Viscoelastic damping in high rise structures

A feasibility study on the development of a prototype tool for engineering firms which can be used to determine the required amount of viscoelastic damping in a high rise structure to reduce accelerations from wind-induced vibrations to a comfortable level.

Appendices

D.A.J. Hilster
COLOPHON

TITLE Viscoelastic damping in high rise structures
SUBTITLE A feasibility study on the development of a prototype tool to determine the required amount of viscoelastic damping in a high rise structure to reduce accelerations from wind-induced vibrations
DATE October 2013

AUTHOR D.A.J. (Denise) Hilster
Pre-education: TU Delft BSc Industrial Design
Bridging program Civil Engineering
Current education: TU Delft MSc Civil Engineering
Track: Building Engineering
Specialization: Structural Design

CONTACT AUTHOR Pletterijkade 19D
2515 SG Den Haag
Mobile: 06 19 96 11 08
E-mail: denisehilster@gmail.com

GRADUATION prof. ir. R. Nijsse (chair)
COMMITTEE (Department Building Engineering)
TU DELFT prof. dr. A.V. Metrikine
(Department Structural Mechanics)
ir. S. Pasterkamp
(Department Building Engineering)

CONTACT ir. A. Robbemont
ZONNEVELD Zonneveld Ingenieurs bv
INGENIEURS Delftseplein 27 (floor 8)
3013 AA Rotterdam
(010) 452 88 88

CONTACT dr. ir. R.D.J.M. Steenbergen
TNO BOUW prof. ir. A.C.W.M Vrouwenvelder
& ONDERGROND van Mourik Broekmanweg 6
2628 XE Delft
(088) 866 30 00
Viscoelastic damping in high rise structures

A feasibility study on the development of a prototype tool to determine the required amount of viscoelastic damping in a high rise structure to reduce accelerations from wind-induced vibrations

APPENDICES
Contents

E Definition equivalent stiffness and damping 1
 E.1 Series and parallel systems .. 1
 E.2 Model of the bracing .. 4

E Method to determine matrices 6
 E.1 Stiffness of the structure 6
 E.2 Rotational stiffness of the foundation 7
E Definition equivalent stiffness and damping

E.1 Series and parallel systems

In correspondence with Figure E.1, the equivalent stiffness of parallel connected springs is found by:

\[F = F_{k_1} + F_{k_2} = k_1 u + k_2 u = (k_1 + k_2)u \]

(E.1)

The equivalent spring stiffness of springs in series is determined by:[35]

\[u = u_1 + u_2 = \frac{F_1}{k_1} + \frac{F_2}{k_2} = F \left\{ \frac{1}{k_1} + \frac{1}{k_2} \right\} \]

(E.2)

![Figure E.1: Springs in series and parallel and equivalent models](image)

An identical approach can be employed to find the equivalent damping of a system, see Figure E.2. Correspondingly, the equivalent damping of parallel connected dampers is found by:

\[F = F_{c_1} + F_{c_2} = c_1 u + c_2 u = (c_1 + c_2)u \]

(E.3)
Additionally, the equivalent spring stiffness of dampers is expressed by:

\[
\frac{du}{dt} = \frac{du_1}{dt} + \frac{du_2}{dt} = \frac{F_1}{c_1} + \frac{F_2}{c_2} = F \left[\frac{1}{c_1} + \frac{1}{c_2} \right]
\]

(E.4)

In case the system is expressed by a combination of parallel and series elements, the following procedure may be followed in accordance with Figure E.3. It must hold that:

\[
F(t) = k_3u_3(t) + c_3\dot{u}_3(t) = k_2u_2(t) + c_2\dot{u}_2(t) = k_1u_1(t) + c_1\dot{u}_1(t)
\]

\[
= \left(k_3 + c_3 \frac{d}{dt} \right) u_3(t) = \left(k_2 + c_2 \frac{d}{dt} \right) u_2(t) = \left(k_1 + c_1 \frac{d}{dt} \right) u_1(t)
\]

(E.5)

In this case, an equivalent stiffness cannot be found due to the time dependency of the damping. Therefore, an operator is now introduced instead:

\[
O = \frac{1}{k_3 + c_3 \frac{d}{dt}} + \frac{1}{k_2 + c_2 \frac{d}{dt}} + \frac{1}{k_1 + c_1 \frac{d}{dt}}
\]

(E.6)
In the frequency domain the above equations are expressed by:

\[
F(\omega) = (k_3 + i\omega c_3) \tilde{u}_3(\omega) = (k_2 + i\omega c_2) \tilde{u}_2(\omega) = (k_1 + i\omega c_1) \tilde{u}_1(\omega)
\] \hspace{1cm} (E.7)

And:

\[
O = \frac{1}{\frac{1}{k_3} + \frac{1}{k_2} + \frac{1}{k_1}}
\] \hspace{1cm} (E.8)

A similar procedure can be used in case one element is not present in comparison with Figure E.3. For example, in Figure E.4 the spring in element 2 is not present and thus:

\[
F = \left(k_3 + c_3 \frac{d}{dt} \right) u_3(t) = c_2 \frac{d}{dt} u_2(t) = \left(k_1 + c_1 \frac{d}{dt} \right) u_1(t)
\] \hspace{1cm} (E.9)

And correspondingly:

\[
O = \frac{1}{\frac{1}{k_3+c_3} \frac{d}{dt} + \frac{1}{c_2} \frac{d}{dt} + \frac{1}{k_1+c_1} \frac{d}{dt}}
\] \hspace{1cm} (E.10)

In the frequency domain the above equations are expressed by:

\[
F(\omega) = (k_3 + i\omega c_3) \tilde{u}_3(\omega) = i\omega c_2 \tilde{u}_2(\omega) = (k_1 + i\omega c_1) \tilde{u}_1(\omega)
\] \hspace{1cm} (E.11)

And:

\[
k_{eq} = \frac{1}{\frac{1}{k_3} + \frac{1}{k_2} + \frac{1}{k_1}}
\] \hspace{1cm} (E.12)
E.2 Model of the bracing

In correspondence with Figure E.5, the equivalent stiffness of the bracing in the frame is calculated by:

\[F = k u \]

\[\varepsilon = \frac{N}{EA} = \frac{\Delta l}{l} \rightarrow N = \Delta l \frac{EA}{l} \]

\[\Delta l = u \cos \alpha \]

\[= u \frac{b}{\sqrt{b^2 + h^2}} \]

\[F = N \cos \alpha \]

\[= \frac{N}{\sqrt{b^2 + h^2}} \]

\[= \frac{EA}{l} \frac{b}{\sqrt{b^2 + h^2}} \]

\[= \frac{EA}{l} \frac{b}{\sqrt{b^2 + h^2}} \frac{b}{\sqrt{b^2 + h^2}} \]

\[= \frac{EA}{\sqrt{b^2 + h^2}} \] \[\frac{b}{\sqrt{b^2 + h^2}} \frac{b}{\sqrt{b^2 + h^2}} \]

\[= \left[\frac{EA}{\sqrt{b^2 + h^2}} \frac{b}{\sqrt{b^2 + h^2}} \frac{b}{\sqrt{b^2 + h^2}} \right] u \]

\[= \left[\frac{b^2}{\{b^2 + h^2\}^{3/2}} \right] u \]

stiffness bracing

\[(E.13) \]
Similarly, the equivalent damping coefficient can be determined for the horizontal direction: The equivalent horizontal damping from the bracing is determined by:

$$
\Delta \dot{u} = \dot{u} \cos \alpha \\
= \dot{u} \frac{b}{\sqrt{b^2 + h^2}} \\
F = c \dot{u} \\
= N \cos \alpha \\
= c_{d,\text{bracing}} \Delta \dot{u} \cos \alpha \\
= \left[c_{d,\text{bracing}} \frac{b}{\sqrt{b^2 + h^2}} \sqrt{b^2 + h^2} \right] \dot{u} \\
= \left[c_{d,\text{bracing}} \frac{h^2}{b^2 + h^2} \right] \dot{u} \quad \text{eq. damping bracing}
$$

(E.14)
E Method to determine matrices

E.1 Stiffness of the structure

The stiffness is determined in accordance with Figure E.1. The stiffness of the springs is expressed by:\cite{6,7}

\[M = Ke \] \hspace{1cm} (E.1)

The rotations are described by:

\[\phi_{ij} = \frac{1}{h}(w_j - w_i) \] \hspace{1cm} (E.2a)
\[\phi_{jk} = \frac{1}{h}(w_k - w_j) \] \hspace{1cm} (E.2b)

Correspondingly:

\[e = \phi_{ij} - \phi_{jk} = \frac{1}{h}(-w_i + 2w_j - w_k) \] \hspace{1cm} (E.3)

And thus:

\[M = Ke = \frac{K}{h}(-w_i + 2w_j - w_k) \] \hspace{1cm} (E.4)

\[\text{Model of a single element} \]

\[\text{Model of a multiple elements} \]

\textit{Figure E.1: Model to determine the stiffness of the core structure}
E.2. ROTATIONAL STIFFNESS OF THE FOUNDATION

Then, the forces are:

\[F_i = -\frac{M}{h} = \frac{K}{h^2}(-w_i + 2w_j - w_k) \quad (E.5a) \]
\[F_j = 2\frac{M}{h} = \frac{K}{h^2}(-2w_i + 4w_j - 2w_k) \quad (E.5b) \]
\[F_k = -\frac{M}{h} = \frac{K}{h^2}(-w_i + 2w_j - w_k) \quad (E.5c) \]

And in matrix notation:

\[
\begin{bmatrix}
 F_i \\
 F_j \\
 F_k
\end{bmatrix} = \frac{K}{h^2}
\begin{bmatrix}
 1 & -2 & 1 \\
 -2 & 4 & -2 \\
 1 & -2 & 1
\end{bmatrix}
\begin{bmatrix}
 w_i \\
 w_j \\
 w_k
\end{bmatrix} \quad (E.6)
\]

E.2 Rotational stiffness of the foundation

In correspondence to Figure E.9 the rotational stiffness of a foundation is to be determined by:

\[K_r = \frac{M}{\theta} \quad (E.7) \]

Correspondingly, the following applies:

\[\theta = \frac{u}{h_{storey}} \]
\[M = K_r \theta = K_r \frac{u}{h_{storey}} \]
\[F = \frac{M}{h_{storey}} = \left(\frac{K_r}{h^2_{storey}} \right) u \quad (E.8) \]

The corresponding \(n \times n \) stiffness matrix becomes:

\[
K_{\text{foundation}} = \begin{bmatrix}
 k_{11} & \cdots & \cdots & \cdots \\
 \cdots & \ddots & \cdots & \cdots \\
 \cdots & \cdots & k_{nn}
\end{bmatrix} = \begin{bmatrix}
 K_r & \cdots & 0 \\
 \vdots & \ddots & \vdots \\
 0 & \cdots & 0
\end{bmatrix} \quad (E.9)
\]
The normal force in the piles is to be calculated by:

\[M = F h_{\text{storey}} = N_{\text{pile}} 2a \quad \text{(E.10a)} \]

\[N_{\text{pile}} = \frac{F h_{\text{storey}}}{2a} \quad \text{(E.10b)} \]

The rotation \(\theta \) of the foundation is to be found by:

\[\varepsilon_{\text{pile}} = \frac{N_{\text{pile}}}{(E A)_{\text{pile}}} = L_{\text{pile}} \Delta L_{\text{pile}} \]

\[\Delta L_{\text{pile}} = \frac{N_{\text{pile}}}{L_{\text{pile}} (E A)_{\text{pile}}} \quad \text{(E.11)} \]

\[\theta = \tan^{-1} \left\{ \frac{\Delta L_{\text{pile}}}{a} \right\} \]

Hence, the rotational stiffness \(K_r \) becomes:

\[K_r = \frac{F h_{\text{storey}}}{\tan^{-1} \left\{ \frac{\Delta L_{\text{pile}}}{a} \right\}} \quad \text{(E.12)} \]
Bibliography

[14] Hoorn H., year unknown, Vergrotingsfactoren Zalmhaven DO fase aangepast, Zonneveld Ingenieurs

[19] Kuroda H., Arima F., Baba K., Inoue Y., 2000, *Principles and characteristics of viscous damping devices (gyro-damper): the damping forces which are highly amplified by converting the axial movement to rotary one*, 12th world conference on earthquake engineering

Graduation committee:
prof. ir. R. Nijssse (chair, TU Delft)
prof. dr. A.V. Metrikine (TU Delft)
ir. S. Pasterkamp (TU Delft)
dr. ir. R.D.J.M. Steenbergen (TNO)
prof. ir. A.C.W.M Vrouwenvelder (TNO)
ir. A. Robbemont (Zonneveld Ingenieurs)