical expression for the overall distribution of the response turns out to 
correspond to the Rice distribution of local maxima, which validates the method. 

 
The method described above is applied to a non-linear wind turbine model 

and not just for one mean wind speed but for several ones in between cut-in and 
cut-out. The overall distribution of the response is obtained by a weighted 
average of the distributions for each wind speed bin taking into account the 
probability of occurrence of those wind speed bins. This overall probabilistic 
method is demonstrated on the basis of a generic 1 MW stall regulated wind 
turbine. By first considering a linearised dynamic model of the reference turbine 
the proposed probabilistic method could again be validated. The determined 50 
year response value indeed corresponds to the theoretical value (based on Rice). 
Next, both constrained and (conventional) unconstrained simulations have been 
performed for the non linear wind turbine model. For each wind speed bin a 
number of 100 simulations are performed. For the governing wind speed bins the 



number of unconstrained simulations has been increased to 1000 to serve as 
reference result. For all wind speed bins the results obtained via constrained 
simulation are better than those using unconstrained simulations in both 50 year 
estimates as well as uncertainty range of this estimate. The involved 
computational effort for both methods is about the same. 

The required gust statistics of the gust shapes treated in this work 
(maximum amplitude gust, extreme rise time gust and the specific gust shape 
leading to an extreme wind turbine response) are specified. 

During the employment of the probabilistic method, the contributions of 
each gust amplitude (or mean wind speed) to the estimation of the tail probability 
can be established. This provides a rational base for the determination of the 
required range of gust amplitudes (or mean wind speeds) as well as the 
discretisation. 

The uncertainty range, inherent in the extrapolation from a limited data set 
to 50 year, is rather large even if 1000 10-min. simulations are performed. It is 
recommended to mention the uncertainty involved in a 50 year estimate. 

For the wind turbine simulations mentioned above, wind gusts are applied 
which will lead to local maxima in the response. It is shown that in principle any 
other type of gust could have been applied as well in the probabilistic method. 
However, if there is no clear correlation between gust and response (i.e. an 
increase of the gust amplitude leads to higher loads) constrained stochastic 
simulation has no advantage above conventional, unconstrained simulations. 

 
Comparison between wind turbine load measurements and simulations is 

complicated by the uncertainty about the wind field experienced by the rotor. By 
means of constrained simulation wind fields can be generated which encompass 
measured wind speed series. If the method of constrained wind is used in load 
verification, the low frequency part of the wind and of the loads can be 
reproduced well, which makes it possible to compare time traces directly. 
However from the three load cases for the reference wind turbine investigated 
here, it appeared that there was no clear improvement in fatigue damage 
equivalent load ranges. 

 
 
In future research constrained simulations will also be applied to other 

current wind turbines and loads. A practical limitation to consider a complete 
wind field can be the determination of the required transfer functions from wind 
field (i.e. many points in the rotor plane) to the load of interest. The required 
number of simulations for each gust amplitude as well as choice of the 
distribution function (with of without endpoint) may be further investigated. A final 
validation of any method to come to a 50 year response would be comparison 
with long term wind turbine load measurements. 



Samenvatting 
 
 
 Deze dissertatie behandelt de extreme belastingen op windturbines ten 
gevolge van turbulentie. In de IEC norm wordt een bepaalde deterministische 
vlaag, constant over het rotorvlak, voorgeschreven voor de bepaling van de 
maximale belasting. De betreffende vlaagvorm is grotendeels gebaseerd op een 
enkele vlaagmeting. De amplitude is zodanig dat het een 50-jaars vlaag moet 
voorstellen. In geval van een lineair systeem kan er vanuit gegaan worden dat de 
50-jaars responsie samenvalt met de 50-jaars vlaag. Een windturbine is echter 
niet-lineair dus de maximale responsie zou ook tijdens een andere wind situatie 
kunnen optreden. Een ander nadeel van de deterministische aanpak in de norm 
is dat het het wezenlijke kenmerk van turbulentie, te weten het is chaotisch,  niet 
in rekening brengt. Om deze nadelen te verhelpen wordt in deze thesis een 
alternatieve aanpak geïntroduceerd. Het basisidee daarachter is dat extreme 
responsies alleen optreden gedurende harde windvlagen. In principe kan er dus 
volstaan worden met het simuleren van deze harde vlagen wat een grote 
reductie in rekentijd oplevert ten opzichte van simulatie van langdurige 
turbulentie. 
 
 Met de zogenaamde methode van voorwaardelijke stochastische simulatie 
kunnen bijzondere gebeurtenissen in een normaal stochastisch proces efficient 
gegenereerd worden. Alle gebeurtenissen die te beschrijven zijn met een lineaire 
conditie (voorwaarde) kunnen behandeld worden. Op grond van de voorgestelde 
theorie kan gesteld worden dat de zo gegenereerde vlagen statistisch gezien niet 
te onderscheiden zijn van vlagen die uit een erg lange tijdreeks geselecteerd zijn. 
Er worden twee voorbeelden gegeven: het genereren van stochastische 
tijdreeksen rondom een lokaal maximum en het genereren van stochastische 
tijdreeksen rondom een combinatie van een lokaal minimum en maximum met 
een bepaald tijdsverschil (kortom vlagen met een snelheidsprong). De 
uitdrukking voor de voorwaardelijke tijdreeksen blijkt een combinatie te zijn van 
de oorspronkelijke tijdreeks en enkele correctie termen die de autocorrelatie 
functie bevatten en tijdsafgeleiden daarvan. Voor de maximale-amplitude-vlagen 
die met de nieuwe methode zijn gegenereerd, wordt aangetoond dat ze 
inderdaad de eigenschappen hebben van een normaal proces rondom een 
lokaal maximum zoals die in de literatuur vermeld worden. Een vereenvoudiging 
van de uitdrukking voor maximale-amplitude-vlagen leidt tot een uitdrukking die 
in voorgaand werk NewGust is gedoopt. Deze uitdrukking komt ook overeen met 
de NewWave uitdrukking die de gemiddelde vorm weergeeft van een extreme 
windgolf in zeegang. 
 

De gemiddelde vlaagvorm van maximale-amplitude-vlagen blijkt in 
tegenstelling tot de vlaagvorm in normen een nogal scherpe piek te bevatten. De 
gemiddelde vlaagvorm is geverifieerd op basis van windmetingen te Cabauw 
(Nederland). Met behulp van een statistische analyse is een uitdrukking voor de 
gemiddelde vlaagvorm afgeleid. Deze theoretische vlaagvorm is vergeleken met 



de gemiddelde vlaagvorm van zowel gesimuleerde als gemeten turbulentie. De 
overeenkomst is opmerkelijk goed wat de potentie van de methode van 
voorwaardelijke stochastische simulatie aantoont. 

 
Men kan verwachten dat de maximale belasting van bladhoek geregelde 

windturbines niet optreedt tijdens maximale-amplitude-vlagen, maar tijdens 
vlagen met een snelheidsprong. De methode van voorwaardelijke stochastische 
simulatie is toegepast om vlagen met zo’n snelheidsprong te genereren. Net als 
bij windveldsimulatie voor vermoeiingsanayse is aangenomen dat turbulentie 
Gaussisch is. Een mogelijkheid hoe eventeel niet-Gaussisch gedrag 
meegenomen kan worden, wordt aangestipt. Een voorbeeld van een ruimtelijk 
vlaag alsook de gemiddelde ruimtelijke vlaag wordt getoond. Voor een referentie 
windturbine is het maximale klapmoment bij de bladwortel bepaald als functie 
van de positie van het vlaagcentrum in het rotorvlak. De maximale responsie 
treedt op als de vlaag een van de rotorbladen treft op driekwart straal. In geval 
de vlaagduur lang is vergeleken met de integrale tijdsconstante van de regeling, 
kan de regeling naar verwachting de vlaag wegregelen. Echter ook in geval van 
een erg snelle snelheidsprong blijkt het maximale klapmoment ten gevolve van 
de vlaag niet veel groter te zijn dan ten gevolge van gewone turbulentie en 1P 
excitaties. Dit geeft aan dat vlagen met een sterke helling niet maatgevend zijn 
voor bladhoekgeregelde windturbines. 

 
Vervolgens is de methode van voorwaardelijke stochastische simulatie 

toegepast om die specifieke windvlagen te genereren die wel tot lokale maxima 
in de responsie leiden. Dit is gedaan door niet alleen voorwaarden op te leggen 
aan de windinvoer maar ook aan de responsie van de windturbine. Om dit te 
kunnen doen dient het turbulentiespectrum bekend te zijn én de 
overdrachtsfunctie van windinvoer naar de belasting. De methode is eerst 
toegepast op een lineair model van een windturbine (inclusief bladhoekregeling). 
De gemiddelde vlaagvorm en gemiddelde vorm van de responsie, voor een 
gegeven vlaagamplitude, worden getoond. Door het doen van vele simulaties, 
voor gegeven vlaagamplitude, kan de voorwaardelijk verdeling van de responsie 
bepaald worden. Via een gewogen gemiddelde, over de verdeling van de 
vlaagamplitudes, van deze voorwaardelijke verdelingen kan de verdeling van de 
responsie bepaald worden (voor een gegeven gemiddelde windsnelheid). 
Analytische uitdrukkingen voor de (voorwaardelijke) verdeling van de responsie 
worden gegeven. Deze uitdrukkingen kunnen gebruikt worden voor het testen 
van hulpmiddelen bij het bepalen van de maximale belastingen van niet-lineaire 
windturbine modellen, zoals programma’s die simulaties (of metingen) passen 
aan een extreme waarde verdeling. De analytische uitdrukking van de verdeling 
van de responsie blijkt overeen te komen met de Rice verdeling van lokale 
maxima. Hiermee is de methode gevalideerd. 

 
De hierboven beschreven methode is toegepast op een niet-lineair 

windturbine model en niet slechts voor één windsnelheid maar voor meerdere 
windsnelheden tussen de inschakel- en uitschakelwindsnelheid. De uiteindelijke 



verdeling van de responsie wordt verkregen via weging van de verdeling voor 
elke windsnelheidsinterval met de kans op voorkomen van die 
windsnelheidintervallen. Deze probabilistische methode is gedemonstreerd aan 
de hand van een generieke 1 MW overtrekgeregelde windturbine. De 
probabilistische methode kan weer gevalideerd worden door het eerst toe te 
passen op een gelineariseerd dynamisch model van de referentie turbine. De 
bepaalde 50-jaars responsie is inderdaad gelijk aan de theoretische waarde 
(gebaseerd op Rice). Vervolgens zijn zowel voorwaardelijke stochastische 
simulaties als (normale) onvoorwaardelijke stochastische simulaties uitgevoerd 
met het niet-lineaire windturbine model. Voor elke windsnelheidsinterval zijn 100 
simulaties gedaan. Voor de bepalende windsnelheidintervallen is dat aantal 
opgevoerd tot 1000 om als referentie resultaat te kunnen dienen. Voor alle 
windsnelheidintervallen zijn de resultaten verkregen via voorwaardelijke 
stochastische simulatie beter dan die via nomale simulaties; de  50-jaars 
schattingen zijn beter en de onzekerheidsmarge kleiner. De benodigde rekentijd 
is voor beide methoden ongeveer gelijk.  

De benodigde vlaagstatistiek van de in dit werk beschouwde vlagen 
(maximale-amplitude-vlagen, vlagen met snelheidsprong en de specifieke vlagen 
die leiden tot een extreme responsie van de windturbine) zijn vermeld. 

De bijdragen van elke vlaagamplitude (of gemiddelde windsnelheid) aan 
de schatting van de staart van de verdeling kan berekend worden tijdens het 
toepassen van de probabilistische methode. Op basis hiervan kan een rationele 
afweging gemaakt worden van het benodigde gebied van vlaagamplitudes (of 
windsnelheden) en de benodigde onderverdeling. 

De onzekerheidsband, inherent bij de extrapolatie van een beperkte 
dataset naar 50 jaar, is nogal groot zelfs als er 1000 10-min. simulaties zijn 
uitgevoerd. Het wordt aanbevolen om deze onzekerheid te vermelden bij elke 50-
jaars schatting. 

Voor de bovengenoemde windturbine simulaties zijn de specifieke 
windvlagen gebruikt die leiden tot een lokaal maximum in de responsie. Er wordt 
aangetoond dat in principe elke vlaagtype toepast kan worden in de 
probabilistische methode. Echter als er geen duidelijke correlatie is tussen vlaag 
en responsie (dus dat bij een toename van de vlaagamplitude de belasting hoger 
wordt) biedt voorwaardelijke stochastische simulatie geen voordeel ten opzichte 
van normale simulaties. 

 
De vergelijking tussen gemeten en gesimuleerde windturbine belastingen 

wordt altijd bemoeilijkt door onzekerheid in het windveld die de rotor voelt. Door 
voorwaardelijke stochastische simulatie kunnen windvelden gegenereerd worden 
die de gemeten windtijdreeks(en) bevatten. Het laag frequente deel van de wind 
en de belastingen blijkt goed gereproduceerd te worden als de methode van 
voorwaardelijke stochastische simulatie wordt toegepast. Dit maakt het mogelijk 
om gemeten en gesimuleerde belastings tijdreeksen direct te vergelijken. Echter 
op grond van drie belastings gevallen voor de onderzochte referentie windturbine 
blijkt er geen duidelijke verbetering op te treden in de equivalente 
vermoeiingsbelasting.  



 
In vervolg onderzoek zal voorwaardelijke stochastische simulatie ook 

toegepast worden op andere huidige windturbines en andere belastingen. Een 
praktische beperking om een compleet windveld te gebruiken zou kunnen zijn 
dat de benodigde overdrachtsfuncties van windveld (dus vele punten in het 
rotorvlak) naar de betreffende belasting niet beschikbaar zijn. Het benodigd 
aantal simulaties per vlaagamplitude en de keuze van de verdelingsfunctie (met 
of zonder eindpunt) kan nader onderzocht worden. De ultieme validatie van elke 
methode om de 50-jaars responsie te bepalen is de vergelijking met langdurige 
windturbine belastingsmetingen. 
 





Introduction 
 
This dissertation deals with extreme loads on wind turbines. In general the 
extremes can be due to all kind of wind conditions, internal or external failures 
(e.g. grid loss) and may also happen during start-up or shut-down. Here we limit 
ourselves to normal wind conditions during power production (i.e. in between cut-
in and cut-out wind speed). So, the extreme loads dealt with can be associated 
with turbulence. This implies that specific wind conditions like thunderstorms, 
front passages, downbursts and hurricanes are excluded. The wind speed 
variations due to a front passage are slower than those due to turbulent gusts. 
So, with respect to wind turbines a front passage is probably relevant for power 
balancing but not so much for loads. The wind speeds (averaged over 1-minute) 
inside a hurricane can be up to 95 m/s, Ref. 6, which is far more than the 
extreme (10-min.) mean wind speed of 50 m/s mentioned in the IEC standard 
(IEC 61400-1 Ed. 3, 2005). However, in the hurricane prone country Japan, 
hurricanes (typhoons) are included in the wind turbine standard. Downbursts are 
not rare and will perhaps be taken into account in wind turbine standards in the 
near future. Methods to simulate downbursts are given in Ref. 7 and 8. As 
mentioned, downbursts are not considered in this work since they require a 
different modeling approach. 
 

Present wind turbine design packages comprise three components. The 
first part models wind shear, tower shadow and generates wind fields which 
resemble the stochastic nature of turbulence. It is common practice to generate 
all three velocity components covering the rotor disc. The second part concerns 
the dynamics of the wind turbine including the aerodynamic forces and gravity. 
The third part is the post processing, like the determination of the ultimate 
loading and fatigue analysis. The focus of this research is on the generation of 
wind fields; existing design tools are used to assess the ultimate loads resulting 
from the generated wind fields. A good introduction to wind field simulation is 
given by Ref. 1 where Ref. 2 provides an overview of the state-of-the-art. 

 
For the determination of the ultimate loads some specific deterministic, 

coherent, i.e. constant over the rotor plane, gust shape is specified in the IEC 
standard: Extreme Operating Gust (EOG). The gust shape is mainly based on a 
single gust measurement. Some gust amplitude is taken which should represent 
a 50-year wind condition. Only in case of linear systems one may assume that 
the 50-year response corresponds to the 50-year input. However, a wind turbine 
is a non-linear system, so the maximum response could well result from another 
load case.  Another main disadvantage is that the deterministic approach in the 
standards does not reflect the stochastic nature of turbulence. 

To overcome these disadvantages an alternative approach is proposed in 
this thesis. The main idea behind the method is that the extreme responses 
occur only during severe wind gusts. So, in theory the simulations can be 
restricted to wind gusts which lead to the extreme response, which saves a lot of 
simulation time. In order to do so two questions have to be answered: 

~1~
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1. how to generate these gusts? 
2. which gusts are relevant? 

 
Constrained stochastic simulation 

The first question is tackled by so-called constrained stochastic simulation. 
By means of (normal) stochastic simulation wind time series can be generated 
which resembles turbulence. Nowadays, this is a standard feature of wind turbine 
design packages. Constrained stochastic simulation is a special kind of 
stochastic simulation which allows generation of wind gusts which satisfy some 
specified constraint (condition). E.g. one may generate time series around a local 
maximum with specified amplitude, or wind gusts which contain a prescribed 
velocity jump in a specified rise time (‘extreme rise time gusts’). These wind 
gusts are embedded in a stochastic background in such a way that they are, in 
statistical sense, not distinguishable from real wind gusts (with the same 
characteristics of the constraint). Constrained stochastic simulation is treated in 
detail in Chapter 2. As examples maximum amplitude gusts and extreme rise 
time gusts are dealt with. Simplification of the expression for maximum amplitude 
gusts, by omitting the constraint that the extreme event has to be a local 
maximum (i.e. it may also be a local minimum) leads to an expression that in 
previous work has been coined NewGust, Ref. 3. This expression corresponds to 
the NewWave expression for the mean shape of an extreme wave in a random 
sea, as used by the offshore industry to assess the extreme wave loads on 
offshore structures. NewWave is based on the mathematical work of Lindgren, 
Ref. 4. 

For answering the second question a distinction should be made between 
stall and pitch regulated wind turbines. For the first type of wind turbines it may 
be anticipated that maximum amplitude gusts are governing the response, see 
Chapter 3. For pitch regulated turbines extreme rise time gusts are a possible 
candidate, since the controller may not be able to respond to fast velocity 
changes. However, wind turbine load simulations show that this is not the case, 
Chapter 4. The negative result from Chapter 4 necessitates further research on 
the specific gust shape which indeed leads to an extreme response for pitch 
turbines. In Chapter 5 a thorough analytical treatment is given on this topic. In 
order to generate such a gust, the power spectrum of turbulence as well as the 
transfer function from wind input to load is required. The latter implies that a 
linearised model of the wind turbine under consideration is needed and that the 
constrained gust depends on the specific wind turbine and load signal. This 
linearised wind turbine model is used once for the determination of the gusts; the 
load calculations should be performed with the original, non-linear model. 
 
Probabilistic method 

By performing many simulations (for given gust amplitude) the conditional 
distribution of the response is obtained. By a weighted average of these 
conditional distributions over the probability of the gusts the distribution for given 
mean wind speed is determined. An analytical expression of the required 
distribution of the gust amplitude is given in Chapter 5. See Chapter 2 for the 
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statistics of maximum amplitude gusts and extreme rise time gusts. The overall 
distribution of the response is obtained by a weighted average of the distributions 
for each wind speed bin taking into account the probability of occurrence of the 
wind speed bins (Weibull distribution). This probabilistic method is presented in 
detail in Chapter 6 and demonstrated for a reference turbine. During the 
employment of the probabilistic method, the contributions of each gust amplitude 
(or mean wind speed) to the estimation of the tail probability can be established. 
This provides a rational base for the determination of the required range of gust 
amplitudes (or mean wind speeds) as well as the discretisation. 
 
Comparison simulated and measured loads 

In Chapter 7 constrained stochastic simulation is used in another way. 
Time domain comparison between simulated and measured wind turbine loads is 
in practice hindered by the uncertainty of the actual spatial wind field. By 
application of constrained stochastic simulation, constrained on the measured 
wind speeds (perhaps of more than 1 anemometer), a wind field can be created 
which encompass the measured ones. This enables direct comparison of time 
traces of measured and simulated loads. 
 
Recommendations 

Finally, chapter 8 deals with the implementation of the results of this thesis 
into design standards. 
 
 
Validation of the method 

Verification of any method to determine the long term extreme response is 
only possible in case long term wind turbine load and wind measurements are 
available. Since this is not the case validation is the alternative. The method of 
constrained stochastic simulation is validated by considering maximum amplitude 
gusts. In Chapter 2 it is shown that it is in line with the properties of a normal 
process near a local maximum as derived by Lindgren, Ref. 4. 

The mean gust shape of maximum amplitude gusts has a rather sharp 
peak, in contradiction to the gust shape given in standards. The mean gust 
shape has also been determined on basis of measured wind data from the 
Cabauw (in the Netherlands) site. The resemblance between the theoretical and 
experimental curves is treated in Chapter 3. 

The probabilistic method to arrive at the 50 year response, as mentioned 
above, is also applied to a linearised model (for each mean wind speed) of the 
reference turbine. The reason to do so is that a theoretical expression exists for 
the distribution of local maxima in a normal process, Ref. 5. This makes a 
validation of the probabilistic method possible since the response of a linear 
system to a Gaussian input (turbulence) will also be Gaussian. In Chapter 5 it is 
analytically shown that the distribution of local maxima in the response obtained 
trough constrained simulation indeed corresponds to the Rice distribution. In 
Chapter 6 the same is numerically demonstrated by means of wind turbine 
simulations. 
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Additional remarks 
 As stated above it is nowadays common to consider spatial wind fields 
rather than a coherent one for wind turbine load calculations. Such spatial wind 
fields have been considered in Chapters 3, 4 and 7. Just for convenience a 
coherent gust has been taken in the other three Chapters. It should be possible 
to extent this to spatial ones similar as explained in Chapter 4. In Chapter 4 also 
the influence of the gust centre, with respect to the rotor plane, on the loading is 
considered.  

A basic assumption of the method presented here is that turbulence is 
Gaussian (just as is assumed in case of wind field simulation for fatigue analysis). 
A possible way to take non-Gaussian behavior into account is addressed in 
Chapter 4. 

In Chapter 3 a statistical method has been applied in order to derive a 
mean gust shape. This expression, Eq. (19), appeared to deviate somewhat from 
the expression based on constrained stochastic simulation, Eq. (1) from Chapter 
3. In the mean time the difference can be explained, see Appendix A. 

An attentive reader may notice a typo in Eq. (D.19) in Chapter 5. It should 
read: 
 

22

2
2

2 22 1 1
( ) 1 ( )

2
f e e

ηη
ε

η
η εη η ε ε

ε π

−− −= − Φ +  

 Furthermore, the Cabauw met-mast is 213 m tall instead of 240 m as 
mentioned in Chapter 3. 
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Abstract The method of so-called constrained stochastic simulation is introduced.
This method specifies how to efficiently generate time series around some specific
event in a normal process. All events which can be expressed by means of a linear
condition (constraint) can be dealt with. Two examples are given in the paper: the
generation of stochastic time series around local maxima and the generation of
stochastic time series around a combination of a local minimum and maximum with
a specified time separation. The constrained time series turn out to be a combination
of the original process and several correction terms which includes the autocorre-
lation function and its time derivatives. For the application concerning local maxima
it is shown that the presented method is in line with properties of a normal process
near a local maximum as found in literature. The method can e.g., be applied to
generate wind gusts in order to assess the extreme loading of wind turbines.

Keywords Extreme conditions . Time series . Constrained stochastic simulation .

Gust models . Wind field simulation
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1. Introduction

Verification of the structural integrity of a wind turbine structure involves analyses
of fatigue loading as well as extreme loading. The extreme loading may result during
transient operation (start and stop actions), faults and extreme wind events like
extreme mean wind speeds, extreme wind shear, extreme wind speed gusts and
extreme wind direction gusts. In this paper we restrict ourselves to extreme wind
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gusts. With persistently growing turbines (over 100 m in both rotor diameter and
tower height), the extreme loading seems to become relatively more important. The
reason for this is that high-frequency wind speed fluctuations, relevant for fatigue,
have a limited spatial extent and so will be cancelled out over the rotor plane. In
order to assess the fatigue loading generated random 3D wind fields are routinely
used in standard wind turbine design packages as used by the wind turbine industry.
The stochastic wind fields of typically 10 min of length are generated for different
mean wind speeds to cover the wind situations a turbine will meet during its life
time. For the stochastic wind field simulation it is assumed that turbulence is a
stationary Gaussian process specified by a given (cross) spectral density. The ex-
treme loads are however dealt with in a rather simple way by describing wind gusts
as coherent gusts of an inherently deterministic character, e.g., IEC-standard (1998),
whereas the gusts experienced in real situation are of a stochastic nature with a
limited spatial extension. This conceptual difference may cause substantial dif-
ferences in the load patterns of a wind turbine when a gust event is imposed. In
order to introduce realistic gust load situations of a stochastic nature the NewGust
method, Dragt and Bierbooms (1996), Bierbooms et al. (2001) and Bierbooms and
Dragt (2000), was developed. In this probabilistic method gusts of a given amplitude
are generated and used to perform a wind turbine load calculation. A basic as-
sumption of the method is that extreme wind gusts can still be described by means
of Gaussian processes. The distribution of the extreme load due to wind gusts (or
the 50-years extreme load) can be determined by taking into account all gust am-
plitudes and all mean wind speeds. The method seems to be fit for stall regulated
wind turbines (i.e., with fixed blades) since they are significantly affected by extreme
wind speed gusts. For pitch regulated wind turbines it turned out that extreme wind
speed gusts did not result in higher loads due to the pitch actions initiated by
the control system. Pitch regulated wind turbines may be sensitive to other types
of gusts, e.g., extreme rise time gust. The theoretical expression for the mean
shape of extreme wind speed gusts has been verified by Bierbooms et al. (2001)
and Bierbooms et al. (1999) by comparison with an experimentally derived mean
gust shape based on many time records from the Database on Wind Characteristics
(http://www.winddata.com). Furthermore the probability of occurrence of gusts has
been verified on basis of the same database, Bierbooms et al. (2001).

In the past the stochastic properties of a (normal) process around some specific
event have already been frequently studied, especially by means of a Slepian model.
This is a random function representation of the process after a level crossing and it
consists of one regression term and one residual process. By means of regression
approximations it is possible to arrive at e.g., wavelength and amplitude distribution
or an approximate density of the response of a random mechanical system, Lindgren
and Rychlik (1991). In this paper we are not primarily interested in an approxi-
mation of the statistics of the forcing process or response but we will focus on the
generation of time series around some specific event in a normal process. The
reason for this is that for wind turbine design it is common to consider time domain
simulations due to the involved (strong) non-linearities (e.g., the wind force is
quadratic in the wind speed; flow separation on the rotor blades). An easy method
to generate time series has been denoted constrained stochastic simulation and is
dealt with in Section 2. Although the method can be applied for a multivariable
normal process just a single normal process will be considered for simplicity. Two
examples of events will be shown; in Section 3 local maxima will be considered and
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in Section 4 velocity jumps (a non-Slepian process) will be discussed. The treatment
of local maxima allows comparison with well known results from literature.
Constrained stochastic simulation is already applied in order to generate wind gusts
as input for wind turbine design tools to assess the ultimate loads of wind turbines.
The overall probabilistic method to determine the extreme response of wind
turbines is briefly outlined in Section 5.

2. Constrained stochastic simulation

2.1. Stochastic simulation

In order to describe constrained stochastic simulation we first draw attention to
convential stochastic simulation, Shinozuka (1971); as mentioned before the present
formulation of the method is restricted to a single normal process. Stochastic time
series generators are based on the summation of harmonics with random phase ’
(uniformly distributed between 0 and 2:) and amplitudes which follow from the
(one-sided) auto power spectral density S:

u tð Þ ¼
XK

k¼1

ffiffiffiffiffiffiffiffiffi
2 Sk

T

r
cos wkt þ ’ð Þ ð2:1Þ

where t is the (discretised) time, T the total time of the sample and 5k a set of K
equidistant frequencies. For our purpose an alternative description by means of a
Fourier series is more appropriate (since the applied theory (Section 2.3) concerns
normal random variables):

u tð Þ ¼
XK

k¼1

ak cos wkt þ bk sin wkt ð2:2Þ

For a normal process u(t), with zero mean, also the Fourier coefficients ak and bk

will be normal. Their means are zero, they are mutually uncorrelated and their
variances are Sk/T.

2.2. Specification of a constraint

One may be interested in specific events in time series of a normal process u(t), e.g.,
local maxima. A Fbrute-force_ method to obtain such events is to select these from
very long time series of the stochastic process (either measured or stochastically
simulated). It will be clear that such an approach is far from practical for events which
will occur on average just once in a year or even 50 years. An alternative is to perform
a special kind of stochastic simulation during which the desired events are auto-
matically selected. This method has been denoted constrained stochastic simulation.

The applicability of the proposed method is restricted to events which can be
expressed as a linear relation:

y ¼ Gx ð2:3Þ

with G a matrix of constants, y a random vector describing the event (constraint)
and x a random vector describing the process (e.g., wind velocities at different time
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points or the Fourier coefficients). In Sections 3 and 4 G will be specified for the
events considered in this paper: local maxima and velocity jumps.

In other words the wind velocities (or the Fourier coefficients) which are
normally distributed should satisfy the above conditions (constraints) in order to
obtain the desired event. So, selecting some specific event (from a time series)
corresponds with considering the matching conditional density.

2.3. Conditional density

Consider normal random vectors x and y with zero means. Suppose that the
covariance matrix of the joint random vector z ¼ x

y

� �
is:

E zzT
� �

¼ M NT

N Q

� �
ð2:4Þ

i.e.,

M ¼ E x xT
� �

; Q ¼ E y yT
� �

and N ¼ E y xT
� �

The conditional density f(x|y) of x upon observing y is again normal and thus
determined by its mean mc and covariance matrix Mc. The condition y can be a
specific value y = Y, with Y a constant vector, to be specified later. The mean mc and
covariance matrix Mc can be found in handbooks on statistics, e.g., Rao (1965); some-
times it is denoted as Matrix Inversion Lemma or Sherman<Morrison<Woodbury
formula, Mortensen (1987):

mc ¼ NTQ�1Y ð2:5Þ

Mc ¼M �NTQ�1N ð2:6Þ

We will consider the special case that y is a linear combination of x, i.e., y = Gx

with given weight matrix G. The covariance matrix Mc is now singular. It can be
shown that the above relations still hold:

mc ¼MGTQ�1Y ð2:7Þ

Mc ¼M �MGTQ�1GM ð2:8Þ

with

Q ¼ GMGT ð2:9Þ

2.4. Constrained stochastic simulation

The theory explained in Section 2.3 can be applied to either the wind speeds or the
Fourier coefficients of Eq. 2.2. We choose for the latter:

x ¼ a1 a2 . . . akb1b2 . . . bKð ÞT ð2:10Þ
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since then the covariance matrix M of x is diagonal with elements Sk/T:

M ¼ E xxT
� �

¼ 1

T

S1 0 0 0 0 0 0
0 S2 0 0 0 0 0
0 0 . . . 0 0 0 0
0 0 0 SK 0 0 0
0 0 0 0 S1 0 0
0 0 0 0 0 . . . 0
0 0 0 0 0 0 SK

0
BBBBBBBB@

1
CCCCCCCCA

ð2:11Þ

The desired event is described by the constraint, Eq. 2.3. The constrained
stochastic variable, which satisfies the constraint, is given by:

xc ¼ x þMGTQ�1 Y �Gxð Þ ð2:12Þ

with M according to Eq. 2.11 and Q = GMGT (Eq. 2.9).
This concludes the required theory. In case the Fourier sum is calculated for the

Fourier coefficients x, normally distributed with covariance matrix given by Eq. 2.11,
a random time series is obtained. In case the Fourier sum is calculated for the
Fourier coefficients xc, according to Eq. 2.12, the desired event is obtained. It is
straightforward to implement this in a computer code. In the following Sections 2
examples of events will be considered.

3. Local maxima

3.1. Specification of local maxima

We now make the constrained stochastic simulation, Eq. 2.12, more specific: the
simulation of local maxima. By doing so the method can be demonstrated and also
verified since local maxima in a normal process have already been extensively
studied by others. A local maximum at time t0 is specified by:

u t0ð Þ ¼ A

u& t0ð Þ ¼ 0

u&& t0ð Þ ¼ B < 0

ð3:1Þ

The specification of a local maximum expressed on basis of the Fourier
coefficients x equals:

Gx ¼ Y ð3:2Þ

with

G¼
cos51t0 cos52t0 . . . cos5Kt0 sin51t0 . . . sin5Kt0

�51 sin51t0 �52 sin52t0 . . . �5K sin5Kt0 51 cos51t0 . . . 5K cos5Kt0

�52
1 cos51t0 �52

2 cos52t0 . . . �52
K cos5Kt0 �52

1 sin51t0 . . . �52
K sin5Kt0

0
@

1
A

ð3:3Þ
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and

Y ¼
A
0
B

0
@

1
A ð3:4Þ

3.2. Constrained stochastic simulation of local maxima

On basis of Eq. 2.12 local maxima can be generated; an example of such a time series is
shown in Fig. 1. It is also possible to arrive an explicit expression in time domain. Such
an expression is convenient in case one wants to use an existing stochastic simulation
tool working in time domain. Substitution of Eqs. 3.3 and 2.11 in Eq. 2.9 leads to:

Q ¼ 1

T

P
k

Sk 0 �
P
k

52
k Sk

0
P
k

52
k Sk 0

�
P
k

52
k Sk 0

P
k

54
k Sk

0
BBBB@

1
CCCCA

ð3:5Þ

Straightforward application of Eq. 2.12 then leads to the constrained Fourier
coefficients:

ak;c ¼ ak þ Sk cos5kt0

P
54

kSk

N
� 52

k

P
52

kSk

N

� �
A� u t0ð Þð Þ

þ Sk5k sin5kt0
1P
52

kSk

u& t0ð Þ

þ Sk cos5kt0

P
52

kSk

N
� 52

k

P
Sk

N

� �
B� u&& t0ð Þð Þ ð3:6Þ
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Fig. 1 An example of a gust (local maximum) generated on basis of Eq. 3.8 with value 5 at t = 0 s.
The smooth curve indicates the mean around a local maximum; the dotted lines indicate the standard
deviation (r(t) based on the von Karman isotropic turbulence spectrum (Appendix A); mean wind
speed 10 m/s, standard deviation 1 m/s and maximum frequency 5 Hz)
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and

bk;c ¼ bk þ Sk sin5kt0

P
54

kSk

N
� 52

k

P
52

kSk

N

� �
A� u t0ð Þð Þ

� Sk5k cos5kt0
1P
52

kSk

u& t0ð Þ

þ Sk sin5kt0

P
52

kSk

N
� 52

k

P
Sk

N

� �
B� u&& t0ð Þð Þ ð3:7Þ

Doing the Fourier sum, Eq. 2.2, with these constrained Fourier coefficients we
obtain:

uc tð Þ ¼ u tð Þ þ �

�� l2
r t � t0ð Þ þ l

�� l2
r&& t � t0ð Þ

� �
A� u t0ð Þð Þ

þ r& t � t0ð Þ
l

u& t0ð Þ þ
l

�� l2
r t � t0ð Þ þ 1

�� l2
r&& t � t0ð Þ

� �
B� u&& t0ð Þð Þ ð3:8Þ

with r the (normalized) autocorrelation function:

r tð Þ ¼

P
k

Sk cos5kt

P
k

Sk
ð3:9Þ

and 1 and m the second and fourth order spectral moments, respectively:

l ¼

P
k

52
kSk

P
k

Sk
¼ �r&& 0ð Þ ð3:10Þ

� ¼

P
k

54
kSk

P
k

Sk
¼ r&&&& 0ð Þ ð3:11Þ

It is easily verified that uc(t) indeed satisfies the requested requirements: uc(t0) =
A, u&c t0ð Þ ¼ 0 and u&&c t0ð Þ ¼ B. The constrained time series uc(t) is according to Eq. 3.8
a combination of the original process u(t) and three correction terms which include
the autocorrelation function and its time derivatives. These correction terms ensures
that uc has the correct value, slope and second derivative at t0. Note that for
increasing heights A the second term in the right hand side of Eq. 3.8 will become
more dominant. This implies that the constrained time series will become more and
more deterministic in their shape, proportional to the autocorrelation function.

3.3. Mean and variance of the time series around local maxima

Equation 3.8 gives the required recipe to generate a time series around a local
maximum with given amplitude A and second derivative B. In order to reflect the
behaviour of a normal process around an arbitrary local maximum (with value A)

Constrained stochastic simulation—generation of time series 213

Springer~13~



correctly, A can be considered a constant and B should become a random variable
(less than zero). By considering the statistics of B, see e.g., Cartwright and Longuet-
Higgens (1956), one finds the ensemble mean shape around a local maximum:

uc tð Þ ¼ E uc tð Þ½ � ¼ Ar t � t0ð Þ � F

A
var uð Þ r t � t0ð Þ þ r&& t � t0ð Þ

l

� �
ð3:12Þ

with

F ¼
ffiffiffiffiffiffi
2�
p

� e
1
2�

2
F �ð Þ

1þ
ffiffiffiffiffiffi
2�
p

� e
1
2�

2 F �ð Þ
ð3:13Þ

in which 6 is the standard normal cumulative distribution and

� ¼ lAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var uð Þ �� l2

� 	q ¼ Affiffiffiffiffiffiffiffiffiffiffiffiffiffi
var uð Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (2
p

(
ð3:14Þ

and var(u) the variance of u(t) and ( ¼
ffiffiffiffiffiffiffiffiffi
��l2

�

q
the bandwidth parameter.

The constant F depends thus on the statistics of the particular random variable
u(t). E.g., sea waves is a narrow-banded process (( less than say 0.7, large +) resulting
in a factor F larger than 0.8 what may be approximated by 1. Atmospheric turbu-
lence is broad-banded (( larger than 0.7, small +) and F is in the range of 0.1 to 0.8.

The variance of the constrained stochastic simulations equals:

var uc tð Þð Þ ¼ var uð Þ
(

1� r2 t � t0ð Þ � 1

l
r& 2 t � t0ð Þ þ 1� Fð Þl2

�� l2
� F

A

� �2

var uð Þ
 !

� r t � t0ð Þ þ 1

l
r&& t � t0ð Þ

� �2
) ð3:15Þ

The mean shape around local maxima plus/minus a standard deviation is already
shown in Fig. 1.

Lindgren (1970) has performed a strict mathematical treatment of the properties
of a normal process near a local maximum. It is proved that around a local
maximum of height A the process u(t) has the same distribution as the process:

a tð ÞAþ b tð ÞBþ D tð Þ ð3:16Þ

with

a tð Þ ¼ �

��l2 r t � t0ð Þ þ l
��l2 r&& t � t0ð Þ

b tð Þ ¼ l
��l2 r t � t0ð Þ þ 1

��l2 r&& t � t0ð Þ
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and $(t) is a non-stationary zero-mean normal process, independent from b(t)B,
with covariance function (in case var(u) = 1 and t0 = 0):

C s; tð Þ ¼ r s� tð Þ � 1

l �� l2
� 	

(
l�r sð Þr tð Þ þ l2r sð Þr&& tð Þ þ �� l2

� 	
r& sð Þr& tð Þ þ l2r&& sð Þr tð Þ

þ lr&& sð Þr&& tð Þ
) ð3:17Þ

The first two terms of Eq. 3.16 can be considered as regression term and the third
one as a residual process. It can be shown that Eq. 3.8 corresponds with the above,
so the method presented in this paper is in line with Lindgren (1970); the residual
process is given by:

D tð Þ � u tð Þ � a tð Þu t0ð Þ þ
r& t � t0ð Þ

l
u& t0ð Þ � b tð Þu&& t0ð Þ ð3:18Þ

A practical advantage of Eq. 3.8, from an engineering point of view, is that it
leads to an explicit expression of time series around local maxima. This can be
appreciated by comparing Eq. 3.18 to the approximation of the residual process of a
Slepian process by means of a Karhunen–Loève expansian in Hasofer (1989). Fur-
thermore the method of constrained stochastic simulation is not restricted to Slepian
processes but can be applied to all events in a normal process which can be expressed
by means of a linear condition, Eq. 2.3; see for another example the next section.

A method to assess the extreme wave loading of offshore platforms, Taylor et al.
(1997) has been based on Lindgren (1970). In fact local extremes rather than
maxima are considered in this method. Since it is unlikely that for large A a local
minimum is encountered, the third constraint in Eq. 3.1 can be omitted leading to,
Taylor et al. (1997) and Bierbooms et al. (2001):

uc2 tð Þ ¼ u tð Þ þ r t � t0ð Þ A� u t0ð Þð Þ þ r& t � t0ð Þ
l

u& t0ð Þ ð3:19Þ

which can be considered to be the asymptotic form of Eq. 3.8 for large A. Indeed,
the mean of uc2 equals A r(tjt0) corresponding to the asymptotic form of Eq. 3.12;
the variance is var uð Þ 1� r2 t � t0ð Þ � r& 2 t � t0ð Þ=lÞ

�
in agreement with the asymptotic

form of Eq. 3.15. The mean waveform, i.e., Ar (tjt0), has been coined NewWave by
Taylor et al. (1997); the wind gust corresponding to Eq. 3.19 has been denoted
NewGust by Bierbooms et al. (2001).

4. Gusts with extreme rise times

4.1. Specification of extreme rise time gusts

In the previous section the constrained simulation of local maxima is given. With
respect to the extreme loading of stall regulated wind turbines (i.e., with fixed blades)
such time series can be used for the load calculation since the extreme loads will most
probably be due to gusts with a maximum amplitude (or a simultaneous wind speed
gust and wind direction change). For pitch regulated wind turbines (i.e., with blades
which can be turned by a control system to accommodate high winds) the extreme
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loads may not be connected with extreme wind gusts but with other extreme
situations, e.g., gusts with a given extreme rise time rather than amplitude. In this
section we will deal with such gusts; this demonstrates the versality of the proposed
method. The gust events are now specified by a local minimum and local maximum
with a time separation (rise time) $t and a velocity difference (jump) of $U:

u� t0ð Þ ¼ 0

u�� t0ð Þ ¼ B1 > 0

u t0 þ Dtð Þ � u t0ð Þ ¼ DU

u� t0 þ Dtð Þ ¼ 0

u�� t0 þ Dtð Þ ¼ B2 < 0

ð4:1Þ

Note that it is not required that the considered minimum and maximum are
consecutive; i.e., it is possible that other local minima and maxima are in between.
The reason for choosing such a definition for an event is that, with respect for the
assessment of extreme loads on wind turbines, it is not a priori known what will
cause the highest loads: a modest velocity jump in a (very) short rise time or a large
velocity jump in a rather long rise time.

One could opt for considering the 3rd constraint of Eq. 4.1 only, i.e., specifying a
velocity jump, but in that case the two points will in general not be a minimum or a
maximum. The implication is that the considered gust is just a part of some larger
velocity jump; i.e., a gust generated on basis of such a constraint will generally have
a larger velocity jump. So load estimates based on such gusts are associated with a
whole range of velocity jumps instead of just one value as is the case with Eq. 4.1.
Furthermore, specification of just a velocity jump only does not form a countable
event, so no expression as Eq. 4.16 can be formulated. This will significantly
complicate the probabilistic approach in order to assess extreme wind turbine
loading which will be outlined in Section 5.

The specification, Eq. 4.1, can again be expressed in terms of the Fourier
coefficients, Eq. 2.10:

Gx ¼ Y ð4:2Þ

with

G¼

�51 sin51t0 �52 sin52t0 . . . �5K sin5Kt0 51 cos51t0 . . . 5K cos5Kt0

�52
1 cos51t0 �52

2 cos52t0 . . . �52
K cos5Kt0 �52

1 sin51t0 . . . �52
K sin5Kt0

cos51 t0 þ Dtð Þ � cos51t0 cos52 t0 þ Dtð Þ � cos52t0 . . . cos5K t0 þ Dtð Þ � cos5Kt0 sin51 t0 þ Dtð Þ � sin51t0 . . . sin5K t0 þ Dtð Þ � sin5Kt0
�51 sin51 t0 þ Dtð Þ �52 sin52 t0 þ Dtð Þ . . . �5K sin5K t0 þ Dtð Þ 51 cos51 t0 þ Dtð Þ . . . 5K cos5K t0 þ Dtð Þ
�52

1 cos51 t0 þ Dtð Þ �52
2 cos52 t0 þ Dtð Þ . . . �52

K cos5K t0 þ Dtð Þ �52
1 sin51 t0 þ Dtð Þ . . . �52

K sin5K t0 þ Dtð Þ

0
BBBB@

1
CCCCA

ð4:3Þ

and

Y ¼

0
B1

DU
0

B2

0
BBBB@

1
CCCCA

ð4:4Þ

In order to reflect the behaviour of a normal process around an arbitrary velocity
jump correctly, $U can be considered a constant and B1, B2 are realizations of
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stochastic variables. The joint density function of B1 and B2 will be determined in
Section 4.4.

4.2. Constrained stochastic simulation of extreme rise time gusts

We will not bother to arrive at explicit time domain equations like Eqs. 3.8, 3.12 and
3.15 but restrict ourselves to an implicit description which can easily be evaluated by
a simple computer program. For this purpose the equations are reformulated. From
Eqs. 2.2, 2.10 and 2.12 we arrive for the constrained wind speed time series at:

uc tð Þ ¼ u tð Þ þR tð Þ Y � yð Þ ð4:5Þ

with Y according to Eq. 4.4,

y ¼ Gx ¼

u& t0ð Þ
u&& t0ð Þ

u t0 þ Dtð Þ � u t0ð Þ
u& t0 þ Dtð Þ
u&& t0 þ Dtð Þ

0
BBBB@

1
CCCCA

ð4:6Þ

and

R tð Þ ¼ cos51t . . . cos5Kt sin51t . . . sin5Kt½ �MGTQ�1 ð4:7Þ

i.e., R(t) is the Fourier sum of MGTQj1; M according to Eq. 2.11, G given by Eq. 4.3
and Q = GMGT, Eq. 2.9.

Application of Eq. 4.5 will result into the desired gust with velocity jump $U with
rise time $t. An example of such constrained stochastic simulation is shown in Fig. 2.
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Fig. 2 An example of a gust with a velocity jump from of 6 m/s at t = 100 to 101 s. The smooth curve
indicates the mean gust shape; the dotted lines indicate the standard deviation of the gust shape; r(t)
based on the von Karman isotropic turbulence spectrum (mean wind speed 15 m/s, standard
deviation 1 m/s and maximum frequency 5 Hz)
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4.3. Mean and variance of the time series around extreme rise time gusts

The ensemble mean is given by:

uc tð Þ ¼ R tð ÞY ð4:8Þ

with

Y ¼

0
B1

DU
0

B2

0
BBBB@

1
CCCCA

ð4:9Þ

The variance equals:

var uc tð Þð Þ ¼ var u tð Þð Þ þR tð Þ var Yð Þ �Qð ÞRT tð Þ ð4:10Þ

with

var Yð Þ ¼

0 0 0 0 0
0 var B1ð Þ 0 0 cov B1;B2ð Þ
0 0 0 0 0
0 0 0 0 0
0 cov B1;B2ð Þ 0 0 var B2ð Þ

0
BBBB@

1
CCCCA

ð4:11Þ

For the derivation of Eq. 4.10 use is made of the independence of B1, B2 and u(t)
and Eqs. 2.2, 2.10, 2.11, 4.6 and 4.7:

E u Ryð ÞT
h i

¼ cos51t . . . cos5Kt sin51t . . . sin5Kt½ � E xxT
� �

GTRT

¼ cos51t . . . cos5Kt sin51t . . . sin5Kt½ �MGTRT ¼ RQRT

The mean and standard deviation of the gust shape are shown in Fig. 2; the mean
and (co)variance of B1 and B2 are determined numerically (based on Eq. 4.18).

4.4. The statistics of extreme rise time gusts

In order to obtain the (joint) statistics of B1 and B2 we have to deal with the
statistics of gusts as defined by Eq. 4.1. By introducing the following five random
variables with zero ensemble means (breakdown of vector y, Eq. 4.6):

v ¼ u
&

t0ð Þ
w ¼ u&& t0ð Þ
x ¼ u t0 þ Dtð Þ � u t0ð Þ
y ¼ u

&
t0 þ Dtð Þ

z ¼ u&& t0 þ Dtð Þ

ð4:12Þ
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the probability of occurrence of gusts, with a rise time $t and a velocity jump of $U,
equals:

Pgusts ¼
Z w dt

0

Z 1

0

Z DUþd DUð Þ

DU

Z �z d Dtð Þ

0

Z 0

�1
f v;w; x; y; zð Þdvdwdxdydz ð4:13Þ

For a given second derivative w ¼ u
��

t0ð Þ the first time derivative should be in the
range between 0 and w dt in order to obtain a minimum inside the time interval dt.
This explains the integration limits of v; a similar argument holds for the limits of y.
The function f(v,w,x,y,z) is a five variate Gaussian probability density function with
covariance matrix:

Q ¼ var uð Þ

l symmetric
0 �

�r& Dtð Þ r&& Dtð Þ þ l 2� 2r Dtð Þ
�r&& Dtð Þ r&&& Dtð Þ �r& Dtð Þ l
�r&&& Dtð Þ r&&&& Dtð Þ r&& Dtð Þ � l 0 �

2
66664

3
77775

ð4:14Þ

The mean frequency of gusts N$U, with a velocity jump in the range $U to $U +
d($U) and with a rise time in between $t and $t + d($t), follows directly from
Eq. 4.13:

NDU ¼
Pgusts

dt
� d DUð Þd Dtð Þ

Z 1

0

Z 0

�1
�wz f 0;w;DU; 0; zð Þdwdz ð4:15Þ

The mean frequency N of all gusts with rise time in between $t and $t + d($t)
equals:

N ¼ d Dtð Þ
Z 1

�1

Z 1

0

Z 0

�1
�wzf 0;w;DU; 0; zð Þd DUð Þdwdz ¼ d Dtð Þ �

2�ð Þ2l
ð4:16Þ

The latter identity can be deduced from the following reasoning. Every
combination of a local minimum and a local maximum counts as a gust. So the
total number of gusts, per unit time, equals the number of local minima, per unit
time, times the number of local maxima, per unit time. This holds for every value of
the rise time $t. The mean frequency of local minima is equal to the mean frequency
of local maxima and equals: 1



2�ð Þ

ffiffiffiffiffiffiffiffi
�=l

p
, Rice (1944).

Finally the density f($U) of gust events with velocity jump $U is obtained:

f DUð Þ ¼
NDU

Nd DUð Þ ¼
2�ð Þ2l
�

Z 1

0

Z 0

�1
�wzf 0;w;DU; 0; zð Þdwdz ð4:17Þ

The double integral of the above expression can be evaluated by using the
Fcompleting the square_ method, see Appendix B; the density f($U) is shown in
Fig. 3 for several rise times $t. For a rise time larger than about 10 s the function
shape does not change anymore; apparently for large rise times the correlation
between the local minimum and local maximum gets so small that the function does
not depend any longer on the exact rise time. For a small rise time the function gets
more peak shaped; as expected the probability for a large velocity jump decreases
for decreasing rise time.
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In conclusion: Eq. 4.5 gives the recipe to generate gusts with a velocity jump $U
in rise time $t; B1 and B2 should, on basis of Eq. 4.17, be randomly generated
according to the following joint 2D density:

f B1;B2ð Þ ¼ B1 B2j jf 0;B1;DU; 0;B2ð Þ
R1

0

R 0
�1 B1 B2j jf 0;B1;DU; 0;B2ð ÞdB1dB2

ð4:18Þ

5. Probabilistic method to determine the extreme response of wind turbines

In this section a concise outline is given of a probabilistic method to determine the
extreme response of wind turbines. A basic assumption in order to apply
constrained stochastic simulation for this purpose is that the extreme response is
driven by wind turbulence and that turbulence is Gaussian. Wind gusts generated on
basis of Eqs. 3.8 or 4.5 can be used as input for a wind turbine simulation tool.
Examples of generated gusts were already shown in Figs. 1 and 2; the autocorre-
lation function r(t) has been based on the von Karman isotropic turbulence
spectrum (Appendix A). A wind turbine design tool determines among other things
the internal loads of the wind turbine as function of time; e.g., one may be interested
in the maximum bending moment in the rotor blades at the root section. Repetition
of application of Eqs. 3.8, 4.5 will lead to different wind gusts and consequently to
different responses and maximum rotor blade moments. If several simulations are
performed for the same gust amplitude and mean wind speed, a distribution of the
extreme loading can be determined. This can be repeated for several gust
amplitudes, varying e.g., from 1 to 6 times the standard variation. Each gust
amplitude will result in another (cumulative) distribution of the structural loading.

In order to obtain the distribution of the extreme loading, caused by a gust with
arbitrary amplitude (for given mean wind speed), the different distributions should
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Fig. 3 The probability density function of gusts f($U) as function of velocity jump $U for 5 different
values of the rise time $t (mean wind speed 10 m/s and turbulence intensity 10%)
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be convoluted (weighed) with the occurrence probability of the individual gusts. In
case of local maxima the probability can by expressed as function of the spectral
bandwidth, Cartwright and Longuet-Higgins (1956); in case of extreme rise time
gusts the density is given by Eq. 4.17, Fig. 3. Following this procedure, the short-
term (say 10 min) distribution of the loading is obtained for some mean wind speed.

In order to determine the long-term distribution the procedure should be
repeated for several mean wind speeds. The over-all final distribution is subse-
quently obtained by weighting with the occurrence probability of the mean wind
speeds, i.e., the Weibull distribution or an empirical distribution (histogram) valid
for some specific site. The final distribution can be fitted to some extreme value
distribution, e.g., Gumbel or Pareto and then finally extrapolated to the desired
return period, e.g., 50 years. The long-term distribution of the peak bending moment
in the rotor blades shows the probability of exceedance of a certain load level.
Instead of an arbitrary value obtained using deterministic analysis (as is presently
specified in standards), the designer can chose the level of risk according to the load
distribution. Furthermore, using the load distribution and resistance distribution of
the structure the probability of failure can be estimated. Together they constitute
the tools leading to a more efficient and reliable design of wind turbines. An
extensive treatment of other probabilistic methods to determine the extreme wind
turbine loading may be found in Cheng (2002).

The theoretical mean gust shape, Eq. 3.12, as well as the gust statistics have
been verified by analysis of wind measurements, Bierbooms et al. (1999) and
Bierbooms et al. (2001) e.g., from the FDatabase on Wind Characteristics_ (http://
www.winddata.com).

This paper focused on the method of constrained simulation (Section 2) and
treated local maxima (Section 3) and rise time gusts (Section 4) as examples. By
choosing local maxima as one of the examples comparison with well known results
was possible. For reasons of simplicity these examples considered the one point
coherent gust (uniform over the rotor plane). In reality a wind turbine will of course
encounter spatial gusts (with three velocity components). The extension of the
method of constrained stochastic simulation to spatial gusts is given in Bierbooms et
al. (2001). Recently, during the review process of this paper, Nielsen et al. (2003)
and Bierbooms (2005) have published on this topic. These publications focus on the
wind fields and there resulting wind turbine loading. Non-Gaussianity of wind
turbulence and how to incorporate it in constrained simulation is also addressed.
Nielsen et al. (2003) applied a totally different method, based on variational
calculus, in order to simulate gusts. It can be shown that their final results, for a
given gust description, are identical to those obtained by constrained simulation.
The probability of gusts, needed for the probabilistic approach given above, is not
dealt with in Nielsen et al. (2003).

6. Conclusion

Time series around some specific event in a normal process can be generated by
means of constrained stochastic simulation. This easy method can be applied for any
event which can be expressed as a linear expression of the involved random
variables. It has been demonstrated for local maxima and velocity jumps. Time
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domain simulations of these events, representing wind gusts, are of practical interest
for wind turbine design calculations.

Appendix A: The von Karman isotropic turbulence spectrum

The longitudinal velocity component spectrum S is given by the non-dimensional

equation, IEC (1998):

fS fð Þ
var uð Þ ¼

4f L
U

1þ 70:8 f L
U

� �2
� �5=6

ðA1Þ

with

f frequency [Hz]
U mean wind speed [m/s]

L = 70.7 m, the isotropic integral scale parameter and
var(u) the variance of the longitudinal turbulence component

All expressions for turbulence spectra are for large frequencies inversely
proportional to the 5/3 power of the frequency (so-called inertial subrange). This
implies that the time derivatives of the autocorrelation function at t = 0 are infinite.
In order to overcome this problem the spectrum is cut-off above some maximum
frequency by means of a Hann window (a rectangular window would introduce
oscillations in the autocorrelation function).

Appendix B: Completing the square method

The integrand of the double integral of Eq. 4.17 includes the function f(0,w,$U,0,z),

which is a five variate Gaussian probability density function:

f 0;w;DU; 0; zð Þ ¼ 1

2�ð Þ5=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Qð Þ

p e�1=2yT
0

Q�1y0 ðB1Þ

with

y0 ¼

0
w

DU
0
z

0
BBBB@

1
CCCCA

ðB2Þ

and det(Q) the determinant of Q, Eq. 4.14.
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Via transformation to three new variables it is possible to convert the
multinomial of the exponent of f(0,w,$U,0,z) to a sum of perfect squares
(Fcompleting the square_ method):

� 1

2
yT

0 Q�1y0 ¼ � k2 þ l2 þm2
� 	

ðB3Þ

with

k
l

m

0
@

1
A ¼ c

w
z

DU

0
@

1
A ¼

c1 c2 c3

0 c4 c5

0 0 c6

2
4

3
5

w
z

DU

0
@

1
A ðB4Þ

Equating the six terms of the left hand side of Eq. B3 to the corresponding terms
at the right hand side leads to expressions for the six constants. Alternatively one
may use Choleski decomposition in order to determine c:

cTc ¼ 1

2
NTQ�1N ðB5Þ

with

N ¼

0 0 0
1 0 0
0 0 1
0 0 0
0 1 0

2
66664

3
77775

; i:e:;N
w
z

DU

0
@

1
A ¼ y0

Through the transformation (B4) the new integration variables become k and
l with integration limits (lower and upper resp.):

K lð Þ ¼ c2

c4
l þ c3c4 � c2c5

c4
DU ðB6Þ

L ¼ c5DU ðB7Þ

Furthermore:

dkdl ¼ c1c4dwdz ðB8Þ

The transformation allows us to write the two dimensional integral of Eq. 4.17 as a
1D integral which can be solved numerically (strictly speaking it remains a 2D
integral since the integrand involves the error function).

Z 1

0

Z 0

1
�wzf 0;w;DU; 0; zð Þdwdz ¼ C

Z L

�1
zg lð Þe�l2

dl

¼ C

Z L

�1

l

c4
� c5

c4
DU

� �
g lð Þe�l2

dl

ðB9Þ

with

C ¼ � 1

2�ð Þ5=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Qð Þ

p
c1c4

e� c6DUð Þ2 ðB10Þ
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and

g lð Þ ¼
Z 1

K lð Þ
we�k2

dk ¼
Z 1

K lð Þ

k

c1
þ h lð Þ

� �
e�k2

dk ¼ I1 lð Þ
c1
þ h lð ÞI2 lð Þ ðB11Þ

with

h lð Þ ¼ � c2

c1c4
l þ c2c5 � c3c4

c1c4
DU ðB12Þ

The factors I1 and I2 from Eq. B11 are the following standard integrals:

I1 lð Þ ¼
Z 1

K lð Þ
ke�k2

dk ¼ 1

2
e�K lð Þ2 ðB13Þ

I2 lð Þ ¼
Z 1

K lð Þ
e�k2

dk ¼
ffiffiffi
�
p

2
1� erf K lð Þð Þf g ðB14Þ

with erf the error function.
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Veri®cation of the Mean Shape of
Extreme Gusts
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For design load calculations for wind turbines it is necessary to determine the fatigue
loads as well as the extreme loads. An advanced method has been presented previously
to incorporate extreme turbulence gusts in wind ®eld simulation, the so-called `NewGust'
method. The gust generator works by constraining the random parameters of a
stochastic wind ®eld simulator. The present article deals with the veri®cation of the mean
shape of extreme gusts. On the basis of a statistical analysis an expression of the mean
gust shape is obtained. This theoretical gust shape is compared with the mean gust
shape determined from both simulated and measured turbulence. The resemblance is
remarkably good, which demonstrates the viability of the NewGust method. Copyright
*c 1999 John Wiley & Sons, Ltd.

Introduction

The sophistication of the methods used to carry out wind turbine design calculations has increased
enormously over the last two decades.1 A good example is the treatment of fatigue loads. It is now
common practice to consider for the fatigue analysis a complete representation of both the temporal and
spatial structure of the turbulence. The applied wind ®eld simulation methods are based on a stochastic
description of turbulence (i.e. the auto- and cross-spectra of all three turbulence components).

The situation for the determination of extreme loads is totally di�erent. Up to now, only simple
deterministic gusts (e.g. a cosine gust) have been used to determine the extreme operating response,
instead of applying a stochastic description of the wind (as is the case for fatigue analysis). Quoted from
reference 1: `Turbulence models of the form described above are now widely used for the calculation of
fatigue loads for design purposes. For calculation of extreme loads, however, it is standard practice to
base calculations on deterministic descriptions of extreme wind conditions. Current design standards and
certi®cation rules specify extreme events in terms of discrete gusts, wind direction changes and wind shear
transients. The form, amplitude and time period speci®ed for these discrete events remain rather arbitrary
and largely unvalidated. The development of more reliable methods for the evaluation of extreme design
loads, based possibly on the use of probabilistic analysis, requires considerable e�ort but is crucially
important in the context of re®ning wind turbine design analysis'. Such a new method has been proposed
by the Institute for Wind Energy and presented at EUWEC `96.2 This method, which has been given the
name `NewGust', is based on constrained simulation and described in Reference 2; a more comprehensive
description of constrained simulation is given in Reference 3.
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The present article will focus on the gust shape and is partly based on the work performed during a
Dutch project.4 In order to motivate our prime interest in the mean gust shape, we start with a brief
overview of the NewGust method.

Motivation and Background

As (most) gusts are part of the turbulence, they also should be accounted for in a stochastic fashion. In
Reference 2 we investigated that by a method similar to a technique for peak wave loading of o�shore
structures by random sea waves. The principle is as follows.

Random turbulence simulations are made generally by random number generators for Fourier
coe�cients, using power spectrum (or, equivalently, correlation function) speci®cations of the real
atmosphere turbulence. A small fraction of those simulations will contain high gusts that are relevant for
peak load evaluation. One can of course select these rare events from a (very) large number of simulations
in order to study peak loads, but it is much more convenient to restrict oneself to simulations with random
number sets which have been preselected to produce the wanted gusts. This requires a form of constrained
simulation. It was shown in Reference 2 that a method to perform such a simulation is mathematically
equivalent to taking an arbitrary simulation and applying certain adaptations to either the Fourier
coe�cients (in the frequency domain) or adaptations in the time domain. The time domain formula for a
peak of height A at time t0 reads

uconstr�t� � usimul�t� � r�t ÿ t0� �A ÿ usimul�t0�� �
_r�t ÿ t0� _usimul�t0�

l
�1�

where usimul(t) is any random simulation, r(t) is the normalized autocorrelation function and l is a
(constant) measure for the randomness of the turbulence (see also (12)). This formula accounts for the
time dependence only, but it was shown to be extendable to space-dependent gust simulations also, where
the spatial correlation function enters. We called this method NewGust. It is shown that the gusts
according to (1) are, in a statistical sense, not distinguishable from gusts selected from a very long
stochastic time series. Many load calculations for a wind turbine rotor have been made in order to see
what the e�ect is of this theoretically more appropriate way of dealing with turbulent gust loading. In
Reference 2 we found the following, preliminary, e�ects.

. The shape of the gust (second term of (1)) is much sharper than the usual cosine shape. The e�ect of the
shape di�erence on the peak load is limited. Only very ¯exible blades with low damping give a
signi®cant dynamic overshoot.

. More important is the embedding of the gusts in a stochastic environment (®rst term in (1)). This may
increase the peak loads up to several tens of per cents.

. The space dependence of the gusts considerably lowers the peak loads of large rotors compared with
uniform (over the rotor plane) gusts.

. The e�ects are of the same order of magnitude as safety factors in design standards. Thus they are
important enough to deserve further study.

Although based on (largely) empirical turbulence speci®cations, the NewGust method is rather
theoretical. Thus there is a need for experimental veri®cation. The most peculiar aspect is the shape of the
gusts, very di�erent from what has been common up to now. If that shape can be con®rmed from real
wind turbulence measurements, it will be a strong indication that the NewGust method is viable. To make
that veri®cation is the aim of the present article.

Thus the article will focus on the shape of the gust. For the moment the longitudinal turbulence
component only will be considered. Please note that our prime goal is not the determination of the mean
gust shape in a meteorological sense but with respect to the extreme loading on wind turbines. In the next
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section a general statistical method is presented in order to derive an analytical expression for the mean
gust shape. The succeeding two sections will treat the comparison of the theoretical mean gust shape with
the mean gust shape determined from simulated and measured wind respectively. We made the analysis
for simulated wind in order to verify the method of gust analysis, while the analysis of the measured wind
data gives the real `proof of the pudding'.

The Theoretical Mean Gust Shape

General Statistical Method

A general method to determine the statistical means of certain parameters of a stationary stochastic
process has been given by Middleton.5 In order to present this method, it is inevitable to use a lot of
equations. The reader is encouraged to put some e�ort into understanding them in order to grasp the
elegance and strength of the statistical method. The method can be divided into the following steps.

. Specify the events of interest (e.g. zero crossing or maximum). Determine a series of mathematical
operations (di�erentiation, time shift, recti®er, step function, etc.; see also Figure 1) which transfers the
original time series u(t) into a series of delta functions at the time instants of the speci®c events:

p�t� �
X
i

d�t ÿ ti� �2�

with p(t) a (possibly non-linear) function of u(t), u(t � t), u.(t), etc.

. The number of events for a speci®c time series in the time interval T equals

N �
Z T

0

p�t�dt �3�

The expectation value of the number of events equals

E�N� � E

Z T

0

p�t�dt
� �

�
Z T

0

E�p�t��dt � T E�p�t0�� �4�

for any t0 (owing to the stationarity of the stochastic process).

. The sum of the signals in the neighbourhood of the events is

S�t� �
X
i

u�ti � t� �
X
i

Z T

0

u�t � t� d�t ÿ ti� dt �
Z T

0

u�t � t�p�t�dt �5�

Figure 1. Some basic mathematical operations
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for some range of t (both positive as well as negative values are allowed; the range must be small
compared with T). The expectation value of this sum of the signals in the neighbourhood of the events is

E�S�t�� �
Z T

0

E�u�t � t� p�t�� dt � T E�u�t0 � t� p�t0�� �6�

Notice that this is a function of t only.

. The mean signal in the neighbourhood of the events equals ( for one sample time series)

�u�t� � S�t�
N

�7�

The expectation value equals

E� �u�t�� � E�S�t��
E�N� �

E�u�t � t� p�t��
E�p�t�� �8�

The above expectation values can be evaluated if the (multidimensional) density function of u(t),
u(t � t), u.(t), etc. which occur in p(t) is known. Please note that in principle it is not required that the
density function be Gaussian. In practice, however, the expectation value can be analytically determined if
the density function is Gaussian and is of limited dimension only.

It is a subject of further research whether it is possible to determine the expectation value in the case of
a non-Gaussian (multidimensional) distribution function, if such a function can be speci®ed anyway, by
means of Monte Carlo integration.

Example Application

The above method will be illustrated by the determination of the expected number of (positive) zero
crossings in a stationary Gaussian (wind) signal. In Figure 2 it is shown by which operations the (positive)
zero crossings may be selected from a (wind) signal u(t):

p�t� � d�u�t�� g� _u�t�� �9�

with g(t) the recti®er function. The expected number of (positive) zero crossings per time period equals,
according to (4),

E�N�
T
� E�p�t�� �

Z Z
du dv d�u� g�v� P�u; v� �10�

Figure 2. Mathematical operations which select (positive) zero crossings from a stochastic signal
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The multidimensional density function of u(t) and u
.
(t) is here denoted by P(u,v) and assumed to be joint

normal. The covariance matrix equals

L � s2
1 0
0 l

� �
�11�

with

l � ÿ�r�0� �12�

where r denotes the normalized autocorrelation function and s is the standard deviation. The inverse of
the covariance matrix equals

Q � 1

s2
1 0
0 1=l

� �
�13�

and thus

P�u; v� � 1

2ps2
���
l
p e

ÿ�1=2s2��u2�v2=l� �14�

Substitution gives

E�N�
T
�
Z 1
ÿ1

dv g�v� P�0; v� � 1

2 p s2
���
l
p

Z 1
0

ve
ÿv2=�2 s2 l�

dv �15�

Note that the delta function in the integrand is elevated by setting u equal to zero, and g(v) may be
replaced by v and setting the lower limit of integration equal to zero.

By substitution of

z � v2

2 s2 l
�16�

we ®nally obtain

E�N�
T
�

���
l
p

2 p

Z 1
0

e
ÿz
dz �

���
l
p

2 p
�17�

with

l � ÿ�r�0� �18�

This is the famous formula of Rice.6

Mean Gust Shape

We now direct our attention to the topic of extremes. In an analogous manner the following expression
for the mean shape of an extreme (maximum or minimum) between levels A and A � dA may be derived
(see Figure 3 and Appendix A):

�u�t�
s
� A

s
r�t� ÿ s

A
r�t� � �r�t�

l

� �
�19�
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Notice that local minima are also taken into account (but counted as ÿ1). The advantage is the
treatment of a peak with a small dip, which will regularly occur in a stochastic time series. In this way such
a peak is counted as 2 maxima and 1 minimum and thus in total as 2 ÿ 1 � 1 extreme (instead of
2 maxima). In other words, a peak with a small dip will have about the same e�ect on the average peak
shape as a peak without a dip. Furthermore, a dip (near the threshold A) in a ¯ank of some higher peak,
which is of no interest for our purpose, will have only a minor e�ect on the mean gust shape, as it is treated
as 1 maximum and 1 minimum and thus as 0 extremes.

The theoretical expression of the autocorrelation function of turbulence has a sharp peak at t � 0. The
second derivative at t � 0, which is required for the evaluation of (19), is in®nite (in the hypothetical case
that the spectrum does not drop o� in the dissipation range); this is due to the fact that the turbulence
spectrum for large frequencies is inversely proportional to the 5/3 power of the frequency (`inertial
subrange').

In the situation of measurements this will not be the case owing to the involved rounding o�. Firstly, the
anemometer has some dynamic properties. Secondly, the measurements should have been ®ltered
according to the applied sample frequency, e.g. in the case of a 2Hz-sampled wind signal a ®lter of 1Hz
should have been applied. For the veri®cation of the mean gust shape this may have a considerable
in¯uence if the sample frequency is low.

See Figure 4 for the theoretical mean gust shape for two ®lter time constants. This implies that for
veri®cation the ®lter time constant (or sampling frequency) should be taken into account.

Our interest concerns extreme gusts, so large values of the amplitude A. In this case the ®rst term of
(19), (A/s)r(t), is dominating, which corresponds with the expression of NewGust2 based upon con-
strained simulation. Note that it is not yet clear why the above expression (19) deviates from expression (1)
of NewGust for small amplitudes caused by the second term; this deviation does not have any practical
consequence however, because it is restricted to small amplitudes.

In the literature a similar expression to (19) can be found for the extreme loads on o�shore platforms
due to hydrodynamic excitation by means of waves;7 this expression is based on the general work on
extremes by Lindgren.8 The (small) di�erence between (19) and the expression given in Reference 8 is due
to the fact that there only maxima are considered without correction for small dips; both expressions
converge again for large amplitudes.

So far the (extreme) wind speed at one point in space has been considered. In fact an extreme gust has a
spatial extension (thus non-uniform over the rotor plane) as given in Reference 2. In practice it will be
di�cult or even impossible to determine the position of the centre of some gust with the aid of a limited

Figure 3. Mathematical operations which select extremes above level A from a stochastic signal
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number, say six to eight, of anemometers. This implies that a statistical analysis of a large number of gusts
is the only way possible. For this purpose an analogous derivation to that given in Appendix A has been
carried out, leading to the following (theoretical) expression for the `spatial gust shape', which is the shape
of the wind at height 2 around the time instant of an extreme at height 1 (with amplitude A):

ugust�t�
s
� A

s
r�t� ÿ s

A
r�t� ÿ �r �t�

�r �0�
� �

�20�

with r the cross-correlation function. Equation (20) is a generalization of (19).

Veri®cation of the Gust Shape by Means of Simulated Wind

In this section the mean gust shape from simulated wind will be compared with the theoretical expression
given in the previous section in order to verify the method of gust analysis. The advantage of simulated
wind is that the correlation function required in (19) is known, for it is used as input for the wind ®eld
simulation. With the aid of the wind ®eld simulation package SWING3,9 time series are generated for
mean wind speeds 10 and 20m sÿ1 at two heights (40 and 80m) with a duration of more than 10min
(16,384 time steps of 0.04 s). For each of these simulations, 100 realizations have been generated in order
to increase the number of gusts. The expressions according to the isotropic turbulence theory are used
(see Appendix B).

The following steps, according to the analysis method described in the previous section, are applied in
order to determine the mean gust shape.

. Search in the simulated wind time series u(t) for time instants of local maxima or minima (thus no
condition on the second derivative) and for which the wind speed u is between levels A and A � dA.
Four classes have been investigated: between 0.5 s and 1.5 s, between 1.5 s and 2.5 s, between 2.5 s and
3.5 s, and larger than 3.5 s.

Figure 4. Theoretical mean gust shapes for two di�erent time constants of sampling ®lter (T � 1 s, broken lines;
T � 0.1 s, chain lines) compared with theoretical curves ( full lines), for gust amplitudes of 4s (upper curves) and 2s

(lower curves)
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. Take the pieces of the wind time series around the extremes found (e.g. 10 s before until 10 s after the
extreme).

. Average all found pieces; a maximum is counted as �1 and a minimum as ÿ1.

As can be seen from Figure 5, the agreement between the theoretical gust shape and the ones derived
from the time series is remarkably good. The small deviations are due to the stochastic nature of
turbulence.

Figure 5. (a) Comparison of mean gust shape according to theory ( full line) and derived from simulated wind (broken
line), with amplitude of 3 s and mean wind speed of 10m sÿ1. The number of gusts equals 479. (b) Comparison of mean
gust shape according to theory ( full line) and derived from simulated wind (broken line), with amplitude of 4 s and

mean wind speed of 10m sÿ1. The number of gusts equals 26
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In Figure 6 the mean gust shapes are given for two di�erent mean wind speeds; it can be seen that it is
necessary to do the veri®cation for each mean wind speed separately. From a similar comparison (not
shown here) the importance of the speci®c auto- and cross-correlation functions can be demonstrated.

The theoretical method can also be applied to determine the spatial shape. The method is as follows.

. Search in the simulated wind at height 1 for extremes.

. Determine the pieces of the wind time series at height 2 around the found time instants.

. Average all these pieces.

The agreement between the mean spatial gust shape according to the time series and the theoretical
curves is also very good (Figure 7). The fact that the mean spatial gust shape from the time series is lower
than the theoretical curve is due to the relatively large width of the amplitude range: all gusts between 2.5 s
and 3.5 s are counted as 3 s gusts. The gusts with smaller amplitude will occur more often than larger
gusts; this implies that averaging over all gusts will lead to a mean spatial gust shape with a smaller
amplitude.

Veri®cation of the Gust Shape by Means of Measured Wind

In this section the mean temporal and spatial gust shapes are determined experimentally and compared
with the theoretical expressions derived previously. The wind data analysed here have been measured at
the 240m tall meteorological tower of Cabauw. Cabauw is situated near Utrecht in the Netherlands and
surrounded by farmland with an average terrain roughness of 0.03m. The data set contains
approximately 700 h of data recorded at ®ve di�erent heights (20, 40, 80, 140 and 200m) and measured
at a sample frequency of 2Hz. The measurements have been made during periods when wind speeds
higher than 10m sÿ1 were expected. The average wind speed of the complete data set is 10m sÿ1. For the
veri®cation process the wind data from 40 and 80m heights have been selected, as these are relevant to
wind turbine design. The gust shape was derived from the measurements at 40m height. The data from

Figure 6. Comparison of mean gust shapes according to theory ( full lines) and derived from simulated wind (broken
lines), with amplitude of 3s and wind speeds of 10m sÿ1 (upper curves) and 20m sÿ1 (lower curves)
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80m height have been used to verify the spatial gust shape, i.e. the wind signal at 80m, given a wind
maximum at 40m height. For the data processing the following process was used.

. For every record of 10min, average properties were calculated: average wind speed and standard
deviation.

. The wind speed was normalized using these average properties.

. Minima and maxima of the 40m signal having an amplitude larger than 1.5 s were extracted and
stored, together with 30 s before and after the extreme.

. For the same time period the 80m wind signal was stored.

Figure 7. (a) Comparison of mean spatial gust shape according to theory ( full line) and derived from simulated wind
(broken line), with amplitude of 3 s (1897 gusts). (b) Comparison of mean spatial gust shape according to theory (full

line) and derived from simulated wind (broken line), with amplitude of 4s (115 gusts)
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. Using ensemble averaging, the average maximum gust and the gust shape at 80m were calculated.

The total number of gusts used for averaging was approximately 1700.
Figure 8 shows the gust shape at 40m height for two di�erent amplitudes, i.e. 3 s and 4 s. The time axis

has been normalized with the longitudinal length scale L (i.e. the x Lu of ESDU10) and the average wind
speed V: ~t � 0.747V t/L.

Figure 9 shows the average gust shape of the wind speed at 80m, measured simultaneously with the
40m maximum. The maximum value is lower than that of the 40m maximum gust, re¯ecting the non-
perfect lateral coherence. For comparison the theoretical gust shapes have been plotted. The expressions
for the auto- and cross-correlation functions were taken from ESDU.10 The small dip at t � 0 in Figure 9
is due to the dependence of the compound lateral length scale on t, by application of the Taylor
hypothesis on `frozen turbulence'.

The agreement between the measurements and the theoretical curves is remarkably good. Both the
shape and magnitude of the gusts are predicted well by the theoretical curves, although the real wind
speeds are not strictly Gaussian. The existing small deviations between the theoretical and measured data
might be partially due to the fact that for the theoretical curves the auto- and cross-correlation functions
from ESDU were taken rather than the ones derived from the actual site measurements.

Note that the wind signal exhibits a time asymmetry. A possible explanation for this e�ect is the
asymmetric behaviour of cup anemometers, which accelerate fast but decelerate much slower. The
maximum of the 80m gust seems to have shifted to negative time values. This suggests that there is an
e�ect of wind shear, which has not been accounted for in the theoretical expressions.

Conclusions

An analytical expression for the mean shape of extreme gusts is presented assuming that turbulence is a
stationary stochastic process. According to this expression, the gust has a rather sharp peak, in
contradiction to the gust shape given in standards.

Figure 8. Comparison of mean gust shapes according to theory (lines) and derived from measured wind (symbols), for
amplitudes of 3 s and 4s
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The theoretical mean gust shape has been veri®ed by means of simulated and measured wind data. The
resemblance between the theoretical and experimental curves is good, in particular for the shape in time.
Some possible reasons have been indicated for the still existing small deviations. This demonstrates the
viability of a new advanced method (NewGust2) for the determination of the extreme response. In the
framework of a European project11,12 this method will be extended and demonstrated for present wind
turbines.
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Appendix A: Peaks above Some Threshold A in a Stationary Gaussian Wind Signal

In this appendix, peaks above some threshold A are investigated. For this situation the function p(t) is as
follows (see also Figure 3):

p�t� � ÿ �u d� _u�t�� e�u�t� ÿ A� �21�

with e(t) the unit step function at t � 0 (Heaviside function).
As remarked before, the local minima are also taken into account (but counted as ÿ1). The advantage

is the treatment of a peak with a small dip, which will regularly occur in a stochastic time series. In this
way such a peak is counted as 2 maxima and 1 minimum and thus in total as 2 ÿ 1 � 1 extreme (instead
of 2 maxima). In other words, a peak with a small dip will have about the same e�ect on the average peak
shape as a peak without a dip. Furthermore, a dip (near the threshold A) in a ¯ank of some higher peak,
which is of no interest for our purpose, will have only a minor e�ect on the mean gust shape, as it is treated
as 1 maximum and 1 minimum and thus as 0 extremes. Another advantage of this approach is that it
simpli®es the analytical derivation.

The expectation value of u around these peaks according to (8) is

E� �u�t�� � E�ÿu�t � t� �u�t� d� _u�t�� e�u�t� ÿ A��
E�ÿ �u�t� d� _u�t�� e�u�t� ÿ A�� �22�

The multidimensional distribution function of u(t), u
.
(t), uÈ(t) and u(t � t) will be denoted by P(u,v,w,z).

The shape of a gust above level A can now be expressed as

������u4A�t� �

Z Z Z Z
du dv dw dz �ÿz w d�v� e�u ÿ A�� P�u; v;w; z�Z Z Z Z
du dv dw dz �ÿw d�v� e�u ÿ A�� P�u; v;w; z�

�23�

The delta function in the integrand can be evaluated by setting v equal to zero. Furthermore, the
Heaviside function can be eliminated by adapting the limits of integration, so we obtain

������u4A�t� �
ÿ
Z 1
A

du

Z 1
ÿ1

dw

Z 1
ÿ1

dz P�u; 0;w; z� w z

ÿ
Z 1
A

du

Z 1
ÿ1

dw

Z 1
ÿ1

dz P�u; 0;w; z� w
�24�
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The above expression gives the mean of all peaks above level A. In order to derive an expression for the
mean shape of a peak between levels A and A � dA, the denominator and numerator should be
di�erentiated with respect to A:

����uA�t� �

Z 1
ÿ1

dw

Z 1
ÿ1

dz P�A; 0;w; z� w zZ 1
ÿ1

dw

Z 1
ÿ1

dz P�A; 0;w; z� w
�25�

The probability density function P(u,v,w,z) is a 4D normal distribution with zero means and covariance
matrix

L � s2
1 0 ÿl r�t�
0 l 0 ÿ _r�t�
ÿl 0 m �r�t�
r�t� ÿ _r�t� �r�t� 1

0BB@
1CCA �26�

In principle the required integrals can now be evaluated. In practice this will be di�cult, because the
inverse of the covariance matrix is needed. For this purpose one may use special tools for formula
manipulation, e.g. Maple.13 After performing these mathematical derivations, expression (19) will be
obtained without further approximations. In Reference 4 another route is followed by introducing
conditional probabilities, which reduces the dimension of the problem.

In an analogous manner, expression (20) can be derived for the `spatial' mean gust shape.

Appendix B: Auto- and Cross-correlation Functions Based on the Isotropic
Turbulence Theory

The (normalized) autocorrelation function for the longitudinal turbulence component equals10

r�t� � 0�592 ~t1=3K1=3�~t� �27�

with K the modi®ed Bessel function of the second kind and ~t the dimensionless time:

~t � 0�747 Vt
L

�28�

with V the mean wind speed and L the longitudinal length scale.
The cross-correlation function for the longitudinal velocity component ( for a distance D perpendicular

to the longitudinal velocity component) equals10

r�D; t� � � f�~t� ÿ g�~t�� Ds
2

Dr2
� g�~t� �29�

with

f�~t� � 0�592 ~t1=3K1=3�~t�; g�~t� � 0�592 �~t1=3K1=3�~t� ÿ 0�5 ~t4=3K2=3�~t�� �30�
and

Ds � tV; Dr �
�����������������������
�Ds�2 � D2

q
; ~t � 0�747

L
Dr �31�

with V the mean wind speed and L the longitudinal length scale.
The ®rst and second derivatives of these functions may be obtained in an analytical or numerical way.
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Investigation of Spatial Gusts with
Extreme Rise Time on the Extreme
Loads of Pitch-regulated 
Wind Turbines
Wim Bierbooms*, Section Wind Energy, Delft University of Technology, Delft, The Netherlands

It is assumed that the extreme loading of pitch-regulated turbines is caused by gusts with
an extreme rise time rather than an extreme gust amplitude. A special kind of wind field
simulation, so-called constrained stochastic simulation, is dealt with in order to generate
the desired gusts. Just as in wind field simulation for fatigue purposes, it is assumed that
turbulence is Gaussian; a possibility is mentioned of how to deal with non-Gaussian behav-
iour.On the basis of the presented theory it can be stated that the stochastic gusts produced
in this way are, in a statistical sense, not distinguishable from gusts selected from a (very
long) time series. An example of a spatial gust as well as the mean spatial gust shape is
shown. For a reference turbine the maximum blade root flapping moment has been deter-
mined as a function of the gust centre in the rotor plane; the maximum response is obtained
in the case where the gust hits one of the rotor blades at 75% of the radius. When the gust
duration is large compared with the integral time constant of the controller, the controller
can handle the gust as expected. However, even for small rise times it turns out that the
maximum flap moment due to the gust is not significantly higher than that due to the back-
ground turbulence and 1P excitations. This may indicate that perhaps extreme rise time
gusts do not lead to extreme loading of pitch-regulated wind turbines. For a final judge-
ment a proper probabilistic approach is necessary; an outline of such an approach has
been sketched. Furthermore, it is recommended to do research on other gust types in order
to find out the type which leads to the extreme wind turbine loading.Copyright © 2004 John
Wiley & Sons, Ltd.
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Introduction
Verification of the structural integrity of a wind turbine structure involves analyses of fatigue loading as well
as extreme loading arising from the wind climate. With persistently growing turbines (over 100 m in both 
rotor diameter and tower height), the extreme loading seems to become relatively more important. The reason
for this is that high-frequency wind speed fluctuations, relevant for fatigue, have a limited spatial extent and
so will be cancelled out over the rotor plane. In order to assess the fatigue loading generated, random 3D wind
fields are routinely used in standard wind turbine design packages employed by the wind turbine industry. Sto-
chastic wind fields of typically 10 min length are generated for different mean wind speeds to cover the wind
situations a turbine will meet during its lifetime. For the stochastic wind field simulation it is assumed that tur-
bulence is a stationary Gaussian process specified by a given (cross-)spectral density. The extreme loads,
however, are dealt with in a rather simple way by describing wind gusts as coherent gusts of an inherently
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deterministic character (see e.g. Reference 1), whereas the gusts experienced in real situations are of a sto-
chastic nature with a limited spatial extension.

This conceptual difference may cause substantial differences in the load patterns of a wind turbine when a
gust event is imposed. In order to introduce realistic gust load situations of a stochastic nature, the NewGust
method2 has been launched. It has been inspired by NewWave, a method to generate extreme waves based on
the mathematical work of Lindgren,3 but it differs in methodology. In the probabilistic approach of NewGust,
gusts of given amplitude are generated and used to perform a wind turbine load calculation. The distribution
of the extreme load (or the 50 year extreme load) can be determined by taking into account all gust ampli-
tudes and all mean wind speeds. The method turned out to be fit for stall-regulated wind turbines: the mean
theoretical gust shape has been verified2,4 by comparison with an experimentally derived mean gust shape based
on many time records from the database on wind characteristics.5 Furthermore, the probability of occurrence
of gusts has been verified on the basis of the same database.2

For pitch-regulated wind turbines it is assumed that the extreme response is associated with gusts with an
extreme rise time. In Reference 6, coherent gusts with extreme rise time have been dealt with. In this article
we will extend the method to spatial gusts.

The method to generate gusts has been denoted constrained stochastic simulation and is dealt with in the
third section. In the next section we start with a brief overview of wind field generation in general. Examples
of spatial gusts with extreme rise time are shown in the fourth section. The consequence of these gusts on the
loading of wind turbines is outlined in the fifth section. Finally, the sixth section treats a probabilistic approach
to determine the overall extreme loading of wind turbines, and in the seventh section some remarks on non-
Gaussianity are made.

Recently a report7 has been published in which a totally different method, based on variational calculus, is
applied in order to simulate gusts. It can be shown that the final results, for a given gust description, based 
on the method of constrained stochastic simulation (third section) and the method used in Reference 7 are 
identical.

Simulation of Stochastic Wind Fields
Stochastic time series generators are based on the summation of harmonics with random phase j (uniformly
distributed between 0 and 2p) and amplitudes which follow from the (two-sided) auto power spectral density
S:8

(1)

with

where t is the (discretized) time, Df = 1/T is the frequency step, T is the total time of the sample and wk is a
set of 2K equidistant frequencies (k = 0 excluded).

In most wind field generators implemented in wind turbine design tools, a 3D generalization of equation (1)
is used; the square root is then replaced by a matrix decomposition. A practical disadvantage is that for a full
3D wind field the matrix gets very large, with corresponding high computional demand and required memory
use. A more fundamental disadvantage is that no consistent set of cross-spectra exists for all velocity compo-
nents (longitudinal, lateral and vertical) for all points in space. A way to overcome this problem is to gener-
ate a 3D wind field in some box in space (at one point in time) rather than as function of time:

(2)

with

u r A kr( ) = +( )Â spq spq
spq

cos j

A S fk k= D

u t A tk k k
k K

K

( ) = +( )
=-
Â cos w j
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(vectors and matrices are indicated by bold symbols)
The summation of equation (2) is now over whole (circular) wavenumber space (k = 2p/l, with l the wave-

length, the equivalent of w = 2p/T; the indices s, p and q correspond respectively to the kx, ky and kz directions)
rather than over frequency space. The tensor E(k) is the 3D Fourier transform of the correlation tensor Q(r),
so it describes all second-order moments of turbulence:

(3)

(4)

For isotropic turbulence the spectrum tensor is known and can be decomposed analytically. The decompo-
sition is not unique, so different choices can be made (see e.g. References 9 and 10).

With respect to the geometry of a wind turbine rotor it is natural to apply polar co-ordinates. In Reference
10, equation (2) is therefore rewritten in cylindrical co-ordinates in both wavenumber and real space. The
obtained expression for the velocity vector is periodic in azimuth angle (with period 2p; recall that a wind field
is generated for one time instant) and can thus be expanded in a Fourier series. It turns out that the Fourier
coefficients can be expressed in terms of Bessel functions (of the first kind). Next the x-axis is transformed
into a time axis by application of Taylor’s frozen turbulence hypothesis: x = -Ut (and kx = -2pf/U); the plane
of the wind turbine rotor is chosen to be the r–j (y–z) plane. This all leads to a 2D FFT over frequency and
azimuthal mode. In fact, in the wind field generator Swing411,12 a 1D FFT only is performed and the azimuthal
Fourier coefficients are stored. The remaining Fourier summation is done in the wind turbine design tool, as
the azimuth angles of the rotor blades are calculated at each time step. The advantage of this approach is that
it makes interpolation superfluous: the wind velocities are generated at the blade section locations and the
correct azimuthal positions. In this article we will generate 3D wind fields in a fixed frame of reference, so a
2D FFT is performed. A (wavenumber-dependent) correction is applied just before the FFT in order to correct
for the anisotropy of atmospheric turbulence.

A physically more appropiate way to correct for anisotropy is treated in Reference 9. By application of the
linearized Navier–Stokes equation and consideration of the lifetime of eddies a ‘sheared’ spectral tensor is
obtained. Next a wind field is generated through a 3D FFT in Cartesian co-ordinates. It should be possible to
apply this sheared tensor also in the method presented in this article.

Constrained Stochastic Simulation
Uniform wind gusts
In this subsection a concise overview is given of generation of gusts at one point (or alternatively, coherent
gusts, constant over the rotor plane) with an extreme rise time.6 In the context of this article, such a gust is
specified by a local minimum and a local maximum with a time separation (rise time) Dt and a velocity dif-
ference (jump) DU:

(5)
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Since we assume turbulence to be Gaussian, the first and second time derivatives exist. Note that it is 
not required that the minimum and maximum concerned are consecutive, i.e. it is possible that other 
local minima and maxima are in between. The reason for choosing such a definition for an event is that, with
respect to the assessment of extreme loads on wind turbines, it is not known a priori what will cause the 
highest loads: a modest velocity jump in a (very) short rise time or a large velocity jump in a rather long rise
time.

One could opt for considering the third constraint of equation (5) only, i.e. specifying a velocity jump, but
in that case the two points will in general not be a minimum or a maximum. The implication is that the con-
sidered gust is just a part of some larger velocity jump, i.e. a gust generated on the basis of such a constraint
will generally have a larger velocity jump. Thus load estimates based on such gusts are associated with a whole
range of velocity jumps instead of just one value as is the case with equation (5). Furthermore, specification
of just a velocity jump does not form a countable event. This will significantly complicate the probabilistic
approach which will be outlined in the sixth section.

A remark on the actual values for B1 and B2 will be given at the end of this subsection.
A ‘brute force’ method to obtain wind gusts, with a rise time inside a small range around a desired value Dt

and with a velocity jump inside a small range around DU, is to select these from very long time series of tur-
bulence (either measured or stochastically simulated). It will be clear that such an approach is far from prac-
tical for extreme gusts which will occur on average just once in a year or even 50 years. Furthermore,
sufficiently long measured time series, with a high enough sampling rate of say 5 Hz and at several space
points, do not exist.

An alternative is to perform a special kind of stochastic simulation during which the desired gusts are auto-
matically selected. This method has been denoted constrained stochastic simulation. The starting point of con-
strained stochastic simulation is stochastic simulation, equation (1). In fact, for our purpose an alternative
description by means of a Fourier series is more appropriate:

(6)

As already mentioned, for wind field simulation routinely performed in order to assess wind turbine fatigue
loads, it is assumed that turbulence is Gaussian. The same assumption is applied for constrained stochastic
simulation; in the seventh section some ways of dealing with non-Gaussianity will be discussed. For normally
distributed wind speed fluctuations also the Fourier coefficients ak and bk will be normal. Their means are zero,
they are mutually uncorrelated and their variances are Sk/T, where S is the one-sided auto power spectral density
of the wind speed fluctuations.

For ease of notation we rewrite equation (6) as

(7)

with row vector

(8)

and column vector c consisting of the Fourier coefficients:

(9)

The specification of a wind gust, equation (5), can now also be done on the basis of the Fourier coefficients
ak and bk:

(10)

The random vector a is a linear relation of c defined by

a A=
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(11)

with G a matrix of constants:

(12)

The vector A equals the right-hand side of equation (5), i.e.

(13)

In other words, the Fourier coefficients ak and bk which are normally distributed should satisfy the above
conditions in order to obtain the desired wind gust. Thus selecting some specific gust (from a time series) cor-
responds to considering the matching conditional density of the Fourier coefficients.

The conditional density f(c|a = A) of c upon observing a = A is again normal and thus determined by its
mean mc and covariance matrix Mc. The mean and covariance matrix can be found in handbooks on statistics
(see e.g. Reference 13):

(14)

(15)

with

(16)

(17)

The above equations are valid for normal random variables, which explains our choice of equation (6) 
instead of equation (1); furthermore, equation (6) with Gaussian coefficients is more correct than equation 
(1).

The conditional random vector cc, corresponding to the conditional density f(c|a = A) is

(18)

If c satisfies the original unconstrained statistics, then cc, the conditional random vector satisfying Gcc = A,
has the mean mc and covariance Mc of the constrained process, equations (14) and (15). This can be verified
by writing out the equations for the mean and covariance. Equation (18) provides the required recipe for trans-
forming any realization of the unconstrained process c into a constrained realization cc.
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The above equations for conditional random vectors are general valid, so they can be applied for the vectors
c and a as given in equations (9) and (11). The covariance matrix M of c, the Fourier coefficient vector, is
diagonal with elements Sk/T:

(19)

The constraint is that there is a gust, i.e. a velocity jump DU within rise time Dt, at t0. The corresponding
equation in vector notation is already given as equation (10). The constrained stochastic variable, which sat-
isfies the constraint, can now be generated on the basis of equation (18) with M from equation (19), G from
equation (12), Q from equation (17) and A from equation (13).

This concludes the required theory. In the case where the Fourier sum is calculated for the Fourier coeffi-
cients c normally distributed with covariance matrix given by equation (19), a random wind time series (tur-
bulence) is obtained. In the case where the Fourier sum is calculated for the Fourier coefficients cc according
to equation (18), the desired gust (with velocity jump DU within rise time Dt) is obtained:

(20)

with A given by equation (13), a by equation (11) and

(21)

i.e. R(t) is the Fourier sum of MGTQ-1

In the case where the number of constraints is limited, it should be possible to extend equation (20) into
some explicit expression. For example, in the case of a maximum amplitude gust (u(t0) = A, u.(t0) = 0) an
explicit expression is given in Reference 2 which includes the autocorrelation function and its first time 
derivative.

It is straightforward to implement this in a computer code. An example of such constrained stochastic sim-
ulation is shown in Figure 1.

The mean gust shape is given by

(22)
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(25)

The theoretical mean gust shape has been verified by analysis of wind measurements6 on the basis of the
database on wind characteristics.5

We will conclude this subsection with a remark on the values of B1 and B2. Equation (20) gives the required
recipe to generate a time series around a gust DU in Dt with some specific values of the second derivatives:
B1 and B2. In order to reflect the behaviour of turbulence (assumed to be Gaussian) around an arbitrary gust
DU in Dt, B1 and B2 should become random variables. The corresponding probability density functions (B1 pos-
itive values only, B2 negative values only) can be deduced from the gust statistics (dealt with in the sixth
section). For the wind turbine loads the actual values turned out to be of minor importance. Thus, for sim-
plicity, B1 and B2 were set to their mean values (which can be determined numerically) in the preparation of
Figure 1 (and also in the remainder of this article).

Spatial wind gusts
For spatial gusts14 we have to specify some wind speeds, say N, in the rotor plane (assumed to be perpendic-
ular to the mean wind speed). For reasons of simplicity the results for the longitudinal component only will
be dealt with in this subsection. The velocity fluctuations at these N points form a column vector u(t), so equa-
tion (6) becomes
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Figure 1. An example of a gust with a velocity jump of 6 m s-1 at t = 100 to 101 s. The smooth curve indicates the
(theoretically) mean gust shape; the broken lines indicate the standard deviation of the gust shape
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(26)

The Fourier coefficients ak and bk can, analogously to equation (9), be put into one large column vector cs (sub-
script ‘s’ indicates spatial) with 2KN elements:

(27)

Like equation (7), we can now rewrite equation (26) as

(28)

with matrix

(29)

where I indicates the N ¥ N unit matrix.
The mean of vector cs is again zero and the covariance matrix follows from the covariances of the Fourier

coefficients. They are independent for different frequencies, and for the same frequency the following relation
holds:

(30)

with Sk the matrix of the cross-power spectral densities of the wind speed fluctuations at the different space
points. They are found from the auto power spectral densities (the same as in the previous subsection) and the
coherence function g:

(31)

The coherence function is specified in e.g. standards.
The covariance matrix Ms of ck is thus a block diagonal matrix with the matrices (1/T)Sk on the main diag-

onal (compare with equation (19)).
Next the constraints have to be specified. This time it can be required that a velocity jump is present some-

where in the wind field. Therefore a unit (column) vector e is used to specify the constraints:

(32)

Supposing the rotor centre corresponds to the ith wind speed element, one has to choose e to be the ith unit
vector ei, i.e. the ith element is 1 if a gust in the centre of the rotor is required. The constraint 5 ¥ 2KN matrix
Gs becomes
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The desired spatial gust is now given by

(34)

with

(35)

It seems that the equations are getting too clumsy, but, owing to the structure of the Ms and Gs matrices,
the result for the constraint velocity at each space point (with index i running from 1 to N) is similar to the
result for the coherent gust, equation (20):

(36)

with a and A the left- and right-hand sides respectively of equation (32) and

(37)

where G is given by equation (12) (i.e. for the coherent gust) and M2 is a 2K ¥ 2K diagonal matrix with ele-
ments Sk gin /T, with n the index of the gust centre. Thus, compared with the equation for the coherent gust, a
factor gin is introduced; note that this factor is frequency dependent.

It is not necessary to calculate Q via the matrix multiplication of equation (17), since it can be directly eval-
uated through its definition as the covariance matrix of a (see equation (40)).

In the next section, examples of spatial gusts derived on the basis of equation (36) will be given.
The equations for the mean and variance of spatial gusts are similar to the ones for coherent gusts, equa-

tions (22) and (24).
Instead of equation (32), it would also be possible to specify a gust by constraints at several points in the

rotor plane. However, it would become very difficult to determine the statistics of such gusts (see the sixth
section), since the dimension of the involved integral, equation (39), becomes too large.

Spatial Gusts with Extreme Rise Time
The method described in the previous section has been applied to generate spatial gusts. As an example, a gust
is generated with a velocity jump of DU = 4·8 m s-1 and a rise time of Dt = 1·2 s. The gust minimum (maximum)
is at 30 s (31·2 s) and the gust centre is eccentric with respect to the rotor plane: at a radial position of 15 m
and azimuth angle 0 (the mean wind speed equals 10 m s-1 and for the standard deviation 1 m s-1 is taken). In
Figure 2 the wind speeds as a function of time (with respect to the mean wind speed) are shown for several
azimuthal positions and a radial position of 15 m; also the mean gust shape is given.

The wind speed at the position of the gust centre resembles the result for the coherent gust, Figure 1. Note
that the gust shape will be different if another realization of u(t) is used in equation (20). Figure 3 shows a 3D
representation of the same gust as a function of time. It turns out that the spatial extent of this extreme rise
time gust is limited to say 30 m ¥ 30 m.

The gust statistics will be dealt with later (see the sixth section and Figure 8).

Wind Turbine Loading due to Spatial Gusts with Extreme Rise Time
Two pitch-regulated reference turbines will be considered. The first is a three-bladed 2 MW turbine with a rotor
diameter of 80 m. With respect to the limited spatial extension of the gust (see previous section) it can be antic-
ipated that the maximum response will occur in the case where the gust centre is located near one of the blades.
The maximum root blade flapping moment of the first blade (in upward vertical position, as shown in Figure 4)
as a function of the position of the gust centre is shown in Figure 4 by means of a contour plot (mean wind speed
25 m s-1, turbulence intensity 8%, velocity jump of 4·8 m s-1 in 0·8 s). The plot was obtained through simula-
tion with the simulation tool Bladed (Garrad Hassan), using as input the mean gusts shown on the left in Figure
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3. Bladed is a state-of-the-art wind turbine design tool which includes, relevant for our purpose, dynamic stall
and dynamic inflow. The maximum loading occurs when the gust centre is at a lateral position of 0 m and a ver-
tical position of 30 m (i.e. at three-quarters of the radius). In this situation the gust is in line with the wind shear
and covers the outer part of the rotor blade, which contributes most to the flapping moment.

An example of the response of the reference wind turbine as a function of time is presented in Figure 5.
The controller is designed to keep the power constant above rated wind speed; the reduction of loads was

not an explicit objective. However, the controller (with an integral time constant of 2·4 s) does a great job in
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Figure 2. An example of a spatial gust with a velocity jump of 4·8 m s-1 at t = 30 to 31·2 s for points on a circle 
(radius r = 15 m, azimuth angles 0, p/8, . . . , 7p/8; the gust centre is at an azimuth angle of 0). Top: gusts. 

Bottom: mean gust shapes
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reducing the flap moment; in spite of the severe gust (a velocity jump of eight times the standard deviation)
the maximum flap moment is not significantly higher than the other local maxima (due to the background 
turbulence and 1P excitations such as tower shadow and gravity). A similar simulation is shown in Figure 6
in the case of a gust rise time of 4·6 s.

The gust duration is now large compared with the integral time constant of the controller, so, as expected,
the controller can deal with the gust. In fact the flap moment due to the gust is even lower than the other local
maxima in the flap moment.

It is no use to compare the above results with the wind turbine response on the IEC EOG (extreme operat-
ing gust), since the latter has an assumed return period of 1 or 50 years and the first are just random exam-
ples. It would of course be possible to consider an extreme rise time gust with a return period of 1 or 50 years,6

but such an approach is not recommended: in general a 50 year gust will not lead to a 50 year load. Thus it is
preferable to extrapolate the wind turbine response on gusts instead of the gusts themselves. If the response
of say the flapping moment is extrapolated to 1 or 50 years, a proper comparison can be made with the IEC
EOG load. This probabilistic approach is outlined in the next section; however, the analysis has not yet been
performed for spatial gusts.

The second reference turbine is a 2·75 MW turbine (92 m rotor diameter) with pitch control/variable speed.
Using the Flex5 wind turbine code, the response is calculated on a gust with a velocity jump of 13 m s-1 in
0·45 s (gust centre at 32 m, mean wind speed 20 m s-1, turbulence intensity 13%), see Figure 7.

For clarity this time the mean gust shape of extreme rise time gusts has been used as wind input. Again the
effect on the maximum flap moment is rather limited with respect to the severity of the gust (a velocity jump
of five times the standard deviation).

Owing to these results, it seems not worthwhile to consider gusts with other velocity jumps, as is required
in the probabilistic approach outlined in the next section. Instead an investigation on the particular gust shape
which leads to extreme loads is recommended. For the time being a preliminary conclusion can be drawn that
maybe an extreme rise time gust (above rated wind speed) does not lead to extreme loads of pitch-regulated
wind turbines.
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A Probabilistic Approach to Determine the Extreme Loading of Wind Turbines
In this section a concise outline is given of a probabilistic method to determine the extreme response of wind
turbines. Wind gusts generated on the basis of equation (36) can be used as input for a wind turbine simula-
tion tool. Such a tool determines among other things the internal loads of the wind turbine as a function of
time; e.g. one may be interested in the maximum bending moment in the rotor blades at the root section.
Repeated application of equation (36) will lead to different wind gusts and consequently to different responses
and maximum rotor blade moments. If several simulations are performed for the same gust amplitude and
mean wind speed, a distribution of the extreme loading can be determined. This can be repeated for several
gust amplitudes, varying e.g. from one to six times the standard variation. Each gust amplitude will result in
another (cumulative) distribution of the structural loading. In order to obtain the distribution of the extreme
loading, caused by a gust with an arbitrary amplitude (for given mean wind speed), the different distributions
should be convoluted (weighed) with the occurrence probability of the individual gusts, which will be dealt
with in the next subsection. Following this procedure, the short-term (say 10 min) distribution of the loading
is obtained for some mean wind speed.

In order to determine the long-term distribution, the procedure should be repeated for several mean wind
speeds. The overall final distribution is subsequently obtained by weighting with the occurrence probability of
the mean wind speeds, i.e. the Weibull distribution or an empirical distribution (histogram) valid for some 
specific site. The final distribution can be fitted to some extreme value distribution, e.g. Gumbel or Pareto and
then finally extrapolated to the desired return period, e.g. 50 years. The long-term distribution of the peak
bending moment in the rotor blades shows the probability of exceedance of a certain load level. Instead of an
arbitrary value obtained using deterministic analysis (as is presently specified in standards), the designer can
choose the level of risk according to the load distribution. Furthermore, using the load distribution and resis-
tance distribution of the structure, the probability of failure can be estimated. Together they constitute tools
leading to more efficient and reliable design of wind turbines.
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Gust statistics
By introducing five random variables with zero means (breakdown of vector a, equation (11)), namely

(38)

the probability of occurrence of gusts with a rise time Dt and a velocity jump DU is

(39)

For a given second derivative w = ü(t0) the first time derivative should be in the range between 0 and wdt
in order to obtain a minimum inside the time interval dt. This explains the integration limits of v; a similar
argument holds for the limits of y. The function f(v, w, x, y, z) is a five-variate Gaussian probability density
function with covariance matrix (identical to the one given in equation (17))

(40)

where r is the normalized autocorrelation function, l = r̈(0) is the second-order spectral moment and m = r(4)(0)
is the fourth-order spectral moment.

The mean frequency NDU of gusts with a velocity jump in the range from DU to DU + d(DU) and with a rise
time between Dt and Dt + d(Dt) follows directly from equation (39):

(41)

The mean frequency N of all gusts is

(42)

The last identity can be deduced from the following reasoning. In this article a gust is given by a combina-
tion of a local minimum and a local maximum as defined by equation (5). This implies that it is not required
that the minimum and maximum are consecutive. In other words, every combination of a local maximum and
a local minimum counts as a gust. Since a gust is given by a combination of a minimum and a maximum, we
have to consider two time intervals with time separation Dt. The first is the interval around the local minimum
with width dt and the second is the interval around the local maximum with width d(Dt). The mean frequ-
ency of local minima is equal to the mean frequency of local maxima, namely [1/(2p)] ; this leads to
equation (42).

Finally the density f(DU) of gust events with velocity jump DU is obtained:
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(43)

Via transformation to three new variables it is possible to convert the multinomial of the exponent of f(u,
0, w, DU, 0, z) to a sum of perfect squares (‘completing the square’ method). This allows us to write the two-
dimensional integral of equation (43) as a 1D integral which can be solved numerically (strictly speaking it
remains a 2D integral, since the integrand involves the error function).

The function f(DU) is shown in Figure 8 for several rise times Dt. For a rise time larger than about 10 s the
function shape does not change anymore; apparently for large rise times the correlation between the local
minimum and the local maximum gets so small that the function does not depend any longer on the exact rise
time. For a small rise time the function gets more peak shaped; as expected, the probability of a large veloc-
ity jump decreases with decreasing rise time.

The gust statistics have been verified by analysis of wind measurements.6

Non-Gaussianity
A basic assumption of the method described in the third and fourth sections is that turbulence is Gaussian. The
general opinion nowadays is that this it not correct, especially for time derivatives. Methods to generate 
non-Gaussian turbulence can be found in e.g. Reference 7. One of these methods starts with the generation of
a Gaussian time series x(t) which is transformed with a proper function to take into account the required non-
Gaussian target distribution
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If a monotonically increasing function is chosen, local extremes are not affected (in time) by the transfor-
mation, so it is possible to express the constraint in terms of the Gaussian variable:

(45)

This implies that constraints as treated in the third section can be handled.
The influence of non-Gaussianity, however, should not be overestimated; the mean shapes of uniform wind

gusts, equation (22), compare very well (for non-complex terrain) with mean gust shapes based on wind mea-
surements.6

With respect to the gust statistics (see previous section) it is not a problem at all to replace the Gaussian
expression, equation (43) and Figure 8, with an empirical, non-Gaussian, one in order to derive the overall dis-
tribution of the wind turbine loading.

Conclusions
A probabilistic method has been outlined in order to determine the long-term distribution of the extreme
response of pitch-regulated wind turbines. The probabilistic method relies on a quick determination of the
response caused by a single spatial gust, with a given velocity jump in a given rise time (at some desired point
in space), by means of so-called constrained simulation. If several wind turbine simulations are performed for
the same velocity jump and mean wind speed, a distribution of the loading can be determined. In order to
obtain the distribution of the loading caused by a gust with an arbitrary velocity jump (and given mean wind
speed), the distributions for different gust amplitudes should be weighted with the occurrence probability of
the individual gusts. The overall final distribution is obtained by weighting with the occurrence probability of
the mean wind speed (Weibull) and can subsequently be extrapolated to the desired return period, e.g. 50 years.

A basic assumption of the above method is that turbulence is Gaussian (just as is assumed in the case of
wind field simulation for fatigue analysis). A possible way to take non-Gaussian behaviour into account is men-
tioned in the article.

The above analysis has not yet been performed for spatial gusts with an extreme rise time. However, sim-
ulations with some severe spatial gusts for two reference turbines have shown that they did not lead to sig-
nificantly high loads in the blade root flapping moment. Thus it is possible that extreme rise time gusts might
not be governing the extreme loading of pitch-regulated wind turbines. Therefore it is recommended to inves-
tigate other types of wind gusts as well.
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Abstract. Via so-called constrained stochastic simulation gusts can be generated which satisfy 
some specified constraint. Constrained stochastic simulation is based on conditional densities 
of normal random variables and it has previously been applied to generate maximum amplitude 
gusts and velocity jumps. In this paper it is used in order to generate specific wind gusts which 
will lead to local maxima in the response of (pitch-regulated) wind turbines. The method is 
demonstrated on basis of a linear model of a wind turbine, inclusive pitch control. The mean 
gust shape as well as the mean shape of the response, for some gust amplitude, is shown. By 
performing many simulations (for given gust amplitude) the conditional distribution of the 
response is obtained. By a weighted average of these conditional distributions over the 
probability of the gusts the overall distribution of the response can be obtained. Analytical 
expressions for the conditional distribution of the response (for given gust amplitude) as well 
as the overall distribution are specified. These form an ideal test case of tools (e.g. fitting to an 
extreme value distribution) to be used for non-linear wind turbine models. The application of 
the above method on a non-linear model of a wind turbine has still to be done. 

1.  Introduction 
In order to arrive at the 50-years extreme response of wind turbines it would be ideal to have available 
the wind data, at the specific location of the wind farm, over a period of say 500 year and unlimited 
computational power. The 50-years response could than be determined on basis of simple statistical 
analysis of the simulated response. Both conditions do of course not apply in practice. Instead in 
standards some deterministic gust shape is provided which should represent the 50 years extreme 
situation, [8]. However both the gust shape as well as amplitude is rather arbitrary. Furthermore the 
deterministic gust does not reflect the stochastic nature of turbulence. An alternative is to do 
simulations, as long as practical feasible, and extrapolate the results to the desired return period of 50 
years applying extreme value theory. 

Here we will consider another alternative. In [1] so called constrained stochastic simulation is 
treated which allow to generate wind gusts which satisfy some specified constraint. E.g. one may 
generate time series around a local maximum with specified amplitude, or wind gusts which contain a 
prescribed velocity jump in a specified rise time. These wind gusts are embedded in a stochastic 
background in such a way that they are, in statistical sense, not distinguishable from real wind gust 
(with the same characteristics of the constraint). Constrained stochastic simulation enables us to limit 
the simulation to situations which contributes to the extreme response and skip all others. This 
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potentially saves a lot of computational time and limit the required extrapolation (and accompanying 
uncertainty) to the required return period. 

Maximum amplitude gusts have been successfully applied for stall-regulated turbines; furthermore 
the mean gust shape is validated against wind measurements, [3]. For pitch-regulated turbines it has 
been presumed that velocity jumps (specified by a local minimum and local maximum with a time 
separation (rise time) t∆  and a velocity difference U∆ ) will lead to extreme response. However in [4] 
it is shown that the control system is able to handle such kind of gusts. In this paper we will focus on 
the particular gust shapes which will lead to the extreme response. In order to determine these gusts a 
linear model of a wind turbine will be used. 

It is assumed that turbulence is Gaussian. An idea to extend the methodology to the non-Gaussian 
case is given in [4]. For convenience the wind speed at one point only will be considered; it should be 
possible to extend the method to a 3 D wind field. This paper will focus on the (theoretical) method 
rather than the application. The required statistical analysis is given, as much as possible, in separate 
appendices. 

2.  Determination of the specific gust shape 
Constrained stochastic simulation is based on conditional densities, see Appendix A. As introduction 
of the method maximum amplitude gusts are treated first. The following (zero mean normal) random 
variables (RV) are considered: ( )x u t= , 1 (0)y u= and 2 (0)y u= & with u(t) representing the stochastic 
wind on a wind turbine. The (co)variances of these RV’s are, see also Appendix B: 

 (0)uuM R=  (2.1) 
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A local extreme of level A in the wind at t=0 is given by the constraint: 
 1 2; 0y A y= =  (2.4) 

Application of Eq. (A.5) leads to the desired gust  shape (already presented in earlier work, e.g. [3]): 

 ( ) ( )( ) ( ) ( (0)) (0)
(0) (0)

uu uu
c

uu uu

R t R tu t u t A u u
R R

= + − −
&

&
&&

 (2.5) 

This gust represents an extreme in the wind. For large gust amplitudes A the mean gust shape 
resembles the autocorrelation function (ACF). In case local maxima only are considered one have to 
add an extra constraint (2nd derivative less than 0). The resulting expression for such gust can be found 
in [1]. 

 
We now focus on the gust which will lead to the governing ultimate response of a pitch-regulated 

wind turbine. Here it is assumed that the governing response is given by a local maximum related to 
e.g. the ultimate compression (or tension) stress at some critical location (e.g. blade root or tower base) 
or related to the maximum blade tip deflection (to prevent tower collision). For this purpose the wind 
input u(t) as well as the response r(t) has to be considered. The concerned event is specified by a local 
maximum in the response (of arbitrary value) at t=0 and the value of the wind input. In fact the wind 
input is not considered at t=0 but somewhat earlier, t δ= − . The mathematical reason for this will be 
explained shortly; since there will always be some time delay between the wind input and response of 
the wind turbine it is also natural to do so. So the following RV are 
involved: ( )x u t= , 1 ( )y u δ= − , 2 (0)y r= & and 3 (0)y r= && . The (co)variances are: 

 (0)uuM R=  (2.6) 
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The time difference δ− has been chosen such that ( ) 0ruR δ− =& ; this result in a less complex structure 
for the required inverse of Q. Straightforward application of Eq. (A.5) again provides the gust which 
leads to an extreme in the response: 
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( ) 1(0) { ( ) ( ) (0) ( )}( (0))
(0)

c rr uu ur ru

ru
ur uu uu ru

rr

u t u t R R t R R t A u

R t r R R t R R t B r
R

δ δ δ

δ δ

= + + − − −
∆

− + − + + −
∆

&&&& && &&

&
&& &&& &&

&&

 (2.9) 

with 2(0) (0) ( )uu rr urR R R δ∆ = −&&&& &&  
The expression for the response follows from the fact that the response of a linear system to the ACF 
of the input equals the cross correlation function (CCF) and the response to the CCF equals the ACF 
of the output (see Appendix B). 

 

1( ) ( ) { (0) ( ) ( ) ( )}( ( ))

( ) 1(0) { ( ) ( ) (0) ( )}( (0))
(0)

c rr ur ur rr

rr
ur ur uu rr

rr

r t r t R R t R R t A u

R t r R R t R R t B r
R

δ δ δ

δ δ

= + + − − −
∆

− + − + + −
∆

&&&& && &&

&
&& &&& &&

&&

 (2.10) 

with r(t) the response to u(t). 
It is easily verified that the above expressions indeed satisfy the constraint: 
 ( ) ; (0) 0; (0) 0c c cu A r r Bδ− = = = ≤& &&  (2.11) 

By taking the time difference δ− such that ( ) 0ruR δ− =& ensures that ( ) ( )ru urR Rδ δ− =  is a local 
extreme and as a result (0)cr is a local maximum, as expressed by Eq. (2.11). In case another choice 
had been made for δ  still correct expressions could have been obtained, but they would be more 
complicated than Eq. (2.9) and (2.10). 

3.  Simulations based on a linear model of the wind turbine 
For a linear system it is known that the response to a Gaussian signal is also Gaussian. This implies 
that the distribution of the local maxima in the response is given by the Rice distribution, [2]. In other 
words it is useless to apply constrained stochastic simulation to a linear system since the final answer 
is already known. Here we will nevertheless use a linear model of a wind turbine, just in order to 
demonstrate the probabilistic method. In fact the theoretical solution allows us to verify the 
probabilistic method. 

Since design packages does not standard offer a possibility to determine a linear model the model 
described in [6] has been used instead. This model describes the behavior of a typical 3-bladed pitch 
regulated wind turbine of 3 MW around the operating point of a mean wind speed of 16 m/s (the rotor 
speed is 17.25 rpm). Use is made of so-called Coleman transformation in order to obtain equations of 
motion without azimuth dependent terms. The consequence is that for the input the blade effective 
wind speed should be used. This is the wind speed as observed by a rotating blade at some radial 
position (so inclusive 1P and higher harmonics due to rotational sampling). The pitch control system 
concerns a simple PI system with as input the generator speed. As example the blade root flap moment 
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Figure 1. An example of constrained stochastic simulation; A =6 uσ . Top: wind speed; middle: pitch 
angle; bottom: blade root flap moment (all variables with respect to their working point values). 

 
is taken as reference load, but any other load could have been taken as well. The transfer function H 
between wind speed and root flap moment follows from the state space description of the linear model 
mentioned above. The required cross correlation function Rru is obtained via a Fourier Transform of 
the cross spectrum Sru (see also Eq. (B.13)): 

 *
ru uuS H S=  (3.1) 

with Suu the spectrum of turbulence and the asterisk denotes the complex conjugate. The ACF’s of the 
input and response are obtained via the Fourier Transform of the corresponding spectra. 
 
Based on Eq. (2.9) gusts have been generated for a value of A equal to 6 times the standard deviation. 
The wind speed u(t) is created by an ordinary stochastic wind field generator. The value of B has been 
drawn randomly based on its distribution (Appendix C); see Appendix B for the determination of the 
other required parameters. An example of such a gust is shown in Fig. 1. For this example the time 
shift equals 1.27sδ = ; the constraint ( )cu Aδ− = is also indicated in the figure. In general this 
constraint will not coincide with a local maximum in the wind speed. 

 The response at t=0 is indicated by a circle; it is always a local maximum (due to the constraints 
(0) 0cr =& and (0) 0cr B= ≤&& ) but it is not necessarily the maximum inside the whole time series (a 

simulation length of 200 s is taken). In total 100 simulations have been performed, the averages of 
these simulations are depicted in Fig. 2. 

The theoretical mean gust shape of constrained simulations follows from Eq. (2.9); the mean value 
of B can be determined from its density function, see Appendix C. For our reference case it turns out 
that the mean gust shape almost resembles the auto correlation function of the wind (shifted in time 
overδ ). In general the mean gust shape will be different for other wind turbines, mean wind speeds 
and/or type of response considered (e.g. tower base moment instead of blade root moment). Note that 
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Figure 2. The mean wind speed (left) and the mean blade root flap moment (right) of 100 constrained 
stochastic simulations; A =6 uσ  

 
for the reference case the wind concerns the blade effective wind speed; the rotational modes are 
clearly visible (compare with e.g. Fig. 5.18 from [7]). For these reasons it makes not so much sense to 
directly compare the gust shape of Fig. 2 to e.g. velocity jumps treated in [4] since the latter are given 
in a fixed frame of reference and are applied to some other reference turbine. 

 
The mean shape of the response is shown in Fig. 2, right. Figure 2 is based on constrained 

simulations, but the same result would have been obtained by selecting all local maxima from the 
response of an ordinary simulation over a long time period and performing an average (after first 
shifting all local maxima to t=0 and selecting only the local maxima for which in the corresponding 
wind input ( )cu δ− lies in a small range around A). The mean shape of the response is, in this case,  

 

Figure 3. The conditional distributions of the blade root flap moment for different values for A (based 
on 1000 constrained stochastic simulations for each A).  

 
dominated by the cross correlation function (shifted in time overδ ); in general it will depend on the 
specific wind turbine and type of response. 

In order to obtain the overall extreme load constrained stochastic simulations have to be performed 
for different values for A (and repeated for different mean wind speeds, turbulence intensities). In Fig. 
3 the results for A ranging from 1 uσ to 7 uσ are given. The empirical conditional distributions of Fig. 3 
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are obtained by sorting the values of the response (at t=0) to magnitude (order statistics) and appoint to 
each value: 

 1
i

e nF +=  (3.2) 
with n the total number of simulations for each A (here n=1000) and i ranging from 1 to n. 
Finally, by a weighted average of these distributions over the probability of the gusts (i.e. distribution 
of A) the overall distribution of the response could be obtained (for given mean wind speed and 
turbulence intensity), see also Eq. (D.16). As already mentioned this overall distribution of the local 
maxima in the response should be given by the Rice distribution. In Appendix D it is proven that this 
is indeed the case which is some kind of verification of the given derivations. An extensive treatment 
of the overall probabilistic method can be found in [9]. 

A nice side effect of dealing with a linear system is that a theoretical expression for the conditional 
distribution can be obtained, see Eq. (D.13). The conditional distribution in case of 6 uA σ= is shown 
in Fig. 4. Since we are interested in the extreme values the tails are of importance. In order to 
emphasize the tails also –log(1-F) is plotted. This can be interpreted as log(T) with T the return period 
(expressed in the number of local maxima in the response). For the reference case the 50-year value 
corresponds to: 

 9
50 50*365* 24*3600* 3 10totT N= =  (3.3) 

with Ntot the mean frequency of local maxima, see Eq. (D.4). For the reference wind turbine model 
Ntot=2 Hz, so log(T50) equals 21.9 (indicated by a dotted line). In case of 1000 simulations the highest 
response value corresponds to a return period of about T=1000, so log(T)=6.9. The theoretical curve is 
compared with two empirical distributions; the first one based on 1000 constrained stochastic 
simulations (similar to Fig. 3) and the other based on 50 year of simulations. The agreement turns out 
to be excellent which validates the theoretical expressions given in Appendix D. 

 
 

Figure 4. The conditional distributions of the blade root flap moment for A =6 uσ ; comparison 
between 1000 constrained simulations, the theoretical distribution and 50 years of simulations. The 

dotted line indicates the 50 year return value. 
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4.  Conclusions and outlook 
A method has been presented to generate specific wind gusts. These so-called constrained stochastic 
simulations can be used in order to determine the 50-year return value of the wind turbine load. To this 
end gusts have to be generated for different amplitudes (for each mean wind speed). The overall 
distribution of the load is obtained by averaging over all amplitudes (and mean wind speeds). 

The specific gusts are based on a linear model of a (pitch-regulated) wind turbine and are such that 
they will lead to local maxima in the response. However it makes no sense to apply the above 
mentioned method on the linear model itself since in that case an analytical expression for the 
distribution of extremes is already available, [2]. Instead the gusts should be applied on a non-linear 
model of a wind turbine (which still has to be done). It is of course not certain that the specified gusts 
will also lead to extreme response in that situation but it is expected that the proposed method is an 
improvement compared to deterministic extreme gusts as specified in standards. Furthermore it should 
be realized that uncertainty is inherent in extreme value analysis. Even in case of simulations based on 
ordinary generated stochastic wind fields (or measured wind records), one can not guarantee that gusts 
which dominate the 50-year response are present during the simulation period. 

For application of the method with standard wind turbine design packages the formulation of Eq. 
(2.9) should be generalized to the 3 D case; this can be done similar to [4]. 

A nice side effect of dealing with a linear system is that analytical expressions for the conditional 
distribution of the response (for given gust amplitude) as well as the overall distribution exist. These 
form an ideal test case of tools (e.g. fitting to an extreme value distribution) to be used for non-linear 
wind turbine models. 
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Appendix A: Conditional distribution 
In the paper multiple times use is made of the properties of conditional distributions of normal random 
variables (RV). The conditional density ( | )cf x y  of x upon observing y is again normal and thus 
determined by its mean cµ  and covariance matrix Mc. The condition y can be some specific value 
y=Y, with Y a constant vector. The expressions for the mean and covariance matrix can be found in 
handbooks on statistics (the T stands for transpose): 

 T 1
c

−=µ N Q Y  (A.1) 

 T 1
c

−= −M M N Q N  (A.2) 

The matrices M, N and Q follow from the covariance matrix of the joint random vector
⎛ ⎞
⎜ ⎟
⎝ ⎠

x
y

: 

 ( )
T

T TE[ ]
⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

x M Nx y
y N Q

 (A.3) 

 
i.e.: M=E[x xT], Q=E[y yT] and N=E[y xT]. Vector notation is used since in general the random 

variables x and y can be vectors. 
The conditional density ( | )cf x y can also be expressed in terms of the joint density ( , )f x y and 

marginal density ( )xyf y : 

 , ( , )
( | )

( )
x y

c
y

f x y
f x y

f y
=  (A.4) 

As example the case is treated that the covariance matrix of the joint random vector is given 

by:
3 1.5

1.5 2
⎛ ⎞
⎜ ⎟
⎝ ⎠

; i.e. the variance of x is 3, the variance of y is 2 and the correlation coefficient equals 

about 0.6. The condition Y equal to 1.2 is taken, see Fig. A1 (left). 

 

Figure A1. Scatter plot of 1000 random drawings of the RV’s x and y (left); the values which satisfies 
the condition y=Y are indicated by red. Marginal and conditional densities (right). 

 
From Eq. (A.1) and (A.2) it follows that the mean of the conditional density is 0.9 and the variance 

equals 1.9, see the figure at the right. In conclusion it can be said that in general the mean of a 
conditional density based on zero mean normal RV’s is different from zero and the variance is smaller 
than the variance of the marginal density. 
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For random generation of the conditional RV the density (A.4) can be used directly. In practice it is 
often more convenient to generate random numbers of the unconstrained RV’s x and y and calculate 
the following combination: 

 T 1( )c
−= + −x x N Q Y y  (A.5) 

The RV xc is again normal and it is not difficult to show that its mean and variance equals Eq. 
(A.1) and (A.2) resp. 

 

Appendix B: Auto and cross correlation functions 
The autocorrelation function (ACF) of the input u is given by: 

 ( ) E[u(t)u(t+ )]uuR τ τ=  (B.1) 
Likewise the ACF of the response r is: 

 ( ) E[r(t) (t+ )]rrR rτ τ=  (B.2) 
The cross correlation function (CCF) is defined by: 

 ( ) E[r(t)u(t+ )]ruR τ τ=  (B.3) 

The variance equals the ACF for 0τ = , e.g. 2 (0)u uuRσ = . Note: in expressions which also involve 
values of the ACF/CCF at other time values and/or time derivatives of the ACF/CCF, we will not use 
the symbol uσ . 
It is assumed that the involved stochastic processes are stationary so: 

 ( ) E[r(t)u(t+ )]=E[r(t- )u(t)]ruR τ τ τ=  (B.4) 
Via differentiation with respect toτ one obtains: 

 ( ) E[r(t- )u(t)]= E[r(t)u(t+ )]ruR τ τ τ= − −& & &  (B.5) 
and 

 ( ) E[r(t)u(t+ )]= ( )ru urR Rτ τ τ= −&& &&&&  (B.6) 
So ( ) ( )ru urR Rδ δ− =&& && . 
Combination of differentiation and application of the parameter shift, Eq. (B.4), leads to: 

 ( ) E[r(t) r(t+ )]rrR τ τ= −&& & &  (B.7) 
and 

 ( ) E[r(t) r(t+ )]rrR τ τ=&&&& && &&  (B.8) 
In case a linear system is considered the CCF and ACF can be expressed in terms of the transfer 

function. Writing the input in terms of a Fourier series: 
 ( ) cos( ) sin( )k k k k

k
u t a t b tω ω= +∑  (B.9) 

the response is given by: 
 ( ) cos( ) sin( )k k k k k k k k

k
r t h a t h b tω φ ω φ= + + +∑  (B.10) 

with transfer function: 
 ( ) ki

k kH h e φω =  (B.11) 

The Fourier coefficients are zero mean normal RV’s with variance 2 2E[ ] E[ ] 2 k
k k

Sa b T= = with Sk 

the (double-sided) auto power spectral density of u (i.e. the Fourier transform of Ruu) and T the total 
length of the time signal. The ACF, of input and response, and the CCF can now also be expressed as 
(applying some goniometric identities): 

 2( ) cos( )uu k k
k

R S
T

τ ω τ= ∑  (B.12) 
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 2( ) cos( )ru k k k k
k

R h S
T

τ ω τ φ= −∑  (B.13) 

and 

 22( ) cos( )rr k k k
k

R h S
T

τ ω τ= ∑  (B.14) 

The response of the linear system with the ACF as input, Eq. (B.12), is given by, see also Eq. (B.10): 

 2_ ( ) cos( ) ( ) ( )uu k k k k ru ur
k

r R t h S t R t R t
T

ω φ= + = − =∑  (B.15) 

Likewise the response on the CCF is given by: 

 22_ ( ) cos( ) ( )ru k k k rr
k

r R t h S t R t
T

ω= =∑  (B.16) 

so equals the ACF of the response. 
Dealing with a linear system implies that the response on the time derivative of the CCF equals the 
time derivative of the response on the CCF: 

 _ ( ) ( )ru rrr R t R t=& &  (B.17) 
 

Appendix C: The statistics of B 
In order to generate gusts with the required properties the statistics of B should be known. B is the 2nd 
time derivative of the response in case of the following event: a local maximum in the response, at 
time 0, and the input, at time -δ , equals A. For convenience the following 3 RV’s are introduced (zero 
mean normal): ( )x u δ= − , (0)y r= & and (0)z r= && . The probability of the above event to take place in 
time interval dt can be expressed by: 

 0 0
, , , ,0

( ) ( , , ) ( ,0, )A dA z dt
x y z x y zA

P A f x y z dxdy dz dAdt z f A z dz+ −

−∞ −∞
= ≈∫ ∫ ∫ ∫  (C.1) 

 
For a given second derivative z the first time derivative y should be in the range between 0 and –z 

dt in order to obtain a local maximum inside the time interval dt. This explains the integration limits of 
y. The function fx,y,z(x,y,z) is a 3 variate normal density function with covariance matrix equal to Eq. 
(2.7). 

According to Eq. (C.1) the probability of the event is obtained by integration over all possible 
values of the 2nd derivative z. In other words the density of B is given by the integrand of Eq.(C.1): 

 , ,
0

, ,

( ,0, )
( )

( ,0, )
x y z

B
x y z

B f A B
f B

B f A B dB
−∞

=
∫

 (C.2) 

By application of Eq. (A.4) twice the 3 variate density function can be written as: 
 , , | , |( ,0, ) ( | , 0) (0 | ) ( )x y z z x y y x xf A B f B x A y f x A f A= = = =  (C.3) 
With respect to the normalization of Eq.(C.2) the first term | ,z x yf only have to be considered in 

Eq.(C.3). On basis of Appendix A the conditional density | ,z x yf is again normal (univariate f1) with 
mean and variance: 

 
2

2
1 1

( ) ( ); (0)
(0) (0)

ur ur
rr

uu uu

R RA R
R R

δ δ
µ σ= = −

&& &&
&&&&  (C.4) 

So finally the density of B is given by: 

 1
0

1

( )
( )

( )
B

B f B
f B

B f B dB
−∞

=
∫

 (C.5) 
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By e.g. means of special tools for formula manipulation like Maple it is possible to evaluate the 
integral in the denominator analytically: 

 

2
1

2
1

20 21 1
1 1 1

1
( ) ( ) ( )

2
I A B f B dB e

µ
σµ σµ

σ π

−

−∞
= = − Φ − +∫  (C.6) 

withΦ  the standard normal distribution function. 
An example of the density is given in Fig. C.1. 

 

Figure C.1:  Example of the density of B; A =6 uσ  Figure D.1:  Example of the density of local 
maxima; 0.8ε =  

Appendix D: The (conditional) density of the response 
Similar as outlined in Appendix C the density of the response rc(0) can be determined by regarding the 
following event: a local maximum in the response of level C, at time 0, and the input, at time -δ , 
equals A. The 4 involved normal (zero mean) RV’s are: (0)w r= , ( )x u δ= − , (0)y r= & and (0)z r= && . 
The probability of this event is: 

0 0
, , , , , ,0

( , ) ( , , , ) ( , ,0, )C dC A dA z dt
w x y z w x y zC A

P C A f w x y z dwdxdy dz dC dAdt z f C A z dz+ + −

−∞ −∞
= ≈∫ ∫ ∫ ∫ ∫ (D.1) 

with fw.x.y,z a 4 variate normal density with covariance matrix: 

 

(0) ( ) 0 (0)
( ) (0) 0 ( )

0 0 (0) 0
(0) ( ) 0 (0)

rr ur rr

ur uu ur

rr

rr ur rr

R R R
R R R

R
R R R

δ
δ δ

δ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

M

&&

&&

&&

&& && &&&&

 (D.2) 

The mean frequency of the event, with specific values of C and A, equals: 

 0
, , ,

( , ) ( , ,0, )w x y z
P C AN dC dA z f C A z dz

dt −∞
= = ∫  (D.3) 

For the mean frequency of the event, for any value of C and A (i.e. all local maxima in the response), 
one has to sum up over all possible values: 

 0 0
, , , ,

(0)1( , ,0, ) (0, )
2 (0)

rr
tot w x y z y z

rr

RN z f C A z dz dC dA z f z dz
Rπ

∞ ∞

−∞ −∞ −∞ −∞
= = = −∫ ∫ ∫ ∫

&&&&

&&
 (D.4) 

In the above use is made (twice) of the identity: 

 ,( ) ( , )y x yf y f x y dx∞

−∞
= ∫  (D.5) 

Furthermore Eq. (C.6) has been applied; note that: 
 , |(0, ) (0) ( | 0) (0) ( )y z y z y y zf z f f z f f z= =  (D.6) 
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For the joint density of C and A, under condition that the event occurs, it holds (see also Eq. (A.4)): 

 

0
, , ,

,

0
, , | , , , , 2

( , ,0, )
( , )

( , ,0) ( ) ( , ,0) ( , )

w x y z
C A

tot tot

w x y z w x y w x y

tot tot

z f C A z dzNf C A
N dC dA N

f C A z f z dz f C A I C A
N N

−∞

−∞

= = =

=

∫

∫
 (D.7) 

with 

 

2
2

2
2

20 22 2
2 2 2

2
( , ) ( ) ( )

2
I C A z f z dz e

µ
σµ σµ

σ π

−

−∞
= = − Φ − +∫  (D.8) 

and f2 a univariate normal density, representing the conditional density | , ,z w x yf , with mean and 
variance: 

 2 2
{ (0) (0) ( ) ( )} { ( ) (0) ( ) (0)}

(0) (0) ( )
uu rr ur ur ur rr ur rr

uu rr ur

C R R R R A R R R R
R R R
δ δ δ δ

µ
δ

− + −
=

−

&& && && &&
 (D.9) 

and 

 
2 2

2
2 2

(0) (0) 2 ( ) ( ) (0) ( ) (0)(0)
(0) (0) ( )

uu rr ur ur rr ur rr
rr

uu rr ur

R R R R R R RR
R R R

δ δ δ
σ

δ
− +

= −
−

&& && && &&
&&&&  (D.10) 

For the above the properties of a conditional density (see Appendix A) are again applied. 
The density of A results from the joint density, according to Eq. (D.5): 

 

0
, , , ,

0
, , 1

1( ) ( , ) ( , ,0, )

1 1( ,0, ) ( ) (0) ( )

A C A w x y z
tot

x y z x y
tot tot

f A f C A dC z f C A z dz dC
N

z f A z dz f A f I A
N N

∞ ∞

−∞ −∞ −∞

−∞

= =

= =

∫ ∫ ∫

∫
 (D.11) 

Note: fx,y,z(x,y,z) is the same 3 variate density as in Eq. (C.3) and I1 is the factor given by Eq. (C.6); 
the RV’s x and y are uncorrelated (and thus independent) so: 

 | (0 | ) (0)y x yf A f=  (D.12) 
 
Combination of Eq. (D.7) and (D.11) leads to the conditional density of the height C of a local 

maximum in the response, on observing x=A: 
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f A f A f I A I A

= = =  (D.13) 

With I2 and I1 given by Eq. (D.8) and (C.6) resp. and f3 is a univariate normal density, representing the 
conditional density | ,w x yf , with mean and variance: 
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The conditional density (D.13) could also have been derived based on Eq.(2.10). This equation can be 
seen as the sum χ  of a normal RV α  (resulting from the sum of the factors involving (0)r , ( )u δ− and 

(0)r&& ) and the RV β  (factor involving B, which statistics are presented in Appendix C): 

 ( ) ( ) ( )f f f dχ α βχ χ β β β
∞

−∞
= −∫  (D.15) 

 
 

From the conditional density the marginal density of level C is obtained via weighting with the 
probability of A (combination of Eq. (A.4) and (D.5)), use Eq. (D.7): 
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with 
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and f4 again a univariate normal density, representing the conditional density | ,z w yf , with mean and 
variance: 
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Equation (D.16) may be recognized as the (Rice) density of local maxima in a normal process, [2]; see 
also Fig. D.1. Via some manipulations it can be rewritten as (in agreement with the expression 
presented in [5]): 
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with dimensionless level of the local maxima: 
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and bandwidth parameter: 
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Via so-called constrained stochastic simulation, gusts can be generated 
which satisfy some specified constraint. In this paper it is used in order to 
generate specific wind gusts which will lead to local maxima in the response 
of wind turbines. The advantage of constrained simulation is that any gust 
amplitude (no matter how large) can be chosen. By performing simulations 
for different gust amplitudes and mean wind speeds the distribution of the 
response is obtained. This probabilistic method is demonstrated on the basis 
of a generic 1 MW stall regulated wind turbine. By considering a linearised 
dynamic model of the reference turbine the proposed probabilistic method 
could be validated. The determined 50 year response value indeed 
corresponds to the theoretical value (based on the work of Rice on random 
noise). Next, both constrained and (conventional) unconstrained simulations 
have been performed for the non-linear wind turbine model. For all wind 
speed bins constrained simulation results in 50 year estimates closer to the 
real value. Furthermore, via constrained simulation a lower uncertainty 
range of the estimate is obtained. The involved computational effort for both 
methods is about the same. 

1. Introduction 

 
The objective of this paper is to find the extreme response of wind turbines under stochastic 

wind loading. In order to arrive at the 50-years extreme response it would be ideal to have 
available the wind data at the specific location of the wind farm over a period of say 500 year 
and unlimited computational power. The 50-years response could then be determined on the 
basis of simple statistical analysis of the simulated response. Both conditions do of course not 
apply in practice. Instead, in the IEC standard (IEC 61400-1 Ed. 3, 2005) some deterministic 
gust shape is provided which should represent the 50 years extreme wind situation. Only in case 
of linear systems one may assume that the 50-year response corresponds to the 50-year input. 
However, a wind turbine is a non-linear system, so the maximum response could well result from 
another wind situation. Other main disadvantages are that the gust shape is rather arbitrary, the 
deterministic approach in the standards does not reflect the stochastic nature of turbulence and 
that the particularities of specific design are not taken into account. An alternative is to do 
simulations, as long as practically feasible, and extrapolate the results to the desired return period 
of 50 years applying extreme value theory. Such an approach is followed in Ref. [6], [7] and [8]. 
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In general, the uncertainty in the 50-year estimate decreases with the number of simulations. So 
in practice, the designer should do a trade-off between computational effort and required 
accuracy. 

Here we will present another alternative. In Ref. 1 so called constrained stochastic simulation 
is treated which allow to generate wind gusts which satisfy some specified constraint. One may 
for example generate time series around a local maximum with specified amplitude, or wind 
gusts which contain a prescribed velocity jump in a specified rise time. These wind gusts are 
embedded in a stochastic background in such a way that they are in statistical sense not 
distinguishable from real wind gust (with the same characteristics of the constraint). It is also 
possible to put constraints on some specific load response, e.g. the flapping moment at the blade 
root. 

Constrained stochastic simulation enables us to limit the simulation to situations which 
contribute to the extreme response and skip all others. This saves a lot of computational time and 
limit the required extrapolation (and accompanying uncertainty) to the required return period. 

In this paper we focus on the application of the overall probabilistic method to come to the 
extreme response; the probabilistic method itself is treated in more detail in Ref. 5. See Ref. 1 
and 3 for a full description of constrained stochastic simulation. 

The proposed probabilistic method based on constrained simulation is treated in Section 3. 
The common way to arrive at the 50 years response, i.e. by means of normal, unconstrained wind 
simulations, is given in Section 4. In Section 5 the application of constrained simulations is 
covered. Both methods will be compared in Section 6. However, we start in Section 3, with the 
application of the probabilistic method to a linearised dynamic model of our reference wind 
turbine (Section 2). The reason of considering a linear system is that a theoretical analysis of the 
extreme loading is available which makes a validation of the probabilistic method possible. 
 

2. Reference system 

As reference system a generic fixed speed stall regulated wind turbine is taken. It is a 3-
bladed 1 MW turbine with a rotor diameter of 51 m and a hub height of 55 m. For the 
determination of the extreme loads during power production all mean wind speeds between cut-
in and cut-out should be considered. We have taken a bin size of 3 m/s resulting into 6 mean 
wind speeds as follows: 6, 9, 12, 15, 18 and 21. As example for the loading the blade root 
flapping moment is considered, but any other load signal could have been taken as well. 
Simulations with a random wind speed are performed with the Bladed software package (Garrad 
Hassan and Partners Ltd.). Just for convenience a uniform wind field, i.e. constant over the rotor 
disc (no shear or yaw), is taken. 

In this paper constrained gusts are used which includes a constraint on the load. To this end, a 
linear system of the stall turbine, i.e. the transfer function between the wind input and the blade 
root flapping moment, is required. These transfer functions (one for each mean wind speed) are 
here obtained by application of a system identification toolbox, Ref. 4. For this purpose the 
periodic excitations (rotor imbalance, gravity, tower shadow, wind shear) are set to zero. 
Furthermore the turbulence intensity is set to just 2% to obtain linear behavior, see Fig. 1. The 
2% is still sufficient to have enough response (compared to noise) for proper system 
identification. 

The mean wind speed of 24 m/s is excluded since we were not able to determine a reliable 
linear model for this mean wind speed. This is perhaps due to a shortcoming in the dynamic 
model of the wind turbine (as implemented in Bladed), or its parameters, for this specific wind 
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turbine. Since we want to demonstrate the probabilistic method rather than to determine the 
extreme response of this particular wind turbine this phenomenon is not further investigated but 
instead the mean wind speed of 24 m/s is simply skipped. 
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Figure 1. Relation between turbulence intensity and maximum in response with respect to 
steady value (for one particular turbulence time series). 
 

3. A probabilistic method to find the extreme response using constrained simulations 

3.1 Theory 
The proposed probabilistic method is based on conditional distributions. The gust amplitudes 

of the stochastic wind input of the wind turbine will be denoted as random variable x and the 
local maxima of the response as random variable y. The marginal densities are ( )xf x  and ( )yf y ; 

the joint density is ( , )f x y and ( ) ( | )cf y f y x= is the conditional density of y upon observing x=x. 

The following well-known relations exist: 
 

 ( ) ( , )yf y f x y dx
∞

−∞
= ∫  (1) 

 ( ) ( )
y

y yF y f dβ β
−∞

= ∫  (2) 

 
( , )

( )
( )c

x

f x y
f y

f x
=  (3) 

 ( ) ( )
y

c cF y f dβ β
−∞

= ∫  (4) 
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Combination leads to: 

 

( ) ( , ) ( ) ( )
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y c x

c x c x

F y f d d f f d d

F y f d F y n

α β α β β α α β

α α

∞ ∞

−∞ −∞ −∞ −∞
∞

−∞

= =

= ≈

∫ ∫ ∫ ∫

∑∫
 (5) 

 

with nx the probability (‘fraction of time’) that a gust amplitude is within the discretized 
amplitude intervals of random input x 

 
The distribution of response y can thus be obtained through a weighted summation 

(convolution) of the conditional distributions. The conditional distributions can be determined by 
simulations of wind gusts which are obtained by constrained stochastic simulations, say 100 
simulations for each amplitude. The amplitude of the wind gusts may be varied from say 1σ to 
5σ. 
 In order to apply the method one has to choose some constrained gust. For stall regulated 
wind turbines it can be anticipated that maximum amplitude gusts (in other words: local maxima) 
are governing the response. For pitch regulated wind turbines the proper gusts may be extreme 
rise time gusts. These maximum amplitude and extreme rise time gusts have been investigated in 
previous work, [1]. Surprisingly, the pitch control system was able to handle the extreme rise 
time gusts, even if the rise time was small, [11]. Based on this result a more fundamental 
approach is followed in [3] and applied in this paper. By putting a constraint on the response as 
well, it could be ascertain that the generated gusts would lead to a (local) maximum, of 
unspecified value, in the response (at time t=0). This approach can be used for both stall and 
pitch regulated wind turbines and for any load signal (in any wind turbine component). So, this 
solves the question of what kind of gusts should to be used.  
 

 In Fig. 2 an example of a constrained stochastic simulation is shown for the reference 
turbine; the maximum in the response, at t=0, is indicated by a circle. In total three constraints 
are applied: two on the response in order to obtain a local maximum (i.e. first time derivate equal 
to zero and second time derivative negative) and one on the wind input (which should be equal to 
some value A, which is considered to be the gust amplitude). Note that there are no constraints 
put on the time derivatives of the wind, so the constrained gust is in general not a local 
maximum. The expression of the constrained gust contains the auto- and cross correlation 
function (and time derivatives); see Eq. (2.9) from Ref. 3. So, in order to generate such gusts the 
turbulence spectrum as well as the transfer function of the linearized  wind turbine model should 
be known. The generated gusts are equivalent with gusts (with the same gust amplitude) which 
would have been selected from wind time series. The advantage of the here presented method is 
that through constrained random simulation, gusts with any required high amplitude can be 
generated. To obtain similar gusts via selection from time series, very long time records are 
needed. So, by just a limited number of constrained stochastic simulations extreme responses can 
be obtained. 
 

~74~



 5 

-30 -20 -10 0 10 20 30
5

10

15

20

time

co
ns

tr
ai

ne
d 

w
in

d

-30 -20 -10 0 10 20 30
0.4

0.5

0.6

0.7

0.8

time

co
ns

tr
ai

ne
d 

re
sp

on
se

 

Figure 2. Example of constrained stochastic simulation; 5σσσσ gust at t=0 s 
Top: turbulence (input) in m/s (mean value of 12 m/s). 
Bottom: blade root flapping moment (response) in MNm. 

 
Eq. (5) is used to obtain the distribution of the local maxima in the response. To this end the 

conditional distributions Fc are fitted to some distribution, e.g. a generalized extreme value 
distribution (GEV) or three parameter Weibull. The long term response, say 50 year, is obtained 
via the following equation: 

 

 50
50( ) ( )N

yF y F y=  (6) 

with N50 the number of local maxima in 50 years; it is assumed that the local maxima are 
independent. For response values in the order of the 50 year response this assumption is certainly 
true. 
 Application of Eq. (5) requires information on the gust probability nx. For maximum 
amplitude gusts (i.e. local maxima) the gust probability is given by the Rice distribution, [2].  For 
the above mentioned gusts (with also a constraint on the response) an analytical expression for 
the gust probability is given in Ref. 3 (Eq. (D.11)). 

 
 

3.2 Application 
 In Section 5 the above mentioned probabilistic method will be applied to the reference 
turbine. Here we will first demonstrate it with the aid of a linearised model (for each mean wind 
speed) of the same turbine. The reason to do so is that a theoretical expression exists for the 
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distribution of local maxima in a normal process, Ref. 2. So this makes the validation of the 
probabilistic method possible since the response of a linear system to a Gaussian input 
(turbulence) will also be Gaussian. 

Gusts have been generated with 5 amplitude levels (from 3σ up to 7σ, turbulence intensity of 
12%; 100 simulations for each amplitude with different random seeds). Constrained gusts can be 
short; to account for transient response a time interval of 30 s. before and after the gust is taken, 
see Fig. 2. 

 
As explained in the Appendix, the maximum response (at t=0 s) can be considered as a 10-

min. maximum. The theoretical advantage is that this establishes a one-to-one relation between 
the gust event and the maximum in the response. Such a one-to-one relation does not exist in 
case all wind gusts are considered (as done in previous work, Ref. 9 and 10) since in general the 
number of gusts (local maxima in the input) differs from the number of local maxima in the 
output. In other words, in that case it is not possible to relate each maximum in the response to 
one particular wind event (local maximum). A practical advantage of considering 10-min. 
maxima is that smaller amplitude gusts do hardly contribute to the 50-year estimate (see e.g. Fig. 
8). This is convenient since the distribution of the response on constrained gusts with small 
amplitudes, say below 3σ, is not so easy to obtain. The reason for this is that then the response is 
dominated by the stochastic background rather than by the constrained gust. Another practical 
advantage of considering 10-min. maxima is that the maxima can be considered to be 
independent and that it is trivial to obtain the number of maxima in 50 year. 

 
 The results of the 100 constrained simulations for a mean wind speed of 12 m/s are depicted 

in Fig. 3. Please note that constrained simulation is still stochastic; i.e. 100 simulations leads to 
100 different values of the maximum response (from which a distribution can be constructed). 
Since we are mainly interested in the tail of the distributions also a logarithmic scale has been 
used (bottom graphs). Via application of Eq. (5) the convolution (weighted average) can be 
obtained which is the overall distribution of the (10-min.) maxima in the response. In order to do 
this calculation it must be possible to evaluate the conditional distributions over the range of 
response level of interest. Here we apply a straightforward inter- / extrapolation scheme as 
follows: below the 90th percentile the empirical distribution ( Fe=i/(N+1) with i=1 to N and 
N=100) is used and above a Generalised Extreme Value (GEV) fit to the data. The GEV 
comprises all three possible limiting Extreme Value (EV) distributions with left endpoint, right 
endpoint or no endpoint at all, [13]. The latter one is also known as Gumbel distribution. For one 
amplitude the fit as well as the uncertainty ranges (dotted lines) are shown in Fig. 4. The 
uncertainty range taken here is the 68% confidence interval which corresponds to one standard 
deviation (plus and minus) assuming that the results are Gaussian distributed. A GEV has three 
parameters, namely a location, scale and shape parameter. The latter is also called the extreme 
value index. In case it is negative the distribution has a right endpoint. The fit, Fig. 4, is 
compared to the theoretical one (Eq. (D.13) from Ref. 3). 
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Figure 3. The distributions of the maxima in the response (linear model) obtained via 
constrained stochastic simulation for several gust amplitudes (for a mean wind speed of 12 
m/s and turbulence intensity of 12%). In the bottom graph the uncertainty bounds of the 
convolution are given by dashed lines. 
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Figure 4. The (fitted) distribution of the maxima in the response (linear model) obtained 
via constrained stochastic simulation for 1 gust amplitude (5σσσσ); mean wind speed 12 m/s 
and turbulence intensity of 12%. In the bottom graph the uncertainty range of the fit is 
indicated by dashed lines. 

 
The convolution in Fig. 3 is compared to the theoretical Rice distribution, Ref. 2. As 

mentioned above, the convolution is a weighted average of the 5 distributions (for each gust 
amplitude), Eq. (5). This explains its stepwise behavior. At first sight one may think that the 
convolution is rather poor but that only holds for smaller response values (below 0.25 MNm). If 
one would be interested in this response range the result can be drastically improved by 
considering lower gust amplitudes (e.g. 1σ to 4σ with a step size of 0.3σ). Here we are interested 
in the (upper) tail and in that region the convolution is close to the theoretical one. 

Please note that there is a strong correlation between gust amplitude and response, namely for 
higher amplitudes the distribution of the maxima in the response is shifted to the right. This 
substantiates the claim that by constrained stochastic simulation extreme situations can be 
obtained with a limited number of simulations. 

 
The procedure outlined above is repeated for the other mean wind speeds and the results are 

depicted in Fig. 5. Again the agreement between the convolution (averaged over the probability 
of the mean wind speed bins, for which a Weibull distribution is taken with shape parameter 2 
and scale parameter 8 m/s) and the theoretical one is excellent especially at the tail. For the 
reference turbine there is no simple relation between mean wind speed and response. Such a  
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simple relations does not to be the case due to the non-linear behavior of wind turbines 
(especially due to the aerodynamics, e.g. stall). 

 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

0.5

1

response

F

distribution

theoryconvolution

 6  9 12

15
18

21

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

10

20

30

40

response

-lo
g(

1-
F

)

theory
 6  9

12
15

18
21

convolution

 
 
Figure 5. The distributions of the maxima in the response (linear model) obtained via 
constrained stochastic simulation for several mean wind speeds (turbulence intensity of 
12%). 

 
As can be seen, the convolution starts at about 0.3 instead of 0. This is due to considering 

mean wind speeds from 6 m/s (instead of 0) as well as gust amplitudes from 3σ (instead of 0). 
Furthermore, the convolution exhibits a stepwise shape; this is due to the discretized gust 
amplitudes used in Eq. 5. Both effects will not influence the determination of the 50-years value. 
The latter is obtained by the intersection of the distribution with 1-1/T50 with T50=2628000 the 
number of 10-min. periods in 50 year (indicated in the graph by a horizontal line). The 
determined 50-years value y50=0.89±0.02 MNm is close to the theoretical one: y50t=0.930 MNm.  

By considering the terms from Eq. (5) the contribution of each mean wind speed to the final 
result can be calculated, see Fig. 6. It appears that 21 m/s dominates the 50-year result. The 
obtained result for y50 can be improved by considering a finer amplitude range. With respect to 
Fig. 6 just the mean wind speeds of 12 m/s, 15 m/s and 21 m/s have to be taken into account. To 
this end the contribution of each gust amplitude to the result is determined, see Fig. 7. 
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Figure 6. Top: The value of the conditional distribution (exceedance probalitity) for y=0.89 
MNm (linear model) for mean wind speeds 6, 9, 12, 15, 18 and 21 m/s. 
Middle: the fraction of time nx for each mean wind speed. 
Bottom: Contribution of each mean wind speed to the tail estimation of the response (i.e. 
the normalized product of the values of the top and middle graph). 
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Figure 7. Top: The value of the conditional distribution (exceedance probalitity) for y=0.89 
MNm (linear model), mean wind speed 21 m/s; gust amplitudes of 3σσσσ to 7σσσσ. 
Middle: the fraction of time nx for each gust amplitude. 
Bottom: Contribution of each gust amplitude to the tail estimation of the response (i.e. the 
normalized product of the values of the top and middle graph). 

 
On the basis of Fig. 7 new constrained simulations have been performed for gust amplitudes 

in between 2σ and 5.9σ (with steps of 0.3σ). This improves the calculated 50 years value to 
y50=0.91±0.02 MNm. From Fig. 8 it can be concluded that the amplitude range, as well as 
discretization, is sufficient and much further refinement cannot be achieved. Without information 
as provided by Fig. 8 it is easily to consider too small amplitude ranges leading to wrong answers 
as occurred in [12]. 
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Figure 8. Top: The value of the conditional distribution (exceedance probalitity) for y=0.91 
MNm (linear model), mean wind speeds 21 m/s; gust amplitudes of 2σσσσ to 5.9σσσσ. 
Middle: the fraction of time nx for each gust amplitude. 
Bottom: Contribution of each gust amplitude to the tail estimation of the response (i.e. the 
normalized product of the values of the top and middle graph). 

 
 

4. Determination of the 50-years response based on normal (unconstrained) simulations 

 
In the previously section the probabilistic method has been applied to a linearised dynamic 

model of a wind turbine in order to validate the method. In the next section we will apply it to 
our topic of interest, i.e. a regular (non-linear) dynamic wind turbine model. First, a traditional 
treatment of extremes based on normal simulations will be covered in this section. In the IEC 
annex F (informative) a statistical extrapolation of loads for ultimate strength analysis is 
described. How exactly such an extrapolation should be carried out, e.g. number of simulations 
and which distribution function(s) has to be used, is still under discussion. In order to have some 
reference for the results to be presented in Section 5, we have chosen to do 1000 10-min. 
simulations for each wind speed bin. This number varies in other studies from 10 only Ref. 6, 90 
(Ref. 7) to 200 (Ref. 8). Just for ease a GEV distribution is again exploited for fitting a 
distribution to the simulation results.  
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Figure 9. The distributions of the maxima in the response obtained via normal 
(unconstrained) stochastic simulation for several mean wind speeds (turbulence intensity of 
12%). 

 
The wind field simulation is based on a Fourier summation with random Gaussian coefficients 

(zero mean and variance related to the spectral value, [1]). By varying the seed of the random 
number generator different simulations are performed. 

Similar to Section 3 the results per wind speed bin are fitted and afterwards averaged 
(convoluted), see Fig. 9. At a mean wind speed of 6 m/s the wind turbines has 2 operational rotor 
speeds; the rotor speed leading to the highest load have been considered. 

As can be seen in the graph for the reference turbine the response increases with mean wind 
speed. This will not generally be true, esp. in case of pitch turbines. 

The following 50-years value is obtained: y50=0.934 MNm (with an uncertainty range of 
0.925 to 0.943 MNm). This result is totally governed by the mean wind speed of 21 m/s (figure 
similar to Fig. 6 and not shown here). For the reference turbine the maximum wind speed taken 
into account (recall that the mean wind speed of 24 m/s was excluded from our analysis) is 
dominating the response. In general, this does not have to be the case.  

This 50 year value is based on stochastic loading only. In practice one also has to take the 
deterministic loads (due to wind shear, gravity, etc.) into account. 
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5. Determination of the 50-years response based on constrained simulations 

 
Constrained simulations will now be applied to arrive at the 50-year extreme. The same type 

of constrained gusts as used in Section 3 is taken. These gusts will lead to a local extreme in the 
response, of some unspecified level, at time t=0 s, see Fig. 2. However, this only holds for the 
linearized model as treated in Section 3. Here the gusts are applied as input to a non-linear wind 
turbine model so in general the extreme will not coincide with t=0 s. The local extreme in the 
response closest to t=0 s. is taken. 

Since we are dealing with a non-linear model one may even question if these constrained 
gusts can be in fact used. From Fig. 10 it can be seen that the load response is related to the gust 
amplitude. In Section 6.3 it will be shown that it is worthwhile to apply constraint simulation in 
case such a relation exists. 
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Figure 10. The distributions of the maxima in the response obtained via constrained 
stochastic simulation for several gust amplitudes (for a mean wind speed of 12 m/s and 
turbulence intensity of 12%); in the upper graph the uncertainty bounds in the 
determination of the convolution are shown by dashed lines. For comparison the result 
obtained by unconstrained simulations (from Fig. 9) are shown as well. 

 
The results for all mean wind speeds are displayed in Figure 11. From the graph a 50-years 

value can be read of y50= 0.952 MNm (with an uncertainty range of 0.908 to 1.013 MNm). Again 
the fifty year value is dictated by the wind speed of 21 m/s (graph similar to Fig. 6 and not 
shown here). Next, on the basis of a figure similar to Fig. 7 a finer amplitude grid of A=3σ to 6σ 
is used to redo the constrained simulations leading to an improved estimate of y50=0.935 MNm. 
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Figure 11. The distributions of the maxima in the response obtained via constrained 
stochastic simulation for several mean wind speeds (turbulence intensity of 12%); for 
comparison the result obtained by unconstrained simulations (from Fig. 9) are shown as 
well. 
 

 

6. Discussion 

 
In this section we will compare the results obtained by unconstrained simulations (Section 4) 

and constrained simulations (Section 5). Next, the differences between these results, obtained 
with a non-linear model and those from a linear dynamic model, Section 3, will be discussed. 
Finally, it will be investigated if it is possible to apply other kind of constrained gusts in order to 
arrive at the 50-year load level. 

 
6.1 Comparison between constrained and normal simulations 

We will first address the relation between the uncertainty range of the distribution fit and the 
number of simulations. In Section 4 1000 simulations have been performed for each wind speed 
bin. So we can redo the fitting of the results to a GEV distribution using 100 simulations only; in 
fact this can be done 10 times (simulation 1-100, 101-200, etc.). The resulting 10 fits are 
presented in Fig. 12. Furthermore, the uncertainty range (of about 0.1 MNm) of one of the 10 fits 
is shown (dashed lines).  We recall from Section 3.2 that the uncertainty range taken equals the 
68% confidence interval. Fig. 12 is in line with this since indeed 7 out of 10 of the fits are in the 
uncertainty range. As expected the uncertainty range (0.02 MNm, see Table 2) for the fit to the 
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1000 results is less but still considerable large. The particular range will depend on the specific 
case, wind turbine and load situation, as well as fit method (we have applied a built-in routine of 
Matlab). However it should be stressed that the occurrence of these (large) uncertainty ranges is 
inherent in fitting distributions on the basis of a limited number of simulations. This is due to the 
natural variations which will occur in case a limited number of random drawings are taken from 
a fixed distribution. 

In the graph the 99th as well as the 1-1/T50=99.99996th percentile are indicated by (horizontal) 
lines (with T50=2628000, the number of 10-min. periods in 50 year). The range of the 99th 
percentiles for the 10 fits is just 8% (normalized with the 99th percentile obtained from the 1000 
simulations: 0.698 MNm). Often a convergence criteria or goodness of fit is taken considering 
the 99th percentile (or even lower in the tail). From Fig. 12 it is now instructive to notice that a 
rather small scatter at the 99th percentile will still lead to a large uncertainty range at the value of 
interest: the 50 year value (0.735 NMm determined from the fit using 1000 simulations). From 
the above it will be clear that it is good practice always to specify the uncertainty range in an 
estimate of a 50 year value.  
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Figure 12. The distributions of the maxima in the response obtained via unconstrained 
stochastic simulation (for a mean wind speed of 12 m/s and turbulence intensity of 12%); 
obtained via 10 different sets of 100 simulations each. 
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Table 1: Unconstrained simulations 
Nr: number of simulations 
U: mean wind speed 
R50: the 50 year value 
∆R50: the uncertainty range in R50 (corresponding with 2 times the standard deviation) 

Nr (-) U (m/s) R50 (MNm) ∆R50 (MNm) 
100 9 0.688 0.165 
100 12 0.757 0.104 
100 21 0.980 0.132 
100 overall 0.941 0.111 
200 9 0.669 0.090 
200 12 0.759 0.075 
200 21 0.984 0.109 
200 overall 0.942 0.058 

 
 
Table 2: Unconstrained simulations 

Nr (-) U (m/s) R50 (MNm) ∆R50 (MNm) 
1000 9 0.643 0.023 
1000 12 0.735 0.021 
1000 21 0.961 0.033 
1000 overall 0.934 0.018 

 
 
Table 3: Constrained simulations 
A: amplitude range (lower value : step size : upper value) 

Nr (-) U (m/s) R50 (MNm) ∆R50 (MNm) A (-) 
100 9 0.645 0.010 5:0.2:7 
100 12 0.739 0.040 4:0.2:6 
100 21 0.976 0.094 3:0.2:6 
100 overall 0.935 0.095  

 
 The overall results for our reference turbine are given in the Tables 1 to 3 for the mean wind 
speeds of interest. With respect to the discussion above the given values for ∆R50 are more 
important than those for R50 since the latter depends on the particular set of 100 values which is 
taken (notice the variation of R50 in Fig. 12 for different data sets). Unlike the linear model 
(Section 3) there is no theoretical expression available for a non-linear model. So it is not known 
which of the results, obtained through constrained or unconstrained simulations, is best. Here we 
just take the values from Table 2 as reference. First it can be noticed that the R50 results from 
both Table 1 and 3 are in line with these reference values (taking the specified uncertainty ranges 
into account). Secondly, the results of the constrained simulations (Table 3) are (far) better than 
the unconstrained simulations (Table 1) for all mean wind speeds; the R50 values are closer to the 
reference ones and also the uncertainty ranges are smaller. The computational efforts are of the 
same order. A simulation length of 1 min. is taken for each gust amplitude in order to account for 
transient response. The amplitude ranges given in Table 3 have been chosen on the basis of 
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simulations using (normalized) amplitudes from 3σ to 7σ, so in total 16 or 21 amplitudes have 
been taken. Most probably 30 s. per gust is sufficient with respect to transient response so each 
constraint simulation can take about 10 min. simulation time. In case conservatively a length of 1 
min. per gust is taken each constraint simulation of Table 1 corresponds to (16 to) 21 min. 
simulation time. Even then constrained simulation outperforms unconstrained simulation; 
compare Table 3 with the results for 200 10-min. simulations, Table 1. 
 
 On basis of Table 1 to 3 it can determined that the uncertainty range (per wind speed) 
decreases with the number of simulations: 

 50
bR Nr−∆ ∝  (7) 

with b in between 1 and ½ (i.e. in order to halve the uncertainty range two to four times more 
simulations are required). 
 The uncertainty range for U=21 m/s for the constrained simulations (Table 3) is much larger 
than for the other wind speeds. A reason for this is that for this wind speed it happens that the 50 
year value depends on a broader amplitude range; this weakens the advantage of constrained 
simulation compared to unconstrained simulation. 
 One of the aspects that needs further investigation is the choice of the extreme value 
distribution. In this paper the GEV is applied. This implies that it may happen that a GEV with 
some endpoint is fitted to the data even if this data is taken from a distribution without endpoint 
(or just the other way round). Due to the limited number of data and its randomness this may 
happen for some particular gust amplitudes and not for some other. As a consequence only the 
latter amplitudes will contribute to the 50-year estimate (assuming that all endpoints are less than 
this value). This phenomenon hinders the determination of the correct amplitude range. This may 
be solved by considering a distribution without endpoint, e.g. the three parameter Weibull 
distribution. 

 
6.2 The effect of non-linearity 

In this paper the extreme responses of both non-linear and linearised models are analyzed. By 
comparing the results some notion of the effect of non-linear behavior of wind turbines on the 
extreme loading can be obtained. The results presented below are of course just valid for our 
reference turbine. 

In Section 3.2 the obtained (theoretical) 50-years response of the linearised model equals 
0.930 MNm. The 50-years value of the original (non-linear) wind turbine model appears to be 
0.934 MNm. As example of the differences for one particular mean wind speed we consider 12 
m/s. The 1-1/T50 quantile for the linearised model equals 0.872 MNm. The same quantile of the 
non-linear model is much smaller: 0.735 MNm. It is in line with Fig. 1 that the extreme value of 
the non-linear model is lower. 

 
6.3 Application of other constrained wind fields 

In this paper gusts have been used which results in a local extreme in the response, Fig. 2. The 
expression of such gusts has been derived on basis of a linearized wind turbine model. In Ref. 3 
the whole probabilistic method based on this kind of gusts has been validated. For non-linear 
models such a validation is not possible and it is open for discussion if these gusts are the proper 
ones. It will be shown below that as long as there is a correlation between gust amplitude and 
response (i.e. the larger the gust amplitude the larger the response) any gust shape can be used in 
the probabilistic approach. On basis of several simulations for different amplitudes it can be 

~88~



 19 

easily determined if such a correlation exists. From Fig. 10 it is clear that a correlation is present 
for the considered gusts in this paper. 

In fact, Eq. (5) is valid for every kind of gust. As example, maximum amplitude gusts (i.e. 
gusts which have a local maximum of some specified amplitude) are generated and afterwards 
used as input for the load calculations. The results are given in Fig. 13 (which is comparable to 
Fig. 10). It can be seen that the response is again related to the gust amplitude (in the range of the 
simulations, upper graph; not in the extrapolated tails, bottom graph). The result is not that good 
compared to the result from the unconstrained simulations but could again be improved by 
refining the range of gust amplitudes. We have not done so since we merely want to show that it 
is in principle possible to use some other gust shapes. Also gusts have been used with some 
maximum negative amplitude (i.e. maximum amplitude gusts multiplied by -1). The distributions 
for the different gust amplitudes appear more or less the same (not shown here) since there is 
hardly a correlation between negative gusts and response for a stalled regulated wind turbine. 
Still these gusts can in principle be applied but it makes no sense since it will not save simulation 
time compared to unconstrained simulations. 

For stall regulated turbines it could have been anticipated that maximum amplitude gusts, as 
observed in Fig. 2, lead to extremes in the response. For pitch regulated wind turbines it is not 
straightforward which gust shape is relevant. So, for pitch turbines it is convenient to use the 
same gust model as we have used here from Ref. 3. It appears that the governing gusts for a 
typical pitch turbine are velocity dips, Fig 14. 
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Figure 13. The distributions of the maxima in the response obtained via constrained 
stochastic simulation of maximum amplitude gusts (for several gust amplitudes and a mean 
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wind speed of 12 m/s and turbulence intensity of 12%); for comparison the result obtained 
by unconstrained simulations (from Fig. 9) are shown as well. 
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Figure 14. Example of a constrained gust (with respect to the mean value) for a pitch 
regulated wind turbine. 

 

7. Conclusions 

 
A probabilistic method has been presented to determine the 50 year value in the response of a 

wind turbine. The method relies on so-called constrained stochastic simulation. Through 
constrained simulation, gusts can be generated which satisfy some specified constraint. In this 
paper it is used in order to generate specific wind gusts which will lead to local maxima in the 
response of wind turbines. By performing many simulations (for given gust amplitude) the 
conditional distribution of the response is obtained. By means of a weighted average of these 
conditional distributions over the probability of the gusts the distribution for given mean wind 
speed is determined. The overall distribution of the response is obtained by a weighted average 
of the distributions for each wind speed bin taking into account the probability of occurrence of 
the wind speed bins. 

The main advantage of constrained simulation is the reduction of the computational cost (or to 
increase the accuracy for the same computational effort). It is related to the ability of defining 
wind inflow series that lead to local load maxima based on linear modeling of the system. 
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As reference turbine a generic 1 MW stall regulated wind turbine is taken. By considering a 
linearized dynamic model of this turbine the proposed probabilistic method is validated. The 
determined 50 year response value corresponds indeed to the theoretical value based on Rice. 

The 50 year values have been calculated on the basis of constrained and unconstrained 
(conventional) simulations with the non-linear dynamic model of the reference turbine. For each 
wind speed bin a number of 100 simulations are performed. For the governing wind speed bins 
the number of unconstrained simulations has been increased to 1000 to serve as reference result. 
For all wind speed bins the results obtained via constrained simulation are better than those using 
unconstrained simulations: the 50 year estimates are closer to the reference values and the 
uncertainty ranges are smaller. The involved computational effort for both methods is about the 
same. 

 
The uncertainty range, inherent in the extrapolation from a limited data set to 50 year, is 

rather large even if 1000 10-min. simulations are performed. It is recommended to mention the 
uncertainty involved in a 50 year estimate. 

 
In future research constrained simulations will also be applied to other current wind turbines 

and loads; for this purpose new constrained wind gusts should be generated. In this paper just a 
uniform turbulent wind field is taken into account. It should be possible to extent the method to a 
complete wind field covering all 3 turbulence components. A practical limitation can be the 
determination of the required transfer functions from wind field (i.e. many points in the rotor 
plane) to the load of interest. The required number of simulations for each gust amplitude as well 
as choice of the distribution function (with of without endpoint) may be further investigated. A 
final validation of any method to come to a 50 year response would be comparison with long 
term wind turbine load measurements. Combined wind and load measurements will also reveal if 
present turbulence simulators are good enough; do they provide the diversity of turbulent 
structures as encountered by real wind turbines operating in a range of environments? 
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Appendix: Application of 10-min. maxima in the probabilistic method 
 
In this appendix it will be investigated if 10-min. maxima, rather than all maxima, can be used 

in the probabilistic method outlined in main text. The gust amplitudes of the stochastic wind 
input of the wind turbine will again be denoted as random variable x and the local maxima of the 
response as random variable y. The joint distribution ( , )F x y  corresponds to the joint 
density ( , )f x y . The maxima during some period p (e.g. 10-min.) are indicated by xp and yp. The 
joint distribution Fp for these maxima is: 
 

 ( , ) ( , ) pN

pF x y F x y=  (A.1) 

 
with Np the number of local maxima of the response in time period p. 
 

We will now examine if we can express the marginal distribution Fyp(y) in terms of 
conditional distributions like Eq. (5). The joint density fp is given by: 

 
2 ( , )

( , ) p
p

F x y
f x y

x y

∂
=
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 (A.2) 

From Eq. (A.1) we obtain: 
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The (first order) partial derivatives have an upper bound given by: 
 

 
( , )

( , ) ( , ) ( )
y

x

F x y
f x d f x y dy f x

x
β β

∞

−∞ −∞

∂ = < =
∂ ∫ ∫  (A.5) 

 
and a similar expression for the partial derivative to y. For large x and y the densities ( )xf x and 

( )yf y go to 0 while ( , )F x y is approaching 1, thus the 1st term at the right hand side of Eq. (A.4) 

can be neglected. So we have: 
 

 1( , ) ( , ) ( , )pN

p pf x y N F x y f x y
−≈  (A.6) 

 
Similar to Eq. (3) the conditional density for the maximum per period is given by: 
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( , )

( )
( )

p
cp

xp

f x y
f y

f x
=  (A.7) 

 
Assuming that the maxima per period are independent the marginal distribution Fxp equals: 

 

 ( ) ( ) pN

xp xF x F x=  (A.8) 

 
so the density fxp is given by: 
 

 1 1( ) ( )
( ) ( ) ( ) ( )p pN Nxp x

xp p x p x x

dF x dF x
f x N F x N F x f x

dx dx
− −= = =  (A.9) 

 
For large values of y, ( , ) ( )xF x y F x≈ , thus: 

 

 1( ) ( , ) ( )pN

xp p xf x N F x y f x
−≈  (A.10) 

 
Finally, combination of Eq. (A.6), (A.7) and (A.10) leads to: 
 

 
1
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f xN F x y f x

−

−≈ = =  (A.11) 

 
So, the conditional densities obtained via constrained stochastic simulation can also be used 

for the determination of the distribution of the maxima of the response over some time period as 
long as we are interested in the tail of the distribution. For large y: 
 

 ( ) ( ) ( ) ( ) ( ) ( )yp cp xp c xp c xpF y F y f d F y f d F y nα α α α
∞ ∞

−∞ −∞
= ≈ ≈∑∫ ∫  (A.12) 

 
with nxp the probability (‘fraction of time’) that a maximum over period p is within the 
discretized amplitude intervals. This probability is given by: 
 

 ( ) ( )xp xp upp xp lown F x F x= −  (A.13) 

 
with Fxp the distribution of the maximum of period p, Eq. (A.8), and xupp and xlow the upper and 
lower bound resp. of the amplitude interval. 

 
The contribution of modest gusts to the tail of the response distribution will be limited. It is 

therefore more natural to rewrite Eq. (A.12) in terms of the exceedance probability: 
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Recommendations with respect to standards 
and design 

 
 
This dissertation deals with extreme loads on wind turbines due to 

turbulence. So, specific wind conditions like thunderstorms, front passages, 
downbursts and hurricanes are excluded. A probabilistic method has been 
presented to determine the 50 year value in the response of a wind turbine. The 
method relies on so-called constrained stochastic simulation. Through 
constrained simulation gusts can be generated which satisfy some specified 
constraint. It can be used in order to generate specific wind gusts which will lead 
to local maxima in the response of wind turbines. By performing many 
simulations (for given gust amplitude) the conditional distribution of the response 
is obtained. By a weighted average of these conditional distributions over the 
probability of the gusts the distribution for given mean wind speed is determined. 
The overall distribution of the response is obtained by a weighted average of the 
distributions for each wind speed bin taking into account the probability of 
occurrence of the wind speed bins. 

Based on the performed research three recommendations can be 
formulated with respect to wind turbine standards. 

 
In the IEC standard (IEC 61400-1 Ed. 3, 2005) an informative annex 

(annex F) is provided on the statistical extrapolation of loads for ultimate strength 
analysis. It is recommended that this annex becomes normative. If this is done, 
turbulence in the ultimate strength analysis will be treated in a stochastic rather 
than deterministic manner, just as is the case now for fatigue analysis. As a 
consequence the Extreme Operating Gust (EOG) will become obsolete. Also the 
use of the Extreme Turbulence Model (ETM) can be abandoned since through 
constrained stochastic simulation the specific gusts can be obtained which 
dominates the response. 

A second recommendation is that the standard should focus on the 50-
year response rather than the 50-year wind situation. 

A practical bottleneck of a probabilistic approach is perhaps the required 
computational effort. Say, 100 simulations should be performed for each wind 
speed bin in order to obtain a reliable estimate of the response distribution 
function. Furthermore, suppose that in total 4 wind speed bins (between cut-in 
and cut-out) contribute to the 50 year response. So, in total 400 10-min. 
simulations should be carried out which will take in the order of 3 days on a PC 
(depending on design package and PC). This required computer time can be 
decreased significantly (a factor 2 or more) by the application of constrained 
stochastic simulation. 

In the above mentioned IEC annex it is stated that one should consider at 
least 300 min. of time series (over the range of wind speed bins). The third 
recommendation is that not the simulation length is mentioned in the standard 
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but instead the required uncertainty range of the 50 year estimate, since the 
latter is of interest for a wind turbine designer. 

 
 
Apart from a speed advantage the application of constrained stochastic 

simulation is profitable for a designer. As mentioned before, via constrained 
simulation the specific gust shape which dominates the response can be 
obtained. This information can be used in order to modify the design and/or the 
controller. 

Furthermore, in this thesis analytical expressions for the conditional 
distribution of the response of linear models (for given gust amplitude) as well as 
the overall distribution (for given mean wind speed) are specified. These form an 
ideal test case of tools (e.g. fitting to an extreme value distribution) to be used for 
non-linear wind turbine models. 
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Appendix: Analytical expressions for the mean gust shape 
 
 In this thesis different expressions for the mean gust shape with amplitude A are 
mentioned which seem to contradict each other. For convenience they are here once more 
shown: 

 ( ) ( )NewGustu t Ar t=  (A.1) 
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with 
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 (A.4) 

and 

 
2 2( )

Aλγ
σ µ λ

=
−

 (A.5) 

The auto correlation function is given by r(t) and σ2, λ and µ are the zeroth, second and 
fourth order spectral moment resp. 
 
Eq. (A.1) follows immediately from the NewGust expression, Eq. (1) from Chapter 3 
(with t0 set to 0); Eq. (A.2) and (A.3) are resp. identical to Eq. (19), Chapter 3 and Eq. 
(3.12), Chapter 2. The mean gust shapes are depicted in Fig. A.1 and A.2. 
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Figure A.1: Mean gust shapes of local maxima, Eq. (A.3), and local minima, Eq. (A.20), 
compared to NewGust, Eq. (A.1); U=10 m/s, σ=1.5 m/s and A=5. The graph at the 
bottom is a detail of the graph on top. 
 
The reason for the differences is that the gusts have been defined dissimilar. Eq. (A.1) 
and (A.3) are based on the gust expression of constrained stochastic simulation. Eq. (A.3) 
is the mean shape of maximum amplitude gusts. By omitting the constraint that the 
extreme event has to be a local maximum leads to the NewGust simplification Eq. (A.1). 
For Eq. (A.2) local extremes have been considered but in a special way. To be more 
specific: both local maxima and local minima are taken into account but the latter are 
counted as -1. The idea behind this is the treatment of a peak with a small dip, which will 
regularly occur in a stochastic time series. Such a peak is counted as 2 maxima and 1 
minimum thus in total as 2-1=1 extreme (instead of 2 maxima). In other words a peak 
with a small dip will have about the same effect on the average peak shape as a peak 
without a dip. Furthermore a dip (near the threshold A) in a flank of some higher peak 
will have a minor effect only on the mean gust shape as it is treated as 1 maximum and 1 
minimum thus as 0 extremes. 
 
Below it is shown that the three expressions are in line with each other. 
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Figure A.2: Mean gust shapes of local extremes, Eq. (A.2) and (A.27), compared to 
NewGust, Eq. (A.1); U=10 m/s, σ=1.5 m/s and A=5. The graph at the bottom is a detail 
of the graph on top. 
 
Local maxima 

We start with the expression for a maximum amplitude gust (Eq. (3.8), Chapter 
2): 

 
c 2 2

2 2

( )( )

( )( )

( )
( ) ( ) ( ) ( ) (0) (0)

1
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r t r t B u

µ λ
µ λ µ λ λ

λ
µ λ µ λ

= + + − + +
− −

+ −
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ɺɺ ɺ

ɺɺ ɺɺ

 (A.6) 

So the mean gust shape equals: 

 c 2 2 2 2
( ) ( )

1
( ) ( ) ( ) ( ) ( )u t r t r t A r t r t B

µ λ λ
µ λ µ λ µ λ µ λ

= + + +
− − − −

ɺɺ ɺɺ  (A.7) 

In order to evaluate this expression the mean value of B has to be known. For the 
derivation of the statistics of B we use the method from appendix C, Chapter 5. For 
convenience the following 3 RV’s are introduced (zero mean normal):(0)x u= , 

(0)y u= ɺ and (0)z u= ɺɺ . The probability of a local maximum  
 , 0, 0x A y z B= = = <  (A.8) 

to take place in time interval dt can be expressed by: 
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The function fx,y,z(x,y,z) is a 3 variate normal density function. According to Eq. (A.9) the 
probability of the event of a local maximum is obtained by integration over all possible 
values of the 2nd derivative z. In other words the density of B is given by the integrand of 
Eq. (A.9): 

 , ,
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, ,

( ,0, )
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( ,0, )

x y z
B

x y z

B f A B
f B

B f A B dB
−∞

=
∫

 (A.10) 

The denominator takes care of the normalization. The 3 variate density function 
can be written as: 

 , , | , |( ,0, ) ( | , 0) (0 | ) ( )x y z z x y y x xf A B f B x A y f x A f A= = = =  (A.11) 

With respect to the normalization of Eq. (A.10) the first term | ,z x yf only have to be taken 

from Eq. (A.11). The conditional density | ,z x yf is again normal (univariate f1) with mean 

and variance: 

 2 2 2
1 1; ( )Aµ λ σ σ µ λ= − = −  (A.12) 

 
So finally the density of B is given by: 

 1
0

1

( )
( )

( )
B

B f B
f B

B f B dB
−∞

=
∫

 (A.13) 

The mean value of B is obtained through: 
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= ∫  (A.14) 

By e.g. means of special tools for formula manipulation like Maple it is possible to 
evaluate this expression analytically: 
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Substitution in Eq. (A.7) leads to Eq. (A.3) the expression for the mean shape of local 
maxima as derived in Chapter 2; see also Fig. A.1. 
 
Local minima 
 Eq. (A.7) also holds for local minima 

 , 0, 0x A y z C= = = >  (A.16) 
Similar to above the density of C equals: 
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The mean of C is given by: 
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with 
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leading to the following mean gust shape for local minima (see also Fig. A.1): 
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Local extremes 
 For the mean shape of local extremes the mean gust shapes of local maxima and local 
minima have to be combined. For this purpose the number Nmax of local maxima and Nmin 
of local minima, in given time period, are required. From Eq. (A.9) we obtain: 
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Further on, only the ratio of the numbers is needed so common factors can be ignored. 
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and 
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The expression for the mean shape of extremes counting local minima as -1 equals: 
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The factor in the 2nd term can be evaluated by substitution of Eq. (A.4), (A.19), (A.23) 
and (A.24): 
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N N e e
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 (A.26) 

So, Eq. (A.25) indeed equals Eq. (A.2) the expression for the mean shape of local 
extremes as derived in Chapter 3; see Fig. A.2. 
 
 For completeness, also the expression is given for the mean shape of local extremes 
counting local minima as +1 (see also Fig. A.2): 
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The factor in the 2nd term can be rewritten as: 
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One may wonder why Eq. (A.27) deviates (a little bit) from Eq. (A.1), see Fig. 

A.2. This is due to the fact that Eq. (A.1) is based on the condition 
 , 0x A y= =  (A.29) 

This condition not automatically implies a local extreme. It may happen during a (almost) 
horizontal part of the time series (inflexion point), see Fig. A.3b. Vice versa, a local 
extreme does not always fulfill condition Eq. (A.29), see Fig. A.3c. In fact, a local 
extreme is determined by a zero crossing of y, the first time derivative of the wind speed. 
A zero crossing will occur, in a small time interval dt, in case y is in between 0 and -z dt 
(with z the second time derivative). Note that the integration limits in Eq. (A.9) are taken 
accordingly. So, for a local extreme the specific range of y is depending on z in contrast 
to a fixed range to be taken in case of the condition according to Eq. (A.29). 

The result of Eq. (A.1) can be obtained by considering Eq. (A.7) as the mean 
shape of the event given by 

 , 0,x A y z D= = =  (A.30) 
(i.e. it is left open if it is a local maximum or local minimum or even an inflexion point). 
So, D is the 2nd derivative of the wind speed on condition Eq. (A.29). As mentioned 
previously, the corresponding conditional distribution equals f1 and its mean is given by 
Eq. (A.12). Substitution into Eq. (A.7) indeed leads to Eq. (A.1). 
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Figure A.3: Three different wind speed time series. Two conditions are considered: 
- vertical red line: 2.45< u <  2.55; zero crossing in uɺ  (local extreme) 
- vertical blue line: 2.45< u <  2.55 ; -0.5< u <  0.5ɺ  

The mean wind speed (on top) as well as its first (middle) and second (at the bottom) time 
derivative is shown. 
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