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Abstract
AJAX applications are designed to have high user interactivity and low

user-perceived latency. Real-time dynamic web data such as news headlines,
stock tickers, and auction updates need to be propagated to the users as soon
as possible. However, AJAX still suffers from the limitations of the Web’s
request/response architecture which prevents servers from pushing real-time
dynamic web data. Such applications usually use a pull style to obtain the
latest updates, where the client actively requests the changes based on a pre-
defined interval. It is possible to overcome this limitation by adopting a push
style of interaction where the server broadcasts data when a change occurs
on the server side. Both these options have their own trade-offs. This paper
first introduces the characteristics of both pull and push approaches. It then
presents the design and implementation of our distributed test framework,
called CHIRON, where different AJAX applications based on each approach
can be automatically tested on. Finally, we present and discuss the results of
our empirical study comparing different web-based data delivery approaches.

Keywords: Performance testing, Ajax, Web data delivery, Comet, Push/pull, Empirical study

Communicated by: to be filled by the Editorial

1 Introduction

Recently, there has been a shift in the direction of web development. A new breed of web applica-
tion, dubbed AJAX (Asynchronous JavaScript and XML) [14] is emerging in response to the limited

1

SERG Bozdag et al. – Performance Testing of Data Delivery Techniques for AJAX applications

TUD-SERG-2008-009 1



2 Performance Testing of Data Delivery Techniques for AJAX Applications

degree of interactivity in large-grain stateless Web interactions. The intent is to make web pages feel
more responsive by exchanging small amounts of data with the server behind the scenes and making
changes to individual user interface components. This way, the entire web page does not have to be
reloaded each time the user makes a change. AJAX is a serious option not only for newly developed
applications, but also for existing web sites if their user friendliness is inadequate [21, 22, 20, 23].

The term AJAX spread rapidly from a Weblog to the Wall Street Journal within weeks. The new
web applications under the AJAX banner have redefined end users’ expectations of what is possible
within a Web browser. However, AJAX still suffers from the limitations of the Web’s request/response
architecture. The classical model of the web called REST [12] requires all communication between
the browser and the server to be initiated by the client, i.e., the end user clicks on a button or link
and thereby requests a new page from the server. No ‘permanent’ connection is established between
client/server and the server is required to maintain no state information about the clients. This “pull”
scheme helps scalability [12], but precludes servers from sending asynchronous notifications. There
are many use cases where it is important to update the client user interface in response to server-side
changes. For example:

• An auction web site, where the users need to be averted that another bidder has made a higher
bid. Figure 1 shows a screen-shot taken from eBay. In a site such as eBay, the user has to
continuously press the ‘refresh’ button of his or her browser, to see if somebody has made a
higher bid.

• A stock ticker, where stock prices are frequently updated. Figure 2 shows a screen-shot taken
from MSN’s MoneyCentral sitea . The right column contains a stock ticker. The site currently
uses a pull-based mechanism to update the stock data.

• A chat application, where new sent messages are delivered to all the subscribers.

• A news portal, where news items are pushed to the subscriber’s browser when they are pub-
lished.

Today, such web applications requiring real-time event notification and data delivery are usually
implemented using a pull style, where the client component actively requests the state changes using
client-side timeouts. An alternative to this approach is the push-based style, where the clients sub-
scribe to their topic of interest, and the server publishes the changes to the clients asynchronously
every time its state changes.

However, implementing such a push solution for web applications is not trivial, mainly due to
the limitations of the HTTP protocol. It is generally accepted that a push solution that keeps an
open connection for all clients will cause scalability problems. However, as far as we know, no
empirical study has been conducted into the actual trade-offs involved in applying a push- versus pull-
based approach to browser-based or AJAX applications. Such a study will answer questions about
data coherence, scalability, network usage and latency. It will also allow web engineers to make
rational decisions concerning key parameters such as publish and pull intervals, in relation to, e.g., the
anticipated number of clients.

In this paper, which is an extension of our previous work [5], we focus on the following challenges:

a http://moneycentral.msn.com
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Fig. 1. A screenshot taken from eBay. The user has to constantly click the “Refresh” button to see any updates.

• How can we set up an automated, controllable, repeatable, and distributed test environment, so
that we can obtain empirical data with high accuracy for comparing data delivery approaches
for AJAX applications?

• How does a push-based web data delivery approach compare to a pull-based one, in terms of
data coherence, scalability, network performance, and reliability?

This paper is further organized as follows.

We start out, in Section 2, by exploring current techniques for real-time HTTP-based data delivery
on the web. Subsequently, in Section 3, we discuss the push-based BAYEUX protocol and the DWR
library, the two open source push implementations that we will use in our experiments. In Section 4,
we present the experimental design by articulating our research questions and outlining the proposed
approach. The independent and dependent variables of our experiment are also discussed in this
section. A detailed presentation of our distributed testing framework called CHIRONbas well as the
environment and applications that we use to conduct our experiments, is shown in Section 5. In
Section 6 the results of our empirical study involving push and pull data delivery techniques are
covered, followed by a discussion of the findings of the study and threats to validity in Section 7.
Finally, in Section 8, we survey related work on this area, after which we conclude our paper in
Section 9 with a summary of our key contributions and suggestions for future work.

b In Greek mythology, CHIRON, was the only immortal centaur. He became the tutor for a number of heroes, including AJAX.
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4 Performance Testing of Data Delivery Techniques for AJAX Applications

Fig. 2. Stock ticker from MSN MoneyCentral

2 Web-based Real-time Event Notification

2.1 AJAX

AJAX [14] is an approach to web application development utilizing a combination of established web
technologies: standards-based presentation using XHTML and CSS, dynamic display and interaction
using the Document Object Model, data interchange and manipulation, asynchronous data retrieval
using XMLHttpRequest, and JavaScript binding everything together. XMLHttpRequest is an API
implemented by most modern web browser scripting engines to transfer data to and from a web server
using HTTP, by establishing an independent communication channel in the background between a
web client and server.

It is the combination of these technologies that enables us to adopt principal software engineering
paradigms, such as component- and event-based approaches, for web application development. Our
earlier work [21] on an architectural style for AJAX, called SPIAR, gives an overview of the new way
web applications can be architected using AJAX. The evolution of web and the advent of Web 2.0, and
AJAX in particular, is making the users experience similar to using a desktop application. Well known
examples include Gmailc , Google Mapsd , or Google Documentse , in which, for example, multiple
users can edit the same spreadsheet simultaneously, all via their web browser.

The classical page-sequence web, based on the REST style, makes a server-initiated HTTP re-
quest impossible. Every request has to be initiated by a client, precluding servers from sending
asynchronous notifications without a request from the client [18]. There are several solutions used
in practice that still allow the client to receive (near) real-time updates from the server. In this section

c http://www.gmail.com
d http://maps.google.com
e http://docs.google.com
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we analyze some of these solutions.

2.2 HTTP Pull

Most web applications check with the server at regular user-definable intervals known as Time to Re-
fresh (TTR). This check occurs blindly regardless of whether the state of the application has changed.

In order to achieve high data accuracy and data freshness, the pulling frequency has to be high.
This, in turn, induces high network traffic and possibly unnecessary messages. The application also
wastes some time querying for the completion of the event, thereby directly impacting the responsive-
ness to the user. Ideally, the pulling interval should be equal to the Publish Rate (PR), i.e., rate at
which the state changes. If the frequency is too low, the client can miss some updates.

This scheme is frequently used in web systems, since it is robust, simple to implement, allows for
offline operation, and scales well to high number of subscribers [15]. Mechanisms such as Adaptive
TTR [4] allow the server to change the TTR, so that the client can pull on different frequencies,
depending on the change rate of the data. This dynamic TTR approach in turn provides better results
than a static TTR model [28]. However, it will never reach complete data accuracy, and it will create
unnecessary traffic.

2.3 HTTP Streaming

HTTP Streaming is a basic and old method that was introduced on the web first in 1992 by Netscape,
under the name ‘dynamic document’ [24]. HTTP Streaming comes in two forms namely, Page and
Service Streaming.

2.3.1 Page Streaming

This method simply consists of streaming server data in the response of a long-lived HTTP connection.
Most web servers do some processing, send back a response, and immediately exit. But in this pattern,
the connection is kept open by running a long loop. The server script uses event registration or some
other technique to detect any state changes. As soon as a state change occurs, it streams the new
data and flushes it, but does not actually close the connection. Meanwhile, the browser must ensure
the user-interface reflects the new data, while still waiting for response from the server to finish.
Implementation of this

2.3.2 Service Streaming

Service Streaming relies on the XMLHttpRequest object. This time, it is an XMLHttpRequest connec-
tion that is long-lived in the background, instead of the initial page load. This brings some flexibility
regarding the length and frequency of connections. The page will be loaded normally (once), and
streaming can be performed with a predefined lifetime for connection. The server will loop indefi-
nitely just like in page streaming, and the browser has to read the latest response (responseText) to
update its state on the Document Object Model (DOM).

2.4 Comet or Reverse AJAX

Currently, major AJAX push tools support Service Streaming. The application of the Service Stream-
ing scheme under AJAX is now known as Reverse AJAX or COMET [25]. COMET enables the server
to send a message to the client when the event occurs, without the client having to explicitly request
it. Such a client can continue with other work while expecting new data from the server. The goal is

SERG Bozdag et al. – Performance Testing of Data Delivery Techniques for AJAX applications
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6 Performance Testing of Data Delivery Techniques for AJAX Applications

Fig. 3. Streaming mode for COMET

Fig. 4. Long polling mode for COMET

to achieve a real-time update of the state changes and offer a solution to the problems mentioned in
Section 2.2.

The COMET scheme is available thanks to the ‘persistent connection’ feature brought by
HTTP/1.1. With HTTP/1.1, unless specified otherwise, the TCP connection between the server and
the browser is kept alive, until an explicit ‘close connection’ message is sent by one of the parties, or
a timeout/network error occurs. Prior to persistent connections, a separate TCP connection was estab-
lished to fetch each URL, increasing the load on HTTP servers and causing congestion on the Internet.
With persistent connections, fewer TCP connections are opened and closed, leading to savings both
in CPU time for routers and hosts (clients, servers, proxies, gateways, tunnels, or caches), as well as
in memory usage for TCP protocol control blocks in hosts.

HTTP/1.1 reduces the total number of TCP connections in use. However, it still states that the
protocol must follow the request/response scheme, where the client makes a request and the server
returns a response for this particular request. Thus, once a complete response is returned, there is no
further way for the server to send data back to the client browser.

COMET implementations have mainly adopted the following techniques to overcome this problem:

Streaming Figure 3 shows how the streaming mode operates. After the initial request, the server does
not close the connection, nor does it give a full response. As the new data becomes available,
the server returns it to the client in HTTP chunked mode [32], using the same request and the
connection. Typical Comet server implementations implement this feature by opening a hidden
iframe element in the browser after page load, establishing a long-lived connection inside the
hidden iframe. Data is pushed incrementally from the server to the client over this connection,
and rendered incrementally by the web browser [27].

Bozdag et al. – Performance Testing of Data Delivery Techniques for AJAX applications SERG
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The problem with this approach is that some web servers might identify this open-request as
idle and close the connection. HTTP chunked mode might also be not supported in every router
that is located on the path.

Long polling Figure 4 shows the operation of the long polling mode. In this mode, once again the
server holds on to the client request, however this time until data becomes available. If an
event occurs, the server sends the data to the client and the client has to reconnect. Otherwise,
the server holds on to the connection for a finite period of time, after which it asks the client
to reconnect again. Long polling (also known as Asynchronous-Polling) is a mixture of pure
server push and client pull. If the publish interval (or the timeout value) is low, the system acts
more like a pure pull-based style. If the publish interval is high, it will act more like a pure push
approach.

3 COMET Implementations

COMETD and DWR are currently two actively developed open source libraries that bring COMET

support to AJAX applications. In the following subsections we take a closer look at these two libraries.

3.1 COMETD Framework and the BAYEUX Protocol

As a response to the lack of communication standards [21] for AJAX applications, the COMETD group f

released a COMET protocol draft called BAYEUX [26]. The BAYEUX message format is defined in
JSON (JavaScript Object Notation)g which is a data-interchange format based on a subset of the
JavaScript Programming Language. The protocol has recently been implemented and included in a
number of web servers including Jettyh and IBM Webspherei .

This protocol follows the ‘topic-based’ [11] publish-subscribe scheme, which groups events ac-
cording to their topic (name) and maps individual topics to distinct communication channels. Partici-
pants subscribe to individual topics, which are identified by keywords. Like many modern topic-based
engines, BAYEUX offers a form of hierarchical addressing, which permits programmers to organize
topics according to containment relationships. It also allows topic names to contain wildcards, which
offers the possibility to subscribe and publish to several topics whose names match a given set of
keywords. BAYEUX defines the following phases in order to establish a COMET connection:

1. The client performs a handshake with the server, receives a client ID and list of supported
connection types, such as IFrame or long-polling (See Section 2.4).

2. The client sends a connection request with its ID and its preferred connection type.

3. The client later subscribes to a channel and receives updates

Although the BAYEUX specification supports both streaming and long polling modes, the
COMETD framework currently only implements the long polling approach. Please note that, although
there are other frameworks that support the BAYEUX protocol, in this paper we will use the terms
BAYEUX and COMETD interchangeably.

f http://www.cometd.com
g http://www.json.org
h http://www.mortbay.org
i http://www.ibm.com/software/websphere
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8 Performance Testing of Data Delivery Techniques for AJAX Applications

3.2 Direct Web Remoting ( DWR)

Direct Web Remoting (DWR) j is a Java open source library which allows scripting code in a browser
to use Java functions running on a web server just as if they were in the browser. DWR works by
dynamically generating JavaScript based on Java classes. To the user it feels like the execution is
taking place on the browser, but in reality the server is executing the code and DWR is marshalling
the data back and forwards. DWR works similar to the RPC mechanism (e.g., Java RMI [29]), but
without requiring any plugins. It consists of two main parts:

• A Java Servlet running on the server that processes requests and sends responses back to the
browser.

• A JavaScript engine running in the browser that sends requests and can dynamically update the
DOM with received responses from the server.

From version 2.0 and above DWR supports COMET and calls this type of communication “Active
Reverse AJAX” [10]. Currently, DWR does not support BAYEUX, and has adopted its own protocol
to exchange data. DWR supports the long polling as well as the streaming mode. Because COMETD

has no streaming implementation, we will only use the long polling mode of both libraries in our
experiment, in order to be able to make a comparison.

4 Experimental Design

In this section we first present our research questions. Later we describe our proposed approach, and
the independent and dependent variables which we will use to conduct the experiment and come to
answers to our questions.

4.1 Goal and Research Questions

We set up our experiments in order to evaluate several dependent variables using the GQM/MEDEAk

framework proposed by Briand et al.[6]. First, we describe the goal, perspective and environment of
our experiment:

Goal: To obtain a rigorous understanding of the actual performance trade offs between a push-based
and a pull-based approach to AJAX data delivery.

Perspective: In particular, we aim at an automated, repeatable experiment, in which as many (com-
binations) of the factors that influence performance (such as the number of users, the number of
published messages, the intervals between messages, etc.) can be taken into account.

Environment: The experiments are targeted at distributed environments, particulary those with UNIX/Linux
nodes. Further relevant factors of these systems will be described in Section 5.2.

We have formulated a number of questions that we would like to find answers for in each approach.
Our research questions can be summarized as:

RQ1 How fast are state changes (new messages) on the server propagated to the clients?

RQ2 What is the scalability and overall performance of the server?
j http://getahead.org/dwr
k Goal Question Metric/MEtric DEfinition Approach
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RQ3 To what extent is the network traffic generated between the server and clients influenced?

RQ4 How reliable is each approach? Are there messages that are missed or abundantly received on
the clients?

4.2 Outline of the Proposed Approach

In order to obtain an answer to our research questions, we propose the following steps:

1. creating two separate web applications, having the same functionality, using each push library
(one for COMETD and one for DWR), consisting of the client and the server parts,

2. creating a pull-based web application with the same functionality as the other two,

3. implementing an application, called Service Provider, which publishes a variable number of
data items at certain intervals,

4. simulating a variable number of concurrent web users operating on each application, by creating
virtual users,

5. gathering data and measuring: the mean time it takes for clients to receive a new published mes-
sage, the load on the server, number of messages sent or retrieved, and the effects of changing
the data publish rate and number of users,

6. coordinating all these tools automatically in order to have consistent test runs for each combi-
nation of the variables,

7. reporting, analyzing, and discussing the measurements found.

4.3 Independent Variables

To see how the application server reacts to different conditions, we use different combinations of the
following independent variables:

Number of concurrent users 100, 500, 1000, 2000, 5000 and 10000; the variation helps to find a
maximum number of users the server can handle simultaneously.

Publish interval 1, 5, 15, 30, and 50 seconds; the frequency of the publishing updates is also im-
portant. Because of the long polling implementation in COMETD and DWR (See Section 2),
the system should act more like pure pull when the publish interval is small, and more like pure
push when the publish interval increases. This is because a smaller publish interval causes many
reconnects (See Section 2.4).

Pull interval 1, 5, 15, 30, and 50 seconds; when a pull approach is used, the pulling interval will also
have an effect on the measurements.

Application mode COMETD, DWR, and pull; we also made an option in our framework that allows
us to switch between different application modes.

Total number of messages 10; to constrain the period needed to conduct the experiment, for each
test run, we generate a total of 10 publish messages.

SERG Bozdag et al. – Performance Testing of Data Delivery Techniques for AJAX applications
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10 Performance Testing of Data Delivery Techniques for AJAX Applications

4.4 Dependent Variables

In order to be able to answer the research questions we measure the following dependent variables:

Mean Publish Trip-time (MPT) We define trip-time as follows:

Trip-time = | Data Creation Date − Data Receipt Date |
Data Creation Date is the date on the publishing server the moment it creates a message, and
Data Receipt Date is the date on the client the moment it receives the message. Trip-time shows
how long it takes for a publish message to reach the client and can be used to find out how fast
the client is notified with the latest events.For each combination of the independent variables,
we calculate the mean of the publish trip-time for the total number of clients.

We define a piece of data as coherent, if the data on the server and the client is synchronized.
We check the data coherence of each approach by measuring the trip-time. Accordingly, a data
item with a low trip-time leads to a high coherence degree.

Server Performance (SP) Since push is stateful, we expect it to have more administration costs on
the server side, using more resources. In order to compare this with pull, we measure the CPU
usage for the push- and pull-based approaches.

Received Publish Messages (RPM) To see the message overhead, we publish a total of 10 messages
and count the total number of (non unique) messages received by the clients that could make a
connection to the server. This shows us if a client receives an item multiple times and causes
unnecessary network traffic.

Received Unique Publish Messages (RUPM) It is also interesting to see if all the 10 messages we
have published reach the clients that could make a connection to the server. This shows us if a
client misses any items.

Received Message Percentage (RMP) It is quite possible that not all the clients could make a con-
nection, or receive all the messages. Therefore, for each run, we divide the total number of
messages received, by the total number of messages published.

Network Traffic (NT) In order to see the difference in network traffic, we record the number of TCP
packets coming to and going from the server to the clients.

5 Distributed Testing Infrastructure

In order to measure the impact the various combinations of independent variables have on the depen-
dent variables, we need a distributed testing infrastructure. This infrastructure must make it possible
to control independent variables such as the number of concurrent users and total number of messages,
and observe the dependent variables, such as the trip-time and the network traffic.

Unfortunately, distributed systems are inherently more difficult to design, program, and test than
sequential systems [2]. They consist of a varying number of processes executing in parallel. A process
may also update its variables independently or in response to the actions of another process. Testing
distributed programs is a challenging task of great significance. Controllability, observability [8],
and reproducibility problems might occur in distributed testing environments. In this section we will
present our distributed, automated testing framework called CHIRON and how it helps to decrease
the magnitude of these problems. We are in the process of releasing our testing framework under

Bozdag et al. – Performance Testing of Data Delivery Techniques for AJAX applications SERG
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Fig. 5. Design of the Distributed Automated Testing Framework CHIRON

an open source license. More information about CHIRON can be obtained from the following URL:
http://spci.st.ewi.tudelft.nl/chiron/

5.1 The CHIRON Distributed Testing Framework

As mentioned in Section 4.3, we defined several independent variables in order to measure several de-
pendent variables (see Section 4.4). The combination of the independent variables (i.e. pull intervals,
publish intervals, and the number of users) is huge and that makes performing the tests manually an
error-prone, and time consuming task.

In addition, the tools and components we use are located in different machines to simulate real-
world environments. This distributed nature contributes to the complexity of controlling the experi-
ment manually. This all makes it difficult to repeat the experiment at later stages with high validity.

In order to overcome these challenges, we have created an integrated performance testing frame-
work called CHIRON that automates the whole testing process. As depicted in Figure 5, the controller
has direct access to different servers and components (Application server, client simulation server,
the statistic server and the Service Provider). By automating each test run, the controller coordinates
the whole experiment. This way we can repeat the experiment many times without difficulty and re-
duce the non-determinism, which is inherent in distributed systems [2]. Since no user input is needed
during a test run, observability and controllability problems [8] are minimized.

We have implemented CHIRON using a number of open source packages. In particular we use
Grinderl which seemed to be a good option, providing an internal TCPProxy, allowing to record and

l http://grinder.sourceforge.net
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12 Performance Testing of Data Delivery Techniques for AJAX Applications

replay events sent by the browser. It also provides scripting support, which allows us to create a script
that simulates a browser connecting to the push server, subscribing to a particular stock channel and
receiving push data continuously. In addition, Grinder has a built-in feature that allows us to create
multiple threads of a simulating script.

Figure 6 shows the steps CHIRON follows for each test iteration. The middle column denotes the
task CHIRON performs, the left column denotes the step number and the right column shows which
machine CHIRON interacts with in order to perform the task. For each combination of the independent
variables, CHIRON carries out the tasks 3–10:

1. Read the input from the configuration file. This input consists of the independent variables, but
also local and remote folders on different servers, path to the tools, publish channels, number
of nodes that are used to simulate clients, etc,

2. Start the statistics server to listen for and receive experimental data from the clients,

3. Generate a Grinder properties file for this iteration with a combination of independent variables
(pull interval, publish interval, number of users, etc.),

4. Upload the created properties file to the client simulation server,

5. Start the application server that hosts the three different versions (See Section 5.4) of the Stock
Ticker web application,

6. Start performance and network traffic measurement tools on the application server,

7. Start simulating clients using the generated and uploaded properties file,

8. Start the publisher and begin publishing data to the server,

9. When the publisher is done or a time-out has occurred, stop all the components,

10. Gather and copy the data to the statistics server and get ready for the next iteration by going to
the Grinder properties generation step.

Because of the distributed nature of the simulated clients, we use Log4J’s SocketServerm to set up
a logging server that listens for incoming log messages. The clients then send the log messages using
the SocketAppender.

We use TCPDumpn to record the number of TCP (HTTP) packets sent to and from the server on
a specific port. Note that we only record packets coming/going to the simulated clients. We also have
created a script that uses the UNIX topo utility to record the CPU usage of the application server every
second. This is necessary to observe the scalability and performance of each approach.

Finally, we use Trilead’s SSH2 library to manage (start, stop, etc) all the tools mentioned above.
Trilead SSH-2 for Javap is an open source library which implements the SSH-2 protocol in Java.
Since the tools are distributed on different machines, SSH2 library allows us to automatically issue

m http://logging.apache.org/log4j/docs/
n http://www.tcpdump.org/
o http://www.unixtop.org/
p http://www.trilead.com/Products/Trilead-SSH-2-Java/
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Fig. 6. The steps CHIRON follows for each iteration
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14 Performance Testing of Data Delivery Techniques for AJAX Applications

Fig. 7. Sequence of Events in the Experimental Environment.

commands from one single machine, gather the results on different machines and insert them into our
statistics server.

In addition, we have created a Data Analyzer component that parses log files of the different tools
and serializes all the data into a database using Hibernateq and MySQL Connector/Jr . This way,
different views on the data can be obtained easily using queries to the database.

5.2 Testing Environment

We use the Distributed ASCI Supercomputer 3 (DAS3)s to simulate the virtual users on different dis-
tributed nodes. The DAS3 cluster at Delft University of Technology consists of 68 dual-CPU 2.4 GHz
AMD Opteron DP 250 compute nodes, each having 4 GB of memory. The cluster is equipped with 1
and 10 Gigabit/s Ethernet, and runs Scientific Linux 4. It is worth noting that we use a combination
of the 64 DAS3 nodes and Grinder threads to simulate different numbers of users.

The application server runs on a AMD 2x Dual Core Opteron 2212 machine with 8 GB RAM.
The server has Ubuntu 7.10 server edition installed. For the push version we use the COMETD 6.1.7
and DWR 2.0.2 libraries. Both libraries run on Jettyt , an open source web server implemented
entirely in Java. Jetty uses Java’s new IO package (NIO). The NIO package follows the event-driven
design, which allows the processing of each task as a finite state machine (FSM). As the number of
tasks reach a certain limit, the excess tasks are absorbed in the server’s event queue. The throughput
remains constant and the latency shows a linear increase. The Event-driven design is supposed to
perform significantly better than thread-concurrency model [33, 34]. Jetty also contains a mechanism
called Continuations [9]. This mechanism allows an HTTP request to be suspended and restarted
after a timeout or after an asynchronous event has occurred. This way less threads are occupied on

q http://www.hibernate.org
r http://www.mysql.com/products/connector/j/
s http://www.cs.vu.nl/das3/overview.shtml
t www.mortbay.org
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Fig. 8. Sample Stock Ticker Application

the server. Note that no other process was running in this application server other than TCPDump
and UNIX top. Their load on the server and their effect on the results are negligible, since we only
measure the PID of Jetty. Besides, as mentioned, the test machine has 2x Dual Core processors, and
the server never had 100% load, which can be seen in Section 6.2.

The connectivity between the server and DAS3 nodes is through a 100 Mbps ethernet connection.

5.3 Example Scenario

Figure 7 shows the sequence of events of an example test scenario from the perspective of the servers:

1. The Service Provider publishes the stock data to the application server via an HTTP POST
request, in which the creation date, the stock ID, and the stock message are specified.

2. For push: The application server pushes the data to all the subscribers of that particular stock.
For pull: the application server updates the internal stock object, so that when clients send pull
requests, they get the latest data.

3. Each simulated client logs the responses (after some calculation) and sends it to the statistics
server.

5.4 Sample Application: Stock Ticker

We have developed a Stock Ticker web application as depicted in Figure 8. As new stock messages
come in, the fields are updated in the browser accordingly. As mentioned before, the Stock Ticker has
been implemented in three variants, namely, COMETD, DWR, and pull.

The COMETD version consists of a JSP page which uses Dojo’s COMETD libraryu to subscribe to
a channel on the server and receive the Stock data. For the server side, we developed a Java Servlet
(PushServlet) that pushes the new data into the clients’ browsers using the COMETD library.

The DWR version consists of the same JSP page as the COMETD version, but uses the DWR li-
brary instead of Dojo on the client side. For the server side, we again have a separate Java Servlet
(PushServlet) that pushes the data into the browsers, but this time it uses the DWR’s COMET servlet.

The pull version also consists of a JSP page, but instead of COMETD or DWR, it uses the nor-
mal bind method of Dojo to request data from the server. The pull nature is set using the standard
setInterval JavaScript method. The interval at which the client should request/pull for new updates
is configurable. On the server, a PullServlet is created which updates and keeps an internal stock
u http://dojotoolkit.org/
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object (the most recent one) and simply handles and responds to every incoming request the classical
way.

The Service Provider uses the HTTPClient libraryv to publish stock data to the Servlets. The num-
ber of publish messages as well as the interval at which the messages are published are configurable.

Concurrent clients are simulated by using the Grinder TCPProxy to record the actions of the JSP
client pages for push and pull and create scripts for each in Jythonw. Jython is an implementation of
the high-level, dynamic, object-oriented language Python, integrated with the Java platform. It allows
the usage of Java objects in a Python script and is used by Grinder to simulate web users. In our
framework, we created Jython scripts that are actually imitating the different versions of the client
pages.

6 Results and Evaluation

In the following subsections, we present and discuss the results which we obtained using the com-
bination of variables mentioned in Section 4.3. Figures 9–14 depict the results. For each number of
clients on the x-axis, the five publish intervals in seconds (1, 5, 15, 30, 50) are presented as colored
bars. Note that the scale on the y-axis might not be the same for all the graphics.

6.1 Mean Publish Trip-time and Data Coherence

Figure 9 shows the mean publish trip-time versus the total number of clients for each publish interval,
with COMETD (shown with BAYEUX label), DWR and pull techniques.

As we can see in Figure 9, Mean Publish Trip-time (MPT) is, at most, 1200 milliseconds with
COMETD, which is significantly better than the DWR and pull approaches. Surprisingly, DWR’s
performance is worse than pull with a pull interval of 1. However, with a pull interval of 5 or higher,
DWR performs better (with the exception of: clients = 2000, publish interval = 30) than pull. Also
note that MPT is only calculated with the trip-time data of the clients that actually received the items.
As we will see in Section 6.4, pull clients may miss many items, depending on the pull interval. From
these results we can say that pull has a lower degree of data coherence compared to COMETD, even
with a very small pull interval.

6.2 Server Performance

Figure 10 shows the mean percentage of the server CPU usage. In all scenarios, we see that the server
load increases as the number of users increases. With pull, even with a pull interval of 1, the CPU
usage is lower than COMETD and DWR.

However, with push, we notice that even with 10000 users, the server is not saturated: CPU usage
reaches 45% with COMETD, and 55% with DWR. We assume that this is partly due to the Jetty’s
continuation mechanism (See Section 5.2).

6.3 Received Publish Messages

Figure 11 shows the mean number of received non-unique publish items versus the total number of
clients. Note that this shows the mean of Received Publish Messages (RPM) for only those clients that
could make a connection to the server and receive data. Also note that if a pull client makes a request
while there is no new data, it will receive the same item again and this pattern can happen multiple

v http://jakarta.apache.org/commons/httpclient/
w http://www.jython.org
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Fig. 9. Mean Publish Trip-time
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Fig. 10. Server application CPU usage.
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times. This way a client might receive more than 10 messages. As we mentioned in Section 2.2, in a
pure pull system, the pulling frequency has to be high to achieve high data coherence. If the frequency
is higher than the data publish interval, the pulling client will pull the same data more than once,
leading to redundant data and overhead.

We notice that with a pull interval of 1, the clients can receive up to approximately 250 non-unique
messages, while we published only 10. In the same figure we see that push clients (both COMETD

and DWR) received approximately a maximum of 10 messages. This means that, in the worst-case
(pull interval = 1, publish interval = 50) 96% of the total number of pull requests were
unnecessary. In the COMETD and DWR graphics, we see that, with up to 2000 users the server is
very stable; almost all the clients receive a maximum of 10 published messages. What is interesting,
however, as the number of clients becomes 2000 or more, some data miss begins to occur for both
push approaches. Pull clients also begin to miss some data with 2000 users or more, but the decrease
in received data items is much less.

6.4 Received Unique Publish Messages

Figure 12 shows the mean number of received unique publish items versus total number of clients.
Note that this shows the mean of Received Unique Publish Messages (RUPM) for only those clients
that could make a connection to the server and receive data.

According to Figure 12, if the publish interval is higher or equal to the pull interval, the client
will receive most of the messages. However as we have discussed in Section 6.3, this will generate an
unnecessary number of messages. Looking at the figure again, we see that when the pull interval is
lower than the publish interval, the clients will miss some updates, regardless of the number of users.
So, with the pull approach, we need to know the exact publish interval. However, the publish interval
tends to change, which makes it difficult for a pure pull implementation to adapt its pull interval.

With COMETD and DWR, almost all messages are received by the users (having up to a total
of 2000 users). Higher than 2000 users, we see that some data miss begins to occur for both push
libraries.

With pull, a lower pull interval leads to more accuracy. With a pull interval of 1, the mean number
of received items can be as high as 9. With a pull interval of 5 this number drops to 6.

6.5 Received Message Percentage

Figure 13 shows us the Received Message Percentage (RMP). We notice that RMP is significantly
higher with COMETD and DWR, compared to pull. We can also see that RMP decreases significantly
in all approaches after 2000 users. This might depend on many factors, such as, Jetty application server
queuing all the connections, or perhaps, before a client can process the test run ends. It might also lie
within the client simulator, or our statistics server that have to cope with generating a high number of
clients and receive a huge number of messages. See Section 7.2 for a discussion of possible factors
that might have an effect on the results.

However, if we compare RMP of the three approaches for 2000 users or more, we see that
COMETD and DWR clients still receive more data than pull, and thus have a higher degree of re-
liability.

6.6 Network Traffic

Figure 14 shows the results. We notice that, in COMETD and DWR, the number of TCP packets
traveled to/from the server increases as the number of users increases, rising up to 80,000 packets
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Fig. 11. Mean Number of Received Publish Messages
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Fig. 12. Mean Number of Received Unique Publish Messages.
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Fig. 13. Percentage of data items that are delivered to all clients
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with COMETD and 250,000 with DWR. We see that up to 2000 users, the publish interval has almost
no effect, showing that the administrative costs of establishing a long polling connection is negligible.
After 2000 users, there is a difference between different publish intervals, this might be caused by
many factors including connection timeouts. With pull, in worst case scenario (pullInterval =1
, publishInterval = 50, and 1000 users), Network Traffic (NT) rises up to 550,000 packets.
This is almost 7 times more than COMETD and 2 times more than DWR. This number decreases with
lower pull intervals, however as we have discussed in Section 6.1, high pull intervals will lead to
high trip-time and low data coherence. Also note that, with pull, NT increases as the publish interval
increases. This is because a longer publish interval will lead to a longer test run, in turn leading to
more pull requests.

7 Discussion

In this section we discuss our findings and try to answer our research questions. We also present the
threats to the validity of our experiment.

7.1 The Research Questions Revisited

RQ1 Data coherence: RQ1 inquired how fast the state changes (new messages) on the server were
being propagated to the clients. We expected that the pull-based clients would have a higher trip-
time value and thus a lower degree of data coherence. Our findings in Section 6.1 support our
expectations. Even with a pull interval of 1 second, the trip-time with pull is higher than push.
This finding indicates that the push-based style supports a higher degree of data coherence.

RQ2 Scalability and server performance: RQ2 addressed the issue with the scalability and the overall
performance of the server. Considering our previous results [5], we initially expected push to
cause significantly higher server load, compared to pull. However, our new findings in Sec-
tion 6.2 show that, even though push causes more CPU usage, the difference is not significant.
With push, the server CPU is not saturated, even with 10000 users. This indicates that both
approaches scale well to thousands of clients.

RQ3 Network traffic: RQ3 tried to find to what extend the network traffic generated between the
server and clients is influenced. We initially expected a smaller pull interval to create many
unnecessary requests and a high network traffic. Our findings in Section 6.3 and Section 6.6
supported these predictions. Pull causes the clients to receive a higher number of redundant
messages compared to push, leading to unnecessary network traffic. With pull, the number of
traveling TCP packets to and from the server is 7 times more than COMETD.

RQ4 Reliability: RQ4 questioned the reliability of each approach. We expected that pull-based
clients would miss many more data items compared to push clients. Our findings in Section 6.5
and Section 6.4 show that pull clients with a low pull interval are more up-to-date compared to
those with a high pull interval, but also receive many redundant data if the publish interval is
high. However, they are still missing many data items compared to the push-based clients.

7.2 Threats to Validity

A fundamental question concerning results from an experiment is how valid the results are [35]. In
this section the validity of our findings is discussed with respect to internal and external validity.
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Fig. 14. Total number of TCP packets coming from/to the server
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We structure our discussion according to Wohlin et al. [35], which in turn is based on the work of
Campbell and Stanley [7], and Cook and Campbell [30].

7.2.1 Internal Validity

In an experiment, different treatments may be applied to the same object at different times. Then there
is a risk that the history affects the experimental results, since the circumstances are not the same on
both occasions [35]. We have the following threats to internal validity:

Non-deterministic nature of the distributed environments
Our experimental setup is distributed on different machines and each test run for each technique is
run on different times of the day. A network congestion at the time of the test, might for example
have an effect on the trip-time variable (See Section 6.1). We also use the supercomputer (DAS3) to
simulate many clients and at the time of testing there might be other users running tasks, which might
affect the network bandwidth. In order to limit these effects on the network latency, we placed all
the machines in the same LAN, used the same test-script in all the simulated clients and allocated the
same bandwidth.

Reliability of the tools
We use several tools to obtain the result data. The shortcomings and the problems of the tools them-
selves can have an effect on the outcome. For example, from all the results we see that the performance
suffers after 2000 users for all approaches. This degradation might be caused by the server, client sim-
ulator, or the statistics server. Debugging distributed applications, to find the cause of such behavior,
proved to be very difficult.

Time and Data Coherence
The time calculation can also be a threat to the internal validity. To measure the trip-time, the differ-
ence between the data creation date and data receipt date is calculated. However if the time on the
publisher and the clients is different, the trip-time is calculated incorrectly. In order to prevent this,
we made sure that the time on the server and client machines are synchronized by using the same time
server.

We measure the data coherence by taking the trip-time. However, the data itself must be correct,
i.e., the received data must be the same data that was sent by the server. We rely on HTTP in order
to achieve this data correctness. However, additional experiments must include a self check to ensure
this requirement.

7.2.2 External validity

The external validity deals with the ability to generalize results [35]. There is a risk that the used push
libraries are not good representatives of push, making it difficult to draw general conclusions about
the whole push approach. In order to minimize the risk, we have used two libraries instead of one,
and as we have shown in Section 6, we see the same pattern, which confirms our findings for push.
However, we did only use a single web application server, because at the time of the testing Jetty was
the only open source and stable Java server that supported NIO. In the future, different application
servers should be included, e.g., Sun’s Grizzlyx .

We only used one type of sample application, namely the stock ticker. In this scenario, we had a
single channel with many users, where a data item is sent to all the push clients. However, there are

x https://grizzly.dev.java.net/
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other use cases, such as a chat application, where there will be multiple channels with many users.
In this scenario, a data item will only be sent to the subscribers of that particular channel. This will
have effects on the scalability and other dependent variables. Therefore, further tests with different
use cases are necessary.

In order to limit the external factors that affect the trip-time, we placed all the test machines in
the same network and all the users are granted with the same bandwidth. In a real-life scenario, users
are located at different parts of the world, and have different bandwidth properties, leading to a bigger
variance in the trip-time. This should be taken into account before deciding on actual parameters of a
web application using push.

During the experiment execution, if a large volume of data exchange occurs, this might lead to
concurrency on the access to the shared resources. To minimize this threat, we run each server (ap-
plication server, client generator, statistics server) on different machines. Note that only the client
generator is located in a cluster (DAS3). Other servers are located outside the cluster.

8 Related Work

There are a number of papers that discuss server-initiated events, known as push, however, most of
them focus on client/server distributed systems and non HTTP multimedia streaming or multi-casting
with a single publisher [1, 16, 13, 3, 31]. The only work that focuses on AJAX is the white-paper
of Khare [17]. Khare discusses the limits of the pull approach for certain AJAX applications and
mentions several use cases where a push application is much more suited. However, the white-paper
does not mention possible issues with this push approach such as scalability and performance. Khare
and Taylor [18] propose a push approach called ARRESTED. Their asynchronous extension of REST,
called A+REST, allows the server to broadcast notifications of its state changes. The authors note that
this is a significant implementation challenge across the public Internet.

The research of Acharya et al. [1] focuses on finding a balance between push and pull by inves-
tigating techniques that can enhance the performance and scalability of the system. According to the
research, if the server is lightly loaded, pull seems to be the best strategy. In this case, all requests get
queued and are serviced much faster than the average latency of publishing. The study is not focused
on HTTP.

Bhide et al. [4] also try to find a balance between push and pull, and present two dynamic adaptive
algorithms: Push and Pull (PaP), and Push or Pull (PoP). According to their results, both algorithms
perform better than pure pull or push approaches. Even though they use HTTP as messaging protocol,
they use custom proxies, clients, and servers. They do not address the limitations of browsers nor do
they perform load testing with high number of users.

Hauswirth and Jazayeri [15] introduce a component and communication model for push systems.
They identify components used in most Publish/Subscribe implementations. The paper mentions
possible problems with scalability, and emphasizes the necessity of a specialized, distributed, broad-
casting infrastructure.

Eugster et al. [11] compare many variants of Publish/Subscribe schemes. They identify three alter-
natives: topic-based, content-based, and type-based. The paper also mentions several implementation
issues, such as events, transmission media and qualities of service, but again the main focus is not on
web-based applications.

Flatin [19] compares push and pull from the perspective of network management. The paper
mentions the publish/subscribe paradigm and how it can be used to conserve network bandwidth as
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well as CPU time on the management station. Flatin suggests the ‘dynamic document’ solution of
Netscape [24], but also a ‘position swapping’ approach in which each party can both act as a client
and a server. This solution, however, is not applicable to web browsers. Making a browser act like a
server is not trivial and it induces security issues.

As far as we know, there has been no empirical study conducted to find out the actual trade-offs of
applying pull/push on browser-based or AJAX applications.

9 Conclusion

In this paper we have compared pull and push solutions for achieving web-based real time event
notification and data delivery. The contributions of this paper include:

• An experimental design permitting the analysis of pull and push approaches to web data deliv-
ery, and the identification of key metrics, such as the mean publish trip-time, received (unique)
publish messages, and the received message percentage (Section 4).

• A reusable software infrastructure, consisting of our automated distributed AJAX performance
testing framework CHIRON, Grinder scripts imitating clients and a sample application written
for COMETD, DWR, and pull (Section 5).

• Empirical results highlighting the tradeoffs between push and pull based approaches to web-
based real time event notification, and the impact of such characteristics as the number of con-
current users, the publish interval, on, for instance, server performance (Section 6).

Our experiment shows that if we want high data coherence and high network performance, we
should choose the push approach. Pull cannot achieve the same data coherence, even with low pull
intervals. Push can also handle a high number of clients thanks to the continuations [9] mechanism of
Jetty, however, when the number of users increases, the reliability in receiving messages decreases.

With the pull approach, achieving total data coherence with high network performance is very
difficult. If the pull interval is higher than the publish interval, some data miss will occur. If it is
lower, then the network performance will suffer, in some cases pull causes as high as 7 times more
network traffic compared to push. Pull performs close to push only if the pull interval equals to
publish interval, but never better. Besides, in order to have pull and publish intervals equal, we need
to know the exact publish interval beforehand. The publish interval on the other hand is rarely static
and predictable. This makes pull useful only in situations where the data is published according to
some pattern.

These results allow web engineers to make rational decisions concerning key parameters such as
pull and push intervals, in relation to, e.g., the anticipated number of clients. Furthermore, the exper-
imental design and the reusable software infrastructure allows them to repeat similar measurements
for their own (existing or to be developed) applications. We will soon release CHIRON through our
website (See Section 5).

Our future work includes adopting and testing a hybrid approach that combines pull and push
techniques for AJAX applications to gain the benefits of both approaches. In this approach for ex-
ample, users can specify a maximum trip-time, and if the server is under high load, it can switch
some push users to pull. We believe that such optimizations can have a positive effect on the overall
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performance. We also intend to extend our testing experiments with different web application contain-
ers such as Grizzly, or different push server implementations that are based on holding a permanent
connection (e.g., Lightstreamery ) as opposed to the long polling approach discussed in this paper.

References

[1] S. Acharya, M. Franklin, and S. Zdonik. Balancing push and pull for data broadcast. In SIGMOD
’97: Proceedings of the 1997 ACM SIGMOD international conference on Management of data,
pages 183–194. ACM Press, 1997.

[2] S. Alager and S. Venkatsean. Hierarchy in testing distributed programs. In AADEBUG ’93:
Proceedings of the First International Workshop on Automated and Algorithmic Debugging,
pages 101–116, London, UK, 1993. Springer-Verlag.

[3] M. Ammar, K. Almeroth, R. Clark, and Z. Fei. Multicast delivery of web pages or how to make
web servers pushy. Workshop on Internet Server Performance, 1998.

[4] M. Bhide, P. Deolasee, A. Katkar, A. Panchbudhe, K. Ramamritham, and P. Shenoy. Adaptive
push-pull: Disseminating dynamic web data. IEEE Trans. Comput., 51(6):652–668, 2002.

[5] E. Bozdag, A. Mesbah, and A. van Deursen. A comparison of push and pull techniques for Ajax.
In S. Uang and M. D. Penta, editors, Proceedings of the 9th IEEE International Symposium on
Web Site Evolution (WSE), pages 15–22. IEEE Computer Society, 2007.

[6] L. C. Briand, S. Morasca, and V. R. Basili. An operational process for goal-driven definition of
measures. IEEE Trans. Softw. Eng., 28(12):1106–1125, 2002.

[7] D. Campbell and J. Stanley. Experimental and Quasi-Experimental Designs for Research. Rand-
McNally, Chicago, 1963.

[8] J. Chen, R. M. Hierons, and H. Ural. Overcoming observability problems in distributed test
architectures. Inf. Process. Lett., 98(5):177–182, 2006.

[9] M. Consulting. Jetty webserver documentation - continuations. http://docs.codehaus.org/
display/JETTY/Continuations, 2007.

[10] Direct Web Remoting. Reverse Ajax documentation. http://getahead.org/dwr/
reverse-ajax, 2007.

[11] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The many faces of pub-
lish/subscribe. ACM Comput. Surv., 35(2):114–131, 2003.

[12] R. T. Fielding and R. N. Taylor. Principled design of the modern web architecture. ACM Trans.
Inter. Tech., 2(2):115–150, 2002.

[13] M. Franklin and S. Zdonik. Data in your face: push technology in perspective. In SIGMOD
’98: Proceedings of the 1998 ACM SIGMOD international conference on Management of data,
pages 516–519. ACM Press, 1998.

y http://www.lightstreamer.com

Bozdag et al. – Performance Testing of Data Delivery Techniques for AJAX applications SERG

28 TUD-SERG-2008-009



E. Bozdag, A. Mesbah, and A. van Deursen 29

[14] J. Garrett. Ajax: A new approach to web applications. Adaptive Path: http://adaptivepath.
com/publications/essays/archives/000385.php, 2005.

[15] M. Hauswirth and M. Jazayeri. A component and communication model for push systems. In
ESEC/FSE ’99, pages 20–38. Springer-Verlag, 1999.

[16] K. Juvva and R. Rajkumar. A real-time push-pull communications model for distributed real-
time and multimedia systems. Technical Report CMU-CS-99-107, School of Computer Science,
Carnegie Mellon University, January 1999.

[17] R. Khare. Beyond Ajax: Accelerating web applications with real-time event notification.
Knownow.com, white-paper.

[18] R. Khare and R. N. Taylor. Extending the representational state transfer (REST) architectural
style for decentralized systems. In ICSE ’04: Proceedings of the 26th International Conference
on Software Engineering, pages 428–437. IEEE Computer Society, 2004.

[19] J.-P. Martin-Flatin. Push vs. pull in web-based network management. http://arxiv.org/pdf/
cs/9811027, 1999.

[20] A. Mesbah, E. Bozdag, and A. van Deursen. Crawling Ajax by inferring user interface state
changes. In Proceedings of the 8th International Conference on Web Engineering (ICWE’08),
pages 122–134. IEEE Computer Society, 2008.

[21] A. Mesbah and A. van Deursen. An architectural style for Ajax. In Proceedings of the 6th Work-
ing IEEE/IFIP Conference on Software Architecture (WICSA’07), pages 44–53. IEEE Computer
Society, 2007.

[22] A. Mesbah and A. van Deursen. Migrating multi-page web applications to single-page Ajax in-
terfaces. In Proceedings of the 11th European Conference on Software Maintenance and Reengi-
neering (CSMR’07), pages 181–190. IEEE Computer Society, 2007.

[23] A. Mesbah and A. van Deursen. A component- and push-based architectural style for Ajax
applications. Journal of Systems and Software (JSS), 2008. To appear.

[24] Netscape. An exploration of dynamic documents. http://wp.netscape.com/assist/net_
sites/pushpull.html, 1996.

[25] A. Russell. Comet: Low latency data for the browser. http://alex.dojotoolkit.org/?p=
545.

[26] A. Russell, G. Wilkins, and D. Davis. Bayeux - a JSON protocol for publish/subscribe event
delivery protocol 1.0draft1. http://svn.xantus.org/shortbus/trunk/bayeux/bayeux.
html, 2007.

[27] D. Schiemann. The forever-frame technique. http://cometdaily.com/2007/11/05/
the-forever-frame-technique, November 2007.

[28] R. Srinivasan, C. Liang, and K. Ramamritham. Maintaining temporal coherency of virtual data
warehouses. In RTSS ’98: Proceedings of the IEEE Real-Time Systems Symposium, page 60.
IEEE Computer Society, 1998.

SERG Bozdag et al. – Performance Testing of Data Delivery Techniques for AJAX applications

TUD-SERG-2008-009 29



30 Performance Testing of Data Delivery Techniques for AJAX Applications

[29] Sun microsystems remote method invocation home. http://java.sun.com/javase/
technologies/core/basic/rmi/.

[30] T.D.Cook and D.T.Campbell. Quasi-Experimentation - Design and Analysis Issues for Field
Settings. Houghton Mifflin Company, 1979.

[31] V. Trecordi and G. Verticale. An architecture for effective push/pull web surfing. In 2000 IEEE
International Conference on Communications, volume 2, pages 1159–1163, 2000.

[32] W3C. Chunked transfer coding. http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.
html#sec3.6.1.

[33] M. Welsh, D. Culler, and E. Brewer. Seda: an architecture for well-conditioned, scalable internet
services. SIGOPS Oper. Syst. Rev., 35(5):230–243, 2001.

[34] M. Welsh and D. E. Culler. Adaptive overload control for busy internet servers. In USENIX
Symposium on Internet Technologies and Systems, 2003.
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