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ARTICLE INFO ABSTRACT
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Ionic liquids (ILs) are important solvents for sustainable processes and predicting activity coefficients (ACs)
of solutes in ILs is needed. Recently, matrix completion methods (MCMs), transformers, and graph neural
networks (GNNs) have shown high accuracy in predicting ACs of binary mixtures, superior to well-established
models, e.g., COSMO-RS and UNIFAC. GNNs are particularly promising here as they learn a molecular graph-to-
property relationship without pretraining, typically required for transformers, and are, unlike MCMs, applicable
to molecules not included in training. For ILs, however, GNN applications are currently missing. Herein, we
present a GNN to predict temperature-dependent infinite dilution ACs of solutes in ILs. We train the GNN on a
database including more than 40,000 AC values and compare it to a state-of-the-art MCM. The GNN and MCM

achieve similar high prediction performance, with the GNN additionally enabling high-quality predictions for
ACs of solutions that contain ILs and solutes not considered during training.

1. Introduction

Ionic liquids (ILs) have gained great interest in many chemical
engineering applications due to their attractive physico-chemical prop-
erties such as negligible vapor pressure (Seddon, 1997; Rogers and
Seddon, 2003; Berthod et al., 2018). A wide variety of ILs can be
formed by combining anions, cations, and other structural groups,
enabling tuning of ILs with respect to specific properties and result-
ing in a design space containing over one million potential binary
ILs (Rogers and Seddon, 2003). Applications of ILs as solvents, cata-
lysts, or electrolytes are vast, cf. Seddon (1997), Rogers and Seddon
(2003), Plechkova and Seddon (2008), Lei et al. (2017) including
separation processes (Brennecke and Maginn, 2001; Lei et al., 2014),
biomass conversion (Zhang et al., 2017), and batteries (Galinski et al.,
2006). With these IL applications typically involving mixtures, the
activity coefficient (AC) is one of the most important properties as
it accounts for intermolecular interactions and thus enables to model
non-ideality of mixtures with ILs, cf. Lei et al. (2014), Han and Arm-
strong (2007), Zeng et al. (2017), Chen et al. (2021). For using ILs as
solvents, particularly, the infinite dilution AC approximating non-ideal
behavior of solutions with high solvent and low solute concentrations
is highly relevant. To design ILs with application-specific properties,

the AC therefore needs to be considered. For exploring the large design
space of potential ILs, computer-aided molecular design methods can
be utilized, cf. Karunanithi and Mehrkesh (2013), Peng et al. (2017),
Song et al. (2018, 2019), Wang et al. (2018). In relation to the large
design space, however, the availability of experimental AC data is very
limited. Additionally, determining the AC experimentally for many IL
candidates would be time-prohibitive and expensive. Rather, models
that enable fast and high-quality AC predictions are desired as they
enable to explore a large number of IL candidates and are thus essential
building blocks for computer-aided IL design.

Model-based AC prediction with thermodynamic equation-of-state
methods and approaches like UNIFAC (Fredenslund et al., 1975) and
COSMO-RS (Klamt, 1995) is well established in chemical engineering.
Such classical AC models have also been adapted for mixtures con-
taining ILs. For example, UNIFAC which maps the structural groups of
molecules to ACs has been extended to ILs (Chen et al., 2021; Song
et al., 2018; Lei et al., 2009, 2012; Roughton et al., 2012; Dong et al.,
2020), see, e.g., UNIFAC-IL (Song et al., 2016). COSMO-RS, rooted
in statistical thermodynamics, has also been applied and extended
to the prediction of ACs of solutes in ILs (Chen et al., 2021; Song
et al.,, 2016; Han et al.,, 2018). For instance, Song et al. presented
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a modified COSMO-RS model calibrated to different molecular solute
families by considering large amounts of experimental data which has
been shown to produce improved results for IL solutions compared
to standard COSMO-RS (Song et al.,, 2016). However, classical AC
prediction models also come with limitations. UNIFAC can only be
applied to molecules composed solely of those structural groups that
have already been parameterized based on experimental data, and
COSMO-RS has been found to have limited prediction accuracy for ACs
of solutes in ILs (Chen et al., 2021; Song et al., 2016).

Recently, methods from machine learning (ML), namely matrix
completion methods (MCMs) (Jirasek et al., 2020; Damay et al., 2021),
transformers (Winter et al., 2022), and graph neural networks (GNNs)
(Sanchez Medina et al., 2022; Felton et al., 2022), have been ac-
tively investigated as alternative approaches for predicting ACs, with
MCMs also applied to IL solutions (Chen et al., 2021). Generally, ML
approaches aim to learn molecular structure-to-property relationships
directly from data, cf. (Butler et al., 2018; Muratov et al., 2020; Rittig
et al., 2022b).

As the name suggests, MCMs encode solvents and solutes in a
matrix, with AC of a specific solvent-solute combination as entries.
Since only few entries are filled by available experimental data, the
matrix is typically sparse and has to be completed. Recently, MCMs
based on collaborative filtering (He et al., 2017) have been utilized to
AC prediction (Jirasek et al., 2020; Damay et al., 2021; Chen et al.,
2021), relying on the concept that similarities between different rows
and different columns, i.e., patterns, deduced solely from the given AC
entries of a sparse solute-solvent matrix can be used to fill in the missing
entries. For example, Jirasek et al. (2020) utilized a MCM for predicting
infinite dilution ACs at ambient temperature which performed favor-
ably in comparison to UNIFAC. Damay et al. (2021) extended this MCM
model (Jirasek et al., 2020) to also include a temperature-dependency
of the infinite dilution AC by utilizing the Gibbs-Helmholtz relation.
For the prediction of temperature-dependent infinite dilution ACs of
solutes in ILs, Chen et al. (2021) proposed a MCM that employs a neural
recommender system, outperforming COMSO-RS (Song et al., 2016)
and UNIFAC-IL (Song et al.,, 2016) on an extensive test set. Despite
the promising prediction accuracies of MCMs, their applicability is
inherently limited to solvents and solutes for which at least one entry
in the matrix is available.

Transformers, a ML method arising from the field of natural lan-
guage processing, cf. Vaswani et al. (2017), Devlin et al. (2018), have
also been utilized for molecular applications, e.g., (Schwaller et al.,
2019; Rong et al., 2020). Taking a sequence as input, for molecules
typically consisting of SMILES strings (Weininger, 1988), transform-
ers apply several feedforward neural network layers and attention
mechanisms to learn relations within the input sequence relevant for
mapping it to a property of interest, cf. Rong et al. (2020), Winter
et al. (2022). Very recently, Winter et al. (2022) proposed a transformer
model to predict infinite dilution ACs of solutes in solvents at varying
temperature based on SMILES strings, called SMILES-to-Properties-
Transformer (SPT). Yet, transformers typically require large amounts
of training data in the order of millions which are not available for
many molecular properties. Therefore, Winter et al. first generated
about 10 million AC data points by means of COSMO-RS to pretrain
the SPT and then used about 21,000 experimental AC values to fine-
tune their model, thereby reaching high accuracy (Winter et al., 2022).
Generation of synthetic property data for this type of pretraining is,
however, computationally expensive and limited by the availability and
accuracy of existing models, which can thus hinder rapid development
and extension of transformers for molecular property prediction.

GNNs, another ML approach gaining great interest for molecular
property prediction (Gilmer et al.,, 2017), have only been applied
to AC prediction very recently (Sanchez Medina et al., 2022; Felton
et al., 2022). GNNs operate on graph-structured data; by representing
molecules as graphs with atoms as nodes and bonds as edges, GNNs
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can be utilized to learn molecular properties directly from molecu-
lar graphs. For AC prediction with GNNs, the solvents and solutes
are thus represented as molecular graphs. Since the molecular graph
representation is generally applicable to molecules, GNNs can also
process solutes and solvents that have not been included in the model
training. Thus, in contrast to MCMs, GNNs provide the possibility of
enabling AC prediction for mixtures consisting of solutes and solvents
not seen during model training. Moreover, GNNs also enable data-
scarce applications without pretraining, as required for transformers,
see, e.g., our previous work (Schweidtmann et al., 2020). Sanchez
Medina et al. (2022) have recently utilized GNNs for the prediction
of infinite dilution ACs at constant temperature for binary mixtures,
achieving high prediction accuracies. They also combined GNNs with
classical AC prediction models such as COSMO-RS and UNIFAC into
hybrid models, where a GNN learns to correct the error of a classi-
cal model (Sanchez Medina et al., 2022). Furthermore, Felton et al.
(2022) have presented DeepGamma, a deep learning model employing
GNNs trained on millions of data points from COSMO-RS calculations,
for predicting temperature-dependent ACs of binary mixtures at finite
dilution. Also, Qin et al. (2022) have utilized COSMO-RS calculations
for binary and additionally ternary solvent mixtures to develop and
train SolvGNN, a GNN explicitly modeling intermolecular interactions
for predicting ACs of multi-component solvent mixtures of different
compositions at constant temperature. GNNs have thus already made
promising advances in the field of AC prediction. However, the ap-
plication of GNNs to IL solutions, the prediction of experimentally
validated temperature-dependent infinite dilution ACs with GNNs, and
the comparison to MCMs have not been investigated up to now.

We present a GNN for predicting temperature-dependent infinite
dilution ACs of solutes in ILs.! In contrast to standard solvents, binary
ILs constitute two disconnected but highly-attracted ionized molecules.
Therefore, we develop a GNN approach that takes three molecular
graphs as input (the two IL molecules and the solute), and then learns
a single continuous vector representation of the IL solution, referred
to as molecular fingerprint. The molecular fingerprint of the IL so-
lution is then augmented with the temperature and mapped to the
infinite dilution AC. Thereby, the GNN architecture enables an end-
to-end prediction from molecular graphs of IL solutions to ACs. We
thus extend current state-of-the-art GNN-based AC prediction mod-
els (Sanchez Medina et al., 2022; Felton et al., 2022; Qin et al., 2022)
to IL solutions and temperature-dependent infinite dilution ACs. We
analyze the GNN prediction accuracy and compare it to state-of-the-art
MCM methods (Chen et al., 2021) for predicting the infinite dilution
ACs of solutes in ILs. In addition, we investigate the generalization
capabilities of our GNN, i.e., we analyze if the GNN is able to predict
experimentally validated ACs of solutions involving ILs and solutes that
were not included in the training data set.

This work is structured as follows: First, we describe the IL-solute
data set (Section 2) and present the GNN model for predicting the
temperature-dependent AC of solutes in ILs (Section 3). We then present
and discuss the prediction performance (Section 4.1) and generalization
capability (Section 4.2). Finally, we conclude our work and briefly
discuss possible extensions of the presented GNN approach (Section 5).

2. Data set

We use the data set of infinite dilution ACs at varying temper-
atures for IL solutions that was collected from the public ILThermo
database (Kazakov et al.,, 2013) by Chen et al. (2021). A detailed
overview of the data can be found at Rittig et al. (2022a). The data set
includes ILs and solutes with atoms of the types C, O, N, P, S, B, and

1 Data, code, and trained models are openly available at Rittig et al.
(2022a), where we also provide instructions on making predictions for custom
data.
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Table 1

Data set of IL solutions from Chen et al. (2021) categorized by molecular classes of
solutes. The number of data points per solute class are shown for the total data set,
the training/validation, and the test set for two different model evaluation approaches
(prediction and generalization).

Solute family All Prediction Generalization
Train/Val Test Train/Val Test

Cl, F compounds 1110 1017 93 698 412
Acetic acid 29 24 5 29 0
Acetonitrile 659 563 96 634 25
Alcohols 5681 5051 630 5480 201
Aldehydes 506 489 17 455 51
Alkanes 6722 6065 657 5980 742
Alkenes 3824 3383 441 3085 739
Alkynes 2526 2275 251 2400 126
Aromatics 6550 5996 554 4634 1916
Cycloalkanes 3600 3169 431 3449 151
Esters 1446 1284 162 1368 78
Ethers 4236 3872 364 3667 569
Ketones 2265 1979 286 2154 111
Nitro alkanes 638 603 35 606 32
Pyridine 429 398 31 404 25
Terpenoids 46 46 0 46 0
Thiophene 672 600 72 647 25
Triethylamine 97 85 12 95 2
Water 517 488 29 496 21
Total 41553 37387 4166 36327 5226

halogens, whereas the charge of the ions within the ILs are + 1 and
each IL solution has at least ten data points, i.e., AC measurement at
ten different temperatures, cf. Chen et al. (2021). The data set contains
215 ILs (consisting of 96 cations and 38 anions) and 112 solutes with
a total number of 41,553 experimental y® data points.

We provide an overview of the data set categorized by solute classes
in Table 1. We divide the data set into a training/validation set, which
is used for model development, and a test set, which is used after
model training for comparing the model predictions against available
experimental data, thereby providing an estimate of the model’s pre-
diction quality. For details on best practices for performance evaluation
of data-driven models, please refer to reviews, e.g., (Gramatica, 2007;
Tropsha, 2010). The number of data points we use for model train-
ing/validation and testing is shown in Table 1 with respect to two
objectives: First, testing the prediction accuracy for IL solutions that
contain molecules used for model training but in other combinations,
and second, evaluating the prediction quality for generalization to IL
solutions that contain molecules not used for model training.

For testing the prediction accuracy of our model, we use the same
test set (about 10 % of the total data set) as Chen et al. (2021) who
ensured that IL-solute combinations that are included in the train-
ing/validation data set are not part of the test data set. Note that we
assume 10 %, i.e., more than 4000 data points, is sufficient to test
the prediction quality of a model while retaining most of the valuable
experimental data for training. We apply a 90 %/10 % random split to
the training/validation data set.

For evaluating the generalization capability to molecular structures
not seen during training, we perform another split of the whole data
set into training/validation and test set, with all IL-solute combinations
in the test set including at least one molecule not included in the
training/validation set. Specifically, for the test set, we randomly select
5 % from all unique SMILES (Weininger, 1988) of both ILs and solutes
(about 13 % of all data points); the remaining data points are used as
the training/validation set. Analogously to the test set, we randomly
select 5 % of unique molecules from the training/validation set to
create the validation set. Each IL solution in the validation set and in
the test set therefore contains at least one molecule not included in
the training set and also not included in the test set or validation set,
respectively. Note that for each random training/validation split in the
generalization analysis, the number of data points in the validation set

Computers and Chemical Engineering 171 (2023) 108153

Table 2
Atom features used for initializing node attributes. All features are implemented as
one-hot-encoding.

Feature Description Dimension
Atom type type of atom (C, O, N, F, S, Cl, P, B, Br) 9
Is in ring whether the atom is part of a ring 1
Is aromatic whether the atom is part of an aromatic system 1
Charge formal charge of the atom (-1, 0, 1) 3
Hybridization sp, sp2, sp3, or sp3d2 4
# Hs number of bonded hydrogen atoms 4
Table 3

Bond features used for initializing edge attributes. All features are
implemented as one-hot-encoding.

Feature Description Dimension
Bond type single, double, triple, or aromatic 4
Conjugated whether the bond is conjugated 1
Is in ring whether the bond is part of a ring 1

typically varies because both the number of IL solutions a molecule is
involved in and the corresponding number of temperature-dependent
ACs may vary for different molecules.

3. Methods & modeling

In this section, we first give a brief background on molecular
graphs and GNNs, and then present our GNN model for AC prediction
of solutes in ILs. We also provide insights on the MCM method we
use for comparison, as well as on the training, implementation, and
hyperparameter selection for both the GNN and the MCM model.

3.1. Molecular graph

GNNs take molecular graphs as input. Molecular graphs represent
atoms of molecules with nodes/vertices and bonds between atoms with
edges. We denote nodes (vertices) with v € V' and edges connecting
two nodes v,w € V with e,,. In addition, each node and edge is as-
signed a feature vector that stores specific atom and bond information,
respectively. The node feature vector is denoted by f¥ (v) and contains,
for example, information about the atom type or the formal charge of
the atom. Analogously, the edge feature vector is denoted by f£(e,,,)
and typically includes information about the bond type. The set of
nodes and edges with the corresponding feature vectors describes the
attributed molecular graph G(m) = {V, E,t" ,£F} for a molecule m.

We use the atom features shown in Table 2 and the edge features
illustrated in Table 3; both are based on features reported in the liter-
ature (Gilmer et al., 2017) and our previous work on GNNs (Schwei-
dtmann et al., 2020). For the atom features, we additionally include
the formal charge since ionic liquids are composed of ionized atoms
or molecules. Note that hydrogen atoms are not represented as nodes
but are treated implicitly as atom feature by means of the count of
hydrogen atoms bonded to a heavy atom.

3.2. Graph neural networks

GNNs (Gori et al., 2005; Scarselli et al., 2009) have recently been
widely applied for molecular property prediction, e.g., in Sanchez
Medina et al. (2022), Gilmer et al. (2017), Schweidtmann et al. (2020),
Coley et al. (2017), Kearnes et al. (2016). GNNs learn to map the
molecular graph to a property of interest in an end-to-end supervised
training. We show the structure of the GNN we use for predicting the
AC at varying temperatures for ionic liquids in Fig. 1. The graph-to-
property structure of GNNs is based on two phases: a message passing
phase and a readout phase (Gilmer et al., 2017).

In the message passing phase, structure information within the
molecular graph is encoded by means of graph convolutions. Graph
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convolutions are neural network layers that operate on the attributed
molecular graph (cf. Section 3.1). Specifically, the feature vector of
each node v within the attributed molecular graph is considered in-
dividually and iteratively updated based on the feature vectors of the
nodes and edges in the neighborhood, N = {w | e,,, € E,w # v}. The
updated feature vector of a node v after passing a graph convolutional
layer [ is typically referred to as hidden state h/. Note that the atom
features are utilized to initialize the hidden state, i.e., h% = £”(v). The
update process of a node hidden state within a graph convolution layer
I can be depicted as message information from the neighborhood passed
to a node v and is denoted by
b, = Uy 3 My (b (),

weN (v)
where a message function M, produces a message from the hidden state
of a neighbor node w of the previous graph convolutional layer, h’!,
and from the corresponding edge feature vector, f£(e,,); then, the sum
of all messages are passed to the node and are combined with the hid-
den state vector of the node from previous graph convolutional layer,
h!~1, by applying an update function U, which results in the updated
hidden state of the node, h!. For both the message and the update func-
tion multiple variations have been proposed, e.g., GCN (Hamilton et al.,
2017), GIN (Xu et al., 2018), higher-order methods (Morris et al., 2019;
Flam-Shepherd et al., 2021), and approaches including 3D information
of molecules like atom distances and bond angles (Schiitt et al., 2018;
Unke and Meuwly, 2019; Klicpera et al., 2020; Zhang et al., 2020).
By stacking multiple graph convolutional layers together, each node
receives information from its neighbors, with each additional layer
increasing the local neighborhood information passed to a node by one
additional hop (from node to node) along an edge. For example, in the
second layer, the neighbors of a specific node have already received
information from their respective neighbors in the previous layer which
they can then pass on. The total number of graph convolutional layers
L employed thus describes the local information radius, the L-hop
environment of an individual node encoded in the message passing
phase.

In the readout phase, the local structure information of the individ-
ual nodes is then aggregated into a continuous vector representation
of the graph, the molecular fingerprint. This aggregation of the single
node hidden states is conducted by means of a pooling function,
e.g., the sum, hgp = Y, hl. Taking the molecular fingerprint as an
input, a feedforward neural network, typically a multilayer perceptron
(MLP), is applied to predict a molecular property of interest, p =
MLP(hyp).

pooling

interaction & prediction

end-to-end learning

Fig. 1. Graph neural network model for prediction of the temperature-dependent infinite dilution activity coefficient of solutes in ionic liquids.

3.3. Graph neural network for activity coefficient prediction

Our GNN model for predicting infinite dilution ACs of solutes in
ILs at varying temperatures is illustrated in Fig. 1. We first convert
the molecules of an IL solution to attributed molecular graphs (cf.
Section 3.1) that serve as input to the GNN. In the message passing
phase of the GNN, we use two separate graph convolutional layer
channels, one for the molecular graph of the solute and the other one
for the two molecular graphs, i.e., anion and cation, of the IL. Thus, for
the IL, the same graph convolutional layers are applied independently
to the molecular graph of the anion and the molecular graph of the
cation but the resulting hidden node state vectors are pooled into one
IL fingerprint vector. For the graph convolutions, we apply a gated
recurrent unit (GRU) with the GINE-operator (Xu et al., 2018; Hu et al.,
2019) that utilizes an MLPgn to map the e-scaled hidden state of
a node (e being a learnable parameter) and the received information
from the neighborhood (transformed by an activation function ¢) to
the updated hidden state, leading to the following update function:

h = GRU <h§;‘, o <MLPGINE <(1 +e) b+ Y o+ f))))
WEN (v)

Note that here both the initial hidden node states and the edge features
are linearly transformed by a learnable parameter matrix (6) to match
the dimension of the following hidden states, i.e., h? = 6, - t¥(v) and
£, =0 - tF(e,,), respectively.

After the GC layers, sum pooling is applied yielding the molecular
fingerprint of the IL, hgpp;, and the solute, hgp g, respectively. Then,
the interactions between the IL and solute molecules are modeled
with MLP;, a MLP that transforms and concatenates the two molecular
fingerprints. The output of this interaction MLP is a combined IL-solute
vector hy; g, which is then concatenated with the min-max-normalized
temperature T,,,, of the IL solution and subsequently fed into MLP-,
an MLP providing a prediction for the logarithmic value of the AC y,
ie,

In(y®) = MLP1([h{] ¢, Tprm]”)-
3.4. Matrix completion method baseline
We re-implement an MCM model that has recently been presented

for AC prediction of solutes in ILs by Chen et al. (2021), as a state-of-
the-art ML-based AC prediction benchmark for our GNN model. Instead



J.G. Rittig et al.

of molecular graphs, the MCM model takes one-hot encodings of ILs
and solutes as input, i.e., each IL and solute is assigned an unique
ID that is encoded in a one-hot-vector. Additionally an unique ID
for cation, anion, cationic family, and solute family (all four encoded
as one-hot-vectors) are provided as input. For each of the six one-
hot-encoded inputs, the MCM model employs several neural network
layers, i.e., MLPs, to learn a continuous vector representation. The six
continuous vectors are then concatenated to form a single IL solution
vector. Analogously to the GNN model, the IL solution vector is then
combined with the min-max-normalized temperature and mapped to
In(y*) by another MLP.

3.5. Ensemble learning

For both the GNN and the MCM model we apply ensemble learning,
a concept from machine learning that builds on the idea of averaging
predictions of multiple models trained on different subsets of the
training data set (Breiman, 1996b,a; Dietterich, 2000). Ensembles can
increase the robustness of prediction models, e.g., by averaging out
under- and over-predictions (Breiman, 1996a; Dietterich, 2000).

We apply ensemble learning by training multiple models on dif-
ferent splits of the IL-solute AC data set (cf. Section 2). Specifically,
we split the data not used for testing randomly into a training and
validation set before the training of each model. After training, the
outputs of all models are averaged to obtain the reported AC prediction.

3.6. Implementation & hyperparameters

We implement our models in Python and utilize the geometric
deep learning package PyTorch Geometric (PyG) developed by Fey &
Lenssen (Fey and Lenssen, 2019). The annotated molecular graphs are
generated with RDKit (Landrum, 2022). We provide the code and data
used for training and testing open source, see Rittig et al. (2022a).

The proposed GNN model exhibits several hyperparameters, which
we tune in a two-step process. In the first step, a grid search for
the hyperparameters determining the GNN architecture is performed,
varying the following hyperparameters within the respective ranges:
Graph convolutional type € {NNConv, GINEConv}, number of graph
convolutional layers € {1, 2, 3}, usage of GRU in graph convolu-
tions € {True, False}, dimension of molecular fingerprint € {64, 128},
number of layers in MLP-channels in interaction network € {1, 2, 3},
activation function € {Leaky ReLU, ReLU}. Note that the number of
neurons for the interaction MLP; is not varied and is set to 256 for
all MLP-channel layers except for the last MLP-channel layer that has
128 neurons, followed by three interaction layers with dimension 256.
The structure of the MLPy is not varied and set to three layers with
257 (one additional dimension for the normalized temperature), 128,
and 1 neurons. The following training hyperparameters are applied:
initial learning rate 0.001, learning rate decay of 0.8 with a patience
of 3 epochs, batch size 64, maximum number of epochs 300, optimizer
adam, early stopping patience of 25 epochs, dropout rate in both

Table 4
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MLPs of 0.05. The first step of the hyperparameter search results in a
final model architecture with the graph convolutional type GINEConv
employed in two layers in combination with a GRU, a fingerprint
dimension of 64, a number of layers in MLP-channels of 3, and Leaky
RELU as activation function. In the second step of the hyperparameter
tuning, a grid search to fine-tune the GNN training parameters is
conducted, i.e., varying the initial learning rate € {0.01, 0.001, 0.0001},
the batch size € {32, 64, 128 }, and the dropout rate € {0.1, 0.05, 0}.
We select the best model based on the validation error with a random
split of the initial data set into training and validation sets. This leads
to an optimal initial learning rate of 0.001, a batch size of 64, and a
dropout rate of 0.

Our MCM implementation uses the model structure with MLP blocks
and the hyperparameter values proposed by Chen et al. (2021). For
training the MCM, we use a learning rate decay of 0.8 with a patience
of 3 epochs and apply early stopping with a maximum of 300 epochs
instead of a fixed number of 40 training epochs because we find the
validation error to decrease in later epochs.

For choosing the ensemble size, we train 40 GNN and 40 MCM
models and analyze the decrease in the validation MAE when step-wise
combining more and more models of the same type starting from only 2
models. We find that the validation MAE tends to stabilize between 30
to 40 models in case of both GNN and MCM and therefore consistently
use ensembles of size 40 to generate the results.

4. Results & discussion

We first evaluate AC prediction for IL solutions, where both IL and
solute were in the training set, however, in different combinations
than in the test set (Section 4.1). Whereas the application of MCMs
is inherently limited to this application scenario, GNNs can learn
molecular features from molecular graphs and thus can be applied
to molecules not included in the training set. The latter application
scenario is referred to as generalization, which we will investigate
separately (Section 4.2).

4.1. Prediction of new IL-solute combinations

Table 4 shows the accuracies for predicting temperature-dependent
ACs of new IL-solute combinations (both In(y*) and y*). For example,
the logarithmic form is relevant for calculating the chemical potential,
whereas y® is required when estimating vapor-liquid equilibrium. Note
that the logarithmic form is used for model training because it exhibits
a more bell-shaped distribution and avoids variations in the order of
magnitude as in the unscaled AC values. The single model statistics
present the accuracies on the training, the validation, and the test data
averaged over 40 individual models of the same type. For the ensemble
of models, distinguishing training and validation accuracies is no longer
possible (cf. Section 3.5), hence we provide the accuracies for training
and validation data in one category.

Model prediction accuracies for new IL-solute combinations. Accuracy is provided by mean absolute error (MAE), root mean squared error (RMSE), coefficient of determination
(R?), and mean absolute percentage error (MAPE). For the single models, the standard deviation (+) across 40 different models is given.

Model setup In(y>) y®
MAE RMSE R? MAE RMSE R? MAPE

single (train) 0.027 + 0.012 0.069 + 0.015 1.00 + 0.00 1.4 + 0.7 16.7 + 9.7 0.99 + 0.02 2.74 + 1.19

single (val) 0.044 + 0.009 0.109 + 0.013 1.00 + 0.00 2.0 £ 0.5 18.0 + 6.9 0.99 + 0.01 4.67 + 1.03
GNN single (test) 0.093 + 0.004 0.162 + 0.006 0.99 + 0.00 73+ 14 67.1 + 32.2 0.79 + 0.28 9.59 + 0.44

ensemble (train/val) 0.021 0.067 1.00 1.2 14.9 0.99 2.18

ensemble (test) 0.071 0.138 0.99 6.1 51.1 0.90 7.32

single (train) 0.038 + 0.002 0.087 + 0.004 1.00 + 0.00 29+ 04 34.0 + 4.9 0.96 + 0.01 3.92 + 0.23

single (val) 0.050 + 0.002 0.115 + 0.009 1.00 + 0.00 3.3+07 32,5 + 19.9 0.96 + 0.04 5.30 + 0.36
MCM single (test) 0.092 + 0.002 0.157 + 0.005 0.99 + 0.00 5.8 + 0.5 35.7 + 4.2 0.95 + 0.01 9.44 + 0.29

ensemble (train/val) 0.030 0.084 1.00 2.72 335 0.96 3.20

ensemble (test) 0.076 0.138 0.99 5.0 30.7 0.96 7.70
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Fig. 2. GNN model ensembling parity plot for test set with new IL-solute combinations. Red lines indicate + 0.5 error range.
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Fig. 3. Absolute percentage error (APE) of GNN ensemble and MCM ensemble for predicting y*

of IL solutions in the test set categorized by solute families. For visualization, 13

outliers for the GNN ensemble and 12 outliers for the MCM ensemble with MAPE higher than 100 % are not shown.

The single GNN models achieve a mean absolute error (MAE) of
0.093 and R? of 0.99 on average for predicting In(y®) of the IL solutions
in the test set. For predicting y*°, the MAE amounts to 7.3 and the
mean absolute percentage error is 9.6%. In case of y*, the average
R? value is visibly lower with a value of 0.79 which is caused by
one of the GNN models failing to predict high y* values, also causing
the high standard deviation. By using an ensemble of the single GNN
models, i.e., averaging the predictions of all 40 models, the test set
prediction accuracy further increases, yielding a reduced MAE of 0.071
for predicting In(y*®). Also, the MAE and mean absolute percentage
error (MAPE) for predicting y*® are reduced to values of 6.1 and 7.3%,
respectively. Thus, we find an overall high prediction quality of the
GNN, further enhanced by ensemble learning.

In Fig. 2, we show the parity plot of experimental and predicted
logarithmic ACs for the IL solutions of the test set when using the GNN
ensemble. A deviation of +0.5 on the logarithmic scale is indicated
by the red lines. We find that the In(y*) predictions for almost all
data points (i.e., 4109 out of 4166) are located within the +0.5 error
range. The remaining data points have mostly slightly larger errors,
with the highest absolute error being 1.357. Furthermore, we do not
find a systematic error.

The comparison to the state-of-the-art MCM (Chen et al., 2021) (cf.
Section 3.4) shows very similar performances on the same test set are
achieved by both approaches, the ensemble of GNNs and the ensemble
of MCM models (cf. Table 4). Note that the implemented MCM model
has a validation root mean squared error (RMSE) of 0.115 averaged
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Table 5

Model prediction accuracies for generalization to IL solutions containing at least one molecule not included in the training/validation set. Accuracy is provided by mean absolute
error (MAE), root mean squared error (RMSE), coefficient of determination (R?), and mean absolute percentage error (MAPE). For the single models, the standard deviation (+)

across 40 different models is given.

Model setup In(y>) y®
MAE RMSE R? MAE RMSE R? MAPE
single (train) 0.103 + 0.043 0.174 + 0.060 0.99 + 0.01 6.0 + 22 64.5 + 19.8 0.85 + 0.08 10.7 + 4.5
single (validation) 0.220 + 0.053 0.357 + 0.087 0.95 + 0.03 9.6 + 6.3 71.5 + 58.2 0.74 + 0.25 24.4 + 6.1
GNN single (test) 0.205 + 0.030 0.306 + 0.052 0.96 + 0.01 6.4 +1.6 48.6 + 26.1 0.82 + 0.30 25.1 + 5.4
ensemble (train/validation) 0.077 0.145 0.99 4.5 62.2 0.87 7.8
ensemble (test) 0.156 0.230 0.98 4.0 29.4 0.95 18.0

over 40 runs each with a randomly selected validation set which is
similar to the 10-fold cross-validation RMSE of 0.136 reported by Chen
et al. (2021) for their best model. Also for the MCM, the application
of ensemble learning considerably increases the prediction accuracy on
the test set.

Chen et al. (2021) have shown that MCMs outperform classical AC
prediction approaches such as the UNIFAC-IL model (Song et al., 2016)
and the calibrated COSMO-RS model (Song et al., 2016). The GNN
achieving competitive prediction accuracy to the MCM makes GNNs
another promising alternative to UNIFAC-IL (Song et al., 2016) and the
calibrated COSMO-RS (Song et al., 2016).

Finally, we show the absolute percentage error (APE) of the GNN
ensemble and the MCM ensemble for predicting y* of IL solutions
categorized by solute families in Fig. 3. For both the GNN ensemble and
the MCM ensemble, the median APE lies below 20 % for most solute
families emphasizing the high prediction quality of both models. A
notable exception are solutions with triethylamine solutes with median
APEs of 35.9% (MAPE of 77.3%) and 53.6% (MAPE of 71.7%) for the
GNN ensemble and the MCM ensemble, respectively. We explain the
high error by the low number of data points for solutions containing
triethylamines and the relatively low number of molecules with ni-
trogen atoms across all solute molecules in the data set compared to
(oxygenated) hydrocarbons. In addition, we observe outliers for many
solute families (cf. Fig. 3) which indicates that despite the low MAPEs
both ML models generate strong mispredictions for a small fraction of
IL solutions. More than 90 % of all y* values in the test, however, are
predicted with an APE below 20 % by both ensemble models.

4.2. Generalization to new IL and solute molecules

We now present the results for predicting IL solutions that contain
molecules not included in the training. Table 5 shows the accuracies
for predicting temperature-dependent ACs (both In(y®) and y*) cate-
gorized according to training, validation, and test data averaged over
40 single GNN models, as well as the ensemble learning results. Again
the logarithmic form is used for model training and for the ensemble
model the training and validation error is aggregated into one category
(cf. Section 3.5). Comparing the prediction quality of the single GNN
models to the ensemble, we again observe an accuracy increase for both
training/validation and test set. In the following, we thus focus on the
ensemble results.

For predicting In(y®) of the IL solutions in the test set, the MAE
of the ensemble amounts to 0.156 and the R? has a value of 0.98,
indicating a high prediction quality. The MAE value for y® with 4.0
and the R? of 0.95 also correspond to high prediction accuracy.

Comparing the model for IL solutions with unseen molecules to
the model for IL solutions with seen molecules (cf. Section 4.1), the
MAE for In(y®) increases for both the single GNN models and the
ensemble. That increase is not surprising since generalization to new
molecules is considered inherently more difficult than predicting the
AC for molecules already seen during training. Since the respective
test sets contain different data points, a direct quantitative compari-
son of the prediction accuracies, however, is not possible. Overall, a
high prediction quality is maintained for the generalization to unseen
molecules.

We illustrate the experimental and predicted logarithmic ACs by the
ensemble for the IL solutions within the test set for generalization by
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the parity plot in Fig. 4. A good match of the predicted values and the
experimental values for In(y®) can be observed from the parity plot
in Fig. 4. Most of the parity points lie within a deviation of +0.5 on
the logarithmic scale indicated by the red lines (Fig. 4). For the solute
class of Cl, F compounds, the predictions tend to be too high for many
data points. Such deviation was not observed in the AC prediction of
IL solutions with seen molecules (cf. Section 4.1), hence we do not
expect the error to be inherent to the GNN model architecture or noisy
data. We rather attribute the deviation to the fact that a large fraction
of the Cl, F compound data points (37 %) are located in the test set
(cf. Table 1) and thus fewer data points are available for training the
model. For the other solute classes, we observe a low number of outliers
and do not find systematic prediction errors. Thus, the parity plot in
Fig. 4 emphasizes the high prediction accuracy of our GNN in case of
generalization to unseen molecules.

Overall, we find that GNNs provide high prediction quality and
enable generalization for AC estimation of IL solutions with unseen
molecules. Predictions for molecules of classes with few data points
available for training, however, should be taken with particular cau-
tion.

5. Conclusion

We present a GNN model for the prediction of temperature-
dependent infinite dilution ACs of solutes in ILs. GNNs learn molecular
properties based on a graph representation of molecules and have been
successfully applied to AC prediction of solvents in solutes (Sanchez
Medina et al., 2022; Felton et al., 2022; Qin et al., 2022). We herein
extend GNNs to AC prediction of IL solutions. Specifically, we develop
a GNN model that learns the infinite dilution AC as a direct function of
IL and solute molecular graphs and the temperature.

The GNN model achieves high-accuracy AC predictions, superior to
classical AC models such as COSMO-RS and UNIFAC-IL (Song et al.,
2016) and competitive with state-of-the-art MCMs for IL solutions
(Chen et al., 2021). Unlike MCMs, the GNN can also be applied to
IL solutions with molecules not seen during model training, referred
to as generalization. We investigate the generalization capability by
excluding some molecules from training and using them for testing. Our
results show that the GNN model allows for generalization with high
accuracy, making it a highly promising constituent of computer-aided
design of ILs.

Future work could extend GNNs for AC prediction to IL solutions
at finite dilutions, similar to Felton et al. (2022). A further interesting
direction is the combination of GNNs with classical AC models in
form of hybrid models, cf. Sanchez Medina et al. (2022), Jirasek and
Hasse (2021). Extending GNNs to provide chemically interpretable AC
predictions with a quantified prediction uncertainty would also be
highly desirable, with the goal of uncovering mechanistic insights that
can further be used for extensions of classical AC models.
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