

Delft University of Technology

Experimental demonstration of entanglement delivery using a quantum network stack

Pompili, M.; Delle Donne, C.; te Raa, I.; van der Vecht, B.; Skrzypczyk, M.; Ferreira, G.; de Kluijver, L.;
Stolk, A. J.; Hermans, S. L.N.; Pawełczak, P.
DOI
10.1038/s41534-022-00631-2
Publication date
2022
Document Version
Final published version
Published in
NPJ Quantum Information

Citation (APA)
Pompili, M., Delle Donne, C., te Raa, I., van der Vecht, B., Skrzypczyk, M., Ferreira, G., de Kluijver, L.,
Stolk, A. J., Hermans, S. L. N., Pawełczak, P., Kozlowski, W., Hanson, R., & Wehner, S. (2022).
Experimental demonstration of entanglement delivery using a quantum network stack. NPJ Quantum
Information, 8(1), 10. Article 121. https://doi.org/10.1038/s41534-022-00631-2
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1038/s41534-022-00631-2
https://doi.org/10.1038/s41534-022-00631-2

ARTICLE OPEN

Experimental demonstration of entanglement delivery using a
quantum network stack
M. Pompili 1,2, C. Delle Donne 1,2, I. te Raa 1, B. van der Vecht1, M. Skrzypczyk1, G. Ferreira1, L. de Kluijver1, A. J. Stolk 1,
S. L. N. Hermans1, P. Pawełczak1, W. Kozlowski1, R. Hanson 1✉ and S. Wehner1✉

Scaling current quantum communication demonstrations to a large-scale quantum network will require not only advancements in
quantum hardware capabilities, but also robust control of such devices to bridge the gap in user demand. Moreover, the
abstraction of tasks and services offered by the quantum network should enable platform-independent applications to be executed
without the knowledge of the underlying physical implementation. Here we experimentally demonstrate, using remote solid-state
quantum network nodes, a link layer, and a physical layer protocol for entanglement-based quantum networks. The link layer
abstracts the physical-layer entanglement attempts into a robust, platform-independent entanglement delivery service. The system
is used to run full state tomography of the delivered entangled states, as well as preparation of a remote qubit state on a server by
its client. Our results mark a clear transition from physics experiments to quantum communication systems, which will enable the
development and testing of components of future quantum networks.

npj Quantum Information (2022) 8:121 ; https://doi.org/10.1038/s41534-022-00631-2

INTRODUCTION
By sharing entangled states over large distances, the future
Quantum Internet1,2 can unlock new possibilities in secure
communication3, distributed and blind quantum computation4,5,
and metrology6,7. Fundamental primitives for entanglement-
based quantum networks have been demonstrated across several
physical platforms, including trapped ions8,9, neutral atoms10,11,
diamond color centers12–15, and quantum dots16,17. To scale up
such physics experiments to intermediate-scale quantum net-
works, researchers have been investigating how to enclose the
complex nature of quantum entanglement generation into more
robust abstractions18–24.
A common way to facilitate the scalability of complex systems is

to break down their architecture into a stack of layers. Each layer
in such a stack is characterized by a specific service that it provides
to the layers above, reducing complexity for the higher layers,
which can subsequently rely on this service. Moreover, the higher
layers need no knowledge of the specific protocol and physical
realization that a lower layer uses to realize the specified service.
An example from classical networking is the TCP/IP stack used on
the present-day Internet. In this stack, the link layer enables
reliable transmission of data between two network nodes that are
directly connected by an unreliable physical medium such as fiber
or radio. Higher layers can rely on errors being detected by the
link layer and are agnostic about whether the underlying link layer
protocol is Ethernet or Wi-Fi.
Several network stacks have been proposed for quantum

network nodes19–21, like the one depicted in Fig. 1. These draw
inspiration from classical architectures like the TCP/IP stack or the
more generic Open Systems Interconnection (OSI) model.
Specifically, the functional allocation of the stack proposed in
ref. 19 conceptually mirrors the TCP/IP stack in that the link layer
ensures reliable (quantum) communication between adjacent
nodes, and the network layer extends this service to nodes not
directly connected by a physical medium themselves. We

emphasize that, of course, no quantum data is passed up and
down the layers of the stack, but only qubit metadata. Very
intuitively, such metadata is similar to passing only references to
an address in a physical memory up and down the stack (similar to
what happens in many implementations of the TCP/IP stack in
practice), while in the classical case, data may of course also be
copied up and down layers.
We also note that the Quantum Internet and the associated

quantum network stack, do not aim to replace the classical
Internet—they will likely coexist, as the Quantum Internet cannot
operate without classical communication in practice. In addition to
classical information used to facilitate entanglement generation,
we also expect classical communication at the level of the
quantum application itself (e.g., quantum key distribution), which
would, for practical reasons, be performed using the classical
Internet. Finally, in a quantum network, classical communication
could also be used to realize controllers like those at the core of
software-defined networks (SDN)25 to distribute information for
resource scheduling and quality of service26. The proposed
quantum network stack architecture, along with proposals for
resource scheduling and routing techniques (e.g., refs. 26–33), pave
the way for larger-scale quantum networks.
In this work, we experimentally demonstrate a link layer

protocol for entanglement-based quantum networks. The link
layer abstracts the generation of entangled states between two
physically separated solid-state qubits into a robust and platform-
independent service. An application can request entangled states
from the link layer and then, in addition, apply local quantum
operations on the entangled qubits in real-time. Using the link
layer, we perform full state tomography of the generated states
and achieve remote state preparation—a building block for blind
quantum computation—as well as measure the latency of the
entanglement generation service.
To evaluate the correct operation and performance of our

system, we measure (a) the fidelity of the generated states and (b)

1QuTech & Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, The Netherlands. 2These authors contributed equally: M. Pompili and C. Delle Donne.
✉email: R.Hanson@tudelft.nl; S.D.C.Wehner@tudelft.nl

www.nature.com/npjqi

Published in partnership with The University of New South Wales

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-022-00631-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-022-00631-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-022-00631-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-022-00631-2&domain=pdf
http://orcid.org/0000-0002-8360-1957
http://orcid.org/0000-0002-8360-1957
http://orcid.org/0000-0002-8360-1957
http://orcid.org/0000-0002-8360-1957
http://orcid.org/0000-0002-8360-1957
http://orcid.org/0000-0003-2834-4334
http://orcid.org/0000-0003-2834-4334
http://orcid.org/0000-0003-2834-4334
http://orcid.org/0000-0003-2834-4334
http://orcid.org/0000-0003-2834-4334
http://orcid.org/0000-0002-9504-9370
http://orcid.org/0000-0002-9504-9370
http://orcid.org/0000-0002-9504-9370
http://orcid.org/0000-0002-9504-9370
http://orcid.org/0000-0002-9504-9370
http://orcid.org/0000-0002-6989-9937
http://orcid.org/0000-0002-6989-9937
http://orcid.org/0000-0002-6989-9937
http://orcid.org/0000-0002-6989-9937
http://orcid.org/0000-0002-6989-9937
http://orcid.org/0000-0001-8938-2137
http://orcid.org/0000-0001-8938-2137
http://orcid.org/0000-0001-8938-2137
http://orcid.org/0000-0001-8938-2137
http://orcid.org/0000-0001-8938-2137
https://doi.org/10.1038/s41534-022-00631-2
mailto:R.Hanson@tudelft.nl
mailto:S.D.C.Wehner@tudelft.nl
www.nature.com/npjqi

the latency incurred by the link layer and physical layer when
generating entangled pairs. For both fidelity and latency, we find
that our system performs with a marginal overhead with respect
to previous non-platform-independent experiments. We also
identify the sources of the additional overhead incurred and
propose improvements for future realizations.

RESULTS
Quantum link layer protocol
Remote entanglement generation constitutes a fundamental
building block of quantum networking. However, for a user to
be able to integrate it into more complex quantum networking
applications and protocols, the entanglement generation service
must also be: (a) robust, meaning that the user should not have to
deal with entanglement failures and retries, and that an
entanglement request should result in the delivery of an
entangled pair; (b) quantum-platform-independent, in order for
the user to be able to request entanglement without having to
understand the inner workings of the underlying physical
implementation; (c) on-demand, such that the user can request
and consume entanglement as part of a larger quantum
communication application. Robust, platform-independent, on-
demand entanglement generation must figure as one of the basic
services offered by a system running on a quantum network node.
In other words, establishing a reliable quantum link between two
directly connected nodes is the task of the first layer above the
physical layer in a quantum networking protocol stack, as
portrayed in Fig. 1. Following the TCP/IP stack nomenclature, we
refer to this layer as the link layer. We remark that, in the
framework of a multi-node network, a quantum network stack
should also feature a network layer (called internet layer in the
TCP/IP model) to establish links between non-adjacent nodes and,
optionally, a transport layer to encapsulate qubit transmission into
a service19–21 (as shown in Fig. 1).

Link layer service. The service provided by a link layer protocol
for quantum networks should expose a few configuration
parameters to its user. To ensure a platform-independent

interaction with the link layer, such parameters should be
common to all possible implementations of the quantum
physical device. In this work, we implement a revised version
of the link layer protocol proposed—but not implemented—in
ref. 19, with the following service description. The interface
exposed by the link layer should allow the higher layer to
specify: (a) Remote node ID, an identifier of the remote node to
produce entanglement with (in case the requesting node has
multiple neighbors); (b) Number of entangled pairs, to allow for
the creation of several pairs with one request; (c) Minimum
fidelity, an indication of the desired minimum fidelity for the
produced pairs; (d) Delivery type, whether to keep the produced
pair for future use (type K), measure it directly after creation
(type M), or measure the local qubit immediately and instruct
the remote node to keep its own for future use (type R, used for
remote state preparation); (e) Measurement basis, the basis to
use when measuring M- or R-type entangled pairs; (f) Request
timeout, to indicate a time limit for the processing of the
request. After submitting an entanglement generation request,
the user should expect the link layer to coordinate with the
remote node and to handle entanglement generation attempts
and retries until all the desired pairs are produced (or until the
timeout has expired). When completing an entanglement
generation request, the link layer should then report to the
above layer the following: (a) Produced Bell state, the result of
entanglement generation; (b) Measurement outcome, in case of
M- or R-type entanglement requests; (c) Entanglement ID, to
uniquely identify an entangled pair consistently across source
and destination of the request.

Quantum link layer protocol. A design of a quantum link layer
protocol that offers the above service is the quantum entangle-
ment generation protocol (QEGP) proposed by Dahlberg et al.19.
As originally designed, this protocol relies on the underlying
quantum physical layer protocol to achieve accurate timing
synchronization with its remote peer and to detect inconsistencies
between the local state and the state of the remote counterpart.
To satisfy such requirements, QEGP is accompanied by a quantum
physical layer protocol, called midpoint heralding protocol (MHP),
designed to support QEGP on heralded entanglement-based
quantum links.

Entanglement requests and agreement. QEGP exposes an inter-
face for its user to submit entanglement requests. An entangle-
ment request can specify all the aforementioned configuration
parameters (remote node ID, number of entangled pairs,
minimum fidelity, request type, measurement basis), and an
additional set of parameters which can be used to determine the
priority of the request. In the theoretical protocol proposed in
ref. 19, agreement on the requests between the nodes is achieved
using a distributed queue protocol (DQP) which adds the
incoming requests to a joint queue. The distributed queue,
managed by the node designated as primary, ensures that both
nodes schedule pending entanglement requests in the same
order. Moreover, QEGP attaches a timestamp to each request in
the distributed queue, so that both nodes can process the same
entanglement request simultaneously.

Time synchronization. Time-scheduling entanglement genera-
tion requests is necessary for the two neighboring nodes to
trigger entanglement generation at the same time, and avoid
wasting entanglement attempts. QEGP relies on MHP to
maintain and distribute a synchronized clock, which QEGP itself
uses to schedule entanglement requests. The granularity of such
a clock is only marginally important, but its consistency across
the two neighboring nodes is paramount to make sure that
entanglement attempts are triggered simultaneously on the
two ends.

Node 1

Application

Transport

Network

Link

Physical
Attempt

entanglement

generation

Quantum

platform

Platform-

independent

stack

Robust direct

entanglement

generation

End-to-end

entanglement

generation

Qubit

transmission

Node 2
Classical channel

Quantum channelApplication

Transport

Network

Link

Physical

Fig. 1 Quantum network stack architecture. At the bottom of the
stack, the physical layer (red), which is highly quantum-platform-
dependent, is tasked with attempting entanglement generation.
The link layer (yellow) uses the functionality provided by the
physical layer to provide a platform-independent and robust
entanglement generation service between neighboring nodes to
the higher layers. The network and transport layer (not implemen-
ted in this work, grayed out) will support end-to-end connectivity
and qubit transmission. Applications (blue) use the services offered
by the stack to perform quantum networking tasks. Based on
Dahlberg et al.19.

M. Pompili et al.

2

npj Quantum Information (2022) 121 Published in partnership with The University of New South Wales

1
2
3
4
5
6
7
8
9
0
()
:,;

Mismatch verification. One of the main responsibilities of MHP is
to verify that both nodes involved in entanglement generation are
servicing the same QEGP request at the same time, which the
protocol achieves by sending an auxiliary classical message to the
heralding station when the physical device sends the flying-qubit.
The heralding station can thus verify that the messages fetched by
the two MHP peers are consistent and correspond to the same
QEGP request.

QEGP challenges. We identify three main challenges that would
be faced when deploying QEGP on a large-scale quantum
network, while suggesting an alternative solution for each of
these. (C1) Using a link-local protocol (DQP) to schedule
entanglement requests, albeit sufficient for a single-link network,
becomes challenging in larger networks, given that a node might
be connected to more than just one peer. In such scenarios, the
scheduling of entanglement requests can instead be deferred to a
centralized scheduling entity, one which has more comprehensive
knowledge of the entire (sub)network26. (C2) Entrusting the
triggering of entanglement attempts to QEGP would impose very
stringent real-time constraints on the system where QEGP itself is
deployed—even microsecond-level latencies on either side of the
link can result in out-of-sync (thus wasteful) entanglement
attempts. While ref. 19 identifies this problem as well, the original
MHP protocol assumes that both QEGP peers issue an entangle-
ment command to the physical layer at the same clock cycle. In
this scheme, MHP initiates an entanglement attempt regardless of
the state of the remote counterpart. We believe that fine-grained
entanglement attempt synchronization should pertain to the
physical layer only, building on the assumption that the real-time
controllers deployed at the physical layer of each node are anyway
highly synchronized15. (C3) Checking for request mismatches at
the heralding station requires the latter to be capable of
performing such checks in real-time. Given that the two
neighboring MHP protocols have to anyway synchronize before
attempting entanglement, we suggest that, as an alternative
approach, consistency checks be performed at the nodes
themselves, rather than at the heralding station, just before
entering the entanglement attempt routine.

Revised protocol
To address the present QEGP and MHP challenges with the
proposed solutions, we have made some modifications to the
original design of the two protocols. In particular, we adopted a
centralized request scheduling mechanism26 to tackle challenge
(C1), we delegated the ultimate triggering of entanglement
attempts to MHP as a solution to challenge (C2), and we assigned
request mismatch verification to the MHP protocol running on
each node, rather than to the heralding station, to address the
challenge (C3).

Centralized request scheduling. To avoid using a link-local
protocol (DQP) to schedule entanglement requests, our version
of QEGP defers request scheduling to a centralized request
scheduler, whereby a node’s entanglement generation schedule is
computed on the basis of the whole network’s needs. Delegating
network scheduling jobs to centralized entities is, albeit not the
only alternative, a common paradigm of classical networks, and
especially of software-defined networking (SDN)—a concept that
has been recently investigated in the context of quantum
networking22,23. In large networks, such controllers are logically
centralized, but physically distributed to ensure their reliability
and availability in spite of possible failures. In our system, the
centralized scheduler produces a time-division multiple access
(TDMA) network schedule—one for each node in the network—
where each time bin is reserved for a certain class of entangle-
ment generation requests26. A class of requests may comprise, for

instance, all requests coming from the same application and
asking for the same fidelity of the entangled states. While
reserving time bins may be redundant in a single-link network,
integrating a centralized scheduling mechanism early on into the
link layer protocol will facilitate future developments.

MHP synchronization and timeout. Although centralized request
scheduling makes the synchronization of QEGP peers easier,
precise triggering of entanglement attempts should still be
entrusted to the component of the system where time is the
most deterministic—in our case, the physical layer protocol MHP.
In contrast to ref. 19, once MHP fetches an entanglement
instruction from QEGP, the protocol announces itself as ready to
its remote peer, and waits for the latter to do so as well. After this
synchronization step succeeds, the two MHP peers can instruct
the underlying hardware to trigger an entanglement attempt at a
precise point in time. If instead, one of the two MHP peers does
not receive announcements from its remote counterpart within a
set timeout, it can conclude that the latter is not ready, or
temporarily not responsive, and can thus return control to QEGP
without wasting entanglement attempts. This MHP synchroniza-
tion step is also useful for the two sides to verify that they are
processing the same QEGP request, and thus catch mismatches.
The MHP synchronization routine inherently incurs some

overhead, which is also larger on longer links. We mitigate this
overhead by batching entanglement attempts—that is, the
physical layer attempts entanglement multiple times after
synchronization before reporting back to the link layer. The
maximum number of attempts per batch is a purely physical-layer
parameter, and it has no relation with the link layer entanglement
request timeout parameter described in ref. 19—although batches
should be small enough for the link layer timeout to make sense.
The original design of the QEGP and MHP protocols, as well as

our revision, specifies the conceptual interaction between the two
protocols and the service exposed to a higher layer in the system,
but does not impose particular constraints on how to implement
link layer and physical layer, how to realize the physical interface
between them, and how to configure things such as the
centralized request scheduler and the entanglement attempt
procedure. Figure 2 gives an overview of the architecture of our
quantum network nodes. We briefly describe our most relevant
implementation choices here and in the physical layer section.

Application processing. At the application layer, user programs—
written in Python using a dedicated software development kit34—
are processed by a rudimentary compilation stage, which
translates abstract quantum networking applications into gates
and operations supported by our specific quantum physical
platform. Such gates and operations are expressed in a low-level
assembly-like language for quantum networking applications
called NetQASM35. As part of our software stack, we also include
an instruction processor, conceptually placed above the link layer,
which is in charge of dispatching entanglement requests to QEGP
and other application instructions to the physical layer directly.

Interface. Reference 19 did not provide a specification of the
interface to be exposed by the physical layer. We designed this
interface such that the physical layer can accept commands from
the higher layer, specifically: (a) qubit initialization (INI), (b) qubit
measurement (MSR), (c) single-qubit gate (SQG), (d) entanglement
attempt (ENT, or ENM for M- or R-type requests), (e) premeasure-
ment gates selection (PMG, to specify in which basis to measure
the qubit for M- or R-type requests). For each command, the
physical layer reports back an outcome, which indicates whether
the command was executed correctly, and can bear the result of a
qubit measurement and the Bell state produced after a successful
entanglement attempt. Our software stack also comprises a
hardware abstraction layer (HAL) that sits below QEGP and the

M. Pompili et al.

3

Published in partnership with The University of New South Wales npj Quantum Information (2022) 121

instruction processor. The HAL encodes and serializes commands
and outcomes, and is thus used to interface with the device
controller.

TDMA network schedule. Designing a full-blown centralized
request scheduler is a challenge in and of its own, outside the
scope of this work. Instead of implementing such a scheduler, we
compute static TDMA network schedules26 and install them
manually on the two network nodes upon initialization. TDMA
schedules for our simple single-link experiments are quite trivial

(see Supplementary Note 1), as the network resources of a node
are not contended by multiple links.

Entanglement attempts. Producing entanglement on a link can
take several attempts. To minimize the number of ENT commands
fetched by MHP from QEGP, as well as to mitigate the MHP
synchronization overhead incurred after each entanglement
command, we batch entanglement attempts at the MHP layer,
such that synchronization and outcome reporting only happens
once per batch of attempts.

Delivered entangled states. In our first iteration, we implemented
QEGP such that it always delivers Φþ�� �

Bell states to the higher
layer. This means that when the physical layer produces a different
Bell state, QEGP (on the node where the entanglement request
originates) issues a single-qubit gate—a Pauli correction—to
transform the entangled pair into the Φþ�� �

state (we abbreviate
the four two-qubit maximally entangled Bell states as Φ±j i ¼
ð 00j i± 11j iÞ= ffiffiffi

2
p

and Ψ±j i ¼ ð 01j i± 10j iÞ= ffiffiffi
2

p
). A future version of

QEGP could allow the user to request any Bell state, and could
extract the Pauli correction from QEGP so that the application
itself can decide, depending on the use case, whether to apply the
correction or not.

Mismatch verification. As per our design specification, MHP
should also be responsible for verifying that the entanglement
commands coming from the two QEGP peers belong to the same
request. We did not implement this feature yet because, in our
simple quantum network, we do not expect losses on the classical
channel used by the two MHP parties to communicate—a lossy
classical channel would be the primary source of inconsistencies
at the MHP layer19. However, we believe that this verification step
will prove very useful in real-world networks where classical
channels do not behave as predictably.

Deployment. We implemented QEGP as a software module in a
system that also includes the instruction processor and the
hardware abstraction layer. QEGP, the instruction processor and
the hardware abstraction layer, forming the network controller,
are implemented as a C/C++ standalone runtime developed on
top of FreeRTOS, a real-time operating system for embedded
platforms36. The runtime and the underlying operating system are
deployed on a dedicated Avnet MicroZed—an off-the-shelf
platform based on the Zynq-7000 SoC, which hosts two ARM
Cortex-A9 processing cores, of which only one is used, clocked at
667 MHz. QEGP connects to its remote peer via TCP over a Gigabit
Ethernet interface. The interface to the physical layer is realized
through a 12.5 MHz SPI connection. The user application is sent
from a general-purpose four-core desktop machine running Linux,
which connects to the instruction processor through the same
Gigabit Ethernet interface that QEGP uses to communicate with
its peer.

Physical layer control in real-time
In this section, we outline the design and operation of the physical
layer, which executes the commands issued by the higher layers
on the quantum hardware and handles time-critical synchroniza-
tion between the quantum network nodes. The physical layer of a
quantum network, as opposed to the apparatus of a physics
experiment, needs to be able to execute commands coming from
the layer above in real-time. Additionally, when performing the
requested operations, it needs to leave the quantum device in a
state that is compatible with future commands (for example, as
discussed below, it should protect qubits from decoherence while
it awaits further instructions). Finally, if a request cannot be met
(e.g., the local quantum hardware is not ready, the remote

A
p
p
li

ca
ti

o
n

P
la

tf
o
rm

-i
n
d
ep

en
d
en

t
st

ac
k

P
h

y
si

ca
l

la
y

er
H

A
L

LAN

DIO

DIO

Shared

clock

Network Controller

Device Controller

Instruction processor

Quantum platform driver

TDMA sched.

Ent. sync.Command

processor

Ent. requests

Centralized

request

scheduler

Entangle

Gate

Measure

Link layer

protocol

Gate (appl.)

Measure

Ent. attempt

Gate (Pauli corr.)

Create entanglement

Ent. attempt

Qubit protection

Qubit control

Qubit control

AWG

Optics and

Electronics

Communication qubit
Long-distance

entanglement

S
P

I

Fig. 2 Quantum network node architecture. From top to bottom:
At the application layer, a simple platform-independent routine is
sent to the network controller. The network controller implements
the platform-independent stack—in this work, only the link layer
protocol—and a hardware abstraction layer (HAL) to interface with
the physical layer's device controller. An instruction processor
dispatches instructions either directly to the physical layer, or to
the link layer protocol in case a remote entangled state is requested
by the application. The link layer schedules entanglement requests
and synchronizes with the remote node (on a local area network,
LAN) using a time-division multiple access (TDMA) schedule
computed by a centralized scheduler (external). At the physical
layer, the device controller fetches commands from—and replies
with outcomes to—the network controller. Driven by a clock shared
with the neighboring node, it performs hard-real-time synchroniza-
tion for entanglement generation using a digital input/output (DIO)
interface. By controlling the optical and electronic components
(among which an arbitrary waveform generator, AWG), the device
controller can perform universal quantum control of the
communication-qubit in real-time, as well as attempt long-
distance entanglement generation with the neighboring node.

M. Pompili et al.

4

npj Quantum Information (2022) 121 Published in partnership with The University of New South Wales

quantum hardware is not available, etc.), the physical layer should
notify the link layer of the issue without interrupting its service.
Our quantum network is composed of two independent nodes

based on diamond NV centers physically separated by ≈2m (see
Fig. 2 for the architecture of one node, and Supplementary Fig. 1
for details on the connections between the two nodes). We will
refer to the two nodes as client and server, noting that this is only
a logical separation useful to describe the case studies—the two
nodes have the exact same capabilities. On each node, we
implement the logic of the physical layer in a state-machine-based
algorithm deployed on a time-deterministic microcontroller, the
device controller (Jäger ADwin Pro II, based on Zynq-7000 SoC,
dual-core ARM Cortex-A9, clocked at 1 GHz). Additionally, each
node uses an arbitrary waveform generator (AWG, Zurich
Instruments HDAWG8, 2.4 GSa/s, 300 MHz sequencer) for
nanosecond-resolution tasks, such as fast optical and electrical
pulses; the use of such a user-programmable FPGA-based AWG, as
opposed to a more traditional upload-and-play instrument (such
as the ones used in ref. 15), enables the real-time control of our
quantum device.

Single node operation. On our quantum-platform, before a node
is available to execute commands, it needs to perform a qubit
readiness procedure called charge and resonance check (CR
check). This ensures that the qubit system is in the correct charge
state and that the necessary lasers are resonant with their
respective optical transitions. Other quantum platforms might
have a similar preparation step, such as loading and cooling for
atoms and ions9,10. Once the CR check is successful, the device
controller can fetch commands from the network controller.
Depending on the nature of the command, the device controller
might need to coordinate with other equipment in the node or
synchronize with the device controller of the other node.
For qubit initialization and measurement commands (INI and

MSR), the device controller shines the appropriate laser for a pre-
defined duration (INI ≈ 100 μs, MSR ≈ 10 μs). Both operations are
deterministic and carried out entirely by the device controller.
Single-qubit gates (SQG) require the coordination of the device

controller and the AWG. For our communication qubits, they
consist of generating an electrical pulse with the AWG
(duration ≈ 100 ns), which is then multiplied by the qubit
frequency (≈ 2 GHz), amplified and finally delivered to the
quantum device. The link layer can request rotations in steps of
π/16 around the X, Y or Z axis of the Bloch sphere (here, we
implement only X and Y rotations, Z rotations will be implemented
in the near future, see Supplementary Note 2). When a new gate is
requested by the link layer, the device controller at the physical
layer informs the AWG of the gate request via a parallel 32-bit DIO
interface. The AWG will then select one of the 64 pre-compiled
waveforms, play it, and notify the device controller that the gate
has been executed. The device controller will, in turn, notify the
network controller of the successful operation.
After the rotation has been performed, our qubit—if left idling

—would lose coherence in ≈ 5 μs. A coherence time exceeding 1 s
has been reported on our platform37 using decoupling sequences
(periodic rotations of the qubit that shield it from environmental
noise). By interleaving decoupling sequences and gates, one can
perform extended quantum computations38. These long
sequences of pulses have in the past been calculated and
optimized offline (on a PC), then uploaded to an AWG, and finally
executed on the quantum devices with minimal interaction
capabilities (mostly binary branching trees, see ref. 15). In our
case, it is impossible to pre-calculate these sequences, since we
cannot know in advance which gates are going to be requested
by the link layer. To solve this challenge, we implement a qubit
protection module on the AWG, that interleaves decoupling
sequences with the requested gates in real-time. As soon as the
first gate in a sequence is requested, the AWG starts a decoupling

sequence on the qubit. Then, it periodically checks if a new gate
has been requested, and if so, it plays it at the right time in the
decoupling sequence. The AWG will continue the qubit protection
routine until the device controller will ask for it to stop (e.g., to
perform a measurement). This technique allows us to execute
universal qubit control without prior knowledge of the sequence
to be played and—crucially—in real-time.

Entanglement generation. Differently from the commands pre-
viously discussed, attempting entanglement generation (ENT)
requires tight timing synchronization between the device
controllers—and AWGs—of the two nodes. In our implementa-
tion, the two device controllers share a common 1MHz clock as
well as a DIO connection to exchange synchronization messages
(see ref. 15). When the device controllers are booted, they
synchronize an internal cycle counter that is used for time-
keeping, and is shared, at each node, with their respective
network controllers to provide timing information to the link layer
and the higher layers. Over larger distances, one could use well-
established protocols to achieve sub-nanosecond, synchronized,
GPS-disciplined common clocks39.
When a device controller fetches an ENT command, it starts a

three-way handshake procedure with the device controller of the
other node. If the other node has also fetched an ENT command,
they will synchronize and proceed with the entanglement
generation procedure. If one of the two nodes is not available
(e.g., it is still trying to pass the CR check) the other node will
timeout, after 0.5 ms, and return an entanglement synchronization
failure (ENT_SYNC_FAIL) to its link layer. The duration of the
timeout is chosen such that is comparable with the average time
taken by a node to pass the charge and resonance check
(if correctly on resonance). This is to avoid unnecessary interac-
tions between the physical layer and the link layer. After the
entanglement synchronization step, the device controllers pro-
ceed with an optical phase stabilization cycle15, and then the
AWGs are triggered to attempt entanglement generation. In our
implementation, one device controller (the server’s) triggers both
AWGs to achieve sub-nanosecond jitter between the two AWGs
(see Supplementary Note 3 for a discussion on longer distance
implementation). Each entanglement attempt lasts 3.8 μs and
includes fast qubit initialization, communication-qubit to flying-
qubit entanglement, and probabilistic entanglement swapping of
the flying qubits15. The AWGs attempt entanglement up to 1000
times before timing out and reporting an entanglement failure
(ENT_FAIL). Longer batches of entanglement attempts would
increase the probability that one of the nodes goes into the
unwanted charge state (and, therefore, cannot produce entangle-
ment, see Supplementary Note 7). While in principle possible, we
did not implement, in this first realization, the charge stabilization
mechanism proposed in ref. 14 that would allow for significantly
longer batches of entanglement attempts.
If an entanglement generation attempt is successful

(probability ≈ 5 × 10−5), the communication qubits of the two
nodes will be projected into an entangled state (either Ψþj i or
Ψ�j i, depending on which detector clicked at the heralding
station). To herald the success of the entanglement attempt, a
CPLD (Complex Programmable Logic Device, Altera MAX V
5M570ZF256C5N) sends a fast digital signal to both AWGs and
device controllers to prevent a new entanglement attempt from
being played (which would destroy the generated entangled
state). When the heralding signal is detected, the AWGs enter the
qubit protection routine and wait for further instructions from the
device controllers, which in turn notify the link layer of the
successful entanglement generation, as well as which state was
generated.
To satisfy M- or R-type entanglement requests, the link layer can

instruct the physical layer to apply an immediate measurement to
the entangled qubit by means of an ENM command. Up until the

M. Pompili et al.

5

Published in partnership with The University of New South Wales npj Quantum Information (2022) 121

heralding of the entangled state, the physical layer operates as it
does for the ENT command. When the state is ready, it proceeds
immediately with a sequence of single-qubit gates (as prescribed
by an earlier PMG command) and a qubit measurement. The result
of the measurement, together with which entangled state was
generated, is communicated to the link layer. It is worth noting
that the two nodes could fetch different types of requests and still
generate entanglement. In fact, this will be used later in the
remote state preparation application.

Evaluation
To demonstrate and benchmark the capabilities of the link layer
protocol, the physical layer, and of our system as a whole, we
execute—on our two-node network—three quantum networking
applications, all having a similar structure: the client asks for an
entangled pair with the server, which QEGP delivers in the Φþ�� �
Bell state, and then both client and server measure their end of
the pair in a certain basis. First, we perform full quantum state
tomography of the delivered entangled states. Second, we
request and characterize entangled states of varying fidelity.
Third, we execute remote preparation of qubit states on the
server by the client. For all three applications, we study the
quality of the entangled pairs delivered by our system.

Additionally, we use the second application to assess the latency
incurred by our link layer and to compare it to the overall
entanglement generation latency, including that of the physical
layer. Crucially, the three applications are executed back-to-back
on the quantum network, without any software or hardware
changes to the system—the only difference being the quantum-
platform-independent application sent to the instruction proces-
sor (see Supplementary Note 4).
The sequence diagram in Fig. 3a exemplifies the general flow

between system components during the execution of an
application. At first, the instruction processor issues a request to
create entanglement to the link layer (CREATE). Then, the client’s
link layer forwards the request to the server’s counterpart
(Forward CREATE). The request is processed as soon as the
designated time bin in the TDMA schedule starts, at which point
the first entanglement command (ENT) is fetched by the physical
layer. After an entangled state is produced successfully (PSI_PLUS),
the link layer of the client issues, if needed, a Pauli correction (π
rotation around the X axis, SQG X180) to deliver the pair in the
Φþ�� �

state. Finally, the instruction processor issues a gate (π/2
rotation around the X axis, SQG X90) and a measurement (MSR) to
read out the entangled qubit on a certain basis, and receives an
outcome from the physical layer (0). Figure 3b illustrates the actual

Fig. 3 Full state tomography with the quantum network stack. a Sequence diagram of the communication steps across the network stack
and the two nodes to perform one repetition of the tomography application (in particular, measurement of the YYh i correlator). The coloring
follows that of Fig. 1. CREATE: entanglement request, ENT: entanglement attempts request, ENT_FAIL: failed the batch of entanglement
attempts, PSI_PLUS: successful entanglement attempt with generated state Ψ+, SQG: single-qubit gate, X180: 180∘ rotation around X axis,
MSR: qubit measurement, 0/1: qubit measurement outcome. See Supplementary Table 1 for a complete list of commands. Note that the
client's link-layer protocol requests an X180 gate after entanglement generation to deliver the Φþ�� �

Bell state to the higher layer. b Example
time trace of (a) for the client. Several batches of entanglement attempts are required before an entangled state is heralded. On the right, is a
zoomed-in part of the trace (corresponding to the dashed box in the left plot). c Reconstructed density matrix of the states delivered by the
link layer. Only the real part is plotted (imaginary elements are all ≈0, see main text). We estimate a fidelity F with Φþ�� �

of F= 0.783(7). d Total
number of delivered states over time. The occasional pauses in entanglement delivery (plateaus) are due to the client's NV center becoming
off-resonant with the relevant lasers (see Supplementary Material). Differences in slope are due to changes in resonance conditions that
increase the time necessary to pass the charge and resonance check.

M. Pompili et al.

6

npj Quantum Information (2022) 121 Published in partnership with The University of New South Wales

latencies between these interactions in one iteration of the full
state tomography application.
For all our experiments, we configured TDMA time bins to be

20ms. In a larger network, the duration of time bins should be
calibrated according to the average time it takes, on a certain link,
to produce an entangled pair of a certain fidelity26. By doing so,
one can maximize network usage and thus reduce qubit
decoherence on longer end-to-end paths. However, in our
single-link network, the duration of time bins only influences the
frequency at which new entanglement requests are processed.
Our time bin duration accommodates up to four batches of 1000
entanglement attempts.

Full quantum state tomography. The first application consists in
generating entangled states at the highest minimum fidelity
currently available on our physical setup (0.80), and measuring the
two entangled qubits on varying bases to learn their joint quantum
state. We measure all 9 two-node correlators (XXh i; XYh i, ..., ZZh i) as
well as all their ±variations (þXþ Xh i; þX� Xh i, etc.) to minimize
the bias due to measurement errors. For each of the 9 × 4= 36
combinations, we measure 125 data points, for a total of 4500
entangled states generated and measured. The Supplementary
Material contains a pseudocode description of the application.
The collected measurement outcomes are then analyzed using

QInfer40, in particular, the Monte Carlo method described in ref. 41

for Bayesian estimation of density matrices from tomographic
measurements. The reconstructed density matrix is displayed in
Fig. 3c (only the real part is shown in the figure) and its values and
uncertainties (1 s.d.) are

Re½ρ� ¼

0:442ð6Þ 0:003ð3Þ 0:003ð2Þ 0:328ð5Þ
0:003ð3Þ 0:033ð6Þ �0:023ð5Þ �0:000ð5Þ
0:003ð2Þ �0:023ð5Þ 0:056ð4Þ �0:003ð4Þ
0:328ð5Þ �0:000ð5Þ �0:003ð4Þ 0:469ð7Þ

0
BBB@

1
CCCA;

Im½ρ� ¼

0 �0:014ð3Þ �0:005ð7Þ 0:032ð5Þ
0:014ð3Þ 0 �0:002ð4Þ 0:001ð5Þ
0:005ð7Þ 0:002ð4Þ 0 �0:000ð7Þ
�0:032ð5Þ �0:001ð5Þ 0:000ð7Þ 0

0
BBB@

1
CCCA:

Here ρij;mn ¼ ijj ρ jmnh i, with i, m (j, n) being the client (server)
qubit states in the computational basis. The uncertainty on each
element of the density matrix is calculated as the standard
deviation of that element over the probability distribution
approximated by the Monte Carlo reconstruction algorithm
(probability distribution approximated by 105 Monte Carlo
particles41). It is then possible to estimate the fidelity of the
delivered entangled states with respect to the maximally
entangled Bell state, which we find to be F= 0.783(7). The
measured fidelity is slightly lower (≈3%) than what was measured
in ref. 15 without the use of the QEGP abstraction (and the whole
network controller where QEGP runs). This discrepancy could be
due to the additional physical-layer decoupling sequences
required for real-time operation (≈300 μs) and the additional
single-qubit gate issued by the link layer to always deliver Φþ�� �
(see Supplementary Note 5).
It is to be noted that, in order to obtain the most faithful

estimate of the generated state (see Supplementary Note 6 for
details), the measured expectation values are corrected, in post-
processing, to remove known tomography errors of both client
and server42, and events in which at least one physical device was
in the incorrect charge state.
Finally, we show, in Fig. 3d, that our system can sustain a fairly

stable entanglement delivery rate over ≈30min of data acquisition
—plateaus and changes in slope can be attributed to varying
conditions of resonance between the NV centers and the relevant
lasers (see Supplementary Material).

Latency vs fidelity. The QEGP interface allows its user to request
entangled pairs at various minimum fidelities. For physical
reasons, higher fidelities will result in lower entanglement
generation rates14,17. The trade-off between fidelity and through-
put is particularly interesting in a scenario where some applica-
tions might require high-fidelity entangled pairs and are willing to
wait a long time, while others might prefer lower-fidelity states
but higher rates19. Clearly, for the link layer to offer a range of
fidelities to choose from, the underlying physical layer must
support such a range. We benchmark the capabilities of the link
layer and of the physical layer to deliver states at various fidelities
in a single application by measuring the XXh i, YYh i and ZZh i
correlators (and their ±variations, as we did above, for a total of
3 × 4= 12 correlators) for seven different target fidelities, (0.50,
0.55, 0.60, 0.65, 0.70, 0.75, 0.80). We generate 1500 entangled
states per fidelity, for a total of 10,500 delivered states (see
Supplementary Material). With this case study, we analyze both
the resulting fidelity and the system’s latency for different
requested fidelities.
The results for measured fidelity versus requested fidelity are

shown in Fig. 4a. It is worth noting that the application iterates
over the range of fidelities in real-time, and thus the physical layer
is prepared to deliver any of them at any point. We calibrate the
physical layer to deliver states of slightly higher fidelity than the
requested ones (0.03 more), since entanglement requests specify
the minimum desired fidelity. The measured fidelities are—within
measurement uncertainty—always matching or exceeding the
requested minimum ones (the dashed gray line in Fig. 4a is the
y= x diagonal). As in the previous application, measurement
outcomes are post-processed to eliminate tomography errors and
events in which the physical devices were in the incorrect charge
state (we refer to the latter as charge state correction). For
arbitrary applications that use the delivered entangled states for
something other than statistical measurements, applying the
second correction directly at the link layer might prove challen-
ging, since the information concerning whether to discard an
entangled pair is only available at the physical layer after the
entangled state is delivered to the link layer (when the next CR
check is performed). However, a mechanism to identify badly
entangled pairs retroactively at the link layer—like the expiry
functionality included in the original design of QEGP19—could be
used to discard entangled states after they have been delivered by
the physical layer. For completeness, we also report, again in
Fig. 4a, the measured fidelity when the wrong charge state
correction is not applied.
For each requested fidelity, we also measure the entanglement

generation latency19, defined as the time between the issuing of
the CREATE request to the link layer, until the successful
entanglement outcome reported by the physical layer (refer to
Fig. 3a for a diagram of the events in between these two). Figure
4b shows the measured average latency, grouped by requested
fidelity and broken down into various sources of latency. When
calculating the average latencies, we have ignored entanglement
requests that required more than 10 s to be fulfilled. These high-
latency requests correspond to the horizontal plateaus of Fig. 3d
(see Supplementary Material for details). The main contribution to
the total latency comes from the entanglement generation
process at the physical layer, followed by the NV center
preparation time (CR check). Both latency values are consistent
with the expected number of entanglement attempts required by
the single-photon entanglement protocol employed at the
physical layer14. The link layer protocol adds, on average,
≈10ms of extra latency to all requests, regardless of their fidelity.
This is due partly to the synchronization of the CREATE request
between the two nodes (i.e. a simple TCP message), but mostly to
the nodes having to wait for the next time bin in the network
schedule to start (the larger the time bins, the larger the worst-
case waiting time, see Supplementary Material). We remark that,

M. Pompili et al.

7

Published in partnership with The University of New South Wales npj Quantum Information (2022) 121

by requesting multiple entangled states in a single CREATE, one
can distribute this overhead over many generated pairs, to the
point where it becomes negligible. While our applications did not
issue multi-pair CREATE requests, this would be the more natural
choice for real applications and would result in better utilization of
the allocated time bins. Finally, the overhead incurred by the
interface between microcontrollers is rather small (barely visible in
Fig. 4b) but could, however, be further reduced by integrating the
device controller and network controller into a single device. It is
worth mentioning that, in our simple scenario in which each
entanglement request is only submitted to QEGP after the
previous one completes, and thus the request queue never grows
larger than one element, throughput happens to be almost
exactly the same as the inverse of latency, and hence it is not
reported here.
Overall, we observe that the extra entanglement generation

latency incurred when deploying an abstraction layer (QEGP) on
top of the physical layer, while not too modest, is only a small part
of the whole, particularly at higher fidelities. Nevertheless,

optimizing the length of TDMA time bins could result in an even
smaller overhead (see Supplementary Material).

Remote state preparation. One of the use cases of the QEGP
service is to prepare quantum states on a remote quantum
server19. Remote state preparation is a fundamental step to
execute a blind quantum computation application5, whereby a
client quantum computer with limited resources can run quantum
applications on a powerful remote quantum server using the
many qubits the server has, while keeping the performed
computation private.
Remote state preparation is different from the previous two

cases in that the client can measure its end of the entangled pair
as soon as the pair is generated, while the server has to keep its
qubit alive, waiting for further instructions. For such a scenario, the
client can make use of QEGP’s service to issue R-type entangle-
ment requests, so that the local end of the entangled pair can be
measured (on a certain basis) as soon as it is generated, while the
server’s qubit can be protected for later usage. An R-type
entanglement request results in an ENM command on the client
and an ENT command on the server. For this type of request (as
well as for M-type ones), since the local end of the pair is
measured immediately, the client’s QEGP can skip the Pauli
correction used to always deliver Φþ�� �

, and can instead apply a
classical correction to the received measurement outcome (see
Supplementary Material).
To showcase this feature of QEGP, we use the client node to

prepare the six cardinal states on the server (± xj i, ± yj i, 0j i and
1j i) by having the client measure its share of the entangled state
in the six cardinal bases. We then let the server measure the
prepared states—again in the six cardinal bases—to perform
tomography. For each client measurement basis and for each
server tomography basis, we deliver 125 entangled states at a
requested fidelity of 0.80, for a total of 6 × 6 × 125= 4500 remote
state preparations (see Supplementary Material). The results are
presented in Fig. 5, which displays the tomography of the
prepared states on the server for the three different measurement
axes of the client and the two possible measurement outcomes of
the client. The prepared states are affected by the measurement
error of the client (F0= 0.928(3), F1= 0.997(1)): an error in the
measurement of the client’s qubit results in an incorrect
identification of the state prepared on the server. By alternating

Fig. 4 Performance of the entanglement delivery service.
a Measured fidelity of the states delivered by the link layer for
varying requested fidelity. Targeted fidelity at the physical layer is
0.03 higher than the link layer protocol's minimum fidelity request.
When not correcting for wrong charge state events, fidelity is
reduced by a few percents (see Supplementary Material). Error bars
represent 1 s.d. b Average latency of the entanglement delivery per
requested fidelity, broken down into sources of latency. Entangle-
ment generation and charge and resonance check at the physical
layer are the largest sources of latency (at higher fidelities, more
entanglement attempts are required before success). Running the
link layer protocol introduces a small but measurable overhead
(≈10ms) to the entanglement generation procedure, which does
not depend on the requested fidelity, and that could be mitigated
by requesting multiple entangled states in a single instruction. The
communication delays between the quantum network controller
and quantum device controller (Interface) introduce negligible
overall latency.

Fig. 5 Tomography of states prepared on the server by the
remote client. For each chosen measurement axis of the client (X,
Y, Z), and for each obtained measurement outcome at the client (
0j i, 1j i), a different state is prepared on the server. Plotted on the
Bloch spheres are the results of the tomography on the server's
qubit. Uncertainties on each coordinate are ≈0.05 (see Supple-
mentary Material). We find an average preparation fidelity of
F= 0.853(8).

M. Pompili et al.

8

npj Quantum Information (2022) 121 Published in partnership with The University of New South Wales

between positive and negative readout orientations, we make
sure that the errors affect all prepared states equally instead of
biasing the result. We note that we exclude, once again, events in
which at least one of the two devices was in the wrong charge
state, and we correct for the known tomography error on the
server (results without corrections are in the Supplementary
Material). Overall, we find an average remote state preparation
fidelity of F= 0.853(8). The asymmetry in the fidelity of the 0j i and
1j i states is caused by the asymmetry in the populations
01j ρ j01h i vs 10j ρ j10h i of the delivered entangled state, which
in turn is due to the double 0j i occupancy error of the single-
photon protocol used to generate entanglement14,15.

DISCUSSION
In summary, we have demonstrated the operation of a link layer
and a physical layer for entanglement-based quantum networks.
The link layer abstracts the entanglement generation procedure
provided by the physical layer—implemented here with two NV
center-based quantum network nodes—into a robust platform-
independent service that can be used to run quantum networking
applications. We performed full quantum state tomography of the
states delivered by the link layer, tested its ability to deliver states
at different fidelities in real-time, and verified remote state
preparation of a qubit from the client on the server, a fundamental
step towards blind quantum computation5. We have shown that
our implementation of link and physical layers can deliver
entangled states at the fidelity requested by the user, despite
some marginal inefficiencies—some of which can be addressed in
a future version of the protocols (e.g., avoiding Pauli corrections
unless necessary). We have also quantified the additional latency
incurred by deploying the link layer protocol on top of the
physical layer. Although not detrimental, the extra overhead is still
noticeable, but can also be scaled down by optimizing the
scheduling of entanglement generation requests. We also
acknowledge that scheduling a quantum node’s resources is still
an open problem26,43,44 and that the simple approach taken here
is likely a suboptimal choice for more advanced quantum
networks. We emphasize, however, that our link layer protocol is
not tied to any particular scheduling algorithm or architecture—it
merely expects that the schedule of each node be matched with
its peer. In ref. 19 for example, the schedule was instead formed via
a distributed queue protocol, and in the future other architectures
and algorithms26 may be more suitable for scaling to larger
networks.
Other research challenges posed by our work include an in-

depth analysis of the security of quantum network implementa-
tions. For example, it is clear that if the classical control messages
used in our protocol are not authenticated, unwanted entangle-
ment generation may be triggered at one of the nodes. In some
physical layer implementations such as the one considered here,
this may negatively impact the quality of the qubits already stored
at the node45, and hence impact availability. Initial work indicates
that the performance impact of adding authentication, however, is
small (less than a 3% reduction in throughput in a non-optimized
simulation study)46.
The adoption of the techniques presented here (which are not

specific to our diamond devices) by other quantum network
platforms9,10,17,47–50 will boost the development of large-scale and
heterogeneous quantum networks. Real-time control of memory
qubits, as well as the availability of multi-node networks and
dynamic network schedules, will enable demonstrations of the
higher layers of the network stack51, which in turn will open the
door to end-to-end connectivity on a platform-independent
quantum network.

DATA AVAILABILITY
The datasets that support this manuscript and the software to analyze them are
available at 4TU.ResearchData with the identifier https://doi.org/10.4121/16912522.

CODE AVAILABILITY
The application software development kit is open-sourced on GitHub34. The link layer
implementation is part of a larger software project to develop an operating system
for quantum network nodes that is still under development and thus not currently
available for external use.

Received: 25 November 2021; Accepted: 15 September 2022;

REFERENCES
1. Kimble, H. J. The quantum internet. Nature 453, 1023 (2008).
2. Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road

ahead. Science 362, eaam9288 (2018).
3. Ekert, A. & Renner, R. The ultimate physical limits of privacy. Nature 507, 443 (2014).
4. Jiang, L., Taylor, J. M., Sørensen, A. S. & Lukin, M. D. Distributed quantum com-

putation based on small quantum registers. Phys. Rev. A 76, 062323 (2007).
5. Broadbent, A., Fitzsimons, J. & Kashefi, E. Universal blind quantum computation.

In Proc. 50th Annual IEEE Symposium on Foundations of Computer Science 517–526
(2009).

6. Gottesman, D., Jennewein, T. & Croke, S. Longer-baseline telescopes using
quantum repeaters. Phys. Rev. Lett. 109, 070503 (2012).

7. Kómár, P. et al. A quantum network of clocks. Nat. Phys. 10, 582 (2014).
8. Moehring, D. L. et al. Entanglement of single-atom quantum bits at a distance.

Nature 449, 68 (2007).
9. Stephenson, L. et al. High-rate, high-fidelity entanglement of qubits across an

elementary quantum network. Phys. Rev. Lett. 124, 110501 (2020).
10. Ritter, S. et al. An elementary quantum network of single atoms in optical cavities.

Nature 484, 195 (2012).
11. Hofmann, J. et al. Heralded entanglement between widely separated atoms.

Science 337, 72 (2012).
12. Bernien, H. et al. Heralded entanglement between solid-state qubits separated by

three metres. Nature 497, 86 (2013).
13. Kalb, N. et al. Entanglement distillation between solid-state quantum network

nodes. Science 356, 928 (2017).
14. Humphreys, P. C. et al. Deterministic delivery of remote entanglement on a

quantum network. Nature 558, 268 (2018).
15. Pompili, M. et al. Realization of a multinode quantum network of remote solid-

state qubits. Science 372, 259 (2021).
16. Delteil, A. et al. Generation of heralded entanglement between distant hole spins.

Nat. Phys. 12, 218 (2016).
17. Stockill, R. et al. Phase-tuned entangled state generation between distant spin

qubits. Phys. Rev. Lett. 119, 010503 (2017).
18. Aparicio, L., Van Meter, R. & Esaki, H. Protocol design for quantum repeater

networks. In Proc. 7th Asian Internet Engineering Conference AINTEC ’11 73–80
(Association for Computing Machinery, 2011).

19. Dahlberg, A. et al. A link layer protocol for quantum networks In Proc. ACM Special
Interest Group on Data Communication, SIGCOMM ’19 159–173 (Association for
Computing Machinery, 2019).

20. Pirker, A. & Dür, W. A quantum network stack and protocols for reliable
entanglement-based networks. N. J. Phys. 21, 033003 (2019).

21. Kozlowski, W., Dahlberg, A. & Wehner, S. Designing a quantum network protocol.
In Proc. 16th International Conference on Emerging Networking EXperiments and
Technologies, CoNEXT ’20 1–16 (Association for Computing Machinery, 2020).

22. Aguado, A. et al. Enabling quantum key distribution networks via software-
defined networking. In International Conference on Optical Network Design and
Modeling (ONDM) 1–5 (Association for Computing Machinery, 2020).

23. Kozlowski, W., Kuipers, F. & Wehner, S. A p4 data plane for the quantum internet.
In Proc. 3rd P4 Workshop in Europe, EuroP4’20 49–51 (Association for Computing
Machinery, 2020).

24. Alshowkan, M. et al. Reconfigurable quantum local area network over deployed
fiber. PRX Quantum 2, 040304 (2021).

25. Ferguson, A. D. et al. Orion: Google’s software-defined networking control plane.
In 18th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 21) 83–98 (2021).

26. Skrzypczyk, M. & Wehner, S. An architecture for meeting quality-of-service
requirements in multi-user quantum networks. Preprint at http://arxiv.org/abs/
2111.13124 (2021).

M. Pompili et al.

9

Published in partnership with The University of New South Wales npj Quantum Information (2022) 121

https://doi.org/10.4121/16912522
http://arxiv.org/abs/2111.13124
http://arxiv.org/abs/2111.13124

27. Van Meter, R., Satoh, T., Ladd, T. D., Munro, W. J. & Nemoto, K. Path selection for
quantum repeater networks. Netw. Sci. 3, 82 (2013).

28. Caleffi, M. Optimal routing for quantum networks. IEEE Access 5, 22299 (2017).
29. Gyongyosi, L. & Imre, S. Decentralized base-graph routing for the quantum

internet. Phys. Rev. A 98, 022310 (2018).
30. Pant, M. et al. Routing entanglement in the quantum internet. npj Quantum Inf. 5,

1 (2019).
31. Chakraborty, K., Rozpedek, F., Dahlberg, A & Wehner, S. Distributed routing in a

quantum internet. Preprint at http://arxiv.org/abs/1907.11630 (2019).
32. Shi, S & Qian, C. Concurrent entanglement routing for quantum networks: model

and designs. In Proc. Annual Conference of the ACM Special Interest Group on Data
Communication on the Applications, Technologies, Architectures, and Protocols for
Computer Communication, SIGCOMM ’20 62-75 (Association for Computing
Machinery, 2020).

33. Chakraborty, K., Elkouss, D., Rijsman, B. & Wehner, S. Entanglement distribution in
a quantum network: a multicommodity flow-based approach. IEEE Trans. Quan-
tum Eng. 1, 1 (2020).

34. NetQASM SDK. https://github.com/QuTech-Delft/netqasm.
35. Dahlberg, A. et al. NetQASM-a low-level instruction set architecture for hybrid

quantum-classical programs in a quantum internet. Quantum Sci. Technol. 7,
035023 (2022).

36. FreeRTOS. Real-time operating system for microcontrollers. https://www.freertos.org/
(2021).

37. Abobeih, M. H. et al. One-second coherence for a single electron spin coupled to
a multi-qubit nuclear-spin environment. Nat. Commun. 9, 2552 (2018).

38. Bradley, C. et al. A ten-qubit solid-state spin register with quantum memory up to
one minute. Phys. Rev. X 9, 031045 (2019).

39. Serrano, J. et al. The white rabbit project. https://white-rabbit.web.cern.ch/ (2013).
40. Granade, C. et al. QInfer: statistical inference software for quantum applications.

Quantum 1, 5 (2017).
41. Granade, C., Combes, J. & Cory, D. G. Practical Bayesian tomography. N. J. Phys. 18,

033024 (2016).
42. Nachman, B., Urbanek, M., de Jong, W. A. & Bauer, C. W. Unfolding quantum

computer readout noise. npj Quantum Inf. 6, 1 (2020).
43. Vardoyan, G., Guha, S., Nain, P. & Towsley, D. On the stochastic analysis of a

quantum entanglement distribution switch. IEEE Trans. Quantum Eng. 2, 1 (2021).
44. Vardoyan, G., Guha, S., Nain, P. & Towsley, D. On the capacity region of bipartite

and tripartite entanglement switching. SIGMETRICS Perform. Eval. Rev. 48, 45–50
(2021).

45. Kalb, N., Humphreys, P. C., Slim, J. J. & Hanson, R. Dephasing mechanisms of
diamond-based nuclear-spin memories for quantum networks. Phys. Rev. A 97,
062330 (2018).

46. Abrahams, J. Data Origin Authentication and the Classical Data Plane of a Quan-
tum Network Link. Master’s thesis, Delft Univ. Technology (2022).

47. Rose, B. C. et al. Observation of an environmentally insensitive solid-state spin
defect in diamond. Science 361, 60 (2018).

48. Nguyen, C. et al. Quantum network nodes based on diamond qubits with an
efficient nanophotonic interface. Phys. Rev. Lett. 123, 183602 (2019).

49. Trusheim, M. E. et al. Transform-limited photons from a coherent tin-vacancy spin
in diamond. Phys. Rev. Lett. 124, 023602 (2020).

50. Son, N. T. et al. Developing silicon carbide for quantum spintronics. Appl. Phys.
Lett. 116, 190501 (2020).

51. Kozlowski, W & Wehner, S. Towards large-scale quantum networks. In Proc. Sixth
Annual ACM International Conference on Nanoscale Computing and Communica-
tion, NANOCOM ’19 1–7 (Association for Computing Machinery, 2019).

ACKNOWLEDGEMENTS
We thank Joris van Rantwijk, Sidney Cadot, Ludo Visser, and Nicolas Demetriou for
experimental support, Nico Seidler and Önder Karpat for useful discussions, and Simon
Baier for comments on an earlier version of this manuscript. We acknowledge financial
support from the EU Flagship on Quantum Technologies through the project Quantum
Internet Alliance (EU Horizon 2020, grant agreement no. 820445); from the Netherlands
Organization for Scientific Research (NWO) through the Zwaartekracht program
Quantum Software Consortium (project no. 024.003.037/3368); from the European
Research Council (ERC) through a Consolidator Grant (grant agreement no. 772627 to
R.H.) under the European Union’s Horizon 2020 Research and Innovation Program.

AUTHOR CONTRIBUTIONS
M.P., C.D.D., I.t.R., W.K., R.H. and S.W. devised the experiment. M.P., C.D.D., I.t.R. and
L.d.K. carried out the experiments and collected the data. M.P., L.d.K., A.J.S. and
S.L.N.H. prepared the quantum-platform apparatus. C.D.D., I.t.R., B.v.d.V., M.S., G.F., P.P.
and W.K. prepared the platform-independent apparatus. M.P., C.D.D., R.H., and S.W.
wrote the manuscript and the supplementary materials with input from all authors.
M.P., C.D.D., I.t.R. and L.d.K. analyzed the data and discussed them with all authors.
M.P and C.D.D contributed equally to this work. R.H. and S.W. supervised the research.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41534-022-00631-2.

Correspondence and requests for materials should be addressed to R. Hanson or S.
Wehner.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022

M. Pompili et al.

10

npj Quantum Information (2022) 121 Published in partnership with The University of New South Wales

http://arxiv.org/abs/1907.11630
https://github.com/QuTech-Delft/netqasm
https://www.freertos.org/
https://white-rabbit.web.cern.ch/
https://doi.org/10.1038/s41534-022-00631-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Experimental demonstration of entanglement delivery using a quantum network stack
	Introduction
	Results
	Quantum link layer protocol
	Link layer service
	Quantum link layer protocol
	Entanglement requests and agreement
	Time synchronization
	Mismatch verification
	QEGP challenges

	Revised protocol
	Centralized request scheduling
	MHP synchronization and timeout
	Application processing
	Interface
	TDMA network schedule
	Entanglement attempts
	Delivered entangled states
	Mismatch verification
	Deployment

	Physical layer control in real-time
	Single node operation
	Entanglement generation

	Evaluation
	Full quantum state tomography
	Latency vs fidelity
	Remote state preparation

	Discussion
	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION

