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Avoiding high computational loads is essential to online aerodynamic model identi-

fication algorithms, which are at the heart of any model-based adaptive flight control

system. Multivariate simplex B-spline (MVSB) methods are excellent function approx-

imation tools for modeling the nonlinear aerodynamics of high performance aircraft.

However, the computational efficiency of the MVSB method must be improved in or-

der to enable real-time onboard applications, for example in adaptive nonlinear flight

control systems. In this paper, a new recursive sequential identification strategy is pro-

posed for the MVSB method aimed at increasing its computational efficiency, thereby

allowing its use in onboard system identification applications. The main contribution

of this new method is a significant reduction of computational load for large scale

online identification problems as compared to the existing MVSB methods. The pro-

posed method consists of two sequential steps for each time interval, and makes use

of a decomposition of the global problem domain into a number of subdomains, called

modules. In the first step the B-coefficients for each module are estimated using a

least squares estimator. In the second step the local B-coefficients for each module are

then smoothened into a single global B-coefficient vector using a linear minimum mean
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square errors (LMMSE) estimation. The new method is compared to existing batch

and recursive MVSB methods in a numerical experiment in which an aerodynamic

model is recursively identified based on data from an NASA F-16 wind-tunnel model.
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Nomenclature

b(x) = barycentric coordinate vector of point x

C = covariance matrix

Cm = dimensionless pitch moment coefficient

CX , CZ = dimensionless force coefficient in the X or Z direction

c̄ = mean aerodynamic chord, m

c = B-coefficient vector

c̃ = B-coefficient vector derived using the recursive sequential MVSB method

d = polynomial order

d̂ = spline basis number within each simplex

E = the number of edges in a triangulation

H = smoothness constraint matrix

J = simplex number in a triangulation

m = smoothness order of spline function

n = dimension of function input space

P (·) = polynomial function

q = pitch rate around the body Y axis, rad/s

R = the number of continuity conditions per edge

S(·) = spline function

V = airspeed, m/s

X(·) = regression matrix

α, β = angle of attack, angle of sideslip, rad

δe, δlef = elevator deflection, deflection of leading edge flap, degree

J = cost function

T = triangulation

κ = a multi-index on barycentric coordinates

γ = a multi-index independent of κ

ǫ = residual vector

ε = random variable vector

χ2d, χ3d = a dataset in 2 dimensions and 3 dimensions separately

Subscripts

ti = the ith simplex

Superscripts

˜ = smooth vector derived using the new recursive sequential spline method

ˆ = smooth vector derived using the batch spline method
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I. Introduction

In the implementation of any model-based adaptive flight control system, like for example

nonlinear dynamic inversion control [1] and modular adaptive backstepping control [2][3], it is critical

to at all times maintain an accurate onboard model of the aircraft under control. Central to such

a control system is a recursive system identification loop, which constantly updates the onboard

aerodynamic model as new measurements become available [4][5]. It is essential that this loop is

computationally efficient, as onboard computational capabilities in most applications are severely

limited. In the past, the field of recursive system identification has been well studied, like for

example variants of recursive least square methods and maximum likelihood method, see e.g. [6]

[7]and [8]. More recently, it has been suggested that recursive identification methods are developing

towards the direction of nonlinear recursive identification methods [9] [10] [11] [12] [13] [14] [15].

The field of recursive identification can be split into parametric methods and nonparametric

methods. However, this paper will only focus on the parametric methods. A classical online para-

metric identification method is the ordinary polynomial basis based (OPBB) method. This method

has been intensively studied by Klein, Morelli et al. [16] [17][18] [19][20]. The model structure

selection problem is solved by ranking the polynomial terms according to their effect factors using

the orthogonal least squares methods[19][18].

A recent promising parametric identification method is the multivariate simplex B-splines

(MVSB) method [21] [22] [23] [13]. In [23] a new identification method was introduced which

used the B-form basis polynomials of multivariate simplex B-splines in a linear regression frame-

work. A batch estimation method is then adopted to identify the coefficients of the splines, also

known as B-coefficients. This linear regression based MVSB scheme is a full-domain verifiable

method due to the fact that its functional output are bounded by the maximum and the minimum

B-coefficients[22]. In comparison with the OPBB identification method, the B-spline basis used

in the MVSB method enjoys higher numerical stability since it is defined in terms of normalized

Barycentric Coordinates[21][22]. In addition, the approximation power of the MVSB method can

be increased far beyond the capabilities of any OPBB method by dividing the flight envelope into

any number of subdomains called simplices [22][23], which are organized in a structure called a
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triangulation. Continuity constraints are used to enforce a predefined continuity order between

neighboring simplices in the triangulation, thereby ensuring that the resulting spline function is

globally continuous[22][21]. Compared with the well-known multivariate tensor product splines, the

advantage of MVSB method is that it can fit scattered multidimensional datasets on non-rectangular

domains[21][22].

Given the structure of the triangulation and the polynomial order of the basis functions, the

MVSB identification problem can be formulated as a constrained linear system which can be solved

using for example Lagrange multipliers [21]. The recursive identification scheme from [24] has been

introduced into MVSB theory by de Visser et al. [13] in the form of the equality constrained recursive

least squares (ECRLS) method. In the ECRLS method, the B-coefficients are recursively updated

using the newly available data. This recursive identification algorithm has shown to be significantly

more efficient in terms of computational load than the above mentioned batch method. However,

real-time application of the MVSB is still hard to achieve due to the relatively high computational

complexity when the B-coefficient vector contains more than one thousand elements. When applied

to the problem of aerodynamic model identification of aircraft with highly nonlinear aerodynamics

and extensive flight envelopes, the total number of elements in the B-coefficient vector can easily

exceed this number. This may be either caused by a high resolution of the triangulation, a high

polynomial order within each simplex, or a combination of both.

The objective of this paper is to present an improved recursive identification method using

MVSB that has a lower computational load than the ECRLS method, while having a comparable

approximation power. It is found that the computational efficiency of the ECRLS method can

be further improved by avoiding the updating of the global covariance matrix, which becomes

highly time-consuming for large scale problems. The merit of the new method is that it avoids

the computation of a global covariance matrix altogether, and therefore its computational efficiency

can be higher than recursive MVSB methods like ECRLS that do require the updating of a global

covariance matrix.

Simulated flight data, generated with a subsonic F-16 flight simulation based on a NASA wind-

tunnel dataset [25], is used to validate the proposed recursive sequential MVSB (RS-MVSB) method.
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The proposed new method is more efficient in computational terms than the batch MVSB and

ECRLS methods at the cost of a minor loss in approximation power. As a baseline comparison, the

OPBB method is also implemented. Our final goal is to provide an efficient MVSB method that is

able to provide a global nonlinear aerodynamic model for the advanced model based flight control

systems of the next generation fighter aircraft.

This paper is organized as follows. In section 2, preliminaries are given on multivariate simplex

B-splines. In section 3, the recursive sequential identification scheme for the multivariate simplex B-

splines is proposed. The analysis of computationally complexity is provided in section 4. In section

5, the method is compared with both the batch method and the ECRLS method for computational

aspects. The new method is applied in the identification of an aerodynamic model for the F-16 in

section 6. Finally, the conclusions and remarks are given in section 7.

II. Preliminaries on Multivariate Simplex B-splines

The basic principles for simplex splines are briefly introduced in this section. Firstly, subsection

II A introduces how to compute barycentric coordinates for a single simplex. Secondly, the triangu-

lation techniques are presented in subsection II B. Subsection II C describes the calculation of the

simplex B-splines basis within a single simplex. Then, subsection II D presents the methodology of

constructing the global basis vector (i.e. B-form vector). Thereafter, the equality constraints on

the global B-coefficient vector are provided in subsection II E. Finally, the spline function space is

defined.

A. Simplex and Barycentric Coordinates

Let t be an n-simplex formed by the convex hull of its n + 1 non-degenerate vertices

(v0, v1, ..., vn) ⊂ R
n. The normalized barycentric coordinates of some evaluation point x ∈ R

n with

respect to simplex t are defined as

b(x) := (b0, b1, ..., bn) ∈ R
n+1, x ∈ R

n (1)
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which follows from the following implicit relation:

x =

n∑

i=0

bivi,

n∑

i=0

bi = 1 (2)

B. Triangulations of Simplices

The approximation power of the multivariate simplex spline is partly determined by the struc-

ture of the triangulation. A triangulation T is a special partitioning of a domain into a set of J

non-overlapping simplices:

T :=

J⋃

i=1

ti, ti ∩ tj ∈
{
∅, t̃

}
, ∀ ti, tj ∈ T (3)

with the edge simplex t̃ a k-simplex with 0 ≤k≤ n− 1. High quality triangulations can be obtained

using constrained Delaunay triangulation (CDT) methods, such as the 2-dimensional CDT method

presented by Shewchuk [26].

C. Basis Functions of the Simplex B-splines

According to [22] and [23], the Bernstein basis polynomial Bd
κ (b(x)) of degree d in terms of the

barycentric coordinates b(x) = (b0, b1, ..., bn) from Eq. 2 is defined as:

Bd
κ(b(x)) :=





d!
κ0!κ1!···κn!

bκ0

0 bκ1

1 · · · bκn
n ,x ∈ t

0 ,x /∈ t

(4)

where κ = (κ0, κ1, ..., κn) ∈ Nn+1 is a multi-index with the following properties: κ! =

κ0!κ1!...κn! and |κ| = κ0 + κ1 + ...+ κn. In Eq. 4 we use the notation bκ = bκ0

0 bκ1

1 ...bκn
n . Given that

|κ| = d, the total number of valid permutations of the multi-index κ is:

d̂ =
(d+ n)!

n!d!
(5)

In [27], it was proved that any polynomial p (b) of degree d on a simplex t can therefore be written

as a linear combination of d̂ basis polynomials in what is known as the B-form as follows:

pt(b(x)) :=





∑
|κ|=d c

t
κB

d
κ(b(x)) ,x ∈ t

0 ,x /∈ t

(6)

with ctκ the B-coefficients which uniquely determines pt(b(x)), where the superscript ’t’ indicates

that p is defined on the simplex ’t’. The total number of basis function terms is equal to d̂, which

is the total number of valid permutations of κ.
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D. Vector Formulations of the B-form

As introduced in [13], the vector formulation, according to Eq. 6, for a B-form polynomial

p(b(x)) in barycentric R
n+1 has the following expression:

pt(x) :=





B
d
t (b(x)) · c

t ,x ∈ t

0 ,x /∈ t

, (7)

with b(x) the barycentric coordinates of the Cartesian x. The row vector B
d
t (b(x)) in Eq. 7 is

constructed from individual basis polynomials which are sorted lexicographically[13].

The simplex B-spline function smd (b(x)) of degree d and continuity order m, defined on a trian-

gulation consisting of J simplices, is defined as follows:

smd (x) := B
d(b(x)) · c ∈ R, (8)

with B
d(b(x)) the global vector of basis polynomials which has the following full expression:

B
d(b(x)) := [ Bd

t1
(b(x)) B

d
t2
(b(x)) · · · B

d
tJ
(b(x)) ] ∈ R

1×J·d̂ (9)

Note that according to Eq. 7 we have B
d
tj
(b(x)) = 0 for all evaluation locations x that are

located outside of the triangle tj . This results in that B
d is a sparse row vector.

The global vector of B-coefficients c in Eq. 8 has the following formulation:

c :=

[
c
t1⊤ c

t2⊤ · · · c
tJ⊤

]⊤
∈ R

J·d̂×1 (10)

with each c
tj a per-simplex vector of lexicographically sorted B-coefficients.

For a single observation on y we have:

y = Bd(b(x))c + r (11)

with r the residue. Then, for all the N observations, we have the following well-known formulation:

y = X(b(x))c + ǫ ∈ R
N×1 (12)

with X(b(x)) ∈ R
N×J·d̂ a collection matrix of the row vector B

d from Eq. 9, and ǫ = [r1, r2, ...rN ]
T

the residue vector. For writing convenience, X(b(x)) will be written as X in the remainder of this

paper.
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E. Global Continuity Constraints

To keep the smoothness among all subdomains, the following equality constraints should be

maintained during the calculation of the global B-coefficient vector c:

H · c = 0 (13)

with H ∈ R
(E·R)×(J·d̂) the smoothness matrix [23][21], R is the number of continuity conditions

per edge. E is the number of edges in the specified triangulation. If all the simplices’ surfaces

connect smoothly on the edges within the whole triangulation, we call the simplex splines globally

continuous. Global continuity is determined by Eq. 13.

F. Spline Function Space and a Polynomial Function Space

In this paper, we use a new type of definition of polynomial function space:

Pd (n) := {pk (x) : pk|x ∈ Pk, ∀x ∈ R
n and ∀k ≤ d} (14)

with x the input vector, Pk the space of polynomials of degree k.

We use the following definition of the spline space, which is a modified form of the definition

given by Lai et al. in [22]:

Sm
d (n) := {smd (x) ∈ Cm : smd |x ∈ Pd, ∀x ∈ R

n} (15)

with Pd the space of polynomials of degree d, and n the dimension of function inputs.

Note that, the former represents the ordinary polynomial function bases with the order up to

d. For example, if we select x = [x, y]
T
, then P2 (2) := c1 + c2x+ c4y + c3x

2 + c6xy + c5y
2 with x

and y two elements of x.

III. Recursive Sequential Identification Method with Multivariate Simplex Spline

The computational load of the batch [23] and ECRLS [13] methods increases to the point of

being impractical for use in online identification when the complexity and required update rate

of a system increases beyond a certain point. The new recursive sequential least squares (RS-LS)

method circumvents this problem by negating the need to update an increasingly large covariance
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matrix, thereby providing an effective online identification method for large scale systems of high

complexity. In this section, the theory of the RS-LS identification method is presented.

A. Theoretical Development

Combining Eq. 12 with Eq. 13, the linear regression formulation of the multivariate simplex

B-splines is derived as follows:

y = X · c + ǫ (16)

s.t. H · c = 0 (17)

Assume that the singular value decomposition of H is as follows:

Hn×m = Vn×n




∑
r×r 0r×(m−r)

0(n−r)×r 0(n−r)×(m−r)


U⊤

m×m (18)

where
∑

= diag

(
σ1 , · · · σr

)
is the diagonal vector of eigenvalues , σ1 ≥ · · · ≥ σr > 0 , and

r is the rank of H. V =

[
V1 V2

]
is an nth order orthogonal matrix, V1 is a n by r matrix.

U =

[
U1 U2

]
is a mth-order orthogonal matrix, U1 is a m by r matrix. It can be seen from

Eq. 17 that c ∈ null (H).

Let J (c) be a least squares cost function of the global B-coefficient vector c = [ctj ]
J

j=1 ∈ R
J·d̂×1

as follows:

J (c) = (y − Xc)
⊤
(y − Xc) (19)

where X ∈ R
N×J·d̂ is a matrix of B-form regressors for N observations as derived in [13], and vector

y contains all N observations. J is the number of simplices, and d̂ is the length of the coefficients

vector located on each simplex.

A definition of the optimal linear minimum mean square error(LMMSE) estimation from [28]

is stated as follows:

Given a set of linearly independent vector bases M = {η1, η2, ..., ηn−1, ηn}, we use a linear com-

bination ε̂ =
n∑

i=1

aiηi to approximate the unknown random variable vector ε. The fitting error is
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defined as:

ξ = ε− ε̂ = ε−
n∑

i=1

aiηi (20)

The mean square fitting error is defined as:

P =

∣∣∣∣∣

∣∣∣∣∣ε−
n∑

i=1

aiηi

∣∣∣∣∣

∣∣∣∣∣

2

(21)

Our mission is to derive n constant parameters a1, a2, ...an that make the mean square error have

the minimum value.

One theorem from [29] and [30] also needs to be introduced: If the set of vector bases M =

{η1, η2, ...ηn−1, ηn} are orthonormal bases, then the linear minimum mean square error (LMMSE)

estimation of the random variable vector ε is given by

ε̂ =

n∑

i=1

〈ε, ηi〉 ηi =

n∑

i=1

aiηi (22)

where 〈ε, ηi〉 is the inner product of ε and ηi.

B. Recursive Sequential Multivariate Simplex B-splines (RS-MVSB)

This method will be illustrated using a training dataset generated by the following function:

f = f (x1,x2) (23)

where the column vectors x1, x2 are the inputs of function f . A spline function smd (b (x1,x2)) is

used to approximate function f .

A triangulation T is obtained using the Delaunay method according to the span in each dimen-

sion of x = [x1,x2]
T
. In the recursive sequential MVSB scheme, a modular subsystem is defined

for each simplex (or set of simplices) of T . Each modular subsystem defined on a small number of

subdomains will be refered to as a module in the remainder of this paper. An example of construct-

ing modules among the whole triangulation for two dimensional training datasets is illustrated in

Fig. 1(a) and Fig. 1(b). s1, s2, ...s8 are eight simplices in T as shown in Fig. 1(a). Two modules
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are constructed as shown in Fig. 1(b), where each module contains four simplices. In practice, the

number of simplices in each module is selected through a cross validation process.

t1

t2 t3

t4

t5

t6t7

t8

(a) triangulation in two dimensions.

t1

t2 t3

t4

t5

t6t7

t8

M1

M2

(b) module construction from

triangulation.

Fig. 1 Illustration of module construction.

Let ci B-coefficient vector of the ith module. In the recursive sequential method, we construct an

independent estimation problem for each module. During every time step, we update the identifica-

tion vector ci which belongs completely to the specified module. Although updating the covariance

matrix for each module is inevitable, the computation of the global covariance matrix is avoided.

Because the global covariance matrix is many times larger than the local covariance matrix which

belongs to one single module, this greatly reduces the computational time.

Let J be the number of simplices included in T . The discontinuous global B-coefficient vector

c has the following structure:

c =
[
c1

⊤c2
⊤ . . . ci

⊤cJ
⊤
]⊤

(24)

The RS-MVSB method is comprised of two consecutive steps for each new data point: 1)updating the

B-coefficient vector ci of one single module and constructing vector c; 2) deriving the smooth global

B-coefficient vector c̃ from the discontinuous vector c by some methodology under the constraints

Eq. 17.

Given the splines’ triangulation T , the kernel space matrix U2 for the linear mapping trans-

formation is fixed and thus the orthonormal basis vectors which are columns of U2 are fixed and

time invariant. According to [31], the smooth vector c̃ which satisfies Eq. 17 should have the same

degree of freedom as the kernel space determined by the columns of matrix U2. Inspired by this
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conclusion, a hard curtailing method is proposed to enforce the continuity constraints Eq. 17 at

each recursive time step.

According to Eq. 17, vector c̃ should be located in the kernel space of H which is determined

by U2 as shown in Eq. 18. In addition, the column vectors of matrix U2 are orthonormal bases of

space null (H) according to [31]. Let

U2 = {η1, η2, ...ηn−1, ηn} (25)

By means of linear minimum mean square error (LMMSE) estimation from Eq. 22, the final smooth

global B-coefficient vector c̃ is derived from the discontinuous global B-coefficient vector c as follows:

c̃ =

n∑

i=1

〈c, ηi〉 ηi (26)

Fig. 2 provides an overview of the overall adaptive control system. The function of the ’Onboard

Spline Model’ block is to reconstruct an aircraft aerodynamic model, and the ’Inner-loop Controller’

block is aimed at producing part of control input signals using the identified aerodynamic coefficients.

As can be seen from Fig. 2, the recursive sequential setup can be summarized into three steps:

1) As a preparation, the U2 matrix is derived from Eq. 18, and a local module for each simplex

of T triangulation is constructed. Let the number of simplices be J , then J estimation sub-

problems are constructed.

2) When a new data point is available, the simplex index is used to decide which module it

belongs to. Suppose that the current data point belongs to the ith module, then updating the

local parameter vector segment ci of the ith module using a least squares algorithm. Then we

can get the corrected c according to Eq. 24. Simultaneously, the regressors’ covariance matrix

Pi of the ith module is also updated.

3) The smooth global B-coefficient vector c̃ is derived from c using LMMSE estimation according

to Eq. 26. Then, go to step 2 and wait for new data points.

It should be noted here that the first step of the recursive sequential method is independent of the

second step. Therefore, we are allowed to skip the smoothing step (LMMSE estimation) occasionally

as long as the smoothed vector c̃ is not readily needed in order to reduce the computational time.
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Fig. 2 Structure of an adaptive control system based on multivariate spline model.( Compu-

tational flow chart of the RS-LS method is described in the central block.)

The main contribution of this algorithm is that updating the global covariance matrix is avoided in

using recursive least square method, and therefore computational load is greatly reduced.

IV. Computational Complexity

The batch method, presented in [23], contains a matrix inversion. Therefore, the batch method

has a computational complexity of O
(
m3

)
with m the dimensionality of the covariance matrix if it

uses the Gaussian elimination to calculate the matrix inversion. The computational complexity of

the ECRLS method, presented in [24] and [13], is O
(
3m2

)
[24] which is the result of the recursive

updating of the global covariance matrix. Therefore, the ECRLS method is more suitable for real-

time applications because the number of algebraic operations and the required memory volumes are

reduced in each cycle [24].

The computational complexity of the RS-MVSB method presented in Sec. III is the result

of two operations. The first operation is the updating of the global covariance matrix at each

cycle. Since the computational complexity of the ECRLS method is O
(
3m2

)
, we can calculate

the computational time which is consumed in updating the covariance matrix of the RS-MVSB

method by substituting the scale of the identification problem. Assume the number of modules in
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Table 1 Computational Complexity (CC) in time

Methods batch ECRLS RS-LS(R) RS-LS(N)

CC O
(

m3
)

O
(

3m2
)

O
(

3m2

k2

)

O
(

2m2 − 2mr + 3m2

k2

)

the T triangulation is k, then the computational complexity of updating the covariance matrix is

O
(
3
(
m
k

)2)
= O

(
3m2

k2

)
. The second operation is the smoothing of the global B-coefficient vector

by Eq. 22:

O (m (m− r) +m (m− r)) ≈ O (2m (m− r)) (27)

where r is the rank of the smoothness matrix H, and only the multiplication operation is considered.

As mentioned in Sec. III B, the smoothing step in the recursive sequential method is not neces-

sary to be executed if the smooth global covariance matrix is not readily needed. In this case, the

computational complexity of the overall method reduces to O
(
3m2

k2

)
in each cycle. The computa-

tional complexity (CC) analysis is concluded in Table 1.

In Table 3, the letter ‘R’ is an acronym of ‘Reduced’, which means the LMMSE smoothing process

is carried out every 1000 time steps. Accordingly, the letter ‘N’ is an abbreviation of ‘Not reduced’.

V. Computational Aspects

In this section, the recursive sequential method is compared with the batch method presented in

[23] and the ordinary recursive least squares (ECRLS) method presented in [13]. Firstly, the recursive

sequential least squares based multivariate spline method is applied to fit a bivariate dataset, and

compared with the batch method and ECRLS method. Secondly, it was validated by being applied

to approximate a trivariate dataset in a hybrid manner using multi-function structure. Thirdly,

the proposed method was applied to fit the same three dimensional dataset but with a different

triangulation structure, where total number of B-coefficients is larger than 2000 as a result of the

increased number of simplices. This experiment is designed for demonstrating the advantage in

terms of computational efficiency of the recursive sequential MVSB (RS-MVSB) method when it is

applied to large scale problems.
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A. Demonstration Setup

In this section, two datasets are used. The first one is a trivariate dataset χ3d which consists

of 22000 scattered data points in R
3, generated using a uniform random number generator in the

interval {[0, 1] , [0, 1] , [0, 1]}:

χ3d = {x1, x2, x3} ∈ {U [0, 1] , U [0, 1] , U [0, 1]} (28)

The output measurements of the data points were generated using a three dimensional compound

function:

ft (x1, x2, x3) = 0.33 {f1 (x1, x2, x3) + f2 (x1, x2)}+ k1 · v (29)

where k1 · v is a uniformly distributed white noise sequence of magnitude k1, the subfunctions take

the following formulation:

f1 (x1, x2, x3) = x1x2 + x3 sin (1.5x2 + x1) (30a)

f2 (x1, x2) = x2
2 sin (2x1 + 10) + x1 cos (1.5x2) (30b)

20000 data points are used as training data and the remaining 2000 data are used as validation

data.

The second dataset χ2d, which contains 20000 data points in R
2, is a bivariate dataset with its

outputs generated using Eq. 30b together with k1 · v. In all of the following numerical experiments,

we selected k1 = 0.02.

B. Comparison with the Batch Method and ECRLS Method

In the first numerical experiment, the bivariate training dataset χ2d consisting of 20000 scattered

data points is used. For the multivariate spline function S (x) = Sm
d (n), we select n=2, d=5, m=1,

where n,d, and m are defined in Eq. 15. The structure of the triangulation is determined by vertices

located on the grid {[0, 0.5, 1] , [0, 0.5, 1]}.

The recursive sequential least squares (RS-LS) method developed in Sec. III was compared

with the batch method presented in [23] and the ordinary recursive least squares (ECRLS) method
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Table 2 Comparison in 2-D, 168 parameters, 20000 data points

Methods batch ECRLS RS-LS(R)

normalized time 514.1 1.0 0.6110

time per cycle(ms) 53.97 0.105 0.0641

max (|ǫ|) 0.0792 0.0797 0.0839

RMSE (ǫ) 0.0201 0.0201 0.0201

presented in [13]. The comparison results are shown in Table 2. The length of the B-coefficient

vector c̃ is 168. The total computational time, which is shown in the first row, is normalized using

the computational time of ECRLS method. Apparently, the RS-LS method enjoys a significantly

lower computational time than the batch method and ECRLS method while maintaining equivalent

fitting accuracy (implied by max (|ǫ|) and root mean squared error (RMSE)). The RMSEs are very

close to the magnitude of the white noise add into the training data.

In the second numerical experiment, the RS-LS method is used to approximate the three di-

mensional dataset χ3d consisting of 20000 data points, and the results are elaborated in Table 3.

In this case, a compound spline function S (x) = Sm1

d1
(n1) + Sm2

d2
(n2) consisting of a trivariate and

a bivariate simplex B-spline function is used to approximate the function in Eq. 29. We selected

n1 = 3, d1 = 5, m1 = 0 and n2 = 2, d2 = 4, m2 = 1. In the implementation of the recursive

sequential method, a virtual covariance matrix with block diagonal form is constructed in Eq. 31.

Cg =




C11

C12

.

C1i

.

C1m

C2t




(31)

where C1i is covariance matrix of the ith simplex in triangulation T1, C2t is the global covariance

matrix of the triangulation T2. Let n1 and n2 be the total number of B-coefficients which belong to

T1 and T2 separately, then the size of the square matrix C1i is n1

m
with m the number of modules
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Table 3 Comparison in 3-D, 366 parameters, 20000 data points

Methods batch ECRLS RS-LS(R) RS-LS(N)

normalized time 709.0420 1.0 0.3150 0.4057

per cycle(ms) 348.9557 0.4922 0.1552 0.1997

max (|ǫ|) 0.0795 0.0750 0.0745 0.0736

RMSE (ǫ) 0.0200 0.0199 0.0205 0.0201

in Sm1

d1
(n1) and the size of the square matrix C2t is n2. Assume the current data point is located

in the ith module of Sm1

d1
(n1), then the local covariance matrix for the current time step is:

Cl =



C1i

C2


 (32)

To get the results in Table 3, the support vertices {[0, 1] , [0, 1] , [0, 1]} were selected to construct

the T triangulation. The length of the B-coefficient vector c̃ is 366.

It can be seen from Table 3 that both the ECRLS method and the RS-LS method are significantly

faster than the batch method. The best performing RS-LS method (i.e. RS-LS(R-s)) is more than

2000 times faster than the batch method. According to column 2 and 3, RS-LS method is 3 times

faster than the ECRLS method while maintaining nearly the same approximation ability (implied

by the RMSE). Note that, the RMSEs are very close to the magnitude of the white noise added to

the training data.

Thirdly, the advantage of the RS-MVSB method for large scale and multi-function identification

problems is demonstrated using the three dimensional dataset χ3d, which contains 20000 data points

as described in Sec. VA. In this numerical experiment, a spline function S (x) = Sm1

d1
(n1)+Sm2

d2
(n2)

is used to approximate the function ft (x1, x2, x3) shown in Eq. 29. A different triangulation T

was constructed using the support vertices {[0, 0.5, 1] , [0, 0.5, 1] , [0, 0.5, 1]}. The B-spline function

Sm1

d1
(n1) was constructed using n1 = 3, d1 = 5, m1 = 0, and Sm2

d2
(n2) was constructed using n2 = 2,

d2 = 4, m2 = 1. The length of the global B-coefficient vector c̃ is 2808.

In this numerical experiment, 20000 data points from dataset χ3d from Eq. 28 were used as

training data for the batch method, the ECRLS method and the RS-LS method. The results in

Table 4 clearly show that the ECRLS method is more than 200 times faster than the batch method,
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Table 4 Comparison in 3-D, 2808 parameters, 20000 data points

Methods batch ECRLS RS-LS(R) RS-LS(N)

normalized time 243.42 1.0 0.0154 0.1317

per cycle(ms) 10094.4 41.4682 0.6390 5.4641

max (|ǫ|) 0.0824 0.0792 0.0860 0.0915

RMSE (ǫ) 0.0200 0.0201 0.0253 0.0242

while the RS-LS method is 60 times faster than the ECRLS method while the approximation power

(implied by RMSE) is close to that of the batch method. The RMSE approaches the magnitude of

the white noise added to the training data. Again, this speedup is the direct result of not having to

update a global covariance matrix.

VI. Application on Aerodynamic Model Identification of the F-16

In this section, the recursive sequential algorithm was applied to identify an aerodynamic model

of the F-16 fighter aircraft based on data from a NASA wind-tunnel database of the F-16 [25]. The

next generation of fighter aircraft will have highly nonlinear aerodynamics. In order to obtain

accurate aerodynamic models for such aircraft, their full flight envelopes need to be partitioned

using high resolution triangulations. The result of this is a longer B-coefficient vector for the

simplex B-splines. In case the aerodynamic model needs to be updated online, for example after a

damage event, the batch and ECRLS methods may become infeasible due to their low computational

efficiency. This section is aimed at demonstrating the approximation power of the new RS-MVSB

method when dealing with a large scale, complicated nonlinear modeling real-world problem. The

RS-MVSB method is compared with both the polynomial basis based identification method and the

batch MVSB method. In the remainder of this paper, we assume that all aircraft states have been

obtained from the ’State Estimation’ block (e.g. an extended Kalman filter) shown in Fig. 2. The

model identification method proposed in this paper forms the second step of the so-called two step

method [32].
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A. F-16 Aerodynamic Model Structure

Fx

(
α, β, δe, δlef ,

qc

V

)
= f1 (α, β, δe) + f2 (α, β) · δlef

+f3 (α) ·
qc

V
+ f4 (α) ·

qc

V
· δlef

(33)

According to Eq. 33, we can derive the following linear regression formulation for compound multi-

variate B-splines.

Fx=Fx1Fx2
(34)

where

• Fx1 =

[
B1,B2 · δlef ,B3 ·

qc

V
,B4 ·

qc

V
· δlef

]

• Fx2 =
[
c⊤1 , c

⊤
2 , c

⊤
3 , c

⊤
4

]⊤

For simplicity, let B3 = B4, then the third term and the fourth term in Eq. 34 can be merged:

Fx=Fx3Fx4
(35)

where

• Fx3 =
[
B1,B2 · δlef ,B3 ·

qc
V

· (1 + δlef )
]

• Fx4 =
[
c⊤1 , c

⊤
2 , c

⊤
3

]⊤

According to de Visser [33], the global continuity matrix for the combined spline function has

the following expression:

H =




H1

H2

H3




(36)

with H1,H2,H3 the continuity matrices of the three independent sub functions.
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In the implementation of the RS-MVSB method, a virtual covariance matrix in the block diag-

onal form is constructed in Eq. 37.

Cg =




Ctn1

Ctn2

.

Ctni

.

Ctnm

Ctn2

Ctn3




(37)

where Ctni
is the covariance matrix of the ith simplex in triangulation T1, Cn2 and Cn3 are covari-

ance matrices of triangulation T2 and T3 separately. In this equation, tn1+tn2+...+tni+...+tnm =

n1 where n1, n2 and n3 are the total number of B-coefficients which belong to T1, T2 and T3 sepa-

rately. The local covariance matrix at the current time step is:

Cl =




Ctni

Ctn2

Ctn3




(38)

B. Original Wind Tunnel Data for F-16 Aircraft

The inputs of the training dataset were obtained by randomly generating 20000 input states

inside the domain of the NASA wind-tunnel model. The inputs of the validation dataset containing

4331 points are produced by the grids determined by α and β. The outputs of both datasets were

calculated using Eq. 33 based on the wind-tunnel data provided by [25] with δlef = 1 degree, V =

600 ft/s, q = 0.1 rad/s, c = 11.32m. To investigate the effects from the measurement noise, the

white noise with a magnitude of 1% (relative value to the corresponding upper and lower extreme)

has been added to the model outputs (i.e. CX , Cm) in generating the training datasets. This

observation noise together with Eq. 33 is playing the same role as Eq. 29.

In this paper, we are only concerned with the identification of the longitudinal force and moment

coefficients. In addition, only the results for CX and Cm are provided since they show much more
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Fig. 3 CX wind-tunnel data surface (δe =

0o, δlef = 1o, qc

V
= 0.0018866).

Fig. 4 Cm wind-tunnel data surface (δe =

0o, δlef = 1o, qc

V
= 0.0018866).

significant nonlinearities than CZ . Three-dimensional surfaces of longitudinal force coefficient CX

and moment coefficient Cm when δe = 0 were plotted in Fig. 3 and Fig. 4 separately. Highly

nonlinear behavior of the aerodynamic coefficients can be observed in these figures.

C. Model Structure Selection and Recursive Sequential Identification

In the simulation, the MVSB function approximator contains three subfunctions: S (x) =

Sm1

d1
(n1) + Sm2

d2
(n2) + Sm3

d3
(n3), where we selected n1 = 3, n2 = 2, d2 = 4, m2 = 1; n3 = 1,

d3 = 3, m3 = 1 with d1, m1 undetermined. That is, the compound spline function is the following:

S (x) = Sm
d (3) + S1

4 (2) + S1
3 (1). The partitioning vector of α is

[
−20 10 40

]
. The partitioning

vector of β is

[
−25 25

]
. The partitioning vector of δe is

[
−20 20

]
. The inputs were normalized

into the range of [0 1] in order to further improve the approximation accuracy. In order to select a

suitable model structure for the spline model, the effects of the structural parameters (i.e. d and

m) will be investigated.

The results of the identification experiment with the OPBB method are shown in Fig. 5. The

approximation results on the training dataset using batch MVSB method and RS-MVSB method

are given separately in Fig. 6. Fig. 6(a) and Fig. 6(b) clearly shows that the approximation accuracy

of both methods will increase with the increase of d, while decrease with the increase of continuity

order m. Apparently, the approximation accuracy of the RS-MVSB method is very close to that of

the batch MVSB method when continuity order is less than two, although the performance of the
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Fig. 6 Different combination of m and d for Sm
d (3) together with S1

4(2) and S1

3(1).
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Fig. 7 Different combination of m and d for S(3)md together with S1

4(2) and S1

3(1).

new method is lower than the batch MVSB method when continuity order is high. Compared with
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Fig. 5, Fig. 6 also shows that the MVSB method has a higher approximation power than the OPBB

method, especially when the polynomial order is larger than 3.

The approximation accuracy of the aforementioned methods are validated using 4331 validation

data points; the RMSEs are plotted in Fig. 7(a) and Fig. 7(b) separately. According to Fig. 7(a),

the fitting accuracy of the Batch MVSB will increase with the increase of d and it will decrease with

the increase of m. According to Fig. 7(b), when the continuity order m is lower than 3, the fitting

accuracy of the RS-MVSB will also increase when the polynomial order increases or the continuity

order decreases. On the other hand, when the continuity order is equal to 3, the quality of fit will

decrease with the increase of d. Comparing Fig. 7(b) with Fig. 7(a), it can also be seen that the

RS-MVSB method has a slightly lower fitting accuracy than batch MVSB, which is the price paid

for the increased computational efficiency of updating the B-coefficients.

Finally, the performance of the RS-MVSB method is illustrated by comparing the predicted

output on the 4331 knots with wind-tunnel data output. For the plotting of the 3 dimensional

surface, we selected δe = 2o in order to fix the third dimension δe. The spline function has the

following structure: S (x) = S0
5 (3) + S1

4 (2) + S1
3 (1). The structure of the OPBB approximator has

the following form:P (x) = P5 (3) + P4 (2) + P3 (1).

The wind-tunnel model for CX for δe = 2o is shown in Fig. 8(a) as a comparison baseline.

The spline function surface reconstructed from the estimated global B-coefficient vector c̃ is given

by Fig. 8(b). Comparing Fig. 8(b) and Fig. 8(c) with Fig. 8(a), it can be seen that the MVSB

model closer resembles the wind-tunnel model than the OPBB model. The surfaces of Cm plotted

in Fig. 9(a), Fig. 9(b), and Fig. 9(c) show a similar result.

Finally, the most important advantage of the RS-MVSB method over the ECRLS MVSB method

is that it requires a lower computational time at each recursive step when updating the B-coefficients.

In the above mentioned simulation experiment, the length of the B-coefficient vector is 740 and the

computational time of the RS-MVSB method is 0.9766 ms per data point. Whereas, the compu-

tational time of the ECRLS MVSB method is 3.6582 ms per data point. The low computational

time requirement makes the RS-MVSB method more suitable for application in real-time adaptive

flight control systems than the ECRLS MVSB method and the batch MVSB method.
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(a) Original wind-tunnel data surface. (b) Spline function surface, T12, T4, T2.

(c) Polynomial fitting surface.

Fig. 8 Validation surface of CX (α, β, δe = 2o) with δlef = 1o, qc

V
= 0.0018866, 4331 data.

(a) Original wind-tunnel data surface. (b) Spline function surface, T12, T4, T2.

(c) Polynomial fitting surface.

Fig. 9 Validation surface of Cm (α, β, δe = 2o) with δlef = 1o, qc

V
= 0.0018866, 4331 data.
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VII. Conclusions

A new recursive sequential strategy is developed and combined with the multivariate simplex

B-splines with the aim of increasing the computational efficiency over existing multivariate spline

based identification methods. This new recursive sequential multivariate B-splines method, called

the RS-MVSB method, enables the online identification of large scale nonlinear aerodynamic models

which are at the heart of modern adaptive model-based flight control systems. The RS-MVSB

method consists of two sequential procedures at each time step. The first is the estimation of

the B-coefficients for the local spline functions defined on the local simplex modules. The second

procedure is the LMMSE-based smoothing step which results in a smooth global spline function.

The performance of the RS-MVSB method was compared to existing batch and recursive meth-

ods for simplex B-spline identification in a set of three numerical experiments. It was shown that

the RS-MVSB method enjoys a significant advantage in terms of computational efficiency over the

existing ECRLS method for large scale problems at a cost of a slight decrease in approximation

power. In particular, the approximation power of the RS-MVSB method is comparable to the batch

MVSB method and the ECRLS MVSB methods when the continuity order of the spline functions

is lower than 2. For continuity orders larger than or equal to 2, the approximation power of the

RS-MVSB method is lower than existing MVSB methods. In addition, all MVSB methods have a

higher approximation power than the OPBB approximation method.

The RS-MVSB method is applied in the recursive identification of an aerodynamic model using

data from a NASA nonlinear wind-tunnel data set of the F-16 fighter aircraft. A comparison with the

ordinary polynomial method and the batch MVSB method shows that the new RS-MVSB method

has all the advantages of the MVSB method (i.e. high approximation power) while at the same

time greatly reducing the required computational time in updating the spline model parameters.
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