Ontwerpen van kunst- en grondwerken f9

Onderdelen uit college f9

- Lichtbaken in zee
- Belasting op waterbouwkundige constructies
- Elastische meerstoelen
- Funderingstechnieken
- Kostenaspect van bouwwerken

Technische Hogeschool Delft
Afdeling der Civiele Techniek
Ontwerpen van kunst- en grondwerken f9

Onderdelen uit college f9

- Lichtbaken in zee
- Belasting op waterbouwkundige constructies
- Elastische meerstoelen
- Funderingstechnieken
- Kostenaspect van bouwwerken

Technische Hogeschool Delft
Afdeling der Civiele Techniek
UITGANGSPROBLEEM:
LICHTBAKEN IN ZEE.

FASE 1: PRIMAIRE (FUNKTIONELE) BEHOEFTE.

BEHOEFTE: — licht met bepaalde kenmerken
   — op bepaalde lengtegraad
   — op bepaalde breedtegraad
   — op bepaalde hoogte vanwege
     leeftijdbaarheid

REDEN: — te allen tijde waarschuwing voor
       scheepvaart
       — positiebepaling scheepvaart
       — overweging van lichtschip

PLAATS: — zee boven
       — lichtmitstraling naar alle
         horizonale richtingen
       — bereikbaarheid; bevoorrading
       — bestandigheid tegen milieuein leden
         zoals weer, wind, golven, stroming,
         specifieke milieueen
       — geen hinder voor scheepvaart
TIJD: — continu het gehele jaar door nodig

MIDDELEN: — geen bemanning
— minste van allerlei apparatuur
— werkplaats minste
— geen budget gebondenheid
— beste met alternatieve basen

METHODE: — prioriteit zowel aan veilige as
— betrouwbare oplossing
— zo min mogelijk tijd onderschrijven.
FASE 2: ANDERE BEHOEFTEN.

LEVENSSSTADIA

1. VOORBEREIDING

- geformuleerd schetsontwerp om budget kost te krijgen.
- beschikbaar ontwerp potentiële.
- mogelijkheid van concurrentie.

2. BEREKENEN + TEKENEN

- verantwoorde beslissingen met
  minimum inzet aan mensen en
  hulpmiddelen
- hoge waarde van slagaardigheid

3. ONDERZOEK + ONTWIKKELING

- voorstudie initiatie van onderzoek
- aanwijzings naar ontwikkelingswerk
- minimaal mogelijk nieuw onderzoek

4. VERTAARDIGING VAN ONDERDELEN

- tijdig bestellen
- economische uitvoering
  (fabrilatie, montage, verwaring)
- productie volgde
- etc. beperkingen aan grootte
- gebruik van mogelijk repetitieve methode
5. UITVOERING + MONTAGE
   — welk jaargetijde
   — beschikbaar materiaal
   — volgende werkaan leden
   — evenwijdige montageprincipes

6. TESTEN + BEPROEVING
   — zekerheid van materialen en methoden
   — veiligheid en betrouwbaarheid
   — bereikbaarheid met proberen

7. AFWERKING
   — milieu bestandigheid
   — onderhoud en frequentie daarvan
   — constructie volgorde
   — noodzakelijk?

8. INGEBRUIKSTELLING

9. GEBRUIK / VERKEERD GEBRUIK
   — vangrails, remmingwerken
   — waarschuwing tegen botsingen
   — veiligheids ladder, reddingsapparatuur
   — constructie alarmsysteem

10. ONDERHOUD + BEHEER
    — frequentie
    — minimum mogelijke graad van ingewikkeld

11. OPRUIMING
FASE 3: BEGINSELEN die aan P.F.B. voldoen.

Wat is de essentie van de behoefte?

Hoe ondersteunt men lichtbron met benodigde apparatuur en met aansluitende functionele cijfers op bepaalde plaats en op bepaalde hoogte?

MIDDELEN TOT ONDERSTEUNING

 Welke algemene middelen zijn dat bij deze omstandigheden?

LUCHT, WATER, GROND

Hoeveel mogelijkheden astounding of?

\[
\binom{3}{1} + \binom{3}{2} + \binom{3}{3} = 3 + 3 + 1 = 7.
\]

lucht \( l+w \) \( l+w+z \)

water \( l+z \)

grond \( w+z \)
MIJLPAAL

V. Hoe nu verder?

A. Zich afvragen wat men onder ondersteuning verstaat. Kan men niet beter spreken van OP DE PLAATS HOUDEL.

V. Waarom?

A. EVENWICHT VERSTORENDE KRACHTEN

V. Welke zijn dat?

A. Bij: zwaartekracht, golfskrachten, windkrachten

V. Hoe is dat nu of meer abstract aan te geven?

A. Krachten in VERTIKALE en HORIZONTALE richting (ook 3 dimensionaal). Dit past bij de ons aangelijke analytische vaardigheden (mechanica)

V. Hoe wordt nu de problemestelling?

A. Zochten naar mogelijkheden om tegen deze vertikale en horizontale krachten meerstand te bieden.

V. Hoe zijn deze mogelijkheden op te sommen?
<table>
<thead>
<tr>
<th>Eigenschap</th>
<th>Middelen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1    2    3    4</td>
</tr>
</tbody>
</table>

| vertikaal  | l w j  l’w l’z w’z l’w’z |
| horizontaal| l w j  l’w l’z w’z l’w’z |

Aantal mogelijkheden: $7 \times 7 = 49$

V. Wat is de volgende stap?
A. Eliminatie van onwaarschijnlijke mogelijkheden

V. Maar of wat voor basis?
A. Bijv. door technisch in zicht.
Er blijven dan $6 \times 3 = 18$ mogelijke velden.

<table>
<thead>
<tr>
<th>nr.</th>
<th>o.</th>
<th>voorbeeld</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>l l</td>
<td>vliegtuig, helicopter</td>
</tr>
<tr>
<td>2.</td>
<td>l w</td>
<td>schip met aandrijving door lucht</td>
</tr>
<tr>
<td>3.</td>
<td>l f</td>
<td>geanvin: horizontaal onderwater</td>
</tr>
<tr>
<td>4.</td>
<td>l lg</td>
<td>idem</td>
</tr>
<tr>
<td>5.</td>
<td>l wz</td>
<td>idem</td>
</tr>
<tr>
<td>6.</td>
<td>l lwz</td>
<td>idem</td>
</tr>
<tr>
<td>7.</td>
<td>w l</td>
<td>lucht-kussen vaartuig</td>
</tr>
<tr>
<td>8.</td>
<td>w w</td>
<td>schip met aandrijving door water</td>
</tr>
<tr>
<td>9.</td>
<td>w f</td>
<td>geanvin: nie 3</td>
</tr>
<tr>
<td>10.</td>
<td>w lg</td>
<td>idem</td>
</tr>
<tr>
<td>11.</td>
<td>w wz</td>
<td>idem</td>
</tr>
<tr>
<td>12.</td>
<td>w lwz</td>
<td>idem</td>
</tr>
<tr>
<td>13.</td>
<td>f l</td>
<td>geanvin: principe van schip</td>
</tr>
<tr>
<td>14.</td>
<td>f w</td>
<td>vrijdrijvend verankerd iets (b.v. schip)</td>
</tr>
<tr>
<td>15.</td>
<td>f f</td>
<td>constructie op steenbodem</td>
</tr>
<tr>
<td>16.</td>
<td>f lg</td>
<td>verankerd ballon</td>
</tr>
<tr>
<td>17.</td>
<td>f wz</td>
<td>onder water vrijdrijvend verankerd iets</td>
</tr>
<tr>
<td>18.</td>
<td>f lwz</td>
<td>geanvin: gecompliceerde krachtsverdeling</td>
</tr>
</tbody>
</table>
wat doen wij hier nu mee?
in beginsel mogelijk heten 14, 15, 16 en 17
verder niet werken. wat de lichtbron betreft
zal de voorkeur met naar een VASTE
opstelling. daaronder gaan dan met de
constructies op de zeebodem.

hoe dit aanpakken?

probleemstelling hierin: de vraag is om

WELKE OPLOSSINGSPRINCIPES te gebruiken

om LICHTBRON HORIZONTAAL en VERTIKAAL
op ZEEBODEM te ONDERSTEUNEN.

POGINGEN — constructie wel of niet vertikaal
            — constructie wel of niet stijf.
            (bestaande oplossingen schelen).

waar gaat het eigenlijk om?

---

zoek m.b.v. mechanica's mogelijke principes
om constructie te maken met of lichtbron
werkende krachten.
men heeft me een reeks mechanische-principes waarmee een keuze gemaakt zal moeten worden.

welke KEUZE-KRITERIA te handelen?

STUFHEID CONSTRUCTIE
(eis licht bewe: horizontaal plaatvast)

BODEMGESTELDHEID

Er resteren dan de volgende schematis:

AANZICHT.

(2) (3) (3')

PLATTEGROND.

b

e tc.
wat stelt de aansluiting van constructie aan bodem voor exact? 

Een romel in **horizontale**, als in **vertikale** richting **vast punt** op de bodem.

Stel dat het bovenste gedeelte van bodem met slappe lagen leeft en en dat de ware laag op ca. 20 m onder de rekbodem wordt aangestreept. Wat betekent dit voor onze schema's?

De vertikale krachten moeten naar vaste lagen worden overgebracht. Voor horizontale krachten is dat niet noodzakelijk zo.

Daarom valt principe-schema (2) in een aantal varianten niet in.
uit schema's 2° en 2° volgt dat er twee (uitvoerings?) mogelijkheden zijn:

- schijn geplaatste elementen met één stuk ca 100 m lang
- constructie in delen splitsen bij een stuk even en een stuk onder de grond

Of beter gezegd:

**HOOFDELEMENTEN**

- als één geheel.
- in delen.

uitvoeringswijze:

- prefab.
- geen prefab.

Een verdere eliminatie van begunstigd schema's wordt bereikt door verhouding hor. en vert. belasting te beoordelen. Horizontale belasting veel groter dan verticale belasting, daarom verder werken met schema (2).
MUILPAAL

16

V.
wat zijn nu de mogelijkheden met schema (2)?

A.

17

FASE 4: IN MATERIELE VORM GIETEN

V.
wat is daaraan nodig?

A.
keuze van MATERIAAL en VORM van DOORSNEDEN
van de onderdelen der constructie

V.
wat volgt daarmee?

A.

bij: maatgevende golvbelasting
- afmetingen der delen
- gewichten

18

V.
wat volgt niet eruit?

A.
uitsluitingswijze.
<table>
<thead>
<tr>
<th>KENMERKEN</th>
<th>MIDDELEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 MATERIAAL</td>
<td>BETON STAAL</td>
</tr>
<tr>
<td></td>
<td>ALUMIN.</td>
</tr>
<tr>
<td>2 FUNDEREN</td>
<td>HEIEN BOREN</td>
</tr>
<tr>
<td>3 PLAATSMETH.</td>
<td>DRUVEND NIEUW</td>
</tr>
<tr>
<td>4 SCHEMA</td>
<td>2A 2B1 2B2</td>
</tr>
</tbody>
</table>

Totaal dus $3 \times 2 \times 2 \times 3 = 36$ combinaties

Eliminatie van
- beton en aluminium
- boeren
- drijvend plaatsen

Blijft over:
- staal niet-drijvend geheids: ter plaatse geheids
- staal niet-drijvend geheids: prefab.

V. Wat is de volgende stap?

A. In de volgende fase mistaar er toch
   snijfel van de ca 100 meter lange stalen
   liens.
wegens tijdgebrek wordt deze achterwege gelaten. Het resultaat wijst wel uit dat een aanname van één ca. 100 m. lange kuis niet bij voorbaat onmogelijk is.

**FASE 5: UITVOERIGE BESTUDERING VAN FUNCTIONELE DOELMATIGHEID**

Beschrijving van de behoeften in verschillende levensstadia met FASE 1 + 2 gebruiken om te controleren of het tot dusver ontwikkelde model goed zal voldoen.

**FASE 6: GEDETAILLEERDE STUDIE VAN MATERIAALVERBRUIK EN HOEVEELHEID ARBEID VOORTKOMEND UIT FASEN 4 EN 5.**

(hoeveelheden, kwaliteiten en werkzaamheden van elk levensstadium van het project beschouwen).
**KWANTITATIEVE WAARDERING**

<table>
<thead>
<tr>
<th></th>
<th>VARIANT A (in fl.)</th>
<th>VARIANT B (in fl.)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>MateriaLEN</strong></td>
<td>300.000</td>
<td>450.000</td>
</tr>
<tr>
<td><strong>Lonen</strong></td>
<td>150.000</td>
<td>80.000</td>
</tr>
<tr>
<td><strong>MaterieEL</strong></td>
<td>160.000</td>
<td>150.000</td>
</tr>
<tr>
<td><strong>Transport</strong></td>
<td>50.000</td>
<td>50.000</td>
</tr>
<tr>
<td><strong>Alg. Dienst</strong></td>
<td>300.000</td>
<td>200.000</td>
</tr>
<tr>
<td><strong>Alg. Onkosten</strong></td>
<td>200.000</td>
<td>180.000</td>
</tr>
<tr>
<td><strong>Ontwerpkosten</strong></td>
<td>200.000</td>
<td>250.000</td>
</tr>
<tr>
<td><strong>Verzekering</strong></td>
<td>200.000</td>
<td>150.000</td>
</tr>
<tr>
<td></td>
<td><strong>1.560.000</strong></td>
<td><strong>1.510.000</strong></td>
</tr>
</tbody>
</table>

onderhand in behoefte P.M.  P.M.

**KWALITATIEVE WAARDERING**

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Risico Mensenleven</strong></td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td><strong>Onverzekerd Financieel</strong></td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td><strong>Techn. Uitvoerbaarheid</strong></td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td><strong>Betrokkenheid</strong></td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td><strong>Levertijd</strong></td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td><strong>Totaal</strong></td>
<td>298</td>
<td></td>
</tr>
</tbody>
</table>
MIJLPAAAL

Geef men aan variant B een begeleiding van 100%, dan komt men voor variant A tot slechts 78%.

CONCLUSIE:

Variant B is zowel in kwalitatief als in kwantitatief opzicht de betere oplossing.

FASE 7: CONTROLE KWALITEITSEISEN.

Slot-bespanning van de mi FASE 2 aan de orde gestelde esthetische beschrijving.
Belastingen op waterbouwkundige constructies

November 1975
Inleiding

De belastingen waaraan waterbouwkundige constructies worden blootgesteld, zijn in het algemeen veel ingewikkelder dan die waarmee de student in de eerste studiejaren te maken heeft gekregen. Bij de toegespaste mechanica en bij de constructieleer maakt men gebruik van sterk geschematiseerde belastingen en constructies. Hoe men tot deze schematisaties is gekomen blijft vrijwel altijd onduidelijk.

Zeker in de waterbouw is het merendeel van de belastingen dynamisch van karakter, waarbij dan de statische belasting in feite als een bijzonder geval van de dynamische belasting kan worden opgevat. Tot een aantal jaren geleden was de aanname van een statische belasting meestal wel verantwoord omdat er in de meeste gevallen sprake was van een starre, nagenoeg onvervormbare constructie. Vooral door de introductie van nieuwe berekeningsmethoden en van nieuwe constructiematerialen zijn er de laatste tijd relatief lichte constructies tot uitvoering gekomen. Tevens heeft één en ander geleid tot gedurfde constructies, wat één van de beweegredenen was voor het gebruik van ontwerpmethoden in het college.

Het relatief lichte onderwerp wordt bedoeld dat het eigen gewicht van de constructie kleiner wordt ten opzichte van de gebruikbelasting. Bij de moderne constructies kan men stellen dat het eigen gewicht in dezelfde orde van grootte ligt als de nuttige belasting. Eén en ander heeft tot gevolg dat de vormveranderingen van de constructie niet meer verwaarloosd kunnen worden, waardoor het dynamisch element nu een belangrijke rol gaat spelen. Dit betekent dat men de constructie moet zien te herleiden tot een dynamisch systeem.

Een andere weg wordt aangegeven door de fundamentele ontwerpmethode, die stelt dat - uitgaand van de Primaire Functionele Behoeften - via een ontwerpbiet tot een aantal oplossingsprincipes in schemavorm kan worden gekomen. Deze principes worden in een later stadium uitgebouwd tot volwaardige constructies (synthese).

Beide wegen moeten bewandeld kunnen worden dus van constructie schema en van schema constructie, omdat beide kunnen voorkomen.

In het volgende hoofdstuk wordt hierop dieper ingegaan.

Het daaropvolgende hoofdstuk zal worden gewijd aan de mogelijke vormen van belasting waaraan waterbouwkundige constructies kunnen worden onderschoven. Het behulp van de fundamentele ontwerpmethode kan men, via de kritieke of relevante factoren, belastingen die optreden in de verschillende levensstadia van het kunstwerk opsporen. Het schematiseren van de belastingen zal worden besproken met daarbij een opzet voor het bepalen van het maatgevende belastingschema.

De belastingen worden vrijwel altijd uitgedrukt in een kracht of een druk op een onvervormbaar, onverplaatsbaar geheel. De meeste constructies voldoen niet aan deze eis en zullen dus op de één of andere manier de belasting beïnvloeden. Hoe dit zou kunnen gebeuren wordt behandeld in het hoofdstuk over de responsie van de constructie op de belasting.

Wij hebben nu dus de uitwerking van de belasting op de constructie gevonden, waarmee de gehele krachtswerving (momenten, dwarskrachten en normaalkrachten) in de constructie is vastgelegd.
Wij zullen dan maatstaven voor de beoordeling van de constructie moeten aanleggen. In het algemeen zijn dit de toelaatbare spanningen in de constructie, maar ook de toelaatbare krachten bij de krachtsverschijndeling van de ondergrond. Ook de toelaatbare vervormingen en verplaatsingen van de constructie zijn onderdelen ervan spelen vaak een rol.

In het geval van een dynamische belasting kan men deze laatste factoren beter vertalen in toelaatbare bewegingen. Eén en ander wordt nader toegelicht in het betreffende hoofdstuk.

Tenslotte zal er iets moeten worden gezegd over de interpretatie van de gevonden resultaten in vergelijking met de toelaatbare grootheden. Voor het insicht in het krachtenspel is het daarbij erg belangrijk de verschillende factoren die een rol spelen goed te kennen om daarmee de constructie te kunnen aanpassen of verbeteren.

1. **Constructieschema**


Door het doen van een aantal aannamen kan men een gegeven constructie omzetten in een voor berekening toegankelijk schema. Het is van groot belang alle aannamen - waarvan een aantal vaak onbewust wordt gedaan - op te schrijven en op hun waarschijnlijkheid te toetsen. Als men later aan de vormgeving van de constructie toe is, zal men moeten nagaan of alle gedane aannamen nog wel geldig zijn.
Bij de constructies kan men onderscheid maken in:

a. continu systeem
b. massa veersysteem

a. continu systeem

Uitgegaan wordt van een homogene balk met een constante dwarsdoorsnee-
de, dus $EI$ overal gelijk. Verder wordt de demping verwaarloosd.

Wij zijn uiteraard vooral geïnteresseerd in het dynamisch gedrag van de
constructie.

Er zijn nu twee methoden om de eigen frequentie van de constructie te
to berekenen.

1. methode van Rayleigh

Er wordt uitgegaan van geen energieverliesen, dus $\Sigma$ (potentiële en
kinetische energie) = constant.

Er wordt een bepaalde uitbuigingslijn aangenomen. In de uiterste stand
is de snelheid $= 0$, dus is er alleen pot. energie = kracht $\times$ weg

$$\frac{1}{2} k x_o \cdot x_o$$

wet van Hooke wordt derhalve geldig geacht.

In de middenstand is de pot. energie $= 0$, dus alleen kin. energie $= \frac{1}{2} m v^2 = \frac{1}{2} \omega^2 \cdot x_o^2$

Door deze twee waarden aan elkaar gelijk te stellen volgt voor gecon-
centreerde massa:

$$\omega = \sqrt{\frac{k}{m}}$$

Bij een bepaalde massaverdeling over de lengte van de constructie zal
men met kleine deeltjes moeten werken en het geheel integreren.

2. Uitgegaan wordt van de bewegingsvergelijking van een onbelaste balk:

$$EI \frac{d^4 y}{dx^4} + \rho A \frac{d^2 y}{dt^2} = 0$$

bij aanname van bepaalde randvoorwaarden, bv. tweezijdig vrij opgelegd
en substitutie van

$$y = y_o \sin \frac{\pi x}{l}$$

vindt men $\omega_n =$ factor $\cdot \pi^2 \sqrt{\frac{EI}{\rho A l^4}}$ $\omega_n$ = factor $\cdot \pi^2 \sqrt{\frac{EI}{\rho A l^4}}$

of $T_n =$ factor $\cdot \frac{1}{\pi} \sqrt{\frac{\rho A}{EI}}$

factor $f$ is afhankelijk van de randvoorwaarden.

Hoofdfrequentie is $\mu_0$.

In sommige gevallen kan een hogere frequentie maatgevend zijn

$$\mu_0 < \mu_1 < \mu_2$$

Soms treden er complicaties op bv. doordat een lichaam in water staat.

Door verschil in traagheid van constructie en van het meebewegende
water zal er a.h.w. een toegevoegde massa gaan meewerken.
De consequentie hiervan is dat de eigen frequentie van de constructie kleiner wordt.

Dit treedt bv. op bij schuiven en bij sluisdeuren. Bij hydraulisch gunstig gevormde constructies als buispalen heeft men er geen rekening mee te houden. Voor deze constructies zit de moeilijkheid meer in de randvoorwaarden met name de oplegging of inklemming. Voor deze problemen wordt verwiesen naar stencil elastische meerstoelen.

b. massa veersysteem

1. één massa-veersysteem

Veel constructies zijn door sterke vereenvoudigingen op te vatten als een één massa-veersysteem. Het komt er hierbij vooral op aan de stijfheid van de verschillende onderdelen van de constructie met elkaar te vergelijken. Bij grote verschillen kan men het onderdeel met de kleinste stijfheid als de veer beschouwen.

\[
F(t) \rightarrow m \rightarrow \text{veer} \rightarrow k
\]

Demping met dempingsfactor \( c \)

De basisvergelijking voor de beweging van het systeem luidt:

\[
m \frac{d^2x}{dt^2} + c \frac{dx}{dt} + kx = F(t)
\]

Bij een vrije trilling zonder demping wordt dit

\[
F(t) = 0 \quad c = 0
\]

\[
m \frac{d^2x}{dt^2} + kx = 0
\]

Dit levert \( \omega_0 = \sqrt{\frac{k}{m}} \) eigen frequentie

\[
\text{of} \quad T_0 = 2 \pi \sqrt{\frac{m}{k}} \text{ eigen trillingstijd}
\]

Dit betekent o.a. dat de eigen trillingstijd van zeer stijve constructies – dus met een zeer grote \( k \) – tot nul nadert. Denk daarbij bv. aan een zeer zware monoliet constructie als een kademuur uit caissons gevormd.

Enkele voorbeelden van massa-veersystemen:

1. schip afgebeeld aan meerpalen (zie stencil elastische meerstoelen)
2. ponton in water (zie uitgewerkte examenopgave)
3. kademuur op palen gefundeerd.
Enige aannamen:
- plaat of bak is als oneindig stijf te beschouwen en zal dus bij verplaatsingen niet vervormen
- massa van palen t.o.v. massa van plaat verwaarloos
- alle palen werken precies gelijk samen
- voor de evt. inklemming in de havenbodem kan men de methode Blum volgen (zandige bodem)
- voor de palen geldt de wet van Hooke

Bij een verdere uitwerking zal men misschien nog meer aannamen moeten doen. De aannamen moeten zo logisch mogelijk zijn natuurlijk. Als er bv. slechts sprake is van geringe inheidsdiepte van de palen in de havenbodem, zal men daar niet van een inklemming, maar van een scharnier moeten spreken. Nagegaan moet worden of dat scharnier de horizontale kracht zo kan opnemen en of er dan geen ontoelaatbare horizontale verplaatsingen kunnen optreden.

Een ander belangrijk punt is de verbinding van de palen aan de plaat. Is die in de vorm van een scharnier of van een inklemming? De keuze op dat punt bepaalt wel de latere uitvoering. Men zal dus in ieder geval dit later bij de uitwerking moeten controleren.

Er zijn in wezen 2 uitersten voor de oplossing van genoemd punt: een scharnier of volledige inklemming. Denk eraan dat bij een scharnier in de havenbodem één van beide oplossingen vervalt. Welke? en waarom?

Voor het bepalen van de veerstijfheid van de constructie gaat men uit van \[ F = k \cdot \dddot{\alpha} \]
Bij eenzelfde kracht betekent dus een kleinere verplaatsing een grotere stijfheid. Denk eraan dat dit een vektorvergelijking is. d moet dus bepaald worden in dezelfde richting en in het aangrijpingspunt van de kracht.

Voor de relatie tussen $F$ en $d$ wordt verwezen naar colleges van toegespaste mechanica. Wel is duidelijk dat bij inklemming van palen in plaat de veerstijfheid ($12\text{EI}/13$) beduidend groter is dan bij de aanwezigheid van een scharnier ($3\text{EI}/13$). Wat zullen de gevolgen zijn van het aanbrengen van schoorpalen?

2. meer massa-veersysteem

Dit levert in het algemeen zeer uitvoerige berekeningen op. Vandaar dat in dit stadium alleen iets gezegd wordt over twee massa-veersystemen omdat dit in de waterbouw nogal eens voorkomt.

Wij kunnen weer twee gevallen onderscheiden:

a. parallel schakeling

bij het voorbeeld van de kademuur op palen reeds stilzwijgend behandeld. Elke paal op zich werkt nl. als een weer en de totale veerstijfheid van de constructie is daarmee te stellen op de som van de veerstijfeden van elke paal

$$k_{\text{tot}} = \sum k_n$$

b. serieschakeling

Dit zou zich bijv. kunnen voordoen bij het liggen van schepen langs de kademuur in vorige voorbeeld, waarbij tussen schip en kademuur een fender is aangebracht.

Verwaarlozen wij in eerste instantie de (elastische) vervorming van de scheepshuid en de massa van de fender t.oe. massa van het schip dan verkrijgt men de volgende schematisatie

Kan men nu verder stellen dat de massa van de plaat te verwaarlozen valt bij de massa van het schip (denk aan olietankers aan steiger) dan krijgt men twee in serie geschakelde veren. Voor het berekenen van de totale veerstijfheid van het systeem gaat men in dit geval uit van de formule

$$\frac{1}{k_{\text{tot}}} = \frac{1}{k_{\text{fender}}} + \frac{1}{k_{\text{palen}}}$$

Wat is nu de consequentie van het aanbrengen van zo'n fender met een zeer kleine veerstijfheid voor de constructie?

Het volgende punt dat zal worden besproken is

2. belastingschema

In de eerste plaats zal men zich afvragen welke belastinggevallen
zich bij een bepaald probleem kunnen voorzien.
Vervolgens zal men elk van die belastinggevallen dienen te analyseren en zo mogelijk te schematiseren.
Ten slotte zal het maatgevende belastingschema of een combinatie van belastingschema's gevonden moeten worden.

Voor het opsporen van mogelijke belastingen kan men goed gebruik maken van F.D.K.-technieken zoals
levensstadium voor het project bezien
en vragenkubus gebruiken.

Een handige indeling kan men bereiken door de media te beschouwen die
een belasting zouden kunnen veroorzaken, zoals
water
grond en grondbuffer
lucht (wind en temperatuur)
mechanische krachten schepen
verkeer
bewegingsinstallaties

Wij zullen dit toelichten door het voorbeeld van water wat verder uit te werken.

stilstaand water: waterdruk door verval

eenzijdig: hydrostatische druk

golven: periodiek: getij
daling
windgolven
seiches

eenmalig: golfklappen
translatiegolf bv. bij schutten of door schip
bore o.i.v. getij

stromend water: stromingsdruk

driftkrachten
loslaten van wervels (liftkrachten loodrecht op stroomrichting)
aantasting van talud e.d.

andere verschijnslevormen:

H e l l g e k n o e i e n

Verdere overpeinzingen zullen allicht nog meer belastingvormen opleveren. Wij hebben immers voornamelijk naar het gebruikstadium gekomen, maar ook in de uitvoeringsfase en mogelijk de transportfase zijn specifieke belastingen mogelijk.

Een andere factor, de scheepvaart, moet men vooral ook in het stadium van misbruik of mogelijk verkeerd gebruik bezien omdat daar in het verleden nogal eens moeilijkheden zijn geweest.

Een andere indeling die men voor belastingen kan maken is een indeling naar belastingwisselingen.

De belasting op waterbouwkundige werken is vrijwel nooit constant in plaats van aangrijpen en in grootte.

Wij hebben hier dus:
a. plaatsafhankelijkheid
zoals golfklappen in hoogterichting bezien wel op ongeveer hetzelfde
b. tijdafhankelijkheid

1. grootte van de belasting varieert niet in de tijd (statische belasting).

Misschien is het in dit verband beter te spreken van statisch gedrag van de constructie. Er is dan op elk moment evenwicht tussen de uitwendige krachten en de inwendige krachten (zoals moment en dwarskracht). Men zou dus beter kunnen stellen: de randvoorwaarden voor de constructie zijn in de tijd gezien constant gebleven. Dit doet zich bv. voor bij het getij. De belasting door de toename van de waterhoogte verandert zo langzaam dat de inwendige krachten dit gemakkelijk bij kunnen houden. Men spreekt dan van quasi-statische belasting.

2. grootte van belasting varieert dermate in de tijd dat van dynamische belasting kan worden gesproken. Wij zullen in een volgend gedeelte zien dat de responsie van de constructie hierbij een grote rol speelt.

Bij dit soort belastingen kan men onderscheid maken in:

- periodieke belasting
  dit is een regelmatig in tijd en grootte terugkerende belasting. Als het enigszins kan wordt deze sinussvormig benaderd, omdat dit een gemakkelijke oplossingsvorm geeft. Voor een beschouwing over deze benaderingswijze wordt verwezen naar de uitwerking van tentamen van januari 1973

- stootbelasting
  dit is een eenmalig voorkomende belasting; piek over een korte spanne tijd. Gemakkelijk is hier bedoeld in de zin van: de constructie merkt niets meer van de ene belasting als de andere belasting zich aankondeigt.

Stootbelastingen worden of naar een rechthoeksvorm of naar een driehoeksvorm (golfklop) geschematiseerd.

- stochastische belasting (willekeurige)
  dit is een belasting variërend in tijd en grootte die niet op basis van eerder voorgekomen belastingen aan te geven is. Wij kunnen hier alleen mee werken op basis van waarschijnlijkheid. Dit zijn de meest voorkomenden en aangemerkt ook de meest voorkomende.

Door toepassing van Fourier transformaties kan men de belasting terugbrengen tot de som van een aantal sinussen, die ieder voor zich op de constructie werkend kunnen worden gedacht. Door superpositie wordt dan de einduitwerking verkregen.

Een andere manier is om te werken met een energiedichtheidspectrum. Wij komen daar nog op terug.

Na deze analyse van de belastingen een kort woord over de maatgevende belasting. Zoals wij hebben gezien zijn belastingen in het algemeen heel ingewikkeld en gevarieerd en daarom moeilijk in één of ander schema te plaatsen. Er is veelal sprake van een momentopname, zonder dat men de belasting op langeren termijn kan overzien. Men werkt in dit geval veel met overschrijdingsfrequentielijnen, waarin tot uitdrukking wordt gebracht de kans dat een bepaalde waarde van een belasting veroorzaakende grootheid wordt overschreden.

De vraag is dan natuurlijk welke frequentie moet worden aangehouden. Hieraan zal meestal een uitvoerige economische beschouwing ten grondslag liggen.

Zeer beknopt komt het op het volgende neer:
Stel de aanlegkosten A
schadesverwachting S
schadekund f
rentevoot t

De gekapitaliseerde waarde $A + \frac{f S}{t}$ moet minimaal zijn (zie ook stencil kostenaspecten).

Deze berekening wordt vooral bemoeilijk door de verborgen relatie tussen f en S.

Vaak is er een combinatie van belastingen maatgevend. Het is moeilijk hiervoor bepaalde richtlijnen aan te geven. Golven en wind gaan meestal wel samen maar zijn en golven is erg onwaarschijnlijk. Men moet er wel aan denken niet veiligheid op veiligheid te stapelen door allerlei onwaarschijnlijke combinaties in beschouwing te nemen.

3. De volgende fase in de beschouwingen over belastingen is de responsie van constructie onder belasting.

Zoals gesteld in een voorgaand gedeelte wordt de belasting meestal aangegeven als een belasting op een onverplaatsbaar, onvervormbaar lichaam. Daar de meeste constructies zijn te herleiden tot één massa-veersystemen zullen in het vervolg alleen het één massa-veersysteem beschouwen. Het college b t3 laat zien hoe een continue systeem via vervangende waarden om te zetten is in een massa-veersysteem.

Ook de belastingen zullen wij beperken tot eenvoudige rechtlijnige of sinusvormige belastingen. Het gaat er immers om een indicatie van het gedrag van een constructie te krijgen. Over de splitsing van het belastingsschema, waar de variatie niet om de nullstand gebeurt, in een statisch en in een dynamisch gedeelte wordt bij de afzonderlijke belastingsoorten gesproken.

a. periodieke belasting

Het dynamische gedrag van de constructie wordt bepaald door de interactie tussen de excitatie frequentie van de belasting $\Omega$ en de eigen frequentie van de constructie $\omega$.

Eenvoudige berekeningswijze

$$m \ddot{x} + k x = F_0 \sin \Omega t$$

de belasting fluctueert in dit geval gelijkmatig om de nullstand met maximale waarde in de toppen groot $F_0$.

Oplossing $F_{\text{max}} = k \dot{x}_{\text{max}} = F_0 \frac{1}{\sqrt{1 - \frac{\Omega^2}{\omega^2}}}$

Vergrotingsfactor

$$\left| \frac{F_{\text{max}}}{F_0} \right|$$

$$\frac{\lambda}{\omega} \text{ of } \frac{m_{\text{eig}}}{T_{\text{exc}}}$$
Probeer deze grafiek zo te leren lezen dat vooral het begrip achter het samenspel tussen constructie en belasting duidelijk wordt.

Bijv. als $\Omega < \omega$ wat betekent dit?

$$
of \quad T_{\text{exo}} \gg T_{\text{eig}}$$

Dat kan in de eerste plaats zijn $T_{\text{exo}}$ heel groot, men kan daarbij denken aan het getij. De $T_{\text{eig}}$ van de constructie kan in dat geval praktisch iedere waarde hebben.

De vergrotingsfactor is in dat geval $\approx 1$ en er is dus sprake van een quasi-statische belasting. Iedereen weet intussen wel dat het getijinderdaad altijd als een statische belasting wordt aangenomen.

In een ander geval zou juist $T_{\text{eig}}$ heel klein zijn, dus een zeer stijve constructie. Dan kan de $T_{\text{exo}}$ weer elke willekeurige waarde aannemen tot bv. windgolven toe ($T_{\text{exo}}$ enkele sec.). Ook in dit geval is de vergrotingsfactor $\approx 1$ en is er sprake van een quasi-statische belasting.

Men ziet dus dat in het geval van windgolven bij een stijve constructie een statische belasting optreedt maar bij een constructie met een trillingstijd van enkele seconden is er groot gevaar voor resonantie.

Vraag. Zet nu voor jezelf een soortgelijke beschouwing op voor het geval waar de vergrotingsfactor heel klein wordt.

Tot nog toe hebben wij alleen de hoofdfrequentie van de constructie bekeken $\omega_0 < \omega_1 < \omega_2$.

Wanneer kunnen nu de boventonen mee gaan spelen?

als $\Omega < \omega_0$ dan is zeker $\Omega < \omega_n$

dus in dat geval tellen boventonen niet mee.

als $\Omega > \omega_0$ dan zouden ze eventueel wel een rol kunnen spelen.

Wij moeten hier dus ook andere uitbuigingsvormen in beschouwing nemen.

Hoe pakken wij nu belastingen aan die niet rond de nulstand variëren?

Wij kunnen dit soort splitsen in een statisch en in een dynamisch gedeelte en beide apart op de constructie laten werken.

Mogen wij nu zonder meer superpositie toepassen?

Als ten gevolge van de statische belastingen slechts kleine verplaatsingen optreden, zal de nullijn waar de constructie bij dynamische belasting rond gaat bewegen nauwelijks verschoven zijn. Wij kunnen in deze meest voorkomende gevallen dan superpositie toepassen.

Bij grote verplaatsingen zal er een vervorming van de uitbuigingslijn optreden, zodat men dan tot andere berekeningswijzen moet overgaan.

Den eraan! Een en ander geldt uitsluitend bij periodieke belastingen.

b. stootbelasting

Voor het gemak wordt uitgegaan van een plotseling aangrijpende constante belasting van beperkte duur ($\Delta t$).

Er zal blijken dat door de respons van de constructie de belastinggrootte afhankelijk is van de relatie tussen $\Delta t$ en $T_{\text{eig}}$.

Er wordt weer uitgegaan van bewegingsvergelijking van het massa-veersysteem.
\[ m \ddot{x} + k \cdot x = F(t) \]

voor \( 0 < t < t_0 \) geldt \( F = 0 \)

\[ t_c \leq t \leq t_0 + \Delta t \] geldt \( F = F_0 \)

\[ t > t_0 + \Delta t \] geldt \( F = 0 \)

De kracht grijpt niet direct in het zwaartepunt. Wij moeten daarom nagaan of aan het einde van de stoot wel de gehele massa van de constructie meedoet aan de beweging. De voortplantingsnelheid \( c \) van de stoot door de constructie is een materiaalconstante

\[ c = \sqrt{\frac{E}{\rho}} \]

voor beton \( c \approx 2000 \, \text{m/sec} \).

De tijd \( t \) die de stoot nodig heeft om alle deeltjes van de constructie een bepaalde snelheid te geven hangt af van de breedte van de constructie \( b \).

\[ t_e = \frac{b}{c} \]

Aangezien \( \Delta t \) vaak in de buurt van \( 1/10 \, \text{sec} \) ligt, zal er dus bij zeer brede constructies pas rekening moeten worden gehouden met een gereduceerde meewerkende massa.

Eerst dus nagaan of \( \Delta t > t \) en daarna kan men inderdaad stellen dat de impuls in het zwaartepunt van de constructie aangrijpt, dus alsof de gehele constructie meewerkt.

De oplossing van de bewegingsvergelijking levert:

\[ F_{\text{max}} = k \cdot x_{\text{max}} = F_0 \left\{ \cos \frac{2\pi}{T} (t - \Delta t) - \cos \frac{2\pi}{T} t \right\} \]

In grafiekvorm weergegeven ziet de stootcoëfficient \( F_{\text{max}}/F_0 \) er als volgt uit

---

stootcoeff.

\[ \Delta t \]

\[ T_{\text{eig}} \]
De stootcoëfficiënt kan dus nooit groter dan 2 worden. Deze waarde moet vooral worden gezien als een begineffect in de constructie.

Als $\Delta t \ll T$ vertoont de grafiek een kort stuk rechte lijn. De maximaal optredende kracht in de veer aan het einde van de stoot is dan te verwaarlozen t.o.v. $F_0$. Er geldt dan de volgende impulsvergelijking

$$F \cdot \Delta t = m v_e$$

$m$ = massa van constructie
$v_e$ = snelheid constructie aan eind van stoot

$\Rightarrow v_e = \frac{1}{2} m v_e^2$

Deze bewegingsenergie moet worden opgenomen door de veer. Als de wet van Hooke geldt is dat $\frac{1}{2} F d$.

Hieruit volgt tenslotte

$$F_{\text{max}} = F_0 \cdot \frac{2 \pi \cdot \Delta t}{T}$$

Bij een driehoekig verloop wordt dit

$$F_{\text{max}} = F_0 \cdot \frac{\pi \cdot \Delta t}{T}$$

Als bij de periodieke belastingen is het ook hier zeer nuttig deze grafiek goed te leren hanteren.

Zo is eenvoudig te zien dat slappe constructies (dus een grote $T$) sterke reducties in de stootbelasting geven. Stijve constructies zullen meestal met een verdubbeling van oorspronkelijke kracht moeten rekenen, hoewel er enige reductie in de praktijk optreedt omdat de grondslag vaak enige verende werking heeft.

Bij een combinatie van statische en dynamische belastingen mag - vanwege het niet-lineair zijn - geen superpositie worden toegepast. Wij kunnen dit ook laten zien bij de opzet van de berekening voor het gedeelte $\Delta t \ll T$ van de grafiek $\frac{1}{2} m v_e^2 = \frac{1}{2} F d$

$F_{\text{max}}$ in feite zou men hier moeten gebruiken de formule

$$\frac{1}{2} m v_e^2 = \frac{1}{2} F_{\text{max}} d_{\text{max}} - \frac{1}{2} F_{\text{stat}} d_{\text{stat}} - F_{\text{stat}} (d_{\text{max}} - d_{\text{stat}})$$

Een bijzonder geval van stootbelasting is de stoot door afmerende scheppen veroorzaakt.

In feite geldt $F t = m \cdot v$, maar snelheid is in tijd niet constant $F$ is in tijd niet constant $t$ is meestal onbekend.

Vandaar dat men in dit geval aannemt dat de bewegingsenergie geheel of gedeeltelijk door de vormveranderingarbeid van de paal wordt opgenomen

$$C \cdot \frac{1}{2} m v^2 = \frac{1}{2} F d$$

(zie verder stencill elastische meerstoelen)
c. stochastische belastingen

Behoren tot de lastigste problemen om op te lossen. Omdat het in dit college gaat om een eenvoudige bepaling van de oplossingsmogelijkheden zullen deze belastingen in het algemeen worden geschematiseerd tot in a en b herkenbare zaken. Er zal daarom hier niet verder op worden ingegaan.

Vervolgens komt punt 4 aan de orde voor de berekeningsopzet van constructies.

4. beoordelingsmaatstaven

Tot nog toe is er alleen rekening gehouden met de krachtswerking in de constructie of door de constructie naar de ondergrond. Er is alleen bepaald welke krachten in de constructie komen, niet of zij ook door de constructie kunnen worden opgenomen.

wat zijn nu de maatgevende kriteria?

a. toelaatbare spanningen in de constructie

a.1. voor statische belastingen veelal in de voorschriften aangegeven waarden

a.2. bij dynamische belastingen en vooral bij optreden van wisselspanningen gaat de vermoeiing van het materiaal een rol spelen. Er treedt een afname van de bezwijkspanning op, wat zich uit in een afneming van de toelaatbare spanning, zie bv. Wöhlerkrummen en Smith-vermoeidheidsdiagram bij staal

b. toelaatbare spanningen in de ondergrond, met name natuurlijk de draagkrachtige laag.

b.1. voor statische belastingen meestal m.b.v. proeven op grondmonsters vast te stellen

b.2. bij dynamische belastingen treden door de trillingen allerlei neerverschijnselen op als verdichting verweking (kans op zettingsvloeiing)

Dit zal zorgvuldig bestudeerd moeten worden.

c. toelaatbare vormveranderingen in constructie

C.1. bij statische belastingen spelen alleen de verplaatsingen of of de doorbuigingen een rol

C.2. het equivalent van verplaatsingen bij dynamische belastingen is de toelaatbare beweging. Een kleine verplaatsing gedurende enige malen per seconde kan als zeer hinderlijk worden ervaren, zowel door voorwerpen (vallen) als door mensen (zeesiekte).

exacte normen zijn hiervoor nog niet aangelegd.

d. toelaatbare vormveranderingen in ondergrond.

Meestal is maatgevend het optreden van zettingen en dan vooral van zettingsverschillen.

Verder moet men altijd denken aan de toelaatbare scheefstand van de constructie.

tenalatste zullen wij nog iets opmerken over de interpretatie van de resultaten.

5. Voldoet nu de constructie en zo niet, hoe is de situatie te verbeteren.
Voor het gemak nemen wij de spanning als maatstaf voor de beoordeling.

\[ \sigma_{optr} < \sigma \] goed, maar vermoedelijk overgedimensioneerd

\[ \sigma_{optr} \gg \sigma \] fout, constructie verwerpen

\[ \sigma_{optr} > \sigma \] vooral als de optredende spanning maar weinig groter is dan de toelaatbare.

Men zal dan de constructie niet meteen moeten verwerpen, gezien het globale en daardoor juist meestal te veilige karakter van de berekening.

Men zou in dit geval als volgt te werk kunnen gaan:

a. controleer eerst de aannamen voor de schematisatie en van de berekening. Let erop of niet veiligheid op veiligheid is gestapeld. Probeer desnoods een uitgebreidere aanpak van berekening door een minder eenvoudige schematisatie of berekening.

b. ga na wat er voor verbeteringen in de constructie zelf zijn aan te brengen. Men moet daarvoor naloopen welke factoren een onderdeel van de berekening hebben uitgemaakt en proberen deze factoren in gunstige zin te beïnvloeden. Let hierbij op verborgen relaties tussen de verschillende factoren.

c. in laatste instantie zou men nog kunnen denken aan een beïnvloeding buiten het constructiesysteem.

1. beïnvloeding van de belasting
   het afleiden of verminderen van de belastingaanval op de constructie, b.v. door ter plaatse van het aangrijpingsvlak van de belasting het oppervlak van de constructie klein te houden of een gunstige vormgeving toe te passen.

2. gebruik maken van hulpproducties, die één of meer taken van de eigenlijke constructie kunnen overnemen.

   In één van de uitgewerkte tentamenopgaven is een dergelijke handelwijze nader toegelicht.

Tenslotte zal als voorbeeld van een bepaalde constructie de berekeningswijze van elastische meerstoelen worden besproken. Een apart stencil hierover is bijgevoegd. Voor de uitgewerkte constructie hiervan wordt verwezen naar het uitgereikte boekje over het ontwerpen van dukdalven.
Berekening van elastische meerstoelen
A. Inleiding
Alle constructies die als vaste punten in het open water staan en dienen voor het aanleggen en het afremmen van schepen worden in het algemeen aangeduid met de naam meerstoelen.

Men kan in grote lijnen twee uitvoeringen onderscheiden

a. starre meerstoelen

dit zijn meestal zware massieve constructies. In zijn eenvoudige vorm bestaat deze soort uit een ronde of rechthoekige kuip, die is opgebouwd uit stalen damwandprofielen. De ruimte in de kuip wordt opgevuld met zand en afgedekt met een betonnen plaat. Zo is een stijve constructie gevormd.

Een andere veel voorkomende uitvoering is die met de betonnen caisson.

Dit kunnen holle elementen zijn - voorzien van een voetplaat - die drijvende worden aangevoerd en afgezonken op de gebaggerde bodem. Indien de stabilité dit vereist, kunnen de caissons eventueel worden volgespoten met zand. Een andere mogelijkheid is de caissons uit te voeren als een puttenfundering. Men spreekt dan wel van een meerput. De caisson is in dit geval aan de onderkant voorzien van een snijrand. De put wordt van binnenuit ongegraven en zakt tot de gewenste diepte. Hierna wordt de put van een bodemlaag van beton voorzien en vervolgens met zand opgevuld.

De aanlegkosten van dit soort constructies zijn vaak zeer hoog, waar tegenover staat dat de onderhoudskosten gering zijn. Zou men de meerstoel onbeschermd laten staan, dan zou dit een grote kans op schade bij aanvaring met zich meebrengen, zowel voor het schip als voor de constructie. Daarom bekleedt men de meerstoel meestal met een fenderconstructie van hout of rubber. Een verder nadeel van starre meerstoelen is dat juist door hun grote stijheid de naar de ondergrond over te brengen kracht groot is, wat in minder draagkrachtige grondlagen aanleiding kan geven tot het scheefgaan staan van de constructie.

b. elastische meerstoelen

dezelfde bestaan uit één of meerdere slanke elementen die de constructie voldoende elastisch dienen te maken. Zo kan de kinetische energie van de schepen worden omgezet in een niet-blijvende vormveranderingenarbeid van de meerstoel. De meest gebruikelijke uitvoeringsvormen zijn:

houten palen
stalen buispalen
kokerprofielen.
Houten palen worden feitelijk alleen nog maar gebruikt voor de binnen­
scheepvaart.
Stalen buispalen worden zeer veel toegepast als het gaat om wat grotere
schepen. Daarbij heeft dit profiel enkele aantrekkelijke voordelen:
- de buis is in vrijwel iedere diameter en wanddikte te maken
- door aan elkaar lassen van verschillende delen is elke willekeurige
  lengte te bereiken
- de verschillende delen zijn, voor wat betreft de keuze van staalsoort,
  wanddikte en diameter, aan te passen aan het ter plaatse optredende
  moment
- de buis heeft, als gevolg van de ringvormige doorsnede, een constant
  traagheidsmoment (torsiestijf). De buis kan dus in alle richtingen een-
  zelfde scheepsstoot opnemen.
Kokerprofielen, gevormd uit damwandprofielen, zijn door de verbeteringen
in de lastechtik bijzonder geschikt als meerstoel, vooral als de scheep­
stoten uit één bepaalde richting zijn te verwachten. Men kan dan door een
gunstige plaatsing van de damwandprofielen een optimaal resultaat berei­
ken voor wat de op te nemen scheepsstoten betreft.
Om te beginnen wordt uitgegaan van een elastische meerstoel bestaande uit
één enkele paal. Later zal dan nog kort worden ingegaan op de problemen
die optreden als gebruik wordt gemaakt van een samenstel van palen.

B. Belastingvormen
Voor het vaststellen van de maatgevende belastingen op een constructie is
het noodzakelijk dat een duidelijke analyse wordt gemaakt van de te verwach­
ten situaties en omstandigheden. Daarbij moet in feite de gehele levens­
cyclus van een ontwerp - ontwerp is hier bedoeld als de concretisering
van een gedachte - inoghenschouw worden genomen. Dus b.v. ook belastingen
op de constructie gedurende de uitvoeringsfase.
Bij meerstoenen nu komen de volgende belastingstoestanden voor:
a. het schip ligt afgemeerd aan de meerstoel en is onderhevig aan krachten
door de wind en door de stroming van het water uitgeoefend. Dit resulteert
in trekkrrachten op de meerstoel door de trossen of draden overgebracht, of
in drukkrachten als het schip door de wind of de stroom tegen de meerstoel
aangedrukt wordt.
b. het schip komt aangevaren en gebruikt de meerstoel als rem om tot stil­
stand te komen. Nu moet de bewegingsenergie van het schip geheel of ge­
deeltelijk door de meerstoel worden opgenomen. Eenzelfde verschijnsel treedt
op als het schip om de één of andere reden uit de koers is gelopen en tegen de beschermingsconstructie van een kunstwerk (b.v. sluis) botst.

c. het schip ligt afgemeerd; de trossen worden los gemaakt en het schip moet los komen van de meerstoelen. Daarvoor zal het zich meestal aanzetten tegen deze meerstoelen.

In wezen zijn dit allemaal dynamische verschijnselen. Of de constructie, dus in dit geval de meerstoel, het ook als een dynamische belasting ervaren is voornamelijk afhankelijk van de eigen frequentie van de constructie.

C. Schematisatie

Om één van eerder genoemde problemen voor berekening toegankelijk te maken, zal men het probleem moeten schematiseren. Hierbij moet onderscheid worden gemaakt tussen:

a. schematisatie van de constructie
b. schematisatie van de belastingen.

a. constructieschema

Er is aangenomen dat de constructie bestaat uit één enkele vrijstaande paal. Het meest voor de hand liggende schema is dan de éénzijdig ingeklemde vrij uitkragende ligger.

Als uitgangspunt wordt genomen een volledige inklemming in de grond. Dit komt echter praktisch nooit voor, behalve misschien in rotsgrond. Er is meestal sprake van een elastische inklemming, mogelijk zelfs een elastoplastische toestand. Daarop wordt later in dit stencil teruggekomen.

Verder is uitgegaan van een homogene, prismatische paal. Dit betekent dat de stijfheid (EI) over de gehele lengte van de paal als constant mag worden beschouwd. Dit is niet altijd het geval, met name bij stalen buispalen en Peinerprofielen kunnen variaties worden aangebracht (zie inleiding).

b. belastingschema

Bij het opnemen van de belasting door de constructie zijn twee fasen te onderscheiden, n.l. de overdracht van de belasting van schip naar meerstoel en die van meerstoel naar de ondergrond. In eerste instantie wordt uitge-
gaan van de belastingsoverdracht van schip naar meerstoel. Dit is ook in overeenstemming met de aanname in het constructieschema van een volledige inklemming in de bodem.

1. troskrachten
In het algemeen worden de troskrachten en de drukkrachten, als gevolg van de wind- en stromingsdruk op het afgemeerde schip, aangenomen als een statische belasting. In feite dus een quasi-statistische belasting omdat de belastingverandering zo langzaam plaatsvindt dat op ieder moment evenwicht verzekerd is tussen de uitwendige krachten en de inwendige vormveranderingskrachten van de paal.

Toch is het goed hier niet zonder meer van uit te gaan, maar ieder geval op zich terdege te bekijken.

Vooral als b.v. een schip met lange trossen aan de meerstoel ligt, heeft de constructie een grote eigen trillingstijd. Men zal dan het frequentiespectrum van de wind moeten onderzoeken op het met gevaarlijke perioden optreden van windvlagen of niet een aanzienlijke vergroting van de troskrachten kan ontstaan. Immers als kriterium voor de quasi-statistische belasting geldt dat de trillingstijd van de verstoring veel groter is dan de eigen trillingstijd van de constructie.

Zoals gezegd kunnen trekkrachten, door de trossen overgebracht, en drukkrachten, rechtstreeks van schip op meerstoel uitgeoefend, optreden. Wij hebben reeds gezien dat dit soort belasting als statisch is op te vatten. In dat geval is het voor de berekening maatgevend als de belasting zo hoog mogelijk aangrijpt, dan is immers het op te nemen moment het grootst. Omdat het aangrijpingspunt van de trossen hoger ligt dan het drukpunt van het schip tegen de meerstoel, wordt voor de berekening van de meerstoel op statische belasting de troskracht gebruikt.

2. scheepsstoten
Hierbij moet de bewegingsenergie van het schip geheel of gedeeltelijk door de vormveranderingsarbeid van de paal worden opgenomen. Deze dynamische belasting manifesteert zich dus als krachten op de meerstoel die buigende momenten in de constructie veroorzaken. De bewegingsenergie van het schip kan worden uitgedrukt in de formule $\frac{1}{2} m v^2$, waarin

$m = massa$ van het schip
$v = vaarsnelheid$ van het schip

Nu is het in het algemeen zo dat niet de totale bewegingsenergie van het schip door de meerstoel hoeft te worden opgenomen. De aanvaring vindt veelal onder een hoek plaats, waardoor de energie verdwijnt in:
1. energie die het schip bewaart doordat het een voortgaande translatiebeweging behoudt
2. energie die het schip verkrijgt doordat na de botsing een rotatiebeweging ontstaat
3. vormveranderingsarbeid van de meerstoel.

Zo zal rekening moeten worden gehouden met de traagheid van het door het schip meegevoerde water, die een vergroting van de botsingsenergie te weegbrengt. Aan de andere kant zal er reductie optreden doordat de scheepshuid vervormt (elastisch), warmteontwikkeling plaatsvindt etc.

Het is gebruikelijk de bewegingsenergie van een schip bij botsing aan te geven in de volgende formule:

\[ E_B = C_M \cdot C_S \cdot C_E \cdot \frac{1}{2} m v^2 \]

Daarin is:

- \( C_M \) - hydrodynamische factor, dus de invloed van de meegevoerde watermassa. Er is nog geen juist beeld van de ware grootte; dat is afhankelijk van verschillende factoren. Neem aan 1,3 à 2.
- \( C_S \) - factor waarin o.a. de vervorming van de scheepswand wordt uitgedrukt. 0,9
- \( C_E \) - excentriciteitsfactor, waarin in feite de invloed van de rotatiebeweging is terug te vinden. De grootte hiervan is in ieder geval kleiner dan 1. \( C_E = 1 \) is a.h.w. frontale botsing.
- \( m \) - massa van het schip. Feitelijk zou men ook de massa van de constructie moeten meerekenen, maar die is meestal te verwaarlozen t.o.v. die van het schip.
- \( v \) - afmeersnelheid van het schip.

In de praktijk komt vaak de formule \( \frac{1}{2} m v^2 \) tegen waarbij alle onzekere factoren zijn verwerkt in de afmeersnelheid van het schip.

Hoe vindt de energieoverdracht nu plaats?

De door de duodalf verrichte arbeid wordt vertaald in de vorm van buigingsarbeid. Gaan wij ervan uit dat de Wet van Hooke geldt, dus dat er een rechtlijnig verband bestaat tussen een kracht en de verplaatsing van de paal in de richting van de kracht dan geldt

\[ \frac{A_p}{F} = \frac{1}{2} F \cdot d \]

Daarin is:

- \( A_p \) - arbeidsvermogen van de paal
- \( F \) - horizontale kracht op de paal t.o.v. de scheepsstoot
- \( d \) - uitwijking van de paal in de richting van en ter plaatse van de kracht.
Als basisformule voor de dynamische belasting tenegevolge van een scheepsschijt geldt derhalve
\[ \frac{1}{2} m v^2 = \frac{1}{2} F \cdot d \]

3. loskomen van schip
De enige opmerking die hier gemaakt kan worden is dat geen al te slappe constructies moeten worden gebruikt. Deze kunnen het loskomen van wat grotere schepen bemoeilijken.

Er zijn dus twee criteria voor de berekening aan te houden:
1. statische belasting t.g.v. troskracht
2. dynamische belasting t.g.v. scheepsstoot.

D. Berekeningswijze

1. troskracht

\[ M = \bar{F}_b \cdot W \]
\[ M = T \cdot H' \]

Hieruit volgt de toelaatbare troskracht bij een gegeven paal

\[ T = \frac{\bar{F}_b \cdot W}{H'} \]

Wat is nu de optredende troskracht?

In de praktijk zijn hierover verschillende meningen in omloop. De eenvoudigste opvatting is die waarbij voor de maatgevende troskracht de breuklast in de tros wordt aangehouden. Eventueel wordt daarbij een reductie ingevoerd voor factoren als slip op de bolders. Dit invoeren van de breuklast berust op het feit dat schepen met verschillende waterverplaatsingen (tonnages) ook verschillende trossen gebruiken. Om een indicatie van de grootte van de voorkomende breuklasten te geven:

- binnenscheepvaart \( 2 \cdot 10^5 \) N
- supertankers \( 10^6 \) N

Een wetenschappelijker aanpak wordt verkregen door b.v. de maatgevende windkracht op de schepen, die gebruik maken van de meerstoel, te bepalen. Door verschillende onderzoekers zijn er op dit gebied metingen verricht,
o.a. kan men publikaties vinden in S.N.A.M.E. 1964 en in verslagen van de Internationale Scheepvaart Congressen. In het algemeen wordt daarbij uitgegaan van de bekende formule voor de stuwdruk $p = \frac{1}{2}\rho v^2$.

Dit levert de volgende waarde voor de windkracht op een schip:

$$F_w = c_w \cdot A \cdot \frac{v^2}{1,6} \text{ (in N)}$$

waarin $c_w$ weerstandscoëfficiënt van bovenbouw van schip gemeten in de windrichting, b.v. voor zijwind 0,75 à 1 afhankelijk van het soort schip

$A$ - getroffen oppervlak van schip

$v$ - maatgevende windsnelheid, b.v. bepaald uit windroos en overschrijdingsfrequentie

$\rho$ - voor lucht 1,25 kg/m³.

Denk bij het bepalen van de maatgevende windkracht ook aan het effect dat optreedt bij het voorkomen van buiten en windvlagen.

Voor de bepaling van optredende troskracht moet de windkracht dan worden verdeeld over het aantal trossen.

Eenzelfde soort beschouwing kan worden opgezet voor troskrachten die ontstaan t.g.v. stromingsdruk van het water op een schip. Men krijgt dan een soortgelijke formule als voor de windkracht.

Voor wat betreft de invloed van de krachten van het water op de troskrachten valt nog het volgende op te merken. Als het schip onderhevig is aan een bepaalde deining dient men goed na te gaan of de deiningfrequentie niet in de buurt komt van de eigen frequentie van het systeem bestaande uit de massa van het schip met als veilig de meerstoel. Een ander verschijnsel dat kan optreden is het gevolg van voorbijvarende schepen. Deze kunnen door hun haalgolf een sterke kracht op het afgemetschep uitoefenen. Zo bleek bij het bepalen van de maatgevende troskrachten op een kademuur in Europoort, dat de troskracht veroorzaakt door een voorbijvarend schip ongeveer $1\frac{1}{2}$ x zo groot was als de troskracht ontstaan uit de kritieke windkracht.

De gevonden troskrachten moeten uiteraard kleiner zijn dan de berekende toelaatbare troskracht. Deze wijze van berekenen komt voort uit het feit dat meestal de dynamische belasting maatgevend is voor de berekening en dat alleen gecontroleerd wordt of voldaan is aan de eis betreffende de troskrachten.

Tenslotte wordt erop gewezen dat, hoe hoger de troskracht aangrijpt des te
kleiner de toelaatbare trekkracht is (zie formule). Dit is geheel in overeenstemming met eerder gedane beschouwingen.

2. scheepsschok

Er wordt uitgegaan van de formule \( \frac{1}{2} \cdot m \cdot v^2 = \frac{1}{2} \cdot F \cdot d \)

Hierin is \( d = \frac{F \cdot H^3}{3 \cdot EI} \)

dus \( \frac{1}{2} \cdot F \cdot d = \frac{F^2 \cdot H^3}{6 \cdot EI} \)

Verder is \( F \cdot H = M = \sigma \cdot W \)

\[ \therefore \frac{1}{2} \cdot F \cdot d = \frac{\sigma^2 \cdot W^2 \cdot H}{6 \cdot EI} \]

Dit ingevuld in de basisformule levert

\[ \frac{1}{2} \cdot m \cdot v^2 = \frac{\sigma^2 \cdot W^2 \cdot H}{6 \cdot EI} \]

Als men nu de afmetingen van de paal bekend verondersteld, kan men de optredende buigspanning uitrekenen:

\[ \sigma^2 = \frac{\frac{1}{2} \cdot m \cdot v^2 \cdot 6 \cdot EI}{W^2 \cdot H} \]

Vaak is juist het materiaal en daarmee de toelaatbare buigspanning gegeven en wil men de afmetingen van de paal vaststellen.

Dan geldt:

\[ \frac{W^2}{T} = \frac{\frac{1}{2} \cdot m \cdot v^2 \cdot 6 \cdot E}{\sigma^2 \cdot H} \]

Neemt men een rechthoekige doorsnede aan met zijden \( b \) en \( h \) dan is:

\[ \frac{W^2}{T} = \left( \frac{1}{6} \cdot b \cdot h^2 \right)^2 = \frac{1}{12} \cdot b \cdot h^3 = \frac{1}{3} \cdot b \cdot h \]

of \( b \cdot h = \frac{\frac{1}{2} \cdot m \cdot v^2 \cdot 18 \cdot E}{\sigma^2 \cdot H} \)
Een eerste conclusie die men hieruit kan trekken is dat het er niet toe doet of de paal

\[ z_0 \quad \text{of} \quad z_0 \rightarrow \quad \text{wordt aangevaren.} \]

als men tenminste alleen maar kijkt naar de op te nemen scheepsstoot. Een andere conclusie is dat hoe lager de stoot plaatsheeft, des te ongunstiger dit is voor de optredende buigspanning of voor de te kiezen afmetingen. Een kleinere \( H \) geeft immers grotere waarden voor \( \sigma \) en \( b \) en \( h \). Maatgevend voor een berekening op scheepsstoot is dus voor een meerstoel het laagst mogelijke aanrijpingspunt.

Dit laatste is een gevolg van het feit dat hoe lager men een punt op de meerstoel neemt des te stijfer de constructie daar is. Zou dat lineair verlopen dan was er niets aan de hand maar de veerstijheid verloopt langs een derdemachtskromme.

\[
F = k \cdot d \\
\quad d = \frac{F}{3EI} \cdot \frac{H^3}{H^3} \\
\quad \text{dus in dit geval is} \quad k = \frac{3EI}{H^3} \quad \text{N/m.}
\]

Door deze relatief grotere stijheid op een lagergelegen punt zal de ontwikkelde kracht aldaar ook relatief groter zijn en daardoor, in mindere mate weliswaar, eveneens het buigend moment.

**Elastische inklemming**

 Zoals men zich herinnert, is bij de schematisatie van de constructie uitgegaan van een volledige inklemming in de bodem. Er is toen reeds gesteld dat dit in de praktijk zelden of nooit waar te maken zal zijn.

In de meeste gevallen zal er sprake zijn van een elastische inklemming in de bodem. De tot nog toe meest toegepaste berekeningswijze op dat gebied is de methode Blum. Blum gaat er vanuit dat, als een meerstoel in horizontale zin belast wordt, in de ondergrond een passieve gronddruk - ontstaan uit een wigvormig grondlichaam - voor het evenwicht zal zorgen. De actieve gronddruk en de zijdelingse wrijving tussen paal en grond worden buiten beschouwing gelaten.
In onderstaande figuren worden de belastingvlakken aangegeven. De passieve gronddruk verloopt volgens een gebogen lijn vanwege de eerdergenoemde grondwijk. Onderaan de paal moet een tegengestelde kracht werken om evenwicht te bewerkstelligen.

t₀ is de berekende theoretische inheidipte en
t is de praktische inheidipte, waarbij t = 1,2 t₀.

Dit laatste volgt uit de berekeningen van Brennecke-Lohmeyer.

Kenmerkend voor de berekening met elastische inklemming is dat de plaats van het maximum moment niet samenvalt met het theoretische inklemmingspunt.

opzet van Blun
De gestippelde figuur geeft het ware afschuivingsvlak van de grondwijk aan. Om de gronddruk geschikt te maken voor berekening worden rechte glijdvlakken aangenomen. Dit blijkt aardig overeen te stemmen met de resultaten uit proeven verkregen.

De totale passieve gronddruk is opgebouwd uit een gedeelte recht voor de paal $E_p$ en twee stukken aan de zijvlakken $E_z$.

$$E_p = (\text{gewicht van grondwijk}) \cdot \tan \left( 45^\circ + \frac{1}{2} \theta \right)$$

of

$$E_p = G \cdot \tan \left( 45^\circ + \frac{1}{2} \theta \right)$$

of

$$E_p = \rho g \cdot g \cdot \lambda_p \cdot \frac{1}{2} b t^2$$

$$E_z = (\text{gewicht van zijwijk}) \cdot \tan \left( 45^\circ + \frac{1}{2} \theta \right)$$

of

$$E_z = \rho g \cdot g \cdot \lambda_p \cdot \frac{1}{2} b t^2$$

De totale passieve gronddruk is derhalve:

$$E_T = E_p + E_z = \rho g \cdot g \cdot \lambda_p \left( \frac{1}{2} b t^2 + \frac{1}{6} t^3 \right)$$

Hier stuit men al meteen op een paar discutabiele punten. In de eerste plaats het volumegewicht $\rho g \cdot g$ van de grond.

Blum stelt voor om voor de statische belasting te rekenen met het volumegewicht van grond onder water. Bij een stootbelasting gaat hij er vanuit dat het water niet zo snel zou kunnen ontsnappen waardoor ook het water een aandeel in de tegendruk levert. Hij adviseert in dat geval het volumegewicht van grond boven water te gebruiken.

De huidige opvatting is dat men Blum alleen moet toepassen voor goed doorlatende grond en dan gebruik maken van het volumegewicht van grond onder water. Het onderzoek op dit gebied is nog steeds aan de gang.

Een ander discussiepunt is de coefficient van de passieve gronddruk $\lambda_p$. Deze is voornamelijk afhankelijk van de hoek van inwendige wrijving van de grond $\theta$ en van de wrijvingshoek $\delta$ tussen de paal en de grond. Blum verwijst naar de invloed van $\delta$, maar anderen zouden zelfs een hoek van ca. $20^\circ$ ingevoerd willen zien.

Als verkorte schrijfwijze voor $\rho g \lambda_p$, wat dus in feite $(\rho g - f_w) \cdot g \cdot \lambda_p$ zou moeten zijn heeft Blum de term $f_w$ geïntroduceerd.
Men komt dan tot de volgende formules:

**moment op een punt $x \cdot m$ onder bodemoppervlak**

$$M_x = F (h + x) - f_W \cdot \left( \frac{b}{6} \cdot \frac{x^3}{3} + \frac{x^4}{24} \right)$$  \hspace{1cm} (1)

plaats van het grootste moment ligt $x_m$ onder bodem en daar geldt:

$$\frac{dM_x}{dx} = 0 \quad \Rightarrow F = \frac{1}{6} f_W \cdot x_m^2 (x_m + 3 \cdot b)$$  \hspace{1cm} (2)

(2) gesubstitueerd in (1) levert

$$M_{\text{max}} = \frac{1}{24} f_W \cdot x_m^2 \left[ 3 x_m^2 + x_m (4 \cdot h + 8 \cdot b) + 12 \cdot b \cdot h \right]$$  \hspace{1cm} (3)

Bij de berekening van een duodelf gaat men er vanuit dat de afmetingen bekend zijn. Ook de gegevens van de grond en daarmee $f_W$ zijn vast te stellen. $M_{\text{max}}$ volgt uit $\Sigma$. W en daardoor is $x_m$ op te lossen. Het is dus echt een "trial- and error" methode.

Uit $\Sigma M = 0$ volgt na enig rekenwerk

$$t_0^4 + 4 \cdot b \cdot t_o^3 - \frac{24}{f_W} \cdot F \cdot t_o - \frac{24}{f_W} F \cdot h = 0$$

wat ingevuld in vgl (2) leidt tot

$$t_0^3 \cdot \frac{t_0 + 4 \cdot b}{t_0 + h} = 4 x_m^2 (x_m + 3 \cdot b)$$  \hspace{1cm} (4)

en $t = 1,2 t_o$  \hspace{1cm} (5)

Hiermee is de grootte van de inheids diepte $t$ vastgesteld. De doorbuiging $d$ van de paal ter plaatse van de kracht $F$ wordt dan berekend uit

$$d = \frac{1}{E_I} \left[ \frac{F (h + t_o)^3}{3} - \frac{f_W \cdot t_o^4}{360} \cdot \left\{ 15 \cdot b \cdot h + t_o \cdot (3 \cdot h + 12 \cdot b) + 2,5 \cdot t_o^2 \right\} \right]$$  \hspace{1cm} (6)

Het opneembare arbeidsvermogen van de paal is nu bekend uit $\frac{d}{F} \cdot d$.

Omdat $d$ een nogal onhandelbare formule (6) oplovert is er gezocht naar een middel om deze terug te brengen naar de vorm $\frac{F \cdot 13}{3 \cdot E_I}$.

Proeven van Miller voor het bepalen van de doorbuiging van stalen palen hebben aangetoond dat de plaats voor de vaste inklemmingslengte afhankelijk blijkt te zijn van de paalbreedte $b$ en inheidsdiepte $t_0$. Het is jammer dat Miller zijn onderzoek heeft beperkt tot een enkele paal en statisch belast bovendien. Gelukkig heeft hij ook trillingsmetingen verricht waaruit blijkt dat men kan rekenen op een denkbeeldige inklemmingslengte van $(h + 0,65 t_o)$ of ook $(h + 0,78 t_o)$.
Formule (6) wordt dan herleid tot
\[
d = \frac{E}{3E_t} \cdot (h + 0.65 t)^3
\]  
(6a)

Zoals men heeft gemerkt zijn tegen de methode Blum nogal wat bedenkingen in te brengen. Een duidelijk betere methode is er echter nog niet gevonden en dan te bedenken dat de oorsprong van de methode Blum in het jaar 1932 ligt. Bij de Rijkswaterstaat experimenteert men op het ogenblik met een methode gebaseerd op het werk van M. Hetényi "Beams on elastic foundations". Binnenkort zullen er bij het Volkerak proeven worden verricht om deze methode aan de praktijk te toetsen.


Tenslotte zullen er nog enige opmerkingen worden gemaakt over meerstoe- len bestaande uit meerdere palen. Müller stelt in dat geval de methode van de basispaal voor, d.w.z. voor de gronddruk rekening houden met een enkele paal en de uitkomst vermenigvuldigen met het aantal palen.

Jenne daarentegen komt tot een berekening waarbij de totale duodelfbreedte in rekening wordt gebracht, mits de afstand tussen de palen niet groter wordt dan 5x de diameter. Dit lijkt een reëler uitgangspunt omdat bij de methode van Müller de grondwigen elkaar zullen overlappen en daarmee een te gunstige aanname voor de passieve gronddruk wordt bereikt. Door dat Jenne in zijn berekening wel de wrijvingshoek meeneemt, blijken de resultaten van beide methoden toch nagenoeg gelijk te zijn.

Bij de berekening van dit soort meerstoeLEN moet men eraan denken dat de aanname van volwaardige samenwerking in de constructie wordt gerealiseerd. Dit houdt in dat men, zonodig op verschillende hoogten, torsiestijve verbanden moet maken. Men mag deze in hoogterichting niet stijf maken omdat anders het principe van het vrije uiteinde geweld wordt aangedaan. In het algemeen gezegd geldt ook hier weer dat men, nadat men geschematiseerd heeft en de constructie heeft berekend, moet nagaan of de constructie en de schematisatie met elkaar in overeenstemming zijn.
Funderingen voor waterbouwkundige constructies

I.A. Inleiding

De fundering van een kunstwerk is dat gedeelte dat de overgang vormt van het kunstwerk naar de vaste ondergrond.

Het doel van de fundering is de belastingen, op en door het kunstwerk uitgeoefend, zodanig naar de vaste grondlaag over te brengen dat onder alle omstandigheden het kunstwerk aan zijn doel blijft beantwoorden. Onder alle omstandigheden kan men in dit verband opvatten als een combinatie van de meest ongunstig belastingsmogelijkheid en het levensstadium van het kunstwerk.

Zoals gezegd gaat het bij de fundering om een overdracht van de belasting van het kunstwerk naar de ondergrond. De grote moeilijkheid is nu dat zowel wat betreft de grootte en de verdeling over het kunstwerk van de belastingen als wat betreft de drukverdeling en de setting van de ondergrond men met tal van onzekerheden te maken heeft. De situatie zal van kunstwerk tot kunstwerk verschillen zodat er geen eenduidige oplossing is vast te stellen.

Zo is b.v. de spanningsverdeling van de grond onder de fundering sterk afhankelijk van de stijfheidsverhouding tussen de funderingsplaat van het kunstwerk en de ondergrond. De aangenomen spanningsverdeling is juist als op iedere plaats de gronddruk en de daarmee samenhangende setting van de ondergrond in overeenstemming is met de vormverandering van het kunstwerk.

Men kan in dit geval het volgende onderscheid maken:

a. zeer slappe funderingsplaat
   of zeer stijve bouwgrond (rots)

Het kunstwerk en de grond vervormen gelijkmatig, d.w.z. de fundering past zich volledig aan bij de vervorming van de ondergrond. Denk hierbij aan vers gestorte beton of de zeer dunne bodem van een vloeiostoftank.

![Slappe plaat]

b. zeer stijve funderingsplaat
   of zeer slappe ondergrond

Hier zijn de settingen onder de fundering overal even groot. De spanningsverdeling in de grond moet zich daarbij aanpassen, waardoor aan de randen van de funderingsplaat hogere spanningen zullen optreden dan onder het midden van
de plaat.

stijve plaat

setting

spanningsverdeling op de grond

c. elastische plaat.

Helaas zal in de meeste gevallen een stijfheidsverhouding voorkomen die tussen a en b in ligt. Men zal dan een berekening moeten opzetten met vereenvoudigde aannames, gebaseerd op praktisch inzicht en met draaglijke berekeningskosten.

Voor een bepaling van het toelaatbare draagvermogen van de grond kan men twee criteria onderscheiden:

I.A.1. evenwichtsdrasagvermogen

Door opvoering van de belasting op een funderingsplaat zullen de daardoor veroorzaakte spannungen in de ondergrond ook toenemen. Bij overschrijding van de critieke spanningsstoestand in een bepaald punt zal er ter plaatse bezwijken van de grond (overschrijden schuifweerstand) ontstaan. Dit leidt tot een verhoging van de spanning in andere punten omdat de belasting nu eenmaal opgenomen moet worden. Er zal bij verdere verhoging van de belasting op steeds meer plaatsen bezwijken van de grond optreden totdat tenslotte een doorgaand afglidвлak in de grond ontstaat en de fundering wegzaakt onder zijdelingse persing van de grond. Het evenwichtsdrasagvermogen van de grond is dan overschreden.

I.A.2. vormveranderingsdrasagvermogen

Voor het evenwichtsdrasagvermogen wordt bereikt zal door samendrukking van de grond een zekere vervorming optreden (setting). Setting is de verticale beweging van een gebouw. Deze kan o.a. worden veroorzaakt door

-samendrukking van ondergrond door de belasting van het kunstwerk.
-grondwaterstandsverlaging, waardoor de korrelstructuur in de grond groter wordt.
-verschuivingen in ondergrond door b.v. ontgravingen elders.

Deze zetten kunnen aanleiding geven tot het optreden van scheurverschijnselen in de kunstwerken, vooral indien er sprake is van ongelijkmatige setting, d.w.z. de setting is niet op alle plaatsen even groot.

Om deze verschillen in setting tegen te gaan kan men wel enige maatregelen treffen, b.v.
- fundering van het kunstwerk stijf maken
- slappe, statisch bepaalde fundering ontwerpen, zoals in de vorm van schaar-nierliggers
- fundering door het aanbrengen van voegen onderverdelen en de afmetingen van de onderdelen zodanig kiezen dat tenslotte gelijke zettingen optreden. Het nadeel van deze laatste methode is dat de eindzetting weliswaar overal even groot zal zijn maar dat het tempo van de zakking niet op iedere plaats gelijk behoeft te zijn. Er kan dus tussentijds verschil in zetting voorkomen. Duidelijk is dat, met het oog op zettingen en de daarmede samenhangende scheurvorming, een ander draagvermogen dan het evenwichtsdraagvermogen maatgevend moet zijn: het vormveranderingsdraagvermogen.

De toelaatbare belasting van de ondergrond wordt nu bepaald door uit te gaan van het evenwichtsdraagvermogen, uiteraard met inachtneming van een bepaalde veiligheidsoëfficient die niet voor alle gevallen een gelijke waarde behoeft te hebben.

In vele gevallen blijkt het niet mogelijk de fundering meteen op het maaiveld te plaatsen. Immers meestal liggen bovenin de slappe lagen zoals humus en daarnaast hebben deze lagen ook weinig samenhang zodat wind en water gemakkelijk de afzonderlijke deeltjes kunnen wegvloeren. Bovendien speelt in ons klimaat de vorstgrens nog een rol. Men moet de funderingsvoet beneden dit peil aanbrengen om bij bevriezing van de ondergrond ongelijkmatige zettingen te voorkomen.

De ligging van de draagkrachtige laag speelt een voornamne rol bij de keuze van het type fundering. Hoe hoger de draagkrachtige laag gelegen is, des te eenvoudiger - dus meestal goedkoper - de fundering kan zijn.

In de drie volgende hoofdstukken zal achtereenvolgens worden behandeld:

B. vrij hooggelegen draagkrachtige laag en de wijze waarop deze laag kan worden bereikt om de fundering rechtstreeks hierop aan te leggen (bouwput).

C. diepgelegen draagkrachtige laag of een weinig draagkrachtige ondergrond, waarbij een aantal methoden zal worden besproken om het draagvermogen van de hogergelegen lagen te verbeteren om aldus een fundering op staal mogelijk te maken.

D. funderingstechnieken.
Om de draagkrachtige laag te kunnen bereiken zullen de erboven liggende lagen verwijderd moeten worden, veelal met de hulp van graafmachines, zoals draglines. Omdat er in ons land vrijwel altijd sprake is van de aanwezigheid van grondwater, zal de z.g. "bouwput in den droge" hier niet worden besproken.

Bij het werken onder de grondwaterspiegel zal de gegraven bouwput op een zeker moment onder water komen te staan. Er zijn nu twee manieren om deze moeilijkheid het hoofd te kunnen bieden n.l.

**B.1. open bemaling**

Er worden langs de rand van de bouwput sleuven gegraven waarin het water zich verzamelt. Door deze sleuven onlangs is een helling te geven loopt het water naar bepaalde punten (pompritten) waartuit het kan worden weggepompt. De onttreving van de bouwput geschiedt laagsgewijze zodat men telkens een droge werkvloer houdt, omdat ook de pomp uit steeds diepere sleuven zuigt of perst.

**B.2. verlaging van de grondwaterspiegel**

In principe wordt ervoor gezorgd dat het grondwater in en rondom de te graven bouwput wordt weggevoerd alvorens men met de onttreving gaat beginnen. Men maakt in zo'n geval meestal gebruik van een bronbemaling.

Een bron bestaat uit een zuigbuis die is aangesloten op een pomp. Om de zuigbuis te beschermen wordt er omheen een stijgbuis aangebracht die over het gedeelte waar water moet worden afgezogen overgaat in een geperforeerde filterbuis. Tussen filterbuis en de grond moet een filter aanwezig zijn om verstopping in de filterbuis te voorkomen.

De zuighoogte van een pomp is beperkt; theoretisch 1 atm. of 10 m water.

Door allerlei verliezen in de praktijk slechts 6 à 7 m waterstandsverlaging t.p.v. de bron en tussen de bronnen nog minder. Daarom maakt men gebruik van diepwelppompen, dit zijn elektrische pompen die beneden in de buis worden gehangen. Het water hoeft nu slechts opgeperst te worden en dat kan over tientallen meters geschieden.

Men kan bij de bronbemaling nog onderscheid maken:

a. de eigenlijke bronbemaling, waarbij gebruik wordt gemaakt van de zwaarte kracht. Het grondwater kan zich vrij door de ondergrond bewegen en onder invloed van de zwaartekracht naar de bronnen toestromen. De grond moet dan wel goed doorlatend zijn.

Een nadeel van deze methode is wel dat een grote grondwaterstandsverlaging zich ver doet voelen, zodat een verdroging van grond en gewassen optreedt; zettingen in de omtrek t.g.v. de verhoging van de korrelspanning ontstaan en houten paalfunderingen komen droog te staan met als gevolg aantasting.
Men kan dan trachten door middel van retourbemaling deze bezwaren te onder-
dervangen. Hierbij wordt het uitgepompte water elders weer in de grond gebracht om zodoende een soort circulatie tot stand te brengen. In Nederland is dit principe b.v. onlangs nog toegepast bij de bouw van de L-tunnel in Amsterdam.

b. vacuüm-bemaling (well-points) kan worden toegepast bij fijn zand of alib met een kleine doorlatendheidsfactor. Het grondwater wordt gier door adhesie aan de korrels vastgehouden. De bronnen moeten een onderdruk opwekken om het water naar zich toe te trekken. Er moet continu worden gepompt om de onderdruk te handhaven. Een voordeel is wel dat door de overdruk in de grond een structuurverbetering optreedt. Er kunnen dan ook zeer steile taluds worden opgezet.

Het is een zeer dure methode die slechts in uiterste gevallen gebruikt wordt. In Nederland, voorzover bekend, nog niet toegepast.

B.3. begrenzing bouwput
Bij het graven van een bouwput zal niet alleen gelet dienen te worden op het bereiken van de draagkrachtige laag of fundieringsgrondslag, maar ook op de omgrenzing van de bouwput. De werkvloer zal immers beschermd moeten zijn tegen de krachtinwerking van grond en water, daarbij niet alleen lettend op de zijdelingse omgrenzing, doch tevens op de bodembescherming.

B.3.a. De eenvoudigste manier van een bouwputomgrenzing is een talud. Dat wil niet zeggen dat dit altijd de aangewezen methode is. Denk in dit verband aan een diepegelegen draagkrachtige laag, dan zal duidelijk zijn dat dit aanleiding geeft tot een grote omtrek van de bouwput. Bovendien komt hierbij de kwestie van het instandhouden van het talud. Zelfs bij bronbemaling zal er tussen de bronnen in nog wateraandrang zijn door het talud. Men zal dus genoodzaakt zijn het talud te bekleeden met een filterlaag of de toevoer van water naar het talud af te snijden door b.v. een damwand te heien.

van stalen damwandprofielen, die de volgende kenmerkende voordelen bezitten:
- door toepassing van geschikte constructievorm in staat zeer grote buigende momenten op te nemen.
- in vrijwel alle gewenste lengten verkrijgbaar.
- geringe eigen doorzendede, dus gemakkelijk te keren.
- sloten tussen de damplanken onderling zorgen meestal voor een goede afsluiting. In ieder geval gronddicht en magenog waterdicht.

Een nadeel is dat onder bepaalde omstandigheden aantasting optreedt zoals in agressief water (roestgevaar) en in zandhoudend stromend water door de schurende werking. Dit laatste bezwaar komt alleen naar voren bij een bouwkuip in een rivier.

Wat betreft de stabiliteit van de damwand zijn er verschillende oplossingen denkbaar.

b.1. In de eerste plaats kan de damwand worden toegepast als vrij grondkering, waarbij de weerstand tegen de krachten wordt verkregen door een inklemming in de bodem. Dit leidt tot lange, zware damplanken, zodat deze methode slechts bij een kleine kerende hoogte wordt gebruikt.

b.2. Een tweede oplossing ligt in het afstempelen op elkaar van tegenoverliggende damwanden. Bij kleine overspanningen kan men houten stempels gebruiken, maar bij bredere bouwputten zal men moeten overgaan tot stalen walaprofielen, kleine vakwerken of zware buisvormige profielen. Is de lengterichting van de bouwput beperkt, dan kan men de put een ronde vorm geven waarbij de afstempeling geschiedt door één of meer ringbalken. Veelal ondergaat de damwand in dit geval een symmetrische belasting zodat de ringbalk alleen op druk wordt belast. Er dient verder op gewezen te worden dat door de stempel van de damwand de gronddruk een volkomen anders verloop gaat krijgen, n.l. een concentratie in de buurt van de stempels.
Zie hiervoor het college Toegepaste Gronddynamica. Een voor de hand liggend nadeel van stempels is dat zij het werk in de bouwput belemmeren. Bovendien zal men bij een brede bouwput zeer zware en gecompliceerde stempels moeten aanbrengen. Daarom zal men als derde oplossing,

b.3. indien mogelijk, gebruik maken van een achterwaartse verankering. Deze bestaat uit een aantal ankerstangen, die - afhankelijk van de ankerkracht - op onderlinge horizontale afstand liggen van 2 à 4 maal de dubbele damplankbreedte en een ankerplaat die buiten de kritieke glijvlakken van de grond achter de damwand wordt geplaatst. Deze ankerplaat kan b.v. bestaan uit een doorgaande ankerwand, uit meerdere ankerplaten of uit ankerpalen. De aansluiting van de ankerstangen aan de damwand geschiedt met een doorgaande ankergording gevormd uit een tweetal walaprofielen.
De methode van de achterwaartse verankering is echter lang niet altijd mogelijk, voornamelijk omdat er geen gelegenheid is het anker aan te brengen. Denk b.v. aan omringende bebouwing.

b.4. In dat geval kunnen wij overgaan tot de vierde oplossing, die van de z.g. groutankers, zie: Collegedictaat Constructieleer II "Funderingen".

Behalve een omgrenzing van de bouwput door damwand kennen wij nog een aantal andere methoden.

B.3.c. Diep wand zie: Collegedictaat Constructieleer II "Funderingen".

B.3.d. Bouwputomgrenzing m.b.v. injectiemethoden.
Hiermee wordt bedoeld het injecteren van de ondergrond met vloeibare stoffen om aldus een waterdichte omgrenzing van de bouwput te scheppen.

Deze methode is vooral geschikt bij een sterke wateraandrang en in goed doorlatende grond. Met een aantal injectiemiddelen wordt tevens een soort verstening van de ondergrond verkregen, wat natuurlijk een verbetering van het draagvermogen van de grond betekent. Men kan onderscheid maken in:

d.1. chemische injectie
Hierbij worden chemicaliën in de grond geperst door middel van lansen. Het injectiemiddel moet de hele ruimten in de grond kunnen binnendringen. Daarom leent vooral fijn en grof zand zich voor deze methode. Men kent verschillende werkwijzen:
- systeem Joosten.

Hierbij worden twee vloeistoffen na elkaar in de grond gespoten. De menging en dus de chemische reactie vindt plaats in de grond. Korrel > 3 mm.
- monodursysteem.

In dit geval wordt de vloeistof in één keer met de injectielans in de grond gespoten. Door toevoeging van reactievertragende stoffen wordt be reikt dat de versteviging pas in de grond optreedt. Omdat hier gebruik wordt gemaakt van dun vloeibare chemicaliën kunnen ook fijnkorrelige zandgronden worden geïnjecteerd. Korrelfractie 90% > 20 µ.
- monodursysteem.

Deze injectiemethode werkt als de voorgaande methode, maar met een andere vloeistof waardoor alleen een afdichtende werking wordt verkregen. Het middel doet denken aan stijfsel. Korrelfractie 90% > 20 µ.

d.2. injectie met cement
Alleen te gebruiken bij zeer grof zand-en grind en niet te sterke grondwaterstroming. Korrel 8 mm.
d.3. injectie met bitumen
Geen verstevigende functie, maar alleen waterafdichtende taak. In buitenland vooral gebruikt bij de bouw van stuwdammen. De bitumendeeltjes hebben een buitengewoon kleine diameter en zijn daarom alleen toe te passen bij grofkorrelige grond. In combinatie met cementinjectie kan men zelfs de stroming van water door scheuren in de grond stoppen.

B.3.c. Bouwputomgrenzing m.b.v. bevriesingsmethode
Dit is een zeer kostbare methode, die een zeer zorgvuldige uitvoering vereist. Zij wordt daarom slechts in uiterste noodzaak toegepast b.v. bij de aanwezigheid van drijfzand of bij zeer grote diepten zoals mijnschachten en tunnels. Een bekende toepassing op dit moment vindt plaats bij de bouw van de ondergrondse te München.
Het principe bestaat uit het rondom de bouwput bevriezen van de grond zodat een ijsmuur wordt gevormd. Het grondwater wordt tegengehouden en de muur kan op zich stabiel worden gemaakt zodat stempeling overbodig is.
De werkwijze komt in het kort neer op het volgende:
Vloeibare koolzuur wordt onder druk de grond ingevoerd. Door vermindering van de druk gaat het verdampen en vormt de bekende koolzuursneeuw. Hierbij wordt warmte aan de omgeving onttrokken waardoor de grond bevriest. Men kan direct tegen de bevroren grond betonneren mits men cement gebruikt die haar warmte niet snel afscheidt. Ook het ontwincelen dient zeer zorgvuldig te geschieden omdat de grond haar vastheid gaat verliezen.

B.3.d. Tenslotte wordt nog gewezen op een bijzonder geval van een bouwput, n.l. de bouwput in open water.
Dit geval zal b.v. optreden bij de bouw van een rivierpilier of zelfs van een heel kunstwerk in een brede rivier. Er zijn de volgende oplossingen mogelijk:
1. omsluiting door damwand.
onderscheidt zich praktisch niet van de methode beschreven bij bouwput op het land. Moeilijkheden zitten meestal in de afstempeling, vooral als men vrije werkruiumte wil hebben. In dat geval schoorpalen toepassen zoals o.a. is gebeurd bij de bouw van de stormvloedkering bij Krimpen a/d IJssel.
2. omsluiting met kistdammen
dit zijn twee aan de bovenzijde gekoppelde damwandrijen waartussen grond wordt gestort. De berekening van deze kistdam is niet gemakkelijk omdat in de grond silowerking kan optreden. Voor bouwputten in diep water worden dan vaak cellendamwanden toegepast. In principe kan men spreken van kistdammen met een grote breedte-afmeting waarbij de damwand meestal in de vorm van op elkaar
aansluitende cirkelbogen wordt gehecht. De gronddruk moet door de in de damwand optredende horizontale trekkkrachten worden opgenomen. Een bekend voorbeeld is de oellendamwand gebruikt voor de bouwput van de getijcentrale in de Rance (Frankrijk).

3. omsluiting met ringdijk

Ingeval van aanwezige zandplaten in een getijderivier kan men als begrenzing van de bouwput bij niet te sterke stroming een ringdijk aanleggen. Deze methode wordt in Nederland veel toegepast bij de bouw van kunstwerken in het Deltagebied.

B.4. Afdichting bodem van de bouwput

Tot nu toe hebben wij steeds gesproken over de zijdelingse verticale omsluiting van de bouwput, maar eerder werd er reeds even op gewezen dat ook de afdichting van de bodem van de bouwput van belang kan zijn. Vooral bij gelaagde grond kunnen moeilijkheden ontstaan als de opwaartse waterdruk onder een slecht doorlatende laag (b.v. klei) groter blijkt te zijn dan het gewicht van de bovenliggende grond na afgraving. Er zal dan sprake zijn van opbersten van de grond.

Een andere complicatie komt naar voren als het niet is toegestaan om de grondwaterstand te verlagen.

In het volgende zullen enige methoden worden aangegeven om een bodemafdichting van de bouwput te bereiken.

B.4.a. grondwaterstandsverlaging toegestaan.

De eenvoudigste is ervoor te zorgen dat er voldoende grond aanwezig blijft om de opwaartse waterdruk van opgezotten grondwater op te vangen.

1. Bij de toepassing van open bemaling wordt nog gewezen op het gevaar van welvorming, indien er sprake is van vrij grote wateraandrang en een fijnkorrelige zandbodem.

2. Is dit niet mogelijk, dan zou men met een bronbemaling het grondwater onder de waterdichte laag kunnen bemalen om zodoende een vermindering van de opwaartse druk te verkrijgen. Men spreekt dan van een spanningsbemaling.

B.4.b. grondwaterstandsverlaging niet toegestaan.

b.1. Indien op een geschikte ondoorlatende kleilagen aanwezig zijn zou men deze kunnen benutten door als zijdelingse omgrenzing van de bouwput damwand te gebruiken en deze tot in de betreffende kleilaag te heien.

Ook in dit geval moet weer voldoende grond boven de kleilaag achterblijven.
om opbarsten te voorkomen. Een ander onzeker punt is of overal wel de damwand in de kleilaag terecht komt. Een gedegen vooronderzoek naar het verloop van de kleilaag is gewenst.

b.2. Een veiliger oplossing wordt verkregen door na uitgraving van de bouwput onder water een ondoorlatende laag van beton op de funderingsgrondslag aan te brengen. Daarna kan dan het water uit de bouwput worden weggepompt. Een veel toegepaste methode is in dit verband de methode van de betonkoek. Hierbij wordt eerst een damwand geheel om een bouwput te vormen, daarna wordt de grond uit de put verwijderd met een griper of een suiterzuiger b.v. Tijdens dit ontgraven zal men water in de bouwput voeren voor het evenwicht en om het waterniveau binnen en buiten de bouwput minstens gelijk te houden om ongewenste grondwaterstroming in de funderingsgrondslag te voorkomen. Er zouden immers gronddeeltjes meegespoeld kunnen worden of een lossere pakking kunnen ontstaan. Na het ontgraven en eventueel verwijderen van sliblaag als betonestorten even op zich laat wachten, kan men op verschillende wijzen tot betonestronen overgaan. Men kan de beton met stortbakken, die onder water opengaan, aanbrengen, maar dit vereist een zorgvuldige uitvoering omdat anders ontmenging van de beton. Men kan de beton via een stortbuis, waarvan het uiteinde altijd in de beton blijft tijdens het storten, naar beneden voeren. Men kan een grondlaag op de bodem aanbrengen en deze daarna penetreren met grout; er zijn allerlei methoden.

De dikte van de betonlaag wordt bepaald door de grootte van de opwaartse waterdruk. Dit kan aanleiding geven tot een dikte van de betonkoek van vele meters.

b.3. Om op de kosten van de beton te besparen kan men de methode gebruiken van betonkoek met trekankers. Hierdoor wordt ook het gewicht van de funderingsgrondslag betrokken bij het tegenwerken van de opwaartse druk. De trekankers worden vaak met de later te bespreken diepteverdichters de grond ingespoten en voorzien van een bloempotvormige kop om aldus een goede aansluiting met de betonkoek te krijgen. In plaats van trekankers gebruikt men wel trekpalen. De door de trekankers op te nemen kracht kan variëren van 30 tot 90 tonf.

b.4. Een andere methode van bodemafdichting kan worden bereikt met chemische injectie. Het proces verloopt identiek aan dat voor de eerder beschreven zijdelingse omgrenzing van de bouwput. De bodemafdichting met chemische injectie kan echter ook worden toegepast in combinatie met b.v. een zijdelingse omsluiting van de bouwput met damwand. Het gewicht van de geinjecteerde laag, vermeerderd met een bovenliggende grondlaag, moet weer voldoende groot zijn om de opwaartse druk van het grondwater te weerstaan.
b.5. Ook de bevriezingsmethode zou in zeer bijzondere gevallen in aanmerking kunnen komen.

I.C. Verbetering van funderingsgrondslag

Hieronder vallen een aantal methoden die dienen om de vastheid van de grondslag te vergroten of om de te verwachten zettingen te verminderen; kort samengevat dus om het draagvermogen van de grond te verhogen. Dit kan in een aantal gevallen tot een voordelige oplossing leiden omdat men minder diep en minder zwaar hoeft te funderen.

C.1. grondvervanging

De meest radicale methode bij de aanwezigheid van slappe lagen is deze weg te halen door baggeren of met grijpers en te vervangen door een zandlichaam. Vroeger werd ook wel toegepast het wegpersen van de slappe lagen naar één zijde of symmetrisch naar beide kanten door een bovenbelasting van zandlagen aan te brengen. Een nadeel van deze werkwijze is dat een onbekende hoeveelheid slappe grond in de ondergrond onder het zandlichaam blijft zitten, die van plaats tot plaats zal verschillen. Dit veroorzaakt dan later zettingsverschillen. Bovendien komt de slappe grond elders omhoog wat tot ongewenste situaties aanleiding kan geven.

C.2. mechanische verdichting van de grond

a. Voor oppervlaktelagen kan men wat betreft loskorrelige grond het beste een verdichting door trillingen bereiken, terwijl samenhangende gronden beter door walsen kunnen worden verdicht.

Voor het verdichten van diepergelegen lagen kan men overgaan tot de diepte-
b. verdichtingsmethode of het z.g. Rütteldruckverfahren, zie: College dictaat Constructieleer II "Funderingen".

c. stopverdichten.

Er moet verder worden opgemerkt dat door het heien van palen eveneens een bodemverdichting optreedt. Zie hiervoor LOM-mededelingen 1963 over het heiwerk in de bouwput van de Haringvlietsluizen. Van deze grondverdichting wordt wel gebruik gemaakt door het heien van een aantal korte palen van buiten naar binnen om zo een betere funderingsgrondslag te krijgen.

Nog een methode van mechanische verdichting die in Amerika wel wordt toegepast bij de bouw van stuwdammen is het gebruik van explosieven.

C.3. grondverdichting m.b.v. injectiemethoden

Hierover wordt verwezen naar de injectiemethoden behandeld bij de omgrenzing en bodemafdichting van bouwputten. In dit geval zijn alleen van belang de methoden die leiden tot een grondversteviging.
C.4. stabilisatie van de grond door verticale zanddrainage
Zie: Collegedictaat Constructieleer II "Funderingen".

C.5. grondverdichting m.b.v. elektro-osmose
Ook voor deze methode wordt verwezen naar het behandelde onder ontwatering van bouwpotten. Door snelle afvoer van water kunnen de schuifweerstanden tussen de korrels worden opgevoerd.

I.D. Funderingen
Er wordt daarbij onderscheid gemaakt tussen de fundering op staal en de diepfundering.

D.1. fundering op staal
In een dergelijk geval begint het bouwwerk direct op de draagkrachtige laag. Uit economische overwegingen zal deze funderingsgrondslag dus niet te diep mogen liggen.
Het funderingsoppervlak zal moeten worden bepaald uit:
- gesteldheid van de ondergrond, dus de toelaatbare belasting van de grond en de mate van zetting,
- grootte en soort belasting door het kunstwerk,
- stabiliteitsseisen van het kunstwerk
zoals standzekerheid zowel in bedrijf als tijdens de uitvoering van het werk, stabiliteit tegen afzetting
scheefzakking en opdrijving.
De verschillende wijzen van uitvoering zijn uitvoerig behandeld in het college "bouwconstructies". Er kan worden volstaan met een overzicht van de mogelijkheden.
  a. fundering op verbrede kolomvoet
  b. strokenfundering
  c. doorgaande funderingsplaat
  d. fundering tussen damwanden.

D.2. diepfundering
Bij dit soort fundering is de draagkrachtige laag zo diep gelegen dat speciale voorspaningen nodig zijn om de belasting van het kunstwerk naar de funderingsgrondslag over te brengen.
  a. puttenfundering
Putten bestaan uit bakken zonder deksel en bodem, meestal vervaardigd uit gewapend beton, maar ook wel uit staal. De doorsnede kan zowel rechthoekig als rond zijn en eventueel worden onderverdeeld in een aantal compartimenten.
De put wordt op het maaiveld geplaatst of in een kleine uitgraving. Door van binnen de put de grond te gaan ontgraven zakt deze naar beneden. Bij vervaardiging van de put in het werk zelf zal men telkens een nieuw stuk op de put plaatsen. De put heeft een speciale uitstekende mesrand als voet om een betere zakking te waarborgen. Door de uitsteeksel wordt de grond van de putrand weggeduwd waardoor de wandwrijving vermindert.

Een grote moeilijkheid bij de puttenfundering is het goed omlaagbrengen van de put. Vaak bestaat het gevaar van scheefzakken omdat één punt gemakkelijker zakt dan het andere. Dit kan gebeuren door verkeerde onttgraving, maar ook bij werken onder de grondwaterspiegel doordat men het peil van het water in de put te laag houdt waardoor grondwaterstroming naar de put plaatselijk wellen veroorzaakt. Een hulpmaatregel bij scheefzakken is het gebruik van spuitlansen. Deze moge echter niet in de laatste fase van afzinken worden gebruikt om de grondslag niet te verstoren.

Men kan ook van tevoren reeds maatregelen nemen om een zo gelijkmatig mogelijke zakking te bevorderen. Deze komen neer op een vermindering van de wandwrijving, zodat het grootste deel van het gewicht op de voet van de put neerkomt. Dit wordt bereikt door de eerdergenoemde speciale voet; door de wand goed glad te maken b.v. insmeren met kunststof of rolgrind of betoniet langs de wand aan te brengen in een sleuf, door openingen in de wand water of lucht te spuiten.

Is de draagkrachtige laag bereikt dan wordt het onderste deel van de put volgestort met beton en kan men de overige ruimte met zand opvullen of met water vol laten staan, al naar behoefte.

b. caissonfundering

Doet denken aan puttenfundering maar nu is de put van een gesloten bodem voorzien, zodat de fundering drijvend kan worden aangevoerd. De moeilijkheid is in dit geval een goede vlakke bodem van b.v. een grindbed om de caisson op af te zinken.

De grond wordt weggebaggerd of gezogen en een grindbed wordt gestort. Daarna moet men zo snel mogelijk de caisson naar de plaats van bestemming varen en afzinken om vorming van sliblaag e.d. vóór te zijn. Na het omlaagbrengen van de caisson kan men één of meer compartimenten vullen met zand indien de horizontale druk op de caisson door b.v. grond dit noodzakelijk maakt. Om afschuiving tegen te gaan maakt men aan de onderkant van de caisson wel ribben op de bodemplaat.

c. pneumatische fundering

Ook weer gelijkend op de puttenfundering, maar nu als het ware een put met een dak. Dit plafond bevindt zich ca. 2 m boven de onderrand van de put,
zodat tussen de grond en het plafond een werkkamer ontstaat. Hierin wordt lucht geperst tot het grondwater is verdreven; er heerst derhalve een overdruk aan lucht. Om personeel en materiaal aan en af te voeren zijn dus luchtsluizen noodzakelijk. Na het bereiken van de draagkrachtige laag wordt de werkkamer met beton gevuld.

Deze methode is enige tijd uit de gratie geweest door het gevaar voor optreden van caissonsziekte. Sinds men deze goed onder controle heeft is er een zekere opgang in de toepassing van het caisson onder verhoogde luchtdruk o.a. in Nederland bij de bouw van de H-tunnel. Het blijft echter een dure werkwijze door de korte werktijden van het personeel en het moeizame afvoeren van materiaal.

Er staan echter duidelijk voordeelen tegenover. In de eerste plaats wordt een gelijkmatig dragende fundering verkregen omdat de draagkrachtige laag direct bekoken kan worden. Ook bij het vermoeden van aanwezigheid van obstakels in de grond is deze methode zeer geschikt omdat deze hindernissen zichtbaar worden. Verder is er geen bemaling nodig terwijl er toch in den droge gewerkt kan worden.

d. paalfundering
Tenslotte wel de meest toegepaste methode van diepfundering, n.l. die met palen. In het Collegeboek Constructie II "Funderingen" is er nader op ingegaan zodat hier kan worden volstaan met een kort overzicht van de mogelijkheden.

Er wordt een splitsing gemaakt naar de wijze van vervaardiging.

1. heipalen
   van hout
   - gewapend beton
   - staal - walsprofiel
   - buispaal
   - damwand-kokerprofiel
   - voorgespannen beton
   - kunststof - polyesterbuis; deze is nog in het proefstadium.

Naar de manier van inbrengen kunnen wij nog een indeling maken naar:
- heien
- trillen
- spuiten
- persen
- schroeven
- boren - paal plaatsen in boorgat.
2. in de grond gevormde palen
Er wordt een holle ruimte in de grond gemaakt op in hoofdzaak 2 manieren:
heien en boren.

met heien en zonder mantelbuis: M.V. paal
paalpunt wordt door stang in de grond gedreven; holle ruimte wordt telkens
met grind bijgevuld en later met cementmortel geïnjecteerd.

met heien en teruggewonnen mantelbuis: Franki paal
Vibro paal.

met heien en verloren mantelbuis: Vibro casing paal.
met boren en zonder mantelbuis: Icos-Weder paal
hier wordt met speciale apparatuur een gat in de grond geboord. Het gat
wordt in stand gehouden door middel van betonietspecie als bij diepwand en
bij olieboringen.

met boren en teruggewonnen mantelbuis: Colcrete paal.
Kostenaspect van bouwwerken

Bij de oplossing van een probleem is het kostenaspect een essentieel onderdeel. De civiel-ingenieur moet de alternatieve ontwerpen voor een belangrijk deel beoordelen op grond van optimalisatie. Het is ieder duidelijk dat gezocht moet worden naar technische oplossingen met een maximaal rendement. Het bepalen van de oplossing is dan ook een moeilijke zaak.

In het algemeen onderscheidt men:
1. aanleg- of bouwkosten: de kosten die gemaakt worden tot het bouwwerk zijn functie gaat vervullen;
2. onderhouds- en exploitatiekosten: dit zijn de kosten die jaarlijks optreden om het bouwwerk te laten functioneren;
3. kosten die gemaakt worden bij het gebruiken van het bouwwerk: bijvoorbeeld de tijd die een auto zich op een weg bevindt. De auto en bestuurder hebben een kostprijs per tijdseenheid. Deze kosten moeten in het optimaliseren hun plaats krijgen.

De totale kosten bestaan dus uit de som van bouwkosten, onderhouds- en exploitatiekosten en gebruikerskosten.

De moeilijkheid is dat men een vergelijkbare grootteidtussen de bouwkosten en de overige kosten moet zien te maken. Immers, aanlegkosten worden uitgedrukt in een bedrag ineens, terwijl onderhouds- en exploitatiekosten en gebruikerskosten een jaarlijks weerkomt bedrag omvatten. Om te kunnen vergelijken kan men op twee manieren tewerk gaan:

a) alle kosten omzetten in jaarlijkse bedragen;
b) alle kosten in één vast bedrag zetten.

a) Alle kosten omzetten in jaarlijkse bedragen
a.1) De aanlegkosten worden benaderd als een bedrag waarop jaarlijks een vaste aflossing plaatsvindt. Deze aflossing wordt bepaald aan de hand van een vast percentage van de aanlegkosten. Dit percentage wordt bepaald door de gebruiksduur van het werk en de eventuele restwaarde. De jaarlijks te betalen rente neemt dan in de loop van de tijd steds verder af.
Het bouwwerk heeft een zekere levensduur. We onderscheiden daarin:
1. de technische levensduur; b.v. voor een brug 100 jaar.
2. de economische levensduur; dit is de tijd waarin het bouwwerk niet meer aan de groeiende eisen kan voldoen, b.v. voor een brug 40 jaar.
Maatgevend in onze kostenbepaling is de kortste levensduur.

a.2) Ook kan het bedrag van aflossing en rente samen als een vaste jaarlijkse som betaald worden.

b) Alle kosten in één vast bedrag brengen door de jaarlijkse kosten te kapitaliseren naar de waarde in het jaar van aanleg. Dit levert een gemakkelijke basis tot vergelijking van de verschillende oplossingen van de bouw.
Hierbij gaan we uit van een kapitaal groot $K_0$, dat met een rentevoet van $q\%$ geleend moet worden.
Na één jaar zou dat kapitaal groot zijn $K_0 \left(1 + \frac{q}{100}\right)$.
Na n jaar zou dat kapitaal groot zijn \( K_n \left(1 + \frac{q}{100}\right)^n \)

Het kapitaal na n jaar, \( K_n \), herleid tot de waarde op de dag van ingebruikname is juist \( K_0 \). Dit herleide kapitaal noemt men de contante waarde van \( K_n \).

\[
K_0 = \frac{K_n}{\left(1 + \frac{q}{100}\right)^n}
\]

Hieruit valt te zien dat bij toename van n, de contante waarde afneemt.

\[
K_n = K_0 \left(1 + \frac{q}{100}\right)^n
\]

of  \[ \log K_n = \log K_0 + n \cdot \log \left(1 + \frac{q}{100}\right) \]

voor \( q = 5 \) wordt dit:

\[ \log \frac{K_n}{K_0} = n \cdot \log 1,05 = 0,02n \]

Dus indien \( n = 50 \) jaar geldt dat \( \log \frac{K_n}{K_0} = 1 \), ofwel \( \frac{K_n}{K_0} = 10 \).

Het contante bedrag \( K_0 \) is dan 1/10 van het uiteindelijke benodigde bedrag.

*fig. 3*

![Diagram](attachment:diagram.png)

Heeft men bijvoorbeeld in drie opeenvolgende jaren achtereenvolgens aan kapitaal nodig \( K_1 \), \( K_2 \) en \( K_3 \), dan is de contante waarde:

\[
K_0 = \frac{K_1}{1 + \frac{p}{100}} + \frac{K_2}{(1 + \frac{p}{100})^2} + \frac{K_3}{(1 + \frac{p}{100})^3}, \text{ waarin } p \text{ de rentevoet is.} \]
Wil men over n jaar jaarlijks een vast bedrag $K_j$ betalen, te beginnen met een eerste betaling over één jaar vanaf heden, dan bedraagt de constante waarde:

$$K_0 = \frac{K_j}{1 + \frac{p}{100}} + \frac{K_j}{(1 + \frac{p}{100})^2} + \ldots + \frac{K_j}{(1 + \frac{p}{100})^n}$$

$$K_0 = K_j \cdot \frac{1}{1 + \frac{p}{100}} + \frac{1}{1 + \frac{p}{100}} + \ldots + \frac{1}{(1 + \frac{p}{100})^{n-1}}$$

$$K_0 = K_j \cdot \frac{1}{(1 + \frac{p}{100})^n} \cdot \frac{(1 + \frac{p}{100})^n - 1}{\frac{p}{100}}$$

Voor $n \to \infty$ wordt dit $K_0 = K_j \cdot \frac{100}{p}$

In het voorgaande is bij het bepalen van de contante waarde uitgegaan van jaarlijkse bijschrijving van rente.

Men kent echter ook continu bijschrijven van rente. De contante waarde is dan als volgt te bepalen:

De rente per jaar bedraagt $\frac{p}{100}$. Dus over $\frac{1}{m}$-de deel van het jaar $\frac{p}{100} \cdot m$.

Na één jaar is het bedrag dan:

$$K_1 = K_0 \left(1 + \frac{p}{100} \cdot m\right)$$

na twee jaar: $K_2 = K_0 \left(1 + \frac{p}{100} \cdot m\right)^2 \cdot m$

na n jaar: $K_n = K_0 \left(1 + \frac{p}{100} \cdot m\right)^n \cdot m$

Nemen we m groot, dus het jaar continu verdeeld, dan wordt na één jaar:

$$K_1 = \lim_{m \to \infty} K_0 \left(1 + \frac{p}{100} \cdot m\right)$$

$$= K_0 \lim_{m \to \infty} \left\{ \left(1 + \frac{100 \cdot m}{p}\right)^{100} \cdot m \right\} \frac{p}{100} = K_0 \cdot e^{\frac{p}{100}}$$

na n jaar wordt het bedrag dan:

$$K_n = K_0 \cdot e^{\frac{p}{100} \cdot n}$$

waardoor de contante waarde wordt:

$$K_0 = K_n \cdot e^{-\frac{p}{100} \cdot n}$$
Wil men over vele jaren een jaarlijks vast bedrag $K_j$ aflossen, tegen een rentevoet van $\frac{p}{100}$, dan wordt de contante waarde:

$$K_0 = K_j \cdot \sum_{i=0}^{\infty} e^{-\frac{p}{100} i} = K_j \lim_{s \to \infty} \int_0^s e^{-\frac{p}{100} x} dx$$

$$= K_j \lim_{s \to \infty} \left\{ - \frac{100}{p} e^{-\frac{p}{100} s} \right\}^s_0$$

Dus de contante waarde is dan:

$$K_0 = K_j \cdot \frac{100}{p}$$

Ook dient in de kostenvergelijking van verschillende ontwerpen het bedrag aan schade bij bezwijken meegenomen te worden. Duidelijk spreekt dit bij de bepaling van dijkhoopte.

Beschouwd moet worden de kans op bezwijken bij een bepaalde dijkhoopte.

Des te groter de kans, des te meer kapitaal aan schade moet als kosten in de vergelijking meegerekend worden. De vergelijkingbasis blijft de contante waarde.

De kans op schade, $k$, is bijvoorbeeld $1/10$ per jaar. Het schadebedrag bestaat uit $S$ gulden. Dan rekent men met jaarkosten van $\frac{k \cdot S}{10}$ gulden. Het getal $1/10$ geeft aan dat de kans op schade gemiddeld eenmaal in de 10 jaar is, zonder te zeggen wanneer dat zal optreden. Van daar de verdeling van schadekosten naar evenredigheid van aantal jaren. Stel de rentevoet $p$ bedraagt $5/100$. Dan is de contante waarde

$$\frac{k \cdot S}{p} = 20 \cdot k \cdot S$$

fig. k

- Som aanleg - + schadekosten
- Aanlegkosten
- Meest economische dijkhoopte
- Contante waarde schade
- Dijkhoopte
Zet men voor een aantal verschillende dijkhoogten de contante waarden van respectievelijk aanlegkosten en schadebedrag en sommeert men deze dan krijgt men figuur 4. Het minimum in de sommatielijn geeft de meest economische dijkhoogte aan.

Een voorbeeld van het bepalen van maximum kosten bij dijkverhogen.

Stel dat bij overschrijding van de kruinhoogte een gebied groot 5000 ha overstroomd wordt, waarbij de overschrijdingskans 1/5 is. Dat wil zeggen: gemiddeld eens in de vijf jaar overstroomt het gebied.

Neem aan dat bij zo een doorbraak 7 gaten ontstaan met herstelkosten per gat van f 150.000,−. Neem tevens aan dat schade aan gewas en bodem f 100,−/ha bedraagt. Dan is de totaalschade S:

\[
\text{kosten dijkherstel: } 7 \times f 150.000,− = f 1.050.000,− \\
\text{schade aan gewas e.d.: } 5000 \times f 100,− = f 500.000,− \\
\text{S = f 1.550.000,−}
\]

De schadeverwachting per jaar wordt dan: \( 1/5 \times f 1.550.000,− = f 310.000,− \).

Gesteld dat we een dijkverhoging maken zo dat de overschrijdingskans 10x zo klein wordt, dus van 1/5 wordt dat 1/50.

De schadeverwachting wordt nu \( 1/50 \times S = f 31.000,− \). Dit geeft een winst van f 279.000,− wat met een rentevoet van 5% een contante waarde geeft van:

\[
\frac{279000}{0,05} = f 5.580.000,−
\]

Na deze simpele beschouwing valt te stellen dat de kosten van dijkverhoging niet hoger mogen liggen dan f 5.580.000,−.

De zaak ligt nooit zo eenvoudig. Om enkele dingen te noemen:
- Tengevolge van geringere overschrijdingskans kunnen hoogwaardiger gewassen verbouwd worden, waardoor opbrengst en schade bij overstroming toenemen. Ook zullen meer opstallen gebouwd worden, waardoor het schadebedrag doet toenemen.
- Bij toenemende waterhoogte is het gevolg van bezwijken ernstiger dan oorspronkelijk.
- Een andere moeilijkheid is dat men niet tevoren weet wanneer de schade zal optreden, vooral bij kleine schadefrequentie is dit een groot bezwaar. Dit kan slechts worden ondervangen door een zeer groot aantal objecten op de geschetste wijze te behandelen.
De wijze van kapitaliseren houdt in dat met direct meetbare economische waarden wordt gerekend. Deze filosofie kan als verouderd worden beschouwd en behoeft dringend uitbreiding.

Men rekent dan mee de zogeheten externe kosten. Deze kunnen zijn het verminderen van milieukwaliteiten, betrokken raken van lichamelijk letsel en de dood, wegvallen van natuurgebieden e.d.

Indien een weg ontworpen wordt kunnen punten ontstaan waarvan uit ervaring bekend is dat er kans op dodelijke ongelukken en/of lichamelijk letsel optreedt. Indien daaraan kapitaal toegekend wordt, leidt dit tot een oplossing met veiliger voorzieningen.

Zo moeten bij het aanleggen van een startbaan de externe kosten in het gehele beïnvloedingsgebied, als b.v. geluidshinder, meegerekend worden als kosten van deze uitbreiding.

Het Centraal Bureau voor de Statistiek (C.B.S.) is met een onderzoek bezig aan projecten om waarde toe te kennen aan deze externe kosten. Dat dit een gecompliceerde zaak is valt te begrijpen.

Toch dient in de zeer nabije toekomst de optimalisering hierop gebaseerd te zijn.

Civiele werken zijn publieke werken welke vaak grote beïnvloedingsgebieden betreffen; denk aan een weg door duinengebied.