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Abstract

Life Cycle Assessment (LCA) models are inherently uncertain due to the model structure
interacting with the model inputs and modeling choices. The methods of sensitivity
analysis (SA) aim at retracing the causes of the uncertainty of the results of a model. This
work takes apart the methods of uncertainty propagation, SA, and LCA, and identifies
the requirements of appropriate SA methods for LCA. Global input space assessment
and inclusion of correlation are identified as important factors which both analytical and
sampling SA methods have issues addressing. An analytical expression for covariance is
formulated that combines research on the uncertainty propagation methods to address
the posed requirements. Its performance is tested and shown to be promising, but further
manipulation is required for practical application in SA for LCA in the future.
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Mathematical notation

Object Notation Example

Scalar italic c

Stochastic coefficient bold & capital XXX

Vector arrow ~x

Matrix capital A

Element of matrix (vector) subscripts Aab (xi)

Table 1: Reference table for mathematical conventions and notations used in this thesis

Measure As parameter Alternatively

Mean or expectation value of X µX E[XXX]

Variance of Y ΣY Y V [YYY ]

Standard deviation of X σX
√
V [XXX]

Covariance between X,Y ΣXY Cov[XXX,YYY ]

Correlation between X,Y ΣXY σ
-1
Xσ

-1
Y Cov[XXX,YYY ]

√
V [XXX]-1V [YYY ]-1

Table 2: Reference table for parameter conventions used in this thesis

LCA coefficient object Name Content Size

Impact matrix H Impact categories times reference flows (m× q)
Scaling matrix S Products times reference flows (p× q)
Characterization matrix Q Impact categories times externalities (m× n)

Externalities matrix B Externalities times processes (n× p)
Technology matrix A Processes times products (p× p)
Reference flow matrix F Products times reference flows (p× q)

Table 3: Reference table for the objects present in the LCA model calculation
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Glossary

Black-box: A type of model of which nothing is known about the inner function. Only
simulation can be used to assess its behavior

Coefficients: The input or output variables to a model

Global: Type of model assessment in which the whole input space is considered

Input space: All possible combinations of values the coefficients can take on. The com-
binations form a multidimensional space in which one point is one possible model
state

Linearity: A type of model behavior where coefficients act independently upon the out-
put. They do not multiply or influence each other otherwise.

Local: Type of model assessment in which a limited area of the input space is considered

Parameters: The moments (such as mean or covariance) of coefficients

Sensitivity analysis (SA): Methods used for apportioning uncertainty in the output to
different sources of uncertainty in the input

Stochastic: Term that indicates a coefficient is uncertain

Uncertainty analysis (UA): Methods used to evaluate how uncertain a model output is

Uncertainty propagation (UP): The act of finding the uncertainty of the output of a
model (for one set of input parameters)
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1 Introduction to Sensitive Life Cycle Assessment

Life Cycle Assessment (LCA) is a method used in environmental science, policy-
making, and industry to assess and compare the environmental impacts of products over
the course of their life cycle. Typical applications of LCA are in strategic planning,
capital investment, eco-design, product marketing, eco-labeling, municipal waste man-
agement, and the development or design of new technologies. LCA use is widespread
and its conclusions are used in many types of decisions. It is therefore vital that the
method produces reliable and credible results.

Unfortunately, outcomes LCA studies for similar product systems can have large dif-
ferences, even if the studies comply with the same methodological guidelines because, in
any LCA, context-specific assumptions have to be made by the practitioner (Cucurachi
et al., 2016; Heijungs et al., 2019). Ignoring this aspect of LCA modeling is undesirable,
because it results in contradicting conclusions, wrong decisions, and reduces the credi-
bility of LCA; for example when suspicion of manipulation with modeling choices arises
(Igos et al., 2019).

Heijungs (2002) states that the LCA model is inherently sensitive due to the non-
linearity and reciprocity of the LCA calculation. These aspects interacting with the
uncertainty of the modeling assumptions create uncertain results. Data variability is
for example another type of input uncertainty that leads to uncertainty in the model
output. The standard practice of deterministic LCA presents its conclusions as point-
values, which are not able to illustrate uncertain model results (Mendoza Beltran et al.,
2018). Extra steps must be undertaken to systemically address such results.

There are two parts to the assessment of LCA model uncertainties. First, uncertainty
in the inputs of the model must be translated to uncertainty in the model output. This
is uncertainty propagation (UP). Second, to gain an understanding of the causes of
the uncertainty, we retrace which input coefficients have a profound or instead trivial
impact on the output uncertainty. The study of apportioning uncertainty in the output
to different sources of uncertainty in the input is called sensitivity analysis (SA)
(Saltelli et al., 2019). Igos et al. (2019) identify four distinct phases of the SA procedure.
They are (1) identification of input uncertainties, (2) UP, (3) evaluation of coefficient
influence, or sensitivity characterization, and (4) communication of results.

The ISO ‘Principles and framework’ for LCA (International Standardization Organi-
zation, 2006) recommends performing an analysis of sensitivity, but does not present
the LCA practitioner with guidelines and does not direct to particular approaches on
performing such an analysis (Cucurachi et al., 2016). Ross et al. (2002) found that only
3 % of LCA studies reported quantitative uncertainty characteristics.

We identify two distinctions in the SA calculation approach; analytical and sampling.
Analytical approaches define uncertainty and sensitivity in algebraic expressions. Exact
equations for LCA can not be defined and thus approximations and simplifications are
used. This way, model attributes such as large uncertainties, correlations, and non-
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linear coefficient interactions are improperly included. Calculation of these analytical
expressions is however nearly instant, and the relationships between the input and output
uncertainties are shown explicitly. Therefore sensitivity can be retraced easily from
uncertainty. Due to the limitations, analytical assessment is used mainly as a filtering
strategy. For example, the sensitivity multipliers of Heijungs (2010) are for this use.
The goal of filtering strategies is to simplify sampling SA.

SA sampling approaches can cover model attributes that the analytical strategies
struggle with. The LCA model is treated by the sampling strategies as a black-box. This
means forgetting the internal mathematical structure, and repeatedly calculating the
output while applying small variations to the inputs. For sampling UP, large amounts of
simulations are required, which is computationally intensive due to the size of LCA sys-
tems and the requirements of the calculation (Heijungs & Lenzen, 2014). Subsequently,
performing SA using a sampling strategy involves performing many UP’s. The com-
bined computational time makes for an unfeasible endeavor (Pianosi & Wagener, 2015).
The aforementioned filtering strategies can be applied beforehand to screen for possible
sensitive coefficients and reduce the computational load.

This work proposes to improve upon the quality of the results of the analytical ap-
proach and make them more useful for SA in a standalone application; not just as a
stepping-stone for a sampling strategy. The analytical SA strategies and their explicit
statement of the relationships between the uncertainty parameters can provide the LCA
practitioner with a profound insight into the LCA model workings that a black-box
approach simply can not. To do this, the validity of the analytical approach must be
extended and its limitations addressed. This thesis explores the theories of SA, LCA,
and mathematical uncertainty manipulation for ways in which this can be achieved.
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2 Methodology and thesis structure

In this section, the research questions, methodology, and structure of the work are laid
out, but first, the collected literature is briefly introduced.

2.1 Literature collection

Literature collection started with a selection of relevant papers on sensitivity and uncer-
tainty characterization in the field of LCA. A snowballing approach was followed next
to gain a better understanding of the context of the research field, pursuing references
within the papers and searching for other work by the same authors. Two books were
consulted as starting points for information about the general mathematical field of SA
(Saltelli et al., 2008) and on matrix calculus theory (Magnus & Neudecker, 1999). Fur-
thermore, research for papers was done using Google Scholar and the Leiden University
Library Catalogue, with search words as ‘Sensitivity Analysis’ and ‘Uncertainty’ both
associated with ‘Life Cycle Assessment’. Additional literature was used as it became
relevant during the research process. This mainly consisted of literature on the general
mathematical understanding of uncertainty distributions, on the relationships between
distribution moments, and on theories for analytical propagation of uncertainties. All
literature can be found in the references section.

2.2 Main research question

In Section 1, areas were introduced in which SA for LCA is lacking. They are (1) the
expression of an analytical formula for sensitivity, which ensures to (2) account for non-
linear coefficient interactions and higher uncertainty ranges, and while (3) making sure
correlation effects are included. To summarize these points and guide the research, the
main research question is formulated as

How can the relationships between the uncertainty of an LCA
model output and the uncertainties of its inputs be expressed in

analytical formulation, without disregarding non-linear model
behavior, and without omitting coefficient correlations.

2.3 Sub research questions and methods

Sub research questions are defined to break down the main research question. The posed
research gaps must be developed and explored in search of areas suitable for improve-
ment. The sub-questions are presented next, followed by a reflection on the appropriate
methods and resulting thesis structure, forming a guide to the reader.
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(1) What are the goals, process, and concerns of SA?

(2) What are the structural components and properties of the LCA model?

First, the topics of SA and LCA must be explored to establish the attributes
of the methods. The goal of this is to understand the setting in which the
expression of the main research question must reside. Sub-questions 1 and 2
address this for SA in Section 3 and for LCA in Section 4 respectively. The
questions are answered by conducting a literature review.

(3) How do we apply the established properties of SA to LCA?

Next, we must establish the requirements, possibilities, and properties of the
desired expression from our main research question. The SA tools available
for LCA are laid out. For this purpose, sub-question 3 asks to combine the
findings of sub-questions 1 and 2 through analytical research. The answers
to this question are found in Section 5.

(4) What is the expression of uncertainty satisfying the posed requirements?

Sub-question 4 asks what analytical expression is follows from the established
desired properties and limitations. To answer it we combine the answers of
sub-question 3 with additional literature on the mathematics of uncertain-
ties. This question is thus addressed using a combination of literature and
analytical research. Section 6 is dedicated to this research question.

(5) How does the uncertainty expression perform compared to uncertainty calculated
using a random sampling method?

Lastly, sub-question 5 addresses the validity and performance of the proposed
analytical expression of sub-question 4. This research follows a modeling
approach, and the process can be found in Section 7.
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3 Theory of Sensitivity Analysis

This section is intended to pick apart the topic of SA. What it is, why it is performed,
how it is performed, and what its points of concern are.

3.1 What is SA

Sensitivity analysis is the study of ascribing responsibility for the presence of uncertainty
in a model output(s) to the uncertainties of the model inputs (Igos et al., 2019). The
model inputs are called coefficients, while their uncertain behavior can be captured
in parameters such as mean and variance. A model in this sense can be any process
or formula that transforms input data into an output answer and can for example be
mathematical or computational. The steps of SA have been mentioned in Section 1.

The posed explanation of SA contains both the words sensitivity and uncertainty,
which can be confusing. In fact, in literature, the terms tend to be conflated, where
uncertainty analysis (UA) is incorrectly reported as SA or vice versa. UA is used to
determine how uncertain a model output is. SA retraces the share that input parameters
contribute to the uncertainty, and it characterizes their relative importance (Saltelli et
al., 2019). Sensitivity may depend on the structure of a model; how coefficients interact
and amplify one another, in addition to the individual coefficient uncertainties. SA can
be seen as an extension of UA.

We can also express the distinction between UA and SA in terms of the SA steps of
Igos et al. (2019). When only the uncertainty of a model is in question, and not its
sensitivities, a single act of UP suffices, and performing steps (1), (2), and (4) would
be a UA. In contrast, to obtain knowledge on the sensitivity of a model, a multitude
of UP’s under several different parameter conditions are required (Saltelli et al., 2019).
Step (3) in which the different propagated uncertainties are compared, is in this case
added to the process to form SA.

Saltelli et al. (2008) identify four rationales for SA, so-called ‘settings’. They are (1)
to determine the robustness of a model, (2) to prioritize research on important coeffi-
cients, (3) to simplify the model by finding omissible coefficients, and (4) to determine
interesting input space regions.

The input space of a model refers to all possible combinations of values the input
coefficients can take on. The combinations form a multidimensional space in which one
point is one possible model state.

3.2 Appropriate SA methods

Some SA methods are inappropriate for the analysis of models with certain properties.
In this section, the properties of (non-)linearity and coefficient correlation in relation to
SA are considered. Section 4 reviews these properties with respect to the LCA model.
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Two matters must be addressed before diving into the next sections. First, Appendix
A presents a brief overview of linear models. It includes an example surface plot and
color plot of a non-linear function, which will be built upon here. Second, both the
terms correlation and covariance appear and their distinction needs to be explained.
Covariance between parameters XXX and YYY equals the correlation between XXX and YYY ,
scaled by the variance of XXX times the variance of YYY . This definition in mathematical
terms can be found in Table 2.

3.2.1 Local and global SA

One major distinction generally made between SA methods is that of local SA (LSA)
and global SA (GSA). Literature on SA in LCA has had conflicting definitions of this
distinction, therefore some clarification is required. Notably, both UP and sensitivity
characterizations have ways of being local or global. These concepts overlap and yet
have nuanced differences. Local UP can sometimes produce global SA, and global UP
can sometimes result in local SA.

Uncertainty propagation is found to be local in two ways

(i) Only a small (local) input space range centered at a mean point is considered,
applying little variations to multiple input coefficients (Jacques et al., 2006). Per-
turbation analysis is of this kind.

(ii) Coefficients are varied one by one, but possibly over a larger input space. An
example of this is one-at-a-time analysis (Igos et al., 2019)

These two approaches to local UP are best illustrated graphically in a two-parameter
model. Figure 1 is adapted from Saltelli et al. (2019) for this purpose. Model evaluations,
marked in red, are projected on top of the non-linear function YYY = XXX1XXX2 (see Appendix
A for an explanation of the color plot). The bold, capitalized characters signify stochastic
coefficients. This mathematical notation and others can be found in Table 1. Figure
1a shows both types of local UP. For (i), only values of the model are considered near
the mean, represented by the red dot. For (ii), values along the axes are considered,
represented by the dotted lines. The values of Y are zero in all of the assessed locations
of the input space.

If a given model is linear, local behavior can be extrapolated over the entire input
space. Or put another way; assuming model linearity is equivalent to assuming that
local model evaluations are representative of the global behavior of the model (Igos et
al., 2019). When applying local UP to a non-linear model, the uncertainty results will
only be valid around the evaluated point.

An example of a global approach to UP is given in Figure 1b. Here evaluation of the
input space is spread out to ensure all model behavior is encountered. Evidently, for
a non-linear model, uncertainty will be dependent on the reference point at which it is
evaluated (Di Lullo et al., 2020).
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Figure 1: Comparison of evaluated input space when performing (a) local UP, (b) global
UP and (c) correlated global UP. Approaches laid over a color plot of the
non-linear function YYY = XXX1XXX2. Figures are adapted from Saltelli et al. (2019)

Sensitivity of a model to a particular coefficient is in part reflected by the first partial
derivative of the model to that coefficient. A list of sensitivity coefficients using this
premise is presented by Heijungs (2010). In a two-parameter model, such derivatives are
equivalent to the output slope in the direction of the axis of the coefficient in question. If
the model is non-linear with respect to the coefficient, the slope will depend on the point
at which the model is evaluated. Interactions such as multiplication with other variables,
cause the derivative to be dependent on the values of the other input coefficients also
(Saltelli et al., 2019). In Figure 1a, we can see that the model slope in the direction
of the input parameters is zero everywhere at the evaluated input space and therefore
not representative of the true model sensitivity. Saltelli et al. (2008) solve this issue by
evaluating the model variance globally, while fixing the coefficient in question at different
values of its range, and averaging over these the found variances.

In an SA where multiple UP’s with different starting input parameters are compared,
globality can be included in three ways: (1) when the UP’s themselves are global; (2)
when UP parameter changes are introduced simultaneously, as opposed to one parameter
at a time; (3) when the assessment is mindful of the fact that in a non-linear model,
sensitivity itself is location dependent.

3.2.2 Correlation

Correlations arise, for example, when an engine that uses less fuel also produces fewer
exhaust gasses, or when products share disposal pathways, or due to characterization in-
dicators having common dependencies (Igos et al., 2019). Depending on the interactions
of the model, uncertainty may turn out higher or lower when accounting for correlations
(E. Groen & Heijungs, 2017). Assuming uncorrelated parameters, just like assuming
linearity, is a way to simplify a model. For this reason, there is a lack of widespread and
systematic inclusion of parameter correlation in UP.
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Figure 1c demonstrates how considering correlation in the dummy model could affect
UP. If XXX1 and XXX2 are positively correlated, and pairs of samples are generated with this
in mind, higher values of YYY (the yellow parts of the plot) are more likely to occur than
in the uncorrelated sample set of Figure 1b. Ignoring correlations thus leads to a skewed
evaluation of the input space.

In the SA that follows the UP, considerations of correlations are also important. With-
out them, we only have to assess which variances the model is sensitive to. With them,
the covariances must be considered too. This can square the amount necessary UP’s for
SA, which further reduces the viability of sampling approaches. When using an analyt-
ical method only for filtering before applying sampling SA (as mentioned in Section 1),
correlations should be addressed too.
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4 Theory of Life Cycle Assessment

This section is dedicated to understanding the structure of the LCA model and formu-
lating its mathematical notation.

4.1 The LCA components

The type of LCA calculation that the research centers on is matrix-based LCA, which
allows for solving the model through algebraic matrix manipulation. Other approaches
can be and have been used, such as Cramer’s rule and sequential calculation (Heijungs
& Lenzen, 2014).

Matrix-based LCA as described in Heijungs (2002) guides the model inputs into matrix
structures and calculates the model output through matrix multiplication and inversion.
It is considered the major method for solving LCA calculations, and it is implemented
in various software tools such as CMLCA, SimaPro, and OpenLCA (Wei et al., 2016).

The components of an LCA calculation are

• A database of processes with corresponding externalities. These are called the
background processes.

• A database of characterization factors

• Data on processes and corresponding externalities delivered by the LCA practi-
tioner specific to their study. These are called the foreground processes.

• A reference flow matrix, describing the products that the model is intended to
calculate impacts for

In literature, externalities are sometimes called interventions, characterization factors are
sometimes called impact factors, and reference flows are sometimes called alternatives
or final demands. All of the coefficients in the LCA input components can be uncertain
and correlated. A more detailed characterization of uncertainties present in the LCA
model will be given in Section 5.3 when it is related to performing SA.

4.2 LCA notation and calculation

The LCA matrix-based model calculation is of the following form:

H = QBA-1F (1)

where the symbols are defined in Table 4. The meaning of the LCA formula is as follows;
solving the linear system AS = F , for S = A-1F , determines the multipliers S that all
unit processes in A must be scaled by to exactly produce the desired reference flows in
F . These multipliers are then used to scale the externalities B. Finally, an impact is
calculated by scaling by the characterization factors Q (Heijungs, 2002; Wei et al., 2016).
F is a matrix when multiple reference flows are calculated, each represented in a column.
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It however mostly appears in literature as a vector ~f when a single reference flow is in
question. In this work, we prefer the matrix notation for it allows the expression of
covariances between alternatives. Matrix S mirrors this shape of F . The dimensions of
H depend on the number of reference flows and the number of impact categories. For
an overview of the sizes of these objects, see Table 3.

LCA object Symbol Explanation

Impact matrix H Output of the LCA model. Reflects the impact of
the reference flow

Scaling matrix S Scales unit processes to exactly produce the
reference flows

Technology matrix A Contains the inputs and outputs of the unit
processes

Externalities matrix B Contains the externalities emitted or consumed by
each unit process

Characterization matrix Q Contains characterization factors for externalities.
Scales externalities to impact categories

Reference flow matrix F Defines which products the LCA model calculates
impacts for

Parameter object Symbol Explanation

Mean µ Used for representing the mean parameters of
coefficients

Covariance Σ Used for representing the covariance parameters
between pairs of coefficients

Table 4: Notation of the elements of the LCA calculation

4.3 Mathematical conventions

Baseline mathematical conventions have so far been assumed, and a summary of them
can be found in Table 1. The coefficients in matrices H, S A, B, and Q are stochastic
but not marked in bold, because that would lead to confusion with the also capitalized
single coefficient stochastic object.

Instead, the stochastic properties of the matrices are compiled in objects µ and Σ,
which are also mentioned in Table 4. For example, µQab

represents the mean of Qab and
ΣQabBcd

refers to the correlation between Qab and Bcd. See also Table 2. In practice,
coefficients within the same column of matrices A and B may be correlated, and coeffi-
cients present within one of the matrices A, B, or Q may be correlated. The coefficients
in F are deterministic and will not exhibit uncertainty, but for calculation sake, as will
be useful in Section 6, their value is also captured in parameter object µF , while covari-
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ance with itself and all other matrices is zero. The Mathematical Notation section on
page 3 presents the complete overview.

4.4 Non-linearity of the LCA model

We can see that the LCA model is distinctly not linear in two ways: (1) coefficients are
multiplied, and (2) technology matrix A is inverted which is a non-linear mathematical
operation. Applying LSA to LCA will lead to results of limited use. An analysis that
leaves most of the input space unexplored, or whose approximations are invalid for
larger perturbations, draws an incomplete picture of the LCA model behavior. As will
be discussed in Section 5.2, SA’s of the LCA model often assume linear behavior or will
try to project the model onto a linear approximation.

The non-linearity of the LCA model can be simplified by the application of the geo-
metric series for matrix inverses, also called the Neumann expansion. The problem turns
into just an issue of multiplication and summation. This version of the LCA equation
reads

H =

∞∑
m

QB(I −A)mF (2)

where I is the identity matrix. The simplification applies when A is invertible and
limm→∞(I − A)m = 0. The trick of using the geometric series in place of the matrix
inverse is used for example in Input-Output analysis. In that kind of analysis, each
instance of the power sum is equated to a ‘production layer’ of the processes (Peters,
2007). For an exact result, the sum must go to infinity, but often the expression is
evaluated up to a certain order. The geometric series will be used in Section 6.
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5 Applying SA to LCA

In this section, the theory of SA as identified in Section 3 is applied to LCA as estab-
lished in Section 4. First, the goals and appropriate methods from Section 3.1 and 3.2
respectively are considered. After this, the steps of SA as defined in Section 1 are filled
out. Step 4, communication of results, is not a focus of this thesis and will therefore not
be evaluated.

5.1 The goals of SA in LCA context

Applying SA to LCA can be done with different intentions in mind. We mirror the ratio-
nales identified in Section 3.1. In a comparative LCA, SA may focus on understanding
how the variation in results affects the conclusions about which products have the lowest
impacts. Attributional LCA may use SA to identify critical coefficients to focus future
research on to reduce the model uncertainty (Bisinella et al., 2016). Ex-ante LCA could
be interested in diagnosing processes that, when improved, could bring great reductions
in ecological impact (Wei et al., 2016).

5.2 Appropriate SA methods currently in use in LCA

This section reflects on the use in LCA literature of appropriate SA methods as identified
in Section 3.2. It concerns the issues of using a global SA perspective and of addressing
correlations.

An extensive literature review by Saltelli et al. (2019) showed 42% of highly cited
scientific papers do not properly explore a wider area of the input space rather than
one-dimensional corridors. Generally, LCA studies focus on comparing worst- and best-
case scenarios, doing one-at-a-time UP, or considering coefficient variation around a
nominal value (Padey et al., 2013). Sometimes modeling choices are analyzed by applying
scenarios, for example by comparing energy mix or allocation choices (Igos et al., 2019).
These practices all fall under local UP.

When it comes to SA implementation in LCA software, Igos et al. (2019) note that
today, LCA software tools most commonly offer the option of (global) Monte Carlo
simulation for UA, but only the (local) one-at-a-time approach for SA.

Including the effects of correlations between coefficients is also not standard practice.
Determining correlations of all input parameters is a major task in itself and data on
covariance is therefore of limited availability. GSA methods tend to not account for
correlations, and software tools lack functionality in this department (Heijungs et al.,
2019; Igos et al., 2019). The traditional GSA method of Sobol sensitivity indices assumes
coefficient independence (Wei et al., 2015). The Sobol indices are perhaps the most
commonly used measures for global sensitivity. In brief, they reflect on changes in
global model output uncertainty when re-propagating uncertainty while fixing one (or
multiple, up to all but one) input coefficient.
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Working with an uncorrelated model is considered easier. Saltelli et al. (2008) suggest
working with uncorrelated models as much as possible and treating dependent coefficients
“as explicit relationships with a noise term.”(p.41). The effect of including correlations
compared to excluding correlations in LCA models was tested by E. Groen & Heijungs
(2017), assessing a small case study with only normally distributed parameters. It was
shown that the effect of ignoring calculations in this system could be predicted with
a second-order variance approximation. Additionally, they concluded that the effect is
most pronounced for models with high ratios of covariances to means.

5.3 Characterizing the input uncertainties

The uncertainties present in an LCA study can be categorized in several ways. Igos et
al. (2019) classify

1. Modeling assumptions; the structure of relationships between coefficients, or as-
sumed scenarios. Under this fall choices on boundaries, allocation methods, and
functional units (Mendoza Beltran et al., 2016)

2. Process data uncertainty; due to imperfect measurements of processes

3. Process data variability; due to the natural fluctuations of quantities in processes.
An example of this is the energy use of transportation being affected by seasonal
temperatures.

4. Uncertainties in characterization factors. These are derived from other types of
models that describe the (ecological) impacts of externalities, hence they can carry
uncertainties too.

Uncertainty can also be expressed in multiple ways, such as by probability distribu-
tions, moments (such as variance and mean), fuzzy sets, or scenarios (Igos et al., 2019).
Uncertainties due to different categories may naturally have a particular expression, such
as modeling assumptions being best represented as scenarios. Process data uncertainty
can be represented by moments, but probability distributions are often preferred because
some properties of the uncertain behavior are lost when reduced to a set of moments.
Fuzzy sets are used in UP methods beyond the scope of this thesis.

For this thesis, information about the probability distributions of the input coefficients
is assumed to be available, although in practice, as mentioned in Section 5.2, data for
this may be lacking at present. The analysis in this thesis is focused on process data
and characterization uncertainties. Such uncertainties can be described as continuous
probability distributions. In LCA most probability distributions, such as those found
in the Ecoinvent database, are lognormal (Igos et al., 2019). Lognormal distributions
can be fully characterized by just two parameters: their mean and (co)variance. These
assumptions will allow for deriving an explicit expression of the model variance in Section
6.
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5.4 The uncertainty propagation

Lee & Chen (2009) distinguish five categories of UP approaches. The categories and
some examples are shown in Table 5. Igos et al. (2019) show how three of these cate-
gories are typically applied to the LCA model. They first distinguish ‘analytical’ and
‘sampling’ approaches, which respectively correspond to Lee & Chen’s local expansion-
and simulation-based methods. ’Fuzzy logic’ is identified as a third method category.
It however does not fall under the five presented categories, for it is a so-called possi-
bilistic approach and possibilistic approaches are beyond the scope of this thesis. The
first three categories are analyzed in the next sections. The second to last category
(functional expansion-based methods) has not notably been applied to LCA as of yet.
The Neumann expansion mentioned in Section 4.4 appears in this category. The last
category (most probable point-based methods) is also beyond the scope of this thesis.

UP category Examples

Numerical integration-based methods Full factorial numerical integration, dimension
reduction

Local expansion-based methods Taylor series, perturbation method

Simulation-based methods Monte Carlo simulations, importance sampling,
adaptive sampling

Functional expansion-based methods Neumann expansion, orthogonal or Karhunen–Loeve
expansion, polynomial chaos expansion, wavelet
expansion)

Most probable point-based methods First- and second-order reliability method

Table 5: Categories of uncertainty propagation as distinguished by Lee & Chen (2009)

5.4.1 Numerical integration-based methods

Ideally one could calculate the entire distribution of the model output analytically with-
out approximation or compromise. This would be a full factorial numerical integration.
Uncertainties are then propagated by mapping probability distribution functions of the
input data analytically to the distribution of the output. The advantage of this is that
it could provide the LCA practitioner with an explicit expression for the relationships
between the model input and output uncertainty.

The equation for mapping the distribution of a random n-dimensional vector onto the
m-dimensional distribution of a function of that vector is as follows (Wikibooks, 2021):

ρ~YYY (~y) =
∂

∂y1
...

∂

∂ym

∫
{~x∈Rn|~f(~x)≤~y}

ρ~XXX(~x)dnx (3)
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Where ρ~XXX(~x) is the correlated probability density function of the model input coeffi-

cients, which are compiled in multivariate stochastic variable ~XXX. ρ~YYY (~y) the probability

density function of the outputs ~YYY .

Borgonovo et al. (2011) show several kinds of models with particular input coefficient
distributions that can be evaluated analytically with this method. The answer to a
direct probability density transformation exists only under specific circumstances. For
example, the sum of coefficients with a normal distribution, or the product of coefficients
with a lognormal distribution. Since the LCA model is a combination of multiplication
and addition, an exact result does not exist for the evaluation of Equation 3. The integral
does not evaluate at all, even when complicating factors such as correlations are ignored.

The lack of an exact solution to the probability distribution of a sum of (correlated)
lognormal coefficients is a well-known problem in science, with many possible applica-
tions. Not much is known about such a distribution, but it is neither normal nor log-
normal (Lo, 2012). However, there are several ways to approximate a sum of lognormal
coefficients.

The Fenton-Wilkinson approximation (Fenton, 1960; Abu-Dayya & Beaulieu, 1994)
is one of the oldest and most commonly used methods. It makes use of ‘moment match-
ing’, which starts by choosing an uncertainty distribution shape resembling the output
distribution. Then a set of moments of the actual output distribution is calculated an-
alytically. The parameters of the predetermined distribution shape are chosen in such a
way that its moments mirror the calculated moments.

For example, the distribution of a sum of independent lognormal variables XXXi is fitted
to the lognormal distribution ZZZ. The relationships between the parameters are

V [eZZZ ] = ln

(∑
i exp(2µi + σ2

i )(exp(σ2
i )− 1)

(
∑

i exp(µi + σ2
i /2))2

+ 1

)
E[eZZZ ] = ln

(∑
i

exp(µi + σ2
i /2

)
− V [eZZZ ]/2

Where µi = E[eXXXi ] and σ2
i = V [eXXXi ]

The approximation makes use of the fact that the variance of a sum of uncertain
coefficients is defined explicitly in terms of the input variances, no matter the shape of
the coefficient distributions. This allows for an analytical matching of the expressions
for the moments.

In the approximation, correlations between variables are not included. The structure
of the LCA model is more complex than the sum of uncorrelated lognormal coefficients,
but the Fenton-Wilkinson approach is nevertheless a good starting point for an analytical
expression of the model uncertainty and it will be expanded on in Section 6.
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5.4.2 Local expansion-based methods

Perturbation analysis is the first type of straightforward approximation of uncertain
models. In non-linear models perturbation is not valid for extrapolation over a larger
input space, it does not allow for the inclusion of correlation, and it does not implement
the actual uncertainty of input coefficients. It does however give intuitive insight into
the model behavior. An analytical expression for perturbation of the LCA model is

H + ∆H = (Q+ ∆Q)(B + ∆B)(A+ ∆A)-1F (4)

The issue with perturbing a non-linear model becomes evident when trying to isolate
the expression for ∆H. This quickly becomes a cumbersome formula that also is depen-
dent on the mean values of the input coefficients. Perturbation only gives a limited view
of the model behavior.

Derivatives and Taylor approximations The variance of the LCA output is often ap-
proximated with a Taylor approximation to the first order, or in a couple of papers
to the second order. The Taylor approximation makes use of partial derivatives. A
second-order approximation can express quadratic effects in addition to the linear ef-
fects of the first-order approximation. Low-order approximations can only account for
small uncertainty ranges, but higher-order approximations quickly lead to complicated
formulas.

The next equation shows the first and second-order approximations of the variance
of the LCA model output (Ciroth et al., 2004). The equation assumes that the input
coefficients are normally distributed and uncorrelated. This assumption is not ideal for
LCA, as has been discussed in Section 4.1 and 5.3, and the low order approximations
are only valid locally. This is reflected in the fact that Ciroth et al. (2004) determine the
approximation breaks down when uncertainty becomes too great. The expression reads

V [H] ≈

first order︷ ︸︸ ︷∑
i

(
∂H

∂Xi

)2

V [Xi]

+
∑
i,j

[
1

4

∂2H

(∂Xi)2

∂2H

(∂Xj)2
+

1

2

(
∂2H

∂Xi∂Xj

)2

+
∂H

∂Xi

∂3H

∂Xi(∂Xj)2

]
V [Xi]V [Xj ]︸ ︷︷ ︸

second order

Where Xi ∈ {A,B,Q|A ∈ Rp×p, B ∈ Rn×p, Q ∈ Rm×n}, or put into words ~X is an object
representing all of the model input coefficients.

A different approach that does include covariance and is not restricted to coefficients
with normal distributions, is presented by Heijungs (2010). The formula is a first-order

22



approximation of the variance

V [H] ≈
∑
i

(
∂H

∂Xi

)2

V [Xi] + 2
∑
ij

∂2H

∂Xi∂Xj
Cov[Xi, Xj ]

Another use of the first-order Taylor approximation was proposed by Hong et al.
(2010). Their approximation assumes lognormal behavior of the input coefficients, just
like we decided on, but assumes it also of the output, which is not given. It can not
address negative lognormal coefficients that may appear in avoided processes and such.
Therefore this approach is also of limited use.

Imbeault-Tétreault et al. (2013) state that there is a need to derive analytical expres-
sions of model uncertainty valid for higher output uncertainties for example by using
higher-order approximations that do account for both the additive and multiplicative
properties of the models.

5.4.3 Simulation-based methods

Simulation-based methods present a much more unambiguous type of UP for LCA.
Random samples are generated using the characterized input uncertainty properties.
The model is evaluated for each sample, creating an output distribution. Abilities not
always taken advantage of is that simulation-based methods can sample the entire input
space, and account for correlations as well. Notably, the covariance of different LCA
reference flow impacts can only be calculated when comparing output sets for which the
same data set of input samples is used.

Simulation-based methods ignore information available about the structure of the
model. Uncertainty is found by recalculating the model multiple times. This black-box
approach to UP is useful for highly complex models for which more sophisticated analysis
is not an option. High numbers of simulations are required for representative results, up
to 10.000 runs (Heijungs & Lenzen, 2014). This may cause the calculation of a single
UP the take up to several hours. Results may not even always converge. Purely random
sampling is called Monte Carlo simulation. For a more effective sampling of the input
space, strategies such as Quasi-Monte Carlo and Latin Hypercube sampling are available
(Igos et al., 2019). With these methods, attempts are made at making sampling a viable
strategy for SA on large amounts of uncertain parameters.

5.5 The characterization of sensitivity

In this step of SA, the by UP acquired uncertainty data for several combinations of
input parameters is plugged into a sensitivity measure. Different characterizations of
UP results are again only suitable for particular SA measures. Therefore UP methods
and SA measures tend to come together. Commonly, uncertainty in terms of variance is
used as a basis for sensitivity (Pianosi & Wagener, 2015), but distribution-based methods
also exist (Borgonovo et al., 2012; Cucurachi et al., 2016).
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Wei et al. (2016) describe that GSA is rarely applied to LCA, despite publications on
why it is important and how to use it (Di Lullo et al., 2020). Examples of strategies
are analysis of variance, the elementary effects method, global derivative-based measures,
moment-independent methods (Cucurachi et al., 2016), variogram-based approaches and
many others (Saltelli et al., 2019). Noteworthy is that the elementary effects and global
derivative-based methods both use first-order partial derivatives. This is a local kind of
SA that cannot address coefficient interactions and correlations by itself. The methods
are classified as global nonetheless because the derivatives are sampled globally through-
out the input space.

Some GSA methods specifically researched for use in LCA are the Sobol indices,
the standard regression coefficients, and random balance design (E. A. Groen et al.,
2017). These methods all operate on variance which is acquired from global simulation-
based UP. An analytically acquired expression of variance could also be plugged into
these methods. They however are not equipped for assessing the effects of correlation.
Appropriate measures must be part of the comprehensive analytical approach to SA.
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6 Analytical sensitivity expression

With all the compiled information of the previous sections, we can proceed with con-
structing an analytical UP expression for LCA. Using further mathematical manipula-
tion, such an expression can be translated to sensitivity.

As established in Section 5.4.1, the probability density of the output of the LCA
model cannot be propagated exactly. The next best route would be to use the also
aforementioned moment matching, described in that same section. Performing moment
matching does not add to the knowledge of the analyst (it only helps with interpretation),
so we will simply start with applying its logic to calculate the model covariance. This
section will follow the same logic as the Fenton-Wilkinson approximation, expanded for
the additive properties and the potential correlations of the LCA model. Combining
this with the Neumann expansion, or geometric series, for the matrix inverse, makes our
approach a nod to the functional expansion-based methods.

6.1 Mathematical basis

To be able to construct a formula for the covariance of the model, some mathemati-
cal relationships need first to be defined and explained. For an overview of the basic
mathematical notations see Tables 1 and 2.

6.1.1 Lognormal distributions

We establish vector ~XXX, containing lognormally distributed and correlated coefficients.
~XXX is called a lognormal multivariate. Then, using an underline, we define ~XXX = ln(~XXX),
which is by definition a normal multivariate. All lognormal distributions have a related
normal distribution like this. In mathematical terms

~XXX = exp(~XXX)

~XXX ∼ LN (µX ,ΣXX)

~XXX ∼ N (µX ,ΣXX)

The relationships between the parameters (mean and covariance) of ~XXX and ~XXX are

defined explicitly (Halliwell, 2015). First, the mean and covariance of ~XXX in terms of the

mean and covariance of ~XXX are

µXi = exp

(
µXi

+
1

2
ΣXiXi

)
ΣXiXj = exp

(
µXi

+
1

2
ΣXiXi

+ µXj
+

1

2
ΣXjXj

)
(exp

(
ΣXiXj

)
− 1)

= µXiµXj (exp
(

ΣXiXj

)
− 1)

(5)
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These equations can be used to derive the parameters of ~XXX in terms of the mean and
covariance of ~XXX

ΣXiXj
= ln

(
ΣXiXj

µXiµXj

+ 1

)
µXi

= ln(µXi)−
1

2
ln

(
ΣXiXi

µXiµXi

+ 1

)
= ln(µXi)−

1

2
ΣXiXi

(6)

Not all parameters of ~XXX can be translated to parameters for ~XXX without a second
thought. This stems from the fact that (1) lognormal distributions are not defined for
variables with a mean smaller than or equal to zero, and in that (2) any covariance
matrix has to be positive semi-definite.

Setting κ =
ΣXiXj

µXi
µXj

and imagining different values for µ, then issue (1) is reflected in

the equations as follows;

a) the logarithms return complex numbers whenever κ < −1 or µ < 0;

b) the logarithms are not defined at κ = −1 or µ = 0

c) κ itself will not be defined if either µ is zero;

Point (a) can be solved by allowing for complex-valued parameters of ~XXX. As for (b)
and (c), consider that limx↓0 ln(x) = −∞ and exp(−∞) = 0. A lognormal distribution
of mean zero present in an LCA could for example mean a product not partaking in a
certain process, a process not having a certain externality, or an externality not having
a certain impact. The variance of these absent coefficients is zero by definition. The
technical problem is mended by overriding the division, setting κ = 0, ΣXiXj

= 0 and
allowing µXi

to equal −∞. When the parameters are transformed back and forth using
these solutions, the properties of the distributions will be preserved.

Issue (2) is that of the structure of ΣXX and ΣXX . Not all matrices are allowed to
fulfill the role of covariance matrix. They must be positive semi-definite. Because the
covariances of an implemented LCA model are given, assumed is that they will be correct
in both lognormal and normal multivariate representation. This problem will however
be of relevance again in Section 7.

6.1.2 The sum of correlated coefficients

The parameters of a sum of correlated coefficients are defined in terms of the parameters
of the summed coefficients. This is irrespective of the distributions of the coefficients.
The Fenton-Wilkinson approximation of Section 5.4.1 relies on the same principle. The
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relationships are as follows:

E

[∑
m

XXXm

]
=
∑
m

E [XXXm]

V

[∑
m

XXXm

]
=
∑
m

∑
n

Cov [XXXm,XXXn]

(7)

For example, when correlated coefficients expressed in the normal multivariate XXX ∼
N (µX ,ΣXX) are summed, the parameters of this sum become∑

m

XXXm ∼ N

(∑
m

µXm ,
∑
m,n

ΣXmXn

)
Note that the elementary relationship between covariance and expectation values is

Cov[XXX,YYY ] = E[XXXYYY ]− E[XXX]E[YYY ] (8)

It is perhaps useful to interject the following consequence. When the covariance of
dummy matrix Ψ = QBA-1 (without F ) is found in whatever way, the covariances
between reference flows become very easy to calculate. Because F contains only deter-
ministic coefficients, the impacts of the reference flows are different linear combinations
of the elements of Ψ. This simply makes the output covariances linear combinations of
the covariances of Ψ too.

6.1.3 The product of lognormal correlated coefficients

Next, equations are established for the parameters of a product of correlated lognormal
coefficients ZZZ =

∏
mXXXm ∼ LN (µZ , σ

2
Z) where ~XXX ∼ LN (µX ,ΣXX).

Let Γ =
∏

m1 6=m2

(
ΣXm1Xm2

µXm1
µXm2

+ 1

)
then µZ =

∏
m

µXm

√
Γ

and σ2
Z =

∏
m

(ΣXmXm + µ2
Xm

)Γ2 − µ2
Z

(9)

Derivation of these equations can be found in Appendix B. In a different, perhaps more
general mathematical notation, the expectation value of a product of correlated lognor-
mal coefficients can be written as

E[XXX1...XXXN ] =
∏
m

E[XXXm]
∏
i 6=j

√
Cov[XXXi,XXXj ]

E[XXXi]E[XXXj ]
+ 1 (10)

This formula can be seen as a version of the Isserlis theorem, which expresses the ex-
pectation of a product of normal correlated variables (Isserlis, 1918; Leonov & Shiryaev,
1959).
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6.1.4 The LCA model in product sum form

By applying the geometric series formula (Equation 2) for the inverse of A as we did in
Section 4.4, we assume it is possible to write the LCA calculation as

Hij =
∑
abcm

QiaBab(I −A)mbcFcj (11)

This formulation of the model as a sum of products allows us to find an exact expression
for the output covariance using the equations from the previous sections. When applying
Equation 7, the model covariance can be written as

Cov[Hij , Hkl] =
∑
abcm

∑
defn

Cov
[
QiaBab(I −A)mbcFcj , QkdBde(I −A)nefFfl

]
(12)

For brevity I − A is called W from these equations on. Before we can continue, three
issues with this model covariance formulation must be addressed:

(1) The distribution of the diagonal coefficients in matrix W needs extra thought; a
constant minus a lognormal variate results not in a lognormal distribution. The
problem is mended by starting with a normalized technology matrix (of which the
diagonal elements are 1 with variance 0). In which case

µWij =

{
−µAij if i 6= j.

0 if i = j.
and ΣWW = ΣAA and ΣAB = ΣWB

(2) By applying the geometric series expansion we assume the inverse of A exists and is
calculable by this series, something which may not always be the case.

(3) Additional summations arise because of raising W to powers m and n. For example

for the element of the sum wherem = 3 and n = 2, Cov
[
QiaBabW

3
bcFcj , QkdBdeW

2
efFfl

]
becomes

Cov

[∑
xy

QiaBabWbxWxyWycFcj ,
∑
z

QkdBdeWezWzfFfj

]
=
∑
xyz

Cov [QiaBabWbxWxyWycFcj , QkdBdeWezWzfFfj ]

(13)

6.2 Uncertainty propagation

Let the following objects represent sets of input coefficients of the LCA model, as present
in single elements of the sum in Equation 11

Ω(ij)(abx1...xmc) = {Qia, Bab,Wbx1 , ...,Wxmc, Fcj} = Ωp

Ω(kl)(dey1...ynf) = {Qkd, Bde,Wey1 , ...,Wynf , Ffl} = Ωq
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so that, using this set notation, the LCA model can be written as

Hij =
∑

mabx1...xmc

 ∏
X∈Ω(ij)(abx1...xmc)

X

 =
∑
p

 ∏
X∈Ωp

X

 (14)

Note that
∑

mabx1...xmc
is shortened to

∑
p. This turns the model covariance equation

into the following expression

Cov[Hij , Hkl] =
∑
mn

∑
abx1...xmc
dey1...ynf

Cov

 ∏
X∈Ω(ij)(abx1...xmc)

X,
∏

Y ∈Ω(kl)(dey1...ynf)

Y



=
∑
mn

∑
pq

Cov

 ∏
X∈Ωp

X,
∏
Y ∈Ωq

Y



Using the definition of covariance from Equation 8 this becomes

Cov[Hij , Hkl] =
∑
mn

∑
pq

E

 ∏
Z∈Ωp∪Ωq

Z

−∑
mp

E

 ∏
X∈Ωp

X

∑
nq

E

 ∏
Y ∈Ωq

Y

 (15)

Equations 9 are used to define

Γp =
∏

{Xs,Xt}∈Ω2
p

(
ΣXsXt

µXsµXt

+ 1

)

Γq =
∏

{Ys,Yt}∈Ω2
q

(
ΣYsYt

µYsµYt
+ 1

)

Γp∪q =
∏

{Zs,Zt}∈(Ωp∪Ωq)2

(
ΣZsZt

µZsµZt

+ 1

)

Where the product is overall possible off-diagonal pairings {(.)s, (.)t} of elements of the
set product Ω2

(.). Expression 15 becomes

Cov[Hij , Hkl] =
∑
mn

∑
pq

∏
Z∈Ωp∪Ωq

µZ
√

Γp∪q −
∑
mp

∏
X∈Ωp

µX
√

Γp
∑
nq

∏
Y ∈Ωq

µY
√

Γq

=
∑
mn

∑
pq

 ∏
Z∈Ωp∪Ωq

µZ
√

Γp∪q −
∏
X∈Ωp

µX
√

Γp
∏
Y ∈Ωq

µY
√

Γq


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Since
∏
Z∈Ωp∪Ωq

µZ =
∏
X∈Ωp

µX
∏
Y ∈Ωq

µY , the next step towards simplification is

Cov[Hij , Hkl] =
∑
mn

∑
pq

 ∏
Z∈Ωp∪Ωq

µZ

(√Γp∪q −
√

ΓpΓq

)
(16)

This is our final expression for the covariance of the geometric series approximated
LCA model. It is (1) inclusive of the non-linear model behavior, (2) includes correlations,
and (3) shows explicit relationships between in- and output variance.

6.3 Sensitivity characterization

Now the expression for model covariance is defined, it can be used to calculate sensitiv-
ities.

The first option of GSA is to evaluate the entire equation various times, changing one
or more input covariance parameters. The results could be applied to any SA measure
that is based on variance. As the UP incorporates covariance relationships, the SA
measure should be able to reflect on those too. This course of action mirrors the process
of a sampling GSA. But another way to reflect on GSA is enabled by the analytical
expression too. Since the goal of SA is to ascribe responsibility for the output uncertainty
to the input coefficients, this could simply be determined by closely examining Equation
16. This way it would not be necessary to evaluate every part of it repeatedly.

Such close examination starts as follows. If any ΣXY is set to zero, the unit
(

ΣXY
µXµY

+ 1
)

of which it is part turns to 1. Since these units appear in a product to constructs a cer-
tain Γ, it can be concluded that the influence of Σ is removed, which recognizes that the
formula performs as it should. Further manipulation of Equation 16 is required to fully
understand such interactions.

Partial derivatives of the equation with respect to a covariance can say something
about the sensitivity of the model to changes of said covariance. These partial derivatives
also follow directly from Equation 16. The sensitivity measures can be constructed from
this.
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7 Verification by comparison with simulation

The performance of Equation 16 is verified by comparing its results to a sampling strat-
egy. This verification is sufficient to show that the analytically calculated covariance is
also suitable for use in sensitivity measures because it simply proves the validity of the
equation. This section will detail the implementation of the code. The written Python
code is included in Appendix C.

The verification process is split into two parts; (1) verification of the parameters of a
model that is purely matrix multiplicative; modeled as a multiplication of three input
matrices H = ABC. Part (2) is verification of the formula for the inversion of a matrix
H = A-1, utilizing the geometric series as demonstrated in Equations 2 and 11. In
both parts (1) and (2) the covariance of the output matrix is calculated analytically and
compared to a simulated covariance. The division of verification is chosen to separate
the performance of the equation for matrix multiplication and inversion.

7.1 The process

Step-wise, the procedure that both programs follow is

1. Initialization

a) Define model size and other parameters, such as the number of simulations
and the order of the geometric series

b) Randomly select model parameters

2. Simulation

a) Generate lognormal multivariate samples

b) For each sample, calculate model output

c) Calculate model covariances

3. Perform the analytical calculation of covariance

4. Compare simulated and calculated covariances

Each program run will generate a different set of model parameters for which the
simulation and covariance calculation will be performed. This is done in order to verify
the formula in the most general sense, and not for a single dummy model. Caution must
be taken when randomly selecting the covariance matrix. As mentioned in 6.1.1, such
matrices need to be positive-semidefinite, and this is not always given when transforming
between normal and lognormal model parameters. Additional caution is required when
selecting the mean parameters of the matrix that is to be inverted because not all
matrices are invertible via geometric series.

The lognormal multivariate coefficients are sampled taking the exponential of a complex-
valued normal multivariate. This uses a transformation of the lognormal parameters into
appropriate normal ones following Equation 5. A library for complex normal multivari-
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ate sampling is not included in normal Python packages, therefore functions that enable
such sampling come as an additional deliverable with the two verification programs.
The complex-valued normal multivariate approach allows for the inclusion of lognormal
coefficients with a mean smaller than or equal to zero.

7.2 Discussion of the results

Sampling of the lognormal input coefficients and subsequent calculation of the sampling
output covariance runs smoothly in both programs. The analytical calculation of the
covariance is a much slower process. This can be ascribed to the fact that the procedure is
not optimized the way that the established sampling and matrix multiplication functions
are. Especially the calculation time of the inverted matrix covariance is significant and
grows exponentially with the geometric series order. Therefore increasing accuracy by
choosing a higher order is limited in this small-scale testing application.

Figure 2 displays the ratios of analytically calculated to sampled output covariances
for one run of each of the programs. The covariance ratios are color-coded so that ratios
differing from 1 stand out, which indicates that the sampling and analytically calculated
covariance do not match. Note that the color scaling is different for the individual figures.

a) b)

Figure 2: Ratio of analytically calculated to sampled covariance of (a) the product of
three matrices and (b) the inverse of a matrix. The input coefficients are
lognormally distributed and correlated. The output matrix H is in both cases
of size 3× 3. The correlation ratios are between elements of H as indicated by
the labels on the left and on the bottom.

The matrix product results show great overlap, which can be seen in the program run
displayed in Figure 2a. The matrix inverse procedure is less accurate (Figure 2b), and
these results can differ a lot between program runs. Not every program run generates
a random matrix for which the geometric series converges quickly, and with limits on
the maximal order, this leads to less accurate results. Some program runs even generate
erratic results. To give a sense of this beforehand, the inverse program starts with
giving an indication of the convergence by printing the ratio A/B of the mean matrix
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as inverted by geometric series (A) to the mean matrix inverted algebraically (B). Since
in an actual LCA there is no random sampling of coefficient parameters, this should not
be as big of an issue.

Some problems are identified when larger covariances are simulated, or when the
inverted matrix samples behave unexpectedly even when the geometric series should
have converged.

• When the randomly selected model input covariances are larger, the coefficient
interactions can sometimes result in extreme outliers

• Sometimes in an overall stable matrix inverse simulation, also a couple of extreme
outliers appear.

To illustrate the issues, examples of output distributions exhibiting the behavior are
presented in Figure 3. Both are based on simulation sizes of 100.000. Mind that the
vertical scaling of these figures is lognormal. The lognormal scaling is chosen to bring
attention to the outliers, whose bins are stacked with only one or two results. Otherwise,
the distributions would look like single tall pillars, and their tails would be invisible.

a) b)

Figure 3: Histogram of a simulated output of (a) the product of three matrices and (b)
the matrix inverse, of which the input coefficients are correlated and lognor-
mally distributed. Only a single of the 9 possible outputs was chosen for these
figures

The outliers have a profound influence on the model covariance. The characteriza-
tion of these distributions through variance alone gives odd results. The variance of
the distribution in Figure 3a is 3264.1, while the analytically calculated variance was
8900.7, a factor 2.7 higher. That factor is relatively small considering the improbably
large covariance numbers. As has been mentioned in 5.4.3, LCA sampling results do
not always converge. Larger amounts of samples do not necessarily lead to more stable
results, which is likely what has happened here.

The variance of the distribution in Figure 3b is 25.6, but when the single outlier at
-1500 is eliminated, it reduces to only 1.94. The outlier of the matrix inversion is due
to the extreme behavior of near-singular matrices. Heijungs (2002) shows an example
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of such a matrix. In large amounts of matrix samples, sometimes such matrices will
appear and throw off the results. Nonetheless, if a near singular matrix can appear in
the results, a sensitivity measure should be able to identify its risk.

The output variance being a sensible measure of uncertainty is implicitly assumed
by variance-based SA. But clearly, the measure of covariance is not always great for
describing systems like these. This is a limitation of the proposed analytical equation
(Pianosi & Wagener, 2015). Overall, no definitive conclusions can be drawn on the
performance of Equation 16 and more in-depth research is necessary. Not only to verify
in which uncertainty domains it performs best, but also to experiment with how well
the geometric series approach behaves.
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8 Discussion

This section forms the resolution of the thesis. The research sub-questions are revis-
ited and explicitly answered, after which the benefits and limitations of this work are
summarized, and suggestions for further research are presented.

8.1 Answers to the research questions

(1) What are the goals, process, and concerns of SA? Sensitivity analysis determines
which coefficients are responsible for the uncertainty in the outputs of models. Care must
be taken in using appropriate SA methods for models that exhibit non-linear behavior,
or which have correlated coefficients. A global SA approach is essential.

(2) What are the structural components and properties of the LCA model? The
LCA model calculates impacts by combining various matrices filled with correlated co-
efficients through a non-linear process of addition, multiplication, and matrix inversion.
The non-linearity can be simplified by substituting the matrix inversion with an expan-
sion.

(3) How do we apply the established properties of SA to LCA? SA methods for LCA
must be global and must be able to include the correlation. Current methods often lack
these attributes. The LCA inputs can be characterized as lognormally distributed and
correlated. Established methods do not adequately assess the LCA model properties and
an opening for improvement is found by combining elements from functional expansion,
elements from numerical integration, and elements from local expansion-based methods.

(4) What is the expression of uncertainty satisfying the posed requirements? The
qualities of the lognormal inputs of the LCA model can be combined with its product-
sum structure and the identified knowledge on UP methods. This comes together in
an exact analytical expression (Equation 16) for the model covariance which includes
correlations and should be valid for larger uncertainties.

(5) How does the found expression perform compared to uncertainty calculated
using a random sampling method? The equation performs well when applied to a
simple matrix multiplication model. The matrix inverse is computationally intensive to
calculate, but the expression can perform decently for it. Issues arise when it comes
to characterizing the output uncertainty when the model shows erratic behavior due to
large uncertainties, or near-singular matrices.
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8.2 Benefits and limitations

This work has proposed an analytical formulation of the output uncertainty of the LCA
model. It is different from previous approaches in that (1) correlations are allowed for,
(2) it takes into account the multiplicative and additive properties of the model, and
(3) it is an exact expression. The expression assumes the invertibility of the technology
matrix through the geometric series. It also assumes the inputs of the LCA model can
be described by lognormal distributions.

Application of the equation to everyday LCA SA practice is, for now, not attractive.
UP with it is more time-consuming than performing simulations, thought there is room
for optimization. The expression does open up possibilities of making SA much easier in
the future, because it shows the explicit relations between input and output covariance.

One limitation is that, as we have also observed ourselves in Section 7.2, variance is
not always a proper indicator of uncertain behavior. Since the proposed equation can not
produce a probability distribution of the output, this is a point of concern. Additionally,
the expression is only exact when the geometric series order is infinite. This is not
feasible for a straightforward evaluation of the equation. At lower orders, it is only a
good approximation, depending on the convergence of the inverted matrix.

8.3 Future research recommendations

Since the results of this work are not usable for immediate application to LCA, this
section will lay out the fronts on which improvements can be made, and where further
work is necessary.

First of all, there is room for further simplification of formula 16. Making it more read-
able and therefore more transparent will aid in the understanding of all the interactions
taking place. First of all, this can be done by introducing tensor-notation, which is the
higher-dimensional cousin of matrix notation. As a second option, I suggest decompos-
ing covariance parameters Σ. This involves writing Σ as AAT , which is a decomposition
that is available to positive-semidefinite matrices such as covariance objects. The sym-
metry may allow to further pick the equation apart and simplify it. Simplification may
also aid in increasing the calculation speed of the equation when using it to explicitly
calculate covariances as we did in Section 7.

The last step of SA steps as defined by Igos et al. (2019) was the communication of
results. This point has not been addressed but is of course relevant when it comes to the
actual use of the proposed expression for SA. Further work must be done on this topic.

Miscellaneous areas of interest Because SA is such a large topic, not all aspects have
been explored in this thesis; there are plenty more methods to adapt for LCA if so
desired. There are also other avenues of interest that this work was forced to gloss over
due to scope limitations. Suggestions for future research are compiled in this section.
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More UP methods of the categories ‘functional expansion-based methods’ and ‘most
probable point-based methods’ (Section 5.4) have the potential for being solutions to
address LCA sensitivities. Research could focus on these propagation categories. The
Neumann expansion has only been used in this work to simplify the matrix inversion,
but more literature exists on the topic (Yamazaki et al., 1988).

Expressions for higher output distribution moments (such as skewness and
kurtosis) of the LCA model can be attained with the same procedure as performed in
Section 6. Just like with covariance, the higher-order moments of products of lognormal
multivariates have definitive expressions, as do the higher-order moments of sums of mul-
tivariates (e.g. Skewness [

∑
iXi] =

∑
ijk Coskewness [Xi, Xj , Xk]). The expressions

may be cumbersome to fully flesh out, but there is potential for better characterization
of the model output distribution.

Moment matching to a lognormal distribution shape using the proposed expression
is not recommended. This approach would finalize the Fenton-Wilkinson approximation.
The output of the LCA model likely does not match the lognormal shape (as we have
seen in Figure 3), but research could possibly focus on finding another distribution shape
that is suitable for that purpose. Imbeault-Tétreault et al. (2013) too suggests searching
for a type of probability distribution that can represent the simulated uncertainty of the
LCA model with lognormal coefficients.

The Wishart distribution is a probability distribution that characterizes the un-
certainty of a particular type of matrix. If a matrix uncertainty can be characterized
as such, its inverse also has a defined distribution, called the Wishart Inverse. These
distributions might be used for a better understanding of the distributions of the LCA
model.

Partitioning the LCA matrices can simplify the model too. Encountered but not
implemented was a formulation of the LCA model equations that separated the LCA
background from the foreground processes and externalities. This separation may allow
for a reduction of computational complexity by isolating parts of the process that can
be pre-calculated. Such an expression would read

H = QBA-1F = Q
(
B1 B2

)(A11 A12

0 A22

)-1(
F1

F2

)
= Q

(
B1 B2

)(A-1
11 −A-1

11A12A
-1
22

0 A-1
22

)(
F1

F2

)
= QB1A

-1
11F1︸ ︷︷ ︸

All background coefficients

−QB1A
-1
11A12A

-1
22F2︸ ︷︷ ︸

Mixed coefficients

+ QB2A
-1
22F2︸ ︷︷ ︸

All foreground coefficients

Where Q has remained the same, B1 and A11 are matrices containing the background

externalities and processes, B2 and

(
A12

A22

)
contain the foreground externalities and

processes, F1 contains background reference flows and F2 contains foreground reference
flows.
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Singular matrix behavior Lastly, it may prove useful if further research is done
on the likelyhood of the technology matrix becoming singular during sampling. Such a
measure could indicate also the sensitivity of the LCA model, since the inversion of near
singular matrices leads to extreme outliers.
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Appendix A: Linearity

A linear model can be expressed as the (scaled) sum of all input parameters, or in
mathematical terms y(x1, x2, ..., xn) = x0 +

∑n
i=1 aixi. Here y is the output and xi

are the inputs. Any change in the output is again a linear combination of changes
in the inputs. The model sensitivity to coefficient xi is directly related to ai. These
simple relationships are why it is often desirable to fit a model in question to a linear
approximation, by linear regression or a first-order (Taylor) polynomials, or perturbation
(E. A. Groen et al., 2017). Under the assumption of linearity however, interactions
between parameters - terms enhancing or reducing each others influence - are ignored.

Illustrated in Figure 4 is a plot of the function YYY = XXX1XXX2, which is multiplicative,
polynomial, and not linear. The plot shows that the model output is not a flat plane
and its slope depends on the point and direction of evaluation. This color plot is used
in Section 3.2.1 to explain some issues of assuming linearity in LCA SA.

Max X2

Min X2

Min X1 Max X1

X2 = 0

X1 = 0

Figure 4: Flat color plot and corresponding 3d surface plot of the multiplicative function
YYY = XXX1XXX2
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Appendix B: Mathematical documentation

This appendix contains the omitted mathematical steps and explanations of Section 6.
Normal multivariate XXX and lognormal multivariate XXX have parameters and are related
as follows

XXX ∼ LN (µXXX ,ΣXXXXXX)

XXX = ln(XXX) ∼ N (µXXX ,ΣXXXXXX)

ΣXiXj
= ln

(
ΣXiXj

µXiµXj

+ 1

)
µXi

= ln(µXi)−
1

2
ln

(
ΣXiXi

µXiµXi

+ 1

)
A product of the coefficients in XXX is established as ZZZ

ZZZ =
∏
i

Xi ∼ LN (µZ , σ
2
Z)

∏
i

Xi = exp

(∑
i

Xi

)
ZZZ = exp(ZZZ)

ZZZ =
∑
i

Xi ∼ N (µZ , σ
2
Z)

µZ =
∑
i

µX

σ2
Z =

∑
ij

ΣXiXj

Using the established relations, the mean of ZZZ in terms of the input parameters is derived
next

µZ = exp

(
µZ +

1

2
σ2
Z

)

= exp

∑
i

µX +
1

2

∑
ij

ΣXiXj


= exp

∑
i

(
ln(µXi)−

1

2
ln

(
ΣXiXi

µXiµXi

+ 1

))
+

1

2

∑
ij

ln

(
ΣXiXj

µXiµXj

+ 1

)
=
∏
i

µXi

∏
i

√
ΣXiXi

µXiµXi

+ 1

−1∏
ij

√(
ΣXiXj

µXiµXj

+ 1

)

=
∏
i

µXi

∏
i 6=j

√(
ΣXiXj

µXiµXj

+ 1

)
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And the variance of ZZZ in terms of the input parameters is

σ2
Z = µ2

Z(exp
(
σ2
Z

)
− 1)

= µ2
Z(exp

∑
ij

ΣXiXj

− 1)

= µ2
Z

exp

∑
ij

ln

(
ΣXiXj

µXiµXj

+ 1

)− 1


= µ2

Z

∏
ij

(
ΣXiXj

µXiµXj

+ 1

)
− µ2

Z

For brevity sake, the term ΓZ is introduced, which makes the final equations for the
parameters of ZZZ

ΓZ =
∏
i 6=j

(
ΣXiXj

µXiµXj

+ 1

)
µZ =

∏
i

µXi

√
ΓZ

σ2
Z =

∏
i

(ΣXiXi + µ2
Xi

)Γ2
Z − µ2

Z

Note that ΓZ is undefined when any involved µ is zero. This problem is mended by

overriding the fractions containing a zero µ with
ΣXiXj

µXi
µXj

= 0.

An alternative notation is also possible. We define a new identity ΘZ =
∏
ij

(
ΣXiXj

µXi
µXj

+ 1
)

.

Similarly to the approach of ΓZ , undefined fractions are overridden.

µZ =
∏
i

µ2
Xi√

ΣXiXi + µ2
Xi

√
ΘZ

σ2
Z = µ2

Z(ΘZ − 1)
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Appendix C: Verification code

The Python files can be found via the following link: https://github.com/slensen/Thesis-
SA-for-LCA-Python-code. Included separately are the files

• ThreeMatrixProduct.py contains the code for a product of three matrices;

• OneMatrixInverse.py contains the code for the inverse of a matrix;

• ComplexMultivariateNormal.py contains functions used in both aforementioned
files with which a complex, normally distributed multivariate can be sampled.
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