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Abstract

The use of artificial neural networks is becoming ever more ubiquitous as the computational
power available to use grows. The widespread implementation of neural networks as con-
trollers in the field of systems and control is however being hindered by the lack of veri-
fiability of these controllers. One type of controller that does not lack verifiability is the
correct-by-design controller. The main drawback of correct-by-design controllers is that they
inherently produce large data structures in order to store their control rules. In this work, a
novel methodology to synthesize correct-by-design neural network controllers is presented in
order to alleviate these issues. This methodology combines reinforcement learning techniques
and abstraction based correct-by-design control verification techniques in order to synthesize
neural network controllers that are correct-by-design. The procedure does so by alternat-
ing between a controller training routine and a controller verification routine in a system
abstraction framework. This framework ensures that numerical training and verification re-
sults in a controller with formal guarantees applicable to real systems. Using the proposed
methodology, neural network controllers are synthesized and verified in order to prove that
the methodology works. In addition to this, the resulting correct-by-design neural network
controllers are compared to conventional correct-by-design controllers in order to judge their
performance and data requirements. This comparison also includes alternative structures
used to store these different controllers. Based on this comparison, a conclusion is drawn re-
garding when to use which type of controller. The proposed methodology is implemented into
a correct-by-design neural network synthesis framework called COSYNNC. This framework
is intended as a basis for further research into correct-by-design neural network control and
is publicly available.
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Chapter 1

Introduction

The use of artificial neural networks is becoming ever more ubiquitous as the computational
power available to use grows[6]. They are currently being utilized in a host of different
data analytic tasks such as nature language translation[13], speech recognition[7] and image
classification[17]. The acceleration of both interest and the use of neural networks can largely
be accredited to the increase in the computation power available to us and the universally
desirable properties that neural networks inherently possess. Amongst these properties are
robustness with respect to the plant due to the learned nature and the cheap on-line evaluation
of the network itself.

The widespread implementation of neural networks as controllers in the field of systems
and control is however being hindered by the lack of verifiability of these controllers. The
verifiability of neural network controllers is proving to be a major bottleneck as guarantees
on the closed loop controlled system’s behaviour are one of the primary requirements posed
on controlled systems before they can be utilized in a practical capacity. It would therefore
be desirable to develop a neural network training procedure that allows for the verifiability
of neural network controllers. Doing so would drastically increase the deployability of neural
network controllers in contexts where the use of neural networks makes sense from a control
perspective.

One type of controller that does not suffer the problem of verifiability is the correct-by-
design controller. There has already been quite some research into the correct-by-design
synthesis of controllers and several tools such as PESSOA[23], CoSyMa[26] and SCOTS[31]
have been developed for this purpose. The main drawback of correct-by-design controllers is
that they inherently produce large look-up tables that prescribe the appropriate inputs for
every possible state of the system given that the control specification is attainable from those
states. This intuitively results in large data structures that represent these controllers. This
limits their deployability in environments with limited amounts of memory. Chief amongst
these environments are embedded systems which are often a point of interest for practical
controller deployment. For this reason, alternative correct-by-design control structures are
desired that require less data.
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2 Introduction

If the notion of the traditional correct-by-design control synthesis could be combined with
neural networks, the robustness and cheap on-line computation of the neural networks could
be combined with the verifiability of correct-by-design control. This would potentially allow
for a significant reduction in the amount of data required to store such a correct-by-design
controller and speed up the evaluation of said controller.

In this thesis, a novel method of combining correct-by-design controller synthesis techniques
and neural networks will be presented. Through the use of both neural network synthesis
techniques and numerical controller verification methods, a method to synthesis correct-by-
design neural network controllers will be presented. In addition to this, traditional correct-
by-design controllers and the neural network controllers will be compared in terms of their
performance and their data requirements.

1-1 Notation

In this work, vectors will be denoted by ~v and matrices byM . The l2 norm of a vector will be
denoted by ‖~v‖. The cardinality of a set will be denoted by |Z| where Z is a set. For scalars,
the absolute value will be denoted by |a| where a is a scalar. The notation x u−→ x′ denotes
the evolution from a state x to x′ given a function f(x, u) under the input u. The behavioral
inclusion of system S1 by system S2 is denoted by S1 �B S2. The identity map on a set Z is
denoted by 1Z : Z → Z. The set R+ denotes all positive real numbers R+ = {r ∈ R | r ≥ 0}
including 0. The set N0 is the set of all natural numbers N0 = {z ∈ Z, z ≥ 0} including 0.
The notation [α, β]n will denote the set [α, β] × ... × [α, β] where [α, β] defines the set of all
real numbers [α, β] = {x ∈ R | α ≤ x ≤ β}. The set of all subsets of Z, also known as the
power set of Z is denoted by 2Z .

W. van der Velden Master of Science Thesis



Chapter 2

Preliminaries and Problem Statement

This chapter will review the preliminary theory that is employed in this master thesis. First,
the fundamental theory regarding neural networks will be reviewed. Then, the preliminary
theory with respect to correct-by-design control will be reviewed. Finally, the problem will
be stated.

2-1 Neural networks

This section will review the fundamental theory regarding artificial neural networks and sev-
eral training methods that are available to them.

2-1-1 Fundamentals

The most fundamental artificial neural network, which shall from now on be referred to as
simply a neural network, is the feedforward neural network. These neural networks were first
envisioned by McCulloch and Pitts[24] and then formed into a proper mathematical model by
Rosenblatt[29]. The model that is most often used to illustrate the idea of these feedforward
neural networks is that of the multilayer perceptron neural network. This topology is just
one of many neural network topologies that are available.

Definition 2-1-1 (Multilayer perceptron[6]). The multilayer perceptron feedforward neural
network is defined as a mapping function:

~y = f(~x,θ) (2-1)

where the input ~x ∈ Rn is mapped to the output ~y ∈ Rm by the neural network parameters θ.
The function f represents the neural network and maps:

f : Rn → Rm (2-2)

based on these parameters.

Master of Science Thesis W. van der Velden



4 Preliminaries and Problem Statement

This mapping can be seen as a network as it consists of fundamental layer functions that are
interconnected into a series of the form: ~y = f(~x) = fN ◦ ... ◦ f2 ◦ f1(~x). The reason these
types of systems are called neural networks is that they are loosely based on the biological
structure and functioning of the brain and the neurons within them. In such a network,
individual neurons are connected to other neurons in order to manipulate the information as
it flows through them.

Definition 2-1-2 (Neural network layer[6]). The manipulation of the information that flows
through a neural network for elementary neurons in a single layer is:

~xi = g(W T
i ~xi−1 +~bi) (2-3)

where ~xi is a vector representing the output of layer i, Wi is the weight matrix that represents
the weighted edges between the neurons in layer i and the neurons in layer i−1, ~bi is a vector
that represents the individual biases added to neurons and g(~x) is a nonlinear activation
function that manipulates the values of the neurons in a piecewise fashion.

More elaboration on these nonlinear activation functions and there purpose is provided in
Section 2-1-2. Throughout this work θ represents the neural network parameters that yield
the neural network behaviour. The parameter θ thus consist of all the weights and biases for
every layer of the neural network.

The mapping that a neural network provides is determined by the weights and biases of that
network. By appropriately picking these weights and biases a neural network can be used to
approximate any function. The act of acquiring the weights and biases that yield the desired
behaviour is called neural network training or neural network learning. There are a variety
of training algorithms and methods, the most fundamental of which, are discussed in Section
2-1-3.

It should be noted that there is a wide host of different neural network topologies available.
Arguably the most elementary of which is the multilayer perceptron. Amongst other often
employed neural network topologies are convolutional neural networks[19, 18, 17], recurrent
neural networks[6, 7, 13, 25] and long short-term memory neural networks[8, 35]. Each of
these topologies have their own advantages and disadvantages with respect to different ap-
plications. Throughout this thesis the main focus will be on multilayer perceptron neural
networks although it should be noted the presented methodology is robust with respect to
different topologies.

2-1-2 Activation functions

As already mentioned in Section 2-1-1, the information that flows through a neural network
is manipulated in a piecewise fashion by a nonlinear activation function g(~x). There is a wide
variety of different activation functions which all serve different purposes. The fundamental
purpose that all of these different activation functions share is in preventing the values in
the neural network from ’blowing up’ to ±∞. Without the use of these nonlinear activation
functions the neural network could quickly become unstable and cause the output of the
network to diverge away from a stable point. There are a number of different activation
functions that are often utilized in the field of artificial neural networks, as summarized by
Karlik en Olgac [14]. A few of these activation functions shall now be discussed.

W. van der Velden Master of Science Thesis



2-1 Neural networks 5

Two often used activation functions are the unipolar sigmoid function and the hyperbolic
tangent function. The unipolar sigmoid function is mathematically described as:

g(x) = 1
1 + e−x

(2-4)

The unipolar sigmoid function squeezes any value to a value between [0, 1]. In a control
context, it is often used in neural networks controlling gating functions and has its use in a
variety of neural network topologies. Another often used activation function is the hyperbolic
tangent function defined as:

g(x) = tanh(x) = ex − e−x

ex + e−x
(2-5)

This function outputs values between [−1, 1]. Both of these functions are able to serve as
activation functions and exhibit advantageous mathematical properties that can be exploited
for verification purposes as suggested by Ivanov et al. [10]. Their use in training is however
somewhat degraded by the fact that evaluation of these functions and most notable the
exponential is a computationally expensive operation.

Due to this, another, often used, activation function that has gained a lot of traction recently
is the so-called rectified linear unit, abbreviated to ReLU, as described by Nair and Hinton[27].
It is defined as:

g(x) = max(0, x) (2-6)

The ReLU function does not suffer the drawback of being computationally expensive that the
sigmoid and hyperbolic tangent function suffer, as it only required a comparison operation
to compute. The ReLU function has also proven to be a viable substitute for the more
expensive unipolar sigmoid function in a variety of examples such as in restricted Boltzmann
machines[32, 6].

2-1-3 Training

As stated in Section 2-1-1, in order to get a neural network to exhibit the desired behaviour,
training is required. With training, the notion of tweaking the neural network parameters θ
such that the neural network approximates a desired function f(~x,θ) ≈ f∗(~x) is implied. In
order to tweak these parameters, a common approach is to utilize an optimization routine.
In this section, the most fundamental algorithm for finding these weights will be reviewed.
Furthermore, two fundamental strategies for using this algorithm will be discussed.

Backpropagation algorithm

The most fundamental algorithm for finding the weights of a neural networks is the so-called
backpropagation algorithm. This algorithm was popularized by Rumelhart[30] and still serves,
although in an altered form, as the primary training algorithm in use today. The algorithm
works by defining a loss function as a function of the neural network outputs L(~y). This loss
function represents how the neural network is performing on a set of training data with respect
to some performance criteria. The weights are then tweaked as to minimize the loss function.
Due to the large dimensionality of the space that each configuration of the neural network
parameters θ spans, it is generally not possible to find these weights directly. This has led

Master of Science Thesis W. van der Velden



6 Preliminaries and Problem Statement

to the utilization of an algorithm that is often employed in classic optimization: the gradient
descent algorithm. In the so-called backpropagation algorithm[30], each individual weight in
the neural network is tweaked using the gradient descent rule as to achieve f(~x,θ) ≈ f∗(~x).
The gradient descent rule for each weight and bias in the neural network is:

θk+1 = θk − λ∇θL(f(~x,θ)) (2-7)

where λ is the gradient descent step, L(f(~x,θ)) is the loss function as a function of the
neural network’s output, θk+1 denotes the individual weight at the next time step and θk
is the current weight. The gradient ∇θL(f(~x,θ)) is found by utilizing the chain rule and
propagating the partial derivate backwards through the network, from the output to the
input, for each individual weight.

It is theoretically required to calculate the gradient with respect to all of the data points
in order to perform a single gradient descent step. However, in practice this would be pro-
hibitively expensive to compute. Therefore a variant of the gradient descent method is used
that is called stochastic gradient descent. In stochastic gradient descent the loss is defined
with respect to how the network performs on a small ’minibatch’ of data points in the entire
data set. The gradient is then adapted with respect to the loss function over a smaller batch
of data points. This drastically reduces the required training time. This method is stochastic
as it calculates an estimate of the gradient based on a sampled subset of data points from the
entire data set.

Another important parameter in the backpropagation algorithm is the learning rate λ. This
parameter dictates the step size that is taken with respect to the gradient in every gradient
descent step. In practice this learning rate is not chosen as a fixed though small number
but instead it is shrunk over time as λ(t). By decreasing the learning rate over time, this
prevents the algorithm from ’overshooting’ a local minimum and enables the algorithm to
end up inside such a local minimum. A number of these adaptive learning rate algorithms
are available such as AdaGrad[5] and Adam[16].

Applying the backpropagation algorithm to a recurrent neural network results in the back-
propagation through time algorithm. Conceptually the algorithm is the same but applied to
the unfolded sequential neural network. In addition to this, care must be taken to respect
the fact that the weights are being shared at multiple points in the network. This can be
resolved, as suggested by Goodfellow[6], by introducing dummy variables W (t) denoting the
weight at every time step. These variables denote the contribution of the weights at time step
t to the gradient and allows the network to respect the constraints on the weights.

Based on the definition of the loss function, two distinct types of learning can be defined:
supervised learning and reinforcement learning. Both of these types of learning methods will
now be reviewed.

Supervised learning

In supervised learning, a neural network is trained to approximate a desired function using
a labelled set of data. The most obvious example where supervised learning is used, is in
training neural network classifiers[20, 17, 4]. In a supervised learning setting, a loss function
is defined based on the neural network output ~y = f(~x,θ) and the desired output ~d = f∗(~x).

W. van der Velden Master of Science Thesis



2-1 Neural networks 7

The loss function originally used by Rumelhart[30] was the scaled sum of the square of the
errors:

L = 1
2
∑
c=1

m∑
j=1

(yj,c − dj,c)2 (2-8)

where c is an index over all the input-output pairs. The gradient descent minimization of this
loss function causes the neural network to approximate the desired output for a given input.

Janocha and Czarnecki summarize an array of often used supervised learning loss functions
in a classification setting[11]. These include, among others, the quadratic loss as used by
Rumelhart ‖~y− ~d‖22, the proportional loss ‖~y− ~d‖1 and the often used log cross-entropy loss:

L = −
∑
j

dj log yj (2-9)

The log cross-entropy loss is often used for classification as it conditions the output to values
between [0, 1] such that the sum of the outputs is 1. It can hence be interpreted as returning
a probability or certainty of a output or classification as generated by the network.

Supervised learning has the advantage of quickly being able to converge to a minimum in
which the neural network approximates the desired output for the data which was used
during training. This drastically decreases the required training time and the computational
expenses the neural network requires to learn the function. It is also extremely straight
forward to implement whenever a labelled data set is available, as it only requires the designer
to specify the neural network dimensions, the loss function and the input and output data.

The disadvantages of supervised learning is that it requires a labelled set of data, preferable
a large one, which is often either not available or difficult to acquire. It is also prone to
mistakes, as any errors in the labelled set will also be learned by the network. The network
will therefor never outperform the labelling process. Another disadvantage is that is does not
necessarily learns to recognize patterns or other otherwise telling features that characterizes
the input. In general, what it learns instead, is a mapping from inputs to outputs without any
integrate knowledge of the input. This often causes supervised learned networks to perform
badly in transfer conditions, where it is tasked with performing on inputs which were not
inside the dataset. This often causes erratic behaviour, which is generally undesirable.

Reinforcement learning

In reinforcement learning, the desired output is not required in order to train the network.
Instead, the network is trained by having it interact with an environment. Reinforcement
learning is often applied in situations where a neural network is given control over some
Markov decision process. The designer of the training procedure is required to specify a
reward function R that will indicate whether or not the neural network is behaving well. The
neural network is then trained with the goal of maximizing the reward function[12].

In reinforcement learning, a neural network is randomly initialized. The neural network will
then generate outputs based on the inputs it receives from the environment. These inputs
usually provide information about the environment through sensors or other means. It is
therefore the neural networks representation of the state of the environment. The neural
network then makes a decision on which action to take based on the state information. It
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8 Preliminaries and Problem Statement

does so by outputting an action probabilistically. Based on this probability, the action will be
implemented. This stochastic element is what allows for the reinforcement learning approach
to be utilized.

If the reward is immediately accredited, it allows the reinforcement learning algorithm to
reinforce the action if the reward is positive and deter the action if the reward is negative.
This reinforcing and deterring is done by computing the so-called policy gradients, which
adapts the weights of the network with the goal of maximizing the expected reward. This type
of immediate reinforcement learning for neural networks was first pioneered by Williams[36].
By implementing the input based on the certainty, there is also a chance that the input
to the environment will be different than the one outputted by the network. This allows
for exploration of the input space. If this input is successful it will be reinforced by the
algorithm, hence improving the network performance. If it is not successful that input will
have a decreased chance of being implemented in the future. This implementation balances
the trade-off between exploitation of learned connections and exploration of the inputs in the
input space.

Sometimes the reward is only rewarded after a certain sequence of inputs and corresponding
environment state transitions. This case is called the delayed reward case, an example of
which is Karpathy’s Pong from Pixels[15]. In the example a neural network is taught to
play the classic Atari game of Pong through the use of reinforcement learning techniques. A
positive reward is awarded when the network scores a point against the opposing player, a
negative reward if the opposing player scores a point against them. In this case, a list of states
and corresponding neural network outputs need to be made such that, at the event that a
reward is granted, the neural network can reinforce or deter its control policy. The ’playing’
time between two consecutive rewards is called an episode. At the end of each episode, the
algorithm reinforces all the state-input pairs of that episode if they led to a positive reward
and vice versa.

There are a number of advantages to using reinforcement learning algorithm with respect to
supervised learning. First of all, there is no need for a labelled dataset to serve as training data,
the creation of which could be difficult, impractical or impossible. Secondly, the performance
of the neural network is not limited to the quality of such a dataset. These aspects make
it so that this particular technique is must better suited for teaching the neural network an
internal model instead of simply a mapping. This results in a more properly behaved neural
network in transfer conditions where the neural network is tasked with making decisions for
situations it was not trained on.

There are also a few disadvantages associated with the reinforcement learning method. First
of all, the designer needs to define a reward function such that the resulting network fits a
specification. This is often not trivial and oversight on the part of the designer may lead to
undesirable behaviour that does actually maximize the reward function. Another disadvan-
tage with respect to supervised learning is that the training times are most often significantly
longer as the training is not directed. It could take a long time for the neural network to
discover inputs that result in a reward, as it simply has no notion of the appropriate behaviour
at initialization. Finally, the reinforcement learning approach suffers the credit assignment
problem where, in the case of delayed reward, it is unclear which inputs lead to failure or
success. Hence, the algorithm may end up penalizing actions that would ordinarily have given
positive results and reinforcing actions that do not benefit the neural network’s performance.
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2-2 Correct-by-design control

In the context of this thesis, the notion of correct-by-design control is one of the main focus
points. In this section, the major concepts and relevant literature regarding correct-by-design
control shall be reviewed.

As the name suggest, correct-by-design control regards the topic of creating controllers, which
are by definition correct, due to the way in which they were synthesized. In order to synthesize
such controllers, a framework is required which allows for the synthesis and verification of these
controllers. A synthesis and verification framework, robust with respect to different classes
of systems, calls for numerical methods. In order to use numerical methods to conclusively
verify the correctness of system behaviour, finite abstractions have to be constructed instead
of infinite systems which are in general difficult to analyse in a generic way.

2-2-1 Formal system definitions

In order to analyze systems Tabuada[33] introduces the concept of symbolic abstractions
based on simulation relations. These concepts require a formal definition of systems.

Definition 2-2-1 (System[33]). Given a system S, it is defined as a sextuple:

S = (X,X0, U,→, Y,H) (2-10)

where X is the set of states, X0 ⊆ X is the set of initial state, U is the set of inputs,
→⊆ X × U ×X is the transition relation between states and inputs to new states, Y is the
set of outputs and H : X → Y the output map.

In order to simplify the notation, it is useful to introduce a few operators and definitions.
The post operator is defined such that:

Postu(x) = {x′ ∈ X | (x, u, x′) ∈ →} (2-11)

A system is called simple if the output set is the state set Y = X, the output map is identify
1X and all states are admissible initial states X0 = X. In that case, the system can be written
as the triple S = (X,U,→).

In order to discuss the relations required to create finite cardinality symbolic abstraction,
Tabuada also introduces the concept of system behaviour.

Definition 2-2-2 (Finite internal behaviour[33]). The finite internal behaviour Bx(S) is de-
fined as a finite sequence:

Bx(S) = {x0
u0−→ x1

u1−→ ...
un−1−−−→ xn} (2-12)

of states xi given inputs ui for system S.

In case the sequence is infinite it is called the infinite internal behaviour Bωx (S). These
behaviours can be grouped into a set to form so called external behaviours.
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10 Preliminaries and Problem Statement

Definition 2-2-3 (Finite external behaviour[33]). The finite external behaviour of a system
is defined by union the finite internal behaviour:

B(S) =
⋃
x∈X0

Bx(S) (2-13)

The notion of finite external behaviour can be similarly extended to infinite external behaviour
if the sequences of states is infinite for a given system S. The infinite external behaviour is
defined as Bω(S) =

⋃
x∈X0 B

ω
x (S). The idea is to create a finite symbolic abstraction of the

infinite system Sa such that the behaviour of the infinite system S is included in the behaviour
of the finite system S �B Sa. This notion is called behavioral inclusion.

2-2-2 Simulation relations

In order to create such a finite symbolic abstraction, Tabuada introduces a multitude of
relations between systems. If an abstraction can be constructed such that it adheres to a
simulation relation between the infinite system and the abstraction, it implies the behavioral
inclusion of that infinite system. This allows for the use of numerical methods on the finite
abstraction such that any results are also valid for the infinite system. Hence this allows
for numerical controller synthesis. The most fundamental of these relations is the simulation
relation.
Definition 2-2-4 (Simulation relation[33]). Consider two systems Sa and Sb with Ya = Yb.
A relation R ⊆ Xa ×Xb is a simulation relation from Sa to Sb if:

• ∀xa0 ∈ Xa0, ∃xb0 ∈ Xb0 such that (xa0, xb0) ∈ R
• ∀(xa, xb) ∈ R, Ha(xa) = Hb(xb)

• ∀(xa, xb) ∈ R, xa
ua−→ x′a implies the existence of xb

ub−→ x′b satisfying (x′a, x′b) ∈ R.

In that case Sb is said to simulate Sa, mathematically denoted by Sa �S Sb.

If Sa �S Sb and Sb �S Sa then the relation R is a bisimulation relation of the two systems.
In the context of control, one is not only interested in the existence of an input such that the
states are in a simulation or bisimulation relation but also in the actual input itself. This
requirement prompts the introduction of the notion of the alternating simulation relation.
Definition 2-2-5 (Alternating simulation relation[33]). Consider two systems Sa and Sb with
Ya = Yb. A relation R ⊆ Xa ×Xb is an alternating simulation relation from Sa to Sb if:

• ∀xa0 ∈ Xa0, ∃xb0 ∈ Xb0 such that (xa0, xb0) ∈ R
• ∀(xa, xb) ∈ R, Ha(xa) = Hb(xb)
• ∀(xa, xb) ∈ R and ∀ua ∈ Ua(xa), ∃ub ∈ Ub(xb) such that ∀x′b ∈ Postub

(xb), ∃x′a ∈
Postua(xa) satisfying (x′a, x′b) ∈ R, where U(x) = {u ∈ U | ((x, u, x′) ∩ →) 6= ∅}

Similarly to the simulation relation, if this relation is valid in both directions it is called
an alternating bisimulation relation. Furthermore, Tabuada introduces the notion of an ε-
approximate simulation relation which can be applied to all previous simulation relations. In
an ε-approximate simulation relation the systems are required to be metric systems, meaning
there is a metric d : Y × Y → R+

0 . In that case, a relation is a ε-approximate relation if
∀(xa, xb) ∈ R, d(Ha(xa), Hb(xb)) ≤ ε.
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2-2-3 System abstractions

As eluded to before, in order to synthesize a correct-by-design controller a finite system needs
to be created that simulates the actual system. Equipped with the knowledge of alternating
simulation relations Tabuada, shows how such a symbolic abstraction can be created using
Lyapunov stability notions. The idea is to use two discretization steps in the form of time
sampling the evolution of the system and quantizing the state space.

Definition 2-2-6 (Control system[33]). The control system Σ is defined as Σ = (Rn, C×D, f)
where Rn is the state space, C the set of all the inputs, D the set of all the disturbances and
f the function that represents the plant.

Definition 2-2-7 (Time sampled system[33]). The time sampled simple system Sτ based on
sampling time τ associated with control system Σ is defined as Sτ = (Xτ , Uτ ,−→

τ
) where:

• Xτ = Rn, Uτ = {χ ∈ C | domχ = [0, τ ]}

• x
χ−→
τ
x′ if there exists χ ∈ Uτ , δ ∈ D and the trajectory ξxχδ : [0, τ ]→ Rn of Σ satisfying

ξxχδ(τ) = x′

• Yτ = Rn and Hτ = I : Xτ → Rn

This time sampled system is related to the quantized abstraction Sτη which is equivalent
to the time sampled system Sτ expect for the quantized state space Xτη = [Rn]η and the
transition function satisfying ‖ξx(τ) − x′‖ ≤ η. Given that the control system Σ is input-
to-state stable (ISS), this allows for an input-to-state stable Lyapunov function of the form
V (x) =

√
xTPx where P is a symmetric positive definite matrix. This Lyapunov function

entirely defines the ε-approximate bisimulation relation between Sτ (Σ) and Sτη(Σ) through:

Rε = {(xτ , xτη) ∈ Xτ ×Xτη | V (xτ − xτη) ≤ αε} (2-14)

if η satisfies:
η ≤ min{γ−1αε(1− exp−λτ ), α−1αε} (2-15)

where λ and γ are parameters that bound the state trajectory via Equation 11.3 in the book
of Tabuada and α and α are the outer eigenvalues. The proof of this relation is somewhat
elaborate and provided by Tabuada, page 176. Although this approach does provide a ε-
approximate bisimulation relation between the infinite system Sτ and the quantized finite
system Sτη it does require an ISS-Lyapunov function, which requires certain assumptions on
the stability of the system. If the system is not stable, care must be taken to first stabilize
it in order to utilize these techniques to construct an abstraction. This is a limiting factor of
Tabuada’s approach to symbolic abstractions.

2-2-4 Feedback refinement relation

One of the problems with the abstraction method as presented by Tabuada is that it requires
the system to be input-to-state stable and the existence of an input-to-state stable Lyapunov
function. In practice, the pursuit of these properties often entails the design and incorporation
of a low-level controller which can be very challenging. This problem is alleviated by the
feedback refinement relation.
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12 Preliminaries and Problem Statement

Definition 2-2-8 (Feedback refinement relation[28]). Given two simple systems Sa and Sb
then R ⊆ Xa × Xb is a feedback refinement relation from Sa to Sb if for all (xa, xb) ∈ R it
holds that:

• Ub(xb) ⊆ Ua(xa)

• (xa, xb) ∈ R given u ∈ Ub(xb) =⇒ x′a ∈ Postu(xa), x′b ∈ Postu(xb), (x′a, x′b) ∈ R

The difference, with respect to alternative simulation relations, is that for an input ua there
must exist an input ub = ua such that the new states of both systems using that input are
in the relation. For the feedback refinement relation, the same input, must result in new
states that are in the relation. For the purpose of control synthesis, it is still vital that the
infinite system is abstracted to a finite system. In order to achieve this using the feedback
refinement relation, similarly to the ε-approximate bisimulation abstraction technique, the
time sampled, state and input space quantizer system is considered. The sampling time is
given by τ and the quantizer of the state space is given by η, the quantizer of the input space
is given by ηu. The computation of abstractions that satisfy the feedback refinement relation
now reduces to the over-approximation of attainable sets of the plant. The abstraction Sa of
the infinite system S is characterized by a set of states consisting of hyper-intervals, which
can be thought of as cells that cover the state space of the infinite system. The abstraction
Sa will now be mathematically defined.

Definition 2-2-9 (Feedback refinement relation abstraction[28]). Given two simple systems
S and Sa with sampling time τ , a subset X̄a ⊆ Xa of compact cells and an over-approximation
function β : Rn+ × Ua → Rn+ then Sa is an abstraction of S if:

• X̄a is a cover of X by non-empty, closed hyper-intervals and every element xa ∈ X̄a is
compact

• Ua ⊆ U

• (xa, u, x′a) ∈ → | xa ∈ X̄a, x
′
a ∈ Xa, u ∈ Ua and (φ(τ,~c, u) + [[−r′, r′]]) ∩ x′a 6= ∅

• Postu(xa) = ∅ whenever xa ∈ Xa \ X̄a, u ∈ Ua

where φ denotes the general solution of the unperturbed system, ~c is the center of the cell, r is
the distance from the center to each edge of the cell and [[−r′, r′]] is the hyper-interval defined
by the growth bound where r′ = β(r, u).

A graphical depiction of the state transition function based on the growth bound is provided
by Figure 2-1.

Reissig et al. also provide a method to calculate the growth bound based on bounding the
Jacobian of the function describing the system f . This calculation requires the function f to
be continuously differentiable for every u. If that is the case Reissig et al. provide the growth
bound using the Jacobian as:

Li,j(u) ≥
{
Djfi(x, u) if i = j

|Djfi(x, u)| otherwise
(2-16)
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Figure 2-1: A figure showing how the growth bound is used to find the set of attainable states
from the current state for a given input. The resulting set of cells that form potential transitions
from the current state is colored in gray. This figure was taken from the paper by Reissig et al.
[28].

with the growth bound:
β(r, u) = eL(u)τr +

∫ τ

0
eL(u)sw ds (2-17)

where w is a disturbance term. It should be noted that there are also ways of finding a
growth bound for non-continuously differentiable functions f . Using the growth bound it is
now possible to construct abstractions of systems without any stability assumptions. For this
particular relation it holds that S �∈ Sa or S �R Sa with the exception of a state quantization
function.

2-2-5 Fixed-point algorithms

The use of these relations and abstractions becomes quite apparent once it is applied to
the context of control. Given that a system can be simulated using a finite system, allows
for the use of numerical methods on the finite system in order to find appropriate control
laws. Tabuada elaborates on how to synthesize a controller based on these relations, subject
to either of two specifications: invariance and reachability. These two specifications can be
further expanded using fixed-point algorithms to find more complex linear temporal logic
specifications.

In the case of a controller tasked with determining inputs that will keep the state of a system
in a safe set, Tabuada introduces the notion of invariance. Invariance is concerned with
finding the set W for which the system will remain inside the set W ⊆ Z.

Definition 2-2-10 (Invariance[33, 31]). For invariance, a controller is required such that:

∀t ≥ t0, x(t) ∈ Z

where Z ⊆ Xa is the safe set. A controller that adheres to this specification can be found by
iterating the operator FW : 2Xa → 2Xa defined as:

FW (W ) = {xa ∈W | xa ∈ Z ∩ ∃ua ∈ Ua(xa), ∅ 6= Postua(xa) ⊆W} (2-18)
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14 Preliminaries and Problem Statement

Using this operator, starting with W = Z, results in convergence to a set W ⊆ Z such that
there exist inputs at all states in W that cause the system to remain in Z. This type of
algorithm is called a fixed-point algorithm. From the resulting set, a controller Sc, can be
synthesized that satisfies the invariance specification.

Tabuada also covers the notion of reachability. Reachability is concerned with finding the set
of states for which a controller is able to control the system into a certain predefined set Z.

Definition 2-2-11 (Reachability[33, 31]). For reachability, a controller is required such that:

∃T, x(T ) ∈ Z

where Z ⊆ Xa is the to be reached set. A controller that adheres to this specification can be
found by iterating the operator GW : 2Xa → 2Xa defined as:

GW (W ) = {xa ∈ Xa | xa ∈ Z ∪ ∃ua ∈ Ua(xa), ∅ 6= Postua(xa) ⊆W} (2-19)

Similarly to the invariance case, using this operator. starting with Z = W . will result in
convergence to the set of all states W ⊇ Z from which the set Z can be reached. From this
set, a controller can be synthesized that satisfies the reachability specification.

By combining these specifications, the reach and stay specification can also be defined.

Definition 2-2-12 (Reach and stay[22]). For reach and stay, a controller is required such
that:

∃T, ∀t ≥ 0, x(T + t) ∈ Z

where Z ⊆ Xa is the reach and stay set. A controller that adheres to this specification can be
found by first iterating the invariance operator FW : 2Xa → 2Xa defined as:

FW (W ) = {xa ∈W | xa ∈ Z ∩ ∃ua ∈ Ua(xa), ∅ 6= Postua(xa) ⊆W} (2-20)

followed by the reachability operator GW : 2Xa → 2Xa defined as:

GW (W ) = {xa ∈ Xa | xa ∈ Z ∪ ∃ua ∈ Ua(xa), ∅ 6= Postua(xa) ⊆W} (2-21)

Using these operators, starting with W = Z for the invariance operator FW , followed by the
reachability operator GW with Z = W , results in the set W for which the system is able to
reach and stay inside the set Z.

2-2-6 Tools

The systematic approach to the synthesis of symbolic abstractions and control as presented
by Tabuada and Reissig is well suited to automation. A number of tools that utilize these
concepts are currently available. Two such tools, that are closely related to the work presented
above, will now be reviewed.
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One such correct-by-design synthesis tool is PESSOA, as presented by Mazo, Davitian and
Tabuada[23] and based on the work of Tabuada. PESSOA is capable of constructing finite
abstractions of linear control systems and to synthesize controllers for the specifications laid
down by Tabuada. This does however require some stability assumptions on the part of the
plant before these synthesize techniques can be utilized.

Rungger and Zamani present another control synthesis tool, based on the feedback refinement
relation presented by Reissig et al., called SCOTS[31]. SCOTS allows for the construction
of symbolic abstractions of systems given that the designer provides the plant dynamics φ,
a growth bound on those dynamics β, a bound on the disturbance w and the quantization
parameters τ , η and ηu. The growth bound can be found for continuously differential plant
dynamics as reviewed in Section 2-2-4. SCOTS allows for control synthesis based on invari-
ance, reachability or even more complex linear temporal logic specifications. These controllers
are then synthesized similarly to PESSOA, using the reviewed fixed-point algorithms. Both
PESSOA and SCOTS allow for representing the resulting controller in the form of a reduced
order binary decision diagram. The main difference between SCOTS and PESSOA is that
SCOTS makes use of the feedback refinement relation, as reviewed in Section 2-2-4, in order
to create the finite abstraction.

Due to the way in which fixed-point algorithm based correct-by-design control synthesize
fundamentally works, the resulting controller is by definition a look-up table. This look-up
table prescribes the appropriate inputs for all the states from which the specification can
be adhered such that the control system adheres to the predefined specification. Since the
amount of states in the abstraction grows rapidly as the quantization becomes finer, these
look-up tables can quickly grow to become very large. Because of this, both PESSOA and
SCOTS attempts to compress the data requirements of the resulting controller by encoding
them as binary decision diagrams (as will be reviewed in Section 2-3). By describing these
look-up tables as reduced order binary decision diagrams, significant memory savings and
data compression can be achieved. It should however be noted that even these reduced order
binary decision diagram controllers can still be quite large in terms of memory requirements
and requires some overhead software to manipulate them. These factors form a limitation
with respect to implementation of correct-by-design controllers on embedded hardware.

2-3 Binary decision diagrams

As already touched upon in Section 2-2-6, one of the major limitations of fixed-point based
correct-by-design control synthesis methods is the resulting control structure. By the very
nature of the synthesis method, the resulting controller is a (often large) look-up table. In
order to compress the data, numerous tools have resorted to using binary decision diagrams
to store these look-up tables. How binary decision diagrams work and how they are being
used in the context of control will be discussed in this section.

Binary decision diagrams (BDD) were first introduced by Lee [21] and further studied by
Akers [1] and Bryant [3] as a novel way of defining, analyzing, testing and implementing large
binary functions.
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Figure 2-2: An example of a binary decision diagram and its reduced order form. The original
binary decision diagram is depicted on the left. The reduced order form on the right. The figure
is taken from Beyer[2].

Definition 2-3-1 (Binary decision diagram[1, 3, 21]). A binary decision diagram is a rooted,
directed and acyclic graph consisting of decision nodes and two terminal nodes. The graph
encodes a binary function using these decision and terminal nodes. The terminal nodes label
the outcome of this binary function. The binary function is of the form:

f : Bn → B (2-22)

where B = {0, 1} denotes a boolean variable.

Binary decision diagrams are a way of encoding complex binary functions into graphs, such
that the graphs can be used to evaluate binary functions. The main idea with using a graph
to store a binary function, is that analysis of the graph can yield simplifications to the graph
whilst still encoding the same function. In addition to this, the order of the variables in the
graph can also be changed. The order of the binary variables in the graph has a large impact
of the final size of the graph. Because of this, certain heuristics are often employed to find
an order that minimizes the graph. By iterating these processes, the graph can be reduced in
order to reduce the amount of memory required to store the binary function. Such a reduced
binary decision diagram is called a reduced order binary decision diagram (ROBDD). An
example of such a binary decision diagram and its reduced order form is depicted in Figure
2-2.

As hinted at in Section 2-2-6, these binary decision diagrams can be used to store correct-
by-design controllers, such as the onces computed by PESSOA [23] and SCOTS [31]. This
is achieved by formatting the controller in such a manner that is can be treated as a binary
function. This is possible due to the fact that the abstractions, used to simulate the original
to be controlled system, are of finite cardinality. Hence the state and input space of the
system consist of n-dimensional hyper-rectangular cells that cover a portion of the actual
spaces. These cells lay on a grid such that each and every cell has a unique n-dimensional
integer coordinate in its corresponding space. It should now be noted that the correct-by-
design controllers are look-up tables that map discrete state cells in the state space to discrete
input cells in the input space. Since these cells have an n-dimensional coordinate expressed
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in integer numbers it is possible to store the binary representation of these coordinates in
a binary decision diagram. The binary decision diagram of a correct-by-design controller is
therefore a graph that represents a binary function that stores this mapping. This binary
function is of the form:

C : Bi × Bj → B (2-23)

where Bi are binary variables that represent the state space, Bj are binary variables that
represent the input space. The function itself is a combination of binary functions that
represent encoded state-input pairs denoted as SI. Evaluating the binary function C with
input binary variables denoting a valid state-input pair will evaluate to a binary 1 otherwise
the graph will evaluate to a binary 0. Using this mechanism, the controller can be encoded in a
binary decision diagram. These binary state-input pairs SI are encoded by taking the integer
coordinates these states have in their respective space and encoding them in binary. For the
state space of dimension n this implies encoding Nn0 → Bi where i is the number of binary
variables required to encode the state space coordinates. For the input space of dimension m
this implies encoding Nm0 → Bj where j is the number of binary variables required to encode
the input space coordinates. The controller as a binary function C is therefore a combination
of these binary state-input pairs SIi of the form:

C = SI1 ∨ SI2 ∨ ... ∨ SIk (2-24)

The controller can then be read out by providing it with a binary representation of the current
state in which the system is and evaluating the binary function. This will result in the set of
inputs that the controller prescribes.

An example of such a binary controller and state-input pair shall now be given in order to
further illustrate the data structure. This particular way of encoding is the one as employed
by SCOTS, but it should be noted that there are multiple ways to achieve this casting.

Example 2-3-1. Consider a demonstrative system with a two-dimensional state space and
a one dimensional input space. Now consider the domain of interest of the state space to
lie between x0 ∈ [0, 1] and x1 ∈ [0, 1] and the quantization parameter to be η = 0.25 with
the center of the resulting cells on the bounds. This results in both dimensions of the state
space being subdivided into 5 parts and the total state space consisting of 25 cells. The point
x = (0, 0) is located in the first cell with integer coordinate (0, 0) and the point x = (1, 1) is
located in the final cell with integer coordinate (4, 4). Consider the system to have switched
linear dynamics with two modes and the switching of these modes the control input u ∈ {0, 1}.
Since both dimensions in the state space are subdivided into 5 parts 3 binary state variables
are required per dimension. Therefore, 6 binary state variables are required to encode a state
cell’s coordinate in the state space. For the input space only 1 binary variable is required since
there are only two modes.

Consider now that, based on the dynamics of an arbitrary plant, the fixed-point based synthesis
algorithm returns that in state cell x0 ∈ [0.625, 0.875], x1 ∈ [0.875, 1.125] the input to the
system should be u = 1. This encodes to state cell with coordinate (3, 4) mapping to (1).
In binary this corresponds to b(3) = {1, 1, 0}, b(4) = {0, 0, 1} to b(1) = {1}. Where b is a
binary big-endian encoding function b : N0 → Bi. In order to read out what input should be
given, the binary variables that represent the state coordinate should therefore correspond to
the binary representation resulting in 1. Hence the binary state-input pair that corresponds
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to this information would become SI = Bs,0 ∨ Bs,1 ∨ ¬Bs,2 ∨ ¬Bs,3 ∨ ¬Bs,4 ∨ Bs,5 ∨ Bi,0 where
Bs are binary variables encoding the states and Bi are binary variables encoding the inputs.

This process is repeated for all the state-input pairs that result from the correct-by-design
synthesis procedure, resulting in a binary function representation of the controller. This binary
function can then be cast into a binary decision diagram, which can be further reduced to find
the more data efficient reduced order binary decision diagram.

This particular method of casting correct-by-design controllers to binary decision diagrams is
also robust with respect to nondeterminism. Meaning that multiple different inputs can be
mapped to the same state cell coordinate in order to represent the nondeterminism.

As already hinted at in Section 2-2-6, the advantage of using reduced order binary decision
diagrams over ordinary look-up tables is that they can significantly reduce the amount of
data required to store the controller. Binary decision diagrams obtain a large part of their
compressive capability from removing redundancy within the binary representation of the
controller. The disadvantage to using binary decision diagrams as controllers however is that
these controllers would ideally be used on embedded hardware where the amount of memory
and computing power is limited. Since binary decision diagrams cannot be intuitively readout,
the use of binary decision diagrams still requires additional overhead that further taxes the
amount of memory and computational power on these systems.

2-4 Problem statement

In this section, the problems that can be identified based on the reviewed preliminaries are
stated. Furthermore, an outline of the intended methodology is given.

As discussed in Section 2-2, correct-by-design control provides us with a generic technique to
synthesize controllers which are correct-by-design. It is also robust with respect to different
system classes such as linear, nonlinear and hybrid systems. Perhaps one of the most promis-
ing aspect of the correct-by-design control synthesis method is however the formal guarantees
that are put on the performance of the controller once it has been synthesized. This particular
feature warrants the use of correct-by-design control in a wide spectrum of applications.

However, as stated in Section 2-3, the widespread implementation of such controllers is cur-
rently being hindered by a number of problems. Most notably the large amount of data that
is required to store either the raw look-up table of the controller or a binary decision diagram
compressed version thereof. Even if the compressed binary decision diagrams are used, the
overhead that is required to read them out and use them is still quite substantial. This leads
to the following problem:

Problem 2-4-1. Design a correct-by-design control structure that requires less data than
look-up table stored correct-by-design controllers and binary decision diagram stored correct-
by-design controllers.

With regards to implementation on the memory and computational limited environment of
embedded hardware, neural networks have a distinct advantage. As discussed in Section 2-1,
neural networks are cheap to evaluate on-line once they are trained, as it is only a matter
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of performing linear mathematical operations with the exception of a nonlinear activation
function. In addition to this, neural networks have already proven themselves to be capable
of a wide variety of tasks including control related tasks. Encoding a correct-by-design con-
troller as neural network could therefore be a promising lead with respect to deployment onto
embedded hardware.

One of the limitations is that neural networks are traditionally difficult to verify and sporadic
behaviour in vital control applications is unacceptable. It is therefore necessary to employ
correct-by-design control methods in order to synthesize these neural network controllers in
a verifiable way. This leads to the following problem:

Problem 2-4-2. Design a neural network synthesis procedure that allows for the training
and verification of a neural network in the role of a controller.

An approach that one might utilize is to use an existing deterministic correct-by-design con-
troller and try to embed the mapping that it exhibits into a neural network. This would result
in a correct-by-design neural network controller if the neural network outputs the appropri-
ate input for every state for which the controller is defined. The approach has been tried in
literature [9, 34] and is indeed valid. In practice, it does however result in data structures
that are of a similar size in terms of memory to binary decision diagram stored controllers.

One might argue that the reason why these neural network controllers are of equivalent size
to binary decision diagram stored controllers is that the neural network is only exposed to
the predefined mapping of these controllers. Since it is only exposed to the mapping it is
never able to learn the intrinsic behaviour, that the plant exhibits, that actually implies that
state-input mapping. By letting the neural network act as an actor within the to be controlled
environment and by appropriately rewarding and deterring its behaviour as it interacts with
the environment, one could teach a neural network to act as a controller. This particular
neural network training method is called reinforcement learning and is discussed in Section
2-1-3.

Using this reinforcement learning technique does still result in an unverified neural network
controller. Through the use of partial abstractions and fixed-point algorithms as discussed in
Section 2-2, it is however possible to verify the behaviour of this controller. Furthermore, this
verification can be used to further emphasize certain regions in the state space on which the
neural network needs to focus during training. Through the combination of these techniques
and the novel interaction between them it would therefore be possible to synthesize correct-
by-design neural network controllers.

The goal of this thesis work is to explore the possibilities with regards to the synthesis of
correct-by-design neural network controllers. Hence the following problem is to be solved:

Problem 2-4-3. Given a predefined control specification, synthesize a correct-by-design neu-
ral network controller such that the resulting feedback controlled system adheres to the speci-
fication with formal guarantees.

In order to solve Problem 2-4-3, first Problem 2-4-2 will be tackled. The neural network syn-
thesis procedure as required by Problem 2-4-2 is explained in Chapter 3. The controllers that
result from using this procedure are compared to the traditional correct-by-design controllers
in order to see whether or not they are able to solve Problem 2-4-1.
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Chapter 3

Methodology

This chapter will describe the methodology that is used to synthesize correct-by-design neural
network controllers. The methodology works to synthesize correct-by-design neural network
controllers for a variety of different classes of systems. The primary control specifications
that will be discussed in this work are a subset of linear temporal logic specifications. In
its current implementation the methodology supports invariance specifications, reachability
specifications and reach and stay specifications. The methodology can however be extended
to more general linear temporal logic specifications.

In order to describe the methodology, the primary features of the methodology will be de-
scribed in a piecewise manner. First the general neural network controller topology will be
explained. After that the actual synthesize procedure will be described. The synthesize pro-
cedure consists of three routines, the system abstraction framework routine, the synthesize
routine and the verification routine. A figure that shows how each of these routines interact
with each other is depicted in Figure 3-1. Each of these routines will be discussed in their
own section. The interaction between these different routines will also be described.

The entire procedure as explained in this chapter is available as a correct-by-design neural
network controller synthesize framework that has been coined COSYNNC1. The general use
and layout of this framework will also be described.

3-1 Neural network controllers

In order to discuss the methodology that is employed to train a correct-by-design neural
network controller, it is paramount to define such a controller. In this thesis work, the term
neural network controller will be used to denote a neural network that is used in a feedback
configuration in order to control a plant. The feedback configuration is depicted in Figure
3-4. In this section, potential neural network topologies that can be used as neural network

1The framework is available at: https://github.com/WardvanderVelden/COSYNNC
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Figure 3-1: A schematic overview of the three different routines in the correct-by-design neural
network synthesis scheme.

controllers are discussed. In addition to this, a distinction will be made between different
methods to encode the controller’s output, namely labelled and unlabelled neurons.

As discussed in Section 2-1-1, there is a large host of neural network topologies available in the
field of deep learning. The most fundamental of which is arguable the multilayer perceptron,
consisting of a number of fully connected layers of neurons. All the connections in this
type of network are in a feedforward configuration. This has the advantage of being both
conceptually simple and straight forward to train since it does not require the computationally
more expensive backwards propagation through time algorithm. In this thesis work, the main
focus will be on multilayer perceptron neural network controller, but it should be noted that
the methodology is robust with respect to other neural network topologies.

For the neural network to function appropriately in a feedback configuration, the neural
network needs to receive information on the state of the plant and transform this into an
appropriate input for the plant. Throughout this thesis work, the multilayer perceptron
neural networks will be assumed to use ReLU activation functions. Because of these activation
functions, the neural network, as per Definition 2-1-1, will map according to:

f : Rn+ → Rk+ (3-1)

Since the state space is defined as X ⊆ Rn and the input space as U ⊆ Rm a normalization
function and denormalization function is needed to map these spaces to R+ and back. The
normalization function maps:

n : Rn → [0, 1]n (3-2)

and the denormalization function maps:

n−1 : [0, 1]n → Rn (3-3)

Since [0, 1]n ⊂ Rn+, a normalized representation can be used by a ReLU based neural network
to represent the state of the plant. The neural network will thus receive a quantized and
normalized representation of the state:

~xnn = n(q(~x)) (3-4)

where q(~x) is the state quantizer as defined in Section 3-2.
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Each input neurons of the neural network controller will then receive a single dimension of
the quantized and normalized state vector n(q(~x)). Hence a four-dimensional plant would
have a corresponding neural network controller with four input neurons. It should be noted
that this particular method of encoding the state of plant scales well with plants of a higher
dimensionality.

Equipped with a representation of the state of the plant, the neural network controller can
now provide an input to the plant. One of the requirements for the employed reinforcement
learning scheme, is that the output of the neural network (and thus the input to the plant)
should be provided in a probabilistic manner. This leaves a few different approaches to encode
the input of the plant in the neural network. Two of these approaches shall be discussed:
labelled input neurons and unlabelled input neurons.

3-1-1 Labelled

In a labelled neuron topology, each and every input that belongs to the finite cardinality
input space is assigned an individual output neuron. Hence, each and every output neuron
is ’labelled’ to represent an input in the finite cardinality input space. The value that each
neuron outputs is the probability of that input being the appropriate input for that state.
The sum of all the output neurons is therefore 1. A graphical representation of the described
topology is depicted in Figure 3-2.

Mathematically the input to the plant given by the output of the labelled output neuron
neural network controller topology is equal to:

~y = f(~xnn,θ) =


Pr{~u = ~u1}
Pr{~u = ~u2}

...
Pr{~u = ~uk}

 (3-5)

where f is the neural network as defined in Equation 3-1. Throughout this thesis work, the
probabilistic inputs to the plant as a function of the neural network parameters θ shall be
referred to as ~up = f(~xnn,θ). In a probabilistic setting, the input to the plant is sampled and
denoted as:

~u = γ(f(~xnn,θ)) (3-6)

where γ : [0, 1]k → Ua is a sampling function. This sampling function samples the input
based on the probabilities provided by the neural network. The set Ua is defined in Section
3-2. In a deterministic setting, the input to the plant is sampled greedily by taking the input
with the highest probability as provided by the neural network. This is denoted throughout
this thesis work as:

~u = γg(f(~xnn,θ)) (3-7)

where γg : [0, 1]k → Ua is the greedy sampling function.

In order to illustrate the multilayer perceptron, normalized quantized state and labelled input
neural network controller topology an example will be given.

Example 3-1-1. Consider a three-dimensional plant with switched mode linear dynamics.
The plant has 5 different modes and the objective of the neural network controller is to provide,
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Figure 3-2: A graphical example representation of a multilayer perceptron neural network con-
troller. This particular topology uses a normalized quantized representation the state of the plant
as input to the neural network and labelled output neurons to represent the input to the plant.

based on the state of the system, in which mode the plant should operate such that a certain
control specification is adhered. The input to the plant needs to be an integer number u =
{1, 2, 3, 4, 5} that represents the mode in which the plant should be. In a labelled neuron
topology, this calls for 5 output neurons which label to the respective mode of the plant. The
required amount of input neurons is 3 in order to represent every dimension in the state space.

The number of hidden layers that the neural network controller has is up to the user and
based on the complexity of the required controller behaviour. This is often not known a
priori and some intuition and/or iteration may be required in order to find a balance between
attaining a proper neural network controller and the amount of data required to store the
neural network controller.
The labelled neuron encoding method has the advantage of allowing for the use of some well-
studied loss functions, primarily the cross-entropy (logarithmic) loss function. This particular
loss function can be used because of the fact that the outputs are probabilities of labelled
plant’s inputs and sum to 1. The cross-entropy function is well studied in the context of deep
learning and has some desirable properties. This causes the policy gradients to, in general, be
’more directed’ in case of erroneous inputs and this leads to fast synthesis times when using
conventional neural network libraries.
The main disadvantage to using these types of labelled neurons is that the amount of output
neurons of the neural network controller is equivalent to the cardinality of the input space.
Hence, for higher input space dimensions, the size of the neural network grows exponentially.
Although the methodology is still valid for higher dimensionally input spaces, the neural
network controller rapidly becomes unwieldy due to the large amount of output neurons
required. This same phenomenon also severely slows down the neural network training speed
when higher cardinality input spaces are used.

3-1-2 Unlabelled

In an unlabelled topology, the output neurons of the neural network controller do not map
to all of the inputs in the finite input space. Instead the neurons are used to imply the
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appropriate input whilst still retaining the probabilistic requirement of the neural network’s
output. There are multiple ways to imply the input in a probabilistic manner. The method
that will be considered in this thesis work achieves this by using two neurons per input space
dimension. These two neurons imply the range in which the probabilistic inputs will be. The
probability of each of the inputs that exist within this range is uniformly distributed over the
range. The input selector then selects an input from this range based on this probability. As
the range grows narrower, the neural network expresses it certainty of that input being the
appropriate one by increasing the chance of it being picked. This is due to the fact that the
probability of an input being used is inversely proportional to the width of the range of the
output neurons. A graphical representation of the described topology is depicted in Figure
3-3.

Mathematically the input to the plant given by the output neurons of the unlabelled neural
network controller topology is described by:

~y = f(~xnn,θ) =
[
y1 y2 ... yk−1 yk

]T
(3-8)

which implies the set of stochastic inputs Us ⊆ Ua:

Us = {~us ∈ Ua | n−1
i (y2(i−1)+1) ≤ uis ≤ n−1

i (y2(i−1)+2)} (3-9)

where n−1
i denotes the i’th dimension of the denormalization function of the input space, uis

is a value of the vector ~us at index i and f is the neural network as defined in Equation 3-1.
The definition of the set Ua is provided in Section 3-2. In a probabilistic setting, the input to
the plant is sampled from the set Us such that ~u = γ(Us) where γ : Us → Us is a sampling
function. This sampling function samples an input ~u from the set of stochastic inputs Us with
probability Pr(~u = ~us ∈ Us) = 1

|Us| . Since the set Us is implied by the neural network output
this will be denoted as ~u = γ(f(~xnn,θ)). In the deterministic setting, the input is defined as:

~u = qu


 n−1

1 (y1+y2
2 )

..

n−1
m (y2m−1+y2m

2 )


 (3-10)

where qu(~y) is the input space quantizer as defined in Section 3-2. To simplify the notation,
this will similarly be referred to as ~u = γg(f(~xnn,θ)) with the greedy sampling function
γg : Rk → Ua mapping the implied input to an input in the set Ua. This notation will be
used throughout the thesis work.

To illustrate the idea of a multilayer perceptron neural network controller with normalized
quantized state and unlabelled inputs an example will now be given.

Example 3-1-2. Consider a three-dimensional switched system with linear dynamics in every
mode. The input that the plant requires is again an integer number that represents in which
mode the plant should operate u = {1, 2, 3, 4, 5}. Similarly to the labelled case, the state of the
plant will again be represented by three input neurons which receive a normalized quantized
representation of the state of the plant. The input to the plant is represented in an unlabelled
fashion by two normalized output neurons u11 and u12. These neurons output a value between
[0, 1]. The values of these two neurons are then denormalized to values between 1 ≤ u ≤ 5
such that they span the set of stochastic inputs. During training these output neurons are
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Figure 3-3: A graphical example representation of a multilayer perceptron neural network con-
troller. This particular topology uses a normalized quantized representation the state of the plant
as input to the neural network and unlabelled output neurons to represent the input to the plant.

probabilistically interpreted. For example, if the output is u11 = 0.21 and u12 = 0.62 this
would imply the inputs u = 1∪u = 2 with probability Pr{u = 1} = 0.5, Pr{u = 2} = 0.5. If the
neural network controller is evaluated deterministically, the average of the two output range
neurons will be denormalized and quantized in order to find the input. Hence, if u11 = 0.21
and u12 = 0.62 then ū1 = 0.415 which implies u = 2 when denormalized and quantized.

The main advantage to using this particular method of encoding is that, contrary to the
labelled neuron topology, it scales well with input spaces that are of a higher cardinality. The
disadvantage however is that it puts limitations on the loss functions and therefore policy
gradients that can be used during reinforcement learning. In practice this can lead to long
synthesize times. Furthermore, the topology also inherently restricts the selection of inputs
to a subset of neighboring inputs. This also limits the neural network’s ability to explore the
input space during training.

3-2 System abstraction framework

In order to synthesize correct-by-design neural network controllers, verification of said con-
trollers is an absolute requirement. It is therefore paramount to verify the neural network that
is trained to act as a controller. In this thesis work, fixed-point algorithm based verification
methods are used in order to verify the behaviour of the neural network controller. This does
however require that numerical methods can be applied to the system, which in turn requires
the system to exhibit a finite cardinality state space. In order to achieve this, the system
abstraction framework routine, which initializes the entire synthesize procedure, sets up a
system abstraction framework such that the resulting abstractions are of finite cardinality.

In order to achieve this abstraction framework, two quantizers are added in the feedback loop:
a state quantizer q : Rn → Rn and an input quantizer qu : Rm → Rm. The resulting scheme
is schematically visualized in Figure 3-4. These quantizers are introduced in order to yield a
framework in which the state and input space as experienced by the controller are of finite
cardinality. In order to achieve this, the quantizers also bound the space to a subset of the
entire space. Consider the state vector ~x = [x1, x2, ..., xn]T , the quantized state vector ~̂x is
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Figure 3-4: The control scheme that is used in order to achieve a finite cardinality abstraction
framework as experienced by the controller.

defined element wise as:

x̂i = q(~x)i =


xli xi < xli
xui xi > xui
xli + kηi : |xi − (xli + kηi)| < ηi with k ∈ N0 otherwise

(3-11)

where ~xl and ~xu are the lower and upper bounds of the state space respectively and ~η is
the state quantization parameter. This particular quantization scheme ensures that there are
only a finite number of points within the bounds of the space it quantizes. In this thesis work,
the state quantizer that quantizes the state ~x is denoted as ~̂x = q(~x) with the quantization
parameter ~η. The input quantizer that quantizes the input ~u is denoted as ~̂u = qu(~u) with
the quantization parameter ~ηu.
The resulting system, as experienced by the neural network controller, is equivalent to the
original system with exception of the quantizers q, qu and the sampling time τ . Consider the
control system:

Σ = (X,U, φ) (3-12)
where X ⊆ Rn is the state space, U ⊆ Rm is the input space an φ the nominal dynamics of
the plant. The resulting system abstraction framework system based on the system definition
in Section 2-2-1 becomes:

• Xa = { ~xa ∈ Rn | ∃~x ∈ X, ~xa = q(~x)}
• Ua = { ~ua ∈ Rm | ∃~u ∈ U, ~ua = qu(~u)}
• x

τ−→
τη

x′ if there exists a solution ξx : [0, τ ]→ Rn of Σ satisfying ‖ξx(τ)− x′‖ ≤ η
• Ya = Rn

• Ha = 1X |Xa → Rn

Using this scheme, it is possible to create an abstraction framework which has a state space
Xa and input space Ua that is of finite cardinality and is equivalent to the original system
with exception of the quantizers and sampling time. This property is thoroughly exploited
during the verification phase, which is described in Section 3-4.
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3-3 Network training

Once the abstraction framework is established the procedure switches over to the network
training routine. The network training routine and the system verification routine are iterative
routines which are repeated until the desired controller is synthesized. During the network
training routine, the neural network controller is trained to function as a controller through
the process of reinforcement learning on simulated episodes. During this training, information
from previous verification routines is used to speed up the synthesize routine. This section
will contain a detailed description of the network training routine.

3-3-1 Episodes

During the training routine, the neural network controller is trained using reinforcement
learning, based on the performance of episodes. An episode is defined as a finite horizon
iteration of the system, where the neural network is acting as a controller in closed loop as
depicted in Figure 3-4.

During an episode, the current state of the simulated plant is fed through the state quantizer
and into the neural network. The initial state of the plant xi is chosen at the start of an episode
from the training initial state set I0. The quantized state of the plant ~̂x is then normalized.
The normalized quantized state of the plant is denoted as ~xnn. Every normalized quantized
state dimension is then assigned to its corresponding input neuron of the neural network
controller. This particular method of introducing the state to the neural network controller is
independent of the neural network topology and type as detailed in Section 3-1. The neural
network controller is then evaluated based on the normalized quantized state of the plant.
Based on the mode of operation, the output of the controller is interpreted probabilistically
or deterministically by the input selector. It is important that the neural network controller
is evaluated probabilistically during the network training routine for reasons that will become
apparent in Section 3-3-2. This probability represents the ’certainty’ of the neural network,
that the presented input is the appropriate one given the state of the plant. During training
the input selector will sample and denormalize an input form the probabilistic inputs. That
input is then fed to the input quantizer. The resulting quantized input is fed to the plant
and the plant is iterated. This process repeats until a termination condition is met. The
termination conditions are checked as soon as the quantized state is fed to the controller.

By repeating this process, a feedback controlled walk is generated in the state and input space
and stored. These states and inputs can then be used by reinforcement learning techniques
in order to train the neural network controller. A schematic representation of signal flow is
represented in Figure 3-5.

Termination conditions

There are a number of different termination conditions that can be met in order to stop the
episode. The most obvious one is simply hitting the finite horizon N . The finite horizon
should be picked such that the specification can be adhered from every cell in the state
space if possible. The exact finite horizon that is required in order to meet this particular
requirement is often not known a priori and has a high dependency on the plant’s dynamics
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Figure 3-5: A schematic representation of the signal flow during a simulation of a finite horizon
episode.

and the sampling time τ of the simulated plant. In practice some intuition and heuristics will
thus be required in order to pick an appropriate finite horizon N .

Another obvious termination condition for an episode is leaving the confinement of the
bounded state space in which the state quantizer operates. This termination condition is
strictly required in order to guarantee the finite cardinality of the state space. Once the
dynamics of the feedback controlled system venture outside of the bounds the episode is
terminated.

Other than these more straightforward termination conditions, the episode is also subject to
termination conditions based on the linear temporal logic control specification. For example,
in case of a reachability specification, reaching the set for which reachability is in question
is a sufficient termination condition. This condition is sufficient since the controller is only
tasked with reaching the set. Therefore, once the set has been reached, the remainder of the
episode is irrelevant for controller synthesize. Similarly, for an invariance specification, the
episode is terminated as soon as the episode leaves the invariant set. For a reach and stay
specification, the episode is terminated once the episode has entered the to be reached set
and has then ventured out of it again.

Another optional termination condition is available in case of a reachability specification. In
order to speed up the training process, it is also possible to terminate the episode once the
previous winning set W is reached. The winning set W is formally defined in Section 3-4.
Although using this method does speed up the training time, it does not have any formal
guarantees since the winning set could have changed during the training process. This will
further be elaborated upon in Section 3-4-3.

Plant iterations

As stated previously in this section, the simulated plant is iterated during the episode in order
to observe the effect of the interaction between the neural network controller and the plant.
During an episode, a numerical simulation is therefore used to approximate the actual plants
behaviour. In order to describe the dynamics of the plant, ordinary differential equations
are employed. These are then numerically integrated using the Runge-Kutta method for
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numerical integration. For ~̇x = φ(t, x, u) this yields:

~xn+1 = ~xn + 1
6h
(
~k1 + 2 ~k2 + 2 ~k3 + ~k4

)
tn+1 = tn + h

~k1 = φ(tn, ~xn, u)

~k2 = φ(tn + h

2 , ~xn + h
~k1
2 , u)

~k3 = φ(tn + h

2 , ~xn + h
~k2
2 , u)

~k4 = φ(tn + h, ~xn + h~k3, u)

(3-13)

where h is the step size for the Runge-Kutta numerical integration. In practice this is simply
an integer division of the sampling time τ . This provides a reasonably accurate approximation
of the actual dynamics without losing too much of the computational power and synthesis
time during the network training routine on iterating the plant.

3-3-2 Reinforcement learning

Based on the array of states and inputs that results from each episode, reinforcement learning
is used to train the neural network controller. In reinforcement learning the neural network
acts as an actor in the environment. By appropriately reinforcing and deterring the interac-
tions that the neural network has with the environment it is possible to train the network to
exhibit the desired control policy. A more thorough explanation of reinforcement learning is
provided in Section 2-1-3.

Based on the performance of an individual episode, policy gradients are computed in order
to reinforce or deter the control policy that the neural network controller exhibits. The
performance of an episode is based on the specification that the neural network controller is
being trained for. If the finite episode has adhered to the specification, the control policy will
be reinforced. If it did not adhere to the specification the policy will be deterred.

Testing if an episode adhered to a reachability specification is done by checking if the final
state of the episode is in the to be reached set. For other specifications such as invariance,
checking whether or not the episode adheres to the specification is not trivial due to the fact
that the episode is finite whereas the specification is not. Hence in case of invariance or reach
and stay specifications a likelihood of adhering to the specification is the best result that can
be achieved. Therefore in the case of an invariance specification, the control policy will be
reinforced when the episode has terminated due to the finite horizon N and all of the states
in the episode are in the invariant set. For a reach and stay specification, the control policy
will be reinforced when all of the states of the episode are in the reach and stay set once that
set has been entered and it has terminated due to the finite horizon N . In all other cases the
neural network’s control policy will be deterred.

If reachability is the specified control specification and more knowledge of the plant is avail-
able, norm-based reinforcement could also be employed. The idea is to compute the weighted
norm of the initial state and compare it to the weighted norm of the final state at episode
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termination. By picking an appropriate norm and weights, a decrease in the norm could also
be used as a performance criterion for reinforcing the control policy.

Once it is apparent whether or not the control policy needs to be reinforced or deterred,
the policy gradients for the neural network can be calculated. There are various different
methods available for calculating these policy gradients with different levels of complexity.
In addition to this, how the policy gradients are calculated is also dependent on the neural
network controller’s topology and the loss function that is employed.

The simplest method to calculate these policy gradients is to reinforce or deter every state-
input pair in the episode based on the performance of the episode. In order to illustrate
an algorithm for finding these policy gradients, it will be assumed that the neural network
controller uses labelled inputs (see Section 3-1-1) and is of a multilayer perceptron topology.
In case of labelled inputs, reinforcing the state-input pair will generate a reinforcing input
label for that state-input pair. This entails generating a label where the input that was used
for that state has a certainty of 100% and all the other inputs have a certainty of 0%. This
allows for the computation of the policy gradient that reinforce the control policy. A gradient
descent step will then make the state-input pair more ’certain’ and hence increase the change
that the neural network controller will output that policy in the future. If the input for that
state is to be deterred, for labelled inputs, a deterring label will be generated which will
put all the inputs at 100% except for the input that was used. This algorithm is depicted
in Algorithm 1. In this algorithm P is the performance flag of the episode which is 1 if it
’adheres’ to the specification and 0 otherwise, X is the array of normalized quantized states
~xnn in the episode and U is the array of inputs in the episode. The function i : N0 → Ua
maps the index j of the output neurons to the actual input which that neuron labels.

The algorithm for calculating the policy gradient for the neural network controller as stated is
just an example of such an algorithm. This algorithm can be extended to other neural network
controller types and topologies, such as the unlabelled input neurons controller topology.
Furthermore, more sophisticated algorithms could be developed that reinforce based on the
contribution that each state-input pair has on the performance of the episode.

3-4 System verification

In Section 3-3 the employed methodology to synthesize neural network controllers is outlined.
However, after training the resulting neural network controller still lack the formal guarantees
that ensure the controlled system adheres to the predefined specification.

As discussed in Section 2-2, correct-by-design control often employs finite cardinality abstrac-
tions of the original system in order to synthesize controllers. The same techniques can also
be used to verify the controller’s behaviour. Once the neural network controller has been
trained for an arbitrary number of episodes, the network training routine is switched over to
the system verification routine. In the system verification routine, the abstracted feedback
controlled system is considered and verified using fixed-point based verification algorithms.
These numerical verification algorithms can be used due to the fact that the abstracted system
is of finite cardinality. Any guarantees that the verification algorithm yields for the abstracted
system also hold for the original system. This is due to the fact that these two systems are
behaviourally equivalent due to the simulating relation between them (see Section 3-2).
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Algorithm 1 Computation of the policy gradients and training of a neural network controller
using reinforcement learning for labelled inputs.
1: procedure ReinforcementLearningController(P, X , U)
2: L ← 0
3: for i← 1, N do
4: ~xnn ← Xi
5: ~u← Ui
6: ~unn ← f(~xnn,θ)
7: for j ← 1, |~u| do
8: if P = 1 then
9: if ~u = i(j) then
10: Lj ← 1
11: else
12: Lj ← 0
13: end if
14: else
15: if ~u = i(j) then
16: Lj ← 0
17: else
18: Lj ← 1
19: end if
20: end if
21: end for
22: L ← L−

∑|~u|
j=1 ‖Lj‖ log(unnj )

23: end for
24: θ ← θ − λ∇θL
25: end procedure
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In this section the verification method that is employed to verify the controlled system’s
behaviour is outlined. First the notion of a partial abstraction will be described. Then the
use of fixed-point algorithms shall be explained in order to find the set for which the controller
adheres to the specification. Finally, the integration between the system verification routine
and the neural network training routine shall be discussed.

3-4-1 Partial abstraction

Once the synthesize procedure enters into the system verification routine, a partial abstraction
of the controlled system is created. The abstraction is only a partial one since the transitions
that the system is allowed to take are constraint by the neural network controller. The
partial abstraction of the system is a system that simulates the origin system via the feedback
refinement relation. This particular simulation relation is reviewed in Section 2-2-4.

The main idea is to create a set of hyper-rectangular cells (hyper-cells) that cover the bounded
state space as imposed by the state space quantizer. Each of these cells is then a subset of the
state space and the behaviour of these cells is considered instead of every point in the bounded
state space. This ensures that the resulting partial abstraction is of a finite cardinality and
therefore numerical methods can be utilized. By employing this simulating abstraction, the
behaviour of a state in the bounded state space can be over-approximated by considering the
hyper-cell in which that state is included. The behaviour of the hyper-cell can then be used
to provide guarantees on the behaviour of the state given that the plant is being controlled
by the neural network controller.

Mathematically the partial abstraction system Sp that simulates S via the feedback refinement
relations can now be described:

• X̄p is a cover of the state space X by non-empty, closed hyper-intervals and every
element xp ∈ X̄p is compact.

• Up ⊆ Ua | ∀up ∈ Up, ∃~c ∈ X̄p s.t. γg(f(~c,θ)) = up

• (xp, up, x′p) ∈ → | xp ∈ X̄p, up = γg(f(~c,θ)) ∈ Up and x′p ∈ X̄p s.t. Postup(xp) ∩ x′p 6= ∅

• Postup(xp) = ∅ whenever xp ∈ X \ X̄p, up ∈ Up

In this definition γg(f(~c,θ)) denotes the greedy input from the neural network controller, ~c
is the center of the hyper-cell and Postup(xp) is a function that returns the set to which the
dynamics of the plant map based on the initial cell and the input. In actuality, the neural
network is fed a normalized quantized representation of the cell centers f(n(q(~c)),θ). For
readability, the normalization and quantization functions are ommited.

Once the partial abstraction is formally established the over-approximation function is re-
quired in order to compute that transitions that the partial abstraction makes based on the
neural network controller’s input.

To find the input as prescribed by the neural network controller for a given hyper-cell, the
center of that cell is presented to the neural network controller. The output of the neural
network controller is then greedily chosen to be the output with the highest probability. Based
on that, the set of hyper-cells that over-approximate the dynamics can be computed. The
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over-approximation function thus provides a mapping from single hyper-cells to a set of hyper-
cells. In order to save computational power and time during synthesis, it is possible to save
the transitions that have already been computed during synthesis. This slowly generates a
fuller abstraction until at some point the neural network has exhausted all possible transitions.
This method however scales poorly with higher state and input spaces, therefore it is also
possible to compute the transitions of the system ad hoc and not store them. This frees up
memory and allows for larger state and input spaces at the cost of longer synthesis times.

How the over-approximation function is defined is based on the dynamics of the plant. For
linear dynamics less conservative over-approximations can be computed that for nonlinear
dynamics. Both means of defining the over-approximation function will now be discussed.

Linear dynamics

For linear dynamics, the linearity of the plant can be exploited to compute a less conservative
over-approximation than is available for non-linear dynamics. The important observation
here is that iterating the vertices of the hyper-cell with the plant’s dynamics would result
in a convex hull that describes the set of states to which any state in the initial hyper-cell
maps. The set of hyper-cells that defines the over-approximated set therefore consists of all
the hyper-cells that intersect with this convex hull.

Finding the hyper-cells that intersect with the convex hull of the dynamics is not a trivial
task. In this thesis, this is achieved by performing a flood fill algorithm that starts at the
center of the resulting convex hull. The hyper-cell that includes that center is by default
added to the set with which the convex hull intersects. From that cell, the flood fill algorithm
procedurally adds the neighboring cells to be checked for intersection as long as those cells
have not already been checked. In this manner every cell that could potentially intersect with
the convex hull is checked. Individual hyper-cells are checked for intersection by checking if
at least one of the vertices of that hyper-cell is within the bounds of the convex hull. This is
done by finding the linear functions and normals that describe each of the hyper-planes of the
convex hull. The normals are calculated such that the center of the convex hull is considered
inside of the convex hull. Checking each if a point is in the convex hull is then simply a matter
of checking whether or not the projection onto the normal of the hyper-planes is positive or
negative. If all projections are positive it means that the point is in the convex hull. If
anyone of the projections is negative it means it is outside of the convex hull. Thus, for every
hyper-cell that the flood fill algorithm processes, it checks if the vertices of the hyper-cell
under investigate are inside of the convex hull. If any of the vertices are inside the convex
hull, it means the hyper-cell intersects the convex hull and is thus added to the new state
set X ′. This flood fill algorithm automatically terminates once all the intersecting cells have
been checked and added to the new state set X ′. The over-approximation function returns
the new state set X ′.

The algorithm for finding the intersecting hyper-cells with the plant iterated convex hull is
described in Algorithm 2. In this algorithm N represents the set of normal vectors that are
normal to the edges of the convex hull and point to the center of the convex hull, V are the
vertices of the convex hull, c is the center of the convex hull and d the distance metric:

d : X̄p × X̄p → R (3-14)
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Figure 3-6: An example of the over-approximation for a two dimensional example with linear
dynamics. Given a single hyper-cell (the one on the left) the plant’s dynamics would result in the
transitions to the set of hyper-cells, indicated in light gray, based on the convex hull of the iterated
single hyper-cell, indicated in dark gray. The resulting set is a simulating over-approximation of
the linear dynamics of the actual plant.

that maps two hyper-cells in X̄p to a distance metric. The observant reader will note that this
algorithm only works for spaces with a dimension of at least 2. For 1 dimensional systems
this algorithm is adjusted to check whether or not the vertices are inside or outside of the
bounding vertices.
In order to illustrate the idea, Figure 3-6 represents the over-approximated set for a single
hyper-cell. In the figure the plant is two dimensional and thus the state space is also two
dimensional. The light gray cells represent the set of hyper cells to which the origin hyper-cell
maps. The dark gray shape is the convex hull to which any state in the initial cell maps based
on the dynamics of the plant.
To illustrate why this particular method is less conservative than the traditional method for
linear systems, an illustration demonstrating the traditional method is provided in Figure 3-7.
The traditional method here refers to the method as employed by PESSOA[23] and SCOTS[31]
(if the growth bound exactly encapsulates the outer vertices) for linear systems. Comparing
Figure 3-6 and Figure 3-7 indeed reveals that the over-approximation based on the convex
hull is considerably less conservative. It should however be noted that it is computationally
significantly more expensive due to the flood fill algorithm when compared to the traditional
method.

Nonlinear dynamics

For nonlinear dynamics, the convex hull methodology as discussed in the previous subsection
is not available since the plant does not exhibit linear dynamics. Hence a different approach
to finding the over-approximation function needs to be employed. In this thesis work, for
nonlinear dynamics, the same methodology is employed as used in the synthesis tool SCOTS
by Rungger et al. [31]. They propose the use of a radial growth bound function β(r, ~u)
which provides a radial bound on the dynamics where r is the radius of the hyper-cell and
~u the input for that cell. The input for a particular hyper-cell in the state space is found,
similarly to how it is found for linear dynamics, by providing the neural network controller
with the normalized quantized center of the hyper-cell and greedily picking the input from
the probabilistic output of the network.
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Algorithm 2 Flood fill algorithm to find the hyper-cells intersecting the convex hull
1: procedure FindIntersections(N , V, ~c)
2: X ′ ← {} . Hyper-cells that intersect with the convex hull
3: I ← {~c} . Unprocessed hyper-cells
4: P ← {} . Processed hyper-cells
5: while |I| > 0 do
6: h← I(0) . Get first hyper-cell in unprocessed hyper-cells
7: V ← Vertices of hyper-cell h
8: i← 0 . Hyper-cell intersects flag
9: for all ~v ∈ V do
10: f ← 1 . Vertex in convex hull flag
11: for all n ∈ N do
12: ~nv ← Vn . Vertex of convex hull that belongs to that normal
13: ~δ ← (~v − ~nv)
14: p← ~n · ~δ . Project vertex onto edge
15: if p < 0 then
16: f ← 0
17: break
18: end if
19: end for
20: if f = 1 then
21: i← 1
22: break
23: end if
24: end for
25: if i = 1 ∪ (~c ∩ h 6= ∅) then
26: X ′ ← X ′ ∪ h . Add hyper-cell to set of transitionable hyper-cells
27: I ← I ∪ {x ∈ X \ P | d(h, x) ≤ η} . Add unprocessed neighboring hyper-cells
28: end if
29: I ← I \ h . Remove hyper-cell from unprocessed cells
30: P ← P ∪ h . Add hyper-cell to processed cells
31: end while
32: end procedure
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Figure 3-7: An example of a more conservative over-approximation for a two dimensional example
with linear dynamics. Given a single hyper-cell (the one on the left) the plant’s dynamics would
result in the transitions to the set of hyper-cells, indicated in light gray, based on the intersection
with the rectangle that encapsulates the outer vertices.

In their paper on the feedback refinement relation, Reissig et al. [28] also provide a general
method to compute the radial growth bound based on the Jacobian of the plants dynamics.
The Jacobian here is defined as the matrix L with:

Li,j(u) ≥
{
Djfi(x, u) if i = j

|Djfi(x, u)| otherwise
(3-15)

Based on this definition of the Jacobian the radial growth bound for nonlinear plants becomes:

β(r, u) = eL(u)τr +
∫ τ

0
eL(u)sw ds (3-16)

where τ is the sampling time of the plant, r is the radius of the hyper-cells and w is a
disturbance term. The radial growth bound thus becomes r′ = β(r, ~u). The set of hyper-cells
to which a hyper-cell can transition X ′ and which describes the over-approximation function
then comes:

X ′ = {xp ∈ X̄p | (φ(τ,~c, f(~c,θ)) + [[−r′, r′]]) ∩ xp 6= ∅} (3-17)

where φ(τ,~c, ~u) describes the nominal dynamics of the plant.

The idea of using a radial growth bound to compute the transfer function is illustrated for
a two dimensional example in Figure 3-8. The light gray hyper-cells represent the set of
hyper-cells with which the growth bound intersect and hence form the set to which the initial
hyper-cell on the left maps. The dark gray hull represents the non-convex hull to with any
state in the initial hyper cell maps based on the dynamics of the nonlinear plant.

3-4-2 Fixed-point algorithms

Based on the partial abstraction, fixed-point algorithms can now be used to find the subset
of the finite cardinality state space for which the neural network controller adheres to the
predefined control specification. The fixed-point algorithms, that are used for this purpose,
are based on the control specification to which the controller needs to adhere. A more thorough
review of fixed-point algorithms and there use is provided in Section 2-2-5.
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Figure 3-8: An example of an over-approximation for a two dimensional example with nonlinear
dynamics. Given a single hyper-cell (the one on the left) the plant’s dynamics would result in
the transitions to the set of hyper-cells indicated by the light gray colour. This set is the set
of hyper-cells that intersect with the radial growth bound. The dark gray non-convex hull is a
simulating over-approximation of the nonlinear dynamics of the actual plant.

For a reachability control specification, the fixed-point algorithm needs to find the set for
which the feedback controlled system is able to reach the to be reached set. Given the partial
abstraction as discussed in the previous section, finding this set is a matter of iterating the
reachability fixed-point operator. The fixed-point operator for a reachability specification is
defined in Definition 2-2-11. For the partial abstraction, where the inputs are fixed to those
of the neural network controller, this operator is defined as:

GW (W ) = {xp ∈ Xp | xp ∈ Z ∪ up = γg(f(~xnn,θ)), ∅ 6= Postup(xp) ⊆W} (3-18)

whereW is the resulting winning set and Z is the to be reached set. Iterating this set operator
is guaranteed to end in a fixed-point. Reaching such a fixed-point will reveal the conservative
set for which the neural network controller is able to adhere to the predefined specification.
For an invariance control specification, the same strategy can be applied. The fixed-point
operator for an invariance specification is defined in Definition 2-2-10. For the partial ab-
straction, the fixed-point operator becomes:

FW (W ) = {xp ∈W | xp ∈ Z ∩ up = γg(f(~xnn,θ)), ∅ 6= Postup(xp) ⊆W} (3-19)

where W is the resulting winning set and Z is the invariant set. Similarly to the reachability
operator, iterating this set operator is guaranteed to end in a fixed point. The resulting set
W is the set for which the neural network controller is guaranteed to keep the plant in the
invariant set Z.
This strategy can be extended to combinations of these fundamental control specification. An
example of which would be the reach and stay control specification as defined in Definition
2-2-12. This would be achieved by first finding the invariant set and then applying the
reachability operator to find the set for which that invariant set is reachable.
Performing such fixed-point iterations using partial abstractions thus provides formal guar-
antees on the behaviour of neural network feedback controlled systems. Since the partial
abstractions simulate the original systems via the feedback refinement relation, the resulting
guarantees also hold for the original system. It can thus be said that the synthesis procedure
produces correct-by-design neural network controllers with the required guarantees on their
behaviour.
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3-4-3 Synthesis guiding

The network training and system verification routine, as discussed in the previous sections,
result in correct-by-design neural network controllers with the required guarantees. The net-
work training and system verification routines can provide this independently of one another,
meaning that no interaction between them is required. It should however be noted that the
system verification routine provides meaningful insights on the subset of the state space for
which the neural network controller works appropriately and for which it does not. This
information can be used to guide the neural network training routine and hence make it more
expedient. There are a number of options available to achieve this. In this section a number
of these options shall be discussed. Throughout this section, the set for which the neural net-
work controller is able to adhere to the predefined control specification, is called the winning
set W ⊆ Xp.

Perhaps the most intuitive method to integrate the verification and the synthesize routine is
to change the initial state set I0. The initial state set I0 provides a set of states from which
the network training routine picks a state at the start of each new episode. By changing
this initial state set I0 based on the winning set W , it is possible to let the network training
routine ’focus’ on a certain subset of states for which the controller currently does not adhere
to the specification. In practice it is more useful to provide the network training routine with
a few of these initial state focuses and switch between them in a round-robin fashion. This
makes sure the neural network does not focus excessively on one particular subset, which
could cause the network to ’lose’ its broader and perhaps already correct behaviour.

To illustrate the idea of training focuses during synthesis, a number of training focuses shall
now be described.

• All states: The initial state set I0 contains all states in the state space in case of
reachability and the entire invariant set in the case of invariance. This is the most
generic and default training focus.

• Single state: The initial state set I0 is restricted to a single state I = {s}, this causes the
network training routine to repeatedly train on a single state and exhaustively explore
all the control possibilities.

• Radial outwards: The initial state set I0 is progressively grown radially from the goal
state set. This training focus is of particular use in a reachability control specification.
By progressively and radially expanding the initial state set around the goal set, the
neural network controller first learns to control the system when it is close to the goal
set. By radially expanding the initial state set I0 the neural network controller can then
’build’ on previously attained knowledge to expand its winning set W .

• Losing states: The complement of the winning set W c is used as the initial state set I0.
This causes the training to focus on all the states for which the neural network controller
currently cannot adhere to the specification. The advantage of using this focus is that is
gives the controller ample opportunity to learn to control the system from initial states
that are currently not in the winning set. The disadvantage is that these states could
potentially be uncontrollable simply due to the nature of the plant. This would cause
the network to try to learn an uncontrollable state and thus waste computational power
and synthesis time.
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• Neighbouring losing states: Similarly to the losing states training focus, this training
focus focuses on states that are in the complement of the winning state W c. The
difference is that it only considers losing states that neighbour states in the winning set
W . The idea is, similarly to the radial outwards training focus, that the neural network
controller can then easily learn the required behaviour to also include this currently
losing state.

It should be noted that this list of possible training focuses is not exhaustive and more and
novel ways of integrating the system verification routine and network training routine using
these focuses could be explored in the future.

Another method of integrating the system verification and network training routine is to
reinforce the control policy whenever an episode enters into the winning set W in case of
a reachability specification. This means that entering the winning set W will become an
additional episode terminating condition and that ending an episode inside the winning set
W will reinforce the control policy. The idea is that once the episode enters the winning set,
that a previous system verification routine call has already determined, the controller already
adheres to the specification. It can hence reinforce the control policy as from that state it
can reach the goal set. It should be noted that during the network training routine, it is
no longer certain whether or not a hyper-cell in the winning set still is contained within the
winning set, due to the fact that the control policy is being adjusted. The hope is that the
neural network will retain most if not some of its previously learned behaviour and learn to
steer the state to a state from which it can already control the system appropriately.

3-5 COSYNNC

The methodology as discussed in this chapter has been implemented into a software correct-
by-design neural network synthesis framework called COSYNNC2. The software is intended
as a framework which can be extended by the user in order to generate correct-by-design
neural network controllers according to the user’s specification. These specifications include
the neural network controller topology, neural network topology, plant dynamics and control
specification. The framework was written in a C++14 environment and is currently limited to
single thread CPU based execution. The framework uses the MXNet deep learning library3 for
all of the native neural network manipulations. An overview of the structure of the framework
is depicted in Figure 3-9.

In its most primitive form, a correct-by-design neural network controller can be synthesized
using COSYNNC by using the native multilayer perceptron neural network controller topol-
ogy as provided by COSYNNC. The user is then required to provide the appropriate plant
dynamics in the form of a class that inherits from the generic Plant class. For linear dynamics
this would simply comprise of the dynamics of the plant. For nonlinear dynamics this would
comprise of the dynamics of the plant and a radial growth bound on the dynamics of the
plant. Once the plant is specified the user specifies the state and input quantizer param-
eters, which implicitly define the partial abstractions. The user is then required to define

2The framework is available at: https://github.com/WardvanderVelden/COSYNNC
3The MXNet deep learning library can be found at: https://mxnet.apache.org/
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Figure 3-9: An overview of the structure of the COSYNNC framework. The filled arrows indicate
that the class is instantiated or used by the class towards which it points. The hollow arrows
mean that the class from whence that arrow came inherits its properties and behaviour from the
class towards which the arrow points.

the synthesis parameters such as the episode finite horizon N , the control specification and
the different training focuses that should be used during training. In addition to these fun-
damental synthesis parameters, there are also some additional and experimental parameters
and functionalities that can be used such as norm-based reinforcement (reinforcing when the
norm of the episode decreases) and winning set reinforcement (reinforcing when the episode
ends in a previously calculated winning set). An example of the code required to synthesize
a reachability controller for the Rocket example (as discussed in Section 4-2-1) is provided in
Appendix A.

After these parameters have been defined and the framework has been successfully built, the
synthesis procedure can be executed. During the synthesis procedure, the methodology as
described in this chapter will be executed in code in order to synthesize a correct-by-design
neural network controller. During each system verification routine, the framework will save
the current neural network controller. In addition to this it is also possible to save the winning
set, a SCOTS like static controller and the transitions that the partial abstraction contains
during the system verification routine. The percentage size of the winning set W that the
verifier found, with respect to the size of finite cardinality state space set, will be logged during
synthesis. An overview of all the different outputs that COSYNNC can natively provide and
their respective definition is given in Table 3-1.

Besides the ability to synthesize correct-by-design neural network controllers, COSYNNC
also has an encoder which allows encoding the winning set W of the correct-by-design neural
network controller as a neural network. The neural network controller itself and a neural
network encoded representation of this set together form a full correct-by-design controller.
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Table 3-1: An overview of the different outputs that COSYNNC can natively provide.

Name Definition Extension

Raw Neural Network
A minimalistic representation of the topology,
the weights and biases are encoded as doubles
and stored hexadecimally

.raw

MATLAB Neural Network
A representation of the weights and biases using
matrices and vectors such that it can be read
out and used in a MATLAB environment

.m

MATLAB Winning Set
A representation of the winning set such that it
can be read out and used in a MATLAB envi-
ronment

.m

MATLAB Controller
A representation of the resulting controller as a
look-up table such that it can be read out and
used in a MATLAB environment

.m

Static Controller A representation of the resulting controller as a
look-up table formatted as readable by SCOTS .scs

This allows for the creation of a full correct-by-design control structure which boasts the same
properties as a traditional correct-by-design controller.

As part of this thesis work, some additional tools were developed to complement and com-
pare the resulting correct-by-design neural network controllers. One of these tools allows for
the conversion of the partial abstraction transition file, as presented by COSYNNC, into a
traditional nondeterministic correct-by-design controller using SCOTS. This allows for com-
parison between the COSYNNC verified controller and a traditional SCOTS based controller.
In addition to this, another tool was developed which converts the correct-by-design neural
network controller into a binary decision diagram that represents the same information. This
also serves as a metric for comparison between neural network controllers and traditional
binary decision diagram stored controllers.
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Results

In this chapter results will be presented that validate the methodology to synthesize correct-
by-design neural network controllers as described in Chapter 3. In order to do so, first the
metrics which are employed in order to compare the different correct-by-design controllers
are discussed. After that, a few different plants will be considered and trained using different
training parameters and compared using these metrics.
The considered classes of systems are: linear systems, linear hybrid systems, nonlinear systems
and nonlinear hybrid systems. With linear and nonlinear systems, the notion of systems that
have only a single mode with linear or nonlinear dynamics is meant. With linear and nonlinear
hybrid systems, the notion of systems with multiple modes with linear or nonlinear dynamics
is meant.

4-1 Metrics

In order to appropriately present the results and derive a meaningful conclusion from those
results, it is paramount to define a few metrics and their meaning. These metrics will be
evaluated for the plants presented in the results. The primary, non-quantifiable metrics are,
a visual inspection of the controller’s behaviour and its winning set W and a visual inspec-
tion of the partitions as presented by the neural network controller. This visual inspection
allows one to confirm that the controller is exhibiting its intended behaviour and hence acting
appropriately.
The quantifiable metrics that are presented in this chapter will primarily consist of data
sizes in bytes that represent the number of bytes required to store a certain type of controller.
These metrics will include the data requirement of the neural network controller in bytes (NN),
the data requirement of a binary decision diagram encoding the winning set W in bytes (W
BDD) and a binary decision diagram encoding the nondeterministic SCOTS correct-by-design
controller using the same abstraction (BDD).
It should be noted that the sum of the data required for the correct-by-design neural network
controller (NN) and a binary decision diagram encoding the winning setW (W BDD) encodes
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the same information as a correct-by-design controller traditionally would. Hence the sum of
the two form another metric of interest (NN + W BDD).

In addition to these metrics, a binary decision diagram stored representation of the neural
network controller (NN BDD) is also computed. This stores the same information as the
neural network (NN) and binary decision diagram of the winning setW (W BDD). It therefore
provides an insight into the compressive capability of both binary decision diagrams and
neural networks. Furthermore, it is also a deterministic correct-by-design controller just like
the correct-by-design neural network controller. It will therefore be taken as the baseline for
comparing the data requirements for the correct-by-design neural network controllers to the
traditional correct-by-design controllers.

There are also more refined methods of determinizing nondeterministic correct-by-design con-
trollers. These methods attempt to pick inputs such that the binary decision diagram that
encodes the controller is minimized. In this thesis work, the methodology and tools as pre-
sented by Zapreev [37] will be used to determinize the nondeterministic correct-by-design
controllers as synthesized using SCOTS and stored as binary decision diagrams (D BDD).
Unfortunately, these tools are only available for a version of SCOTS that was not utilized in
this thesis work. Therefore, this D BDD comparison is not available for all of the plants.

Since the binary decision diagram of the winning set W (W BDD) still suffers the same issues
as an ordinary binary decision diagram, a neural network representation of the winning set
is also synthesized (W NN). This neural network has two output neurons that return an
output larger than a predefined threshold σ based on whether or not the state of the plant
is in the winning set or not. Combined with the correct-by-design neural network controller
(NN + W NN), these two neural networks encode the same information as a traditional
correct-by-design controller.

A concise overview of all of these different data requirement metrics for the different structures
and their abbreviations is presented in Table 4-1.

Another relevant metric is the amount of time that is required to synthesize these different
structures. The main structures that are of interests with respect to the required synthesis
time are the correct-by-design neural networks themselves (NNt), the neural network encoding
the winning set (WNNt) and the traditional correct-by-design controllers stored as binary
decision diagrams (BDDt). The reason why only these structures are deemed to be interesting
is because these are the only structures that are actually synthesized. The other structures
are created by converting one data structure to another data structure which takes, relatively
speaking, only a trivial amount of time. The additional time it takes is in the order of 1 second.
Hence the time required for the other structures is simply the time required to synthesize the
base controller plus a small bias. This implies that for both the W BDD and the NN BDD
the synthesis time is equivalent to NNt and for the D BDD it is equivalent to BDDt. A table
that depicts these time metrics and their abbreviations is presented by Table 4-2. All of the
structures of interest are generated on CPU based software running on an i5-7500 3.4 GHz
CPU overclocking to 3.8 GHz and 16 GB of RAM at 2400 MHz unless noted otherwise.

The final metrics have to do with the completeness of the different neural network structures.
One of these metrics is the completeness k of the correct-by-design neural network controller
with respect to a traditional correct-by-design controller. The completeness is defined as the
size of the winning set Ws for the controller synthesized using SCOTS and the size of the
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Table 4-1: The abbreviation and meaning of the data requirement metrics

Abbreviation Unit Meaning

NN #bytes Data requirement of the neural network controller

W BDD #bytes Data requirement of a binary decision diagram encoding
the winning set W

NN + W BDD #bytes The combined data requirement of NN and W BDD

W NN #bytes Data requirement of a neural network encoding the win-
ning set W

NN + W NN #bytes The combined data requirement of NN and W NN

NN BDD #bytes
Data requirement of a binary decision diagram of the
neural network controller encoding only the inputs for
states inside the winning set W

D BDD #bytes Data requirement of a binary decision diagram encoding
a deterministic SCOTS correct-by-design controller

BDD #bytes Data requirement of a binary decision diagram encoding
the nondeterministic SCOTS correct-by-design controller

Table 4-2: The abbreviation and meaning of the time metrics

Abbreviation Unit Meaning

NNt s The amount of time required to synthesize the correct-
by-design neural network controller

WNNt s The amount of time required to train a neural network
to encode the winning set W

BDDt s The amount of time required to synthesize the traditional
correct-by-design controller using SCOTS
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winning set W of the COSYNNC neural network controller. Both of these controllers are
synthesized using the same quantization parameters, which results in similar abstractions.
The completeness k is mathematically defined as:

k = |W |
|Ws|

(4-1)

The completeness represents to what extend the neural network controller encodes the same
information as the traditional correct-by-design controller. It is also a measure of how close
the neural network controller is to obtaining the largest obtainable winning set given the
synthesis parameters.
For the neural network encoding the winning set W (W NN) similar completeness metrics
are relevant. The extent to which the neural network encoding the winning set encompasses
the entire winning set will be denoted by its completeness kW defined as:

kW = |Xw|+ |Xl|
|Xa|

(4-2)

where Xw = {x ∈ Xa | x ∈ W ∩ ~y2 ≥ σ} and Xl = {x ∈ Xa | x ∈ W c ∩ ~y1 ≥ σ} with
~y = fWNN (~x,θWNN ) as defined in Definition 2-1-1 and σ the significance that the neural
network needs to output to be taken as the truth. If this metric becomes 1 it implies that the
neural network successfully encodes the subset of the state space Xa for which the states are
in the winning set W and the subset for which they are outside of the winning set W c. If kW
is not 1 it implies that the neural network is not encoding parts of the winning set or encoding
them wrongly. In that case it is relevant to know how many false positives the neural network
is providing. These are states for which the neural network encoding the winning set claims
they are inside the winning set while they are actually not. If a neural network that encodes
the winning set is used, for which its completeness kW is not 1, it is important to verify that
it at least does not provide any false positives. The number of false positives with respect to
the cardinality of the state space kFP is defined as:

kFP = |Xf |
|Xa|

(4-3)

where Xf = {x ∈ Xa | x ∈ W c ∩ ~y2 ≥ σ} with ~y = fWNN (~x,θWNN ) as defined in Definition
2-1-1 and σ the significance that the neural network needs to output to be taken as the truth.
These two metrics and the data requirement for the neural network encoding the winning
set (W NN) will allow for a thorough comparison between correct-by-design neural network
controllers and traditional binary decision diagram stored correct-by-design controllers.
All of these metrics will allow for useful insight to be gained about the effectiveness of correct-
by-design neural network controllers and how they compare to their traditional counterpart.
Since the amount of data required to store correct-by-design controllers is a major limitation
in correct-by-design control, the data related metrics could provide valuable insights into the
deployability of neural network controllers.

4-2 Linear systems

In this section, linear systems will be considered and synthesized into correct-by-design neural
network controllers. These controllers will then be compared to traditional correct-by-design
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controllers.

4-2-1 Single-input single-output systems

First, a SISO system will be considered that models a rocket that is fighting the force of
gravity. The rocket can only travel on a one-dimensional axis and the position and velocity of
the rocket make up the state of the rocket. The state space is therefore planar. The dynamics
of the rocket are mathematically described as:

~̇x =
[
ẏ
v̇

]
=
[
0 1
0 0

] [
y
v

]
+
[

0
1
M

]
u+

[
0
−g

]
(4-4)

where y represents the position on its axis of freedom, v the velocity on that axis,M the mass
of the rocket and g the acceleration the rocket experiences due to the force of gravity. The
input u represents a force in N that is being exerted on the rocket due to the rocket engines
firing. The firing of the rocket engines is the control input of the system.
A number of controllers can now be synthesized in order to make the feedback controlled
system adhere to a set based predefined specification. A straight forward specification would
be to have the controller fly the rocket to the equilibrium point where its position is y = 0
and v = 0. This will be modelled by specifying a reachability control specification with the to
be reached set Z defined as all the points x ∈ X where y ∈ [−1, 1] m and v ∈ [−1, 1] ms . The
mass of the rocket is taken to be M = 267 kg and the acceleration due to gravity g = 9.81m

s2

For the abstraction, the state space of the systems is restricted to y ∈ [−5, 5] m and v ∈
[−10, 10] ms with the state quantization parameter ~η = [0.1 m, 0.1 m

s ]T . These parameters
result in a state space which contains 20301 states. The input space is defined as u ∈
[0, 6000] N with the quantization parameter ηu = 1000 N . The topology that is used for the
neural network controller is a multilayer perceptron network with a 2 − 12 − 8 − 7 topology
where the hidden layer depth is thus 2. The network uses ReLU activation functions. For
this example, the training focuses radial outwards, losing states and all states are used. The
sampling time is set to τ = 0.1 s, the finite horizon to N = 50 and λ = 0.0075.
Synthesizing the controller results in a controller with a winning set W containing 76.7992%
of the bounded state space. The total synthesis time for this controller is NNt = 2842 s. The
winning set and a feedback controlled walk of the plant is depicted in Figure 4-1. Plotting
the partitions of the neural network reveals how the neural network controller controls the
system. The partitions are depicted in Figure 4-2.
Although these plots proof that neural network controllers can indeed be used to control such
linear systems, they do not boast a lot of meaningful information unless they are compared
to a valid baseline. For this purpose, the metrics as presented in Table 4-1 are evaluated.
Synthesizing a correct-by-design controller in SCOTS yields a completeness of k = 100%
since both the SCOTS controller and the neural network controller boast a winning set size
W of 76.7992%. The synthesis procedure uses the same linear transitions as calculated by
COSYNNC. The total synthesis time for the SCOTS controller is BDDt = 179 s. The SCOTS
controller is synthesized using the same abstraction parameters as the COSYNNC controller.
Furthermore, a neural network is trained to encode the winning setW of the correct-by-design
neural network controller. This neural network is multilayer perceptron of a 2 − 8 − 8 − 2
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Figure 4-1: The winning set W of the correct-by-design neural network controller of the rocket
system for a reachability specification. The blue hyper-cells are hyper-cells in the winning set W ,
the red hyper-cells and green hyper-cells are hyper-cells outside of the winning set. The green
hyper-cells are hyper-cells which do not have a formal guarantee but for which the state in the
center does reach the to be reached set given a finite horizon. The white trace represents a
feedback controlled walk to demonstrate the performance of the controller.
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Figure 4-2: The partitions that the controller creates. The colored areas represent a particular
input being fed to the plant given that the plant is in that subset of the state space. The white
trace represents a feedback controlled walk to demonstrate the performance of the controller.
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Table 4-3: The required amount of data per structure for the reachability rocket controller.

Structure Data requirement Unit

NN 781 #bytes
W BDD 1813 #bytes
NN + W BDD 2594 #bytes
W NN 461 #bytes
NN + W NN 1242 #bytes
NN BDD 3014 #bytes
BDD 13791 #bytes

Data required per structure
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60.1526%

86.065%
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Figure 4-3: An overview of the different controllers and winning set representations in terms
of their data requirement in bytes for the reachability rocket controller. The definition of the
different structures is provided in Section 4-1.

topology and encodes kW = 97.01% of the winning set W . It does so while providing kFP =
0.00% false positives. The training time required to train this neural network encoding the
winning set is WNNt = 6021 s.

A table of the required data in bytes is depicted in Table 4-3. A graphical representation of
the data required per structure and how this relates to the NN BDD structure is depicted in
Figure 4-3.

4-2-2 Multiple-input multiple-output systems

Another linear system will be considered that is a multiple-input multiple-output (MIMO)
system. The system is simply a randomly generated 2x2 matrix with two different input
dimensions in order to yield a MIMO system. The system can be described using a state-
space representation as:

~̇x =
[
3.8045 0.7585
5.6782 0.5395

]
~x+

[
5.3080 9.3401
7.7917 1.2991

]
~u (4-5)
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Figure 4-4: The winning set W of the correct-by-design neural network controller of the MIMO
system for an invariance specification. The blue hyper-cells are hyper-cells in the winning set
W , the red hyper-cells are hyper-cells outside of the winning set. The white trace represents a
feedback controlled walk to demonstrate the performance of the controller.

The poles of the uncontrolled system (u = [0, 0]T ) lie at λ1 = 4.8124 and λ2 = −0.4684. The
system is therefore unstable if left uncontrolled.

A neural network controller will be synthesized for this MIMO system to adhere to an in-
variance control specification. The state space is first restricted to ~x ∈ [−5, 5] × [−5, 5]
with state quantization parameter ~η = [0.1, 0.1]T . These parameters result in a state space
which contains 10201 states. The input space is restricted to ~u ∈ [−5, 5] × [−2.5, 2.5] with
input quantization parameter ~ηu = [5, 2.5]T . The quantization of the input space is in-
tentionally made very rough to prevent the input space from becoming very large. The
controller is tasked with making sure that the state of the plant stays in the invariant set
~x ∈ [−2.505, 2.505]× [2.505, 2.505]. The neural network controller is a multilayer perceptron
with a 2−8−8−9 topology and labelled output neurons. The network uses ReLU activation
functions. The employed training focuses are radial outwards and neighboring losing states.
The sampling time is set to τ = 0.025 s, the finite horizon to N = 25 and λ = 0.0075.

After NNt = 2328 s of running the synthesis routine the verification routine returns a con-
troller that has a winning set of 25.4975%. This is equivalent to the entire invariant set,
signifying that the neural network controller has found the appropriate control inputs to
make sure the plant stays in the invariant set. A plot of the winning set is depicted in Figure
4-4. The partitions that are formed by the neural network controller is visualized in Figure
4-5.

In order to provide a comparison in terms of the required data for this MIMO neural net-
work controller, a comparison is again made to a conventional correct-by-design controller
synthesized using SCOTS. Synthesizing the SCOTS controller using the same abstraction
parameters results in the same winning set that contains 25.4975% of the state space. The
synthesis procedure uses the same the linear transitions as calculated by COSYNNC. The
total synthesis time for the SCOTS controller is BDDt = 99 s. The completeness of this
neural network controller is therefore k = 100%.
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Figure 4-5: The partitions that the controller creates. The colored areas represent a particular
input being fed to the plant given that the plant is in that subset of the state space. The white
trace represents a feedback controlled walk to demonstrate the performance of the controller.

Table 4-4: The required amount of data per structure for the MIMO invariance controller.

Structure Data requirement Unit

NN 713 #bytes
W BDD 701 #bytes
NN + W BDD 1414 #bytes
W NN 461 #bytes
NN + W NN 1174 #bytes
NN BDD 1197 #bytes
BDD 3442 #bytes

A neural network is also trained to encode the winning set W of the correct-by-design neural
network controller. This neural network is a multilayer perceptron of a 2− 8− 8− 2 topology
and encodes kW = 98.49% of the winning set W . It does so while providing kFP = 0.00%
false positives. The training time required to train this neural network encoding the winning
set is WNNt = 4819 s.

The amount of data required per structure is presented in Table 4-4. A graphical overview of
the data required per structure and how this relates to the NN BDD structure is provided in
Figure 4-6.

4-3 Linear hybrid systems

In order to demonstrate that the methodology is also applicable to linear hybrid systems
a DC-to-DC converter circuit will be considered. The DC-to-DC converter circuit has two
modes. The mode in which the circuit is operating is based on whether or not a certain switch
is opened or closed. Operation of this switch will be left to the controller. By appropriately
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Figure 4-6: An overview of the different controllers and winning set representations in terms of
their data requirement in bytes for the MIMO plant. The definition of the different structures is
provided in Section 4-1.

opening and closing this switch the output voltage and current of the circuit can be regulated
to the desired levels.

The DC-to-DC circuit exhibits linear dynamics in each of the modes but the modes are
switched. Hence the model is a linear hybrid model. The model that describes the circuit
can be mathematically described as:

~̇x =
[
i̇
v̇

]
=



[−rl
xl

0
0 − 1

xc

1
r0+rc

]
~x+

[
vs
xl

0

]
u = 1

[
− 1
xl

(rl + r0rc
r0+rc

) −1
5

1
xl

r0
r0+rc

5 r0
r0+rc

1
xc

− 1
xc

1
r0+rc

]
~x+

[
vs
xl

0

]
otherwise

(4-6)

where rl, r0, xl and xc are parameters based on the values of the components in the circuit
and u is the input that determines in which mode the circuit is operating.

Similarly to the rocket example, a controller is synthesized based on an abstraction of this sys-
tem. The state space will be restricted to states where i ∈ [0.65, 1.65]A and v ∈ [4.95, 5.95]V
with state quantization parameter ~η = [0.005A, 0.005V]T . These parameters result in a state
space which contains 40401 states. The input space consists of u = {1, 2}. The control spec-
ification is a reachability specification with the to be reached set Z defined as i ∈ [1.1, 1.6]A
and v ∈ [5.4, 5.9]V. The neural network controller is a multilayer perceptron neural network
with a 2 − 8 − 8 − 2 topology and labelled output neurons. The network uses ReLU activa-
tion functions. The employed training focuses during synthesis are radial outwards and all
states. The sampling time of the plant is set to τ = 0.5 s, the finite horizon to N = 50 and
λ = 0.0075.

Synthesizing a neural network controller using these parameters resulted in a controller that
can control 92.83% of the state space. This result was obtained after running the procedure
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Figure 4-7: The winning set W of the correct-by-design neural network controller of the DC-
to-DC circuit system for a reachability specification. The blue hyper-cells are hyper-cells in the
winning set W , the red hyper-cells and green hyper-cells are hyper-cells outside of the winning
set. The green hyper-cells are hyper-cells which do not have a formal guarantee but for which
the state in the center does reach the to be reached set given a finite horizon. The white trace
represents a feedback controlled walk to demonstrate the performance of the controller.

for NNt = 1394 s. The winning set of the feedback controlled plant is depicted in Figure 4-7.
The partitions that this particular controller creates are depicted in Figure 4-8.

Synthesizing a conventional correct-by-design controller using SCOTS with the same synthe-
sis parameters results in a controller with a winning set of 93.6% of the state space. The
resulting neural network controller therefore has a completeness of k = 99.18%. The syn-
thesis procedure uses the same the linear transitions as calculated by COSYNNC and takes
a total of BDDt = 380 s. The resulting binary decision diagram stored controller was also
determinized to form a determinized binary decision diagram controller.

In addition to this, a neural network is trained to encode the winning set W of the correct-
by-design neural network controller. This neural network is a multilayer perceptron of a
2 − 8 − 8 − 2 topology and encodes kW = 97.97% of the winning set W . It does so while
providing kFP = 0.00% false positives. The training time required to train this neural network
encoding the winning set is WNNt = 7176 s.

An overview of the amount of data required per structure is depicted in Table 4-5. An
overview of the data required by the different structures and how they compare to the NN
BDD structure is represented in Figure 4-9.

4-4 Nonlinear systems

To demonstrate that the methodology is also applicable to nonlinear systems, a nonlinear
system is considered. The nonlinear system will represent a unicycle traveling at a constant
speed v through a planar landscape. The input to the system consists of the steering actions
u = {left, straight, right} represented by a signed integer u = {−1, 0, 1}. The goal of the
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Figure 4-8: The partitions that the controller creates. The colored areas represent a particular
input being fed to the plant given that the plant is in that subset of the state space. The white
trace represents a feedback controlled walk to demonstrate the performance of the controller.

Table 4-5: The required amount of data per structure for a DC-to-DC reachability controller.

Structure Data requirement Unit

NN 461 #bytes
W BDD 1030 #bytes
NN + W BDD 1491 #bytes
W NN 461 #bytes
NN + W NN 922 #bytes
NN BDD 3076 #bytes
D BDD 1470 #bytes
BDD 4095 #bytes

Data required per structure
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Figure 4-9: An overview of the different controllers and winning set representations in terms of
their data requirement in bytes for the DC-to-DC circuit system. The definition of the different
structures is provided in Section 4-1.
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controller is to provide the appropriate steering actions to the unicycle, independent of the
location, such that the unicycle is steered to a target set Z in the state space.

The dynamics of the nonlinear unicycle are mathematically described by:

~̇x =

ẋẏ
θ̇

 =

v cos(θ)
v sin(θ)
uω

 (4-7)

where v represents a constant speed at which the unicycle is traveling and ω represents the
rate at which the angle of the unicycle changes due to a steering input. Due to the sin
and cos term, the dynamics of the unicycle are nonlinear. This nonlinearity requires that the
system is provided with a radial growth bound function which is used to over-approximate the
dynamics of the plant. The radial growth bound function used is mathematically described
by:

~̇r =

ṙxṙy
ṙθ

 =

rθvrθv
0

 (4-8)

Using this radial growth bound, it is now possible to synthesize a correct-by-design neural
network controller.

To synthesize a controller, the appropriate synthesis parameters must be defined. The state
space of the unicycle will be restricted to x ∈ [−5, 5]× [−5, 5]× [0, 2π] with state quantization
parameter ~η = [0.1, 0.1, 0.1]T . These parameters result in a state space which contains 642663
states. The input space will be restricted to the set u = {−1, 0, 1}. The neural network
controller is a multilayer perceptron with a 3−12−12−3 topology and labelled output neurons.
The network uses ReLU activation functions. The training focuses used during synthesis are
radial outwards, all states and losing states. The sampling time is set to τ = 0.3 s, the finite
horizon to N = 50 and λ = 0.0075.

Synthesizing a neural network controller using these parameters resulted in a controller that
can control 79.5% of the state space. This result was obtained after running the synthesis
procedure for NNt = 5612 s. The winning set of the feedback controlled system is depicted
in Figure 4-10 for a slice of the state space at θ = 3.0. The partitions as created by the
controller are depicted in Figure 4-11.

For comparison, a SCOTS controller is synthesized using the same abstraction parameters.
The synthesis time for the SCOTS controller amounts to BDDt = 136 s. The resulting
SCOTS controller has a winning set that covers 93.73% percent of the finite cardinality
state space. The completeness of the neural network controller is therefore k = 84.87%. The
binary decision diagram stored controller was also determinized to form a determinized binary
decision diagram controller.

Furthermore, a neural network is trained to encode the winning set W of the correct-by-
design neural network controller. This neural network is a multilayer perceptron of a 3 −
24 − 36 − 36 − 24 − 2 topology and encodes kW = 70.05% of the winning set W . It does so
while providing kFP = 1.89% false positives. Due to the large cardinality of the state space
the training was performed on a different system. The neural network was trained on a Intel
Xeon W-2145 3.7 GHz CPU with 32 GB of RAM. The training time required to train this
neural network encoding the winning set is WNNt = 5523 s. It should be noted that the
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Figure 4-10: The winning setW of the correct-by-design neural network controller of the unicycle
system for a reachability specification. The figure represents a slice in the state space where
θ = 3.0. The blue hyper-cells are hyper-cells in the winning set W , the red hyper-cells and green
hyper-cells are hyper-cells outside of the winning set. The green hyper-cells are hyper-cells which
do not have a formal guarantee but for which the state in the center does reach the to be reached
set given a finite horizon. The white trace represents a feedback controlled walk to demonstrate
the performance of the controller.
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Figure 4-11: The partitions that the controller creates for the unicycle system. The figure
represents a slice in the state space where θ = 3.5. The colored areas represent a particular input
being fed to the plant given that the plant is in that subset of the state space. The white trace
represents a feedback controlled walk to demonstrate the performance of the controller.
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Table 4-6: The required amount of data per structure for the unicycle reachability controller.

Structure Data requirement Unit

NN 977 #bytes
W BDD 52432 #bytes
NN + W BDD 53409 #bytes
W NN 13071 #bytes
NN + W NN 14048 #bytes
NN BDD 91447 #bytes
D BDD 16964 #bytes
BDD 43664 #bytes

Data required per structure
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Figure 4-12: An overview of the different controllers and winning set representations in terms of
their data requirement in bytes for the unicycle system. The definition of the different structures
is provided in Section 4-1.

controller only encodes a portion of the entire winning set and is therefore not very useful in
practice.

An overview of the amount of data required per structure is depicted in Table 4-6. The same
information is depicted in a graphical overview in Figure 4-12.
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Table 4-7: An overview of the data requirements for all the plants and their relevant structures.
#B abbreviates number of bytes. Σ represents the sum of the neural network controller (NN)
and the neural network encoding the winning set (W NN). The meaning of all the structure
abbreviations is given in Table 4-1.

Plant NN [#B] k [-] W NN [#B] kW [−] Σ [#B] NN BDD [#B] D BDD [#B] BDD [#B]

Rocket 781 100% 461 97.01% 1242 3014 - 13791
MIMO 713 100% 461 98.49% 1174 1197 - 3442
DC-to-DC 461 99.18% 461 97.97% 922 3076 1470 4532
Unicycle 977 84.87% 13071 70.05% 14048 91447 16964 43664

Table 4-8: An overview of the synthesis time for all of the controllers. The meaning of the
abbreviations is given in Table 4-2.

Plant NNt [s] WNNt [s] BDDt [s]

Rocket 2842 6021 179
MIMO 2328 4819 99
DC-to-DC 1394 7176 380
Unicycle 5612 5523 136

4-5 Summary

In this section, the most important results from the previous sections are presented in a
summary consisting of a few tables in order to present the experimental results in a more
succinct manner.

An overview of the data requirements and completeness k for the correct-by-design neural
network controllers, the traditional correct-by-design controllers and for the winning sets
encoded as a neural networks for all the different plants is given in Table 4-7. The meaning
of the structure abbreviations is provided in Table 4-1. The meaning of the neural network
related completeness properties is provided in Section 4-1.

An overview of the synthesis time for the correct-by-design neural network controller, the
neural network encoding the winning set and the traditional correct-by-design controller for
all the different plants is given in Table 4-81. For clarity it should again be iterated that
the other structures that are presented in this thesis work are conversions or simplifications
of these two fundamental structures with trivial conversion times. Therefore, the synthesis
times for these two fundamental structures are the only relevant metrics.

1It should be noted that the time for the winning set neural network (W NN) for the unicycle was obtained
using a different device for training and is hence not representative
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Chapter 5

Discussion

In this chapter the methodology as proposed in Chapter 3 and the results as presented in
Chapter 4 are discussed and evaluated.
In this thesis work, the goal was to explore the possibilities with regards to the synthesis of
correct-by-design controllers. Based on the developed methodology and the results, it can be
concluded that correct-by-design neural network controllers can be synthesized, verified and
perform appropriately as is demonstrated by the variety of controllers presented in Figure
4-1, 4-7, 4-4, 4-10. These same results also demonstrate that it is possible to synthesize
such a controller for both linear and nonlinear dynamics. In addition to this, the proposed
methodology uncovered an extension for feedback refinement relation based abstractions for
linear systems based on their linear dynamics which is less conservative than its nonlinear
counterpart.
From Figure 4-3, 4-4, 4-5, 4-6 and Table 4-7 one can conclude that, in general, the resulting
neural network controllers are significantly smaller in terms of their data requirement than
their traditional correct-by-design controller counterparts. A few observations can be made
that support and explain this claim. First of all, it should be noted that the neural network
controller does not store inputs for every state by storing all the states in the winning set but
rather, maps states to inputs based on its weights and biases. By not storing all the states in
the winning set, a significant amount of data is freed up. Neural network controllers therefore
do not suffer the curse of dimensionality with respect to the state space. This also implies that
refining the state space by decreasing the state quantization parameter η does not result in
larger neural network controllers. Neural network controllers are therefore robust with respect
to larger state spaces. Secondly, it should be noted that the neural network controllers are,
by their very nature, deterministic during operating whereas traditional correct-by-design
controller do not need to be deterministic. Since nondeterminism requires storing a set of
inputs for every state in the winning set rather than just a single input, it requires more data
to store them. For these reasons, neural network controllers are generally significantly smaller
than traditional correct-by-design controllers in terms of their required data.
With respect to the input space cardinality, it should be noted that neural network controllers
are not necessarily robust. For the labelled neural network controller topology, since every
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input in the input space needs to be represented by an individual output neuron, the size of the
neural network controller quickly grows with larger input spaces. The advantage of using this
topology however is that in practice, it trains well and is often able to find the appropriate
inputs due to the nature of the policy gradients that are inherent to this topology. The
unlabelled neural network controller topology does not suffer the curse of dimensionality for
the input space, since each extra dimension in the input space only adds two extra output
neurons. Furthermore, the number of neurons also does not increase for finer quantization
parameters ηu. However, contrary to the labelled topology, the policy gradients are a lot
less pronounced and training therefore takes a lot longer. In addition to this, the unlabelled
topology also imposes hard restrictions on the search space within the input space during
training. This is a direct result of how the unlabelled neural network controller topology is
constructed and limits its effectiveness.

If a representation of the winning set is a hard requirement, the discussion with respect to
the amount of required data becomes more nuanced. The results show that it is indeed
possible to synthesize correct-by-design neural network controllers which, accompanied by
a binary decision diagram representation of the winning set W (NN + W BDD), are still
smaller in terms of their data requirements than a conventional correct-by-design controller
(BDD). Figure 4-3 and 4-9 show that they can also be smaller than a binary decision diagram
representation of the neural network controller (NN BDD). This is however not guaranteed as
can be seen in Figure 4-6 and 4-12. This can largely be accredited to the way in which binary
decision diagrams actually compress. Their compressive capability stems from the structure
of the binary atoms that make up the binary function. If this structure is favourable the
entire binary function will contain large redundancies and is therefore able to compress, if
this is not the case it will have bad compressive capabilities. Binary decision diagrams that
encode more nondeterminism have a larger probability of containing these redundancies and
will therefore sometimes boast large compressive capabilities due to the nature of the data
structure.

Instead of using a binary decision diagram to encode the winning set, neural networks have
also been used to encode the winning set. This type of problem is an optimization problem
where the neural network is tasked with encoding the largest possible portion of the winning
set without providing false positives. As can be seen in the Table 4-7, these winning sets
become slightly smaller than the actual winning set in order to ensure that they do not
contain any false positives. The table also shows that encoding the winning set as a neural
network indeed results in a smaller representation than a binary decision diagram that encodes
the winning set in terms of the data required to do so. Using this type of representation can
therefore significantly compress the data needed to encode the winning set of the controller
at the cost of a slightly smaller winning set. It should however be noted that it may not
always be possible or feasible to construct such a neural network encoded winning set. An
example of this is the unicycle example as presented in Section 4-4. The reason why this
winning set does not encode as well as the other winning sets is likely because of the large
state space cardinality and the nature of the corresponding winning set. Since the winning set
is somewhat sporadic and the encoder weighs every state equally it is not able to encode the
majority of the state space without introducing false positives. Since false positives are to be
avoided the resulting winning set is only a portion of the actual winning set. In practice this
could be resolved by introducing more neurons so that the neural network may store more
information. This could also allow it to better store the sporadic nature of the winning set.
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In practice this may however make the neural network encoded winning sets less competitive
than binary decision diagram stored winning sets.

A comparison between the combined neural network controller and binary decision diagram
of the winning set (NN + W BDD) and a determinized SCOTS controller stored as a binary
decision diagram (D BDD) is also made in terms of the required data. In Table 4-5, it can
be seen that the two metrics differ by only 21 bytes in favour of the determinized SCOTS
controller and are hence very close in terms of data. When considering the unicycle system, as
depicted in Table 4-6, it can be seen that, when compared to the combined data requirement,
the determinized SCOTS controller outperforms the neural network controller. It should
however be noted that whenever the winning set is not a hard requirement, the correct-by-
design neural network controllers still easily outperform the determinized SCOTS controllers
in terms of data.

With regards to the synthesis time for correct-by-design neural network controllers with re-
spect to traditional correct-by-design controllers such as the ones generated with SCOTS, it
is evident that the traditional correct-by-design controllers decisively outperform the neural
network controllers. This is clearly illustrated by the overview of the synthesis times for
different controllers given in Table 4-8. This is largely due to the fact that the operations
required to synthesize a traditional correct-by-design controller are also executed during the
correct-by-design neural network controller synthesis procedure. In addition to those opera-
tions, the neural network also needs to be trained and the plant needs to be simulated. This
results in significantly longer synthesis times. Furthermore, the neural network controller
synthesis procedure boasts less guarantees with regards to terminating with a nontrivial con-
troller. The correct-by-design neural network synthesis control procedure also requires more
user input with respect to the parameters that are to be used during synthesis. The effect
of the parameters is also quite large which makes synthesizing such controllers a somewhat
iterative process, further increasing the time that is dedicated to the process.

One final observation that can be made with regards to the comparison between correct-
by-design neural network controllers and traditional correct-by-design controllers is that the
neural network controllers are computationally cheap to operate on-line. This is due to the
fact that they only require elementary mathematical operations in order to be evaluated.
This is in contrast to the binary decision diagram stored controllers that require external
binary decision diagrams libraries, such as the CUDD library, to read out. The addition
of such libraries in order to evaluate the binary decision diagrams can significantly add to
the amount of data and computational power required to operate these types of controllers.
It could therefore be that neural networks are simply quicker and computationally cheaper
to evaluate when compared to binary decision diagrams for certain hardware architectures.
Because of this, neural network controllers are indeed a valid option in certain environments
such as ones that require a high sampling time, have low computational power and/or have
a limited amount of memory available to them.

Based on these findings, one can determine some general rules of thumb regarding the use of
the different control structures considered in this thesis work. If the initial state set of the
plant is known a priori or the winning set is all together not required correct-by-design neu-
ral network controllers significantly outperform traditional binary decision diagram stored
correct-by-design controllers in terms of their data requirements. The same is also true if
very fine state quantization is a requirement as the amount of data required by the neu-
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ral network controllers does not scale with the state quantization parameters used for the
abstractions. Finally, if the amount of memory on the device implementing the controller
is severely limited, correct-by-design neural network controllers also outperform traditional
correct-by-design controllers. This is due to the fact that neural network controllers are, in
general, significantly smaller in terms of their required data than traditional correct-by-design
controllers. Furthermore, the neural network controllers only require elementary mathemati-
cally operations to be read out. This is in contrast to binary decision diagrams that require
additional libraries and thus memory in order to be read out and manipulated. If memory is
not an issue, it is preferable to use the traditional correct-by-design controllers. The reason
for this is the fact that they are significantly faster to synthesize and will, in general, provide
a fuller solution. This can be accredited to the exhaustive nature of the synthesis method
used to synthesize these types of controllers. Traditional correct-by-design controllers are also
preferred in case the input space is large, as the size of the neural network controllers quickly
grow with larger input spaces when using the labelled topology. Although the unlabelled
neural network controller topology could theoretically alleviate this problem, it has not been
found to train well in practice and therefore does not outperform traditional correct-by-design
controllers in this front.
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Chapter 6

Conclusion

In this chapter the conclusions that can be drawn from this thesis work are presented. In
addition to this, future work that can be done in the context of this thesis will be presented.

6-1 Conclusion

In this thesis work a novel methodology to synthesize correct-by-design neural network con-
trollers has been developed. The developed methodology combines the use of traditional
correct-by-design control techniques and neural network techniques. The methodology con-
sists of having a neural network controller interact in a closed loop simulated environment with
the plant and appropriately reinforcing the resulting control policy. This reinforcing of the
neural network’s control policy is done based on the performance of finite horizon episodes that
simulate its behaviour. After an arbitrary amount of training, the neural network controller
is verified using feedback refinement relation based abstractions and fixed-point algorithms.
This routine yields the winning set for which the controller acts appropriately which in turn
is used to refine the training routine. This procedure will result in a correct-by-design neural
network controller with guarantees on its winning set.

In this work, the proposed methodology has been used to synthesize correct-by-design neural
network controllers. This has shown that the methodology indeed works and is applicable to
a variety of different system classes such as linear systems, linear hybrid systems, nonlinear
systems and nonlinear hybrid systems.

The resulting correct-by-design neural network controllers have been verified to work on
their winning set and have been compared to conventional correct-by-design controllers in
terms of their required amount of data. This comparison has showed that correct-by-design
neural network controllers outperform conventional correct-by-design controllers in terms of
their data requirements as long as a representation of the winning set is not required. If
such a representation is required, correct-by-design neural network controllers can potentially
still outperform the traditional controllers by encoding the winning set as a binary decision
diagram or as a neural network. These neural network encoded winning sets will however
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generally encode a slightly smaller winning set due to the nature of the optimization problem
these networks are trying to solve.

As part of this thesis, the proposed methodology for synthesis of correct-by-design neural
network controllers was developed into a framework called COSYNNC. Using this framework,
users can synthesize their own correct-by-design neural network controllers. In addition to
this, the framework also has a variety of interfacing options for SCOTS so that users can
make their own comparisons. This framework is publicly available and free to use and build
upon.

6-2 Future work

With regards to the future work that can be done in the context of this research, there are a
number of aspects that are worth pursuing.

First of all, other neural network topologies could be used and evaluated to determine if
other neural network topologies are better suited to the task of performing correct-by-design
control. Among the potential topologies are: convolutional neural networks, recurrent neural
networks and long short-term memory neural networks.

Secondly, a better performance accreditation algorithm could be developed and implemented.
This would allow for finer performance accreditation to specific inputs in the input chain
of an episode. For example, a performance accreditation algorithm could be developed that
estimates which state-input pair positively contributed to the outcome and which ones con-
tributed negatively. By more finely accrediting the performance, the training routine could
be made more effective resulting in better correct-by-design neural network controllers.

Another worthwhile addition would be the implementation of disturbed plants into the frame-
work. This would allow for an even broader class of systems to be covered by the methodology.

Furthermore, alternative neural network controller topologies could be developed that are
better suited towards higher dimensionality input spaces. Doing so would also further warrant
the use of neural networks as correct-by-design controllers, since this would completely remove
the curse of dimensionality from this particular domain.

Finally, the current version of the framework COSYNNC is only a proof of concept CPU
based implementation. Since the methodology lends itself well to parallelization on CPU,
GPU or even FPGA hardware, the entire synthesis procedure could be significantly sped up
through parallelization.
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Appendix A

COSYNNC Example

The required code to synthesize a correct-by-design reachability neural network controller
consists of two parts. First the plant definition itself and secondly the code required to run
the procedure.

A-1 Rocket plant definition

Rocket.h

1 #pragma once
2 #include "Plant.h"
3
4 namespace COSYNNC {
5 class Rocket : public Plant {
6 public :
7 Rocket ( ) : Plant (2 , 1 , 0 . 1 , "Rocket" , true ) { }
8
9 Vector DynamicsODE ( Vector x , float t ) override ;

10 private :
11 const float _mass = 267 ; // kg
12 const float _g = −9.81; // m s^-2
13 } ;
14 }

Rocket.cpp

1 #include "Rocket.h"
2
3 namespace COSYNNC {
4 Vector Rocket : : DynamicsODE ( Vector x , float t ) {
5 Vector dxdt = Vector ( _stateSpaceDimension ) ;
6
7 dxdt [ 0 ] = x [ 1 ] ;
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8 dxdt [ 1 ] = _u [ 0 ] / _mass + _g ;
9

10 return dxdt ;
11 }
12 }

A-2 Procedure

1 Procedure cosynnc ;
2
3 // Link the plant to the procedure
4 Plant∗ rocket = new Rocket ( ) ;
5 cosynnc . SetPlant ( rocket ) ;
6
7 // Specify the state and input quantizers
8 cosynnc . SpecifyStateQuantizer ( Vector ({ 0 . 1 , 0 . 1 }) , Vector ({ −5, −10 }) ,

Vector ({ 5 , 10 }) ) ;
9 cosynnc . SpecifyInputQuantizer ( Vector ( ( float ) 5000 .0 ) , Vector ( ( float ) 0 . 0 ) ,

Vector ( ( float ) 5000 .0 ) ) ;
10
11 // Specify the synthesis parameters
12 cosynnc . SpecifySynthesisParameters (1000000 , 50 , 5000 , 50000 , 50) ;
13
14 // Link a neural network to the procedure
15 MultilayerPerceptron∗ multilayerPerceptron = new MultilayerPerceptron ({

8 , 8 } , ActivationActType : : kRelu , OutputType : : Labelled ) ;
16 multilayerPerceptron−>InitializeOptimizer ("sgd" , 0 . 0075 , 0 . 0 ) ;
17 cosynnc . SetNeuralNetwork ( multilayerPerceptron ) ;
18
19 // Specify the control specification
20 cosynnc . SpecifyControlSpecification ( ControlSpecificationType : :

Reachability , Vector ({ −1.0 , −1.0 }) , Vector ({ 1 . 0 , 1 . 0 }) ) ;
21
22 // Specify training focuses
23 cosynnc . SpecifyRadialInitialState ( 0 . 1 5 , 0 . 85 ) ;
24 cosynnc . SpecifyTrainingFocus ( TrainingFocus : : RadialOutwards ) ;
25
26 cosynnc . SpecifyTrainingFocus ( TrainingFocus : : LosingStates ) ;
27
28 cosynnc . SpecifyTrainingFocus ( TrainingFocus : : AllStates ) ;
29
30 // Specify synthesis parameters
31 cosynnc . SpecifyWinningSetReinforcement ( true ) ;
32
33 cosynnc . SpecifyUseRefinedTransitions ( true ) ;
34
35 // Specify where the controllers are saved
36 cosynnc . SpecifySavingPath ("../controllers" ) ;
37
38 // Initialize the synthesize procedure
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39 cosynnc . Initialize ( ) ;
40
41 // Run the synthesize procedure
42 cosynnc . Synthesize ( ) ;
43
44 // Free up memory
45 delete rocket ;
46 delete multilayerPerceptron ;
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Glossary

List of Symbols

θ Collection of the weights and biases of a neural network
g Nonlinear activation function for a neural network neuron
λ Gradient descent step size for the neural network backpropagation algorithm
W Weight matrix defining the connections between two layers
~b Bias vector for a neural network layer
q State quantization function
~η Quantization parameter vector of the state space
qu Input quantization function
~ηu Quantization parameter vector of the input space
~x State of the plant
~̂x Quantized state of the plant
~xnn Normalized quantized state of the plant
~u Input to the plant
~̂u Quantized input of the plant
~y Output of the neural network
~d Desired neural network output
L Loss function
S System
X State space set
X0 Initial state space set
U Input space set
→ Transition function
Y Output space set
H Output function
Postu Post operator for input u
Bx Finite internal behaviour
B Finite external behaviour
Bωx Infinite internal behaviour
Bω Infinite external behaviour
d Metric function
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n Normalization function
n−1 Denormalization function
γ Probabilistic input sampling function
γg Greedy input sampling function
Xa Abstraction framework state space
Ua Abstraction framework input space
Ya Abstraction framework output space
I0 Training initial set
τ Sampling time
Xp Partial abstraction state space
Up Partial abstraction input space
φ Plant dynamics
β Growth bound function
X ′ Transitionable state set
r Radial growth bound
N Episode finite horizon
W Winning set
B A binary variable
∧ Binary AND operator
∨ Binary OR operator
A Ampere
V Volt
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