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[1] In this paper, the background and functioning of a simple but effective continuous
time approach for modeling irregularly spaced residual series is presented. The basic
equations were published earlier by von Asmuth et al. (2002), who used them as part of a
continuous time transfer function noise model. It is shown that the methods behind the
model are build on two principles: The first is the fact that the equations of a Kalman filter
degenerate to a form that is equivalent to ‘‘conventional’’ autoregressive moving average
(ARMA) models when the modeled data are considered to be free of measurement
errors. This assumption, in comparison to the ‘‘full’’ Kalman filter, also yields a better
prediction efficiency (Ahsan and O’Connor, 1994). The second is the mathematical
equivalence between discrete time AR parameters and continuous exponentials and the
point that continuous time models provide an elegant solution for modeling irregularly
spaced observations (e.g., Harvey, 1989). Because simple least squares methods do
not apply in case of modeling irregular data, a sum of weighted squared innovations
(SWSI) criterion is introduced and derived from the likelihood function of the innovations.
In an example application it is shown that the estimates of the SWSI criterion converge
to maximum likelihood estimates for larger sample sizes. Finally, we propose to use
the so-called innovation variance function as an additional diagnostic check, next to the
well-known autocorrelation and cross-correlation functions.

Citation: von Asmuth, J. R., and M. F. P. Bierkens (2005), Modeling irregularly spaced residual series as a continuous stochastic

process, Water Resour. Res., 41, W12404, doi:10.1029/2004WR003726.

1. Introduction

[2] One of the immediate consequences of the stochastic
nature of natural processes is that the predictions of a
deterministic model will never match a set of observations
completely. The difference between the model predictions
and the observed time series forms a time series of its own,
called the ‘‘residuals.’’ Residuals are ‘‘caused’’ by errors in
the observation process, errors in the model parameters,
simplifications or errors in the model concept and/or nu-
merical errors when evaluating the model equations. Fur-
thermore, the value of a model residual at a certain time
instant is often correlated with its value at earlier time
instants, so residuals cannot simply be modeled as a set of
independent Gaussian deviates. Explicitly modeling the
behavior of the residuals of a transfer or deterministic model
can have several purposes. First, when a noise model is
fitted to the residuals, it can be used for stochastic simula-
tion. This is especially useful in case one is interested in the
probability of extremes, as such probabilities are under-
estimated when using only the deterministic model [e.g.,
Knotters and Van Walsum, 1997]. Second, because of the
autocorrelation in the signal, the noise model can also be

used to yield predictions of the residuals at unobserved time
steps, either for smoothing, forecasting or updating purpo-
ses. Such applications, which are widely used in the
meteorological sciences and are often referred to as data
assimilation [McLaughlin, 1995; Kalnay, 2002], make op-
timal use of both model prediction and observations and can
significantly improve the accuracy of the predictions of the
combined model. Third, optimization algorithms for esti-
mating the model parameters and their covariance matrix
often assume that model errors are uncorrelated. Correla-
tions between the input, predicted output and the residual
series hamper an independent estimate of the model param-
eters, whereas autocorrelation in the residuals causes the
variance of the parameters to be underestimated. ‘‘Whiten-
ing’’ of the residuals with a noise model thus improves the
parameter estimates of transfer and other deterministic
models [Bryson and Henrikson, 1965; Te Stroet, 1995].
[3] In light of the problem of adequately dealing with

residuals, or more in general noise corrupted signals, one
can discern two directions in the methods used. First, there
are statistical time series analysis methods, which are
popular in fields of science like econometry or social
sciences. Their application developed rapidly after the
publication of the comprehensive text book by Box and
Jenkins [1970]. In the univariate version of these models,
which are classified under the name autoregressive integrated
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moving average or (X)ARIMA, a series of observations
of a given variable is modeled using only the temporal
correlation structures in the data itself. In the multivariate
case, also data of other, explanatory variables is used
(transfer part of the model), while the errors of the transfer
model are modeled with a separate univariate or so-called
noise model. The combined model is referred to as a transfer
function noise (TFN) model. Second, there are the filtering
methods, of which N. Wiener can be considered the founder
[e.g., Wiener, 1949]. Such methods were firstly applied in
the field of control, navigation and communication engi-
neering, where the problem of extracting useful information
from signals that are noise corrupted arises most naturally.
Here the introduction of the Kalman filter [Kalman, 1960]
was an important factor in the rapid spreading of its
application across the more exact sciences, owing to its
generality, simplicity, and ease of application. Nowadays,
the Kalman filter is applied across a wide range of disci-
plines for modeling the behavior and uncertainty of phe-
nomena that are not well explained by physical laws alone.
[4] The distinction made above, however, is somewhat

artificial, because both methods are closely related. Apart
from the fact that their mathematical treatment and notation
differs, there are two important differences. First, in the
Kalman filter a distinction is made between noise that
perturbs the state of the system itself, and noise perturbing
the process of measuring that state (Figure 1). In ARIMA
models, on the other hand, there is only one noise term
uniting all sources of uncertainty in the modeled signal.
However, the Kalman filter is often also applied for pure
prediction problems where measurement error is assumed to
be absent. Ahsan and O’Connor [1994] show that in that
case, the Kalman gain becomes redundant, and the filter
equations reduce to a simpler form equivalent to that of an
ARMA model. A second important difference, one that was
not discussed by Ahsan and O’Connor, lies in dealing with
irregular data. On this point, conventional discrete time
ARMA models have an important practical drawback, as
they cannot be readily applied to data with missing obser-
vations, while also the frequency of the input and output
variables is coupled and has to be equal. Over the years,
there has been a lot of effort in solving this problem, in the

time series literature [Jones, 1980; Harvey and Pierse,
1984; Little and Rubin, 1987] but more recently also
focused on hydrologic problems [Bierkens et al., 1999;
Koutsoyiannis, 2001; Berendrecht et al., 2003; Yi and Lee,
2004]. Mostly, these solutions involve a state-space repre-
sentation (SSR) of the model equations embedded in a
Kalman filter. This way, missing observations can be easily
handled by simply omitting the updating equations while
retaining the prediction equations. Furthermore, to estimate
the ARMA parameters, a likelihood function is constructed
using the prediction errors and their variances, as simple
least squares methods no longer apply.
[5] In this paper, we focus on dealing with irregular data,

and argue that also in that case the Kalman filter can be
reduced to a more simple form. Furthermore, we will solve
the problem in a continuous time domain using a simple
Ornstein-Uhlenbeck–based (OUB) noise model. Continu-
ous time models are often considered to be more funda-
mental than their discrete time counterparts, and can
provide an elegant solution for modeling irregularly spaced
observations and data with mixed frequencies [Harvey,
1989]. For many variables, the process generating the
observations can be regarded as a continuous one even
though the observations themselves are only made at
discrete intervals. In the economic sciences, already a good
deal of the theory is based on continuous time models
[Khabie-Zeitoune, 1982; Bergstrom, 1990; Brockwell,
2001]. The basic equations of the OUB noise model were
published earlier by von Asmuth et al. [2002] where they
were used as part of a continuous time transfer function
noise (TFN) model. In that paper, we mainly restricted
ourselves to describing how the transfer part of the model
transforms irregularly spaced input series. The noise model,
however, deals with prediction errors in the output, the
parameter optimization process, and stochastic simulation
applications. Because of its stochastic nature, its properties
are fundamentally different from those of the transfer
model, and certainly as important in light of dealing with
irregular data. Therefore, its background and functioning
are described separately in the current paper. The OUB
model is equivalent to an AR(1) model, which is often used
to model the residuals in hydrological applications, and we

Figure 1. Schematical representation of a combined deterministic-stochastic model of a system under
the influence of system noise, measurement noise, and a deterministic signal.
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will show that it also in this case suffices to effectively
whiten the residuals.
[6] The paper is organized as follows: first, the forecast-

ing mode of an AR(1) model, the equations of the time
update in the Kalman filter, and the OUB model are
discussed, and it is shown that they are mathematically
equivalent. Next, specific attention is paid to the methods
for estimating the model parameters. As an alternative for
the maximum likelihood (ML) function, a sum of weighted
squared innovations (SWSI) criterion is derived and intro-
duced. In an example application, both optimization criteria
are compared and it is shown that the SWSI criterion
converges to the ML function for larger sample sizes.
Finally, the way the prediction error or innovation variance
varies with the time step is investigated, because that is a
crucial part in handling data with irregular time steps
correctly. In Appendix A the main derivations are given
in detail.

2. Theory and Background

2.1. Irregular Data and the AR1 Model

[7] For a general treatment on the functioning of ARMA
models we refer to Box and Jenkins [1970]. Here we will
restrict ourselves to an AR(1) model and aspects that
concern handling irregular data, because of the equivalency
with the OUB model discussed later on. The AR(1) model is
given in mathematical terms by

~nt ¼ f~nt�1 þ at ð1Þ

where ~nt are the deviations of the residual series nt from
its mean E(nt), f is an autoregressive parameter, and at is
a discrete white noise process, with properties E{at} = 0,
so that at = ~at, E{at

2} = sa
2, and E[atat+i] = 0, i 6¼ 0. In

ARMA models in general, the white noise series at equals
the series of one-step-ahead prediction errors, or innova-
tions. For the AR(1) model, an estimate of at is obtained
by subtracting the one step ahead prediction ~̂ntj~nt�1

= f~nt�1

from the observed value of ~nt. Because of this, a missing
observation of ~n at time t implies that at and at+1 cannot
be calculated. Prediction of ~nt using ~nt�2 or more time
steps back does not offer a straightforward solution,
because the lead time influences the prediction error or
variance of at, which should be stationary. Therefore, a
time series must be complete and given at regular intervals
in order to be able to fit an ARMA model on the data.
The forecasting mode of ARMA models, however, does
provide the necessary equations to predict over a variable
lead time and to quantify the accompanying prediction
error [see Box and Jenkins, 1970]. For the AR(1) model,
the prediction and its variance are a function of the time
lag l and given by

~̂ntþl ¼ fl~nt

s2etþl
¼ s2a

1� f2l
� �
1� f2
� � ð2Þ

where ~̂n is the unbiased prediction of ~nt+l given the
available observations up to time step 1 and set+l

2 is the
variance of prediction error et+l. In other words, the main

reason that ARMA models cannot cope with irregular data
is that parameter estimation and estimation of missing
values cannot be done simultaneously. Brubacher and
Wilson [1976] already recognized this and devised a
technique that regenerates the residuals using the forecast-
ing and hindcasting mode of ARMA models, but
according to [Hipel and McLeod, 1994, p. 695] in practice
it was not very convenient.

2.2. Combined AR(1) Model and ‘‘Degenerate’’
Kalman Filter

[8] We refer to Ahsan and O’Connor [1994] for an
extensive treatment on how the Kalman filter can be
‘‘degenerated’’ to a simpler form in the pure prediction
scenario, and how the state-space representation in general
relates to ARMA models in standard notation. To facilitate
comparison, here we will use standard notation. Figure 2
gives a schematic representation of a combined AR(1)
model and the degenerate Kalman filter. When observations
are missing or scarce, the value of at cannot be determined
for every time step. Instead, an irregularly spaced innova-
tion series nt is estimated. While sa

2 is a constant, svt
2

depends on the time lag between two observations. In this
approach, fitting the model to an irregular series yields an
estimate of f, sa

2, nt, and a specific variance svt
2 for every nt.

The parameters are estimated by optimizing a ML function,
made up of the innovations and their variances. The
equations of the Kalman filter are evaluated recursively,
while different actions are taken depending on whether or
not nt is available at a time step. Starting with the initial
conditions ~̂n0 and se0

2 , the following equations are evaluated
in the so-called time update [after Bierkens et al., 1999]:

~nt ¼ f~̂nt�1

s2et ¼ s2a þ f2s2et�1

ð3Þ

where ~nt is the prediction of ~nt in the time update, ~̂nt is the
prediction of ~nt in the measurement update, and set

2 is the
variance of the error in the time update.

Figure 2. Schematical representation of the functioning of
an AR(1) model combined with a ‘‘degenerate’’ Kalman
filter. The star denotes a residual, whereas the cross denotes
a predicted residual. The model predicts missing values of
the residual series at every time step, along with the
prediction error variance.
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[9] When an observation is available, the measurement
update is evaluated:

nt ¼ ~nt � ~nt

s2vt ¼ s2et

~̂nt ¼ ~nt

s2et ¼ 0

ð4Þ

If, however, no observation is available:

~̂nt ¼ ~nt ð5Þ

The recursive application of equations (3), (4), and (5)
mathematically equals the forecasting mode of an AR(1)
model as described by (2) because after a time lag l, the
error in the time update is

s2etþl
¼ s2a 1þ f2 þ . . .þ f2l�2

� �
¼ s2a

1� f2l
� �
1� f2
� � ð6Þ

Hence in the SSR ‘‘the forecasting mode’’ of the AR(1)
model that handles predictions over variable lead times is
part of the basic model equations. However, even in the
degenerate form, the recursive evaluation of the equations in
SSR becomes computationally increasingly inefficient with
an increasing model frequency. Even more so when it is
used in combination with a deterministic model, because
also that has to operate on the same frequency. Next to that,
the autoregressive parameter f becomes badly scaled as it
asymptotically approaches the value of 1 when the time step
Dt (in real time units) approaches 0. Finally, operating on a
high frequency also poses a problem for ARMA type
transfer models, because the number of MA parameters
increases linearly with the frequency [von Asmuth et al.,
2002].

2.3. Ornstein-Uhlenbeck–Based Model

[10] Figure 3 gives a schematic representation of the
functioning of the OUB noise model. In this approach all
time series and functions, including the noise process, are
regarded as being continuous. Equation (1) can be trans-
formed to continuous time by writing it in moving-average
form:

~nt ¼
X1
i¼0

fiat�i ð7Þ

and replacing at by a continuous white noise process dW(t).
The residual series n(t) can then be modeled as a continuous
stochastic process, which is given by

~n tð Þ ¼
Z t

�1

j t � tð ÞdW tð Þ ð8Þ

where j(t) is the noise impulse response function and W(t)
is the Wiener process [L] with properties, E{dW(t)} = 0,

E[{dW(t)}2] = cdt, E[{dW(t1)}dW(t2)] = 0, t1 6¼ t2, where c
is a constant [L2 T�1]. As in the Kalman filter approach, the
model does not yield an estimate of the white noise series
dW(t), but instead gives an estimate of the innovation series
n(t). n(t) is modeled as the irregularly sampled effect of
the noise process on the residual series between time steps
t � Dt and t, which is given by

n tð Þ ¼
Z t

t�Dt

j t � tð ÞdW tð Þ ð9Þ

For the noise impulse response (IR) function the following
exponential is chosen, so that (8) reduces to an AR(1) model
when it used on data with regular time steps:

j tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2as2n
c

r
e�at ð10Þ

with a defining the decay rate of the noise, and sn
2 denoting

the variance of the residuals. With the choice of an
exponential IR function, equation (8) can be written as
[see, e.g., Gardiner, 1994]

~n tð Þ¼e�aDt~n t � Dtð Þ þ
Z t

t�Dt

ffiffiffiffiffiffiffiffiffiffiffi
2as2n
c

r
e�a t�tð ÞdW tð Þ ð11Þ

which is known as an Ornstein-Uhlenbeck process
[Uhlenbeck and Ornstein, 1930]. By combining equation (9)
and (11), the innovation series n(t) can be calculated from the
available residuals using simply

v tð Þ ¼ ~n tð Þ � e�aDt~n t � Dtð Þ ð12Þ

where the last term on the right side equals ~̂ntj~nt�Dt
(in Figure 3

illustrated by the dashed exponential). Because of its
continuous formulation, (12) gives an exact solution and
only needs to be evaluated once for every observation of nt.
This can reduce computation times substantially, compared

Figure 3. Schematical representation of the functioning of
an exponential noise model in continuous time. The star
denotes a residual, whereas the plus denotes a predicted
residual. The model directly predicts the value of the
residual series for the next observation available.
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to a recursive algorithm which discretizes Dt in small time
steps.

2.4. Parameter Estimation Method and Derivation of
the SWSI Criterion

[11] Next to the equations discussed in the previous
paragraph, an important aspect of dealing with irregular
data lies in the optimization methods used. For fixed time
steps, sa

2 is constant and minimizing the sum of squares of at
yields exact ML estimates, under the assumption of a
Gaussian distribution. This is, however, also conditional
on the choice of the starting values a0 and n0, and is
therefore called the conditional sum of squares [Box and
Jenkins, 1970]. With a variable sv(t)

2 , simple least squares
methods are no longer straightforwardly applicable. Instead,
a likelihood function is constructed and maximized using
the Kalman filter estimates of n(t) and sv(t)

2 at every time
step [see, e.g., Schweppe, 1973; Mélard, 1984]. The likeli-
hood function, however, is a rather complicated expression
and flexible algorithms are needed in order to maximize it
[Hipel and McLeod, 1994]. In the following, we will show
that also for irregular data, a simple least squares criterion
can be derived using the innovation variance function (IVF)
that defines the general relationship between sv(t)

2 and Dt.
For ARIMA models, when the set of parameters that is
estimated is b = {b1, b2, .., bp}

T, and assuming at is a time
series of N random variables which are normally indepen-
dently distributed (NID(0, sa

2)), then their joint pdf can be
written as:

P atjb; a0; n0ð Þ ¼ 2ps2a
� ��N

2 exp
XN
i¼1

�a2t
2s2a

 !
ð13Þ

in which a0 and n0 denote the initial conditions of at and nt.
Using (13) the log likelihood function of b is given by

L bjat ; a0; n0ð Þ ¼ �0:5N ln 2pð Þ � 0:5N ln s2a
� �

� 0:5
XN
i¼1

a2t
s2a

 !

ð14Þ

For the likelihood function of continuous time innovations,
we first adapt the discrete notation to allow for discretely
sampled, irregularly spaced observations. For this reason we
use t in real time, and index that with i instead. A data set O
of N observations of a continuous process like n(t) is then
given by

O ¼ n t1ð Þ; n t2ð Þ; . . . : . . . :; n tNð Þ½ 
 ð15Þ

As stated earlier, the innovation variances sv(t)
2 that are

otherwise individually estimated and stored for every time
step, can be jointly described by the IVF as a function of the
time step Dt (and the parameter set b). In the example
application, we will pay more attention to the IVF as it plays
a crucial function in handling irregular data. The likelihood
function can now be written as [Schweppe, 1973]

L bjOf g ¼ � 0:5N ln 2pð Þ � 0:5
XN
i¼1

ln s2n Dti; bð Þ
	 


� 0:5
XN
i¼1

n2 ti; bð Þ
s2n Dti; bð Þ ð16Þ

In order to reduce the amount of parameters that has to be
numerically optimized, we will start with eliminating E(nt).
For sample sizes usually considered, the mean of a time series
can be adequately estimated as [Box and Jenkins, 1970]:

E n tð Þf g ¼

PN
i¼1

n tið Þ

N
ð17Þ

Hence we can estimate ~n(t) directly from data set O. Because
sv
2(Dt, b) is a function of the time step, it cannot be

straightforwardly estimated from the available innovations.
However, using (9) and (10), sv

2(Dt, b) can be written as a
function of the residual variance as [Gardiner, 1994]:

s2v Dt; bð Þ ¼ 1� e�2aDt� �
s2n bð Þ ð18Þ

which in turn can yield an estimator for sn
2 (b) using the

individual innovations (see Appendix A):

s2n bð Þ ¼

PN
i¼1

1
1�e�2aDti

� 

n2 ti; bð Þ

N
ð19Þ

With (18) and (19) in (16), we can now eliminate sv
2 (Dt, b)

form the equations, and the likelihood function can be written
as (see Appendix A)

L bjOf g ¼ � 0:5N ln 2pð Þ

� 0:5N ln

"
XN
j¼1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQN
i¼1

1� e�2aDtið Þ
s

1� e�2aDtj
n2 tj; b
� �

N

#
� 0:5N

ð20Þ

Thus the only parameter that has to be numerically optimized
for the noise model is a, defining the decay rate of the noise.
Because the first and last terms in the likelihood function are
constant, an estimate of b can be obtained by minimizing the
following criterion:

S2 bjOf g ¼
XN
j¼1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYN
i¼1

1� e�2aDti
� �s

1� e�2aDtj
n2 tj; b
� �

ð21Þ

which may be referred to as the sum of weighted squared
innovations (SWSI) criterion. The SWSI criterion is similar to
other weighted least squares criteria, as also here the weights
reflect the variances of the innovations. For optimization and
parameter estimation, we can now use standard nonlinear
least squares regression methods [see, e.g., Snedecor and
Cochran, 1967]. First, the partial derivatives of (21) are
obtained, either numerically or analytically, and used to
construct a Jacobian matrix:

J ¼

@S1
@b1

. . .
@S1
@b1

..

. . .
. ..

.

@SN
@b1


 
 
 @SN
@bp

2
66666664

3
77777775

ð22Þ
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Using J the model is calibrated on a set of observations with
a Levenberg-Marquardt optimization algorithm [Marquardt,
1963] that adjusts b, while minimizing S{bjO}. Then, the
covariance matrix of the parameters can be estimated with

s2b ¼
min S2ð Þ
N � p

J 0Jð Þ�1 ð23Þ

Next, sn
2 is estimated using (19). The model results can be

checked by examining the covariance matrix and the variance
of the IR function. The variance of the IR function j(t) equals

var j tð Þð Þ ¼
ffiffiffiffiffiffiffi
2s2n

p
2
ffiffiffiffi
a

p e�at � t

ffiffiffiffiffiffiffiffiffiffiffi
2as2n

q
e�at

 !2

var að Þ ð24Þ

A confidence interval for j(t) can be plotted as ±2s, when
assuming a normal distribution for a. As in the ARIMA
approach, serious model inadequacy can be detected by
examining the autocorrelation function of the innovation
series n(t) (which gives an indication on whether the white
noise assumption holds) and the cross-correlation function
between n(t) and the transfer model input series p(t) (which
indicates whether there are still patterns left in the innovation
series that could be explained by the input series). The
autocorrelation and cross-correlation functions at lag k are
defined in the same way as in discrete TFN models, but
because of the irregularity of the time steps, a tolerance
around lag k of ±0.5k is implied. A proof for the fact that,
like AR(1) models, the innovations of the continuous model
are not autocorrelated, nor cross correlated with observations
of the process n(t) itself, is given in Appendix A. This makes
the model suitable for simulation purposes, and also is a
prerequisite for the parameter estimation process.

3. Summary of Method

[12] When the parameters of a combined deterministic or
transfer model and noise model are estimated simulta-
neously, the procedure is as follows (see also Figure 4).
First, using the initial values of b, the deterministic model
is evaluated in order to get a time series of residuals. Under the
assumption of exponential noise decay (equation (10)), the
innovation series is obtained from the residual series using
equation (12). Next, the SWSI criterion is calculated by
weighting the squared innovations according to their respec-
tive variances and relative to the geometrical average of the
innovation variances for all time steps (equation (21)). Sub-
sequently, the parameter set b is estimated by minimizing the
criterion using a Levenberg-Marquardt algorithm. Finally the
validity and performance of the model are checked using
the autocorrelation and cross-correlation functions of the
innovations, the correlation matrix of the model parame-
ters and the variance of the IR function.

4. Example Application

4.1. Description of Setup and Data Set

[13] The effectiveness of a combined AR(1) model and
Kalman filter in modeling irregularly observed hydrological
data has already been shown rather elaborately [Bierkens et
al., 1999; Berendrecht et al., 2003; Yi and Lee, 2004].
Therefore we will not focus on that here. The mathematical

equivalency of the OUB model and the AR(1) model are
straightforward, so logically its results will also be equiv-
alent. Instead, we will first focus on comparing the SWSI
criterion with the likelihood function. Logically, if the
minima of both criteria are identical, they will yield iden-
tical parameter estimates and therefore also identical model
predictions. Second, we will examine the innovation vari-
ance function, which is crucial for handling irregular data in
both the OUB and the Kalman filter approach. We will
illustrate that also in this case, the model effectively whitens
the residuals and the assumption of exponential noise decay
is therefore valid. As a test case, we will use the noise model
in conjunction with a continuous transfer function model in
the context for which it was developed, i.e., modeling the
residuals of groundwater level observations. In the simple
case where groundwater level fluctuations are influenced by
precipitation surplus only, the combined transfer function
noise model is given by:

h tð Þ ¼
Z t

�1

p tð Þq t � tð Þdtþ n tð Þ þ d ð25Þ

where

h(t) the observed groundwater level at time t [T], relative
to some reference level [L];

p(t) the precipitation surplus at time t [L];
q(t) impulse response function (dimensionless), for which

a Pearson type III distribution function is chosen,

i.e., q(t) = A
bntn�1 exp �btð Þ

G nð Þ ;

n(t) the residual series [L], modeled with an Ornstein-
Uhlenbeck based model conform (11);

d the local drainage level, relative to some reference
level [L].

Figure 4. Procedure for applying the noise model in
combination with a deterministic model.
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More details on the background of the transfer function
model are given by von Asmuth et al. [2002] and von
Asmuth and Knotters [2004]. The TFN model is calibrated
on a 15-year (1981–1996) groundwater level series ob-
served with a daily frequency. However, this series is not
totally complete but 8.75% of the observations are missing.
The series originates from a piezometer located on the main
meteorological field of the Royal Dutch Meteorological
Institute at the town of De Bilt in the center of the
Netherlands [see also Bierkens et al., 1999]. The precipita-
tion surplus is obtained from daily averaged observations
of precipitation and potential evapotranspiration at the
meteorological field. A time plot of the available ground-
water level observations is given in Figure 5.
[14] The parameter set b of the combined model is

integrally estimated using a numerically derived Jacobian
matrix and the methods described in the previous paragraph.
As d is eliminated from the equations, the parameters that
have to be estimated are (A, b, n) from the transfer model,
along with a from the noise model. For this purpose, all
available observations in the period were used. The results of
the TFN model are given in Figure 5, as time plots of the
observations and predictions, and of the residuals and
innovations. The parameter estimates and calibration results
(percentage of variance accounted for (Radj

2 ), root mean
squared error (RMSE), root mean squared innovation
(RMSI)) are listed in Table 1. The autocorrelation function
of the innovations, for which a time lag increment of one
month is chosen in order to reveal seasonal patterns in the
autocorrelation, indicates that the white noise assumption
holds (Figure 6). Because of the large number of available
observations, the autocorrelation function is rather smooth
and the accompanying confidence interval narrow.

4.2. Comparison of the Likelihood Function and the
SWSI Criterion

[15] Plots of both functions were made by varying two of
the parameters around their estimated value, while keeping

the others constant. The parameters were varied ±0.5 half
their estimated value. In order to make both functions
comparable, they were normalized by respectively setting
their maximum and minimum to zero, and dividing the
result by the range. Figure 7 gives a contour plot of the
normalized log likelihood function and SWSI criterion for
the first two parameters of the transfer model (A and b).
Figure 7 shows that the contours of both objective functions
are almost identical, which confirms that the SWSI criterion
yields almost exact ML estimates. This can be expected, as
the only difference between the ML function and SWSI
criterion is that in first case sa

2 (for the minimal time step) is
part of the parameter set to be estimated, while in the SWSI
criterion sn

2 is assumed known and implicitly approximated
with Equation (19). This approximation converges to the
true value of sn

2 for large N. Consequently, a comparison of
sa
2 (b) estimated as a parameter with the likelihood function

or estimated afterward using the SWSI approach will
exemplify the likeness of both criteria for all parameters.
Using the SWSI criterion, sa

2 (b) is estimated from the data
in the following way:

s2a bð Þ ¼

Pn
i¼1

1�e�2a

1�e�2aDti

� 

n2 ti; bð Þ

n
ð26Þ

Figure 5. Time plot of the available groundwater level observations (dots) from piezometer 32cl0034
relative to the national reference level (h+NAP), the predictions of the transfer model (solid line), the
model residuals (n), and the innovation series (n).

Table 1. Calibration Results, Estimated Parameters, and

Characteristics for Piezometer 32cl0034

Value

Radj
2 66.5%

RMSE 11.0 cm
RMSI 3.6 cm
A (±2s) 61.6 (±4.2) day
b (±2s) 0.28 (±0.02) day�1

n (±2s) 1.88 (±0.06)
a (±2s) 18.2 (±3.2) day�1
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which is equivalent to equation (6) for fixed Dt whenPn
i¼1

n2 ti; bð Þ

n
is replaced by sv

2 (b), and f = e�a. In Figure 8

the likelihood function of the innovations is plotted and
compared to sa

2(b) obtained with equation (26) (i.e.,
0.0013 m2). From Figure 8 the estimate of sa

2 (b) proves
to coincide well with the maximum of the likelihood
function for this parameter.

4.3. A Check on the Innovation Variance Function

[16] Because the IVF(18) is a key factor in both the
derivation of the SWSI criterion and in general for stochas-
tic modeling at mixed frequencies, in the following we will
examine it more closely using the data of paragraph 4.2. For
this purpose, the groundwater level series was resampled at
frequencies Dt = [1, 2, 3. . . . .75] days. The transfer and

noise model were evaluated using the estimate of b obtained
with the daily series, which logically should be optimal.
Thus a residual and innovation series were obtained for
every sample frequency. As stated earlier, the daily series
was not complete and therefore also the resampled series
were not. Because of this, only those innovations and
residuals were selected from the resampled series for which
Dti equaled the sampling frequency exactly. Both the
innovation and residual variance of the resulting series were
estimated and plotted in Figure 9. In Figure 9, equation (18),
being the theoretical IVF, is plotted together with the 95%
confidence interval of the estimates. The latter is given by
[Snedecor and Cochran, 1967]

s2v Dti; bð Þ* N � 1ð Þ
c2
0:975

<¼ s2v Dti; bð Þ <¼ s2v Dti; bð Þ* N � 1ð Þ
c2
0:025

ð27Þ

Figure 7. Contour plot of the normalized log likelihood function of the innovations (dashed lines) and
the SSWI criterion (solid lines) as a function of the parameters A and b (all other things kept constant).
The star denotes the estimated values. It can be seen that both functions are almost identical.

Figure 6. Autocorrelation function of the innovations of the OUB model. The dotted lines denote the
95% confidence interval. The autocorrelation function indicates that the white noise assumption holds.
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Figure 9 thus allows for a comparison between the
estimated and theoretical IVF. A check on whether the
estimated variances differ significantly from the theoretical
IVF could well be used as a further diagnostic check on the
validity of the model, next to checking the autocorrelation
and cross-correlation functions. From Figure 9 it is
concluded that the estimates of the innovation variance sv

2

(Dt, b) do not significantly differ from the theoretical IVF,
although the agreement is less for the intermediate time
steps. This points to the fact that the parameter a, defining
the decay rate of the noise model, could be sensitive to the
sampling frequency. Therefore, special care has to be taken
when the assumption of exponential decay for the noise
model does not, or not well, hold and/or when the model is
used for simulations at a different frequency than that of the
data with which it was calibrated. A standard diagnostic
check like the autocorrelation function of the innovations
will not provide enough information on this point.

5. Discussion and Conclusions

[17] A comparison of the AR(1) model, conventional or
embedded in a Kalman filter, and the Ornstein-Uhlenbeck–
based noise model shows that their equations for respec-
tively the forecasting mode in the AR(1) model, those
handling the predictions and their variance in the time
update of the degenerate Kalman filter, and the continuous
time innovations are mathematically equivalent. The con-
tinuous equations, however, are more general, give an exact
solution and are computationally more efficient as they are
not evaluated recursively. Because of its simplicity, the
OUB model can be easily implemented for modeling

irregularly spaced errors of various deterministic models.
The continuous time approach, however, makes it especially
suited for combination with analytic models or continuous
time transfer models. A restriction of the OUB model in its
present form, is that it is limited to processes that show
exponential decay. Work is needed to further generalize and
test the approach, for example using continuous time

Figure 9. Plot of the estimated and theoretical IVF as a
function of the time step and of the estimated residual
variance. In general, the estimated innovation variances do
not differ significantly from the theoretical IVF, although
the agreement is better for smaller time steps.

Figure 8. Plot of the log likelihood function of the innovations as a function of the parameter sa
2. The

dashed line denotes the value of sa
2(b) obtained with the SSWI criterion. The minimum of the log

likelihood function proves to coincide well with the value obtained from the SSWI criterion.
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ARMA models in general [e.g., Brockwell, 2001], non-
Gaussian OUB models [Barndorff-Nielsen and Shephard,
2001] or by superposition of OU type processes [Barndorff-
Nielsen, 1999].
[18] It was shown that from the likelihood function

normally used for irregularly spaced innovations, a weighted
least squares (SWSI) criterion can be derived. The main
difference between both functions is that in the first case,
the innovation variances are calculated by relating them to
the innovation variance of the minimal time step, which
itself is estimated as a parameter, and stored for every time
step. In the latter case, the innovation variances are implic-
itly related to the variance of the residuals, and in turn
approximated implicitly with equation (19). This approxi-
mation converges to the true value for large sample sizes, so
parameter estimates that are based on the SWSI criterion
should approximate the ML estimates well for sample sizes
usually considered. With the aid of the SWSI criterion, the
parameters and their covariance matrix can be estimated
using standard nonlinear least squares regression methods.
The use of such methods is more efficient than minimizing
the log likelihood function with some global optimization
algorithm, and a Monte Carlo approach to estimating the
parameter variances. The SWSI criterion itself could also be
used for optimizing AR(1) models, in the conventional
sense or embedded in a Kalman filter.
[19] By comparing the estimated innovation variances for

different time steps with the theoretical innovation variance
function (IVF), the validity of exponential decay for the
noise model can be checked. The impulse response function
is reflected in the behavior of the IVF. Thus a plot of both
functions and the accompanying confidence interval is
useful as a diagnostic check. Such a check provides addi-
tional information on the validity of the model, especially in
light of its application at mixed frequencies.

Appendix A: Derivations

A1. Equation for the Autocorrelation and Cross-
Correlation Functions of the Residuals and Innovations

[20] The autocorrelation of the innovations equals (with
t00 < t0 < t)

E n tð Þn t0ð Þf g ¼ E

Z t

t0

ffiffiffiffiffiffiffiffiffiffiffi
2as2n
c

r
e�a t�tð ÞdW tð Þ

8<
:



Zt0
t00

ffiffiffiffiffiffiffiffiffiffiffi
2as2n
c

r
e�a t�tð ÞdW tð Þ

)
¼ 0 ðA1Þ

due to the properties of the Wiener process (E{dW(t)
dW(t0)} = 0 if t 6¼ t0). Using (11), the autocorrelation of the
residuals can be written as (for t0 < t)

E ~n tð Þ~n t0ð Þf g ¼ E

(
e�a t�t0ð Þ~n t0ð Þ~n t0ð Þ þ ~n t0ð Þ



Z t

t�t0

ffiffiffiffiffiffiffiffiffiffiffi
2as2n
c

s
e�a t�tð ÞdW tð Þ

)
ðA2Þ

which gives

E ~n tð Þ~n t0ð Þf g ¼ e�a t�t0ð Þs2n ðA3Þ

Using (12), the cross correlation between residuals and
innovations equals, for any t0 < t,

E n tð Þ~n t0ð Þf g ¼ E ~n tð Þ~n t0ð Þ � e�aDt~n t � Dtð Þ~n t0ð Þ
	 


ðA4Þ

which gives, using (A3),

E n tð Þ~n t0ð Þf g ¼ e�a t�t0ð Þs2n � e�aDte�a t�Dt�t0ð Þs2n ¼ 0 ðA5Þ

A2. Equation Relating the Residual Variance to
Individual Innovations

[21] Starting with (18), we can write the innovation
variance as an expected value and get

s2n bð Þ ¼ 1

1� e�2aDti

 !
E n2 ti; bð Þ
	 


ðA6Þ

using every n(ti) individually, N single sample estimates of
ŝn
2 (ti, b) can be obtained with

ŝ2n;ti bð Þ ¼ 1

1� e�2aDti

 !
n2 ti; bð Þ ðA7Þ

next, we can get a more accurate estimate if we average the
N estimates of ŝn

2(ti, b):

ŝ2n bð Þ ¼

PN
i¼1

1

1� e�2aDti

 !
n2 ti; bð Þ

N
ðA8Þ

A3. Derivation of the Sum of Squared Weighted
Innovations Criterion

[22] Given the following likelihood function,

J bjOf g ¼ � 0:5N ln 2pð Þ � 0:5
XN
i¼1

ln s2n Dti; bð Þ
	 


� 0:5
XN
i¼1

n2 ti; bð Þ
s2n Dti; bð Þ ðA9Þ

we can replace sn
2 (Dti, b) by sn

2 (b) using (18) and get

J bjOf g ¼ � 0:5N ln 2pð Þ � 0:5
XN
i¼1

ln 1� e�2aDti
� �

s2n
	 


� 0:5
XN
i¼1

n2 ti; bð Þ
1� e�2aDtið Þs2n

ðA10Þ

Next, we get, by placing N/sn
2 (b) in the last term outside the

summation sign,

J bjOf g ¼ � 0:5N ln 2pð Þ � 0:5
XN
i¼1

ln 1� e�2aDti
� �

s2n
	 


� 0:5
N

s2n

XN
i¼1

1

1� e�2aDti

 !
n2 ti; bð Þ

N
ðA11Þ

and replace in both terms sn
2 (b) by (A8) to get

J bjOf g ¼ � 0:5N ln 2pð Þ � 0:5
XN
i¼1

ln


 1� e�2aDti
� �

XN
j¼1

1

1� e�2aDtj
n2 tj; b
� �

N

8>>>><
>>>>:

9>>>>=
>>>>;

� 0:5N

ðA12Þ
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In the last term, several items have thus been eliminated.
Because the sum of several logarithms is the logarithm of
their product, (A12) equals

J bjOf g ¼ � 0:5N ln 2pð Þ � 0:5 ln
YN
i¼1

(
1� e�2aDti
� �"




XN
j¼1

1

1� e�2aDtj
n2 tj; b
� �

N

)#
� 0:5N

ðA13Þ

As it is constant for any set of the model parameters b|n(ti),
the summation term can be placed outside the product sign,
giving

J bjOf g ¼ � 0:5N ln 2pð Þ � 0:5 ln




"(XN
j¼1

1

1� e�2aDtj
n2 tj; b
� �

N

)N



YN
i¼1

1� e�2aDti
� �	 
#

� 0:5N ðA14Þ

which equals, by taking an Nth power root to the power of
N, and placing N outside the logarithm

J bjOf g ¼ � 0:5N ln 2pð Þ � 0:5N ln

"XN
j¼1

1

1� e�2aDtj
n2 tj; b
� �

N


 N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYN
i¼1

1� e�2aDti
� �vuut

#
� 0:5N ðA15Þ

The Nth power root of the product term is the geometrical
mean which is also constant given n(ti) and can be placed
inside the summation term:

J bjOf g ¼ � 0:5N ln 2pð Þ � 0:5N ln




"
XN
j¼1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYN
i¼1

1� e�2aDti
� �s

1� e�2aDtj
n2 tj; b
� �

N

#
� 0:5N ðA16Þ

As the first and last terms of the likelihood function are now
constant, J{bjn(ti)} can be maximized by minimizing a sum
of weighted squared innovations:

S2 bjOf g ¼
XN
j¼1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYN
i¼1

1� e�2aDti
� �s

1� e�2aDtj
n2 tj; b
� �

ðA17Þ
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