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Abstract 
 

A low-lying country as The Netherland is prone to coastal flooding, and its risk may be enhanced by 

global-warming induced climate change. Sea level rise has been historically considered as the key 

factor in coastal retreat, but waves also play an important erosive role along the coast, which can 

also be affected by the changing climate. During the last years, important advances have been 

achieved in climate modeling, with a very detailed characterization of the different components of 

the climate system, for the present and for different future scenarios. However, characterization of 

future ocean waves is still a matter of discussion and ongoing research. 

In this thesis, a statistical downscaling methodology based on weather types has been chosen to 

model the present wave climate and explore potential changes in future waves. These changes are 

quantified in terms of the impact of these variations in the longshore sediment transport. The 

methodology is applied to Noordwijk, selected as a representative location of the central Dutch 

coast. 

The statistical downscaling methodology is based on a classification procedure of the predictor into 

similar atmospheric patterns over the wave generation areas, namely the weather types. Then, the 

wave data is grouped according to the occurrence of the weather types. The predictor is built from 

the sea level pressure fields (SLP) and the squared SLP gradients, while the predictant wave climate is 

characterized by significant wave height, wave peak period and mean wave direction of wind sea and 

swell components, resulting in unimodal or bimodal sea states. 

The chronology of the weather types is modeled using an autoregressive logistic model, which 

incorporates the seasonality, the interannual variability and the persistence observed from the 

historical data. For each weather type, wave parameters are modeled using the categorical 

distribution for the sea-state type, non-parametric kernel density functions for the central-mass 

regime and two generalized Pareto distributions for the lower and upper tails of wave height and 

wave period data. The statistical dependence between wave parameters for each sea state is 

included using a vine-copula approach, where the bivariate dependence of 𝐻𝑠 and 𝑇𝑝 is modeled 

using the AC skew-t copula and the remaining relations are considered to be Gaussian. 

The effect of climate change is studied using SLP predictors from the global circulation model 

ACCESS1.0, under the RCP8.5 scenario and period 2070-2099. The statistical model is applied to 

identify changes in the occurrence probability of the weather types in the future. The importance of 

these changes are quantified in terms of the wave-induced longshore sediment transport using the 

process-based model Unibest-TC. The longshore sediment transport distribution for each weather 

type is computed and afterwards the changes in gross and net transports are estimated using the 

present and future probabilities of the weather types. 

In terms of the weather types, the results of this work suggest changes in the occurrence probability 

of the weather types in the future, with variations of ±60% with respect to present climate, and no 

relevant changes in the sequence of weather types, neither in terms of the transition probability 

matrix nor in terms of the persistence of each weather type. In terms of longshore sediment 

transport, significant changes are detected in the transport associated with some of the weather 

types. For the remaining weather types, the changes are in the order of the model uncertainty. 

Taking into account the contributions from all weather types, a net increase of the southward 

directed net longshore sediment transport with respect to the historical period is detected. This 

increase is driven by a decrease in northwards transport and a lower decrease in southwards 
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transport. This result is in line with a poleward shift of the North Atlantic storm track reported in 

other studies. 

Most importantly, weather-type based climate classification has in this thesis been succesfully 

proven to be a reliable tool to analyze the wave climate at the location of interest. Furthermore, the 

statistical downscaling also provides a climate emulator that captures the climate dynamics at 

different time scales, which can be used for stochastic simulations of the atmospheric and wave 

climate, either for the recent past or future projections. 
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1. Introduction 
 

1.1. Overview 

Any offshore or coastal project requires a reliable long-term wave climate characterization. During 

the last decades, much effort has been spent in characterizing the wave climate at global scale and 

solving how these results can be projected to a local scale. Dynamic models are available and they 

can be used to bring down regional outcomes to local scale, but dynamic modeling is 

computationally very expensive. Therefore, statistical techniques have been developed to downscale 

the global model outcomes at regional scale to any local area of interest. 

The increasing development of global models has been also applied to study the effects of the more 

evident climate change that is currently going on. Important advances in climate modeling has been 

achieved during the last years, with a very detailed characterization of the different components of 

the climate system, for the present and for different future scenarios. Although the projections of 

future climate have been generated by several models with high level of confidence, characterization 

of future ocean waves is still a matter of discussion and ongoing research. 

Evaluation of the future wave climate is a fundamental task for countries such as The Netherlands, 

which is under the continuous threat of coastal erosion that may lead to an increased flooding risk. 

Under this scenario, the development of reliable tools to assess the impact of the future waves under 

climate change is required. Sea level rise has been considered as the most important factor regarding 

coastal safety, but waves could also play a rol as they are an important driver of sediment transport 

processes. Recent research has been focused in assessing potential changes in future wave climate 

which can enhance dune erosion, but less attention has been given to the wave-induced longshore 

sediment transport along the Dutch coast. 

This issue has motivated this MSc thesis work as a joint research project between Deltares 

(Netherlands), Oregon State University (USA) and Universidad de Cantabria (Spain). Statistical 

techniques has been applied to downscale the outcomes from global circulation models at regional 

scale (sea level pressure fields) to the local area of interest, in order to obtain a reliable 

characterization of the present wave climate. The statistical downscaling is based on a climate 

classification, where similar atmospheric patterns over the wave generation areas are grouped in 

clusters named Weather Types, being one synoptic condition representative of the whole cluster. 

Then, the wave data is grouped according to the occurrence of the weather types, connecting the 

wave climate with the corresponding generating atmospheric conditions. 

Afterwards, the statistical model has been applied using the climate projections for the most severe 

scenario (RCP8.5) and the last time slice of the 21st century (2070-2099) to explore changes in the 

atmospheric forcings. Finally, a process-based morphodynamic model has been run in order to 

obtain the longshore sediment transport distribution in the recent past and in the future scenario, 

aiming to quantify the changes induced by climate change. The methodology has been applied to 

Noordwijk, selected as a representative location of the central Dutch coast. 

This research has been carried out as a graduation project to obtain a Master of Science degree in 

Civil Engineering, specialization Coastal Engineering, from the Faculty of Civil Engineering and 

Geosciences of Delft University of Technology. The daily work has been undertaken at Deltares 

facilities, with a research visit to Universidad de Cantabria. 
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Under the colaboration framework, sea level pressure fields datasets from reanalysis and from 

Global Circulation Models have been provided by Universidad de Cantabria. 

1.2. Objective and research questions 

The main objective of this thesis work is to assess the impact of climate change on the long-term 

longshore sediment transport along the central Dutch coast (in front of Noordwijk). 

The research questions that motivate this work can be listed as: 

1. Will the probability of occurrence of atmospheric synoptic patterns (weather types) change 

in the future? How will it change? 

2. How will the longshore sediment transport be affected in the future? 

1.3. Methodology 

To fulfill the main objective of this thesis and give answers to the research questions, 3 main units 

were proposed to be completed as shown in the following flowchart. 

 

Figure 1-1: Units to be completed in this research. 

 

In Unit 1, statistical downscaling has been be applied to characterize the present wave climate at 

Noordwijk, linking atmospheric variables (especifically sea level pressure fields) with the wave 

climate (described in terms of bulk parameters of sea states). Afterwards, in the second unit, sea 

level pressure fields from a global circulation model has been used as input of the statistical model to 

generate future wave climate. Finally, the third unit aims to assess the impact of climate change on 

the longshore sediment transport using a process-based morphodynamic model. 

1.4. Report outline 

The report is organized as follows: chapter 2 presents a literature review, addressing the most 

relevant topics related to this thesis, and the research methodology is given in chapter 3. The 

modeling of the present wave climate is covered in chapter 4, describing in detail the statistical 

model developed in this research. Chapter 5 presents the validation of the Global Circulation Model 

for the present and how changes are projected by the statistical model for the last thirty years of the 

21st century. The morphological simulation is presented in chapter 6, illustrating what the impact of 

climate change will be in the longshore sediment transport at Noordwijk. 

Finally, chapter 7 discusses the methodology followed in this study and the results from the 

statistical approach. The main conclusions of this work and suggestions for further research are 

drawn in chapter 8. 

 

 

Unit 1:

Present wave 
climate

Unit 2:

Future wave 
climate

Unit 3:

Morphological
simulation
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2. Theoretical Background 
 

2.1. Wave climate modeling 

Characterization of wave climate at a local scale for offshore and coastal design requires reliable data 

that is usually not available. In engineering projects or morphological studies, measurement 

campaigns of wave parameters, when part of the project/study, often spans for months and to be 

confident in statistical analyses, especially in the description of extreme wave climate, much larger 

time series are needed (time scale of decades). Therefore, wave data must be reconstructed from 

different sources of information. Different sources of information can be identified: 

• Buoys: accurate, frequent (typically at 3 h intervals), but limited in number, very sparse and 

mostly close to coast (Cavaleri & Sclavo, 2006). 

• Satellite altimetry: good accuracy, except for very low and high values, continuous, but very 

intermittent at a given location, difficulties in working close to the coast (Cavaleri & Sclavo, 

2006). Data is only available from 1992. 

• Voluntary observing ships (VOS): longest records of independent sea and swell, but 

insufficient sampling and correction algorithms are required (Gulev & Grigorieva, 2006). 

• Numerical models: continuous in space and time, full information (wave spectrum) but often 

underestimated in enclosed basins (Cavaleri & Sclavo, 2006). 

In numerical modeling, a typical approach consists in using the outputs from large-scale models to 

nest local models, with higher spatial resolution and more detailed formulation of the physical 

processes involved. This is known as dynamical downscaling and offer a solid alternative to 

observations, but they are computationally expensive and require detailed inputs as high-quality 

bathymetries and atmospheric forcings (Wang et al., 2010; Casas-Prat & Sierra, 2013). 

During the last decades, effort has been put in developing numerical models capable of accurately 

describing the observed wave climate over a historical period. This approach is referred as wave 

hindcast when no observations are assimilated in the model, while the term wave reanalysis is used 

when observational information is considered in the model (Mínguez et al., 2011). There are several 

models with global coverage which use wind information from meteorological reanalysis to calculate 

the wind-driven wave climate, which is calibrated using available data from buoys and satellite 

altimetry (Caires et al., 2004; Reguero et al., 2012). Although these wind-wave models give accurate 

results in open ocean, they are not suitable near the coast because non-linear and wave-bottom 

processes are not appropriately represented. Moreover, the relative coarse grid resolution of these 

global models (in the order of degrees) does not allow to use them directly in local models and then 

downscaling is mandatory. 

In contrast to dynamical downscaling, statistical downscaling appears to be a computationally 

cheaper approach and it has been widely applied by climatologists. In statistical downscaling for 

coastal applications, regional-scale meteorological variables and local met-ocean variables are 

related using statistical relationships. For instance, Camus et al. (2014b) have successfully applied 

statistical downscaling to bring down the local wave climate from sea level pressure fields at regional 

scale. 

A combination of both approaches is also possible, the so-called hybrid approach, where 

computational effort is reduced combining statistical methods, data mining techniques and dynamic 

modeling, with accurate results [see for instance Camus et al. (2011b) and Camus et al. (2013)]. 
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Althought validation of local wave data against measurements might be required, it is sometimes not 

possible and also not relevant for the accuracy of the downscaling. 

2.1.1. Statistical downscaling 

As previously mentioned, statistical downscaling (SD) can be defined as quantitative relationships 

between regional-scale atmospheric variables (predictors) and local-scale met-ocean variables 

(predictands) (Wilby et al., 2004). This approach is based on the following assumptions (Wilby et al., 

2004; Camus et al., 2014b): 

• Predictors relevant to the local-scale predictand should be adequately reproduced by the 

regional-scale model. 

• The relationship between the predictors and the predictands should be invariant, i.e. 

remains valid for periods outside the fitting period. 

• Variability of the predictands should be explained by the statistical relationship. 

• Changes in the mean climate should lie within the range of its natural variability. 

Wave reanalysis databases and atmospheric outputs from Global Circulation Models (GCMs) fulfill 

these conditions and have been proven to be valid predictands/predictors respectively by several 

authors [see for instance Caires et al. (2006); Casas-Prat et al. (2014); Antolínez et al. (2016a)]. 

The main advantage of the SD is its inexpensive computational cost, allowing to develop multiple 

realizations from different forcing conditions, faster predictand characterization and a larger number 

of long-term simulations. On the other hand, a SD model based on empirical probabilistic 

distributions of wave parameters is unable to generate local conditions that have not been registered 

in the past. To overcome this limitation, theoretical distributions can be fitted to the empirical data 

for extrapolation of extremes (Rueda et al., 2016a). 

Giorgi et al. (2001) classifies the different SD approaches into i) transfer functions, ii) weather-types 

classification and iii) stochastic weather generators. Each method has its own strengths and 

weaknesses and the performance of each SD technique depends on the selection of the predictors 

and the local conditions of each case. Weather-type classification is preferred in this work because 

the link between the predictor and the predictand can be explained in physical terms, relating the 

local wave climate to synoptic circulation patterns (Camus et al., 2014b). 

The general framework to apply the SD method for wave climatology involves the following steps: 

1. Definition of the predictor and the predictand. 

2. Collection of historical data for the predictor and the predictand. 

3. Classification of the predictor conditions in a reduced number of weather types. 

4. Classification of the predictand conditions in sea state types. 

5. Formulating the statistical relationship between predictor and predictand. 

6. Validation of the statistical model. 

 

2.1.2. Predictor 

2.1.2.1. Definition 

Intuitively, wind speed and wind directions are the first candidates to be used as predictors for wave 

climate modeling because wind fields are the primary forcer of waves. Nevertheless, sea wind fields 

are not as well represented as sea level pressure fields in Global Circulation Models (Caires et al., 

2006). Moreover, wind fields can be obtained from sea level pressure fields: the geostrophic wind 
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direction is well represented by the isobars and the geostrophic wind speed is proportional to the 

pressure gradient (Camus et al., 2014a). Following previous works (Wang et al., 2012; Camus et al., 

2014b; Casas-Prat et al., 2014), the Sea Level Pressure (SLP) fields and the square of the SLP gradients 

(SSLPG) are considered to define the wave predictor. 

After the selection of the atmospheric variables for the predictor, the spatial and temporal extent 

shall be defined to incorporate the sea and swell waves arriving to the area of interest. For this task, 

the ESTELA method (Pérez et al., 2014a) is applied to estimate the predictor area of influence and the 

possible temporal coverage. This method evaluates the source and travel time of wave energy 

reaching a target location, where the valid source points are linked to the area of interest along a 

great circle path over the globe without any interruption, and the travel time is computed as the 

effective energy flux at each point travelling at the group velocity and removing the energy loss by 

viscous dissipation. 

Energy flux, group velocity and energy losses are computed from spectral reconstruction at each 

source point. The ESTELA model uses a global wave reanalysis carried out by the Institut Francais de 

Recherche pour l’Exploitation de la Mer (IFREMER). This wave database (Rascle & Ardhuin, 2013) was 

obtained by the numerical wave model WAVEWATCH III in its version 4.04 forced by winds from the 

Climate Forecast System Reanalysis (Saha et al., 2010). The wave spectrum is discretized using a 

spectral grid with 24 directions and 31 frequencies exponentially spaced from 0.037Hz to 0.7Hz, on a 

spatial and temporal resolution of 0.5° and 3 hours, respectively. Further details about ESTELA are 

available in Pérez et al. (2014a). 

Figure 2-1 shows an example of the results from the ESTELA model for a location in the northwest 

Spanish coast in the North Atlantic Ocean. The upper panel depicts the effective energy flux reaching 

the point of interest and the travel times are indicated by the isochrones corresponding to the gray 

and black lines; while the lower panel presents the area of gain and loss of energy flux for the target 

location. In this particular case, two important areas can be identified: local sea waves arriving to 

target location (travel time of 1 day, black box in the figure) and swell waves travelling during 2-6 

days from the whole North Atlantic Ocean (red box in the figure). In the given example, the predictor 

was built considering 2 spatial scales: the daily mean fields of SLP and squared SLP gradients in the 

local area (black box) and the daily mean fields of the same variables of the previous 4 days in the 

regional area (red box), being the last day of the regional area coincident with the daily mean fields 

of the local area. 

The predictor must represent the time scale of the predictand, but there is no unique way to define 

it. It can be calculated as a daily predictor, where the variables are averaged over each day and the n 

previous days over a certain spatial extent are included (Camus et al., 2014a; Antolínez et al., 2016a); 

a monthly predictor could be constructed in the same way but using monthly averaged SLP and 

SSLPG (Camus et al., 2014a); or the predictor can be formulated considering the daily isochrones 

from the ESTELA model: the spatial domain located between the daily isochrone 𝑖 − 1 and 𝑖 is put 

together with the spatial domain between the isochrone 𝑖 and 𝑖 + 1 until the area defined by the last 

isochrone is considered in the predictor, which represent the longest possible wave propagation time 

from generation until reaching the target location (Hegermiller et al., 2017). 

 



6 2.1. Wave climate modeling 

 

 

 

Figure 2-1: Effective energy flux at source points for target location at the Spanish northwest coast (upper 

panel). Travel time (in days) is represented in black and gray lines. The red and black boxes are the spatial 

domain of the regional predictor and the local predictor, respectively. Gain/loss of energy flux for the target 

point at the Spanish northwest location (lower panel). From Camus et al. (2014a). 

 

2.1.2.2. Sources of information 

Nowadays, there are several global atmospheric reanalysis databases where Sea Level Pressure fields 

can be obtained. One of the most used databases among the scientific community is the 

NCEP/NCAR Reanalysis I (NNR) (Kalnay et al., 1996) from the National Center for Environmental 

Prediction (NCEP) and the National Center for Atmospheric Research (NCAR). SLP data in this global 

reanalysis consists of 6-hourly fields on a horizontal latitude/longitude grid of 2.5° x 2.5° 

(approximately 277km). 

NNR was developed during the 1990s, and in the meantime, the European Centre for Medium-Range 

Weather Forecasts (ECMWF) conducted two reanalysis: ERA-40 (Uppala et al., 2005) and ERA-Interim 

(Dee et al., 2011). The former reanalysis spans from 1957 to 2002 on a horizontal grid of 1.5° x 1.5°, 

while the second one has a temporal coverage from 1979 to present with a spatial resolution of 

0.75° x 0.75°. 

In 2010, NCEP made available the outcomes from the global Climate Forecast System Reanalysis 

(CFSR) (Saha et al., 2010), which was extended in 2014 by NCEP Climate Forecast System Version 2 

(CFSv2, Saha et al. (2014)). This reanalysis spans from 1979 to 2014 with hourly temporal resolution 

and spatial resolution of 0.5° x 0.5°, which is the highest resolution currently available. 
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2.1.3. Weather Types 

Following Camus et al. (2014b), the predictor time series is partitioned into a certain number of 

clusters, named Weather Types (WTs), where each WT represents a synoptic atmospheric circulation 

pattern. This classification is generated using three different techniques. 

First, a Principal Component Analysis (PCA) is applied in order to reduce data dimensionality and 

eliminate data redundancy with the minimum loss of variance. PCA projects the original data (the 

predictor) on a new space, searching for the maximum variance of the sample data. To achieve this, 

the predictor is written as a matrix of 𝑛𝑡 × 𝑁, where 𝑛𝑡 is the temporal length of the records and 𝑁 is 

twice the amount of source points in the spatial domain (the factor 2 relates with the definition of 

the SLP and SSLPG at each point of the spatial domain). The eigenvectors of this matrix correspond to 

the spatial structure of the predictor modes, named Empirical Orthogonal Functions (EOFs) and the 

eigenvalues represent the explained variance of the original data. Under this transformation, the 

original data can be expressed as a linear combination of the EOFs, where the linear coefficients are 

the so-called Principal Components (PCs) and only vary in time (Camus et al., 2014a): 

𝑋(𝑥, 𝑡𝑖) = 𝐸𝑂𝐹1 ⋅ 𝑃𝐶1(𝑡𝑖) + 𝐸𝑂𝐹2 ⋅ 𝑃𝐶2(𝑡𝑖) + ⋯+ 𝐸𝑂𝐹𝑁 ⋅ 𝑃𝐶𝑁(𝑡𝑖) (2-1) 

 

The EOFs are sorted by a descending order of explained variance, being the first EOF related to the 

largest value of explained variance. Thus, a reduction of dimensionality can be achieved considering 

just the amount of modes that explain a certain percentage of the variance [see for instance Camus 

et al. (2014a); Espejo et al. (2014)]. 

Secondly, the K-means algorithm (KMA) (Camus et al., 2011c) is applied to the selected PCs. This 

clustering technique divides the data in 𝑛𝑤𝑡 groups, where each cluster is defined by a prototype (or 

centroid) which represents all the closest points in the data. Prototypes are selected as the closest 

data value to the average of all the data in the corresponding cluster. This set of centroids 

correspond to the Weather Types (WTs). The selection of the number of WTs could be a matter of 

optimization or to be defined based on certain criteria, such as easing the implementation, fitting 

and interpretation of the model results (Antolínez et al., 2016a). 

Finally, the prototypes are transformed to the original space and organized in a bidimensional lattice, 

which allows for an intuitive visualization of the classification (see Figure 2-2 as an example). In the 

lattice, the arrangement of the WTs is defined by an algorithm that minimizes the sum of the 

distance between all the neighbors (Bermejo & Ancell, 2009). The main advantage of applying this 

algorithm is that WTs with similar characteristics stay together in the lattice, resembling a 

self-organizing map (Camus et al., 2011a), which eases the visualization of the classification and 

further analysis. 

As an example, the lattice obtained by Camus et al. (2014b) is depicted in Figure 2-2, where 100 WTs 

were considered in the classification of SLP fields in the North Atlantic Ocean. It can be seen that WTs 

with similar patterns are located together. 

A multivariate regression model between one variable of the predictand (daily significant wave 

height, for instance) and the corresponding daily Principal Components (predictor) may be applied to 

test the skill of the selected predictor (Camus et al., 2014a). 
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Figure 2-2: 100 WTs represented by the SLP fields (hPa) obtained from the K-means algorithm (from Camus et 

al. (2014b)). 

 

2.1.4. Chronology of weather types 

The temporal sequence of the WTs cannot be modeled with traditional linear regression models 

because WTs are a categorical variable, i.e. they just can take discrete values from 1 to 𝑛𝑤𝑡, which 

are not normally distributed. Therefore, alternative regression models are required and they should 

be capable to reproduce the historical probability of occurrence of each WT, the transition 

probabilities between WTs, the persistence of each WT and the seasonal to interannual variability 

(Guanche et al., 2014). 

Following Guanche et al. (2014), Autoregressive Logistic Regression (ALR) models are able to deal 

with weather type analysis including seasonality, interannual variability, long-term trends and 

Markov chains. The ALR model is stated as follows: let 𝑌𝑡; 𝑡 = 1, … , 𝑛𝑡 be the observations of WTs at 

time 𝑡 with the possible outcomes 𝑌𝑡 ∈ {1, … , 𝑁𝑘} related to each WT. Considering 𝑋𝑡; 𝑡 = 1,… , 𝑛𝑡 

to be a time-dependent row vector of covariates with dimensions 1 × 𝑛𝑐, with 𝑛𝑐 the number of 

covariates, the probability of occurrence of 𝑌𝑡 is given by: 

𝑃𝑟𝑜𝑏(𝑌𝑡 = 𝑖|𝑌𝑡−1, … , 𝑌𝑡−𝑑 , 𝑋𝑡) =
exp(𝜋𝑖

𝑆 + 𝜋𝑖
𝐶 + 𝜋𝑖

𝐿𝑇 + 𝜋𝑖
𝐴𝑅)

∑ exp(𝜋𝑖
𝑆 + 𝜋𝑖

𝐶 + 𝜋𝑖
𝐿𝑇 + 𝜋𝑖

𝐴𝑅)
𝑛𝑤𝑡
𝑘=1

;  ∀𝑖 = 1,… , 𝑛𝑤𝑡 (2-2) 

 

Where 𝑑 is the number of previous WTs relevant for the model and 𝜋 represents the terms referring 

to the different components of the model, explained as follows: 
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𝝅𝑺: Seasonality 

The seasonality is introduced in the model using harmonics: 

𝜋𝑆 = 𝛽0
𝑆 + 𝛽1

𝑆 𝑐𝑜𝑠(𝜔𝑡) + 𝛽2
𝑆 𝑠𝑖𝑛(𝜔𝑡) (2-3) 

 

Where 𝛽0
𝑆 denotes the annual mean values, 𝛽1

𝑆 and 𝛽2
𝑆 are the amplitudes of harmonics and  

𝜔 = 2𝜋/𝑇 is angular frequency, with 𝑇 equivalent to 1 year. 

𝝅𝑪: Covariates 

Covariates can be regarded as any variable that could explain the behavior of the categorical variable 

𝑌, for instance atmospheric indexes or larger time scale variables, such as monthly or yearly scale for 

daily-based analysis. They are introduced in the model as follows: 

𝜋𝐶 = 𝑋 ⋅ 𝛽𝐶  (2-4) 

 

Where 𝑋 is a row vector of covariates and 𝛽𝑖
𝐶  is a column vector of parameters. 

𝝅𝑳𝑻: Long-term trends 

Long-term trends in the model are included as follows: 

𝜋𝐿𝑇 = 𝛽𝐿𝑇 ⋅ 𝑡 (2-5) 

 

Where 𝑡 denotes time, in years and 𝛽𝐿𝑇 is the long-term parameter. 

Strictly speaking, eq. (2-5) does not represent the typical trend analysis because this term is related 

to the logarithm of the probability for each WT, but numerical results shows a good agreement on 

long-term changes of the WT probabilities (Guanche et al., 2014). 

𝝅𝑨𝑹: Autoregressive or Markov chain 

The autoregressive effect of order 𝑑 is modeled as: 

𝜋𝐴𝑅𝑑 =∑𝑌𝑡−𝑗𝛾𝑗

𝑑

𝑗=1

 (2-6) 

 

Where 𝑑 corresponds to the number of previous WTs which are considered to influence the actual 

WT, 𝑌𝑡−𝑗 is the WT at previous time 𝑗 and 𝛾𝑗 is the parameter associated to the WT at time 𝑗. 

When fitting the model, the selection of the model parameters, i.e. the order of the autoregressive 

term, seasonality, covariates, etc. could be defined according to the experience of the user or based 

on statistical significance using the likelihood ratio (LR) statistic. This kind of test aims to check if the 

increment of fitting quality is justified by increasing the number of parameters. Further details can be 

consulted in Guanche et al. (2014). 

It is important to state that all the parameters of the ALR model to be included must be transformed 

to the lowest time scale considered, in order to account for the different time scales in the model. 

After fitting the ALR model, stochastic simulation of WT time series is possible. As it is shown in 

Guanche et al. (2014), validation of the synthetic WT sequences can be undertaken against the 
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observed sequence of WTs comparing: 1) occurrence probabilities of each WT, 2) transition 

probability matrix between WTs and 3) persistence analysis of WTs. 

2.1.5. Predictand 

2.1.5.1. Definition 

As previously stated, the predictand is the set of local variables that are to be explained by the 

predictor. In this sense, there is no restriction in the type and number of variables to be included in 

the statistical model. One of the simplest relations should include the significant wave height, but it 

can be extended to a multivariate relation including the wave period and the wave direction. Camus 

et al. (2014b) showed that this set of variables at daily scale gives good results for the Spanish and 

Irish coasts in the North Atlantic Ocean. Clustering techniques can also be applied to the predictand 

in order to generate a classification into sea states, as is shown in the work of Antolínez et al. 

(2016a). 

Espejo et al. (2014) extended the analysis and used a discretization of the wave spectra as the 

predictand to explore the spectral wave climate variability. A similar approach was developed by 

Rueda et al. (2017), where the wave spectral density was parameterized in three main components: 

one wind sea and two swell partitions generated from the Northern and Southern Hemisphere 

reaching the South California coast in USA. Under this parameterization, the predictand is a vector 

with 9 variables: significant wave height, wave peak period and mean wave direction for each one of 

the 3 partitions. 

Statistical downscaling based on weather types has also been used to estimate extreme wave 

climate, as it is shown in Rueda et al. (2016a), who include the daily significant wave height maxima 

as the predictand and considered a non-stationary extreme model. Weather-type based SD has also 

been proven to give good results for the estimation of coastal flooding, as it is described in Rueda et 

al. (2016b). In the cited work, the predictand corresponds to the extreme non-tidal total water level 

(TWL), defined as a linear summation of storm surge and wave run-up, which is estimated as a 

function of the significant wave height and wave mean period. Storm surge, wave height and mean 

period show a strong statistical relation as they are all depending on the atmospheric synoptic 

patterns. 

2.1.5.2. Sources of information 

Several global wave reanalyses have been conducted during the last decades (Caires et al., 2004; 

Reguero et al., 2012). One of the latest projects corresponds to the ERA-Interim reanalysis (Dee et al., 

2011), in which the atmospheric model is coupled to an ocean-wave model resolving 30 wave 

frequencies and 24 wave directions on a latitude/longitude grid of 0.75° x 0.75°. Analysis model 

outputs are available every 6 hours. 

After the Climate Forecast System Reanalysis (CFSR) (Saha et al., 2010) was published, the Institut 

Francais de Recherche pour l’Exploitation de la Mer (IFREMER) carried out a global wave reanalysis 

based on the WAVEWATCH III model in its version 4.04, using the CFSR wind forcing and data 

assimilation (Rascle & Ardhuin, 2013). The computation was performed on a latitude/longitude grid 

of 0.5° x 0.5°, using a spectral grid with 24 directions and 31 frequencies exponentially spaced from 

0.037Hz to 0.7Hz. The database spans for 20 years, from 1993 to 2012, with 3-hourly sea states, and 

it is the same database considered in the ESTELA model. 

2.1.6. Statistical relationship 

The next step when fitting the statistical model consists on projecting the local predictand into the 

WT classification. This aims to identify the empirical distributions of the multivariate predictand for 
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each weather type. As an example, Figure 2-3 shows 2 WTs from the Figure 2-2 on the left, and the 

central and right panels depict the joint distributions of significant wave height 𝐻𝑠 and mean period 

𝑇𝑚, and 𝐻𝑠 and mean direction 𝜃𝑚 at the northwest Spanish coast, respectively. The key advantage 

of this approach is that it describes the occurrence and the main characteristics of sea states in terms 

of the occurrence of the different WTs. 

In the given example, WT35 is the dominant WT during the summer (not shown) and it represents a 

neutral atmospheric condition, with weak high and low-pressure systems. From the joint 

distributions in the figure, the most probable 𝐻𝑠 is approximately 1.5m, the corresponding 𝑇𝑚 is 

around 7s and 𝜃𝑚 is NW, although a range between SW and NE is possible. On the other hand, WT97 

only happens in boreal winter (not shown) and it represents an intense low-pressure system in the 

Northeast Atlantic with important SLP gradients. This atmospheric pattern is reflected in the 

observed sea state: 𝐻𝑠 is approximately 9m, 𝑇𝑚 is around 12s and 𝜃𝑚 is mainly from W. Therefore, it 

can be concluded in this example that local wind seas are expected in summer and swell generation 

predominates during winter (Camus et al., 2014b). 

The marginal distributions for each parameter of the predictand can be modeled using directly the 

empirical distributions or fitting a theoretical cumulative density function. For instance, Rueda et al. 

(2017) divided the wave spectra arriving to the South California coast in 3 partitions, and showed 

that wave heights and wave periods from each partition followed Generalized Extreme Value 

distributions, and mean wave directions could be represented by empirical distributions. 

Other approaches consider representing the empirical distributions using non-parametric kernel 

density functions (Athanassoulis & Belibassakis, 2002) or mixed models, which consist of a truncated 

central distribution representative of the central or main-mass regime and different distributions for 

the maximum and minimum regimes, representing the upper and lower tails, respectively (Solari & 

Losada, 2012). 

2.1.7. Weather types and atmospheric patterns 

As it was explained in §2.1.3, each WT represents a synoptic atmospheric circulation pattern. One of 

the main advantages of this classification is the possibility of connecting the WTs with large-scale 

atmospheric oscillation patterns, named “teleconnection patterns” (NOAA, 2008), such as El Niño 

Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), the East Atlantic Oscillation (EA), 

the Arctic Oscillation (AO) or the Scandinavia Index (SCAND), to name a few. As an example, Camus 

et al. (2014b) identified that the WTs located at the bottom left of the lattice shown in Figure 2-2, are 

characterized by a strong low-pressure system over Iceland and a high-pressure around Azores 

islands, resembling the standard NAO positive mode. Moreover, WTs located at the bottom right 

corner of the lattice are related to the EA positive mode, with a north-south dipole like NAO but with 

its center located southwards. 

After the statistical relation between the atmospheric classification and the predictand has been 

established, the link with the teleconnection patterns can be used to explain the observed local wave 

climate. For instance, Camus et al. (2014b) stated that wave energy is higher when the center of the 

atmospheric circulation pattern is closer to the target location, as it is the case for WT97 in Figure 

2-3. This WT is associated with a positive phase of both NAO and EA, as it located in the lower right 

bottom of the lattice from Figure 2-2. Also, the configuration of the high and low-pressure systems 

determines the direction of the incoming waves, as it is explained by Camus et al. (2014b) and Espejo 

et al. (2014). 
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2.1.8. Multivariate dependence 

Wave parameters are usually strongly correlated to each other, and any statistical model for the 

predictand must take this interdependence into account. One statistical tool that has been explored 

during the last years to model the dependence between random variables is the copulas, which have 

been succesfully developed in the fields of econometrics, finance, risk management or insurance 

(Haas, 1999; Breymann et al., 2003), and recently in meteorology and climate research (Schölzel & 

Friederichs, 2008), coastal (Rueda et al., 2016b) and offshore applications (Leontaris et al., 2016). For 

instance, Rueda et al. (2017) have shown that the joint distribution of wave parameters from 

multi-modal systems can be adequately represented using a multivariate Gaussian copula. 

 

Figure 2-3: WT35 and WT97 (from the WT classification shown in Figure 2-2) with the associated distribution of 

hourly 𝐻𝑠 and 𝑇𝑚 and the distribution of 𝐻𝑠 and mean direction at northwest Spanish coast location. The 

contours represent the SLP field (dashed below and continuous over 1013hPa) and the red scale represents the 

SLPG (from Camus et al. (2014b)). 

 

2.1.8.1. Copulas 

According to Kurowicka and Cooke (2006), a copula 𝐶 is a multivariate distribution with uniform [0,1] 

marginal distributions. Let 𝐹 be a multivariate distribution with margins 𝐹𝑖(𝑥𝑖), 𝑖 = 1,… , 𝑛, then the 

copula 𝐶 can be written as: 

𝐶(𝑢1, … , 𝑢𝑛) = 𝐹(𝐹1
−1(𝑢1),… , 𝐹𝑛

−1(𝑢𝑛)) (2-7) 

 

Where 𝐹𝑖
−1(𝑢𝑖) are the inverse distribution functions of the marginals and 𝑢𝑖 follows independent 

uniform [0,1] distributions, for 𝑖 = 1,… , 𝑛. 𝐶 is a distribution function which also lays in the interval 

[0,1]. Another important property is that the copula 𝐶 is unique if 𝐹 is continuous (Nelsen, 2006). 

As the margins of a copula lay in the interval [0,1], it offers the possibility of modeling the 

dependence between variables considering their cumulative distribution functions, which are 

defined in the same interval, regardless the marginal distribution which each variable follows (which 

can in fact be different than the copula). This is the main advantage of the use of copulas when 

modeling the statistical dependence between random variables. 
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The simplest case is the bivariate copula and there is a large variety of copulas (see Nelsen (2006) for 

an overview) which can be used to model joint distributions. One the most common copula is the 

Gaussian copula, whose cumulative distribution function is given by: 

𝐶𝜌(𝑢1, 𝑢2) = Φ𝜌(Φ
−1(𝑢1),Φ

−1(𝑢2)) (2-8) 

 

Where Φ denotes the standard cumulative Gaussian (normal) distribution and Φ𝜌 is the standard 

bivariate cumulative Gaussian distribution function with linear correlation coefficient 𝜌. The 

extension to the multivariate case is direct, and it is equivalent to use the multivariate Gaussian 

distribution with linear correlation matrix Ω, which contains the correlation coefficients 𝜌 between 

the set of random variables. 

Despite their popularity, Gaussian copulas cannot adequately reproduce the dependence structure 

when existing asymmetries are significant. For instance, the wave steepness limiting condition 

(Holthuijsen, 2007) introduces an asymmetry in the probabilistic dependence between 𝐻𝑠 and 𝑇𝑝. 

The recent work of Jäger and Morales Nápoles (2017) has shown that the Skew-t copula provides a 

better representation of the bivariate distribution of these two wave parameters. Although different 

formulations exist for this copula, the Skew-t copula formulated by Azzalini and Capitanio (2003) 

(hereafter AC skew-t copula) is considered in this work. 

The cumulative distribution function of the AC skew-t copula is given by: 

𝐶𝜌,𝛿1,𝛿2,𝜈(𝑢1, 𝑢2) = 𝑆𝑡2(𝑆𝑡1
−1(𝑢1; 0,1, 𝛿1, 𝜈), 𝑆𝑡1

−1(𝑢2; 0,1, 𝛿2, 𝜈); 0, 𝜌, 𝛼, 𝜈) (2-9) 

 

Where 𝑆𝑡2 denotes the bivariate AC skew-t distribution with correlation coefficient 𝜌, a transformed 

skewness vector 𝛼 and 𝜈 degrees of freedom. 𝑆𝑡1 and 𝑆𝑡2 are the univariate margins of the AC 

skew-t distribution and 𝛿1 and 𝛿2 are the respective skewness parameters. The formulation of the AC 

skew-t distribution is complicated, its univariate quantile function has no mathematical expression 

and must be calculated numerically, as it is explained in detail by Yoshiba (2015). 

2.1.8.2. Vines 

Modeling the dependence structure in a multivariate problem may be very difficult, especially when 

the number of variables increase (Morales Nápoles, 2011). To overcome this, Bedford and Cooke 

(2002) proposed a graphical model called vine, where nodes are connected by edges representing 

the probabilistic bivariate dependence between variables. 

Graphically, a vine on 𝑛 variables 𝒱 = (𝑇1, … , 𝑇𝑛−1) is a nested set of trees where the edges of the 

tree 𝑇𝑗 are nodes of the tree 𝑇𝑗+1 and each tree has the maximum number of edges (Kurowicka & 

Cooke, 2006). Figure 2-4 shows a vine on 𝑛 = 5 variables, where the tree 𝑇𝑗, 𝑗 = 1,… ,4, consists of 

𝑛 − 𝑗 edges and 𝑛 − 𝑗 + 1 nodes, hence the edges from tree 𝑇𝑗 are the nodes of tree 𝑇𝑗+1. 

In a regular vine (or R-vine), one edge in tree 𝑇𝑗+1  connects two edges from tree 𝑇𝑗, which share one 

node, as is the case of Figure 2-4. When this condition is violated, the vine is referred to as 

non-regular vine. Within regular vines, two main types are identified: canonical vines and drawable 

vines, also known as D-vines. In the latter, each node in tree 𝑇1 has a maximum number of 2 edges 

connected, as it is the case of Figure 2-4. 

In a regular vine, the nodes connected by a given edge in tree 𝑇𝑖  are named the constraint set of that 

edge. When 2 edges are joined by an edge in tree 𝑇𝑖, the intersection of the respective constraint 

sets forms the conditioning set, and the symmetric difference of the constraint sets forms the 
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conditioned set of this edge (Kurowicka, 2011). The label of each edge denotes the conditioned and 

conditioning sets in Figure 2-4. For instance, the edges 1,2 and 2,3 form the constraint set of the 

edge 1,3|2 from tree 𝑇2, hence the conditioned set is compounded by the nodes 1 and 3 (symmetric 

difference), and the conditioning set is formed by the node 2 (intersection). This is precisely what is 

represented by the label of the edge: 1 and 3 given 2. For further details the reader is referred to 

Kurowicka and Cooke (2006) and Kurowicka and Joe (2011). 

 

 

Figure 2-4: A D-vine on 5 elements showing conditioned and conditioning sets. 

 

As it is explained in detail by Cooke et al. (2011), the first regular vine was introduced by Joe, before 

coining the word, during the nineties. He was focused on extending the bivariate extreme-value 

copula to higher dimensions, considering a class of 𝑛-variate distributions with given unidimensional 

margins and 𝑛(𝑛 − 1)  dependence parameters, where 𝑛 − 1 parameters correspond to bivariate 

margins and the rest are related to conditional bivariate margins. The first formal definition was 

provided by Cooke in 1997, who was inspired by the use of Markov trees in uncertainty analyses of 

large risk models related to accidents at nuclear power plants. Finally, Bedford and Cooke (2002) 

extended the results from Joe, giving an explicit formula for the multivariate copula density in terms 

of (conditional) copula densities on any regular vine. Further details are given in Cooke et al. (2011). 

Vines help to illustrate and model the dependence between random variables, where bivariate 

copulas are the building blocks of higher dimensionality dependence. In tree 𝑇1, each edge 

represents the bivariate distribution between the attached nodes, and in the next trees, the relation 

between the elements of the conditioned set can be modeled as a bivariate distribution conditioned 

by the conditioning set. In other words, every edge of the regular vine is a copula for 𝑇1 and a 

conditioned copula for the remaining trees. 

A very good application example is provided in the work of Aas et al. (2009), who showed how 

multivariate data can be modeled using a regular vine as starting point: every edge of the vine 

corresponds to a bivariate copula density, defined by the conditioned and conditioning set. In tree 

𝑇1, the relation between the variables is defined by the rank correlation, and in the subsequent trees 

this relation is given by the partial correlation between the variables in the conditioned set, given the 

elements of the conditioning set. For instance, the edge 1,3|2 denotes the conditional copula 

between 1 and 3 given 2, defined by the partial correlation between 1 and 3 given 2. In this 

vine-copula approach, calculation of the last tree requires the computation of the previous trees. 

At this point, two definitions are pending: partial correlations and conditional copulas. According to 

Kurowicka and Cooke (2006), the partial correlation 𝜌12;3,…,𝑛 between two random variables 𝑋1 and 

1 2 3 4 5
12 23 34 45

13|2 24|3 35|4

14|23 25|34

15|234
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𝑇2
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𝑇 
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𝑋2 given 𝑋3, … , 𝑋𝑛, can be interpreted as the correlation between orthogonal projections on the 

plane orthogonal to the space spanned by 𝑋3, … , 𝑋𝑛. It can be calculated using the iterative formula: 

𝜌12;3,…,𝑛 =
𝜌12;3,…,𝑛−1 − 𝜌1𝑛;3,…,𝑛−1 ⋅ 𝜌2𝑛;3,…,𝑛−1

√1 − 𝜌1𝑛;3,…,𝑛−1
2 √1 − 𝜌2𝑛;3,…,𝑛−1

2

 
(2-10) 

 

For bivariate normal distribution, the partial correlation is equal to the conditional correlation. 

However, this is not true for other distributions and the difference can be large (Kurowicka & Cooke, 

2006). The conditional correlation of 𝑋 and 𝑌 given 𝑍 is defined as the product moment correlation 

computed with the conditional distribution of 𝑋 and 𝑌 given 𝑍 (Kurowicka & Cooke, 2006): 

𝜌𝑋𝑌|𝑍 = 𝜌(𝑋|𝑍, 𝑌|𝑍) =
𝐸(𝑋𝑌|𝑍) − 𝐸(𝑋|𝑍)𝐸(𝑌|𝑍)

𝜎(𝑋|𝑍, )𝜎(𝑌|𝑍)
 (2-11) 

 

Where 𝐸 is the expected value and 𝜎 denotes the standard deviation. 

Formally, the conditional distribution function of the bivariate copula 𝐶(𝑢1, 𝑢2) conditioned on 𝑢2 is 

defined as (Aas et al., 2009): 

ℎ(𝑢1, 𝑢2, 𝜃) =
𝜕𝐶(𝑢1, 𝑢2, 𝜃)

𝜕𝑢2
 (2-12) 

 

Where 𝜃 denotes the parameters of the copula. For instance, the conditional Gaussian copula 

conditioned on 𝑢2 can be written as: 

ℎ(𝑢1, 𝑢2, 𝜌12) = Φ(
Φ−1(𝑢1) − 𝜌12Φ

−1(𝑢2)

√1 − 𝜌12
2

) (2-13) 

 

Where Φ is the standard cumulative Gaussian distribution, Φ−1 denotes the inverse Gaussian CDF 

and 𝜌12 denotes the linear correlation between 𝑢1 and 𝑢2. The inverse conditional copula 

distribution is given by: 

ℎ−1(𝑢1, 𝑢2, 𝜌12) = Φ(Φ−1(𝑢1)√1 − 𝜌12
2 + 𝜌12Φ

−1(𝑢2)) (2-14) 

 

In practical terms, the conditional copula conditioned on 𝑢2 is equivalent to fix the conditioning 

variable and take the cumulative distribution function estimated using the copula density along 𝑢1, 

as it is schematized in Figure 2-5 for a conditional copula on 𝑢2 = 0.6. The obtaining of the 

conditional copula conditioned on 𝑢1 is analogous. 
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Figure 2-5: a) Copula density for variables 𝑢1 and 𝑢2, b) conditional copula on 𝑢2 obtained from the copula 

density and c) conditional copula on 𝑢2 for 𝑢2 = 0.6. 

 

2.2. Future wave climate 

2.2.1. Overview 

Accelerated changes in climate have become a global concern during the last years. This motivated 

the creation of the Intergovernmental Panel on Climate Change (IPCC) in 1988, by the World 

Meteorological Organization (WMO) and the United Nations Environmental Programme (UNEP). The 

IPCC has produced a series of reports which show solid evidence of changes in the global climate 

system during the 21st century, even faster than those observed during the last century (IPCC, 2013). 

One of the most important source of information of the IPCC assessments are the outcomes from 

Global Circulation Models (GCMs). These are numerical models which simulate climate dynamics in 

response to increasing greenhouse concentrations, taking into account representations of the 

physical processes in the atmosphere, ocean, cryosphere and land surface (IPCC-DDC, 2013). 

The most current publication from IPCC is the fifth Assessment Report (AR5), which was released on 

2013 and heavily relies on the fifth phase of the Coupled Model Intercomparison Project (CMIP5, 

Taylor et al. (2012)), a collaborative climate modeling process coordinated by the World Climate 

Research Programme (WCRP). CMIP5 constitutes the most updated set of coordinated climate model 

experiments, comprising several GCMs developed by modeling groups from all over the world. 

The CMIP5 projections of climate change are driven by concentration or emission scenarios 

consistent with the Representative Concentration Pathways (RCPs) described in van Vuuren et al. 

(2011). According to Taylor et al. (2012), four RCPs have been formulated based on a range of 

projections of future population growth, technological development, and societal responses. These 4 

scenarios are named RCP2.6, RCP4.5, RCP6.0 and RCP8.5, where the labels indicate a rough 

estimation of the increase of radiative forcing in the year 2100, relative to preindustrial conditions. 

Therefore, the most severe scenario is RCP8.5, leading to high greenhouse concentration levels. 

RCP4.5 and RCP6.0 represent two intermediate scenarios, and RCP2.6 includes a mitigation scenario 

in which radiative forcing reaches a maximum near the middle of the 21st century before decreasing 

to an eventual nominal level of 2.6Wm2. 

 



2.2. Future wave climate 17 

 

 

2.2.2. Predictive skills of GCMs 

Each GCM is based on a certain spatial resolution and different parameterization of sub-grid 

processes, thus GCMs produce different results for the same emission forcing scenario. This 

uncertainty poses the necessity of a methodology to assess the performance of the GCMs in order to 

select the most appropiate model according to the scope of the research, such as studying changes in 

climate dynamics or downscaling surface variables, to name a few. Usually, this assessment is 

undertaken by comparison to historical observations or reanalyses in terms of differences between 

mean climatologies or probability distributions (Pérez et al., 2015). 

Wave climate is not computed explicitly by GCMs and therefore downscaling is needed. Wang et al. 

(2010) and Laugel et al. (2014) have compared dynamical and statistical wave projections for future 

scenarios, concluding that the statistical downscaling approach reproduces wave climatology as well 

as dynamical downscaling, considering mean values, seasonal and interannual scales. Moreover, 

statistical downscaling based on atmospheric circulation classification (such as weather types) has 

been succesfully proven to be a sound tool for validation of GCMs (Huth, 2000). 

As it was stated, the evaluation of the predictive skills of a GCMs is often undertaken by comparison 

to reanalysis databases, in order to validate the performance of the GCMs reproducing the historical 

climate. This analysis can be done in terms of weather types, which takes into account the natural 

climate variability and allows the evaluation of spatial patterns, as it is shown by Pérez et al. (2014b) 

or Pérez et al. (2015). 

However, future projections cannot be directly validated against observations but different models 

can be compared to each other, in order to determine the consistency of the projections (Wang et 

al., 2014). This analysis leads to identify which models may present an anomalous behavior (Pérez et 

al., 2014b) and therefore their projections should be treated carefully or even not considered. 

In this context, Pérez et al. (2014b) made a comparison, based on weather types, between 

experiments from 42 CMIP5 models. Recent past conditions and the 4 future emission scenarios 

were considered, in order to assess the performance of the models over the Northeast Atlantic 

region. The analysis considered 3 factors to be evaluated: 1) the skill of the GCMs to reproduce the 

synoptic situations, 2) the historical interannual variability and 3) the consistency of the GCMs 

experiments for the 21st century projections. Results from this work indicate that the most skilled 

models in the study area are ACCESS1.0, EC-EARTH, HadGEM2-CC, HadGEM2-ES and CMCC-CM 

(Pérez et al., 2014b). 

2.2.3. Changes in future wave climate in front of the central Dutch coast 

Recent research has shown that the 1:10,000-yr hydrodynamic boundary conditions in front of the 

central Dutch coast are not expected to change under climate change scenarios: de Winter et al. 

(2012) have found no significant changes in 𝐻𝑠 and 𝑇𝑚 from extreme waves and Sterl et al. (2009) 

have done the same regarding 1:10,000-yr storm surge levels along the Dutch coast. Furthermore, 

the work from de Winter et al. (2013) has revealed no significant changes in annual maximum wind 

speeds, or in wind speeds with lower return periods above the North Sea basin. However, there is 

evidence that the corresponding wave direction could shift to more westerly directions, because of a 

poleward shift of the North Atlantic storm track (de Winter et al., 2012; de Winter et al., 2013). 
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2.3. Coastal sediment transport 

2.3.1. Main processes 

Coastal morphology is driven by temporal and spatial sediment transport rate gradients. A positive 

gradient will lead to erosion as the sediment transport rate increases in the direction of transport 

and conversely, accretion will occur when the sediment transport rate decreases in the direction of 

transport (a negative gradient) (Bosboom & Stive, 2015). 

Besides sea level and tides, waves are one of the main agents driving changes in the sediment 

transport rates. Two components are easily identified: the cross-shore and longshore sediment 

transport. In a nutshell, sediment is stirred up by wave orbital motion, making it available to be 

transported by currents along the shore. These currents can be induced by tides, wind, density 

differences or wave breaking. Cross-shore sediment transport is related to the wave asymmetry, 

generating net onshore transport in non-breaking wave conditions outside the surf zone, and net 

offshore transport under breaking waves (Bosboom & Stive, 2015). 

According to van Rijn (1997), the major transport components contributing to the wave-induced 

transport processes are: 

• Net onshore-directed transport due to asymmetry of the near-bed orbital velocities with 

relatively large onshore peak velocities under the wave crests and relatively small offshore 

peak velocities under the wave troughs. 

• Longshore-directed transport induced by the generation of longshore wave-driven currents 

due to wave breaking. 

• Net offshore-directed transport due to the generation of a net return current (undertow) in 

the near-bed layers balancing the onshore mass flux between the crest and trough of 

breaking waves. 

• Net onshore-directed transport due to the generation of a quasi-steady weak current 

(streaming) in the wave boundary layer. 

• Net offshore-directed transport due to the generation of bound long waves associated with 

variations of the radiation stresses under irregular wave groups. 

2.3.2. Coastal erosion at the central Dutch coast 

The Dutch coast can be divided into 3 subsystems, namely the Delta area in the south, the Holland 

coast in the center and the Wadden Sea area in the north. The central Holland coast is a sandy, 

microtidal, inlet-free, wave-dominated coast, bounded by Den Helder in the north and Hoek van 

Holland in the south, as it is shown in Figure 2-6. The Holland coast system is also compounded by 

aeolian sand dunes and some minor stretches being reinforced with hard defense structures (Mulder 

et al., 2011). 

Historically, the central Holland coast has suffered from structural erosion due to the combined 

action of the hydrodynamic forcings, such as waves and tidal currents, and the sediment-importing 

characteristic of the neighboring tidal inlets (van Rijn, 1997). 

Why is so important to prevent coastal erosion in The Netherlands? Because it is a low-lying country, 

in which 9 million people are living below sea level and 70% of the gross domestic product is being 

earned in areas below sea level (Mulder et al., 2011). Therefore, the primary function of the coast is 

to protect the low-lying hinterland from flooding risk. To ensure safety against flooding, in 1990 the 

Dutch government dictated that the coastline position at that date had to be maintained by all 

means, by the introduction of the “Dynamic Preservation” policy (van Koningsveld & Mulder, 2004). 
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This has been achieved by means of sand nourishments (van der Spek & Lodder, 2015) and recently, 

by a mega-nourishment project referred to as the Sand Engine (Stive et al., 2013). 

 

Figure 2-6: Dutch coast and its subsystems (left panel). Central Holland coast (right panel). 

Several studies have shown the impact of sea level rise in terms of coastline retreat (Cazenave & Le 

Cozannet, 2014) and dune erosion (de Winter & Ruessink, 2017), and the rising of sea level may be 

accelerated under a warmer climate (Katsman et al., 2011). Besides its effect on sea level rise, 

climate change could also influence the offshore hydrodynamic conditions, such as waves and storm 

surge levels, and the combined effect with sea level rise would amplify the threat of coastal erosion. 

In this sense, longshore sediment transport plays an important role in the structural erosion of the 

central Dutch coast, because the sediment transported alongshore the coast may not be longer 

available in the system. Moreover, the role of waves in the longshore sediment transport is relevant, 

as they drive approximately the 80% of the total longshore sediment transport in the central Holland 

coast (van Rijn, 1997). 

2.3.3. Longshore sediment transport in the central Dutch coast 

According to the review undertaken by Giardino et al. (2012), two cells can be identified regarding 

longshore sediment transport along the central Holland coast: from Hoek van Holland to IJmuiden, 

and from IJmuiden to Den Helder. Due to the presence of the Port of Rotterdam, the yearly-averaged 

longshore sediment transport has been estimated as zero at Hoek van Holland, increasing up to 

500,000m3/year directed northwards and reducing to zero again due to the presence of the harbor 

jetties at IJmuiden. In the second cell, the sediment transport along the coast starts at zero and 

quickly reaches 200,000m3/year directed southwards at a distance of approximately 30km north to 

the harbour. Then, the northwards longshore sediment transport increases, reaching up 

500,000m3/year at Den Helder. 

In summary, the general trend alongshore the central Dutch coast is northward directed transport, 

being almost totally blocked by the harbour jetties at IJmuiden. To the north of the port, an inversion 

of the longshore sediment transport is observed (going southwards), but the general trend is 

recovered (northwards directed) in about 30km. 
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The potential shift of wave direction to the more westerly directions under climate change can 

enhance dune erosion, as it has been demonstrated by de Winter and Ruessink (2017). Subsequently, 

the change in obliquity of the waves may also have an impact in longshore sediment transport, as 

wave-induced alongshore currents are determined mainly by wave height and wave angle relative to 

the shore normal (Bosboom & Stive, 2015). 
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3. Methodology 
 

3.1. General framework 

To fulfill the main objective of this thesis and give answers to the research questions, 3 main units 

are proposed to be completed as shown in the flowchart of Figure 1-1: 

1. Unit 1: Present wave climate 

2. Unit 2: Future wave climate 

3. Unit 3: Morphological simulation 

The different tasks to be carried out in each unit are described in the following sections. 

This methodology is applied to Noordwijk, The Netherlands, selected as a representative location of 

the central Dutch coast according to previous studies (Walstra et al., 2012; Walstra et al., 2013; 

Walstra et al., 2015). 

3.2. Unit 1: Modeling the present wave climate 

The goal of this unit is to develop a time-dependent emulator based on a statistical downscaling 

method which links a multivariate predictand (wave bulk parameters of sea state components from 

IFREMER reanalysis) with a multivariate predictor (daily representative patterns of sea level pressure 

from CFSR reanalysis). The statistical downscaling method consists of four main modules, as it is 

shown in Figure 3-1: 

A. Parameterization of data. 

B. Statistical model for the predictor. 

C. Statistical model for the predictand. 

D. Climate-based stochastic simulation. 

Following the flowchart of Figure 3-1, the steps comprising each module are described as follows. 

The corresponding sections from chapter 2 are given in brackets. 

A. Parameterization of data 

A1. Define the spatial extension of the predictor using the outcomes from the ESTELA model 

(§2.1.2.1). This step is carried out independently from the rest of the analysis, using as input the 

wave spectra from the IFREMER reanalysis instead of solely the wave parameters that constitute the 

predictant. 

A2. In this work, sea and swell partitions are explored. For each sea state, 3 sea state types are likely 

to occur: only sea component or only swell component, corresponding to unimodal sea states, or 

both simultaneously, referred as a bimodal condition (§2.1.5.1). 

B. Statistical model for the predictor 

B1. Build the daily predictor as an assembly of the areas of wave generation between the daily 

isochrones. Principal Components Analysis is applied to reduce the dimensionality of the predictor, 

retaining a high percentage of the variance (§2.1.2.1). 

B2. Apply K-means algorithm to the Principal Components of the predictor to define the daily 

Weather Types (§2.1.3). 
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B3. Adjust the chronology model to the observed sequence of weather types (§2.1.4). 

C. Statistical model for the predictand 

C1. Obtain the categorical distribution of sea state conditions (unimodals and bimodal) for each 

weather type. Probabilities of occurrence of each wave condition are estimated from observed wave 

data (§2.1.5.1). 

C2. Fit marginal distributions of 𝐻𝑠, 𝑇𝑝 and 𝐷𝑖𝑟 for the sea and swell partitions, for each weather type 

(§2.1.6). 

C3. Model the dependence between predictand variables for each weather type using a multivariate 

vine-copula approach (§2.1.8). 

D. Climate-based stochastic simulation 

D1. Generate synthetic time series of daily weather types, considering the daily probability of each 

weather type estimated by the chronology model from module B. 

D2. Generate synthetic multivariate sea state parameters (𝐻𝑠, 𝑇𝑝 , 𝐷𝑖𝑟) considering the probability of 

occurrence of the sea state types and the dependence structure between variables for each weather 

type. The temporal sequence of wave parameters is given by the synthetic time series of weather 

types generated in the previous step. 

 

 

Figure 3-1: Flowchart of the methodology to obtain the time-dependent emulator (adapted from Rueda et al. 

(2017)). 
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3.3. Unit 2: Future wave climate 

Once the statistical model is validated, the future wave climate is generated. The key assumption for 

future modeling is that the WT classification is invariant in time, thus it is valid in any future scenario 

(Pérez et al., 2014b; Wang et al., 2014; Pérez et al., 2015). 

In this second unit, the sea level pressure fields are extracted from the outcomes of the GCM 

ACCESS1.0 (Australian Community Climate and Earth-System Simulator, Collier and Uhe (2012)) 

developed by the Centre for Australian Weather and Climate Research, a partnership between the 

Commonwealth Scientific and Industrial Research Organisation and the Bureau of Meteorology 

(CSIRO-BOM). This model includes a horizontal spacing of 1.25° (Lat) × 1.92° (Lon) and 38 layers in 

the vertical for the atmosphere, with a daily temporal resolution for the outputs. 

SLP fields for the last time slice of the 21st century (2070-2099) and the most severe scenario 

(RCP8.5) are considered to build the predictor to be used as input for the statistical model. 

As it is shown in the flowchart of Figure 3-2, a statistical model for the predictor is obtained using 

data from reanalysis (CFSR 1979-2014) in the previous unit. As the future predictor comes from a 

different model, a validation of the GCM ACCESS1.0 for the recent past is required, in order to be 

confident on the future projections and to guarantee a fair comparison with the present climate. This 

validation is made at the predictor level, which is the forcer of the climate emulator, and the changes 

in the future climate forcing will be responsible of the variations in the future wave climate. 

The methodology applied for the validation of the ACCESS1.0 model can be summarized as follows: 

1. For the recent past, identify the common time slice between the reanalysis (CFSR) and the 

CMIP5 model. 

2. Apply the statistical model for the predictor (box B in Figure 3-1) to ACCESS1.0 data for the 

common time window. 

3. Compare both statistical models for present predictors and validate the model if the 

agreement is acceptable. 

 

Figure 3-2: Flowchart of the methodology to quantify changes under climate change. 

 

SM

SMSM

ACCESS1.0
(1979-2005)

ACCESS1.0
(2070-2099)

RCP8.5

Comparison with 
projections

Validation

CFSR 
(1979-2014)

B. Statistical model (SM)
for the predictor

CFSR
(1979-2005)

Unit 1:

Present wave 
climate

Unit 2:

Future wave 
climate



24 3.4. Unit 3: Morphological modeling 

 

 

As the statistical relationship between predictor and predictand has been established using the 

weather types from the CFSR reanalysis data, projecting data from any other model into the weather 

types from CFSR must always be conducted in order for the statistical relationship to remain valid 

(Pérez et al., 2015). 

In practical terms, applying the statistical model for the predictor means assembling the daily 

predictor from the data and then project it to the EOFs from CFSR data, which are obtained from the 

Principal Components Analysis applied in Unit 1. Then, the obtained PCs are clustered using KMA and 

the centroids from CFSR. Finally, new prototypes are estimated as the closest data value to the 

average over the whole data in each cluster, leading to a new set of weather types associated to the 

ACCESS1.0 predictor. If CFSR data and ACCESS1.0 data for the common period were exactly the 

same, then the weather types from both models would be identical, but of course, some differences 

are expected. 

Finally, the chronology model is trained using the sequence of weather types from the ACCESS1.0 

model in order to generate the transition probability matrix and estimate the persistance of each 

weather type. 

Should the set of weather types for ACCESS1.0 predictor look similar to the ones obtained for the 

CFSR data and the agreement between the chronology models for both predictors be acceptable, 

then the GCM ACCESS1.0 is validated and therefore can be used as a predictor for future scenarios. 

Nevertheless, a robust predictor for climate change should cover the climate model uncertainty, 

taking into account an ensemble of the different CMIP5 GCM models [i.e., Pérez et al. (2015)]. 

Once the CMIP5 model has been validated, evaluation of the impact of climate change is undertaken 

in terms of changes of the relative frequency of each of the weather types that are calculated for the 

present. Another comparison can be undertaken in terms of the chronology model, which is trained 

again using the future predictor to identify potential changes in the transition probability matrixs and 

the persistance associated to each WT. 

3.4. Unit 3: Morphological modeling 

The third and final unit is related to the morphological modeling. Longshore sediment transport at 

Noordwijk will be used as a metric of the changes induced by climate change by the end of the 21st 

century. In order to quantify these changes, a simplified approach will be followed: 

1. Calculate the wave-induced longshore sediment transport using the wave time series from 

IFREMER reanalysis. 

2. Validate the computed longshore sediment transport by comparison with values from 

literature and the longshore sediment transport estimated using wave time series from two 

measurement stations in the area of interest. 

3. Compute the distribution of longshore sediment transport for each weather type. The 

20-year wave time series from IFREMER reanalysis is considered as the offshore 

hydrodynamic boundary condition for the process-based model in order to calculate the 

longshore sediment transport associated to each sea state. Then, the time series of 

longshore sediment transport is grouped into the weather types, according to the sequence 

of WTs from CFSR reanalysis. 

4. Estimate the yearly-averaged total gross and net longshore sediment transport weighting the 

previously computed longshore sediment transport distributions by the occurrence 

probability of each weather type and integrating over all the weather types. Assuming that 

weather types from CFSR reanalysis and ACCESS1.0 model are the same, WT probabilities 

from CFSR and ACCESS1.0 for the recent past will be used to compare the longshore 
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sediment transport and validate the ACCESS1.0 data. Afterwards, probabilities for the future 

scenario will be considered in order to estimate the projected longshore sediment transport. 

Changes in gross values associated to each weather type and in the total gross and net 

longshore sediment transports will be quantified, in order to determine the effect of the 

climate change. 

The process-based model Unibest-TC has been chosen to estimate the wave-induced longshore 

sediment transport at Noordwijk, because its consumption of computational resources is relatively 

low, allowing to run several cases in short amounts of time. Other morphodynamic models are 

available, like Delft3D, but they are very expensive in computational terms and some techniques like 

input reduction are required to speed up the calculations. As a first approach to the research topic, 

no input reduction will be considered in order to test the applicability of the statistical downscaling in 

the area of interest. 

3.4.1. Unibest-TC 

Unibest-TC is a cross-shore profile model and comprises coupled, wave-averaged equations of 

hydrodynamics (waves and mean currents), sediment transport, and bed level evolution. Straight, 

parallel depth contours are assumed. Starting with an initial, measured cross-shore depth profile and 

boundary conditions offshore, the cross-shore distribution of the hydrodynamics and sediment 

transport are computed. Transport divergence yields bathymetric changes, which feed back to the 

hydrodynamic model at the subsequent time step, forming a coupled model for bed level evolution 

(Walstra et al., 2012). 

The model computes the cross-shore distribution of longshore and cross-shore sediment transport, 

distinguishing between bed load and suspended load transport. The bed load formulations are driven 

by the instantaneous velocity signal, while the suspended transports are based on an integration 

over the water column of the sediment flux. The instantaneous velocity signal is computed using a 

phase-averaged wave model extended with a roller model, for the oscillatory wave motion, 

combined with the vertical distribution of the advective currents induced by wave-averaged local 

wave forcing, mass flux, tide and wind forcing (Walstra et al., 2015). 

For a detailed description of the formulations included in the model, the reader is referred to 

Ruessink et al. (2007). 
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4. Weather-type based wave 

climate modeling 
 

This chapter presents the results obtained following the methodology described in §3.2. 

4.1. Predictor 

4.1.1. Spatial extent 

As it was stated in §2.1.2, the Sea Level Pressure (SLP) fields and the square of the SLP gradients 

(SSLPG) from the SLP fields are considered to build the predictor at daily scale. The SLP fields are 

extracted from the outcomes of the Climate Forecast System Reanalysis (CFSR) (Saha et al., 2010), 

spanning from 1979 to 2014 (36 years) with hourly resolution. 

The outcomes from the ESTELA model are considered to define the spatial domain of the predictor. 

The node located at 52.5N 4.0E (hereafter “Noordwijk”, selected for the definition of the predictand 

as explained in §4.2) was defined as the target location. The ESTELA method computes the wave 

energy flux, group velocity and energy losses from spectral reconstruction at each source point using 

wave spectra from the IFREMER reanalysis. Figure 4-1 shows the effective energy flux reaching the 

target location at Noordwijk and the corresponding average travel time (in days) of the wave energy. 

The ESTELA maps reveal an important area of swell generation from the Greenland Sea and the 

Norwegian Sea, and a second generation area of waves arriving to Noordwijk within 1 day. Almost 

the whole North Sea lays in this local area, where a high generation area is observed towards the 

English Channel in the right panel of Figure 4-1. This configuration suggests that bimodality may be 

important when characterizing the wave climate at Noordwijk, with a swell component coming from 

the North and a sea component arriving from the West. 

 

Figure 4-1: Results from ESTELA model: effective energy flux at source points for target location at Noordwijk 

(left panel). Gain/loss of energy flux for the target point at Noordwijk (right panel). Travel time (in days) is 

represented in black and gray lines. 
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4.1.2. Definition 

Firstly, the daily mean SLP fields are computed and the square of the hourly SLP gradients are 

averaged over one day. Then, following Hegermiller et al. (2017), the daily predictor is assembled 

taking into account the area between the isochrones. For the day 𝑡, SLP and SSLPG fields located 

inside the isochrone of 1 day are put together with the data from the day 𝑡 − 1 located between the 

isochrones of 1 and 2 days. Then, the data from day 𝑡 − 2 located between the isochrones of 2 and 3 

days is assembled and so on, until the area defined by the last isochrone is considered in the 

predictor, which represent the longest possible wave propagation time from generation until 

reaching the target location. A schematization of this procedure is depicted in Figure 4-2. 

 

Figure 4-2: Definition of the predictor. 

 

2,190 grid points from CFSR with atmospheric data lay inside the area defined by the ESTELA model, 

thus the daily predictor is made up of 4,380 variables: 2,190 nodes for the SLP and the same number 

for the squared SLP gradients. The time series of the daily predictor spans for 36 years, from 1979 to 

2014. 

4.2. Predictand 

Twenty years of wave data, from 1993 to 2012, are extracted at the node located at 52.5N 4.0E 

(hereafter “Noordwijk”) from the global wave reanalysis carried out by IFREMER (Rascle & Ardhuin, 

2013), described in §2.1.5.2. The database consists of sea states every 3 hours, including variables 

such as significant wave height 𝐻𝑠, peak period 𝑇𝑝 and mean wave direction 𝐷𝑖𝑟 for up to 6 partitions 

of the wave spectrum: the wind sea and five swell trains in the more general case. Under this 

definition, swell waves aligned with the wind direction are classified as wind sea in this wave 

reanalysis. 
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Wave bulk parameters (𝐻𝑠 , 𝑇𝑝, 𝐷𝑖𝑟) are calculated from the reanalysis in order to compare them to 

measurements taken at the YM6 station from Rijkswaterstaat. Location of both the IFREMER wave 

node and YM6 station is shown in Figure 4-3. 

A comparison between measured values at YM6 and hindcasted values from the reanalysis for 𝐻𝑠, 𝑇𝑝 

and 𝐷𝑖𝑟 is given in Figure 4-4. Scatter of measured and hindcasted values shows a good agreement, 

based on a high correlation coefficient (given at the bottom right of each panel). However, as can be 

seen in the plots, the IFREMER data overestimates the most energetic sea states (cf. left panel of 

Figure 4-4) and the IFREMER wave directions are biased northwards (cf. right panel of Figure 4-4). 

 

 

Figure 4-3: Location of wave node and measurements. 

 

 

Figure 4-4: Scatter plots of measured and hindcasted values of 𝐻𝑠, 𝑇𝑝 and 𝐷𝑖𝑟. Correlation coefficient between 

variables is given at bottom right of each panel. Data density is shown by colored contours. 
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Relation between measured and hindcasted time series can also be analyzed comparing wave roses 

of 𝐻𝑠 and 𝑇𝑝, as it is depicted in Figure 4-5. In both datasets, two main directions can be identified: 

waves coming from N and from SW, which are coherent with the generation areas recognized in the 

outcomes of the ESTELA model. Distributions of 𝐻𝑠 and 𝑇𝑝 along the directions are similar between 

measured and hindcasted values, with a larger fraction reaching from N according to the reanalysis. 

 

Figure 4-5: Wave roses of 𝐻𝑠 and 𝑇𝑝 at Noordwijk (IFREMER node, top panels) and observations at YM6 

measurement station (bottom panels). 

 

As the ESTELA maps and the wave roses suggest, considering the wave climate at Noordwijk as 

bimodal may be a more realistic representation than using bulk parameters. For the scope of this 

work, the swell component is reconstructed from the available partitions using the following 

expressions (Holthuijsen, 2007): 

Significant wave height 𝑯𝒔𝒔𝒘𝒆𝒍𝒍: 

 𝐻𝑠𝑠𝑤𝑒𝑙𝑙 = (∑𝐻𝑖
2

𝑖

)

0.5

 (4-1) 

 

Where 𝐻𝑖 denotes the significant wave height of swell partition 𝑖 [m]. 
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Energetic period 𝑻𝒆𝒔𝒘𝒆𝒍𝒍: 

 𝑇𝑒𝑠𝑤𝑒𝑙𝑙 =
∑ 𝐻𝑖

2
𝑖

∑ 𝐻𝑖
2/𝑇𝑖𝑖

 (4-2) 

 

Where 𝑇𝑖  denotes the period of swell partition 𝑖 [s]. 

Mean wave direction 𝑫𝒊𝒓𝒔𝒘𝒆𝒍𝒍: 

 𝐷𝑖𝑟𝑠𝑤𝑒𝑙𝑙 = atan(
∑ 𝐸𝑥𝑖𝑖

∑ 𝐸𝑦𝑖𝑖
) (4-3) 

 

Where 𝐸𝑖  represents the energy of swell partition 𝑖, defined as 𝐸𝑖 =
1

 
𝜌𝑔𝐻𝑖

2 [J] with 𝜌 denoting the 

water density and 𝑔 the acceleration of gravity. 

Wave roses for the sea and swell partitions are shown in Figure 4-6, which confirm the results 

already presented: the North Sea corresponds to a local wave generation area, with higher waves 

coming from the English Channel and from the Norwegian Sea, and SW – WSW as the prevailing 

directions. Regarding the swell component, NNW and N are the dominant directions, corresponding 

to the generation area located north of the North Sea. In the swell partition, easterly waves with 

small 𝐻𝑠 and large 𝑇𝑝 are observed, which may correspond to residual energy from wind seas coming 

from the Danish coasts, identified as swell component by the post-processing algorithm of the 

reanalysis. Therefore, these easterly waves are considered spurious as these large periods are not 

identified in Figure 4-5. 

 

Figure 4-6: Wave roses of 𝐻𝑠 and 𝑇𝑝 for sea and swell partitions at Noordwijk. 

a) 𝐻𝑠 sea

c) 𝐻𝑠 swell

b) 𝑇𝑝 sea

d) 𝑇𝑝 swell
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4.3. Weather Types 

K-means algorithm (KMA) (Camus et al., 2011c) is applied to the first 52 Principal Components (PCs), 

as it is explained in Appendix A. The data is grouped in a set of 49 weather types, where the centroids 

representing each cluster correspond to the closest value to the average over all the data in each 

cluster. The centroids are shown in the lattices of Figure 4-7. In the left panel, low-pressure systems 

are depicted on blue color scale and high-pressure systems are presented on a red color scale, where 

a reference mean SLP pressure of 1,010hPa has been calculated from the available data. Although 

WTs are presented as SLP fields, it is important to emphasize that each WT does not correspond to a 

stationary system but they are a representation of the atmospheric dynamics because of the way the 

predictor is assembled, considering the information from up to 7 previous days. 

WTs located at the left on the lattices are characterized by low-pressure systems dominating the 

whole domain, with different locations of the center of the system. The inverse situation is observed 

on the top right and bottom center of the lattice, where WTs corresponding to high-pressure systems 

are located. The rest of the lattice consists of mixed-type WTs, where high and low-pressure systems 

coexist, varying the location of the center of each system. 

Right panel of Figure 4-7 shows the square of the SLP gradients for each weather type. Areas with 

stronger gradients are responsible of the generation of more intense winds as it was stated in §2.1.2. 

This information allows to distinguish between weather types that look very similar when are 

represented as SLP fields, see for instance WT1 and WT8, or WT6 and WT7. 

KMA depends on the initial set of centroids given to the algorithm. In order to become independent 

from the initial seed, 100 random initializations were run and then the average over the 100 samples 

was selected as the most representative set of prototypes. 

 

Figure 4-7: 49 Weather Types represented as SLP fields (left panel) and as the square of the SLP gradients (right 

panel), obtained for Noordwijk using KMA. 
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Under the KMA classification, the time series of the predictor is translated to a time series of WTs, 

which represent the historical realization of the climate. 

Figure 4-8 shows the occurrence probability of each WT at different time scales. Panel b) presents 

the probability of occurrence of the WTs estimated over the whole period available (1979-2014), 

showing that the 49 WTs are present during the 36 years of data, being WT 38, WT 33 and WT 31 the 

most probable ones. The same analysis but at seasonal and monthly scale reveals that during the 

summer, not all the WTs are likely to occur, especially the ones related to low-pressure systems. 

The number of WTs is selected aiming to ease the implementation, fitting and interpretation of the 

model results. The procedure undertaken to determine the number of 49 weather types is presented 

in Appendix B. 

 

Figure 4-8: a) Set of 49 weather types, b) occurrence probability of WTs over the whole period (1979-2014), 

c) occurrence probability of WTs at seasonal scale and d) occurrence probability of WTs at monthly scale. 

 

4.4. Chronology of weather types 

As it was stated, the time series of the predictor is translated to a time series of WTs under the KMA 

classification. The collection of 49 WTs represent a categorical variable and the occurrence sequence 

can be modeled with the Autoregressive Logistic Regression (ALR) model described in §2.1.4. 

Figure 4-8 reveals that seasonality must be included in the chronology model for a proper 

representation of the WT sequence. Therefore, seasonality terms and a Markov chain of order 1 are 

included in the ALR model, and the parameters are obtained fitting the model using the 36 years of 

a)

b)

c)

d)
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data. The autorregresive term is introduced to model the persistence of each WT, which is an 

indicator of the weather dynamics. 

Figure 4-9 shows the daily probabilities of each WT within a year, where the colorbars represent 

cumulative probabilities of occurrence of all the 49 WTs, which are calculated for each day using the 

36 values associated with each year. Panel b) presents the cumulative probabilities estimated from 

fitting the model and panel c) shows the empirical cumulative probabilities within a year for the WTs. 

The seasonality within the year is clearly captured by the model, where some WTs are more likely on 

summer (WT 25 to WT 43), while WTs located on the left of the lattice (WT 1 to WT 14) occur during 

the winter, as it was indicated in Figure 4-8. 

 

Figure 4-9: a) WTs and corresponding color. b) cumulative probabilities of each WT within a year from model 

fitting. c) empirical cumulative probabilities of each WT within a year. 
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4.5. Categorical distribution of sea state types 

Following Rueda et al. (2017), the sea state type is represented as a random vector 𝐼, which is a 

sequence of 2 Bernoulli trials: 

𝐼𝑠𝑒𝑎 = 𝐵(𝑝𝑠𝑒𝑎)

𝐼𝑠𝑤𝑒𝑙𝑙 = 𝐵(𝑝𝑠𝑤𝑒𝑙𝑙)
}  𝐼 = {𝐼𝑠𝑒𝑎, 𝐼𝑠𝑤𝑒𝑙𝑙} (4-4) 

 

Where 𝐼𝑖 denotes the occurrence probability of sea state 𝑖, with 𝑖 = {𝑠𝑒𝑎, 𝑠𝑤𝑒𝑙𝑙}. 

The sample space consists of 4 tuples, 𝑆 = {00,10,01,11}, although the event of no waves (00) is 

highly unlikely, if not impossible. Removing this event, the random variable 𝐼 follows a categorical 

distribution with 3 possible outcomes {10,01,11} conditioned to each weather type. This means that, 

for each weather type, two unimodal sea states of only sea or only swell and one bimodal sea state 

are possible. 

Figure 4-10 shows the occurrence probabilities of the sea state types for each WT, estimated from 

the 3-hourly wave time series at Noordwijk. The predominance of the bimodal sea state (referred as 

“combined”) is clearly observed for all the WTs, with probabilities of occurrence larger than 50% of 

the time. The unimodal sea states share the rest, with a tendency of larger probabilities for the swell 

in most of the WTs. 

 

Figure 4-10: Occurrence probability of sea state types for each WT. 

 

4.6. Marginal distributions of sea state parameters 

Every sea state corresponds to a multivariate random variable. In the case of unimodal sea states, 

three variables are relevant: significant wave height, peak period and mean wave direction, while in 

the bimodal case the number of variables is doubled (3 variables for sea and the same 3 for swell). 

Accordingly, the multivariate random variable is defined by the joint distribution of the relevant 
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variables. To model this joint distribution, the first step is obtaining the marginal distributions of each 

variable associated to each WT. 

4.6.1. Marginal distributions of significant wave height and peak period 

For 𝐻𝑠 and 𝑇𝑝, the marginal distributions are obtained from a mixed model, which consists of a 

truncated central distribution representative of the central or main-mass regime and two generalized 

Pareto distributions for the maximum and minimum regimes, representing the upper and lower tails, 

respectively (Solari & Losada, 2012). The central distribution corresponds to a non-parametric kernel 

density function (Athanassoulis & Belibassakis, 2002), with a threshold for upper and lower tails of 

0.9 and 0.1, respectively. This approach is chosen because it improves the fitting of the upper tail , 

compared to other distributions, as is explained in Appendix C. 

The fitting of the mixed model to the empirical data is shown in the following figure for 𝐻𝑠𝑠𝑒𝑎, and in 

Appendix C for 𝑇𝑝𝑠𝑒𝑎, 𝐻𝑠𝑠𝑤𝑒𝑙𝑙
 and 𝑇𝑝𝑠𝑤𝑒𝑙𝑙

, respectively. The figures correspond to probability plots, 

where the vertical axis indicates the cumulative probability, the blue dots correspond to the 

empirical cumulative probability and the red lines depict the distributions from the mixed model 

associated to each WT. 

These probability plots are tailored for each weather type, explaining the different vertical axes in 

each panel. It can be seen that for all the variables, the central regime is well represented by the 

kernel density function, and the match between the fitted GPD and the data is acceptable in the 

lower and the upper tail of each WT. 

 

Figure 4-11: Probability plots of the empirical and fitted marginal distributions of 𝐻𝑠𝑠𝑒𝑎  associated to each WT. 

 

Another way to present the marginal distributions obtained for the wave parameters corresponds to 

the cumulative density functions (CDFs). The following figures aim to compare the fitted and 
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empirical marginal distributions related to each WT, showing the good match between the 

distributions. 

 

Figure 4-12: Empirical and fitted marginal distributions of 𝐻𝑠 for sea and swell associated to each WT. 

 

 

Figure 4-13: Empirical and fitted marginal distributions of 𝑇𝑝 for sea and swell associated to each WT. 
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4.6.2. Marginal distribution of mean wave direction 

For the mean wave direction, the empirical distributions are considered. They are shown in Figure 

4-14. It can be seen that the swell component is always coming from the north in all the weather 

types, while the sea component has a predominant south-westerly direction when low-pressure 

systems are dominant (left side of the lattice), although a fraction of the sea component is coincident 

with the swell in some weather types. Conversely, this predominance is lost when a high-pressure 

system is located in the North Sea, as it can be seen in the right side of the lattice from the following 

figure. 

Easterly swell component identified in §4.2 is observed in some weather types located at the left side 

of the lattice, but these waves are thought to be spurious, caused by issues in the post-processing of 

the IFREMER data. 

 

Figure 4-14: Empirical PDF for mean wave direction. 

 

4.7. Multivariate copulas 

Wave parameters are usually strongly correlated to each other, and this interdependence can be 

captured using a multivariate copula. Following Rueda et al. (2017), the joint distributions of 𝐻𝑠, 𝑇𝑝 

and 𝐷𝑖𝑟 can be adequately represented using a multivariate Gaussian copula. For unimodal sea 
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states, the copula has 3 variables and this number is doubled in the bimodal case. This copula can be 

easily implemented using the multivariate Gaussian distribution. 

The recent work of Jäger and Morales Nápoles (2017) has shown that the AC skew-t copula provides 

a better representation of the bivariate distribution of 𝐻𝑠 and 𝑇𝑝, preserving the limiting wave 

steepness condition. In order to include this copula in the dependence model, a vine-copula 

approach is proposed, where the bivariate relation between 𝐻𝑠 and 𝑇𝑝 is modeled using the AC 

skew-t copula and all the remaining bivariate relations between parameters are considered to be 

Gaussian. 

The general procedure to model the multivariate dependence structure comprises the following 

steps: 

1. Estimate the correlation parameters for the wave variables for all the sea states types. 

2. Fit a AC skew-t copula for the pair 𝐻𝑠 – 𝑇𝑝 for each sea state type. 

3. Draw the D-vine for each sea state mode. Among the different types of vines, a D-vine was 

selected in this thesis in order to ease the implentation of the vine and the sampling 

procedure. 

4. Calculate the partial correlations that define the D-vine and identify the sampling structure. 

 

4.7.1. Correlation between variables 

For a unimodal sea state, the rank correlation coefficients between variables can be grouped in the 

so-called correlation matrix: 

Ω = [

1 𝜌12 𝜌13
𝜌21 1 𝜌23
𝜌31 𝜌32 1

] (4-5) 

 

Where 𝜌𝑖𝑗  is the rank correlation between variables 𝑖 and 𝑗, with 𝑖 ≠ 𝑗. Subindices 𝑖, 𝑗 = 1,2,3 

represent the variables 𝐻𝑠, 𝑇𝑝, 𝐷𝑖𝑟 respectively. 

In the bimodal case, the subindices 𝑖, 𝑗 = 1, … ,6 are linked to the variables 

𝐻𝑠𝑠𝑒𝑎 , 𝑇𝑝𝑠𝑒𝑎 , 𝐷𝑖𝑟𝑠𝑒𝑎 , 𝐻𝑠𝑠𝑤𝑒𝑙𝑙
, 𝑇𝑝𝑠𝑤𝑒𝑙𝑙

, 𝐷𝑖𝑟𝑠𝑤𝑒𝑙𝑙 respectively and therefore Ω is a 6x6 matrix. 

Spearman’s rank correlations between observed variables in the unimodal cases are calculated over 

the whole available data, regardless whether the sea state belongs to a bimodal sea state, in order to 

provide enough data for the calculation. On the other hand, the Spearman’s rank correlations for the 

bimodal case are computed considering only the simultaneous presence of sea and swell. 

Figure 4-15 depicts the Spearman’s rank correlations between observed variables estimated for the 

bimodal case, while the same variables for the unimodal cases are presented in Appendix D. In the 

figure, positive and negative rank correlations are depicted in cyan and magenta lines, respectively. 

As expected, strong positive correlation is observed between 𝐻𝑠𝑠𝑒𝑎 and 𝑇𝑝𝑠𝑒𝑎 in all the weather types 

for the combined sea state, and the correlation between 𝐻𝑠𝑠𝑤𝑒𝑙𝑙
 and 𝑇𝑝𝑠𝑤𝑒𝑙𝑙

 is much weaker. In 

general, the figure reveals the interdependence between the variables, especially for the combined 

sea state, emphasizing the importance of considering the dependence structure in the statistical 

model. 

Although each weather type has its own particular pattern, some similarities can be identified. For 

the bimodal case, there is a positive correlation between 𝑇𝑝𝑠𝑒𝑎  and 𝑇𝑝𝑠𝑤𝑒𝑙𝑙
 in the WTs from the upper 
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part of the lattice, while in the bottom left this correlation is almost zero or even negative (see WT6 

or WT21). 

 

Figure 4-15: Graphical representation of rank correlation coefficients for the bimodal sea state associated to 

each WT. Numbers from 1 to 6 stand for 𝐻𝑠𝑠𝑒𝑎, 𝑇𝑝𝑠𝑒𝑎 , 𝐷𝑖𝑟𝑠𝑒𝑎 , 𝐻𝑠𝑠𝑤𝑒𝑙𝑙
, 𝑇𝑝𝑠𝑤𝑒𝑙𝑙 , 𝐷𝑖𝑟𝑠𝑤𝑒𝑙𝑙 respectively. Color scale is 

defined between -1 (cyan) for negative correlation, 0 (white) for no correlation and 1 (magenta) for positive 

correlation. 

 

4.7.2. AC skew-t copulas 

Four sets of AC skew-t copulas are estimated: one for each unimodal sea state, and two more for the 

sea and swell components under the bimodal case. Likewise the previous subsection, in the unimodal 

cases the whole available data is considered, regardless whether the sea state belongs to a bimodal 

sea state or not, in order to provide enough data for the calculation. 

Each set consists of 49 copulas, one per each weather type, and the parameters of the copulas 

(correlation coefficient 𝜌, skewness parameters 𝛿1 and 𝛿2 and degrees of freedom 𝜈) are estimated 

using the procedure based on maximum likelihood proposed by Yoshiba (2015), who published the 

corresponding R code which was modified to be used in this study. 

As an example, the two following figures show the set of AC skew-t copulas for the unimodal cases. 

In the figures, 𝑋1 and 𝑋2 represent the univariate margins of 𝐻𝑠𝑠𝑒𝑎 and 𝑇𝑝𝑠𝑒𝑎, and 𝑋  and 𝑋5 do the 

same for 𝐻𝑠𝑠𝑤𝑒𝑙𝑙
 and 𝑇𝑝𝑠𝑤𝑒𝑙𝑙

, respectively. Data in colors (blue for sea and red for swell) represent the 

univariate margins computed from the empirical CDF of the variables associated to each WT, while 

the gray dots correspond to 1,000 simulated values using the fitted AC skew-t copula to each WT 

data. 

The skewness of the joint distribution of 𝐻𝑠 and 𝑇𝑝 is more visible in the sea component, and the 

best fit is obtained for weather types with more data. 
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Figure 4-16: Set of skew-t copulas for the sea component. Observations are shown in blue and simulated values 

from the fitted copulas are shown in gray. 

 

Figure 4-17: Set of skew-t copulas for the swell component. Observations are shown in red and simulated values 

from the fitted copulas are shown in gray. 
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4.7.3. Dependence structure 

In the case of unimodal sea states, the dependence structure is defined by 3 variables: 𝐻𝑠, 𝑇𝑝 and 

𝐷𝑖𝑟, and the joint distribution between them can be modeled using the vine-copula approach, where 

bivariate distributions are considered at the first level and then conditional bivariate distributions are 

needed for the subsequent levels. This structure corresponds to a D-vine on 3 variables and Figure 

4-18 shows an example, where the bivariate dependence between 𝐻𝑠 and 𝑇𝑝 is modeled using a 

AC skew-t copula (denoted in red) and a Gaussian copula is considered for the pair 𝑇𝑝 – 𝐷𝑖𝑟 (denoted 

in blue). Afterwards, the relation between 𝐻𝑠 and 𝐷𝑖𝑟 is established by a conditional Gaussian copula 

(denoted in blue), i.e. the bivariate distribution of 𝐻𝑠 and 𝐷𝑖𝑟 given 𝑇𝑝. 

In the figure, the edges indicate the rank correlation between the variables: 𝑟12 and 𝑟23 denote the 

Spearman´s rank correlation between the corresponding variables, and 𝑟13|2 means the conditional 

rank correlation between 1 and 3 given 2. 

 

Figure 4-18: D-vine on 3 variables with (conditional) rank correlations. 

 

In the bimodal case, the dependence structure is more complex but the concept is the same, where 

conditional pair-copulas are added as building blocks of the multivariate distribution, forming a 

D-vine on 6 variables. The bivariate distribution of 𝐻𝑠 and 𝑇𝑝 are modeled using the AC skew-t 

copulas previously described, and the relation between the remaining variables is considered to be 

Gaussian, as it is schematized in Figure 4-19. AC skew-t copulas are located at the outer positions of 

the first tree in order to optimize the sampling procedure, as it is explained later in §4.9. 

 

Figure 4-19: D-vine on 6 variables with (conditional) rank correlations. 

 

In the D-vine from the figure, the conditional copulas depend on the partial correlations for each 

level. For instance, in the last level the partial correlation between 1 and 5 given 2,3,6,4 is needed to 

define the conditional copula between 14|236 and 25|364, which are conditional copulas depending 

on the previous level, and so on until the base level is reached. Therefore, all the copulas are defined 

from the rank correlations shown in §4.7.1. 
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It is important to recall that bivariate Gaussian copulas are defined by the linear correlation 

coefficient, thus the rank correlations must be transformed using the relation: 

𝜌 = 2 sin (
𝜋

6
𝑟) (4-6) 

 

Where 𝜌 is the Pearson (linear) correlation coefficient and 𝑟 is the Spearman’s rank correlation 

coefficient. 

4.8. Emulator of daily WTs 

As it was mentioned in §2.1.4, the chronology model should be capable to reproduce the historical 

probability of occurrence of each WT, the transition probabilities between WTs, the persistence of 

each WT and the seasonal to interannual variability (Guanche et al., 2014). In order to assess these 

capabilities, synthetic sequences of weather types can be obtained through Monte Carlo simulation, 

where 100 samples are generated to explore the stochastic nature of the process. Each sample is 36 

years long for a fair comparison to the observed data. 

The validation of the chronology model is made by a fourfold comparison against the historical 

sequence of weather types: 

1. Mean annual occurrence probabilities of WTs. 

2. Mean annual duration of WTs. 

3. Transition probability matrix between WTs. 

4. Persistence analysis of WTs. 

 

4.8.1. Mean annual occurrence probabilities of WTs 

In order to explore the interannual variability of the weather types, the mean annual occurrence 

probability for each WT is computed over the available 36 years. Then, the mean annual probabilities 

of each WT are averaged over the whole period and the temporal standard deviations are estimated. 

Figure 4-20 shows the comparison between observed and simulated averaged mean annual 

probabilities on the left panel and the temporal standard deviation of the values for each WT. Results 

are close to the diagonal in both cases, which demonstrate that the model simulations are capable of 

reproducing the probability of occurrence associated with each WT appropiately and furthermore 

preserving the interannual variability observed in the historical data. 

 

Figure 4-20: Scatter plot of observed and simulated mean annual occurrence probabilities of each WT. 
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4.8.2. Mean annual duration of WTs 

A second way to assess whether the interannual variability is adequately represented in the 

chronology model is computing the mean annual duration of each weather type. This is also an 

indicator of the persistence of each WT. Likewise the annual probabilities, the mean annual durations 

are averaged over the whole period and the temporal standard deviations are estimated. 

The comparison between observed and simulated averaged mean annual durations is depicted on 

the left panel of Figure 4-21, and the corresponding temporal standard deviation for each WT is 

shown in the right panel. Again, results are close to the diagonal, proving that the simulations 

reproduce the weather dynamics in terms of the duration of each WT and furthermore the 

interannual variability observed in the historical data is retained. 

 

Figure 4-21: Scatter plot of observed and simulated mean annual duration of each WT. 

 

4.8.3. Transition probability matrix between WTs 

Figure 4-22 presents the observed and mean simulated transition probability matrices, which show 

the probability of changing from WT 𝑖 to WT 𝑗 between consecutive days. Thus, the diagonal of the 

transition matrix corresponds to the probability of staying in the same weather type. From panels a) 

and b), it can be concluded that staying in the same weather type is more likely to occur, because a 

darker color indicates a higher probability. 

Both matrices look very similar, thus the model is effectively reproducing the transition probabilities 

between weather types, observed in the historical data. This is confirmed in the plot from panel c), 

where the same matrices are presented as a scatter plot between observed and simulated 

probabilities. Results are very close to the diagonal and the confidence intervals, estimated over the 

100 samples, show little variability among the simulations. 
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Figure 4-22: a) Observed and b) simulated transition probability matrices. c) Comparison between observed and 

simulated transition probabilities. 

 

4.8.4. Persistence analysis of WTs 

Finally, a persistence analysis of the weather types is performed in order to check the capability of 

the model to reproduce the weather dynamics. Figure 4-23 shows the cumulative distribution of the 

persistence associated with each WT. The red line represents the mean simulated distributions over 

the 100 samples, showing a good matching with the empirical distribution (black line) in all the cases. 

In general terms, it can be seen that weather types at the right in the lattice are more persistent than 

the ones associated to low-pressure systems (left side of the lattice), where the probability of staying 

just 1 day in the WT is closer to the unity. 

 

Figure 4-23: Observed and simulated cumulative distribution of the persistence for each WT. 
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Based on the results from these comparisons, the chronology model is validated and therefore can 

be used to generate synthetic sequences of weather types. 

4.9. Emulator of sea state parameters 

Once the synthetic time series of weather types have been constructed, a MonteCarlo simulation can 

be undertaken in order to generate synthetic time series of multi-modal wave parameters. For each 

time step, the simulation method is divided in two steps (Rueda et al., 2017): 

1. Generation of a sea state type 𝐼𝑖 using the empirical probabilities obtained in §4.5. 

2. Simulation of the corresponding wave parameters considering the marginal distributions 

fitted in §4.6 and the multivariate copula associated to each WT described in §4.7. 

During the MC simulation, 100 samples are generated to explore the stochastic nature of the 

process. Each sample is 20 years long (1993 to 2012) with 3-hourly sea states, to ease the 

comparison to the observed data. 

4.9.1. Sampling procedure 

The first step of the MC simulation is generating the sea state types. For each weather type, a vector 

containing values 1, 2 and 3, where each value is related to sea, swell and combined respectively, is 

randomly generated using the empirical probabilities obtained in §4.5. Then, the second step 

proceeds, where the length of the samples for each WT depends on the number of sea states 

generated. 

In the case of unimodal sea states, the cumulative sampling procedure for a D-vine on 3 variables is 

applied, following Kurowicka and Cooke (2006). Let 𝑋1, 𝑋2 and 𝑋3 be the margins of the variables 𝐻𝑠, 

𝑇𝑝 and 𝐷𝑖𝑟, and let 𝑈1, 𝑈2 and 𝑈3 be independent uniform [0,1] variables. Then, the sampling 

procedure proceeds as follows: 

1. Random sampling from 𝑈1, 𝑈2 and 𝑈3, where realizations are denoted 𝑢1, 𝑢2 and 𝑢3. 

2. 𝑥1 = 𝑢1 

3. Calculate 𝑥2 from the inverse conditional AC skew-t copula (conditional on 𝑥1): 

𝑥2 = 𝐹𝑟12;𝑥1
−1 (𝑢2) (4-7) 

In this notation, 𝐹𝑟12;𝑥1 denotes the conditional copula between 1 and 2 given the sample 𝑥1 

with rank correlation 𝑟12. 

4. Calculate 𝑥3 using the conditional Gaussian copula between 1 and 3 given 2, according to the 

D-vine schematization shown in Figure 4-18: 

𝑥3 = 𝐹𝑟23;𝑥2
−1 (𝐹𝑟13|2;𝐹𝑟12;𝑥2(𝑥1)

−1 (𝑢3)) (4-8) 

 

As it was explained in §2.1.8, the conditional Gaussian copulas are given by eqs. (2-13) and (2-14). In 

the case of the AC skew-t copulas, the calculation of the conditional distribution functions must be 

done numerically, because there is no closed form available. For the sampling procedure, 500,000 

values were randomly generated for each fitted AC skew-t copulas associated to each sea state and 

each weather type, and then the cumulative distributions 𝐹 and 𝐹−1 are computed using the 

corresponding conditional sample. 

Once 𝑥1, 𝑥2 and 𝑥3 have been generated, the values for 𝐻𝑠, 𝑇𝑝 and 𝐷𝑖𝑟 can be directly obtained 

using the inverse cumulative distribution functions fitted for each weather type, as shown in §4.6. 
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For the bimodal case, the sampling procedure is more complicated because now a D-vine on 6 

variables is involved. Extending the preceding approach, the sampling procedure requires the 

generation of 6 independent uniform [0,1] variables. Keeping the same subindices for the wave 

parameters shown in Figure 4-19, the sampling procedure can be summarize using a short notation 

(Kurowicka & Cooke, 2006): 

𝑥1 = 𝑢1 (4-9) 

𝑥2 = 𝐹2|1:𝑥1
−1 (𝑢2) (4-10) 

𝑥3 = 𝐹3|2:𝑥2
−1 (𝐹3|12:𝐹1|2(𝑥1)

−1 (𝑢3)) (4-11) 

𝑥 = 𝐹 |3:𝑥3
−1 (𝐹 |23:𝐹2|3(𝑥2)

−1 (𝐹 |123:𝐹1|23(𝑥1)
−1 (𝑢 ))) (4-12) 

𝑥 = 𝐹 | :𝑥6
−1 (𝐹 |3 :𝐹3|6(𝑥3)

−1 (𝐹 |23 :𝐹2|36(𝑥2)
−1 (𝐹 |123 :𝐹1|236(𝑥1)

−1 (𝑢 )))) (4-13) 

𝑥5 = 𝐹5| :𝑥4
−1 (𝐹5|  :𝐹6|4(𝑥6)

−1 (𝐹5|3  :𝐹3|64(𝑥3)
−1 (𝐹5|23  :𝐹2|364(𝑥2)

−1 (𝐹5|123  :𝐹1|2364(𝑥1)
−1 (𝑢5))))) (4-14) 

 

The full terms of the sampling procedure are available to the reader in the Appendix E. 

Once again, after 𝑥1, 𝑥2 , 𝑥3, 𝑥 , 𝑥5, 𝑥  have been generated, the values for 

𝐻𝑠𝑠𝑒𝑎 , 𝑇𝑝𝑠𝑒𝑎 , 𝐷𝑖𝑟𝑠𝑒𝑎 , 𝐻𝑠𝑠𝑤𝑒𝑙𝑙
, 𝑇𝑝𝑠𝑤𝑒𝑙𝑙

, 𝐷𝑖𝑟𝑠𝑤𝑒𝑙𝑙 can be directly obtained using the inverse cumulative 

distribution functions fitted for each weather type, as shown in §4.6. 

4.9.2. Correlation between simulated variables 

Validation of the simulated wave climate can be addressed comparing the rank correlations between 

simulated wave parameters and the rank correlation between the observed variables. Figure 4-24 

shows the mean rank correlations, averaged over the 100 samples, related to the bimodal sea state, 

associated with each weather type. Comparing to the observed values shown in Figure 4-15, it can be 

seen that the rank correlation between variables is succesfully reproduced by the dependence 

structure, preserving the statistical relations between the wave parameters. In the unimodal cases, 

the match is as good as the one presented in Figure 4-24 (not shown). 

4.9.3. Joint distributions of simulated variables 

Finally, a second validation of the simulated wave climate is carried out in terms of the bivariate 

distributions between wave parameters. The following set of figures show the joint distribution of 

the pairs 𝐻𝑠 − 𝑇𝑝, 𝐷𝑖𝑟 − 𝐻𝑠 and 𝐷𝑖𝑟 − 𝑇𝑝  for the sea component, regardless if the data belong to an 

unimodal or bimodal sea state. The set of figures for swell is included in Appendix F. In the figures, 

the observed and simulated wave data is sorted by months, and the wave climate from the 100 

samples is plotted at the same time. The colored contours show the joint probability density of each 

pair of variables. 

In general terms, the statistical model for the predictand gives a sound representation of the present 

wave climate. Joint probability density of simulated values appears much wider and denser than the 

observed densities because 1 realization of present wave climate is being compared against 100 

samples. Nevertheless, the simulated joint densities follow the observed distributions as it can be 

concluded comparing the contours. 
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Figure 4-24: Graphical representation of correlation coefficients for the simulated bimodal sea state associated 

to each WT. Numbers from 1 to 6 stand for 𝐻𝑠𝑠𝑒𝑎 , 𝑇𝑝𝑠𝑒𝑎 , 𝐷𝑖𝑟𝑠𝑒𝑎 , 𝐻𝑠𝑠𝑤𝑒𝑙𝑙
, 𝑇𝑝𝑠𝑤𝑒𝑙𝑙 , 𝐷𝑖𝑟𝑠𝑤𝑒𝑙𝑙  respectively. Color scale 

is defined between -1 (cyan) for negative correlation, 0 (white) for no correlation and 1 (magenta) for positive 

correlation. 

 

Looking more in detail, the bivariate distribution of 𝐻𝑠𝑠𝑒𝑎 − 𝑇𝑝𝑠𝑒𝑎  depicts the capability of the 

AC skew-t copula of representing the skewness observed in the empirical joint distribution. However, 

this is not that clear when analyzing the swell component, but this can be explained looking at Figure 

4-17, where the skewness of the swell copulas is not as notorious as the one of the sea. 

Regarding the wave mean direction, the behavior is as expected: sea component is coming mainly 

from SW and the swell is arriving predominantly from N. Fractions of swell coming from SW are also 

well represented in the simulated data. Swell coming from E must be treated carefully, as these 

appear to be spurious, due to issues in the post-processing of the IFREMER data. 
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Figure 4-25: Joint probability density of the pair 𝐻𝑠 − 𝑇𝑝 for the sea component, sorted by months. Simulated 

values correspond to 100 samples. Joint probability density is shown by colored contours. 

 

 

Figure 4-26: Joint probability density of the pair 𝐷𝑖𝑟 − 𝐻𝑠 for the sea component, sorted by months. Simulated 

values correspond to 100 samples. Joint probability density is shown by colored contours. 
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Figure 4-27: Joint probability density of the pair 𝐷𝑖𝑟 − 𝑇𝑝 for the sea component, sorted by months. Simulated 

values correspond to 100 samples. Joint probability density is shown by colored contours. 
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5. Future wave climate 
 

This chapter presents the results obtained following the methodology described in §3.3. 

5.1. Validation of GCM ACCESS1.0 

5.1.1. Weather types 

Firstly, the SLP fields and the SSLPGs are considered to build the predictor at daily scale. The SLP 

fields are extracted from the outcomes of the GCM ACCESS1.0 for the historical scenario, spanning 

from 1979 to 2005 (27 years) with daily resolution. 

The predictor is assembled as explained in §4.1.2 over the area determined using the ESTELA model. 

Then, the time series of the daily predictor is projected over the 52 EOFs obtained from CFSR 

reanalysis. Afterwards, KMA is applied to the PCs considering 49 clusters being represented initially 

by the centroids from CFSR reanalysis. Finally, new centroids are estimated as the closest data value 

in ACCESS1.0 to the average over the whole data in each cluster, leading to a new set of weather 

types, which is shown in Figure 5-1. 

The set of WTs is similar to the one obtained for the CFSR reanalysis data, shown in Figure 4-7, and 

the differences may be explained by the spatial and temporal resolution in ACCESS1.0 being different 

than the reanalysis. 

 

Figure 5-1: 49 Weather Types represented as SLP fields (left panel) and as the square of the SLP gradients (right 

panel), obtained for Noordwijk using KMA and the predictor from ACCESS1.0 model for the historical period. 
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After the set of weather types have been validated, the analysis of the statistical model for the daily 

predictor from ACCESS1.0 must be carried out involving 4 tests: 

1. Occurrence probability over the whole period, at seasonal and monthly scale. 

2. Chronology model of the WTs. 

3. Transition probability matrices 

4. Persistance associated to each WT. 

For a fair comparison, the common period of 27 years (1979 – 2005) are selected from both the CFSR 

reanalysis and ACCESS1.0 model. 

5.1.2. Occurrence probability of weather types 

Figure 5-2 shows the probability of occurrence of each weather type, according to the predictor from 

CFSR data and from the GCM ACCESS1.0. Both lattices look similar, but differences are evidenced in 

Figure 5-3, where the absolute differences for each WT are shown on the left panel. Differences 

relative to the CFSR data are shown in the right panel of the latter figure. Although differences in 

probabilities are small in absolute terms, some of these differences can reach up to 50% in relative 

terms. 

 

Figure 5-2: Occurrence probability associated to each WT for daily predictor from CFSR (left panel) and 

ACCESS1.0 (right panel). 

 

Figure 5-3: Comparison of occurrence probability associated to each WT in terms of absolute differences (left 

panel) and differences relative to CFSR (right panel). 
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In order to compare objectively the differences between both occurrence probability lattices from 

Figure 5-2, the same two metrics considered by Pérez et al. (2014b) to assess the performance of the 

CMIP5 models are introduced, namely the scatter index and the relative entropy. 

The scatter index 𝑆𝐼 corresponds to the root mean square error normalized by the mean frequency: 

𝑆𝐼 =

√∑ (𝑝𝑖 − 𝑝𝑖
′)
2
 𝑁

𝑖=1

𝑁

∑ 𝑝𝑖
𝑁
𝑖=1
𝑁

 
(5-1) 

 

Where 𝑝𝑖  denotes the probability of the weather type 𝑖 estimated from the CFSR reanalysis, 𝑝𝑖
′ is the 

relative frequency for the same weather type from ACCESS1.0 and 𝑁 is the number of weather types. 

The relative entropy is defined using the same variables as: 

𝑅𝐸 = ∑𝑝𝑖

𝑁

𝑖=1

|log (
𝑝𝑖
𝑝𝑖
′)| (5-2) 

 

The scatter index gives more importance to commonly occurring situations, whereas the relative 

entropy is more suitable to analyze weather types with low occurrence probability, which might be 

related to extreme events (Pérez et al., 2014b). 

Lower values of SI and RE indicate a high degree of similarity between both predictors. In this case, 

for the historical period values of 𝑆𝐼 = 0.27 and 𝑅𝐸 = 0.19 are obtained, therefore it can be 

concluded that the relative frequencies of the weather types are well represented by the GCM 

ACCESS1.0 model. 

The same analysis at seasonal and monthly scale is presented in Appendix G, where it can be seen 

that both the seasonal and monthly structures are well represented in both datasets. 

5.1.3. Chronology model of weather types 

The empirical cumulative probabilities of each WT within a year are shown in Figure 5-4 for CFSR 

data (top panel) and ACCESS1.0 data (bottom panel). Both the seasonality and the autorregresive 

term are well represented, even though some differences are observed especially during the 

summer, where the probability of the last WTs increases (purple area in the figure). 
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Figure 5-4: Empirical cumulative probabilities of each WT within a year from a) CFSR and b) ACCESS1.0. 

 

5.1.4. Transition probability matrices 

Transition probability matrices for both predictors are presented in Figure 5-5. The diagonal 

predominates in both cases, and differences between the matrices are located mostly outside the 

diagonal, as it is depicted in panel d) of the figure. Panel c) evidences some differences in the 

transition probabilities between both predictors, but they do not appear to be significant. 
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Figure 5-5: a) Transition probability matrix for CFSR, b) transition probability matrix for ACCESS1.0, c) 

comparison of transition probabilities between both predictors and d) absolute differences between transition 

probability matrices. 

 

5.1.5. Persistence of each weather type 

Finally, a persistence analysis of the WTs using both predictors is performed in order to check how 

the weather dynamics are reproduced by each predictor. Figure 5-6 shows the cumulative 

distribution of the persistence associated with each WT. The black line represents the distribution 

obtained from CFSR reanalysis, showing a good matching with the red line, associated to the 

ACCESS1.0 model for the same period, in all the cases. 
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Figure 5-6: Comparison of persistence distribution related to each WT for both predictors. 

 

Although some differences in the statistical model for the predictor between the CFSR and 

ACCESS1.0 datasets are observed, the agreement between both predictors is considered acceptable 

and the comparison with climate change projections proceeds. 

5.2. Changes in future scenario 

Once the GCM ACCESS1.0 has been validated for the historical scenario, the next step corresponds to 

apply the statistical model of the predictor to the SLPs and SSLPGs from the chosen scenario, being 

the most severe one (RCP8.5) during the last time slice of the century (2070-2099). This scenario is 

referred to as “future scenario” hereafter. 

In this case, the procedure to obtain the future weather types is as follows: 

1. Assemble the daily predictor using future scenario data. 

2. Project the predictor data over the EOFs from the CFSR reanalysis. 

3. Cluster the PCs using the centroids from the CFSR reanalysis. 

4. Estimate new centroids as the closest data value in the future dataset to the average over 

the whole data in each cluster. This new set of centroids correspond to the future weather 

types. 

The time sequence of WTs in the future scenario can be analyzed using the 4 tests from the previous 

subsection in order to determine the occurrence of changes in the predictor for the selected 

scenario. 

5.2.1. Occurrence probability of weather types 

Figure 5-7 shows the probability of occurrence of the weather types estimated over the whole 

period, for the historical period (1979-2005) and the future scenario (2070-2099). Changes are 



56 5.2. Changes in future scenario 

 

 

highlighted in Figure 5-8, where small absolute changes in probabilities can be important when 

compared to the historical values. Changes in some weather types probabilities can reach up to 60% 

of increase or decrease. 

 

Figure 5-7: Occurrence probability associated to each WT for historical period (left panel) and future scenario 

(right panel). 

 

Figure 5-8: Changes in occurrence probability associated to each WT in terms of absolute differences (left panel) 

and differences relative to historical period (right panel). 

 

The metrics introduced in §5.1.2 may be used to measure the degree of similarity between the 

present and future probabilities. In this case, the scatter index and the relative entropy are 𝑆𝐼 = 0.31 

and 𝑅𝐸 = 0.22 respectively, being slightly higher than the values obtained for the comparison of 

ACCESS1.0 and the CFSR reanalysis in the historical period (𝑆𝐼 = 0.27 and 𝑅𝐸 = 0.19) and therefore 

suggesting the occurrence of changes in the future period. 

The same analysis at seasonal and monthly scale is presented in Appendix G, where minor changes in 

seasonal and monthly probabilities for the WTs are observed. 

5.2.2. Chronology model of weather types 

The empirical cumulative probabilities of each WT within a year are shown in Figure 5-9 for the 

historical period (top panel) and the future scenario (bottom panel). The most notorious changes are 
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identified during the summer, where the increase of WT41 at expenses of the decrease of WT38 is 

observed in the future projection. 

 

Figure 5-9: Empirical cumulative probabilities of each WT within a year from a) historical period and b) future 

scenario. 

5.2.3. Transition probability matrices 

Transition probability matrices for the historical period and the future scenario are presented in 

Figure 5-10. No significant changes are identified in this part of the projection, as the diagonal 

predominates in both cases, and differences between the matrices are located mostly outside the 

diagonal. Panel c) shows that transition probabilities of the same weather type lay near the diagonal 

of the plot, evidencing small changes between the historical period and the future scenario. 
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Figure 5-10: a) Transition probability matrix for historical period, b) transition probability matrix for future 

scenario, c) comparison of transition probabilities between both periods and d) absolute differences between 

transition probability matrices. 

 

5.2.4. Persistence of each weather type 

The last test corresponds to the persistence analysis of the weather types. Figure 5-11 shows the 

cumulative distribution of the persistence associated with each WT in red for the historical period, 

and in blue for the future scenario. In general terms, the observed changes do not appear to be 

significant, however WT21 shows an important reduction in the persistence. 
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Figure 5-11: Comparison of persistence distribution associated to each WT for both predictors. 
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6. Morphological simulation 
 

This chapter presents the results obtained following the methodology described in §3.4. 

6.1. Model set-up 

The same model calibrated and validated by Walstra et al. (2012) is considered to compute the total 

longshore sediment transport (LST) at Noordwijk, including bed load and suspended load transport. 

The initial profile is based on a single transect which was measured in 1984 and is interpolated onto a 

computational grid with a resolution of 200m offshore, gradually decreasing to 2m across the active 

part of the profile (above −10m water depth). The transect is oriented normal to the shore with an 

angle of 298°N and the LST is integrated over the active part of the profile. 

The model can be forced with a wave time series of up to 3 parameters (𝐻𝑟𝑚𝑠, peak period 𝑇𝑝, and 

mean wave direction), therefore the sea and swell components from the IFREMER reanalysis at 

Noordwijk are combined in the same way presented in §4.2. The 20 years of wave data are 

considered as the forcing boundary condition in the calculation. Following Walstra et al. (2012), 

waves with directions outside the range ±70° relative to the shore normal are truncated to ±70°. 

Tides and storm surges are not included in the model, in order to compute just the wave-induced 

longshore sediment transport. The bottom updating module is switched off in order to estimate the 

potential sediment transport, assuming that the sediment is always available to be mobilized. 

6.2. Model validation 

The yearly-averaged longshore sediment transport is presented in Table 6-1, where positive 

transport is directed northwards and negative transport goes southwards, respectively. A net 

transport of 1.58 millions of m3/year directed southwards is obtained, which differs from previous 

studies. For instance, van Rijn (1997) computed a yearly-averaged net sediment transport at 

Noordwijk of 250,000m3/year directed northwards. In order to find the origin of this difference, the 

longshore sediment transport is recomputed using wave time series from 2 measurement stations 

from Rijkswaterstaat: YM6 and MPN. 

 

Table 6-1: Yearly-averaged longshore sediment transport from IFREMER wave reanalysis. 

Transport Longshore Sediment Transport [Mm3/year] 

Gross - Northwards 1.350 

Gross - Southwards -2.933 

Net transport -1.583 

 

The location of the 2 measurement stations is shown in Figure 6-1. YM6 is the closest to the 

“Noordwijk” node from IFREMER, while MPN is the closest to the shore. Wave time series at YM6 

spans from 1979 to 2008, and MPN wave data covers from 1979 to 2002. The wave climate at each 

station and the corresponding IFREMER wave climate for the common period are shown in Figure 
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6-2: upper panels present the wave roses in terms of 𝐻𝑠 for the IFREMER node in the period 

1979-2008 and YM6, while lower panels show the same information of MPN and the IFREMER node 

in the period 1979-2002. Directions outside the range ±70° relative to the shore normal are included 

as ±70°. 

 

Figure 6-1: Location of measurement stations and IFREMER node. 

 

Figure 6-2: Wave roses for common periods for: a) Noordwijk and b) YM6, c) Noordwijk and d) MPN. 
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From Figure 6-2, it can be seen that northern waves with higher 𝐻𝑠 predominate in IFREMER data, 

explaining the direction of the net longshore sediment transport to the south. This is not that clear in 

the wave climates from the two stations, where the occurrence of waves relative to the shore normal 

seems to be more balanced. This behavior can also be observed when computing the 

yearly-averaged longshore sediment transport using the different wave time series. As it is 

summarized in Table 6-2, the net sediment transport from IFREMER data is directed southward and 

the magnitudes are 5-6 times larger than the values obtained for YM6 and MPN. 

It is important to notice the directions of the net LST computed from the measurement stations: 

while the net LST goes northwards at MPN, it is reversed at YM6, being coherent with the direction 

estimated using the IFREMER data. As YM6 is close to the IFREMER node, this suggests that wave 

nearshore processes must be taken into account in order to improve the characterization of the 

wave climate arriving to Noordwijk, especially in the active zone of the profile. 

The existence of an inversion point of the longshore sediment transport has also been reported in 

previous studies and it has been located slightly to the north of IJmuiden (van Rijn, 1997). 

 

Table 6-2: Yearly-averaged LST in millions of m3/year from the different wave climates. 

Transport IFREMER YM6 IFREMER MPN 

Gross - Northwards 1.457 0.913 1.603 0.579 

Gross - Southwards -3.260 -1.210 -3.021 -0.352 

Net transport -1.803 -0.297 -1.418 0.227 

 

Despite the difference in the net LST direction between the IFREMER node and MPN, the longshore 

sediment transport for the historical period and the future scenario are estimated using the IFREMER 

wave data, in order to illustrate the application of the methodology to assess the effect of climate 

change. 

6.3. Distribution of LST per WT 

Following Cánovas (2012), the daily cumulative longshore sediment transport for each weather type 

is computed using the IFREMER reanalysis. Then, the distribution of the daily LST associated to each 

WT is obtained, as it is presented in Figure 6-3. Weather types with a relevant wind sea component, 

located at the left side of the lattice, show an important LST directed northwards. On the other hand, 

when the sea component is less present, swell waves coming from the north dominate and the LST 

goes southwards, as it is observed in the right side of the lattice. 

6.4. Longshore sediment transport as a metric of change 

As it was explained in the previous chapter, differences between the occurrence probability of the 

weather types estimated using different models or time periods may be small in absolute terms, but 

these small differences can represent changes up to 60% in relative terms. In order to determine 

whether these differences are significative or not for coastal processes, a metric is needed. One 

option is considering the longshore sediment transport as a measure of the relevance of the changes 

in the occurrence of the weather types. Therefore, the calculation of the LST for the historical period 

and the future scenario are required. 
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Figure 6-3: Distribution of LST in m3/day related to each WT. 

 

One way to estimate the longshore sediment transport consists of weighting the distribution of LST 

computed for each weather type by the corresponding probability of each WT, and then integrating 

over the WTs to come up with yearly-averaged gross and net longshore sediment transports. Two 

comparison are presented: firstly, LST is computed using the weather types’ probabilities from CFSR 

and ACCESS1.0 to validate the climate model, and secondly, probabilities of WTs from ACCESS1.0 for 

the historical period and the future scenario are considered in order to determine the magnitude of 

changes in the gross and net LSTs. 

6.4.1. Historical period 

Figure 6-4 shows the distribution of total gross LST and the yearly-averaged gross LST related to each 

WT, considering the occurrence probability of the WTs from CFSR and ACCESS1.0 for the common 

period. Differences in the weather types, depicted by the black lines in panel b), are more significant 

for the weather types located at the left of the lattice, related to low-pressure systems which are 

present during winter. Conversely, weather types associated to summer conditions, located at the 

right side of the lattice, show smaller gross LSTs and also smaller differences between reanalysis and 

climate model. 

Predominance of LST directed southwards is clearly seen in most of the weather types and confirmed 

in the total yearly-averaged gross LST shown in panel c). Total gross and net LSTs obtained from CFSR 

and ACCESS1.0 look similar, and therefore it is concluded that the climate model provides a sound 

representation of the recent past, to be compared with the future projection. 
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Figure 6-4: a) Distribution of total gross LST in m3/day estimated for CFSR and ACCESS1.0 for the recent past 

(1979-2005); b) yearly-averaged gross LST associated to each WT and c) yearly-averaged total gross and net LST 

estimated for CFSR and ACCESS1.0 for the recent past (1979-2005). Black lines indicate the difference between 

both models for each WT. 

 

6.4.2. Changes in future scenario 

In the same way, Figure 6-5 shows the distribution of total gross LST and the yearly-averaged gross 

LST associated to each WT, considering the occurrence probability for the historical period and the 

future scenario, both from ACCESS1.0. Black lines depict the differences between CFSR and 

ACCESS1.0 for the recent past, as it is shown in Figure 6-4, to provide an idea of the model 

uncertainty, given the fact that just one climate model has been included in the analysis. Red lines 

show the differences in gross LST between the historical period and the RCP8.5 scenario during the 

period 2070-2099. A significative increase of the southwards LST is observed for WT8, WT9, WT10 

and WT48, which is counteracted by a decrease in WT15, WT21 and WT22, giving a sligthly smaller 

total gross LST directed southwards in the future scenario, compared to the recent past, as it is 

shown in panel c). 

Regarding the gross LST directed northwards, a decrease in WT15 is balanced by an increase in 

WT10. Changes in the rest of the weather types lead to a decrease in future total gross LST directed 
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northwards, as it is shown in panel b). This decrease is responsible for the increase of the net LST 

southwards. A detailed explanation of the observed changes is given in the next chapter. 

 

Figure 6-5: a) Distribution of total gross LST in m3/day estimated for historical period and future scenario; b) 

yearly-averaged gross LST associated to each WT and c) yearly-averaged total gross and net LST estimated for 

historical period and future scenario. Black lines indicate the difference between both models for each WT for 

the recent past, and red lines depict the difference between historical period and future scenario. 
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7. Discussion 
 

In this chapter a more detailed explanation is given regarding the results presented in the previous 

chapters. 

7.1. Weather-type based wave climate modeling 

7.1.1. Weather types 

One of the main advantages of the statistical downscaling approach followed in this work is the 

relation established between the predictor and the predictand, particularly, the SLP fields and the 

wave climate, which has been characterized by bulk parameters of different partitions. Grouping the 

wave climate according to similar atmospheric conditions over the wave generation area, namely 

weather types, offers a robust tool to understand the wave climate arriving to the location of 

interest. Of course, the classification is determined by the selected number of weather types, which 

fulfills the compromise between a significant number of clusters for the predictor and a minimum 

number of wave data per group. 

The relation between the atmospheric patterns and the wave climate is summarized in Figure 7-1 by 

reproducing some previous figures, where the 49 weather types and the significant wave height, 

peak period and mean wave direction for the sea and swell component are shown in the different 

panels. Panel a) presents the dynamic predictor, which shows the spatial and temporal distribution 

of high and low-pressure systems that are relevant for the generation of waves reaching Noordwijk, 

as the predictor was built using the isochrones of the wave energy travel time. Weather types on the 

left side of the lattice correspond to low-pressure systems, with strong SLP gradients over the 

Greenland and the Norwegian Seas and milder gradients over the North Sea, as it is depicted in the 

right panel in Figure 4-7. On the other hand, high-pressure systems are located on the right side of 

the lattice, with smoother SLP gradients over the whole domain except for weather types on the top 

right corner of the lattice. 

According to seasonal occurrence probability of each WT shown in panel e) of Figure 7-1, the 

weather types from the right side of the lattice are more present in summer, while the weather types 

located on the left bottom of the grid are likely to occur just during the winter. These results are 

consistent with the weather types obtained by Camus et al. (2014b) for the North Atlantic region. 

Low-pressure systems are associated with important sea component, as it can be inferred from panel 

b) of Figure 7-1. This component of the wave climate is significantly reduced in weather types from 

the right side of the lattice. During summer, milder conditions are expected in the whole North 

Atlantic basin, leading to less generation of waves arriving from the English Channel. Conversely, 

low-pressure systems located in front of the English and French coasts are responsible of the 

generation of the waves reaching Noordwijk from the west. The swell component is present in all the 

weather types, but reduces significantly in WT3, WT10, WT11, WT18 and WT39. This might be 

explained by the presence of weaker systems near the Arctic. 

Panel c) from Figure 7-1 reveals that low-pressure systems on the left side of the weather-type lattice 

are driving sea states with higher 𝐻𝑠𝑠𝑒𝑎, see for instance WT15 or WT17. WT39 also has important 

wave heights for the sea component, despite its location on the right side of the lattice. The large 

values of 𝐻𝑠𝑠𝑒𝑎 and 𝑇𝑝𝑠𝑒𝑎  in WT39 are associated with winter events, as it is concluded from the 

seasonal occurrence probability of this weather type in panel e) of Figure 7-1. In general terms, 
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low-pressure systems are associated with more energetic sea waves, as the joint distribution of 𝐻𝑠𝑠𝑒𝑎 

and 𝑇𝑝𝑠𝑒𝑎 reveals: the most probable values for the significant wave heigths are in the range 2 – 4m 

and for the periods lay between 6 – 8s for WTs on the left side of the lattice. Conversely, in the right 

side of the lattice, the most probable values for the significant wave heights are lower than 2m and 

for the peak periods lay between 4 – 6s respectively. 

 

Figure 7-1: a) Weather types for the atmospheric classification, b) empirical distribution of mean wave direction 

per WT, empirical joint distribution of 𝐻𝑠 and 𝑇𝑝 per WT for c) sea component and d) swell component, e) 

seasonal occurrence probability associated to each WT. 

 

b)a)

d)c)

e)



68 7.1. Weather-type based wave climate modeling 

 

 

Panel d) of Figure 7-1 depicts the joint distribution of 𝐻𝑠𝑠𝑤𝑒𝑙𝑙
 and 𝑇𝑝𝑠𝑤𝑒𝑙𝑙

, where it can be seen that 

the most probable values for the significant wave heights are in the order of 1-2m, with maximum 

values up to 6m in WT10. In the case of 𝑇𝑝𝑠𝑤𝑒𝑙𝑙
, the most probable values are ranging between 8s and 

12s. 

7.1.2. Time scales 

7.1.2.1. Intra-daily scale 

As it was shown in §4.8, the emulator of daily weather types represents adequately the chronology 

of WTs at different time scales: inter-annual, seasonal, monthly and daily. The chronology of the 

weather types determines the chronology of the waves at all the mentioned time scales, but one is 

missing: the intra-daily scale, as the waves are to be generated every 3hrs. 

The way the statistical model has been built, a daily value of a certain weather type defines the 

copulas and the marginal distributions which have to be used to generate 8 synthetic multivariate 

vectors of wave parameters (temporal resolution of 3 hrs). In the model, there is no variable that 

controls the sequencing of the wave parameters at the intra-daily scale, and the generation of a calm 

sea state followed by a very large 𝐻𝑠 in the next 3 hours might happen due to the stochastic 

character of the wave emulator. 

For long-term morphodynamic evolution, the temporal order of the sea states may be relevant, 

depending on the response of the system to wave forcing. If the same amount of storms are 

preserved, which is guaranteed by the marginal distribution of each wave parameter and the 

multivariate dependence given by the vines, then the lack of an intra-daily scale modeling is not 

undermining the applicability of the weather type based statistical model. Nevertheless, if the study 

aims to model the impact of storms on the morphology of the coast, then some assumptions about 

the intra-daily distribution of the wave parameters is required. For instance, one popular but simple 

approach is assuming a triangular distribution for the variable of interest, as it is shown for instance 

by Rueda et al. (2016c). 

The modeling of the intra-daily scale is a matter of ongoing research. One promising approach is the 

application of time-varying vine-copulas, where the multivariate dependence between variables is 

modeled as a stochastic process in time using Markov properties. An interesting review is given by 

Jäger and Morales Nápoles (2017) with an application for time series of significant wave heights and 

mean zero-crossing periods in the North Sea. 

7.1.2.2. Interannual variability 

Validation of the emulator of daily weather types also showed that the interannual variability of the 

climate is captured by the chronology model. In the particular case of this thesis, a Markov term of 

order 1 was sufficient, but there are cases where this term (or one of higher order) is not enough and 

the introduction of covariates is needed, as it was explained in §2.1.4. 

One alternative consists of using a set of monthly weather types, which are obtained applying the 

same classification techniques (K-means algorithm, for instance) to the Principal Components (PCs) 

of the predictor at a monthly scale. In this sense, the collection of monthly weather types represent 

synoptic patterns of larger time scale which in turn define the occurrence of the daily weather types. 

Usually, the monthly weather types represent climate indices such as the North Atlantic Oscillation 

(NAO) or the East Atlantic Oscillation (EA), to name a few. 

An application of monthly weather types is given by Rueda et al. (2017), who considered 9 monthly 

weather types in a statistical downscaling for a location in Southern California. In their work, the 
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sequencing of the monthly WT was extracted from the historical realization of the climate during the 

period 1979-2009. In a deterministic approach, considering the historical sequence of monthly 

weather types allows to reproduce the interannual variability exactly as it is observed in the historical 

realization, resembling a hindcast. A fully stochastic approach should consider a chronology model 

for the monthly weather types, which in turn will drive the chronology model of the daily weather 

types. 

7.1.3. Multivariate copulas 

Recent works have shown the good performance of Gaussian copulas to model the multivariate 

distribution of wave parameters (Rueda et al., 2017) and the ability of the AC skew-t copula to 

incorporate the skewness of the bivariate distribution of significant wave height and peak period 

introduced by the physical limit of the wave steepness (Jäger & Morales Nápoles, 2017). One of the 

main contributions of this thesis is combining the advantages from both approaches through the 

application of the so-called vine graphical model. 

Despite the good results obtained for the multivariate dependence model, it is important to clarify 

the interpretation of the AC skew-t copula. Jäger and Morales Nápoles (2017) justified the use of the 

AC skew-t copula because it captures the physical limitation on wave steepness due to wave 

breaking, and this argument is valid when the random variables correspond to bulk wave 

parameters. Originally, the wave steepness condition was defined for regular waves and then the 

concept was extended for sea states, therefore this condition is unique for a given sea state. 

Consequently, the use of AC skew-t copulas for the sea and swell components may not be justified in 

terms of a wave steepness condition but indeed as a good representation of the asymmetry found in 

the empirical joint distributions. 

To illustrate the good performance of the AC skew-t copula in the vine-copula approach adopted in 

this work, a climate-based stochastic simulation was run considering a trivariate vector for each sea 

state consisting of bulk wave parameters (𝐻𝑠, 𝑇𝑝, 𝐷𝑖𝑟), which was created using the sea and swell 

components. In this case, the use of the copula is justified in terms of the inclusion of the wave 

steepness condition and the agreement with the observed distribution is satisfactory, as it is shown 

in Figure 7-2, where the density of the simulated joint distributions consider 100 samples. 

To show the better performance of the AC skew-t copula compared to the Gaussian copula, the same 

stochastic simulation was carried out using the latter copula for the bivariate distribution of 𝐻𝑠 and 

𝑇𝑝. The results are shown in Figure 7-3, where it can be seen that the lower envelope of the 

simulated data is not as sharp as it is appreciated in the observed data. 

It is important to highlight that the better results obtained using the AC skew-t copula are at 

expenses of a higher computational cost due to numerical implementation of the conditional copulas 

and their related inverse functions. A vine based on Gaussian copulas is equivalent to the 

multivariate Gaussian distribution and therefore the sampling procedure is straightforward, saving a 

lot of computational time. 
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Figure 7-2: Joint probability density of the bulk pair 𝐻𝑠 − 𝑇𝑝 using the AC skew-t copula, sorted by months. 

Simulated values correspond to 100 simulations. Joint probability density is shown by colored contours. 

 

 

Figure 7-3: Joint probability density of the bulk pair 𝐻𝑠 − 𝑇𝑝 using the Gaussian copula, sorted by months. 

Simulated values correspond to 100 simulations. Joint probability density is shown by colored contours. 
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7.2. Future wave climate 

7.2.1. Validation of GCM ACCESS1.0 

The GCM ACCESS1.0 has been proposed by Pérez et al. (2014b) as one of the most skilled model, 

among others, to represent the climate dynamics over the Northeast Atlantic region. Further 

research from Wang et al. (2014) and Pérez et al. (2015) have succesfully proven the good 

perfomance of ACCESS1.0 when applied in statistical downscaling of wave climate from atmospheric 

variables. 

According to Pérez et al. (2014b), the CMIP5 model ACCESS1.0 was given a scatter index 𝑆𝐼 = 0.33 

and a relative entropy 𝑅𝐸 = 0.19 when compared with atmospheric data from the NCEP/NCAR 

Reanalysis I for a reference period between 1961 to 1990 and considering 100 weather types. 

Additionally, the data from the mentioned reanalysis was also compared with ERA-40 reanalysis and 

with the NOAA-CIRES twentieth Century Reanalysis V2 for the same reference period, resulting in 

scores of 𝑆𝐼 = 0.16, 𝑅𝐸 = 0.10 and 𝑆𝐼 = 0.26, 𝑅𝐸 = 0.14, respectively, which means that different 

reanalyses lead to similar characterization of the occurrence rate of synoptic patterns. For further 

details the reader is referred to Pérez et al. (2014b). 

Later, Pérez et al. (2015) repeated the assessment for ACCESS1.0 considering the atmospheric data 

from the CFSR reanalysis for the reference period 1979 – 2004, obtaining scores of 𝑆𝐼 = 0.49 and 

𝑅𝐸 = 0.22 for a classification comprising 100 weather types over the Northeast Atlantic Ocean and 

the Mediterranean Sea. 

In this thesis, which has considered a reduced spatial domain, the performance of ACCESS1.0 was 

graded with a scatter index 𝑆𝐼 = 0.27 and relative entropy 𝑅𝐸 = 0.19. These values are in 

agreement with the scores obtained in the previous studies and therefore the model capability to 

reproduce the climate dynamics over the North Sea during the recent past is accepted. 

7.2.2. Changes in future scenario 

The performance of ACCESS1.0 for the future scenario was valued with a scatter index 𝑆𝐼 = 0.31 and 

a relative entropy 𝑅𝐸 = 0.22, being both values slightly larger than the same metrics for the 

historical period (𝑆𝐼 = 0.27 and 𝑅𝐸 = 0.19). It is important to notice that sample sizes are different 

in both periods: the historical one comprises 27 years and the future scenario, 30 years. This 

difference of 3 years between both datasets may be statistically relevant and explain the observed 

increase in both metrics. In order to elucidate this, a test of significance could be undertaken. 

Nevertheless, in order to quantify these changes, the longshore sediment transport was considered 

as a metric. Changes in the estimated gross and net longshore sediment transports are explored in 

the following section. 

7.3. Morphological simulation 

7.3.1. Differences in net LST direction 

Two important differences arise when comparing the longshore sediment transport computed from 

IFREMER data and from measurement posts (YM6 and MPN): 1) the magnitudes of gross and net 

LSTs, and 2) the direction of net LST. The first difference can be explained in terms of the wave 

heights, which are larger in the IFREMER time series compared to the measured wave time series, 

and this problem can be solved by calibrating the IFREMER wave climate against the YM6 or MPN 

information. 
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The second difference poses a more complex problem, because the net LST from IFREMER is directed 

southwards, being opposite to the net LST estimated using the MPN wave times series or in previous 

studies, such as van Rijn (1997). The location of the IFREMER node respect to the coast (38km 

offshore) suggests that there is enough fetch for the development of additional wind sea waves, 

which in turn could enhance the transport northwards. One way to confirm this hypothesis 

corresponds to the application of a hybrid approach [see for instance Antolínez et al. (2016b) or 

Antolínez et al. (2016c)], where the downscaled wave climate is used as input for a wave model (like 

SWAN, for instance), in order to improve the characterization of the nearshore processes and include 

the potential wind sea arriving to the coast. This is very important as the wave-induced longshore 

sediment transport is concentrated in the surf-zone, close to the shore. 

Although Unibest-TC already incorporates wave nearshore processes, some spatial (2DH) features 

might play a rol and Unibest-TC is unable to reproduce them accurately. Despite this limitation, the 

work presented in this thesis is a valuable methodology to quantify the potential changes in wave 

climate induced by a global-warming forced climate change. 

7.3.2. Changes in future LST 

A simplified approach was selected to quantify the effect of climate change in the longshore 

sediment transport, in which the distribution of LST related to each WT was weighted by the 

probability of occurrence of each WT estimated using the predictor from ACCESS1.0 for the recent 

past and the RCP8.5 scenario during 2070-2099. 

Figure 7-4 aims to summarize the analysis by reproducing previously presented figures, to provide a 

comprehensive explanation of the changes in longshore sediment transport. In panel a), the yearly-

averaged gross LST associated to each WT is shown. Black lines depict the differences between CFSR 

and ACCESS1.0 for the recent past, to give an idea of the model uncertainty. Red lines show the 

differences in gross LST between the historical period and the future scenario. Panel d) show the 

empirical distribution of the overall mean wave direction, as this parameter was considered for the 

runs in Unibest-TC. 

A significative increase of the southwards LST is observed for WT8, WT9, WT10 and WT48, which are 

linked with the larger increases in occurrence probability, as it is derived from panel e). These WTs 

show an increase of probability in the order of 50%, which is relevant for the southwards LST. On the 

other hand, WT15, WT17, WT21 and WT22 are characterized by a decrease in the LST directed 

southwards, explained by a decrease in probability in the order of 30–50%. Both weather types have 

waves coming mainly from the north, explaining the reduction in the southwards LST. 

Regarding the gross LST directed northwards, WT2 and WT10 exhibit the largest increases in 

magnitude, explained by the increase in corresponding occurrence probabilities (around 20% and 

40%, respectively). Looking at panel d), it can be seen that both weather types have an important 

westerly component, related to wind sea. Conversely, the more significative decreases in northwards 

LST are observed for WT15, WT21 and WT22, which are less likely to occur in the future scenario, as 

it is deducted from panel e). Waves from WT15 also have an important wind sea component, which 

could explain the reduction observed in the northwards LST. 

The total yearly-averaged gross and net transports are presented in panel b), where a slightly 

increase in the net LST is observed, due to a larger reduction of the total gross northwards LST 

compared to the decrease in the total gross southwards LST. 
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Figure 7-4: a) Yearly-averaged gross LST associated to each WT. b) yearly-averaged total gross and net LST 

estimated for historical period and future scenario. Black lines indicate the difference between both models for 

each WT for the recent past, and red lines depict the difference between historical period and future scenario. 

c) Weather types for the atmospheric classification. d) Empirical distribution of overall mean wave direction per 

WT. e) Changes in occurrence probability of each WT relative to historical period. 
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The red lines in panel a) also confirm that the most important changes in yearly-averaged LST are 

observed for WT2, WT8, WT9, WT10, WT11, WT15, WT17, WT21, WT22 and WT48 (highlighted in 

gray in the figure). The first four weather types show an increase in the occurrence probability and 

they represent waves with a wind sea component from the west, suggesting an increase of westerly 

waves which are relevant for longshore sediment transport. This result is in line with recent studies, 

which have demonstrated that annual extreme wind events are coming more often from western 

directions in the future scenario, compatible with a poleward shift of the North Atlantic storm track 

(de Winter et al., 2012; de Winter et al., 2013; Haarsma et al., 2013). 

Black lines in panel a) represent the difference in gross LSTs between CFSR and ACCESS1.0 for the 

historical period, giving an idea of the model uncertainty present in the modeling (as it was 

previously mentioned, just one climate model has been considered and this is the only possible way 

to estimate the model uncertainty up to this point). When comparing the changes in the future 

scenario, it can be seen that the red lines lay close to the black lines in some weather types, 

suggesting that potential changes in the future might be comparable to the model uncertainty 

instead of representing a real change in the signal. Accordingly, it is important to identify the sources 

of uncertainty in order to reduce them and improve the confidence on the methodology. 

In the proposed methodology, model uncertainty come from 4 different sources: 

1) Models for the predictor. 

2) Models for the predictand. 

3) Morphodynamic models. 

4) Natural variability of the climate. 

Regarding the predictor, the statistical model was developed using the information from CFSR 

reanalysis and the comparison with the future scenario was performed considering the outcomes 

from one global circulation model. As it was shown in chapter 5, the representation of the recent 

past from both models are similar but not identical, introducing differences in the results. This 

problem may be overcome considering an ensemble of CMIP5 models, in order to quantify the 

differences between climate models and the CFSR reanalysis for the historical period. Even the 

model uncertainty can be quantified using another reanalyses for the statistical model of the 

predictor, like NCEP/NCAR Reanalysis or ERA-Interim. 

The same situation can be observed for the predictand. IFREMER reanalysis was selected for the 

statistical model of the predictand, and the uncertainty could be quantified comparing with another 

sources of information. 

The third source of uncertainty is related to the formulation of sediment transport included in the 

process-based model, in this case Unibest-TC. Other models with different formulations may lead to 

different values for the computed longshore sediment transport, and usually the spreading between 

sediment transport formulations is large. This source of uncertainty can be counteracted by 

calibration of the selected model and it is thought to be of less importance compared to the two 

previous uncertainty sources, as the predictor describes the climate which in turn drives the forcing 

waves, responsible of the longshore sediment transport. 

Another source of uncertainty present in the problem is the natural variability of the climate. In this 

work, a simplified deterministic approach was selected to estimate the distribution of LST associated 

to each WT, corresponding to the historical realization of the climate, and therefore the natural 

variability of the climate has not been fully incorporated. A more comprehensive approach should 

include a fully stochastic simulation of weather types and hence waves, using the climate emulator 

formulated in chapter 4. de Winter et al. (2012) have found no significant changes in 𝐻𝑠 and 𝑇𝑚 of 

extreme waves arriving to the central Dutch coast for the period 2070-2100, suggesting that wave 
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climate will be similar in a future scenario and then the chronology of events becomes relevant. In 

this sense, the chronology of weather types may play an important role driving changes in longshore 

sediment transport, and a fully stochastic simulation may help to identify the influence of the natural 

variability of the system. 

7.3.3. Morphology vs morphodynamics 

In this work, the longshore sediment transport has been chosen as a proxy for changes induced by 

climate change, and the selected approach consisted of running the process-based model Unibest-TC 

not allowing for bed changes, in order to estimate the potential longshore sediment transport along 

the coast. This represents a morphological approach, as a morphodynamic simulation would include 

the calculation of erosion/deposition in the sea bottom. 

Results from a morphodynamic simulation may be different, because of the inclusion of the feedback 

between the hydrodynamic conditions and the bathymetric changes, which drives the bed level 

evolution. These bathymetric changes can, for instance, modify the wave breaking point due to bar 

migration, affecting the location and magnitude of the wave-induced currents and therefore the 

longshore sediment transport. 

The relationship between the bed level evolution and the wave climate plays an important role in the 

morphology of a coastal system. Changes in erosion/deposition areas along the coast may modify the 

location of wave breaking and therefore the surf zone width, inducing gradients in the alongshore 

sediment transport. Moreover, these gradients may enhance the erosion/deposition processes, 

leading to changes in the orientation of the coast, modifying the shore normal and therefore the 

angle of oblicuity of the incoming waves, thus altering the longshore sediment transport and finally 

the morphological evolution of the coast. This effect may not be significant for straight stretches as 

the central Dutch coast, but may be very relevant for bays or curved coastlines. 

A similar behavior may be expected in presence of disturbances along the coast, such as natural 

features as rivers, deltas or tidal basins, or human interventions such as coastal structures, namely 

harbour moles, shore protection structures, river regulation works, nourishments schemes or 

maintenance dredging (Bosboom & Stive, 2015). 

7.4. Applicability of a weather-type based methodology 

Several previous works and the results from this thesis have demonstrated that the weather-type 

based climate classification is a reliable tool to analyze the wave climate at the location of interest. 

This methodology may be applied in any location where the following criteria may be fulfilled: 

• Find a location for the definition of the predictand, offshore enough to avoid the effects of 

wave propagation in shallow waters (shoaling, refraction, bottom friction, breaking). This 

processes will add noise to the statistical relationship, making it not “clean”. Also wave 

diffraction due to sheltering by obstructions shall be avoided. 

• The node where the predictand is defined should also be close enough to the shore in order 

to assume that the wave climate is representative of the coastal conditions, i.e., there is no 

time lag between the offshore conditions and the surf zone. 

 

The climate emulator developed in this thesis is a powerful tool to hindcast historical wave climate or 

project future wave climate at the location of interest. The emulator could also be used to generate 

synthetic wave climate for stochastic simulation in offshore an coastal projects. 
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8.1. Conclusions 

The main objective of this thesis was to assess the impact of climate change on the long-term 

longshore sediment transport at Noordwijk, selected as a representative location of the central 

Dutch coast. With this premise in mind, the main effort was concentrated in formulating a reliable 

tool to characterize the present wave climate and project the future wave climate at Noordwijk. 

In this thesis, a statistical downscaling approach was followed to establish a relation between 

atmospheric variables at regional scale, namely the predictor, and local scale met-ocean variables, 

known as the predictand. The model is based on a classification procedure of the predictor into 

similar atmospheric patterns over the wave generation areas, namely the weather types. Then, the 

wave data is grouped according to the occurrence of the weather types. 

The predictor was built from the SLP fields and the squared SLP gradients extracted from the CFSR 

reanalysis. Wave data was obtained from IFREMER reanalysis in front of Noordwijk. Analyses of these 

databases led to conclude that bimodality dominates the wave climate at the location of interest, 

with a wind sea component arriving from the English Channel and a swell component reaching from 

the Greenland and Norwegian Seas. 

The temporal evolution of the weather types was modeled using an autoregressive logistic model, 

which incorporates the seasonality, the interannual variability and the persistence of the weather 

types, observed from the historical data. On the other hand, the wave climate was parameterized in 

terms of bulk wave parameters 𝐻𝑠, 𝑇𝑝 and 𝐷𝑖𝑟 for the two wave systems (wind sea and swell), 

resulting in unimodal or bimodal sea states. Mixed-models, consisting of a non-parametric kernel 

density function for the central-mass regime and two generalized Pareto distributions for the lower 

and upper tails, respectively, were fitted to the marginals of 𝐻𝑠 and 𝑇𝑝 for each wave system in each 

weather type. This approach was chosen because it improved the representation of the upper tail, 

compared to other distributions. 

The statistical dependence between wave parameters for each sea state was taken into account 

using a vine-copula approach, where the multivariate dependence structure is modeled using 

bivariate copulas as building blocks. Based on previous studies, the bivariate dependence between 

𝐻𝑠 and 𝑇𝑝 was modeled using the AC skew-t copula, whereas the rest of the pairs of random 

variables were considered as Gaussian. 

Both statistical models for the predictor and predictand were tested for stochastic simulation. 

Synthetic series of daily weather types showed a good representation of the seasonality, interannual 

variability and persistence observed in the historical realization, and synthetic series of 3-hourly bulk 

wave parameters for sea and swell preserved the statistical structure from the observed data. 

After the statistical relation was formulated, the SLP fields from the GCM ACCESS1.0 were processed 

to generate a future predictor. Comparison of the outcomes of ACCESS1.0 for the historical period 

(1979-2005) with the CFSR reanalysis demonstrated that the climate model was able to represent the 

recent past climate and the comparison with projections for the last time slice of the 21st century 

(2070-2099) under the most severe scenario (RCP8.5) proceeded. 

The statistical model was applied to identify changes in the occurrence probability of the weather 

types in the future, and the importance of these changes was quantified in terms of the 
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wave-induced longshore sediment transport. A simplified, deterministic approach was chosen to 

estimate the LST distribution for each WT and afterwards compute changes in gross and net 

transports given the present and future probabilities of the weather types. 

From the work carried out at this point, the research questions can be addressed: 

1. Will the probability of occurrence of atmospheric synoptic patterns (weather types) change in 

the future? How will it change? 

The results of this thesis suggest that, conditionally on the considered climate model time series, the 

occurrence probability of the weather types will change in the future, with some occurrence 

probabilities varying in the range ±60%. On the other hand, changes in the sequence of weather 

types, in terms of the transition probability matrix and the persistence of each WT are found to be 

not relevant. The reported shift in wind directions to more westerly directions may explain the 

increase in the probability of some weather types with an important wind sea component from the 

west. 

2. How will the longshore sediment transport be affected in the future? 

According to the results and the considered climate model, the most important changes in LST are 

concentrated in some of the weather types, with changes in the yearly-averaged gross LST explained 

by changes in the ocurrence probability of the corresponding WTs. For the remaining weather types, 

the changes are in the order of the model uncertainty. Regarding the yearly-averaged net LST, an 

increase of the southward directed net LST is observed with respect to the historical period, driven 

by a decrease in both yearly-averaged total gross LSTs, being the decrease in northward directed LST 

larger than the decrease of southwards LST. 

 

The results from this thesis have demonstrated that the weather-type based climate classification is a 

reliable tool to analyze the wave climate at the location of interest. The statistical downscaling also 

provide a climate emulator that captures the climate dynamics at different time scales (inter-annual, 

seasonal, monthly and daily scale), which can be used to generate stochastic simulations of the 

atmospheric and wave climate. 

8.2. Further research 

Two different but complementary branches for further research are proposed: improving the 

methodology or assessing the uncertainty involved in the modeling. 

Regarding the first branch, the methodology presented in this thesis could be improved addressing 

the following topics: 

• Applying a hybrid approach, where the results from the statistical downscaling are used as 

offshore hydrodynamic boundary conditions for wave models, in order to obtain a better 

representation of the nearshore wave climate. This may help to improve the representation 

of the yearly-averaged gross and net longshore sediment transports. 

• As it was discussed in §7.1.2.1, the chronology model lacks of the intra-daily scale, as the 

weather types are given at daily scale and the waves are to be generated every 3hrs. Solving 

the intra-daily time scale appears to be a very challenging area of research, as highly 

sophisticated statistical tools are required in order to get rid of any assumption on the shape 

of the marginal distributions, for instance, the traditionally assumed triangular distribution of 

wave height for storms. Advances in this area may contribute to a better modeling of time 

series of several parameters, especially during storms. 
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Quantifying the model uncertainty represents a key challenge to improve the confidence on the 

methodology developed in this thesis. In this sense, the following ideas may be explored: 

• An ensemble of global circulations models (GCMs) should be included in order to reduce the 

model uncertainty and quantify the differences between the recent past and the future 

scenario. Moreover, an ensemble of realizations from a single model could also be 

considered to account for the internal climate variability. The relatively low computational 

requirements of the statistical approach allow a large number of GCMs and climate 

realizations to be studied. In this thesis, only the most severe scenario was considered, but 

also additional climate change scenarios might be included. 

• Model uncertainty regarding the predictand may be analyzed comparing to different wave 

reanalysis or measured wave time series. 

• The chronology of weather types is thought to be of crucial importance in the future 

longshore sediment transport, as not important changes are expected in terms of wave 

height or wave period. This may be assessed through a fully stochastic simulation, where the 

natural variability of the climate is included, in order to explore the different sources of 

uncertainty in the modeling. It is important to stress the limitation of the intra-daily time 

scale in the model when analyzing the results from the stochastic simulations, unless a 

solution is successfully introduced in the climate emulator. 
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Appendix A: Principal Component Analysis 
 

PCA, described in §2.1.3, is a statistical technique that allows to reduce the dimensionality of the 

data retaining a high percertage of the variance. In this case, the first 52 Empirical Orthogonal 

Functions (EOFs) (from a total of 4 380) and their corresponding Principal Components (PCs) explain 

the 95% of the variance. The first 4 EOFs are shown in Figure A-1. 

A multivariate linear regression between the 52 PCs of the predictor and the predictand is applied as 

a preliminary test of the skill of the predictor. For this quick assessment, two parameters 

representing the predictand are chosen: the daily mean overall significant wave height and the cubic 

root of the daily mean bulk energy flux. The cubic root is considered here to smooth the peaks which 

are usually observed in this variable. 

 

 

Figure A-1: First 4 EOFs and PCs of the predictor. SLP anomalies are represented by contour lines and squared 

SLP gradients anomalies are represented by the colored areas. 
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The energy flux is defined as: 

𝐸𝐹 =
𝜌𝑔2

64𝜋
𝑇𝑝𝐻𝑠

2 (A-1) 

Where 𝜌 is the water density, 𝑔 is the acceleration of gravity [m/s2], 𝑇𝑝 denotes the peak period [s] 

and 𝐻𝑠 denotes the significant wave height [m]. 

For the sake of simplicity, constants are dropped in the calculation. The available time series of PCs 

are divided into calibration (1993-2006) and validation period (2006-2012) in order to fit the 

multivariate linear regression. Results are shown in the following figures, where a good match 

between the selected PCs and the overal significant wave height and the cubic root of the bulk 

energy flux is observed. In both cases, correlation coefficients are close to unity. 

Three different estimations of the errors are given in the figures: Root Mean Square (RMS), Scatter 

Index (SI) and BIAS. In both cases, these values are small thus confirming that the predictor is able to 

explain the predictand at daily scale. 

 

Figure A-2: Multivariate regression model of the daily mean 𝐻𝑠 at Noordwijk. Observed values in gray thick line 

and estimations in dashed black line. Upper panel: calibration period. Lower panel: validation period. 
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Figure A-3: Multivariate regression model of the cubic root of the daily mean energy flux at Noordwijk. 

Observed values in gray thick line and estimations in dashed black line. Upper panel: calibration period. Lower 

panel: validation period. 
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Appendix B: Number of weather types 
 

The number of WTs is selected aiming to ease the implementation, fitting and interpretation of the 

model results. In order to explore the influence of the number of WTs in the classification and the 

relation with the predictand, the monthly mean bulk energy flux time series is computed as the sum 

of the mean bulk energy flux for each WT weighted by the occurrence probability of each WT. 

Firstly, the mean bulk energy flux for each WT is calculated as follows: 

𝐸𝐹𝑖̅̅ ̅̅ =
1

𝑁𝑖
∑𝐸𝐹(𝑡) | 𝑊𝑇𝑖
𝑡

 (B-1) 

 

Where 𝐸𝐹𝑖̅̅ ̅̅  is the mean bulk energy flux of WT 𝑖 [m2/s], 𝑖 = 1,… ,𝑁𝑊𝑇 ; 𝑁𝑊𝑇  is the number of WTs, 𝑁𝑖  

denotes the number of observations during WT 𝑖 and 𝐸𝐹(𝑡) | 𝑊𝑇𝑖  represents the observations of 

energy flux during WT 𝑖 [m2/s]. 

Then, the monthly mean bulk energy flux is computed as: 

𝐸𝐹𝑗,𝑦̅̅ ̅̅ ̅̅ = ∑𝑝𝑖,𝑗,𝑦
𝑖

𝐸𝐹𝑖̅̅ ̅̅  (B-2) 

 

Where 𝐸𝐹𝑗,𝑦̅̅ ̅̅ ̅̅  is the monthly mean bulk energy flux of month 𝑗, year 𝑦 [m2/s] and 𝑝𝑖,𝑗,𝑦 is the 

occurrence probability of WT 𝑖 in month 𝑗, year 𝑦. 

The comparison between the computed bulk energy flux and the monthly mean values from the 

observed time series is shown in Figure B-1. The same calculation was undertaken varying the 

number of WTs between 25 up to 144, where square number are chosen to ease the visualization of 

the WTs in a lattice. Energy flux values are normalized by 64𝜋/𝜌𝑔2. 

For each time series, the correlation coefficient and 3 different errors are given at the right side. It 

can be seen that the correlation coefficient increases while increasing the number of WTs, while the 

errors slightly decrease. This is happening because the larger the number of WTs, the larger the 

amount of elements in the WT set, adding more terms to explain the same variable. This can be 

interpreted as a mathematical fact without any physical added value. Furthermore, there is no 

important difference between the estimated time series after visual inspection. Finally, the chosen 

number of 49 WTs is confirmed. 
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Figure B-1: Monthly mean bulk energy flux for different number of WTs. 
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Appendix C: Fitting marginal distributions 
 

C.1. Marginal distributions for 𝑯𝒔 

For each weather type, different theoretical distributions are fitted to the empirical distributions of 

𝐻𝑠 and 𝑇𝑝 for the sea and swell components. In the case of the significant wave height, 4 

distributions are considered: 

• Weibull 

• Kernel density function 

• Mixed model of kernel density function and Generalized Pareto Distributions for the lower 

and upper tail with a threshold of 0.1 and 0.9, respectively. 

• Mixed model of kernel density function and Generalized Pareto Distributions for the lower 

and upper tail with a threshold of 0.05 and 0.95, respectively. 

The fitting of the mentioned distributions to the empirical data is shown in Figure C-1 for the sea 

component and in Figure C-2 for the swell. The figures correspond to Weibull probability plots, 

where the vertical axis indicates the cumulative probability, the blue dots correspond to the 

empirical cumulative probability and the lines depict the fitted distributions. 

It can be seen that central regime is well represented by the 4 fitted distributions, but important 

differences are observed in the upper tail, where the generalized Pareto distribution seems to give a 

better fitting than the other distributions. In some weather types, the kernel density function 

provides a sound fitting to the data, but in most of the cases it tends to overestimate the values for 

the significant wave height. Something similar happens with the weibull distribution, which has little 

flexibility to represent the upper tail, under or overestimating depending on the WT. 

Based on these results, the mixed model with thresholds 0.1-0.9 has been adopted for the 

representation of the marginal distributions of 𝐻𝑠 for both sea and swell components. 

C.2. Marginal distributions for 𝑻𝒑 

For this variable, several distributions are considered as candidates: 

• Weibull 

• Generized Extreme Value (GEV), with no restriction on the shape parameter 

• Gumbel 

• Kernel density function 

• Mixed model of kernel density function and Generalized Pareto Distributions for the lower 

and upper tail with a threshold of 0.1 and 0.9, respectively. 

• Mixed model of kernel density function and Generalized Pareto Distributions for the lower 

and upper tail with a threshold of 0.05 and 0.95, respectively. 

The fitting of the these distributions to the empirical data is shown in Figure C-3 and Figure C-4 for 

the sea and swell component, respectively. In this case, the figures correspond to Gumbel probability 

plots, where the vertical axis indicates the cumulative probability, the blue dots correspond to the 

empirical cumulative probability and the lines depict the fitted distributions. 

Once again, it can be seen that central regime is well represented by all the fitted distributions, but 

important differences are observed in the upper tail, where the mixed model seems to give a better 

fitting than the other distributions. For instance, the Weibull distribution tends to underestimate the 
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extreme values, while the Gumbel distribution overestimate them. The GEV distribution and the 

kernel density function show some more flexibility, but still give an under or overestimation 

(depending on the WT) of the values in the upper tail. 

 

Figure C-1: Weibull probability plots of the empirical and fitted marginal distributions of 𝐻𝑠𝑠𝑒𝑎  associated to 

each WT. 

 

Figure C-2: Weibull probability plots of the empirical and fitted marginal distributions of 𝐻𝑠𝑠𝑤𝑒𝑙𝑙
 associated to 

each WT. 
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Based on these results, the same has been concluded: the mixed model with thresholds 0.1-0.9 has 

been adopted for the representation of the marginal distributions of 𝑇𝑝 for both sea and swell 

components. 

 

Figure C-3: Gumbel probability plots of the empirical and fitted marginal distributions of 𝑇𝑝𝑠𝑒𝑎  associated to 

each WT. 

 

Figure C-4: Gumbel probability plots of the empirical and fitted marginal distributions of 𝑇𝑝𝑠𝑤𝑒𝑙𝑙  associated to 

each WT. 
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C.3. Fitted marginal distributions 

The fitting of the mixed model to the empirical data is shown in the following figures for 𝑇𝑝𝑠𝑒𝑎, 𝐻𝑠𝑠𝑤𝑒𝑙𝑙
 

and 𝑇𝑝𝑠𝑤𝑒𝑙𝑙
, respectively. 

 

Figure C-5: Probability plots of the empirical and fitted marginal distributions of 𝑇𝑝𝑠𝑒𝑎  associated to each WT. 

 

Figure C-6: Probability plots of the empirical and fitted marginal distributions of 𝐻𝑠𝑠𝑤𝑒𝑙𝑙
 associated to each WT. 
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Figure C-7: Probability plots of the empirical and fitted marginal distributions of 𝑇𝑝𝑠𝑤𝑒𝑙𝑙  associated to each WT. 
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Appendix D: Rank correlations for unimodal 

sea states 
 

Spearman’s rank correlations between observed variables for the unimodal cases are shown in Figure 

D-1 for sea and Figure D-2 for swell component. In the figures, positive and negative rank 

correlations are depicted in cyan and magenta lines, respectively. 

As expected, strong positive correlation is observed between 𝐻𝑠𝑠𝑒𝑎 and 𝑇𝑝𝑠𝑒𝑎 in all the weather types 

for the sea component. The correlation between 𝐻𝑠𝑠𝑤𝑒𝑙𝑙
 and 𝑇𝑝𝑠𝑤𝑒𝑙𝑙

 is much weaker. In general, the 

figures reveal the interdependence between the variables, emphasizing the importance of 

considering the dependence structure in the statistical model. 

Although each weather type has its own particular pattern, some similarities can be identified. For 

instance, negative correlations only appear at the right side of the lattice for the sea component. On 

the other hand, looking at the swell component, correlation between 𝐻𝑠 and 𝐷𝑖𝑟 is always negative 

at the left side of the lattice, changing to positive values in some WTs located at the right side of the 

lattice. 

 

Figure D-1: Graphical representation of rank correlation coefficients for the sea component associated to each 

WT. Numbers from 1 to 3 stand for 𝐻𝑠𝑠𝑒𝑎 , 𝑇𝑝𝑠𝑒𝑎 , 𝐷𝑖𝑟𝑠𝑒𝑎 respectively. Color scale is defined between -1 (cyan) for 

negative correlation, 0 (white) for no correlation and 1 (magenta) for positive correlation. 
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Figure D-2: Graphical representation of rank correlation coefficients for the swell component associated to each 

WT. Numbers from 4 to 6 stand for 𝐻𝑠𝑠𝑤𝑒𝑙𝑙
, 𝑇𝑝𝑠𝑤𝑒𝑙𝑙 , 𝐷𝑖𝑟𝑠𝑤𝑒𝑙𝑙  respectively. Color scale is defined between -1 (cyan) 

for negative correlation, 0 (white) for no correlation and 1 (magenta) for positive correlation. 
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Appendix E: Sampling procedure of a 

D-vine on 6 variables 
 

For the sake of simplicity, the sampling algorithm of a D-vine on 6 variables is illustrated using the 

schematization of the following figure. 

 

Figure E-1: D-vine on 6 variables with (conditional) rank correlations. 

 

Let 𝑋1, … , 𝑋  be the margins of random variables and let 𝑈1, … , 𝑈  be independent uniform [0,1] 

variables. After random sampling from 𝑈1, … , 𝑈 , where realizations are denoted 𝑢1, 𝑢2 and 𝑢3, the 

sampling procedure is the following: 

1. 𝑥1 = 𝑢1 

2. 𝑥2 = 𝐹𝑟12;𝑥1
−1 (𝑢2) 

3. 𝑥3 = 𝐹𝑟23;𝑥2
−1 (𝐹𝑟13|2;𝐹𝑟12;𝑥2(𝑥1)

−1 (𝑢3)) 

4. 𝑥 = 𝐹𝑟34;𝑥3
−1 (𝐹𝑟24|3;𝐹𝑟23;𝑥3(𝑥2)

−1 (𝐹
𝑟14|23;𝐹𝑟13|2;𝐹𝑟23;𝑥2(𝑥3)

(𝐹𝑟12;𝑥2(𝑥1))

−1 (𝑢 ))) 

5. 𝑥5 = 𝐹𝑟45;𝑥4
−1 (𝐹𝑟35|4;𝐹𝑟34;𝑥4(𝑥3)

−1 (𝐹
𝑟25|34;𝐹𝑟24|3;𝐹𝑟34;𝑥3(𝑥4)

(𝐹𝑟23;𝑥3(𝑥2))

−1 (∗))) 

(∗) = 𝐹
𝑟15|234;𝐹𝑟14|23;𝐹𝑟24|3;𝐹𝑟23;𝑥3(𝑥2)

(𝐹𝑟34;𝑥3(𝑥4))
(𝐹𝑟13|2;𝐹𝑟23;𝑥2(𝑥3)

(𝐹𝑟12;𝑥2(𝑥1)))

−1 (𝑢5) 

6. 𝑥 = 𝐹𝑟56;𝑥5
−1 (𝐹𝑟46|5;𝐹𝑟45;𝑥5(𝑥4)

−1 (𝐹
𝑟36|45;𝐹𝑟35|4;𝐹𝑟45;𝑥4(𝑥5)

(𝐹𝑟34;𝑥4(𝑥3))

−1 (∗))) 

(∗) = 𝐹
𝑟26|345;𝐹

𝑟25|34;𝐹𝑟35|4;𝐹𝑟34;𝑥4
(𝑥3)

(𝐹𝑟45;𝑥4
(𝑥5))

(𝐹𝑟24|3;𝐹𝑟34;𝑥3(𝑥4)
(𝐹𝑟23;𝑥3

(𝑥2)))

−1 (∗∗) 

1 2 3 4 5 6
𝑟12 𝑟23 𝑟3 𝑟 5 𝑟5 

𝑟13|2 𝑟2 |3 𝑟35| 𝑟  |5

𝑟1 |23 𝑟25|3 𝑟3 | 5

𝑟15|23 𝑟2 |3 5

𝑟1 |23 5
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(∗∗) = 𝐹𝑟16|2345;𝐹
𝑟15|234;𝐹𝑟25|34;𝐹𝑟24|3;𝐹𝑟34;𝑥3(𝑥4)

(𝐹𝑟23;𝑥3(𝑥2))
(𝐹𝑟35|4;𝐹𝑟34;𝑥4(𝑥3)

(𝐹𝑟45;𝑥4(𝑥5)))

(∗∗∗)
−1 (𝑢 ) 

(∗∗∗) = 𝐹
𝑟14|23;𝐹𝑟24|3;𝐹𝑟23;𝑥3(𝑥2)

(𝐹𝑟34;𝑥3(𝑥4))
(𝐹𝑟13|2;𝐹𝑟23;𝑥2(𝑥3) (𝐹𝑟12;𝑥2

(𝑥1))) 

 

In this notation, 𝐹𝑟  represents the conditional cumulative distribution of the copula with rank 

correlation 𝑟. 
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Appendix F: Joint distributions of simulated 

variables for swell 
 

The following set of figures show the joint distribution of the pairs 𝐻𝑠 − 𝑇𝑝, 𝐷𝑖𝑟 − 𝐻𝑠 and 𝐷𝑖𝑟 − 𝑇𝑝  

for the swell component, regardless if the data belong to an unimodal or bimodal sea state. In the 

figures, the observed and simulated wave data is sorted by months, and the wave climate from the 

100 samples is plotted at the same time. The colored contours show the joint probability density of 

each pair of variables. 

 

 

Figure F-1: Joint probability density of the pair 𝐻𝑠 − 𝑇𝑝 for the swell component, sorted by months. Simulated 

values correspond to 100 samples. Joint probability density is shown by colored contours. 
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Figure F-2: Joint probability density of the pair 𝐷𝑖𝑟 − 𝐻𝑠 for the swell component, sorted by months. Simulated 

values correspond to 100 samples. Joint probability density is shown by colored contours. 

 

 

Figure F-3: Joint probability density of the pair 𝐷𝑖𝑟 − 𝑇𝑝 for the swell component, sorted by months. Simulated 

values correspond to 100 samples. Joint probability density is shown by colored contours. 



 

G-1 

Appendix G: Present and future 

occurrence probability of WTs 
 

G.1. Validation of GCM ACCESS1.0 

At seasonal scale, there exists some differences in probabilities from both predictors, but the 

seasonal structure is well represented in both datasets, as it can be seen in Figure G-1. The same 

behavior is confirmed when comparing the monthly probabilities shown in Figure G-2, where the 

concentration of some WTs located at the right side of the lattice during summer is observed in both 

predictors. Absolute differences between monthly probabilities of each WT are shown in Figure G-3. 

 

Figure G-1: a) Seasonal probability of each WT for daily predictor from CFSR, b) seasonal probability of each WT 

for daily predictor from ACCESS1.0 and c) absolute differences between both predictors. 

a)

b)

c)
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Figure G-2: a) Monthly probability of each WT for daily predictor from CFSR and b) monthly probability of each 

WT for daily predictor from ACCESS1.0. 

 

Figure G-3: Absolute differences between monthly probabilities of each WT for daily predictors from CFSR and 

ACCESS1.0. 

 

G.2. Changes in future scenario 

No significant changes are observed at seasonal scale, where minor changes in seasonal probabilities 

are presented in Figure G-4. The most important changes are observed during the summer, with an 

increase of the occurrence of WT41 and a decrease of WT38. 

At monthly scale, the probabilities follow the same patttern, with no important changes in the future 

scenario. Figure G-5 and Figure G-6 confirm this, giving more detail about the changes in occurrence 

of WT38 and WT41: these changes happen mainly in July and August in the second place. 

a) b)
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Figure G-4: a) Seasonal probability of each WT for historical period, b) seasonal probability of each WT for 

future scenario and c) absolute differences between both periods. 

 

 

Figure G-5: a) Monthly probability of each WT for historical period and b) monthly probability of each WT for 

future scenario. 

 

a)

b)

c)

a) b)
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Figure G-6: Absolute differences between monthly probabilities of each WT for the historical period and future 

scenario. 
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