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Giant current fluctuations in an overheated single-electron transistor
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Interplay of cotunneling and single-electron tunneling in a thermally isolated single-electron transistor leads
to peculiar overheating effects. In particular, there is an interesting crossover interval where the competition
between cotunneling and single-electron tunneling changes to the dominance of the latter. In this interval, the
current exhibits anomalous sensitivity to the effective electron temperature of the transistor island and its
fluctuations. We present a detailed study of the current and temperature fluctuations at this interesting point.
The methods implemented allow for a complete characterization of the distribution of the fluctuating quantities,
well beyond the Gaussian approximation. We reveal and explore the parameter range where, for sufficiently
small transistor islands, the current fluctuations become gigantic. In this regime, the optimal value of the
current, its expectation value, and its standard deviation differ from each other by parametrically large factors.
This situation is unique for transport in nanostructures and for electron transport in general. The origin of this
spectacular effect is the exponential sensitivity of the current to the fluctuating effective temperature.
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I. INTRODUCTION

By its statistical physics definition, the temperature of an
open electron system in equilibrium is fixed, with a value
equal to the temperature of the reservoir it is connected to.!
The energy of the system can still fluctuate because of the
constant exchange of energy with its surroundings. Out of
equilibrium, the entire concept of a temperature becomes ill
defined. If the internal relaxation in the system is strong
enough, however, the electron energy distribution still fol-
lows the equilibrium Fermi function with some effective
temperature that is determined by a balance of the energy
currents flowing into and out of the system.? In this out-of-
equilibrium situation the intrinsic fluctuations of the energy
currents translate directly to fluctuations in the effective tem-
perature of the system, provided that the electron-electron
relaxation time is significantly shorter than the energy relax-
ation time to the reservoirs or the phonon bath.® If the
electron-phonon interaction in the system is weak, the domi-
nant energy flows are to the reservoirs which are used to
drive the system out of equilibrium. In this case the system is
said to be fully overheated. As the size of the system be-
comes ever smaller, full overheating becomes easier to
achieve, or, harder to avoid.

One example of a system where overheating is important
to take into account is the single-electron transistor (SET).*
When the size of the Coulomb island is decreased ever fur-
ther in the pursuit for sensitivity, the temperature of the is-
land begins to be affected by the electronic heat flows to the
surroundings, e.g., leads.>” In an earlier paper® we studied
the fully overheated single-electron transistor, and found out
that the inclusion of inelastic cotunneling,” along with the
often dominant sequential tunneling of single electrons, is
important and leads to peculiar overheating effects. The elec-
tron transport through the overheated SET is divided into
three regimes: cotunneling dominated, competition, and
single-electron dominated regimes. We also found that the
electric current noise in the crossover interval is mostly con-
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tributed by the frequency interval corresponding to typical
time scale of temperature equilibration. This is because of
the anomalously strong temperature sensitivity of the current
in this interval, which makes the temperature fluctuations
directly visible in the current (noise).

In this paper we explore and quantify further the tempera-
ture fluctuations and the associated current fluctuations in
an overheated SET. We study the SET under conditions of
well-developed Coulomb blockade so that the junction con-
ductances Gr;,Grg<e’/fi. We assume that the level spac-
ing on the island is small compared to its temperature and
the charging energy, 8, <T<E.=e¢?/2C, which is the case
in metallic SETs. To have a clear model, we assume a van-
ishing temperature in the leads.!? Since a possible asymme-
try of the SET does not affect our results qualitatively, we
assume Gr;=G7r=Gr and define a dimensionless conduc-
tance gr=Gh/e*<1. Our focus is mainly on the fluc-
tuations around the crossover between the competition
and single-electron regimes, V,~V=(V2-1)V, ie., well
below the zero-temperature Coulomb blockade threshold,
eVy=2(E-—eV) (see Fig. 1). Note that in the actual experi-
mental setup eV; must be replaced with a combination of the
source, drain, and gate voltages together with the respective
mutual capacitances.!! Here we lump all this into one gate
voltage dependence. The electron-electron relaxation time,
T,.., 1S assumed short compared to the characteristic time
scale for the energy relaxation to the leads, 7z, which in turn
is assumed small compared to the electron-phonon relaxation
time, 7, ,;,.'> These conditions ensure that the island is fully
overheated and in quasiequilibrium.

Within the Coulomb blockade, the temperature of the is-
land is fixed by a balance between energy flows in and out of
the island due to inelastic cotunneling and sequential tunnel-
ing (see Fig. 2). Inelastic cotunneling leaves behind an
electron-hole excitation on the island, always heating it up.
Sequential tunneling can either cool or heat the island, de-
pending on bias voltage. As discussed in Ref. 8, there are
three qualitatively different regions of bias voltages, revealed
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FIG. 1. (Color online) (a) A schematic of a single-electron tran-
sistor, biased by voltage V). The charge on the island can be tuned
with the gate voltage V. (b) Coulomb diamonds in a symmetric
SET. Dashed line shows the threshold voltage V. Changing the
gate voltage has the effect of changing V.

by the behavior of the average temperature: at the lowest
voltages, sequential tunneling is completely suppressed and
the average temperature is fixed by the inelastic cotunneling.
Close to the Coulomb blockade threshold (and above), in-
elastic cotunneling effects can be disregarded and sequential
tunneling sets the temperature. The most interesting region is
the intermediate regime where the competition between these
two processes gives rise to both anomalously sensitive tem-
perature dependence of the current and to strongly non-
Gaussian temperature fluctuations. In this regime, we find
(see Sec. IT and Appendix A) for the average temperature
(T)y=T, where T, satisfies

Ve )3 [ 1 (vc )}
@ exp| ={ —-1]|=1, 1)
gT( \2T¢ P 2\ Tc (

« being a dimensionless coefficient, «=0.1. For example,
for g;=1073, To/Ve=0.1 and for smaller values of gy,
TelVe= 1/[\2 In(1/g7)]. As we show below, the small
value of T/ V. allows us to rigorously describe the anoma-
lously large and strongly non-Gaussian temperature and cur-
rent fluctuations in an overheated SET.

We find that the probability distributions of the tempera-
ture and current fluctuations are strongly non-Gaussian, and
that the size of the transistor island has a large influence on
these distributions. In particular, we find that for small is-
lands with relatively large single-electron level spacing,
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FIG. 2. (Color online) Schematic energy balance of the single-
electron transistor within the Coulomb blockade regime, where the
allowed charge state energies are outside the bias window. In this
case the temperature of the island is fixed by the balance between
sequential tunneling (solid red arrows) and inelastic cotunneling
(dashed blue arrows), where the strength of the previous depends on
the exponentially small [«cexp(—SE*/kgT)] amount of empty (filled)
single-electron states below (above) the Coulomb blockade thresh-
old corresponding to the addition (removal) of an electron to (from)
the island. This leads to the extreme temperature sensitivity of the
current, which is the main topic of this paper.

T 5
&= (—C> Ve,
Ve

the mode, expectation value, and standard deviation of the
temperature and current differ from each other by parametri-
cally large factors [see Figs. 6 and 8, and Egs. (32), (34), and
(35)]. This we show by first casting the Keldysh action
technique used in Refs. 3 and 8 into the form of a Fokker-
Planck (FP) equation, allowing us to describe the full
normalized probability distribution, instead of the non-
normalized large deviation function In P. For some realistic
values, To/V=~0.1 and Ec~1 meV, §=10"% eV, corre-
sponding to roughly 10° atoms. 3

This paper is structured as follows: Sec. II introduces the
theoretical methods utilized in this paper. In Sec. III we con-
centrate on the regime of small fluctuations and in Sec. IV on
fluctuations in systems with relatively large single-electron
level spacing. We conclude and discuss our findings in Sec.
V. In most of the text, we use units such that A=kz=e=1 but
restore them in the important results.

II. APPROACH

We use the extended Keldysh action technique!* as the
basis of our theoretical calculations. Within this framework it
is straightforward to calculate the full statistics of, for ex-
ample, electric and energy current.'>!¢ The effective action
of the system is augmented with counting fields x;)(r) and
& »)(t) for charge and energy transfer to the left (right) res-
ervoir, respectively. The probability to obtain a certain real-
ization of fluctuating energy currents is
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P[HL(I)]P[HR(Z)]=JD§L(f)D§R(I)CXP{—Jdf[ifLHL

+ igRHR_S(fL’gR’E)]}, (2)

where S is the effective action describing the transport
processes.!” Analogous expression gives the probabilities for
charge currents with the substitution &— y. To ensure the

conservation of energy, E, on the island, i.e., HL(t)+HR(t)
=E(t), we use a delta functional,'8

SH (1) + He(t) - E(1)] = f DE(1)

Xexp{if dtg(HL+HR—E)},
(3)

to generate the conditional probability
P[H, (1), Hy(1)] = f DE(NDE(NDENDE(D)
XGXP{— J difi(§, - OH, +i(éx - §Hy

+iéE - S(gL’§R7E)]}~ (4)

In the case of the single-electron transistor adding a delta
functional for the conservation of charge is not necessary
since the effective action we use already conserves charge.

Integrating over H, and Hy yields the energy-conserving
Keldysh partition function as

Z= f D&(t)DE(t)exp{— J dt[§(t)E'(t)—S(§,E)]}, (5)

where the imaginary unit has been absorbed into &.

To calculate the probability of the island having energy
between E*---E*+AFE during time 7 --7+A7 the functional
integration over E(¢) in Eq. (5) is performed over paths
which satisfy this requirement. In general, the functional in-
tegration cannot be performed analytically. The variation of
the exponent with respect to E and ¢ yields the semiclassical
equations of motion,

E=9S, &=-0;S, (6)

which, when solved with the desired boundary conditions
E(7)=E" and &(—~) —0, give the saddle-point trajectories of
E and &. The probability is then obtained as the saddle-point
value of the functional integral.* The saddle-point approxi-
mation is valid when the fluctuations around the semiclassi-
cal trajectories are small. In our case this translates to the
condition &<(T¢/V¢)*Ve.
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For another approach, we expand S to second order in &.
Then the Gaussian integral over ¢ in Eq. (5) can be per-
formed and the remaining functional integral transformed
into a Fokker-Planck equation for the time evolution of the
probability distribution of E,'*

IP(E,t) .
=HP(E,1)
ot

K2 &P(E,t)]
~°F D, (E)P(E,t) — D,(E) £ | (7)

Here, the operator H is obtained from S(¢,E) with the sub-
stitution &—>—d/JE. Before applying this ‘“quantization

rule,” the operator H must be normally ordered, i.e., & must
be to the left of all E (see Appendix B). The Fokker-Planck
equation also takes into account the Gaussian fluctuations
around the saddle-point trajectory, and is therefore more ac-
curate than the saddle-point approximation.

The stationary probability  distribution satisfies
HP,(E)=0 and has the form
D,(E)
P (E) =const X e dE——— |, 8
W(E) XP[J D2(E):| (®)

provided that [dE[D,(E)/D,(E)]— - when E— *oo. The
normalization condition [dEPy(E)=1 fixes the value of the
constant prefactor.

The time dependence of E can also be described in terms
of a Langevin equation. The Fokker-Planck equation is
equivalent to a Langevin equation'’

IE(1) ID,(E(?))

o, = DiE@) + EQ (1), 9)
where 7(r) is a random “force” with mean (7(¢))=0 and
variance (7(r) p(t'))=2D,(E(r)) 8(t—t").

To obtain a probability distribution for the effective elec-
tron temperature, we must apply a model which describes the
relation between E and 7. We first start by pointing out that
the energy fluctuations show up as fluctuations of the elec-
tron distribution function f(€), where € is the energy of a
given excitation. In a free-electron model, the total thermal
energy on the island is related to this via

B= f dedfle.t) - fofe)]. (10)
’h

where & is the single-particle level spacing and fy(€) is the
zero-temperature electron distribution function. In the quasi-
equilibrium limit, f(e) tends to a Fermi distribution function,
fe,t)=(exp{e/[T()]}+1)~", with a fluctuating electron tem-
perature. In this case we can integrate Eq. (10) and obtain the
usual expression for the free-electron heat capacity C(T),

2
T2

. 1
2 65 (1)

Note that in principle the distribution of the fluctuating elec-
tron temperature may depend on the charge state n. However,
under Coulomb blockade the relaxation rate of the excited
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charge states is larger than the temperature equilibration rate
by a large factor, on the order of E/ &;, and this effect can be
disregarded in the following.

Single-electron transistor

For the overheated single-electron transistor the single-
electron (SE) part of the action in the limit T< V),V reads®

Se= = grTe T 02 - VW M- TV 4 MY,

(12)

where W=(V,,—V,)/2. In this paper we concentrate on the
cases where along the semiclassical trajectory, described by
Eq. (6), £<1/V:,1/Te. In this case, a straightforward ex-
pansion to second order in ¢ yields

V2
See=— gTTv;h‘e—W/T{ {W"‘ +2TW+TV, - ?”} £

3 2
_{K_'_Twz T;/;, Vh:|§2} (13)

3
Near the critical bias voltage, V, = Vo=(y2=1)Vy, it is con-
venient to work with dimensionless variables

t=\2TVe, v=(V,=V)IVe, x=E&Ve,

so that the action can be expanded to

Ye

5 (14)

S.=-— the—(l—u/\Z)/t|:(t —v)x— g:|
valid when <1, |v|<1,
immediately see that the relevant x=~ 6(r—v)<<1, justifying
our expansion above.

The cotunneling part of the action can be written as

8
. 1 N
Scot = Hcolg + ESH,cotg s

2v 2 213 &2
V \%
%agT C§+ﬁgT o€

2 12 7

(15)

where H,,, and Sicor are the energy current and its fluctua-
tions due to cotunneling, and a and S numerical factors on
the order of 0.1. Here we disregard the weak voltage and
temperature dependence of these terms. It turns out that the
energy current noise due to cotunneling, i.e., the term pro-
portional to B, can be neglected the single-electron term is
proportional to g, exp[—(1—v/V 2)/ t], whereas the cotunnel-
ing term is proportional to g% Near the crossover the expo-
nential term is on the order of g;#~> [see Eq. (1)] and the
single-electron contribution is therefore g2~>> g7.

The total action, including single-electron and cotunnel-
ing contributions with the aforementioned approximations, is
then

2 2
5 x|V xV,
S=- the_(l_U/\z)/t[(t— v)x — €:| ?C + a'gTTC. (16)

Using Eq. (11) we substitute
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: g 68 9 a
- = —
JE Vi it

and obtain for the distribution of temperature,

VAR )
125, °

2
P(t,7) = 77lvctP(E_ (18)

65,

the Fokker-Planck equation

w9 9 J
—P(t, D,(P(t,7) = D,(t)—P(t,7) [,
35,gTar(T) o 1(O)P(t,7) z()(% (¢,7)
(19)
where
—
(1 gT 51 l—v/\*’2 (1)
D1 =— (1 - a U/\2)/t+a__ Ll AL Ren
(1) (t—v)e p Ve P ¢
5 1
D f) = —(1 U/\Z) ,
2() WZVC

which, using Eq. (8), yield the stationary distribution

PVell, 1, 1-vh2

P (r) = expy — T[ gt - Et v — agqt exp —
—
1-v/\2
) .

= [1-vn2
+ ag(1 - v/\’2)E1< lt) : )] +
(20)

Here, Ei(z) is the exponential integral function.?”
To focus on the crossover regime, we introduce a new set
of dimensionless parameters by changing the variables to

1= 2TV + 20Tl V),

U= \/ETc/ VC + 21/( Tc/ VC)2

with the temperature at the crossover, 7, defined through
Eq. (1), see also Appendix A. We also introduce a dimen-
sionless level spacing,

1§ ( eVe )5
D: — e I 9
4\1’2772 EVC kBTC

characterizing the relative strength of the fluctuations, and a
typical relaxation time for these fluctuations in the crossover
interval,

T, =

227 1 (kBTC)3

3ag%- S\eve)

For a typical g;=1073, 7,=1.7x107'9/68, eVs. When
v,0<V/Te, and T/ Vo<1, we can expand in the small
parameter, 7/ V¢, and simplify the Fokker-Planck equation
for the overheated SET considerably
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9 J )
7,—P(0,7)=——\[-(0-v)e’ + 1 -De’TP(6,7)
or 06

—De”%P(G,T)}. (21)

The stationary distribution becomes

P (0) = exp{— %(%02— vl + e_0> - a}, (22)

which is the main result of this paper. The distribution con-
sists of two parts: the first, proportional to 1/D, which is also
present in the semiclassical (saddle-point) limit, and the sec-
ond, independent of D, describing the Gaussian fluctuations
around the saddle-point trajectories, which become signifi-
cant as & (and therefore D) grows. Low-temperature fluctua-
tions are exponentially suppressed since the cooling due to
singe-electron tunneling is also exponentially small. High-
temperature fluctuations on the other hand do not have such
suppressing mechanisms, hence they follow the usual Gauss-
ian form.

III. REGIME OF SMALL FLUCTUATIONS

In the limit of a metallic island, D<<1, the last terms
in the exponents in Egs. (20) and (22) can be disre-
garded. In this limit the typical fluctuations are Gaussian and
small: the variance is proportional to &;/ V(. It should be
stressed that our approach still goes beyond the Gaussian
approximation—we can also look at atypical, large fluctua-
tions, which are non-Gaussian in character.

On the single-electron side of the crossover but yet not far
from the crossover point, 1>v>T./V, we can in addition
neglect the exponential terms, proportional to g, in Eq. (20),

ﬂQVC 13 lz}
5 [31‘—21‘0 . (23)

The distribution has a maximum at t=v. The cubic term fa-
vors low-temperature fluctuations, similar to that obtained in
Ref. 3 for the noninteracting voltage biased island.?! This is
because far above the crossover SE processes serve as an
efficient cooling mechanism. Similar to the results in Ref. 3,
deviations from Gaussian statistics appear for temperature
fluctuations on the order of average temperature but their
probability is greatly enhanced since In P=T3/ 51V2C< T/ 6;.

In the competition regime, v<<0, we can approximate
the exponential integral with its asymptotic form,
Ei(z) =e(1/z+1/z%), for large z. The resulting distribution is

WZVC 1t3 _ ltzv
5 |3 2

2 ~
I3 1—v/\N2
rexp( on ) . (24)
1—-v/N2 1

In contrast to the previous case, low-temperature fluctuations
are exponentially suppressed for reasons explained at the end
of Sec. IL

Pst(t) o< exp{ -

Py(t) = exp) -

+01gT
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FIG. 3. (Color online) Logarithm of the temperature fluctuation
probability for some values of bias voltage v=(V,—V)/ V. In this
plot a=0.1 and g;=1073.

Around the crossover, v <T./V,, we have from Eq. (22)

P (0) exp{— %(%02 - vh+ e‘ﬁ)}. (25)

This distribution is “half-Gaussian,” i.e., Gaussian for high-
temperature fluctuations but exponentially suppressed for
low-temperature fluctuations. In this case the non-Gaussian
character appears already for deviations of temperature on
the order of 6T=(T-/V)T. and their probability is even
more enhanced, In P=(T/V)*(T¢/68;). The logarithm of
these probability distributions is plotted in Figs. 3 and 4,
which clearly show the half-Gaussian characteristics for volt-
ages close to and below V.

IV. GIANT FLUCTUATIONS

In the previous section, we assumed that the fluctuations
are small, D<1. If D=1, the typical fluctuations become

—1000

FIG. 4. (Color online) Logarithm of the temperature fluctuation
probability for bias voltages v=-5---5, bottom to top.
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FIG. 5. (Color online) Probability distribution for the tempera-
ture of the island. Note how the maximum of the distribution is
shifted and the non-Gaussian tail becomes more prominent as D is
increased.

non-Gaussian. For temperature, the fluctuations are still
small, occurring at the scale of T=T(T./V.). Since cur-
rent is anomalously sensitive to temperature, these fluctua-
tions manifest in much stronger fluctuations of the current.
Throughout this section we work with the scaled variables, v
and 6, and the results presented are valid for v, <<V /T.

A. Temperature fluctuations

For a finite but small level spacing &, the distribution of
temperature is given by Eq. (22) and plotted in Fig. 5. The
maximum of the distribution is located at

v—D v>0

. =D (6
—In(-=v+D) v<0 I (26)

Omax =

The maximum is shifted to lower temperatures with increas-
ing D and it differs from the expectation value of the tem-
perature when |v|/D is small as shown in Fig. 6. The vari-
ance of @ is plotted in Fig. 7.

Analytical approximations for the expectation value and
variance can be obtained in the limit |¢|>D, v>0 and
v<<0. In the first case the weight of the distribution is shifted
to large 6, and we can neglect the term e~% in Eq. (22). In the
latter case the weight is at small 6, and we can neglect the
quadratic term in Eq. (22). We obtain

@=1""" "% sp @
“|-In(-v), v<0’ g ’
D, >0
Var(6) = , |v|>D. (28)
-Dlv, v<0

For large positive or negative v, (6)= 6,,,,. Variance is pro-
portional to D as in the regime of small fluctuations.
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2 -3 -2 -1 0
v/D

FIG. 6. (Color online) Expectation value of the temperature as a
function of bias voltage. Dashed lines show the mode of 6, i.e., the

maximum of the distribution. The two tend to each other for
|v|=D.

B. Induced current fluctuations

In the overheated SET the electric current near the critical
bias is given by®

2 203
6_2%2%9

1(6) =
0=3 4212 ¢

(29)

A fluctuating temperature leads directly to a fluctuating elec-
tric current. Since the current depends exponentially on the
temperature, small fluctuations of temperature lead to large
fluctuations of current. The Fokker-Planck equation for tem-
perature is easily converted to a corresponding equation for
the dimensionless current, j=e", with the prescription

0.0 -3 -2 -1

0
v/D
FIG. 7. (Color online) Variance of the temperature as a function
of bias voltage. For v/D>1 the variance approaches D.
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FIG. 8. (Color online) Expectation value of the current as a
function of bias voltage. Dashed lines show the mode of j, i.e., the
maximum of the distribution. The ratio of these tend to exp(3D/2)
for v/ D>1, D>1.

1
PG,t)==P(0=1nj,1),
J

=i

a6

resulting in
0 d
7Pt =~ —-{J‘w— In j=2D) + 1]P(j.1)
ot dj

- Dj3i7>(i,t)}. (30)
dj

Note that this equation only includes the dominating contri-
bution to the current fluctuations due to the temperature fluc-
tuations, and the intrinsic fluctuations (thermal and shot
noise) are disregarded. The stationary distribution of current
is then

Po(j) mexp{—%{%(lnj)z— vinj+ Jl] -2 lnj}.
(31

Similarly to the case of temperature, the maximum of the
distribution 1is shifted to lower values of j when D is in-
creased. The maximum of the distribution is located at

exp(v=2D) v>0

Jmax = (_ V+2D)_l »<0 > |V| >2D. (32)
Due to the log normal character of the current distribution,
the expectation value and the most probable value of the
current deviate as v is increased. This is shown in Fig. 8. For
a small D, this deviation is proportional to D. The variance
of j is plotted as a function of the (reduced) bias voltage in
Fig. 9. Note that Var(j) is the variance of the instantaneous
electric current, which is different from the zero-frequency
spectral noise power, more often encountered in the litera-
ture.
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Var(j)/D

-4 -3 -2 -1

0
v/D
FIG. 9. (Color online) Variance of the current as a function of
bias voltage. Dashed lines show the square of the average current,

(j)*/D, for comparison. The ratio of these tend to exp(D) for
v/ID>1, D>1.

To comprehend the unusual properties of the distribution,
let us first turn to the limit D> 1, V|/D2 1. In this case, the
distribution reduces to a power-law function

1
Pylj) = 7D (33)

This form cannot be valid at all values of the current: it is cut
off at small currents, j,=1/2D, and crosses over to the log-
normal distribution at large currents, j,=exp(D), j,<1<j,.
Analytical approximations for the expectation value and
variance can be obtained in the limit |v|>D, v>0 and
v<<0. Similarly to the case of the temperature distribution, in
the first case the weight of the distribution is shifted to large
J, and we can neglect the term 1/j in Eq. (31). In the latter
case we can neglect the (In j)? term. We obtain

Gy = exp(v—"DJ2) v>0’

|v| > D, (34)
-1/v r<0

expv=D)(exp(D)-1) v>0

Var(j) = D[A(= v—D)]"! <0’

|v| > D.

(35)

We notice that for v>0, (j) parametrically exceeds jax
() jmax=€xp(3D/2), and Var(j) parametrically exceeds
(), VVar(j)/{j)=exp(D/2). This signals a highly unusual
distribution not satisfying, for instance, the central limit
theorem conditions.

We stress that the exponent of the power-law distribution
can be readily tuned with bias voltage, dV,=2V(T¢/V)dv.
We are not aware of any other physical systems where a
quantity exhibits a power-law distribution with a tunable ex-
ponent.

Using Eq. (9) allows us to write down a Langevin equa-
tion for the time dependence of the current
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100

801

60

FIG. 10. (Color online) Three simulated realizations of current
in an overheated SET at v=0 and D=3.3. The average current (for
D—0)is j=1.7.

1)+ )0 = 700, (36)

where y(j)=—j(v—=In j+D)—1 and 7(z) satisfies (7(z))=0
and (7()5(t"))=2Dj(1)>8(t—1"). The current exhibits huge
peaks at a low frequency that are orders of magnitude larger
than the average current, as can be seen from Fig. 10. The
time scale for these fluctuations, 7,, is on the order of milli-
seconds for g;=107% and §=0.01 K.

Another way to access the time dependence of the current
fluctuations is to study the saddle-point equations for small
fluctuations [Eq. (6)], i.e., vanishing &,

) d S
TX=— "2,
*ET 50
.9
T.0=—S§, (37)
ox

where the action,

2

— [0 oX Ve
S==[e(0-v)-1]x+e 72 (38)
has been written in terms of the dimensionless, scaled, vari-
ables, v, 6, and x. As explained in Ref. 3, the saddle-point
solutions follow the trajectory given by S(6(z),xs(6(¢)))=0
with x4(6) # 0 until a “measurement” at time 7 forces them to
a trajectory with x¢=0. As shown in Fig. 11, the shape of a
fluctuation obtained from the saddle-point equations agrees
with the Langevin result. This is expected, since for small D
the fluctuations around the saddle-point trajectory are negli-
gibly small.

V. CONCLUSIONS

We have studied the temperature fluctuations and the as-
sociated current fluctuations in an overheated SET. Focusing

PHYSICAL REVIEW B 82, 205316 (2010)

1.0

7 5
t/7,

FIG. 11. (Color online) Comparison of a saddle-point fluctua-
tion to the Langevin result at =0 and D=0.02.

on the crossover region between the competition of single
electron and cotunneling, and pure sequential tunneling, we
have found several interesting features, not seen in other
commonly considered nanostructures. In overheated SETs
with small islands the expectation value and the most prob-
able value of the temperature differ from each other due to a
tail in the probability distribution of temperature, extending
to significantly high temperatures. Due to exponential tem-
perature sensitivity of the electric current, huge peaks, occur-
ring at frequencies on the order of a few kilohertz, should be
visible in an instantaneous measurement of the electric cur-
rent.

Experimentally, the challenge is to manufacture a transis-
tor island where, despite high resistance tunnel contacts, the
electron-phonon heat current is negligible compared to the
heat current to the leads. In earlier experiments on the mea-
surement of noise in SETs (see, for example, Ref. 22), this
has not been the case. According to our earlier evaluation® a
transistor island with a volume of V=10"* um?® connected
with g7=1073 tunnel contacts should allow one to detect
these large current surges experimentally.
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APPENDIX A: DETAILS ON THE RESCALING

The total energy current in the SET can be found from the
action, Eq. (16), via

H= 07—8 =- the‘(l_”/“i)/t(t - v)V—C +
ox x=0 2

gZTVc
a— .
2
(A1)

The heat balance follows from the requirement for the total
energy current to vanish, leading to
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—(1 v/\2)/t(t +01gr O

Sv=- ang‘le“‘”/“i)/’ +1. (A2)

Next We make a change of variables to t=t-+ 0tc and
v=tct vtC, where 7. is for now an arbitrary number. If
0,v<1/t;, we can expand in these small parameters to
obtain

v=—agie 0y g (A3)
Selecting
3 L1 1
agylc exp(; - E) =l=t= m <1, (A4)
simplifies the heat balance to
v=—e9+0 (A5)

and also implies 7-<<1, thus justifying the expansion above
for a large range of v and 6. We define the crossover point
from the competition between single-electron and cotunnel-
ing to pure single-electron tunneling to be at =0, i.e,
t=tc=\2T¢/ V¢, defining the temperature at the crossover.
This happens when v=-1, i.e., at a voltage of vztc—tzc. This
rescaling simplifies also the Fokker-Planck equation, as seen
in the main text, since it allows us to approximate

3
agTVCe 0

o102
2\2T%

(A6)
in many of the formulas.

APPENDIX B: RELATION BETWEEN THE FOKKER-
PLANCK EQUATION AND THE FUNCTIONAL INTEGRAL

Let us write the FP equation in the form

J J &
Ef(q,t) =— ﬁ—q[Dl(q,t)f(q,t)] + a—(f[Dz(q,t)f(q,t)],

PHYSICAL REVIEW B 82, 205316 (2010)

%f(q’,t) = f dqf(q,t){—Dl(q,t)ié(q’ -q)

+D2(q,t) 25(q —q)] (B1)

and integrate over time from 7 to t+At¢,

flg',t+Ar) = J dqf(q,t){ﬁ(q’ -q) - AtDl(q,t)%&q' -q)

s
+ AtDz(q,t)a—qzﬁ(q’ -q)+ (’)(Atz)} . (B2)

Now we use the identity &g’ —q)=[dp/2 explip(q’ —q)] to
write

g1+ An) = J dqg—fo(q,t)ei”(q"">
X[1 +ipAtD,(q,t) — p*AtDy(q.t) + O(AF)].
(B3)
Iterating N times so that (1y—1,)/At=N gives

N-1
i
H dq, f(QOJO)eXp EA{U% H

flgn.ty) = = A

+ ipiDl(qhti) _P,ZDZ(‘I,JZ):| s (B4)

which admits a functional integral representation

flg.,t) = f DqDpf(qoto)exp J dilipg +ipD(q.t)

- p’Dy(g,1)] (BS)
This form of the functional integral is not unique [unlike Eq.
(B4)] but depends on the discretization procedure.?® With the
substitution ip——§, g—E, we get a functional integral in
the form of Eq. (5). This proves that the FP equation [Eq.
(7)] corresponds to the partition function of Eq. (5).
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