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1. Introduction

Technological advancements are altering the paradigm of transportation in
various aspects. Information and communication technology is the key for this
change providing new forms of travel platforms. Given the widespread
availability of smartphones and ubiquitous connectivity, users are now plan-
ning their transportation activities through smartphone apps which enable
them to reach various services easily. They also receive real-time information
regarding their trips as advanced sensors are widely available. Therefore, they
can reconsider their choices based on the latest updates. Furthermore, vehicle
technology is advancing with electrification, automation, and connectivity.
Technological advancements, taken together with a growing demand for
mobility under environmental and energy constraints, have been key drivers of
emerging mobility options that are on-demand, shared, integrated, real-time,
energy efficient, and flexible. Ridesourcing, provided by transportation
network companies (TNCs) such as Uber and Lyft, is one prominent example
of a disruptive mobility alternative that matches passengers and drivers via
location-enabled smartphone apps in real-time. Another emerging example is
Mobility as a Service (MaaS) whereby consumers “buy mobility services
(from participating providers) based on consumer needs instead of buying the
means of mobility” using a single intermodal platform and payment
(Kamargianni et al., 2016). In addition to increased passenger convenience and
service efficiency, these new modes and services have the potential to reduce
car ownership in the long term (e.g., Iacobucci et al., 2017; Schechtner and
Hanson, 2017) and to complement mass transit as a first-/last-mile access
mode (e.g., Jiao et al., 2017; Lyft, 2015). Automated vehicles will make these
trends even more likely and will further enable new forms of mobility supply
(Mahmassani, 2016).

Smart Mobility is broadly defined as the family of mobility solutions that
use appropriate technologies and methodologies and that may leverage the
availability of big data for the sustainability of transportation systems (e.g.,
Benevolo et al., 2016). Smart Mobility is acclaimed to bring about benefits
including gains in safety, reduction in individual travel costs due to increased
efficiency of operation, greater consumer choice, and more sustainable travel
(Docherty et al., 2018).

We present in this chapter a Smart Mobility approach that consists of three
key features: (1) prediction, (2) optimization, and (3) personalization. Firstly,
prediction is the key for adapting the system to changing conditions on the
network. Real-time data therefore needs to be incorporated to predict network
conditions, e.g., congestion, in order to have proactive decision-making
mechanisms. Secondly, optimization is the key to have decision-making
mechanisms that achieve system-level objectives, e.g., minimizing network-
wide travel times and maximizing revenue and/or consumer surplus. Appro-
priate optimization models need to be formulated (based on predicted network
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conditions) and solution methodologies need to be developed to ensure real-
time efficiency. Finally, personalization is the key to safeguard users’ bene-
fits and attract various types of travelers through understanding their
preferences. Methodologies need to be developed for estimating and updating
individual-level preferences (e.g., willingness to pay) and optimizing the travel
option to match those preferences while maintaining the system-level objec-
tives. Furthermore, Smart Mobility solutions need to be assessed in terms of
their user-level and system-level impacts. Multilevel simulation is a core of
our approach for assessing the impacts of Smart Mobility before real-life
implementation.

As an example of a Smart Mobility service that embeds the above features,
Tripod (Lima Azevedo et al., 2018) is a smartphone-based system to influence
individual real-time travel decisions by offering information and incentives to
optimize system-wide energy performance. A system-wide incentive strategy
is optimized using predictions for the multimodal transportation network in
real-time, while its app menu is personalized for each user based on her/his
travel preferences on an on-demand basis. Bringing together these method-
ologies in an appropriate and efficient way is the key distinction we bring for
Smart Mobility. Yet, today’s Smart Mobility solutions are characterized by just
one or two of these features with similar principles and goals. For example, the
MaaS concept may allow for personalization of mobility plans and accom-
modate for demand optimization given real-time supply conditions observed
through participating mobility providers.

The remainder of the chapter is organized as follows. Section 2 presents the
proposed Smart Mobility approach with the formulation of specific prediction,
optimization and personalization methodologies, as well as the simulation-
based evaluation. For each of them, we also introduce the platforms that
have been developed to facilitate those methodologies and present example
applications to show their added values. Section 3 provides examples of Smart
Mobility together with their implications on the transportation network.
Finally, Section 4 concludes the chapter and discusses future developments.

2. Smart mobility methodology

This section presents the three key methodologies and the simulation-based
evaluation that constitute the proposed Smart Mobility approach.

2.1 Smart mobility: prediction

Effective smart mobility solutions need accurate and reliable traffic state es-
timates and predictions. This involves explicitly considering demand and
supply-side characteristics and their interactions. The traffic state prediction
approaches in the literature can be divided into two categories: data driven and
model-driven. The data-driven approaches rely on the availability of big data
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(e.g., from sensors and other equipment) and filtering or machine learning
algorithms. On the other hand, there are model-driven approaches that rely
purely on traffic flow models. We propose a hybrid approach that combines the
empirical nature of data-driven approaches with theoretically sound traffic
flow models: we term the approach as online calibration. Thus, the hybrid
approach has the advantage of using data to model recurring congestion and
using models to predict the traffic evolution under nonrecurrent congestion,
especially when the data on rare events is sparse. Online calibration entails
calibrating a dynamic traffic assignment (DTA) system in real-time, which
involves adjusting the demand and supply parameters of the DTA system,
using the most recent observed traffic measurements (see Fig. 12.1). Note that
for the methodology presented below, the DTA system can be either analytical
or simulation based.

2.1.1 State space formulation

The online calibration problem can be formulated either as an optimization
problem or as a state-space problem. We present the state-space formulation as
it is more general, i.e., it can be adapted to different parameters and mea-
surements. The reader is referred to Ashok and Ben-Akiva (2002) and Anto-
niou et al. (2007) for a more detailed discussion.

Consider an analysis period which is divided into equal intervals h ¼
1; 2;.; T of size t. The transportation network is represented by GðN; L; SÞ,
where N represents the set of nodes, L represents the set of links, and S rep-
resents the set of segments. The network has nN nodes, nL links, and nS
segments. The segments are sections of road with homogeneous geometry; a
link comprises one or more segments. The set of OD pairs are represented by R

FIGURE 12.1 Online calibration framework.
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and are nR in number. Further, ns of the nS segments are assumed to be
equipped with surveillance sensors.

The state-space formulation consists of three main components: (i) a state
vector that succinctly characterizes the system, (ii) a transition equation that
captures the evolution of the system, through the state-vector, in time, and (iii)
a measurement equation that captures the relationship between the state-vector
and the measurements or observations of the system. Following the proposal in
Ashok and Ben-Akiva (2002) and Antoniou et al. (2007), it is better to express
the state-space formulation in terms of the deviations of the relevant variables
from their historical values. By modeling in terms of the deviations in pa-
rameters, we can capture the critical structural information of the trip and
network patterns present in the historical values.

In the current context, let ph represent a vector containing the parameters
of the DTA system in the time interval h; it can contain the OD flow variables
along with behavioral and supply parameters. Let pH

h represent the historical
values of the parameters in interval h. The historical values pH

h are generally
obtained through offline calibration (Balakrishna, 2006). The state-vector is
then denoted by Dph ¼ ph � pH

h , whose evolution can be represented
through the following generic transition equation:

Dph ¼ f ðDph�1;.;Dph�qÞ þ hh (12.1)

where q denotes the number of previous interval states that influence the
current interval state; and hh is a vector random of errors in the transition
equation in interval h.

Further, let mh denote the vector of measurements in interval h; these can
be both point-based measurements (like flows and speeds) or spatial mea-
surements (like GPS or AVI). As before, let mH

h represent the historical values
of the measurements in interval h. The historical values of measurements are
generally obtained by running the DTA system with the historical parameters
or they can also be actual measurements used for offline calibration. The
measurement-vector in deviations is then denoted by Dmh ¼ mh �mH

h ,
which is related to the state-vector through the following generic measurement
equation:

Dmh ¼ gðDph;.;Dph�pÞ þ zh (12.2)

where p denotes the number of previous interval’s states that influence the
current interval’s measurements; and zh is a vector of random errors in the
measurement equation in interval h.

Eqs. (12.1) and (12.2) together form the state-space formulation of the
generic online calibration problem. In practice, two assumptions are made on
the generic formulation: (i) the transition equation is approximated through a
linear autoregressive process and (ii) the measurement equation uses a DTA
simulator to relate the parameters and measurements. After applying the above
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assumptions, the resulting transition and measurement equations are as
follows:

Dph ¼
Xh�1

i¼h�q

F h
i Dpi þ hh (12.3a)

Dmh ¼Sðph;.;ph�pÞ �S
�
pH

h ;.;pH
h�p

�
þ zh (12.3b)

In Eq. (12.3a), F h
i represents a matrix relating the parameter estimates of

interval i to the estimates of interval h, and q denotes the degree of the
autoregressive process in the deviations. In Eq. (12.3b), S represents a DTA
model, that can be either analytical or simulation-based, whose inputs are the
parameters and outputs are the simulated measurements in the current interval,
and p represents the maximum number of previous intervals whose parameters
influence the measurements in the current interval.

Finally, to predict the parameters in the subsequent intervals hþ 1; hþ
2; ., the estimates calculated using equation in (3a) are used. For example,
the prediction for the time interval h þ 1, if the current interval is h, is
calculated as

phþ1 ¼pH
h þ

Xh�1

i¼h�q

F h
i Dbpi þ hh (12.4)

where Dbpi represent the a posteriori estimates of OD-flow deviations in in-
terval i.

In the context of online systems, as presented in this chapter, the problem
in Eq. (12.3) is solved to obtain an estimate of only the parameters in interval
h, ph. The parameter estimates of the earlier intervals h� 1; h� 2;. are not
reestimated. In effect, the parameter estimates of the previous intervals are
treated as constants in the current interval.

However, the observations in the current time interval might contain in-
formation about parameters from the previous time intervals. For example,
sensor flow counts in the current intervals can be a result of OD flows from
previous intervals. Therefore, ideally, the parameter estimates from the pre-
vious time intervals need to be corrected based on the measurements in the
current interval. In the context of state space formulation, this correction of the
parameters estimated in previous time intervals is formulated using state
augmentation approach (Ashok, 1996). Although state augmentation results in
better estimates of the parameters, it can be computationally intensive as it
requires “rolling back” the simulator in real-time. In other words, the simulator
needs to rerun with the new parameter estimates (from the previous time in-
tervals) to update the simulated measurements. Ashok and Ben-Akiva (2002)
found that the state augmentation can be reasonably approximated using the
sequential estimation procedure we described in the chapter.
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2.1.2 Solution procedure

The Kalman filterebased approaches are a natural and efficient way to
recursively solve the system of equations in (3). The Kalman filter efficiently
determines the estimate of the current interval using the estimate from the
previous interval and the measurements in the current interval. The classical
Kalman filter, which is a minimum mean square estimator, is applicable to
linear state-space models. For the nonlinear state-space models, as in the
problem in Eq. (12.3), the extended Kalman filter (EKF) was introduced. The
EKF linearizes the nonlinear transition or measurement equations around the a
priori estimates and adopts the procedure for linear state-space models to
estimate the state-vector. The main conceptual drawback of the EKF is that it
is not an optimal estimator; however, its practical application has been
demonstrated in various studies (Antoniou, 2004). Note that for the application
of the Kalman filterebased methods, we impose an assumption that the error
terms hh and zh, from Eqs. (12.3a) and (12.3b), are zero mean Gaussian
variables and that they are independent over time.

There are three main steps in the EKF algorithm: (i) time-update, (ii)
linearization, and (iii) measurement update. In the time-update step, the pre-
diction for parameter deviation vector Dpðhjh�1Þ is made using the transition
equation and the optimal estimates from the previous interval h � 1,
Dpðh�1jh�1Þ. These estimates, Dpðhjh�1Þ, are termed a priori estimates as they
use data only until the previous time interval h � 1. In the second step, the
measurement equation is linearized around the a priori estimates of the current
interval, Dpðhjh�1Þ. In the third step, the a priori estimates are updated using
the linearized measurement equation to obtain the a posteriori estimates for
parameter deviation vector DpðhjhÞ. Please refer to Antoniou (2004) and Pra-
kash et al. (2018) for a more detailed discussion of the procedure.

The main bottleneck to apply the EKF algorithm to the online calibration
problem is the linearization of the measurement equation, which involves
calculating the Jacobian of the measurement equation. As the measurement
equation represents the simulator, it has no closed-form expression. Therefore,
the Jacobian is calculated through the numerical derivatives of Sðph;.ph�pÞ.
Determining the centered numerical derivative involves perturbing each of the
parameters and running the simulator 2nK times, which can be computation-
ally intractable. To overcome the computational intractability under nonlinear
measurement equation, two approaches have been proposed in the literature:
(i) limiting extended Kalman filter (LimEKF) and (ii) dimensionality reduc-
tion. The LimEKF entails using a constant “gain” matrix, thus eliminating the
need to estimate the Jacobian at every time-interval (Antoniou et al., 2007).
The gain matrix is then estimated offline periodically and an updated matrix is
used whenever available. The second approach, involves reducing the di-
mensions of the parameter vector so that the computation requirements of the
Jacobian are mitigated. Prakash et al. (2018) formulate the problem using
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principal components of the parameters resulting in the reduction of state
vector by 50 times.

2.1.3 Example application

As an example of the prediction methodology, we present a case study con-
ducted on the Singapore Expressway Network. The road network is depicted
in Fig. 12.5, which has 939 nodes, 1157 links, and 3906 segments. The
network specification also contains information about segment lengths,
segment curvatures, speed limits, lanes specifications, lane-connections, and
dynamic tolling gantries which are replicated from the real-world.

The network has 4121 OD pairs, whose locations and historical values
were determined by an earlier work through offline calibration. The network
has 357 sensors, each of which is associated with a segment; these video
cameraebased sensors count the vehicular flow for a period of 5 min. For the
current case study, the simulation time-period was taken from 06:00e12:00,
which includes the morning peak period and also the peak to off-peak tran-
sition. The estimation interval was 5 min and the prediction interval, to esti-
mate future traffic states and provide guidance, was 15 min. Thus, we have 72
estimation intervals with a total of 72� 4121 ¼ 102; 312 variables.

For this study, sensor count data of 30 weekdays in AugusteSeptember
2015 was used. The 30-day data was divided into a training set of the first
25 days and the calibration procedures were tested on the last 5 days. As a
real-time DTA system, DynaMIT (see Section 2.2.1 for a description of
DynaMIT) was employed. For more details, please see Prakash et al. (2017)
and Prakash et al. (2018).

The performance measures adopted were the normalized root mean
squared (RMSN) errors and mean absolute percentage errors (MAPEs) which
are defined as

RMSN¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
Pn
i¼1

�
yi � byi�2

s
Pn
i¼1

yi

(12.5a)

MAPE¼ 100

n

Xn
i¼1

����yi � byi����
yi

(12.5b)

where yi represents actual measurement and byi represents simulated mea-
surement. Note that as MAPE is not normalized to consider the size of
measurement, it can be high when the sensor-flows are small even though the
deviation from the observations is acceptable.

234 PART | D Applications



The aggregate RMSNs and MAPEs of the procedures for estimation and
prediction across the five test days are presented in Table 12.1. In the context
of estimation, the OD-EKF on average exhibits an RMSN of 0.287 and MAPE
of 28.21%. It improves over historical by 32% in RMSN and 30% in MAPE.
The results from the predictions are represented in three steps, which represent
the three 5-minute intervals in the complete 15-minute prediction interval.
From Table 12.1, the EKF on average exhibits an RMSN of 0.290, 0.295, and
0.3 for the three steps and MAPE of 24.60%, 26.44%, and 27.71% for the three
steps. By comparing the RMSNs and MAPEs after calibration with those of
the historical values, we see that RMSNs after calibration are significantly
better than those of the historical, but the MAPEs after calibration are only
marginally better than those of the historical. It implies that calibration im-
proves on the predictions of sensor-flow counts of the sensors with higher
flows than those with the lower flows.

Fig. 12.2 depicts the scatter plots of estimated and predicted sensor counts
across the five test days. The complete 5 days’ sensor-flow count values are
represented in a single plot as a heat map. A line was fit between the estimated/
predicted and the actual values in each of the plots and its equation is pre-
sented. From the plot, we see that the fits are closer to 45-degree line with no
significant systemic bias or variance; however, for longer prediction intervals
there seems to be some evidence of bias.

Some of future research directions in predicting short-term traffic states
include (i) incorporating disaggregate data, at individual level including tra-
jectories, into online calibration, (ii) fusing DTA and machine learning tech-
niques, specially to predict the advent and impacts of incidents, and (iii)
exploring adaptive dimensionality reduction techniques that are specific to the
situation.

2.2 Smart mobility: optimization

The design and operation of efficient and sustainable smart mobility solutions
require the application of “online” optimization models that drive the system
toward desirable system-level objectives. These models are of relevance in
various contexts to make real-time operational decisions such as ride-sharing
pricing policies and operational strategies including matching of vehicles to
requests and rebalancing, incentive allocation schemes, tolls, signal timings,
and so on.

The literature on optimization in the context of smart mobility is vast and
includes both emerging on-demand services (ride-hailing, car sharing, bike
sharing) and network control strategies (tolls, ramp metering, signals, etc.).
The optimization of on-demand services has traditionally focused on vehicle
routing and scheduling and falls under a broad class of dial-a-Ride problem or
DARP (refer to Cordeau and Laporte (2007) for a review). More recently,
studies have focused on incorporating the ride-sharing component of on-
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TABLE 12.1 Aggregate values of RMSNs and MAPEs of sensor-flow counts (5 min) for historical and EKF.

Method RMSN estimation

RMSN prediction MAPE estimation MAPE prediction

step1 step2 step3 step1 step2 step3

Hist 0.423 0.422 0.42 0.419 28.21 28.18 28.19 28.1

OD-EKF 0.287 0.290 0.295 0.305 19.77 24.60 26.44 27.71

% diff 32.15 31.28 29.76 27.21 29.92 12.70 6.21 1.39

2
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6
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A
p
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demand services to estimate minimum fleet sizes required to service existing
taxi demands in different urban contexts (Santi et al., 2014; Vazifeh et al.,
2018; Alonso-Mora et al., 2017). The aforementioned studies typically employ
graph theoretic and operations research techniques and do not explicitly model
the complex demand and supply interactions within the transportation system.
Extensive literature also exists on the optimization of network control strate-
gies and the most commonly used approaches include feedback control (Zhang
et al., 2008; Lou et al., 2011) and simulation-based optimization (Hassan et al.,
2013; Hashemi and Abdelghany, 2016; Gupta et al., 2016). Typically, the
approaches (with a few exceptions) tend to ignore system-level interactions
and are reactive in that they are based on only current network states and not
predicted network states.

Given that the optimization framework for Smart Mobility needs to be
adaptive and computationally efficient, responding in real-time to recurrent/

FIGURE 12.2 Comparison estimations and predictions of EKF procedures through the scatter

plots of 5 min predicted versus actual sensor counts across all the five test days. The darker the

cell, higher the number of points in it. (A) Estimations, (B) 1-step predictions, (C) 2-step pre-

dictions, (D) 3-step predictions.
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nonrecurrent transportation supply and demand fluctuations, the approach we
propose utilizes short-term predictions of the multimodal transportation sys-
tem within a rolling horizon framework. More specifically, within this
framework, a simulation-based optimization problem is solved periodically
(e.g., every 5 minutes) wherein different candidate strategies of the smart
mobility service operation are evaluated using predictions of the transportation
system over a short-term future horizon period (e.g., 1 hour). The predictions
are generated by a real-time dynamic traffic assignment (DTA) model system
and involve detailed behavioral and supply models, explicitly taking into ac-
count the responses of users to the strategies. Examples of such real-time DTA
systems include DYNASMART-X (Mahmassani, 2001), DynaMIT2.0 (Ben-
Akiva et al., 2010; Lu et al., 2015b), and DIRECT (Hashemi and Abdel-
ghany, 2016).

2.2.1 Real-time DTA and rolling horizon framework

The proposed optimization approach is built upon the prediction methodology
(Section 2.1) and therefore utilizes traffic state predictions from a real-time
DTA system operating in a rolling horizon mode. Although in principle, any
simulation-based or analytical DTA system could be applied, in the following
description, we make use of DynaMIT2.0 (Lu et al., 2015b). Some dis-
tinguishing features of DynaMIT2.0 include the modeling of multiple modes
(e.g., car, transit, on-demand services) and generation of guidance information
that is consistent with actual network conditions that users will encounter
when responding to the guidance.

DynaMIT2.0 is composed of two core modules, state estimation and state
prediction, and operates within a rolling horizon mode. In the example shown
in Fig. 12.3, at 8:00 a.m., an execution cycle begins with DynaMIT2.0
receiving real time data from various sources including surveillance sensors,
traffic information feeds, special event websites, weather forecasts, social
networks, etc. This data is used in conjunction with historical information to
first calibrate or “tune” the demand and supply parameters of the simulator so
as to replicate prevailing traffic conditions as closely as possible (termed
online calibration or state estimation; refer Section 2.1 for more details) for the
time interval from 7:55e8:00. Based on this estimate of the current network
state, the state prediction module predicts future traffic conditions for a pre-
diction horizon (8:00e9:00 a.m.) taking into account the response of the
drivers to the provided travel time (or other) guidance information. The out-
puts of the prediction module are forecasts of network conditions that are
consistent with the expectation of users when responding to the guidance.
Within our approach, the optimization of smart mobility services utilizes the
state prediction module iteratively to evaluate potential candidate strategies
based on the multimodal network predictions from 8:00 to 9:00 a.m. These are
then applied to the system for the time interval from 8:00e8:05 a.m. At 8:05
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a.m., the next execution cycle or “roll period” begins and the process repeats.
The multimodal network predictions are based on behavioral models that
incorporate the response of travelers to the smart mobility services.

2.2.2 Optimization formulation and solution approaches

In this section, we formally define the generic optimization problem applicable
to the design/operation of any of the previously discussed “smart mobility”
solutions. Consider a network GðN;AÞ, where N represents the set of n
network nodes and A represents the set of m directed links and assume that the
simulation period consists of h ¼ 1;.; T estimation intervals of length t.
Further, let the prediction horizon be K intervals, i.e., length to Kt, where each
subinterval of length t within the prediction horizon is termed a prediction
interval. Let qh ¼ �

q1h; q
2
h;.; qKh

	
denote a vector of decision variables for

the prediction horizon corresponding to estimation interval h that are to be
optimized based on desired system or operator level objectives. The decision
variables could involve pricing policies for smart mobility services, incentive
allocation schemes, network tolls, etc. and are revised every estimation in-
terval. For example, in Fig. 12.4, we have K ¼ 3 prediction intervals and
q1h; q

2
h; q

3
h represent the values of the decision variables for the three prediction

subintervals in roll period h.
The state of the multimodal network over the prediction horizon associated

with estimation interval h is denoted by a vector x which could include link
flows, speeds, densities, bus/train dwell times, and so on. With this back-
ground, the optimization problem to be solved in roll period (i.e., estimation
interval) h is formulated as follows:

FIGURE 12.3 Rolling horizon framework.
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MinqhZ¼ f ðqh; xÞ
s:t Sðh; qhÞ¼ x

where, h represents the forecasted demand and supply parameters for the
prediction horizon, Sð.Þ represents the complex coupled demand and supply
simulators of the DTA system and f ð.Þ represents the objective function of
interest. The objective function could include the maximization of social
welfare, minimization of energy, maximization of operator profits, fleet utili-
zation, and so on. The objective function of optimization problem does not
have a closed form and is the output of a complex simulator. Therefore, it is
typically nonlinear and nonconvex. Solution approaches to solve this problem
include meta-heuristics (Gupta et al., 2016; Hashemi and Abdelghany, 2016)
which are amenable to the use of parallel and distributed computing and can
achieve real-time performance. In the example application presented in the
next section, we use a genetic algorithm approach that enables such paralle-
lization. Nevertheless, the framework is flexible and already implemented with
other solution algorithms including search heuristics.

2.2.3 Example application

In this section, we discuss the application of the framework to a dynamic toll
optimization problem using a case study on the Singapore Expressway
Network shown in Fig. 12.5 where there are 16 gantries. The decision vector
qh in this case is a vector of toll rates on those gantries to be determined for the
prediction horizon. Note that, Singapore already has toll optimization in place
through Electronic Road Pricing (ERP) in the form of time-of-day tolling
(Seik, 2000).

The impact of the predictive optimization of network congestion is eval-
uated using a closed-loop setup wherein the DynaMIT2.0 system is interfaced
with a traffic microsimulator MITSIM (Yang et al., 2000). MITSIM is run
concurrently with DynaMIT2.0 and mimics the real network, providing sensor

FIGURE 12.4 Notation for the rolling horizon approach.
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counts (surveillance data) to DynaMIT2.0, which in turn provides predictive
guidance and optimized tolls to MITSIM. The impact of the guidance and
optimized tolls is then examined by obtaining relevant performance measures
from MITSIM. For the experiments, in order to obtain a realistic representa-
tion of demand and supply on the Singapore expressway network, an offline
calibration is performed in two stages. In the first stage, MITSIM is calibrated
against real-world sensor count data (for details see Prakash et al., 2017) and
in the second stage, the demand and supply parameters of DynaMIT2.0 are
calibrated against simulated outputs from the calibrated MITSIM system.

In the numerical experiments, the performance of the predictive
optimization is examined against two benchmarks, a no-toll scenario and a
static-optimum, where tolls are time-invariant and optimized offline using
historical demands. Two demand scenarios are considered, a base demand
(calibrated MITSIM demand) and a high demand scenario (base demand
increased systematically by 20%). In both cases, the MITSIM demand is also
randomly perturbed to represent recurrent demand fluctuations. The simulation
period is 6:30 a.m. to 12:00 p.m., which includes the morning peak in
Singapore, and the estimation interval and prediction horizon are 5 and
15 min, respectively. For each demand scenario, the closed-loop simulation is
performed 20 times (to account for simulator stochasticity) and the perfor-
mance measures (trip travel times) are averaged.

The average trip travel times (aggregated in 5-minute departure time
windows) in the two demand scenarios are shown in Figs. 12.6 and 12.7 (the
bands represent the standard deviation in the travel time estimates based on the
20 replications). The results show that predictive optimization can yield

FIGURE 12.5 Singapore Expressway Network (map data: Google Maps, 2018).
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statistically significant (at a 95% confidence level) travel time savings at the
network level. The average trip travel times (across the entire tolling period
from 7:30 to 11:00) in the case of the predictive optimized tolls are lower than
the static-optimum and no-toll cases by 9.12% and 6.74% in the base demand
case, and 4.00% and 8.38% in the high demand case.

There are several future promising directions related to real-time predictive
optimization for improving transportation network conditions. An immediate
direction is including more advanced demand models in the optimization

FIGURE 12.6 Average Travel Times (Base demand).

FIGURE 12.7 Average Travel Times (High demand).
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framework in order to personalize the transport policies such as tolls, in-
centives, etc., and personalization methodology will be discussed in the next
section.

2.3 Smart mobility: personalization

Travelers’ needs are different and the preferences are heterogeneous across the
population and across time. Smart Mobility solutions therefore need to present
alternatives that are personalized in order to achieve long-term performance
while ensuring that system-level objectives are met. For this purpose, we
identify two main methodologies that make personalization possible: behav-
ioral modeling and personalized menu optimization. First, behavioral
modeling is the key to understand the heterogeneity across observations, and
for Smart Mobility, the behavior of interest could be mode choice, route
choice, departure time choice, etc. Second, user-specific optimization uses the
behavioral information in order to optimize the Smart Mobility offer to be
presented to the user. This optimization is represented by a menu optimization
model that selects the optimal set of alternatives to be presented and this set of
offered alternatives is referred as menu.

2.3.1 Behavioral modeling

Discrete choice methodology is well accepted to model behavior in various
contexts (Ben-Akiva and Lerman, 1985). Different types of models have been
developed and used in understanding behavior with various applications to
travel behavior. Heterogeneity in behavior is particularly important to model
and most of the literature focuses on heterogeneity across the population
(inter-consumer heterogeneity). It is typically modeled as logit mixture (or
mixed logit), and depending on the specification, simulation techniques are
developed and used for the estimation (Train, 2009). More recently, re-
searchers have investigated the heterogeneity across the choice situations (or
menus) of the same individual (intraconsumer heterogeneity), especially when
the data is collected over a long time with multiple observations for each
individual (Cherchi et al., 2009; Hess and Rose, 2009; Ben-Akiva et al., 2019).
This is especially relevant for Smart Mobilityebased apps, where user data is
likely to be available for multiple time periods.

Logit mixtures that account for both inter- and intraconsumer heteroge-
neity are estimated with maximum simulated likelihood (MSL) estimators
(Hess and Rose, 2009). Building on the Allenby-Train procedure (Train,
2001), a Bayesian estimator is developed by Becker et al. (2018) for Logit
mixtures with both levels of heterogeneity by extending the 3-step Allenby-
Train procedure as a 5-step procedure. Population level, individual level,
and menu level parameters are obtained with the proposed 5-step estimator.
They compare the estimator to MSL and show that the proposed estimator
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retains the MSL estimates and is computationally 5 times less costly.
Furthermore, based on the mentioned Bayesian methodology, the authors
developed an offlineeonline update mechanism in order to continuously up-
date the parameters as individuals make choices in the system (Danaf et al.,
2019a). Therefore, our proposed approach is to use the Bayesian estimator and
the update mechanism for Smart Mobility in order to estimate parameters that
represent the heterogeneity across population and across choice situations
accurately and also to keep the estimates up-to-date based on the recent
observations.

We will now illustrate a typical logit mixture model with inter- and
intraconsumer heterogeneity. We have population-level parameters given by m,
individual-level parameters represented by zn for each individual n and menu-
level parameters given by hmn for menu m and individual n. Furthermore, we
have the interconsumer covariance matrix Ub and the intraconsumer covari-
ance matrix Uw. We assume that zn and hmn are normally distributed as
follows:

hmnwN ðzn;UwÞ (12.6)

znwN ðm;UbÞ (12.7)

Consider the following utility function for individual n alternative j in
menu m:

Ujmn ¼Vjmn þ εjmn ¼ Xjmnhmn þ εjmn (12.8)

where Vjmn is the systematic utility and Xjmn represents alternative attributes.
In the context of Smart Mobility, those attributes are typically travel time, cost,
frequency, reliability, level of service, etc. Assuming that the error term εjmn

follows the Gumbel distribution and the choice set for individual n for menu m
is represented by Jmn, the choice probability of alternative j is given as:

PjðhmnÞ¼
expðVjmnðhmnÞÞPJmn

j’¼0

exp
�
Vj’mnðhmnÞ

	 cj˛ Jmn (12.9)

Such models with advanced level of heterogeneity needs appropriate
datasets with multiple observations for individuals together with the contextual
information. For achieving the data needs, we utilize the Future Mobility
Sensing (FMS) platform that was developed by the intelligent transportation
system (ITS) Lab at MIT and SMART (Cottrill et al., 2013; Zhao et al., 2015).
FMS is mainly used to collect high-resolution mobility data in the form of
activity diaries through a smartphone app, where users can validate their entire
set of trips and activities during a day. As users are typically asked to use the
app for a few weeks, multiple choices of mode, route, departure time, etc., are
observed. The users also provide socioeconomic information when installing
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the app. Therefore, FMS enables the collection of rich datasets and the
development of individual-level choice models.

Fig. 12.8 provides an overview of the FMS platform. FMS collects loca-
tion, accelerometer, and contextual data continuously making use of the
available sensors on smartphones. The FMS backend system processes the
collected data through machine learning algorithms. The web and app in-
terfaces allow the users to access the information about their trips and activ-
ities and also to validate them. The machine learning techniques are
continuously being improved in order to reduce the burden on the user, i.e.,
minimize the need for the user to correct trip and activity information on their
diaries. Note that, FMS is extended with stated preferences capability for
understanding the behavior toward new mobility services (Atasoy et al., 2018;
Danaf et al., 2019b) and it can be used for obtaining reasonable parameter
values in the early phases of the Smart Mobility solution (in a simulation
environment or real-life) before any estimation is possible based on observed
choices.

2.3.2 Personalized menu optimization

In order to provide a personalized menu of travel options for Smart Mobility,
differentiation of individuals and choice situations need to be taken care of
with an appropriate behavioral model. Therefore, a logit mixture model with
inter- and intraconsumer heterogeneity described above is the building block
for personalized menu optimization. Given the logit mixture model, the
personalized menu optimization will choose an M-size menu out of C many

FIGURE 12.8 FMS platform overview (Zhao et al., 2018).
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available alternatives for individual n in order to maximize an objective
function of interest. It can be maximization of revenue, consumer surplus, a
combination of the two, etc. In recommender systems for mobile apps, it is
common to have a menu-size constraint to avoid information overload
(Zhuang et al., 2011).

Personalized menu optimization is closely related to the assortment opti-
mization, where the goal is similarly to select a subset of items to offer to the
user from a universe of substitutable items. The objective is typically to
maximize the revenue under random choice behavior of users. To represent the
user behavior, different choice models are used in the literature such as
multinomial logit, nested logit, and logit mixture (Davis et al., 2013, 2014;
Feldman and Topaloglu, 2015). We refer to Kök et al. (2008) for a review of
assortment optimization literature together with industry practice.

Here, we present a personalized menu optimization with revenue maxi-
mization, where pj is the revenue of alternative j˛C. This revenue may be the
monetary value or energy savings or any other benefit brought by the Smart
Mobility system. The model for each individual n, with binary decision var-
iables xj that decide whether alternative j will be in the menu or not, is then
provided as follows:

max
xj 0 j¼1;.;C

XC
j¼1

pj
xjexpðVjmnðhmnÞÞPC

j0¼1

xj’expðVj0mnðhmnÞÞ þ exp
�
Vopt
n

	 (12.10)

subject to XC
j¼1

xj � Mn (12.11)

xj ˛ f0; 1g;cj˛ f1;.;Cg (12.12)

where the objective function (10) is a function of binary decision variables
through the choice probability that is given by the behavioral model introduced
in the previous section. Vopt

n denotes the utility of opt-out alternative (not
choosing anything on the menu) for individual n. We include the opt-out
alternative in order to represent the fact that the user is not captive and may
leave the Smart Mobility system and this utility may be different across in-
dividuals. Constraint (11) is the menu-size constraint and it is given by Mn, as
in principle the size of the menu could also be personalized.

The above-presented model (10e12) represents a complex problem as it
has a nonlinear objective function and binary decision variables. There are
ways to simplify the problem under different assumptions. We refer to
Song (2018) for a discussion of those cases and also for different versions of
the model with an objective function of consumer surplus.
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2.3.3 Example application

We applied the personalization approach with a real data set from Massa-
chusetts Travel Survey (MTS) which includes travel diaries for 33,000 in-
dividuals from 15,000 households collected between June 2010 and November
2011. The individuals reported travel diaries for a preassigned weekday and
provided transport mode, arrival/departure times, activity location, etc. We
used a sample of 5154 individuals who made at least one trip during the
specified day. The choice set for those trips was constructed by using Google
Maps API based on the origin, destination, and departure time information
from MTS data. Considered modes are walk, bike, car, car-pool, and transit,
and with different route options the choice set may include 4 to 16 alternatives.
Note that more than 80% of the trips in the MTS data were performed by car/
car-pool. For more details we refer to Song (2018) and Song et al. (2018) also
used a smaller sample from this dataset for an earlier version of this work.

A logit mixture model is specified and the utility for individual n of
alternative j for a given choice situation (menu) m is given by

Ujmn ¼
�
ASCmode �exp

�
hmn;Time

	
Timejmn � Costjmn

	
exp

�
hmn;Cost

	
where ASCmode denotes the alternative specific constant for each of the five
modes that are considered and it is set to zero for the walk mode. The utility is
in willingness-to-pay specification (i.e., in monetary units) as it is normalized
by the cost coefficient. ASCs are normally distributed; travel time and cost
coefficients are introduced as exponential terms in order to have them log-
normally distributed and to control their signs.

For the example application here, we consider 1733 individuals who per-
formed at least nine trips during the specified day. The parameters are esti-
mated based on the first eight trips with the previously mentioned Bayesian
estimator and the menu is optimized for the ninth trip. In order to assess the
benefits of personalization, we compare it to its nonpersonalized counterpart,
which does not capture individual-level preferences. The comparison is done
in terms of the hit rate, which is the proportion of the cases the optimized
menu for trip nine includes the “true” choice. This analysis is carried out under
two settings of the assumed consumer heterogeneity, first assumes inter-only
heterogeneity and the second considers both inter- and intraconsumer
heterogeneity.

Figs. 12.9 and 12.10 provide the comparison under inter-only and inter-
and intraconsumer heterogeneity, respectively. For the analysis, different menu
sizes are considered between 2 and 10 and as mentioned previously the choice
set may be of size 4 to 16 across different observations. As expected, when
menu size gets closer to the size of the choice set, the hit rate approaches 1 and
the difference between personalized versus nonpersonalized menu optimiza-
tion gets smaller. Fig. 12.9 shows that, for menu sizes of until 6,
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personalization increases the hit rate by more than 5% under inter-only het-
erogeneity. When we look at the case under inter- and intraconsumer het-
erogeneity in Fig. 12.10, it is observed that the hit rate of both methods
increased significantly in general which shows that the behavior can be
captured much better with a more accurate representation of heterogeneity.
The difference between personalized versus nonpersonalized menu optimiza-
tion becomes very small as of menu size 6. Nevertheless, with smaller menu
sizes, there is a significant benefit of personalization, e.g., for menu sizes of 1
and 2, personalization brings around 15% and 8% increase in hit rate,
respectively, which are bigger differences compared to the inter-only case.

The presented results show the added value of more advanced behavioral
models with detailed representation of consumer heterogeneity as well as the

FIGURE 12.9 Comparison under inter-only heterogeneity.

FIGURE 12.10 Comparison under inter- and intraconsumer heterogeneity.
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personalized menu optimization. It shows the potential for Smart Mobility
solutions and will definitely be more powerful when the user history is tracked
over a time horizon and several choices from the same individual is observed.

2.4 Simulation-based evaluation of smart mobility

Similar to other mobility solutions, Smart Mobility can be assessed by means
of surveys, laboratory or field experiments, and simulations. When such so-
lutions are not yet deployed in the field, analysts tend to resort to stated
preference surveys for the assessment of demand impacts. Yet, insights from
these are known to be unreliable in scenarios, where the context is too far from
situations familiar to the subjects (see, for example, Choudhury et al., 2018 for
the assessment of the willingness to pay for different smart mobility options).
Laboratory experiments are usually useful for cognitive and other human
factors issues associated with the interaction of a certain technology, thus
providing even further insights into demand aspects. Field experiments on the
other hand, allow for coupling insights on such demand impacts with reduced
context bias together with limited supply characteristics of the Smart Mobility
solution at stake. Such experiments are at the forefront of Smart Mobility
assessment but are still constrained to a limited range of potential operational
settings, either due to technology limitations or the associated experimental
costs, thus limiting supply related insights. Harb et al. (2018), for example,
collected pioneer insights on travel behavior patterns shifts for automated
mobility by mimicking a privately owned self-driving vehicle with 60 h in
7 days of free chauffeur service for each of the study participants.

While the above methods are extremely useful for demand specific in-
sights, system-level impact assessment, effects from demand-supply in-
teractions or freedom of scenario testing have been recently tackled by means
of simulation. With advances in computational power, the research community
has been tackling the assessment of Smart Mobility impacts in large urban
areas with integrated demand-supply complex simulators. These simulators
are typically composed of several interconnected models for each of the di-
mensions of the transportation system: land-use, demographic, and economic
model; travel (often activity-based) demand model; and a multimodal network
supply assignment model. An example of current state-of-the art platforms
targeting this aim are Polaris (Auld et al., 2016), CEMDAP þ MATSim
(Ziemke et al., 2015) or SimMobility (Adnan et al., 2016). For assessing the
impacts of different operational settings for prediction, optimization, and
personalization, simulation platforms require a set of features. We summarize
in this section SimMobility’s features for assessing Smart Mobility.

SimMobility is an integrated agent-based simulation platform used to
evaluate a wide range of future mobility related scenarios (See Fig. 12.11). It is
comprised of three integrated modules differentiated by the time-frame in
which we consider the traveler behavior and operations of an urban system:
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short-term (a microscopic mobility simulation, few hours simulated at 0.1-
second time resolution), mid-term (an activity-based model integrated with a
dynamic multimodal assignment simulator, daily simulation at 5-second res-
olution), and long-term (a land use and long-term behavioral model, at 6-
month to 1 year resolution) (Adnan et al., 2016). The integrated nature of
SimMobility enables consistency between the levels through a single database
model which is used by all three levels. Thus, an agent’s travel behavior and
characteristics will be consistent across all levels. For example, the short-term
uses trip chains generated by the mid-term model, which are also generated by
using land use information from long-term. Demand in mid-term, vehicle
ownership and the geographic distribution of the population in long-term rely
on supply performance through a feedback loop. Introducing new mobility
solutions in the simulation affects the aforementioned agents’ choices,
including mode choice. In this context, Smart Mobility is expected to directly
influence an agent’s preferences of mode choice due to the presentation of
personalized and shared alternatives which have different characteristics such
as travel time, schedule delay, and privacy.

FIGURE 12.11 SimMobility framework (Adnan et al., 2016).
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SimMobility long-term is designed to simulate the interrelations between
the transportation system and land-use mainly capturing the decision-making
related to the household location choices, school and workplace choices, and
vehicle ownership choices (Zhu et al., 2018). The main model is a housing
market module simulating daily dynamics in the residential housing market
and affecting the remaining long-term choices (e.g., vehicle ownership)
together with overall transportation performance coming from the mid-term
model in the form of utility-based accessibility measures. While the impact
of different smart mobility scenario performances is already taken care of in
long-term decision-making by means of accessibility changes, direct exten-
sions to the current formulation of individual behavior are being implemented
to reflect cost of vehicle ownership, such as subscription services (e.g., to new
smart mobility services) and new modes such as personal mobility devices
(Zhu et al., 2018).

It is at the level of the travel demand and network simulation, where critical
smart mobility simulation features are required. In SimMobility, the travel
behavior models are present in the mid-term simulator, which comprises two
groups of behavioral models: preday and within-day (Lu et al., 2015a). The
preday models follow an econometric day activity schedule approach, detailed
in Hemerly Viegas de Lima et al. (2018), to decide on the initial overall daily
activity schedule of the agent, particularly its activity sequence (including
tours and sub-tours), with preferred modes, departure times by half-hour slots,
and destinations. As the day unfolds, the within-day models are applied to the
agents to transform the activity schedule (plans) into effective decisions, revise
the preday patterns as needed, and decide on the routes for their trips (actions).

For a particular scenario and to accommodate the effects of Smart Mobility
in the preday models, individuals from the synthetic population have access to
the available Smart Mobility modes at stake in their choice set while con-
structing their activity schedules. The systematic utility of each mode in the
combined mode and destination choice model of preday considers the key
attributes of the Smart Mobility mode, individual, and context characteristics
(such as travel times, costs, trip purpose, vehicle ownership, smart mobility
and other mode subscription, age, gender, etc.). General assumptions on the
generalized travel attributes of the Smart Mobility mode at stake need to be
made usually based on related past literature, experiments, stated preferences,
and/or proxy modes. Under this approach, the formulation of the remaining
choices in preday’s day activity schedule approach (e.g., activity participation,
number of tours, etc.) would still rely on estimations from existing datasets
and, if existing, additional calibrations using the Smart Mobility related data
sets.

At the within-day level, user interactions with the daily operations of the
Smart Mobility service at stake are simulated. Using SimMobility’s event
publish/subscribe mechanism (Adnan et al., 2016), travelers subscribe to the
Smart Mobility service. For a planned trip under the Smart Mobility mode
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from the preday model, simulated travelers first have to choose if they access
the actual Smart Mobility interface first during the simulation. This interme-
diate decision allows for changes in decision-making due to dynamic char-
acteristics of the transportation system. When accessing the service, a second
model decides on the service product within the Smart Mobility service to
select (or rejection of all offers). Finally, if selecting a certain product, one
may need to consider a potential rescheduling of the remaining day activity
schedule, namely if the alternatives offered by the Smart Mobility service rely
on drastic changes to the planned activities (e.g., significant trip delay, much
longer travel times, etc.). Such feature is not yet available in SimMobility;
currently, if travelers chose not to use the Smart Mobility service or reject all
product offers, they act as nonusers and follow preday plans; if they select a
product, they follow the choice for that particular trip and follow the remaining
preday plans (for a detailed description, data for estimation and actual esti-
mation procedure see Xie et al., 2019).

Finally, to allow the simulation of operations of Smart Mobility services,
SimMobility introduced two new relevant agents at the supply level, both in
mid-term and short-term: the service-driver and the Smart Mobility controller.
Such current implementation is flexible to allow for the simulation of diverse
Smart Mobility scenarios: (i) multiple service providers, (ii) service-drivers/
vehicles subscribing to multiple service-providers, and (iii) flexible exchange
of information between the service-providers and service-drivers/vehicles.
First, as multiple service-providers can be simulated in tandem, we can
replicate currently available services like Uber and Lyft and also test the
impact of new competitors on the network. Second, as a service-driver/vehicle
can subscribe to multiple service-providers, we are able to simulate the effect
on the system of doing so. Third, the exchange of information between
service-provider and service-driver/vehicle may channel travel information or
control from the service-provider to service driver/vehicle and, vice-versa,
transfer dynamic driver/vehicle specific data (e.g., location) to the service
provider.

The Smart Mobility controller consists of three main components: i) ini-
tializer, ii) fleet/driver manager, and iii) service monitor. The initializer ini-
tializes any existing service fleet or drivers and their attributes. The manager
deals with servicing the traveler after receiving his/her travel request. It pro-
cesses the request, selects and offers the service products to the traveler, and
services accordingly. For example, in an Uber-like scenario, vehicle-driver
matching, pricing, dispatching, routing, and rebalancing algorithms are part
of the manager. The service monitor component monitors the servicing, the
dynamic attributes of service vehicle and driver assets and the spatial and
temporal distribution of demand. The simulation of a wide range of Smart
Mobility services in SimMobility can be found in the literature, such as
(i) regular taxis (ii) ride on-demand (iii) ride-sharing, and (iv) information
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provision within SimMobility (Lima Azevedo et al., 2016; Adnan et al., 2017;
Basu et al., 2018).

3. Smart mobility examples

In this section, we provide examples of Smart Mobility solutions that are
designed based on the methodologies we presented above.

3.1 Flexible Mobility on Demand (FMOD)

FMOD is an app-based service that provides an optimized menu of travel
options including taxi, shared-taxi, and minibus in real-time (Atasoy et al.,
2015a). The traveler can select one option in the menu for their trip or reject all
options. It is illustrated in Fig. 12.12 a user accessing the system through a
smartphone app and receiving a menu including the three services with
different attributes. FMOD taxi provides door-to-door service in a private
vehicle, which is typically the highest priced service. FMOD shared-taxi
serves multiple passengers in the same vicinity, and travel time may in-
crease due to the pick-up and drop-off of other passengers. FMOD minibus
runs along fixed stops but adapts to passengers’ schedule and typically has the
lowest fare. These different modes give a spectrum of services ranging from
private to public transportation.

FIGURE 12.12 Flexible Mobility on Demand system.
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The modeling framework for FMOD includes a behavioral model, a dial-a-
ride problem, and a personalized menu optimization model. The behavioral
model is a mode choice model that defines the utilities of the FMOD alter-
natives as well as the opt-out alternative. Considered attributes include travel
time, cost, access/egress times (if any), and schedule delay.

When a user request is received, a dial-a-ride problem (refer to Cordeau
and Laporte, 2007 for a review) is solved in order to generate a set of feasible
transport alternatives that fit the request of the user (i.e., origin, destination and
preferred departure/arrival time) and the capacity and existing schedules of the
vehicles. Finally, a personalized menu optimization model is solved in order to
get the optimal (e.g., maximum revenue and/or maximum consumer surplus)
menu among the full set of feasible solutions. As described in Section 2.3, this
personalized menu optimization model embeds the behavioral model that
represents the choice probability toward FMOD alternatives and the opt-out
alternative. For more details on the models and solution approach, we refer
the reader to Atasoy et al. (2015a).

FMOD is evaluated in Singapore with the SimMobility platform introduced
in Section 2.4. Fig. 12.13 indicates the simulated network and the shaded area
is assumed to be the service area for FMOD. It is assumed that 10% of all the
road users in the shaded area have access to FMOD (i.e., access FMOD app to
make a travel request). For this experiment, the behavioral model is a rather
simple logit mixture model that considers only interconsumer heterogeneity,
i.e., the willingness-to-pay varies across the population but not across different
choice situations of the same individual. Dial-a-ride problem is solved with
insertion heuristics such that when a user request is received, the existing
schedules of the potential vehicles are evaluated to see whether the requested
trip can be inserted or not. For the personalized menu optimization model,

FIGURE 12.13 Singapore network, pink shaded area represents the central business district area,

where FMOD is assumed to operate.
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three versions are considered with the objectives of profit maximization,
consumer surplus maximization, and both. The trade-off between operator’s
profit versus user benefit is analyzed under the different versions.

A base case is considered where there is no FMOD in the provided
network. It is observed that when FMOD is introduced, 5% system-wide travel
time reduction is obtained compared to the base case. Moreover, around 10%
e20% reduction is obtained in volume-to-capacity ratio. Furthermore, the
comparison of the three objective functions is provided in Table 12.2, where
the base scenario is considered to be the consumer surplus maximization. The
relative profit and consumer surplus of the two other scenarios are provided
with respect to the base scenario. It is observed that when we maximize profit,
we end up reducing the consumer surplus significantly which may in the long
run mean that the users will not revisit the FMOD system and the envisioned
profit may not be reached. When we optimize both profit and consumer sur-
plus, it is observed that consumer surplus is regained without significant
reduction in profit. Therefore, it is important to consider the benefit to both
users and operators and FMOD framework enables that as a behavioral model
is embedded in the menu optimization. FMOD is also evaluated for a network
in Tokyo under different objective functions and scenarios (Atasoy et al.,
2015a, 2015b).

Note that the presented application of FMOD focuses on the personaliza-
tion aspect and it is evaluated by SimMobility. In principle and similarly to the
case study presented in the next section, this Smart Mobility solution could
also be developed in a predictive framework where the travel time in the
network is predicted in real-time and the operation of the system is carried out
based on the predicted traffic conditions. Furthermore, the prediction frame-
work could be extended for the arrival of user requests such that, the number of
requests that will be received in the near future is predicted and the resources
are allocated more efficiently.

TABLE 12.2 Results for FMOD under different objective functions.

Scenario objective Relative profit Relative consumer surplus

Maximize consumer surplus Base case Base case

Maximize profit þ45% �140%

Maximize total welfare þ40% �31%
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3.2 Tripod: sustainable travel incentives with prediction,
optimization and personalization

Tripod is a smartphone-based system to influence individuals’ real-time travel
decisions by offering information and incentives with the objective of opti-
mizing system-wide energy savings (Lima Azevedo et al., 2018). When
starting a trip, travelers can choose to access Tripod’s personalized menu via a
smartphone app and are offered incentives in the form of tokens for a variety
of optimized energy-reducing travel options (i.e., mode, route, departure time,
driving style alternatives as well as the option of canceling the trip) (see
Fig. 12.14). Options are presented with predictive information to help travelers
understand the energy and emissions consequences of their choices. By
accepting and executing a specific travel option, a traveler earns tokens that
depend on the system-wide energy savings she or he creates, encouraging
them to consider not only their own energy cost but also the impact of their
choice on the system. Tokens can then be redeemed for services and goods
from participating vendors and transportation agencies.

The Tripod system relies on the simulation-based multimodal network
prediction system described in Section 2.2. As Tripod aims at maximizing
system-wide energy savings, the prediction simulation framework was
extended with (1) individual specific preferences toward different alternatives
and incentives, (2) a simulated personalization which simulates the generation
of the menu of alternatives shown by the Tripod app, and (3) TripEnergy
(Needell and Trancik, 2018), a detailed model that estimates the energy im-
pacts of multimodal travel.

Tripod’s overall system-wide maximization of energy efficiency is ach-
ieved through a bilevel optimization approach with the system optimization as
strategy (top level) and the app menu generation as the personalization (lower

FIGURE 12.14 Tripod interface (Lima Azevedo et al., 2018).
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level). The link between these two loosely coupled problems is achieved
through the real-time computation of the token energy efficiency (TEE),
defined as the amount of energy a traveler must save to earn one token (Araldo
et al., 2019). The TEE is the key decision variable of the system optimization
and is used in every menu personalization, then triggered by each trip request
from a control point traveler, i.e., Tripod user. In this framework, there are two
optimization cycles: the system optimization is triggered at every roll period
and each individual menu for a trip request is personalized on an individual on-
demand basis. The Tripod app also keeps track of Tripod users’ preferences
from their menu selections and informs the system optimization for better
predictions. As previously mentioned, the response to different TEE and
overall predicted demand is embedded in the prediction framework (for more
information the reader is referred to Araldo et al., 2019).

Similar to the FMOD service presented in the previous section, Tripod’s
menu personalization in real-time maximizes a user-specific objective function
based on the guidance from the obtained network predicted conditions as well
as the TEE. The tokens associated with each option are determined before
running the personalization based on the formula provided in Section 2.3.1.,
the optimal TEE and the estimated energy consumption for each potential
menu alternative using TripEnergy (Needell and Trancik, 2018). The savings
are the key variables to be maximized in Tripod. A reference energy value is
computed for each trip request based on the expected energy consumption
without tokens. The reader is referred to Lima Azevedo et al. (2018) and
Araldo et al. (2019) for details on the formulation, implementation, and
configuration of Tripod.

In preliminary assessments of different Tripod designs, a simulation-based
evaluation, as in Section 2.4, was used. Results were obtained by imple-
menting Smart Mobility features and the controls generated by Tripod in
SimMobility, in an interactive manner. During each roll period, the following
sequence of interactions occur: (1) Tripod prediction module obtains sensing
information (e.g., counts and speed measurements) from SimMobility for the
latest roll period, conducts online calibration of DynaMIT supply and demand
simulators, performs the system optimization loop based on state prediction
for the duration of the rolling horizon to find the optimal TEE for the current
roll period, and passes the TEE and predictive traffic and energy information
to the personalization module. (2) The latter receives Tripod requests from
simulated users in SimMobility and generates personalized menu with tokens
potentially assigned for each request using the latest TEE and predictive in-
formation. (3) SimMobility then simulates each Tripod user’s responses to the
personalized menu as well as all other travelers’ choices and loads all travelers
to the network. This closed-loop framework reflects how Tripod would work in
real life where SimMobility is replaced by the real world.

The preliminary experiments on the route and departure time choice di-
mensions of Tripod were conducted on a simulation model of the Boston
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Central Business District (CBD), in Massachusetts, United States (Fig. 12.15)
with a network of 843 nodes, 1879 links, 3075 segments and 5034 lanes
including both highways and arterials. The simulation period was from 6:00
a.m. to 9:00 a.m. with a roll period of 5 min and a rolling horizon of 15 min.
The total number of travelers was 47,588.

The effectiveness of Tripod was evaluated by performing two simulations:
with and without Tripod. In both simulations, all travelers receive real-time
predicted information on network conditions and thus the difference in per-
formance is only due to tokens. The performance measures were the average
travel time and energy consumption per vehicle and the distribution of travel
time and energy consumption.

In the preliminary tests, a budget of 2000 tokens per 5 min was used (a
total of 72,000 over a 3-hour period and a monetary value of a token of $0.50).
Since the models are not calibrated, our discussion focuses more on the
relative magnitude of savings, instead of the absolute values.

As seen in Table 12.3, as the penetration rate of Tripod increases, the
energy savings increase. The rate of increase, however, is not a monotonic
function of the penetration rate, suggesting a highly nonlinear underlying

FIGURE 12.15 Map of Boston CBD (Lima Azevedo et al., 2018).
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system, and specifically, an effect of saturation as the penetration rate gets
close to 80%.

4. Discussion and conclusions

In this chapter, we provided an overview of three methodological components
of smart mobility systems analysis: prediction, optimization, and personali-
zation. These methodologies are designed to interact with each other during
the operations of Smart Mobility. Predictions are critical so that the optimi-
zation of several policies (e.g., tolls, incentives) is done taking into account the
real-time data in a predictive manner. Prediction and optimization both guide
personalization such that the attributes of alternatives reflect the real-time
conditions and the optimal policies when offering menus to individuals.

Those methodologies can be enhanced in several dimensions. First of all,
the demand representation in prediction and optimization methods is typically
at an aggregate level. Extending them with disaggregate models is a promising
direction. This naturally may come at the expense of computational burden
and efficient methodologies for prediction and predictive optimization need to
be developed. The prediction is considered with a focus of predicting traffic
conditions. Nevertheless, predicting user requests in the future is very
important during the operation of Smart Mobility solutions in order to better
allocate the resources across received requests. Furthermore, the presented
methodologies have more of a model-driven nature even though high-
resolution data is exploited from the behavioral perspective. Ways of effec-
tively and efficiently combining model-driven and data-driven methodologies

TABLE 12.3 Preliminary results with route and departure time choice in

Boston CBD.

Penetration

rate

Average energy

consumption per

Trip (MJ)

Energy

savings

per Trip

Average

Travel time

(seconds)

Travel time

savings per

Trip

0 (base case) 9.2 N/A 458 N/A

25% 9.0 2.1% 442 3.5%

40% 8.7 5.4% 409 10.7%

50% 8.7 5.4% 417 9.0%

60% 8.7 5.4% 413 9.8%

75% 8.6 6.5% 420 8.3%

80% 8.6 6.5% 420 8.3%
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across prediction, optimization, and personalization need to be further
investigated.

While this chapter illustrated the methodologies on two case studies, the
approach is suitable for any type of Smart Mobility solution. Mobility as a
Service (MaaS) is one example of an emerging integrated mobility platform
that is amenable to this type of analysis. MaaS offers mobility bundles to users
that combine urban public transport, taxi and on-demand services, shared
bikes and personal mobility devices (e.g., e-scooters), and carshare and rental
services. Ongoing research on MaaS demonstrates its benefits. For example, a
stated preferences survey conducted by Matyas and Kamargianni (2017)
deployed in Greater London found higher preference for flexible, mass-
transited oriented plans. And field experiments with MaaS subscribers in
Helsinki, where users can choose monthly subscription packages or pay-as-
you-go schemes, indicate a significant increase in mass transit share and taxi
trips per person as well as monthly public transport spending. Simulation of
FMOD, as a special case of MaaS, also indicates the potential benefits of
flexibility and personalization in MaaS: potential reduction of system-wide
travel time by 5% and about 10%e20% reduction in volume-to-capacity ra-
tio in Singapore network simulated through SimMobility. Such MaaS systems
would be working more efficiently when integrated with prediction and
optimization methodologies presented in this chapter.

Two issues not addressed in this chapter will likely influence the long-term
impacts and the adoption of Smart Mobility solutions. The first is the interplay
between on-demand mobility options and public transit. For example, a study
by UC Davis indicated that ride hailing resulted in a decline in mass transit
usage by 6% in the United States from 2014 to 2016. On the other hand, few
cities have partnered with ridesourcing services to provide first-/last-mile
connectivity to public transit (Shen et al., 2017; Lyft, 2015). If shared on-
demand mobility is to replace mass transit, large fleet sizes will be required
to meet demand resulting in additional congestion. For example, Basu et al.
(2018) found that a scenario of automated mobility on demand (AMOD)
substituting mass transit in Singapore would result in 50% higher in-vehicle
travel times compared to a scenario where AMOD complements mass
transit. Future research should study various integration scenarios of on-
demand mobility with mass transit to assess their impacts on mass transit
ridership and network performance.

Another factor that has helped in the quick adoption of on-demand
mobility is shifting societal mobility preferences of millennials, i.e., those
who were born between 1981 and 2000. Millennials are less likely to own cars
and more likely to adopt a lifestyle of city living, environmental sustainability,
and walking and cycling (Circella et al., 2015). They are also comfortable with
information technology and services of the sharing economy including on-
demand ride hailing services such as Uber and Lyft shared mobility (Mah-
massani, 2016). It is unclear, however, whether these preferences are stable or
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whether millennials would revert to car-based modality styles as they enter the
(delayed) child-rearing phase of their life. At any rate, the evolution of these
preferences is likely to have an impact on the speed of uptake of on-demand
shared mobility services of the future.
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