
2 3

time-lapse

data

data

data

transformer

input

input

output

output

output

transformer

transformer

condition

condition

condition

bl
u

ep
ri

n
t e

qu
iv

al
en

ts

int buttonPin = 2;

int currentState = 0;

int previousState;

void setup() {

 Serial.begin(9600);

 pinMode(buttonPin, INPUT);

 digitalWrite(buttonPin, LOW);

 previousState = digitalRead(buttonPin);

}

void loop() {

 currentState = digitalRead(buttonPin);

 if (currentState != previousState) {

 if (currentState == 0) {

 Serial.println(“Button released.”);

 }

 else {

 Serial.println(“Button pressed.”);

 }

 }

 previousState = currentState;

}

repeats forever repeats forever

previousState is the same value as currentState

“Button pressed.”

currentState is 1 currentState is 0

if currentState does not equal previousState

if currentState is 0

“Button released.”

if currentState is 1

buttonPin is connected to pin 2 constant

previousState is 1 previousState is 0

previousState has no value

currentState is 0

An alternating switch is a switch that remembers its previous state. Instead of

pressing a button or switch to activate something continuously, the alternating

switch only needs to be switched once.

This alternating switch uses a variable called previousState to store its previous

state. It compares the current state of the switch with its previous state; only if

they are different the switch activates.

examples: light switch, on/off button, remote control, activation button

alternating switch

4 5

count resembles an index of the array, and defines it as an output

sets count at 0 and increments with 1 every repetition

turns on the pin that matches the position of count in the array

data

data

input

condition

condition

condition

condition

condition

condition

condition

bl
u

ep
ri

n
t e

qu
iv

al
en

ts

output

output

output

output

output

int pinArray[] = {2, 3, 4};

int count = 0;

void setup(){

 for (count = 0; count < 3; count++) {

 pinMode(pinArray[count], OUTPUT);

 }

}

void loop() {

 for (count = 0; count < 3; count++) {

 digitalWrite(pinArray[count], HIGH);

 delay(100);

 digitalWrite(pinArray[count], LOW);

 delay(100);

 }

 for (count = 2; count >= 0; count--) {

 digitalWrite(pinArray[count], HIGH);

 delay(100);

 digitalWrite(pinArray[count], LOW);

 delay(100);

 }

}

array

constant

repeats 3 times, until count is greater than 2

sets count at 0 and increments with 1 every repetition

turns on the pin that matches the position of count in the array

repeats 3 times, until count is greater than 2

turns off the previously activated pin

wait for 100 milliseconds

wait for 100 milliseconds

wait for 100 milliseconds

wait for 100 milliseconds

repeats 3 times, until count equals 0

time-lapse

2 3 4 2 3 4 2 3 4 2 3 4 2 3 4

pinArray is a list that connects 3 different pins

count is 0

turns off the previously activated pin

repeats forever

repeats forever

sets count at 2 and decreases with 1 every repetition

An array is a collection of variables that are accessed with an index number. It is

a list of values, can be accessed through an index number. Often arrays are used

for creating lists or table with a single reference.

The array is formulated in the following way: arrayname[indexnumber]. Arrays

are zero indexed, which means the first position in the array is accessed by using

0 as index.

repeats 3 times, until count is greater than 2

repeats 3 times, until count equals 0

repeats 3 times, until count is greater than 2

examples: knight rider lights, tables, grid, lists, ring buffer

6 7

“Evening.”

“Night.”

“Morning.”

“Noon.”

data

data

data

input

input

condition

condition

condition

condition

condition

bl
u

ep
ri

n
t e

qu
iv

al
en

ts

transformer

output

output

output

output

output

int lightSensor = A0;

int sensorValue;

int time;

void setup() {

 Serial.begin(9600);

 pinMode(lightSensor, INPUT);

}

void loop() {

 sensorValue = analogRead(lightSensor);

 time = map(sensorValue, 0, 1023, 1, 4);

 switch (time) {

 case 1:

 Serial.println(“Night.”);

 break;

 case 2:

 Serial.println(“Evening.”);

 break;

 case 3:

 Serial.println(“Morning.”);

 break;

 case 4:

 Serial.println(“Noon.”);

 break;

 }

}

constant

compare

repeats forever

between 1 and 4

between 0 and 1023

lightSensor is connected to pin A0

time has no value yet

sensorValue has no value yet

time is the value of sensorVale mapped with a different scale

sensorValue is the current value of the LDRsensor

chooses a case, based on the value of time

if time equals 2

if time equals 3

if time equals 4

if time equals 1

time-lapse

map 1 - 4 compare number
with options

“Noon.”0 - 1023 0 - 1023

A0 A0

Compare is the activity of comparing two or more things and produce an action,

based on this comparison. Comparing is an activity of condition, as it determines

when and what should happen.

This pattern uses a switch case, to select a specific case based upon a numeral

input. It maps an analog input to a scale of 1 to 4, and compares this number to

four cases. If the number matches the case, it will execute that specific case.

repeats forever

examples: events based on different conditions, verifying something

8 9

data

data

data

input

input

condition

condition

condition

bl
u

ep
ri

n
t e

qu
iv

al
en

ts

transformer

transformer

transformer

output

output

int resetButton = 2;

int counter = 0;

int resetState;

void setup() {

 Serial.begin(9600);

 pinMode(resetButton, INPUT);

 digitalWrite(resetButton, HIGH);

}

void loop() {

 resetState = digitalRead(resetButton);

 if (resetState == 0) {

 counter = 0;

 }

 else {

 counter += 1;

 Serial.println(counter);

 delay(1000);

 }

}

time-lapse

counts +1 counts +1 counts +1

3
3

4 3
4

5 3
5

6

counts +1

0
0

1

counter

resetButton is connected to pin 2

counter starts at 0

resetState has no value yet

resetButton’s default state is 1

constant

repeats forever

resetState is 0 resetState is 1

counter starts at 0 again

counter gets incremented by 1

prints the current value of the counter

if resetState equals 0

else if the above condition is not met

wait for 1000 milliseconds

A counter is a pattern that counts how often something occurs. It allows counting

of actions or behaviors. Counting works by reassigning a variable with its own

value +1.

This pattern uses the looping nature of the Arduino to increment the counter, as

long as the button is not pressed. It increments by 1, before delaying for 1 second.

This will be repeated until the button is pressed, which resets the counter to 0.

repeats forever

examples: pedometer, clock, specific amount of iterations of something

10 11

i n

prints the current value of digitalSensorValue

prints the current value of analogSensorValue

data

data

data

data

input

input

input

input

output

output

bl
u

ep
ri

n
t e

qu
iv

al
en

ts

output

int digitalPin = 2;

int analogPin = A0;

int digitalSensorValue;

int analogSensorValue;

void setup() {

 Serial.begin(9600);

 pinMode(digitalPin, INPUT);

 pinMode(analogPin, INPUT);

}

void loop() {

 digitalSensorValue = digitalRead(digitalPin);

 analogSensorValue = analogRead(analogPin);

 Serial.println(digitalSensorValue);

 Serial.println(analogSensorValue);

}

time-lapse

A0 0 - 1023

2 0 - 1

A0 0 - 1023

2 0 - 1

A0

2

input

repeats forever

constant

constant

digitalPin is connected to pin 2

analogPin is connected to pin A0

digitalSensorValue has no value yet

analogSensorValue has no value yet

analogSensorValue is the current value of the digitalPin

digitalSensorValue is the current value of the digitalPin

Input is one of the fundamental patterns of Arduino. It is the action of converting

electrical inputs into digital values. These values in turn, are used to make

interaction or behaviors happen.

Digital input is registered only as HIGH or LOW, or 1 and 0. Analog input is

registered as a value between 0 and 1023. These values can come from all sorts of

inputs, such as buttons or sensors.

repeats forever

examples: buttons, switches, motion sensor, infra-red sensor, other sensors

12 13

data

data

output

output

bl
u

ep
ri

n
t e

qu
iv

al
en

ts

input

input

data

transformer

int inputPin = A0;

int outputPin = 3;

int sensorValue;

void setup() {

 pinMode(inputPin, INPUT);

 pinMode(outputPin, OUTPUT);

}

void loop() {

 sensorValue = analogRead(inputPin);

 sensorValue = map(sensorValue, 0, 1023, 0, 255);

 analogWrite(outputPin, sensorValue);

}

repeats forever

constant

constant

between 0 and 1023

between 0 and 255

inputPin is connected to A0

outputPin is connected to 3

sensorValue has no value yet

repeats forever

sensorValue is the current value of the inputPin

maps the value of sensorValue to a different scale

outputPin is turned on with a value between 0 and 255

time-lapse

3A0

0 - 255map0 - 1023

A0

map0 - 1023

Mapping the action of remapping a value from one range to another. This means

a range can be redefined to a different range. Mapping is a useful pattern, because

often a different range of values is required to achieve the desired behavior or

interaction.

In the pattern below, an analog input value can be between 0 and 1023,

depending on what the sensor registers, is remapped to a range of 0 to 255.

map

examples: diffent scales, Celsius to Fahrenheit, conversion

14 15

tou

data

output

output

output

condition

condition

bl
u

ep
ri

n
t e

qu
iv

al
en

ts

int LEDpin = 2;

void setup() {

 pinMode(LEDpin, OUTPUT);

}

void loop() {

 digitalWrite(LEDpin, HIGH);

 delay(1000);

 digitalWrite(LEDpin, LOW);

 delay(1000);

}

time-lapse

1 second1 second 1 second1 second 1 second

output

LEDpin is connected to pin 2

LEDpin is turned off

LEDpin is turned on

wait for 1000 milliseconds

wait for 1000 milliseconds

constant

repeats forever

Output is one of the fundamental patterns of Arduino. It is the action of

converting digital values into electrical outputs, which allows the Arduino to be

able to control electrical hardware.

Outputs can be a variety of things, such as LEDs, servo motors or buzzers. The

pattern below shows how to control an LED as a digital output, which means it

can be in two states: on or off.

repeats forever

examples: LEDs, servo motors, buzzers, LCD displays, other actuators

16 17

time-lapse

1 second random 1-6 random 1-6random 1-6 1 second

data

transformer

transformer

input

output

condition

bl
u

ep
ri

n
t e

qu
iv

al
en

ts

long randomNumber;

void setup() {

 Serial.begin(9600);

 randomSeed(analogRead(A0));

}

void loop() {

 randomNumber = random(1, 7);

 Serial.println(randomNumber);

 delay(1000);

}

random

repeats forever

randomNumber is one of the following: 1, 2, 3, 4, 5, OR 6

randomNumber has no value yet

prints the current value of randomNumber

wait for 1000 milliseconds

Arduino does not posses the ability to create truly random numbers. It has a

very long sequence of numbers, however it always starts at the beginning of this

sequence (and thus is always the same).

This pattern uses randomSeed during setup, which is a function that reads the

current value of pin A0. In turn, it uses this value to randomly start somewhere

on this long sequence of numbers, which makes the output appear to be random.

repeats forever

examples: dice, shuffle, unplanned events, unpredictable events

18 19

wait for 100 milliseconds

data

condition

condition

condition

condition

bl
u

ep
ri

n
t e

qu
iv

al
en

ts

output

output

output

int LEDpin = 2;

void setup() {

 pinMode(LEDpin, OUTPUT);

}

void loop() {

 for(int i = 0; i < 10; i++) {

 digitalWrite(LEDpin, HIGH);

 delay(100);

 digitalWrite(LEDpin, LOW);

 delay(100);

 }

 delay(5000);

}

repeat

constantLEDpin is connected to pin 2

sets i at 0 and increments with 1 every repetition

LEDpin is turned on

LEDpin is turned off

wait for 100 milliseconds

wait for 5000 milliseconds

repeats 10 times, until i is greater than 9

repeats forever

time-lapse

100ms100ms

10 times

5 seconds 100ms100ms

10 times

Repeat is one of the fundamental patterns of Arduino. It is the action of repeating

a specific set of instructions a number of times. By nature, Arduino already

repeats its loop section, however to repeat a specific section, instead of the entire

code, another function is required.

This pattern uses a for loop, to repeat a set of instructions. The for loop has a begin

condition and end condition, and instructions of what it should do every loop.

repeats 10 times, until i is greater than 9

repeats forever

examples: repetition, same action a lot of times, similar behaviors

20 21

time-lapse

5 seconds“Time is up!” “Time is up!”5 seconds 5 seconds

A0 A0 A0

data

data

data

data

data

input

input

output

condition

bl
u

ep
ri

n
t e

qu
iv

al
en

ts

transformer

transformer

output

int inputPin = A0;

int increment = 5000;

int inputValue = 0;

int compareValue = increment;

unsigned long startTime = 0;

void setup() {

 Serial.begin(9600);

 pinMode(inputPin, INPUT);

}

void loop() {

 while(startTime != compareValue) {

 startTime = millis();

 inputValue = analogRead(inputPin);

 }

 compareValue = compareValue + increment;

 Serial.println(“Time is up!”);

}

timer
The timer is a pattern that allows actions to happen only during or after a defined
amount of time. The Arduino has no built-in clock, and the delay function only
stalls the whole program for the time of the delay.
This timer uses the mills function, which returns the number of milliseconds
from the point of when the Arduino began to run the program. By comparing the
start value with an increment, this function create a reference point that allows
to keep track of time.

inputPin is connected to pin A0

inputValue is 0

increment is 5000

constant

constant

compareValue is 5000

startTime is 0

while startTime does not equal compareValue

compareValue is compareValue + 5000

“Time is up!”

startTime is the elapsed time in ms since the program began

inputValue is the current value of inputPin

repeats until startTime equals compareValue

repeats foreverrepeats forever

repeats until startTime == compareValue

examples: alarm, game elements, phased events, time related challenges

blank on purpose

