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A B S T R A C T

Smart cameras are an essential component in surveillance and monitoring applications, and they have been
typically deployed in networks of fixed camera locations. The addition of mobile cameras, mounted on robots,
can overcome some of the limitations of static networks such as blind spots or back-lightning, allowing the
system to gather the best information at each time by active positioning. This work presents a hybrid camera
system, with static and mobile cameras, where all the cameras collaborate to observe people moving freely
in the environment and efficiently visualize certain attributes from each person. Our solution combines a
multi-camera distributed tracking system, to localize with precision all the people, with a control scheme that
moves the mobile cameras to the best viewpoints for a specific classification task. The main contribution of
this paper is a novel framework that exploits the synergies that result from the cooperation of the tracking
and the control modules, obtaining a system closer to the real-world application and capable of high-level
scene understanding. The static camera network provides global awareness of the control scheme to move the
robots. In exchange, the mobile cameras onboard the robots provide enhanced information about the people on
the scene. We perform a thorough analysis of the people monitoring application performance under different
conditions thanks to the use of a photo-realistic simulation environment. Our experiments demonstrate the
benefits of collaborative mobile cameras with respect to static or individual camera setups.
. Introduction

Multi-camera systems are common in applications such as surveil-
ance or monitoring. The use of multiple cameras increases the coverage
nd the amount of information collected from large-scale scenes. Al-
hough the most frequent configuration in surveillance applications is
network of static cameras, including mobile cameras brings plenty of
otential benefits. In addition to the improved coverage capabilities of
uch a hybrid system, mobile cameras can be guided to acquire more
etailed information and particular viewpoints when needed. Enhanc-
ng collaborative behavior among them is then essential to achieve an
fficient mutual scene understanding (Mekonnen et al., 2013; Li et al.,
018; Miller et al., 2022).

One of the main challenges of collaborative camera network systems
s to attain robustness and efficiency. Hence, there has been a tendency
o transition from centralized to distributed setups that can easily scale
nd are more robust against individual node failures (Zhou et al.,
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2022; Yu et al., 2022). Another common challenge in multi-camera
systems is finding a suitable viewpoint that maximizes gaining new
knowledge for a given recognition task. For instance, solving tasks
such as person identification or clothing brand recognition requires a
specific viewpoint, which should be free from occlusion or blind spots.
Active perception enables the capability of moving a camera to the
location of the most informative perspective. Developing and evalu-
ating distributed solutions, where mobile cameras with autonomous
decision-making are involved, is not a trivial task. To address all of
these challenges we propose a novel active and distributed framework.
Our system has static cameras to monitor the scene and mobile cameras
to strengthen the visualization of certain attributes with high-resolution
close-up target images, as summarized in Fig. 1.

The mobile cameras, drones in our case, are guided by a control
policy built upon previous work (Serra-Gómez et al., 2023). This policy
continuously determines the cameras’ next position and orientation
ttps://doi.org/10.1016/j.cviu.2023.103876
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Fig. 1. Overview of our multi-camera collaborative system. The system comprises a
camera network that performs a distributed multi-target tracking process. The static
cameras monitor the scene and the mobile cameras are guided by a control policy to
capture close-up images of viewpoints likely to strengthen the classification of certain
attributes.

to capture viewpoints that maximize the acquisition of relevant in-
formation for certain people’s attributes class. Differently from our
prior work, here we consider multiple drones working together with
a network of static cameras that provide information about the tar-
gets’ position and orientation using real data, taking into account the
challenges associated to the use of a real tracking system.

The distributed tracking process in charge of this task is based
on Casao et al. (2021). Our contribution in this module is related to the
implementation, making the transition to a real system easier thanks to
the integration with ROS to handle communications. The assessment
of the framework is performed with a photo-realistic simulator. In
particular, we use the open-source Unreal Engine together with the
AirSim simulator (Shah et al., 2018), which provide a photo-realistic
environment to simulate drones and static camera data generation.
Additionally, we employ specific tools for creating scenes involving
multiple pedestrians from Casao et al. (2023).2

To summarize, the main contributions of this work are:

• A novel hybrid multi-camera framework, composed of static and
mobile nodes, that collaboratively tackles the problem of people
monitoring. To do so, it combines distributed tracking and active
perception of semantic knowledge from the scene.

• Active Perception: We extend prior work to consider multiple
mobile cameras and real perception provided by the distributed
tracking algorithm.

• Distributed Tracking: We incorporate distributed communications
using ROS and perform the evaluation with a photo-realistic simu-
lator, contributing to bridge the gap with real-world applications.

. Related work

.1. Multi-camera multi-target tracking

Multi-camera centralized setups are commonly used in real-world
pplications to cover larger areas (Guo et al., 2022; Quach et al.,
021) or acquire a greater amount of information (Byeon et al., 2018;
hang et al., 2020). These centralized approaches process the entire
amera network information in one unique node, making it difficult to
cale up. Thus, there is a trend toward distributed setups to increase
he applicability of multi-camera systems (Xompero and Cavallaro,
022). While theoretical works have proposed solutions to problems
uch as event-trigger mechanisms for bandwidth requirements (Ge
t al., 2019) or consensus algorithms to unify local estimations (Soto
t al., 2009; Li et al., 2023), only a few works have addressed the
istributed multi-target tracking with real data. For example, Kamal

2 Simulated data and photo-realistic environment used available at
ttps://sites.google.com/unizar.es/poc-team/research/hlunderstanding/
ollaborativecameras.
2

et al. (2015) combine the Information-weighted Consensus Filter (ICF)
with the Joint Probabilistic Data Association Filter (JPDAF), which uses
the previous target states, to fill the gap of relating measurements and
trackers in the consensus algorithm. Based on the same ICF consensus
method, He et al. (2019) address the association of measurements and
trackers through a global metric that merges appearance and geometry
cues. To associate trackers across cameras, they employ the Euclidean
distance between the 3D position of the targets. Different from Kamal
et al. (2015) and He et al. (2019), we tackle the problem of having
mobile nodes in the camera network. Besides, we analyze in both data
associations, trackers with measurements and cross-camera trackers,
the geometric information together with the appearance representation.

2.2. Collaborative systems for perception tasks

Multiple works have developed collaborative systems to address
complex perception tasks. One of the most common problems tackled is
active object tracking, where visual observations are transformed into
a camera control signal to improve the tracking process, e.g., turning
left or moving forward (Schranz and Andre, 2018). The combination
of a fixed camera, that globally monitors the scene, with a pan–tilt-
zoom (PTZ) camera, used to increase the image quality of the target of
interest, is proposed in Li et al. (2018) In Li et al. (2020), this setup
is extended to a centralized PTZ camera network, where reinforcement
learning techniques are employed to learn the new pose of the cameras
for finding the target and tracking it as long as possible. In order to
follow an object capable of moving in all directions, Trujillo et al.
(2019) develop a cooperative aerial robotic approach with two drones
for achieving overlapping images and forming a pseudo-stereo vision
system. The collaboration of hybrid systems has been studied for dif-
ferent tasks such as dynamic obstacle avoidance, where the information
of the static cameras is leveraged by the mobile robot (Mekonnen et al.,
2013), or the localization, planning, and navigation of ground robots
using a semantic map created by a high-altitude quadrotor (Miller
et al., 2022). Furthermore, some works have focused on distributed
collaborative perception tasks. Yu et al. (2022) propose an approach
for distributed learning where each robot only shares the weights of
the network for privacy protection and Zhou et al. (2022) present a
general-purpose graph neural network for fusing node information and
obtaining accurate perception tasks. Closer to our work, Bisagno et al.
(2018) leverage the collaboration of fixed cameras, PTZ, and UAVs for
crowd scene covering in a distributed manner. Different from Bisagno
et al. (2018), we do not assume as known the target positions, which
entail addressing the challenges of a distributed tracking system.

2.3. Active perception for class recognition

The active perception problem of recognizing certain classes is com-
monly addressed by defining a set of viewpoints in advance, which are
then used to plan trajectories for gathering new information. One-step
greedy planners select viewpoints specific to objects based on factors
such as class uncertainty and observation occlusions (Patten et al.,
2016). Instead, non-myopic methods such as Popović et al. (2017)
consider both, movement costs and information gained between the
object’s viewpoints. Alternatively, some approaches formulate the prob-
lem as a partially observable Markov Decision Process (POMDP) and
design paths over viewpoints by accounting for costs associated with
measurements, occlusions, and potential misclassifications (Atanasov
et al., 2014). Likewise, Patten et al. (2018) employs a modified version
of Monte-Carlo tree search to generate plans. However, these tech-
niques typically rely on a priori access to the black-box model for
estimating the usefulness of viewpoints. More recent works use non-
myopic learning methods like Deep Reinforcement Learning (DRL) for
static multi-target pose estimation and active perception. They optimize
camera movements to reduce observation uncertainty (Sock et al.,
2020) or maximize information gain (Xu et al., 2021). However, these

https://sites.google.com/unizar.es/poc-team/research/hlunderstanding/collaborativecameras
https://sites.google.com/unizar.es/poc-team/research/hlunderstanding/collaborativecameras
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Fig. 2. Method overview deployed in one mobile camera. The whole system is
implemented in ROS, initializing each camera as a node and the image processing
module as a service. First, the Local Data Association relates people detection (𝑏𝑏)
with the corresponding trackers (). Then, the cameras exchange and fuse data with
their neighboring cameras to obtain a collaborative distributed tracking system. The
knowledge of the environment is provided to the control policy for obtaining a new
recommendation of viewpoint (𝑎𝑡) to improve the gathering people’s information.

approaches either assume static targets, are limited to closed envi-
ronments (Kent and Chernova, 2020), or require prior knowledge of
where the information is visible from Alcántara et al. (2021) and Jeon
et al. (2020). Our work leverages an attention-based neural network
architecture to encode dynamic targets and to provide viewpoint rec-
ommendations that are traced with a low-level controller. In addition,
we enable the use of multiple drones and overcome the assumption
of possessing prior knowledge about the positions and orientations of
the targets by exploiting the collaboration with a multi-target tracking
system.

3. Preliminaries

3.1. Problem formulation

This work addresses the distributed tracking and correct visual-
ization of people’s attributes in large-scale environments. We monitor
an area populated by a set of 𝐼 targets, {𝑖}𝐼𝑖=1, with a system of 𝐽
cameras, {𝐶𝑗}𝐽𝑗=1, where a subset of 𝑄 < 𝐽 cameras can translate and
rotate, e.g. they are installed on drones. Each camera in the network
captures an RGB image and a depth map to estimate the state of the
targets locally by fusing its information with that received from its
neighbors, 𝑗 . The state of target 𝑖 in camera 𝑗 is defined as 𝐱𝑗𝑖 =
(𝑥𝑗𝑖 , 𝑦

𝑗
𝑖 , 𝑧

𝑗
𝑖 , 𝑤

𝑗
𝑖 , ℎ

𝑗
𝑖 , 𝑥̇

𝑗
𝑖 , 𝑦̇

𝑗
𝑖 ) represented by a 3D cylinder with (𝑥𝑗𝑖 , 𝑦

𝑗
𝑖 , 𝑧

𝑗
𝑖 )

the 3D coordinates of the center cylinder’s base, 𝑤𝑗𝑖 the width, ℎ𝑗𝑖 the
height, and (𝑥̇𝑗𝑖 , 𝑦̇

𝑗
𝑖 ) the velocity of the target in the 𝑥 and 𝑦 directions,

respectively. The orientation of the target, 𝜑𝑗𝑖 , is estimated based on
their velocities 𝑥̇𝑗𝑖 and 𝑦̇𝑗𝑖 . The responsibility for correctly visualizing
the attribute’s class of the targets lies in the moving cameras (drones).
It is important to note that these attributes can only be observed from
specific viewpoints, such as determining if the targets are wearing a
backpack or glasses. The state of the drones 𝐲𝑞 = (𝐮𝑞 , 𝜓𝑞), assumed
as known in this work, is represented as their position 𝐮𝑞 and their
heading 𝜓𝑞 , being 𝑞 ∈ {1,… , 𝑄}. Each drone is controlled by a
hierarchical policy, where a viewpoint control policy operating at 1

𝜏ℎ
Hz

akes as input the knowledge of the scene and outputs a viewpoint
ecommendation 𝐚𝑞 . Next, the recommended viewpoint is traced with a
ow-level controller operating at 1 ≫ 1 Hz. The purpose of the policy
𝜏𝑙 𝜏ℎ

3

is to position the targets’ attributes within the field of view (FOV) of
the drone. We assume that the drones are faster than the targets and
fly at a constant height above them, avoiding collisions.

The goal of the presented work is to achieve an accurate estimation
of the targets’ position and visualize all people’s attributes as quickly
as possible.

3.2. Overview

Fig. 2 presents an overview of the proposed method to address the
problem described in the previous section. The complete framework has
been implemented in ROS, with each camera defined as a node of the
system and ensuring synchronization between them. Neural networks
have been implemented in the image processing module as services to
save memory.

First, each camera captures an RGB image and a depth map (𝐷𝑖) to
ompute the re-projection between the image plane and the real-world
oordinates. We incorporate depth information to simplify the re-
rojection but this could be replaced by a network calibration in a more
ealistic setup. Then, a general detector provides the people bounding
oxes (𝑏𝑏) that are used as measures for the tracking system and that
re associated with the current trackers through the Local Data Asso-
iation module (LDA). Once the cameras in the networks exchange the
argets’ information () with their neighbors, the Distributed Kalman
ilter (DKF) implemented attempts to obtain consensus on the targets’
tate. Finally, the Distributed Tracker Manager (DTM) initializes new
rackers and associates them locally with the trackers received from
he neighboring cameras. The mobile cameras of the system obtain
he output of a black-box CNN, with perception information about the
isible targets (ℎ()), and update their class beliefs with an efficient
nformation fusion method. Based on the latter and the estimated state
f the targets, the viewpoint control policy recommends a new camera
ose (𝑎𝑡) to maximize the information acquired in the next step. The
ew viewpoints are then tracked with a low-level controller.

. Distributed tracking

This section explains the different components of our approach to
erform fully distributed multi-target tracking with hybrid collabora-
ive cameras.

.1. Distributed Kalman filter

We define the target motion model as a discrete-linear dynamic
ystem with constant velocity. Each camera executes a Kalman filter
ndependently producing a local estimation of the target state, 𝐱̂𝑖(𝑘),
nd the associated error covariance matrix 𝐏𝑖(𝑘). Note that local esti-
ations may vary among different cameras. Therefore, the Distributed
alman-Consensus filter (Soto et al., 2009) is implemented to mitigate

hese differences and seek to reach a consensus in 𝐱̂𝑖(𝑘) for all cameras
𝑗 .

The consensus algorithm assumes knowledge of the data association
etween the local measurement 𝐳𝑖(𝑘) and the target prediction 𝐱̄𝑖(𝑘),
hich is obtained by applying the linear motion model to the previous

arget state estimation 𝐱̂𝑖(𝑘 − 1). The measurement 𝐳𝑖(𝑘) is the 3D
ylinder obtained as the projection of the bounding box given by
he detector, and the velocity of the target computed with the last
ata association, i.e., 𝐳𝑖(𝑘) = (𝑥(𝑘), 𝑦(𝑘), 𝑧(𝑘), 𝑤(𝑘), ℎ(𝑘), 𝑥̇(𝑘), 𝑦̇(𝑘)). This
easurement is coupled in the filter with a zero mean Gaussian noise

haracterized with 𝐑𝑖(𝑘) as its covariance matrix. Using mobile cameras
equires online updates of the transformation matrix from the image
lane to the three spatial global coordinates of the world. The cameras
f the photo-realistic environment follow the pinhole model, which
ombined with the depth information, 𝑑(𝑘), enables the conversion
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of image plane coordinates 𝑣𝑥(𝑘) and 𝑣𝑦(𝑘), to the relative 3D world
camera coordinates 𝑥𝑟(𝑘), 𝑦𝑟(𝑘) and 𝑧𝑟(𝑘) by

𝑥𝑟(𝑘) = 𝑑(𝑘), 𝑦𝑟(𝑘) =
𝑑(𝑘)
𝑓

(𝑣𝑥(𝑘) − 𝑐𝑥), 𝑧𝑟(𝑘) =
𝑑(𝑘)
𝑓

(𝑣𝑦(𝑘) − 𝑐𝑦) (1)

where 𝑓 is the focal length and, 𝑐𝑥 and 𝑐𝑦 are the image center coor-
dinates in 𝑥 and 𝑦, respectively. Then, the relative camera coordinates
are transformed into the common global world system demand by the
consensus-filter algorithm following

⎡

⎢

⎢

⎢

⎢

⎣

𝑥(𝑘)
𝑦(𝑘)
𝑧(𝑘)
1

⎤

⎥

⎥

⎥

⎥

⎦

=
[

𝑅𝑗 (𝑘) | 𝑇𝑗 (𝑘)
0 1

]

⎡

⎢

⎢

⎢

⎢

⎣

𝑥𝑟(𝑘)
𝑦𝑟(𝑘)
𝑧𝑟(𝑘)
1

⎤

⎥

⎥

⎥

⎥

⎦

(2)

being 𝑅𝑗 (𝑘) the rotation matrix and 𝑇𝑗 (𝑘) the translation vector of the
camera at instant 𝑘, assumed as known. In a real setup, this information
could be computed by offline calibration of the cameras and using
onboard sensors such as GPS or IMUs together with SLAM algorithms
for the drones. Regarding the velocity, we take advantage of the online
tracking to measure the time the target has taken to arrive at the
current position at 𝑘 since the last data association between 𝐱̄𝑖 and 𝐳𝑖.

Once the camera 𝑗 associates the local measurement 𝐳𝑗𝑖 (𝑘) with the
local target prediction 𝐱̄𝑗𝑖 (𝑘), the consensus algorithm transforms the
measurement and its noise to the information form by

𝐮𝑗𝑖 (𝑘) = 𝐇𝑇𝐑𝑖−1(𝑘)𝐳
𝑗
𝑖 (𝑘), 𝐔𝑗𝑖 (𝑘) = 𝐇𝑇

(

𝐑𝑗𝑖 (𝑘)
)−1

𝐇. (3)

The obtained sensor data information, 𝐮𝑗𝑖 (𝑘), and its inverse-covariance
matrix, 𝐔𝑗𝑖 (𝑘) are exchanged with the neighboring cameras in the
network 𝑗 , together with 𝐱̄𝑖(𝑘). Due to the transformation into the in-
formation form, we are able to combine all the measurements received
from other cameras with the acquired one by simply adding them,

𝐲𝑗𝑖 (𝑘) =
∑

𝐶∈𝑗

𝐮𝐶𝑖 (𝑘), 𝐒𝑗𝑖 (𝑘) =
∑

𝐶∈𝑗

𝐔𝐶𝑖 (𝑘). (4)

Finally, the estimated state is updated by correcting the prediction
target state with the data computed in (4) and the predictions from
the neighboring cameras following

𝐱̂𝑗𝑖 (𝑘) = 𝐱̄𝑗𝑖 (𝑘) +𝐌𝑗
𝑖 (𝑘)

[

𝐲𝑗𝑖 (𝑘) − 𝐒𝑗𝑖 (𝑘)𝐱̄
𝑗
𝑖 (𝑘)

]

+ 𝛾𝐌𝑗
𝑖 (𝑘)

∑

𝐶∈𝑗

(𝐱̄𝐶𝑖 (𝑘) − 𝐱̄𝑗𝑖 (𝑘)),
(5)

where 𝐌𝑗
𝑖 (𝑘) = (𝐏𝑗𝑖 (𝑘)

−1+𝐒𝑗𝑖 (𝑘))
−1 is the Kalman Gain in the information

form and 𝛾 = 1∕‖𝐌𝑗
𝑖 (𝑘) + 1‖.

4.2. Local data association

For simplicity in the explanation, this subsection will focus on the
data association in a single camera. Hence, the subscripts 𝑗 used in the
notation will refer to the different measurements locally observed and
not the cameras in the network. The accurate update of the DKF relies
on a correct association between the set of measurements,  = {𝐳𝑗},
and the set of targets prediction, ̄ = {𝐱̄𝑖}, during each estimation cycle.
To tackle this issue, we assess two constraints based on geometry and
appearance.

The similarity value in the geometry of both sets is obtained as

𝑠𝑑 (𝐳𝑗 , 𝐱̄𝑖) =
{

1
𝛼 𝑑𝑀 (𝐳𝑗 , 𝐱̄𝑖) if 𝑑𝑀 (𝐳𝑗 , 𝐱̄𝑖) < 𝜏𝑑

1 otherwise,
(6)

eing 𝛼 a configuration parameter, 𝜏𝑑 a threshold applied to ignore
ighly unlikely candidates and, 𝑑𝑀 (𝐳𝑗 , 𝐱̄𝑖) the Mahalanobis distance

between the 𝑥, 𝑦 positions. The covariance matrix in the Mahalanobis
distance is computed by adding the sub-matrices of 𝐏𝑖 and 𝐑𝑗 that en-
code the covariance position of the estimation 𝐱̄𝑖 and the measurement
𝐳 , respectively.
𝑗 t

4

Then, those data whose distance is below 𝜏𝑑 are evaluated in appear-
ance. To get representative appearance features for measuring similar-
ity, we use the output of a person re-identification network (Zhou et al.,
2021) pre-trained in the MSMT17 Benchmark (Wei et al., 2018) as ap-
pearance descriptors. Inspired by this re-identification methodologies,
each local tracker creates an online appearance model, 𝑖, of the target
𝑖 with budget size. This appearance model, also called gallery, is built
based on a scoring system that estimates the usefulness and confidence
of each appearance feature. Thus, every feature of the gallery, 𝐟𝓁𝑖 ∈
𝑖, has a score assigned 𝜀(𝑘) whose value changes depending on two
factors. First, the gallery component with the minimum distance to
the final associated measurement appearance increases its score by one
with

𝜀𝓁𝑖 (𝑘 + 1) =

⎧

⎪

⎨

⎪

⎩

𝜀𝓁𝑖 (𝑘) + 1 if 𝓁 = argmin
𝐟∈𝑖

𝛿(𝐟𝑗 , 𝐟 ),

𝜀𝓁𝑖 (𝑘) otherwise,
(7)

where 𝐟𝑗 is the appearance feature get from the 𝐳𝑗 bounding box
detection. Secondly, the closest component of the appearance model
to the gallery centroid, 𝐟𝑖, increases by one its value score while the
farthest component decreases by one following

𝜀𝓁𝑖 (𝑘 + 1) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜀𝓁𝑖 (𝑘) + 1 if 𝑗 = argmin
𝐟∈𝑖

𝛿(𝐟𝑖, 𝐟 ),

𝜀𝓁𝑖 (𝑘) − 1 if 𝑗 = argmax
𝐟∈𝑖

𝛿(𝐟𝑖, 𝐟 ),

𝜀𝓁𝑖 (𝑘) otherwise.

(8)

The gallery is updated periodically every 𝑁 iteration with a new
feature. Once the budget size is reached, the component with the
lowest score is dropped to make room for the newest one. Finally,
the similarity between the appearance feature of the measurement, 𝐟𝑗 ,
and the tracker’s gallery 𝑖 used as a model of the appearance of the
prediction state 𝐱̄𝑖 is provided by the minimum cosine distance

𝑠𝑎(𝐟𝑗 ) = min
𝐟𝑖∈𝑖

(

1 −
𝐟𝑇𝑗 𝐟𝑖

‖𝐟𝑗‖‖𝐟𝑖‖

)

, (9)

The final data association assignment between the measurements,  =
{𝐳𝑗}, and the target predictions, ̄ = {𝐱̄𝑖}, is solved with the Hungarian
lgorithm (Kuhn, 1955) by defining the cost function as the product of
oth similarity scores, 𝑠𝑑 and 𝑠𝑎.

.3. Distributed tracker manager

In the practical implementation of distributed tracking systems, it
s also essential to perform a correct association of trackers across
he different cameras in the network. Our proposed approach to ad-
ress this problem involves performing the same process as the one
escribed in Section 4.2 for the local data association but with the
et of measurements replaced by the set of other camera’s predictions
̄𝑗 = {𝐱̄𝑗}, and using the Euclidean distance instead of the Mahalanobis
istance. These modifications are based on the information exchanged
n the communication message, which is subject to the data required
n the DKF and does not include the covariance matrices 𝐏𝑗 . In case
o local tracker is associated with those received from neighboring
ameras, the current camera initializes a new tracker based on the
racker information received.

Since we limit sharing appearance exclusively to newly initialized
rackers for saving bandwidth, the tracker consensus process across
ameras occurs only when a new tracker is initialized in any of them.
o ensure the robustness of mobile cameras in dynamic communication
cenarios, where the cameras they exchange information with may
hange over time, we include the cross-camera trackers association
n the communication message. This cross-camera trackers association
onsists of a look-up table where each tracker locally stores the unique
dentifier, 𝑖, assigned to the same target by the rest of the cameras in the
etwork 𝐶𝑗 . Consequently, once the message has traversed the entire
etwork, the cameras achieve a global consensus on the association of

rackers across all the cameras in the network.
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5. Active perception

In addition to collaborating in the distributed tracking of multiple
targets, mobile cameras tackle the task of active perception to gain
additional knowledge about the people presented in the scene. They
leverage shared information to efficiently position themselves for ef-
fectively visualizing each target’s attribute class. In this work, mobile
cameras are allowed to communicate between them in order to gather
global knowledge of the visualization process’s status.

5.1. Target class observations and belief updates

Every time step 𝜏ℎ, the drone uses a black-box perception algorithm
(e.g., a pre-trained CNN classifier) to compute the class probability
distribution for each target visualized from the correct viewpoint. Let
 = ℎ() = {𝐩𝑖}𝐼𝑖=1 be the class probability distribution, where 𝐩𝑖
epresents the likelihood of target 𝑖 belonging to each one of the 𝐺
lasses in the class set . To simplify the notation, in this complete
ection 5, 𝑡 will denote times periods of 𝜏ℎ.

The probability distribution over time is modulated by belief vectors
𝑡
𝑖 for each target 𝑖. These vectors contain 𝐺 belief values 𝑏𝑡𝑖𝑔 represent-

ing the aggregate likelihood of target 𝑖 belonging to a class 𝑔 ∈  up
to time 𝑡, i.e., combines the historical class probabilities distributions
up to time 𝑡. The process of aggregating the drone’s observations to
derive class beliefs for each target is a crucial consideration. Standard
Bayesian recursive estimation is not recommended in this case due
to the unavailability of the measurement likelihood model, P(𝐩𝑡𝑖|𝐛

𝑡−1),
rom the black-box sensor. Building a precise pose-dependent likelihood
odel requires the construction of a dense dataset and considering all

argets and occlusions for optimal viewpoint search. This process is
xpensive and does not scale well due to its computational demands.

Instead, we propose the use of the conflation operator 𝜁 (𝐩1∶𝑡𝑖 ), a
athematical method introduced by Hill and Miller (2011). Confla-

ion enables the aggregation of probability distributions obtained from
easurements of the same phenomena under different conditions. It
ossesses the remarkable property of minimizing the loss of Shannon
nformation when combining multiple independent probability distri-
utions into a single distribution, specifically when computing 𝐛𝑡𝑖 based
n the measurements 𝐩0∶𝑡𝑖 . The conflation is defined by

𝐛𝑡𝑖 = 𝜁 (𝐩1∶𝑡𝑖 ) ≡ 𝜁 (𝐛𝑡−1𝑖 ,𝐩𝑡𝑖) =
𝐛𝑡−1𝑖 ⊙𝐩𝑡𝑖
(𝐛𝑡−1𝑖 )⊤𝐩𝑡𝑖

, (10)

where the Hadamard product ⊙ in the numerator is taken component-
wise, whereas the dot product is the normalization factor. Conflation’s
commutative and associative properties enable efficient recursive com-
putation, making it suitable for onboard and decentralized belief
updates in the presence of multiple communicating drones. The beliefs
are initialized at 𝑡 = 0 with a uniform prior probability distribution over
all possible target classes, formally 𝑏0𝑖𝑔 = 1∕𝐺 ∀𝑔 ∈ .

5.2. Viewpoint control policy

The lack of an observation model that maps target relative poses
to a probability distribution, i.e., the ℎ function that maps  = ℎ(),
hinders the direct solution of the active perception for class recognition
problem. Therefore, we leverage Reinforcement Learning to train a
viewpoint control policy, 𝜋𝜙, that learns to recommend viewpoints 𝐚𝑡
that minimize the accumulated entropy of all targets’ beliefs over a
given time horizon. The policy is parameterized by 𝜙 and operates at
he perception low-frequency, 1

𝜏ℎ
.

Each drone uses a copy of the same learned viewpoint control policy
hat solves the viewpoint recommendation problem. The viewpoint
ecommendation problem is formulated as a Partial Observable Markov
ecision Process (POMDP), denoted by ⟨𝑆,𝐴,  , 𝛺,, 𝑅⟩. The state
includes the state of the drones, the targets’ pose, their beliefs,

nd their visualization status (visualized or not). Actions 𝐴 represent
5

recommended viewpoints within a constrained neighborhood and tran-
sitions  assume timely movement to the next viewpoint. The drone
receives partial information 𝛺 about the environment through the
observation function . The observation of each target is defined by
𝐨𝑡𝑞,𝑖 = [𝐨̄𝑝𝑞,𝑖, 𝐨̄

𝑐
𝑞,𝑖] ∈ 𝛺 where 𝐨̄𝑝𝑞,𝑖 is the observation of each target physical

ttributes (poses and velocities). Each target’s attribute information
s represented by 𝐨̄𝑐𝑞,𝑖 which includes the entropy of the local class
stimates from the drone 𝑞 and the entropy of the global class beliefs.
e define the joint target observation vector as 𝐨𝑡𝑞 = {𝐨𝑡𝑞,𝑖}

𝐼
𝑖=1 = [𝐨̄𝑝𝑞 , 𝐨̄𝑐𝑞].

The reward function in this work is based on the formulation
f Serra-Gómez et al. (2023). It provides rewards to the agent for
uccessfully classifying each and all targets and reducing the entropy of
arget class beliefs. Additionally, it penalizes the agent for movement
nd for each time step in which the task remains incomplete. For more
etailed information, we refer the interested reader to Serra-Gómez
t al. (2023).

.2.1. Architecture
The generalization ability of the learned policy 𝜋𝜙(𝐚|𝐨𝑞) depends on

he neural network architecture chosen. The main challenge lies in the
ize and dynamical changes over time of the set 𝐨𝑞𝑡 = {𝐨𝑡𝑞,𝑖}

𝐼
𝑖=1.

Inspired by Relational Graph Convolutional Networks (Schlichtkrull
t al., 2018) and self-attention mechanisms (Vaswani et al., 2017)
sed in static knowledge graphs, we employ a self-attention block
SAB) to capture the relationships among all targets at time 𝑡. Note
hat the focus in this first layer is on spatial features such as poses
nd velocities 𝐨̄𝑞𝑝, since the purpose is to encode important informa-
ion including target visibility, observation perspective, occlusions, and
otential simultaneous observations. Therefore, the initial layer is,

𝐞̃1,ℎ𝑖,𝑝 = 𝐹 (𝐨̄𝑝𝑞,𝑖;𝐖
1
𝑞,ℎ) +

∑

𝑗∈
𝜆ℎ𝑖,𝑗𝐹 (𝐨̄

𝑝
𝑞,𝑗 ;𝐖

1
𝑣,ℎ) ,

𝐞1𝑖,𝑝 = 𝐿𝑁(𝑅𝑒𝑠1(𝐿𝑁(𝑐𝑜𝑛𝑐𝑎𝑡({𝐞̃1,ℎ𝑖,𝑝 }ℎ=1...𝐻 )))) ,

𝜆ℎ𝑖,𝑗 = softmax
( 1
√

𝑑ℎ
𝐹 (𝐨̄𝑝𝑞,𝑖;𝐖

1
𝑞,ℎ)

⊤𝐹 (𝐨̄𝑝𝑞 ;𝐖
1
𝑘,ℎ)

)

𝑗
,

(11)

here 𝑖 ∈  , 𝑅𝑒𝑠𝑙(𝑥) = 𝑥+ 𝜎(𝐹 (𝑥;𝐖𝑙)), with 𝜎 being a ReLU activation
unction and 𝐹 a parametric affine transformation. 𝐿𝑁 stands for Layer
ormalization. 𝐖1 ∈ R𝑑𝑒𝑛𝑐×(𝑑ℎ𝐻+1) and 𝐖1

𝑤,ℎ ∈ R𝑑ℎ×(𝑑𝑖𝑛+1), 𝑤 ∈ {𝑣, 𝑞, 𝑘},
re learnable parameters. 𝑑𝑖𝑛, 𝑑ℎ, 𝑑𝑒𝑛𝑐 are the dimensionality of the
nput, each head ℎ, and the first layer. Note that each head ℎ encodes
different relation 𝝀ℎ between targets. To incorporate the information

cquired about each target’s class, we concatenate it with the latent
epresentation of each target from the previous layer. Then, we map it
ack to a latent space of dimension 𝑑𝑒𝑛𝑐 using a learned linear layer. The
rocess can be expressed as 𝐞1𝑖 = 𝐹 ([𝐞1𝑖 , 𝐨̄

𝑐
𝑞,𝑖];𝐖𝑐 )], where 𝐞1𝑖 represents

he updated latent representation, 𝐨̄𝑐𝑞,𝑖 is the class information of target
observed by drone 𝑞, and 𝐖𝑐 is the learned weight matrix.

Next, we use a pooling multi-head attention mechanism (PMA) that
ncorporates a learned seed vector per head 𝐯ℎ𝑠 ∈ R𝑑ℎ to calculate the
ttention weights for a single query,

𝐞̃2,ℎ = 𝐯ℎ𝑠 +
∑

𝑗∈
𝜆ℎ𝑗 𝐹 (𝐞

1
𝑗 ;𝐖

2
𝑣,ℎ) ,

𝐞2 = 𝐿𝑁(𝑅𝑒𝑠2(𝐿𝑁(𝑐𝑜𝑛𝑐𝑎𝑡({𝐞̃2,ℎ}ℎ=1...𝐻 )))) ,

𝜆ℎ𝑗 = softmax
({ 1

√

𝑑ℎ
𝐯ℎ,⊤𝑠 𝐹 (𝐞1𝑗 ;𝐖

2
𝑘,ℎ)

}

𝑗∈

)

𝑗
.

(12)

he output latent vector 𝐞2 is further processed by a fully connected
layer to obtain the parameters 𝜇𝐚𝑡 and log(𝜎𝐚𝑡 ) of a diagonal Gaussian
distribution  (𝜇𝐚𝑡 , 𝜎𝐚𝑡 ) over viewpoints. The learned policy 𝜋𝜙 then
samples recommended viewpoints 𝐚𝑡 from this distribution. We assume
that the drone can reach the recommended viewpoint before the next
time step.

For training the network, we employ the Proximal Policy Optimiza-
tion (PPO) algorithm (Schulman et al., 2017; Liang et al., 2018). PPO
requires an estimate of the state-value 𝑉 𝜋𝜙 (𝐬 ), which is approximated
𝑡
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by a linear layer predicting 𝑉 𝜋𝜙 (𝐬𝑡) ≈ 𝐯⊤𝑣 𝐞
2. This value estimation is

used during training to guide the policy. The training process com-
bines the surrogate loss and KL-divergence term to ensure stability.
Additionally, an entropy regularization term is included to promote
exploration (Haarnoja et al., 2017). For more detailed information and
equations regarding the algorithm, we refer the reader to Schulman
et al. (2017).

5.2.2. Low-level control MPC
During training, we assume the drone reaches the suggested view-

point by the next time step. However, at test time we employ a
low-level controller operating at a frequency 1

𝜏𝑙
Hz ≫ 1

𝜏ℎ
Hz, to guide

t there while accounting for the drone dynamics. The controller solves
he following receding-horizon constrained optimization problem:

min
𝐲1∶𝑁 ,𝝆0∶𝑁−1

𝑁−1
∑

𝑘=0
𝑤𝜌 ‖‖𝝆𝑘‖‖ +𝑤𝑔

‖

‖

𝐲𝑁 − 𝐚𝑡‖‖
‖

‖

𝐲0 − 𝐚𝑡‖‖
s.t. 𝐲0 = 𝐲𝑡, 𝐲𝑘+1 = 𝑓 (𝐲𝑘,𝝆𝑘)

𝝆𝑘 ∈  , 0 ≤ 𝑘 ≤ 𝑁−1

(13)

where 𝜌𝑘 is the low-level control input sent to the robot, that needs
to be inside the possible values  , 𝑓 (𝐲𝑘,𝜌𝑘) the internal dynamics and
𝑤𝑢 and 𝑤𝑔 are the respective weights of the stage and terminal costs.
For more details, we refer the reader to Zhu and Alonso-Mora (2019)
and Serra-Gómez et al. (2023). Although our full method accounts for
the drone dynamics using this low-level controller, our formulation
is flexible to other low-level controllers as long as they track the
recommended viewpoint 𝐚𝑡. This is why during simulation we employ
both the in-built drone dynamic model and the controller from AirSim,
see Shah et al. (2018) for more information.

6. Experiments

6.1. Environment

We use two high-fidelity virtual environments in Unreal Engine
to test the presented framework using our previous work (Casao
et al., 2023), where we provide the essential tools for creating
multi-pedestrian scenarios. Photo-realistic simulators offer several ad-
vantages, including obtaining automatically labeled data, easily varying
testing conditions, and developing autonomous robotics approaches
by filling the gap of using perception information. Previous works
have shown that methods developed in such environments, which
are increasingly prevalent, can generalize to real-world scenes with
augmentation techniques (Zhong et al., 2019; Luo et al., 2019).

The designed scenes are presented in Fig. 3. The first scene is a
commercial street (Street), while the second is a green open area (Font).
Their respective dimensions are 97 × 27 m and 97 × 50 m. In both
scenes, we place three static cameras with overlapping views for global
area monitoring and define distant starting points for the drones. The
size of the images captured by the camera network is set to 1440𝑥900
and the field of view to 90 degrees.3 Regarding communications, to be
as faithful as possible to a real-world scenario, we set the drones to
share information with each other as well as with the closest camera
to them at the time. Communication between static cameras is limited
to their direct neighbor, as shown in Fig. 3. Finally, the number of
pedestrians present on the scene varies between episodes, and their
trajectories are randomized.

Regarding the task of correctly visualizing people’s attributes, we
devise a marketing study on clothing brands as a use case. Specifically,
we create different pedestrians with a logo on the front of their T-shirts
which can be visualized exclusively from the frontal view of the person.

3 The rest of the camera parameters are those set by default in Unreal
ngine and AirSim.
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Fig. 3. Experimental environments used to evaluate the proposed framework. On the
left, we show the setup for the experiments performed in the commercial street, Street,
and on the right the setup for the font area, Font. The starting points of the two drones
used as mobile cameras are also shown and they always communicate with each other.

6.2. Evaluation metrics

To comprehensively evaluate the proposed approach for distributed
multi-target tracking, the common CLEAR MOT metrics (Bernardin
and Stiefelhagen, 2008; Ristani et al., 2016) are adopted for evaluation:

• Multiple Object Tracking Accuracy (MOTA): measures failures
during the tracking taking into account the number of misses,
false positives, and mismatches.

• Identity F1 Score (IDF1): evaluates the capability of the system
for preserving the identities over time.

• Multiple Object Tracking Precision (MOTP): shows the ability of
the tracker to estimate precise object positions through the error
in estimated position.

The above evaluation is performed in the image plane where metrics
require setting a threshold between the ground truth and the resulting
trackers in order to consider a tracker valid. We evaluate the resulting
bounding boxes in the image plane using a minimum intersection over
union (IoU) of 0.3 as the threshold to validate the trackers. The final
tracking results are those obtained as output of the Distributed Tracker
Manager. The final result is the median of the cameras in the network.

Regarding the acquisition of the correct people’s viewpoint obtained
from the active perception approach, the evaluation is performed
using a black-box clothing brands detector. Thus, we employ two
metrics:

• Trackers Classified (TC): measures the percentage of trackers
whose beliefs are higher than 95%.

• Precision (P): evaluates the percentage of trackers for which their
beliefs exceed 95% and correctly identifies their brand (attribute).

To associate each tracker with a ground truth brand class, we perform a
linear sum assignment problem between the trackers and ground truth
bounding boxes. The ground truth bounding boxes obtained from the
simulator contain the person’s attribute class.

6.3. Sequence evaluated

Several sequences are evaluated in each one of the environments
with their corresponding ground truth being automatically obtained
from the simulator. Specifically, we varied the number of pedestrians
to assess the performance for 5, 10, and 15 pedestrians. Thus, the con-
ducted experiments are named as sparse, medium, and busy for 5, 10,
and 15 pedestrians respectively, resulting in the following sequences:
Street Sparse, Street Medium, Street Busy for Street environment, and Font
Sparse, Font Medium, Font Busy for Font environment. All of them have

the same length of 500 frames. The Unreal project will be released upon
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Fig. 4. Comparison of the cameras responsible for distributed multi-target tracking col-
laborating with each other with a chain graph of communications (Static Collaborative)
and a single view tracking with isolated cameras (Single View).

Table 1
Percentage of trackers classified (TC) and percentage of trackers correctly identified (P)
in the Street sequences. Results for the baseline static camera network (SC) and our
ybrid system with two mobile cameras (MC).
Method Classification Process (%)

Street Sparse Street Medium Street Busy

↑TC ↑P ↑TC ↑P ↑TC ↑P

SC 75 75 80 60 70.83 58.33
MC 71.5 64.3 76.2 66.7 81.5 74.1

acceptance together with the recorded sequence and the extrinsic of all
the cameras to facilitate the comparison with the proposed tracking
approach.

6.4. Results and settings

In the following, we explain the baselines selected to compare
the proposed method in the Street sequences and perform a detailed
analysis of the obtained results. To conclude the experiments, we also
present the performance of our approach in the metrics described above
for both environments, Street and Font. We set the parameters defined
in the method for all the experiments to 𝜏𝑑𝐿𝐷𝐴 = 1, 𝛼 = 700, 𝜏𝑎𝐿𝐷𝐴 =
.55, 𝜏𝑑𝐷𝑇𝑀 = 2, 𝜏𝑎𝐿𝐷𝐴 = 1, 𝜏𝑙 = 0.05, 𝜏ℎ = 0.25 and the size of the
argets’ gallery is set to 10.

ollaborative behavior analysis. To demonstrate the benefits of collab-
rative behavior between nodes in a multi-target tracking network,
e gather the three cameras from our system responsible for tracking
nd assessed their performance with and without communication. The
irst case (Static Collaborative) follows the initial setup where cameras
ommunicate exclusively with their direct neighbor in a chain graph
Fig. 3). In the second setup, the different cameras perform individual
racking without any communication between nodes (Single View).
he obtained results, shown in Fig. 4, demonstrate the benefits of
haring information once per iteration with minimum communications
o that no node in the network is isolated. The Static collaborative
etup achieves up to 21% and 15% of improvement in the IDF1 and
OTA metric, respectively, in comparison with the tracking in Single
iew. Therefore, we can conclude that in large scenarios, the use of
ollaborative cameras with overlapping perspectives enhances tracking
erformance in comparison to the use of independent cameras.

obile cameras analysis. Furthermore, we evaluate the efficiency of
ur mobile cameras (MC) to correctly visualize the desired people’s
iewpoint against a baseline of static cameras (SC). The static setup
s composed of five cameras, the three already existing in the system
nd two more located on the other side of the street for more visual
overage of the scene. Communications among the five cameras are
efined as a ring graph, i.e., each camera shares information with its

wo nearest neighbors. As a consequence of the distributed nature of
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Fig. 5. Examples of people images captured from the correct viewpoint: mobile
cameras (blue box) and static cameras (red dashed box) in the Street Busy sequence.
Every pair of columns displays images of the same person.

the system, the static cameras collaborate to gain knowledge of the
overall scene, and the evaluation of the correct viewpoint visualization
is performed individually. The final results of the baseline are the
median of all the cameras in the system.

The results obtained of the percentage of trackers classified (TC)
and correctly identified their brands (P) with beliefs higher than 95%
are presented in Table 1. In the sparse scenario, where the occlusions
between targets are not frequent, the static camera setup gets better
results than the mobile cameras. However, in more crowded scenarios,
static cameras struggle to avoid occlusions for obtaining a view with
high confidence from the pedestrian. In contrast, mobile cameras can
be actively positioned to capture the desired viewpoint, achieving a
coverage (TC) of 81.5%, against the 70.83% obtained from the static
setup, in the most challenging scenario (Street Busy). In addition, the
quality of the people data captured by each one of the systems is un-
matched. Fig. 5 shows examples of the same pedestrian captured with
the mobile cameras (blue box) and with the static cameras (red dashes
box). Every two columns correspond to the same person and we can
notice the great difference in quality. The images from mobile cameras
revealed much more clear details than the static ones, whose images
are of low quality and blurry. These result in better identification of
the person’s brand in most of the sequences evaluated (P).

Final evaluation. As a summary, we present the performance of the
proposed framework in both photo-realistic environments, Street and
Font. The results obtained are shown in Table 2, from which we
can conclude that the method is consistent under various conditions,
including different numbers of people, size of the space, and type
of environments. Specifically, the experiments focus on evaluating
sparse, medium, and busy scenarios, with 5, 10, and 15 pedestrians,
respectively. Moreover, the Font environment is larger than the Street
environment with static cameras located further away from the path
where people walk, making it more challenging for monitoring. Finally,
we also perform a measurement of the mean time required by each of
the modules comprising the proposed framework: detection 0.0198 s,
local data association per tracker 0.038 s, distributed Kalman filter per
tracker 0.002 s, distributed tracker manager 0.0015 s, class information
fusion per tracker 0.00004 s, viewpoint control policy 0.005 s. The
complete evaluation is conducted in one computer with an Intel® Core™
i7-9700 CPU @ 3.00 GHz × 8 and a Nvidia GeForce GTX 1070. Both
tracking modules, with mobile and static cameras, and classification
modules, with mobile cameras, work in parallel. Provided that the
poses of new targets are estimated and relayed to the mobile cameras
within 𝜏ℎ, our framework operates in real time. This is not a strict
constraint, as there is allowable latency; however, it is crucial that
tracked targets remain within the recommended viewpoint FOV during
any such delays.

In addition to the numerical results, Fig. 6 displays examples of
images captured by the hybrid system at a specific time. The first row
corresponds to images from the Street environment and the second
row from the Font scenario. The overall understanding of the scene

is mainly performed by the static cameras although the drones also
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Fig. 6. Example of images captured by the hybrid system. First row Street Busy sequence and second row Font Medium sequence. Static cameras are mainly responsible for the
global understanding of the scene while mobile cameras (drones) capture pedestrian images from the desired viewpoint.
Table 2
Results of the evaluated metrics in the Street and the Font sequences where sparse,
medium, and busy environments are analyzed.

Sequence Multi-target Tracking Classification

↑MOTA% ↑IDF1% ↑MOTP% ↑TC% ↑P%

Street Sparse 54.18 48.34 61.43 71.5 64.3
Street Medium 43.62 42.57 60.45 76.2 66.7
Street Busy 38.83 42.52 60.1 81.5 74.1

Font Sparse 38.24 41 58.1 100 75
Font Medium 47.22 55.52 59 93.3 53.35
Font Busy 40.34 47.96 63.63 72.73 63.63

assist in the distributed tracking, while the close-up person images
are gathered from the mobile cameras. For example, in the first row,
Drone2 correctly captures the viewpoint of the target with local identity
14, and in the second scenario, Drone1 accomplishes its goal with local
identity 7. In the supplementary material, we include more examples
of the complete framework working on both scenarios.

7. Conclusions

In this work, we have presented a collaborative hybrid system
comprised of static and mobile cameras where all of them cooperate
for pedestrian monitoring and high-resolution visualization of certain
people’s attributes. The proposed framework performs multi-camera
distributed tracking providing a global understanding of the scene for
which the static cameras are mainly responsible. We demonstrate that
by allowing collaboration between cameras through sharing informa-
tion once per cycle with the closest nodes, the multi-target tracking
improves up to 21 points in the IDF1 metric and up to 15 points in
MOTA. Global scene awareness and the current state of drones are
used by the viewpoint control policy to provide a new position and
orientation for mobile cameras whose goal is capturing a desired view-
point of the people as quickly as possible. In comparison with a static
multi-camera system, mobile cameras are able to capture the required
viewpoint with higher precision in most of the scenes evaluated.
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