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This paper proposes an effective couple method for solving reliability-based multi-objective 

optimization problems of truss structures with static and dynamic constraints. The proposed coupling 

method integrates a single loop deterministic method (SLDM) into the non-dominated sorting 

genetic algorithm II (NSGA-II) algorithm to give the called SLDM-NSGA-II. Thanks to the 

advantage of SLDM, the probabilistic constraints are treated as approximating deterministic 

constraints. And therefore the reliability-based multi-objective optimization problems can be 

transformed into the deterministic multi-objective optimization problems of which the computational 

cost is reduced significantly. In these reliability-based multi-objective optimization problems, the 

conflicting objective functions are to minimize the weight and minimize the displacements of the 

truss. The design variables are cross-section areas of the bars and contrainsts include static and 

dynamic constraints. For reliability analysis, the effect of uncertainty of parameters such as force, 

added mass in the nodes, material properties and cross-section areas of the bars are taken into 

account. The effectiveness and reliability of the proposed method are demonstrated through three 

benchmark-type truss structures including a 10-bar planar truss, a 72-bar spatial truss and a 200-bar 

planar truss. Moreover, the influence of parameters on the reliability-based Pareto optimal fronts is 

also carried out.  

Keywords: Multi-objective optimization, reliability-based multi-objective optimization, non-

dominated sorting genetic algorithm II (NSGA-II), single-loop algorithm, uncertainty, static and 

dynamic constraints. 

1. Introduction

Truss is one of the important structures in civil engineering and has a wide range of 

applications such as roofs, transmission towers, bridge supporters, etc. Because of its 

significant role, the optimization of truss structures has drawn much attention from 

engineers and scientists [Ho-Huu et al. (2016)]. To ensure the truss structures to work 

effectively as well as satisfy the economical requirements, the formulation of the multi-

objective optimization problem for truss structures and the development of robust 

methods for solving the multi-objective optimization problems need to be developed. 

* Corresponding author.

mailto:voduytrung@tdt.edu.vn
mailto:#v.hohuu@tudelft.nl
mailto:nguyenthoitrung@tdt.edu.vn


T. Vo-Duy, D. Duong-Gia, V. Ho-Huu, T. Nguyen-Thoi 2 

Over the past few decades, various studies have been done for multi-objective 

optimization of truss structures. For example, Coello and Christiansen (2000) proposed a 

new Genetic algorithm (GA)-based multi-objective optimization algorithm for truss 

structures. In this study, three objective functions were considered simultaneously 

including the minimum weight, the maximum displacement and the maximum stress; and 

the cross-sectional areas of elements are considered as the design variables. Luh and 

Chueh (2004) developed an immune algorithm for multi-objective optimization of truss 

structures. In this study, the multi-objective function is to minimize the volume of the 

structure and the vertical displacement at nodes simultaneously. The cross-sectional areas 

of elements are considered as design variables, and the constraints are the limit principal 

stresses in elements. Kelesoglu (2007) presented a genetic algorithm for solving fuzzy 

multi-objective optimization of space truss. In this study, the objective functions include 

the minimum weight and minimum displacement, and the constraints are related to the 

volume of construction weight, displacement, geometrical properties, cross-sectional 

areas, member degrees, and upper and lower limit values of the stress elements. 

Richardson et al. (2012) studied single and multi-objective topology optimization of 

truss-like structures using genetic algorithms. The conflicting objectives of this problem 

are the mass and the first natural frequency of the structure, and the constraints include 

the stress constraint on the members, the buckling of the members and the deflection 

constraint. Recently, Kaveh (2017) presented a literature review of multi-objective 

optimization that uses the main concepts of charged system search algorithm. As it can be 

seen from the above-mentioned studies, the constraints in multi-objective optimization 

problems were mostly focused on static constraints such as displacement and stress of 

structures. Nevertheless, the dynamic constraints such as frequency and buckling load 

factor are still somewhat limited [Gomes (2011)]. 

On the other hand, the optimal configuration of truss structures is highly sensitive to 

the random design variables (e.g. members’ cross-sectional areas) or random parameters 

(e.g. applied loads, material modulus of elasticity). Any change of these random factors 

may significantly affect the performance and safety of the structures [Ho-Huu et al. 

(2016)]. Therefore, it is really necessary to consider the influence of uncertain factors 

during the optimization designing process which belongs to the group of the Reliability 

Based Design Optimization (RBDO) problems. Typically, there are three main 

approaches to solve RBDO including Double Loop Method (DLM), Decouple Double 

Loop Method (DDLM), and Single Loop deterministic method (SLDM) [Li et al. 

(2013)]. Recently, some methods that are capable of effectively handling non-

probabilistic random variables, e.g., uncertain-but-bounded variables, have also been 

developed [Hao et al. (2017); Meng and Zhou (2018)]. Also, some improvements on 

reliability assessment methods and their combination with the above approaches have 

been studied [Meng et al. (2015), (2017)]. However, to deal with the probabilistic 

random variables, among these methods, the SLDM is identified as one of the most 

effective algorithms due to, the good potential balance between computational cost and 

accuracy of the optimal solutions [Shan and Wang (2008)]. The development of SLDM 

for single objective optimization has been conducted by many researchers as shown in 
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references [Jalalpour et al. (2013); Jeong and Park (2017); Li et al. (2013); Liang et al. 

(2007); Lim and Lee (2016); Mansour and Olsson (2016); Zhang (2016)]. However, the 

extension of the SLDM for multi-objective optimization is still very limited, especially, 

for truss structures.  

Based on the above-mentioned research gaps, the present study is conducted to 

propose an effective couple method for solving the reliability-based multi-objective 

optimization problems of truss structures with both static and dynamic constraints. In this 

method, the single Loop deterministic method (SLDM) is first employed to transform a 

reliability-based multi-objective optimization problem to a deterministic multi-objective 

optimization problem. Then, a nondominated sorting genetic algorithm II (NSGA-II) 

[Deb et al. (2002)] is used to determine the Pareto-optimal solutions. The coupling 

method is hence called the SLDM-NSGA-II. The effectiveness and reliability of the 

proposed method are demonstrated through three numerical examples: 10-bar, 72-bar and 

200-bar trusses. The conflicting objective functions include minimization of the weight

and minimization of the displacement of truss structures, and the design variables are the

cross-section areas of bars. The constraints include node displacements, element’s

stresses and natural frequencies. The material properties, the force, the added mass in the

nodes and the cross-sectional area of each bar are considered as random variables. Some

analyses are performed to investigate the effect of parameters such as reliability index,

limited allowable and frequency constraint on the Pareto-optimal solutions.

The remainder of the paper is organized as follows. Section 2 briefly introduces the 

Single Loop Deterministic method. Section 3 briefly presents the NSGA-II algorithm. 

Section 4 presents the proposed couple method which integrates the single-loop 

deterministic method (SLDM) into the NSGA-II algorithm. Section 5 introduces the 

formulation of the reliability-based multi-objective optimization problem for truss 

structures. Section 6 examines some numerical examples, and Section 7 with draws some 

conclusions. 

2. Single Loop Deterministic Method - Reliability Based Optimization

A typical RBDO problem is formulated as [Shan and Wang (2008)] 

 
low up low up

find , ,

min     ( , , )

s.t.   P , , 0 ,  =1,2,...,

,

i i

f

g r i nc   

   

x p

x p

x x x

d μ μ

d μ μ

d x p

d d d μ μ μ

(1) 

where d ℝ𝑘 is the vector of deterministic design variables; x ℝ𝑘 is the vector of

random design variables; p  ℝ𝑞 is the vector of random parameters; xμ  and 
pμ are the 

mean vectors of x and p, respectively; ri denotes the design reliability (or desired 

reliability/probability) satisfying the ith constraint. Superscripts ‘‘low’’ and ‘‘up’’ denote 

the minimum and maximum allowable limits, respectively. 



T. Vo-Duy, D. Duong-Gia, V. Ho-Huu, T. Nguyen-Thoi 
 
4 

It is known that the RBDO process is a good way to obtain a safe design with a low 

cost for structures under the influence of uncertainties. Nevertheless, the computational 

cost for solving the RBDO problem is very expensive, which becomes the main 

limitation for structural applications in reality. As an effort to reduce the computational 

burden of solving the RBDO problems, Li et al. (2013) proposed a procedure called the 

single-loop deterministic method (SLDM) that can solve the RBDO problems at a low 

computational cost. The method includes two steps: firstly the probabilistic constraints 

are converted into approximating deterministic constraints and secondly the deterministic 

optimization problem is established and solved. The key points of the SLDM are 

presented in the following sections. For more details of the method, the interested readers 

are encouraged to refer to the reference [Li et al. (2013)]. 

2.1.  Establishing approximating deterministic feasible regions  

In the SLDM, the probabilistic feasible region is transformed to the approximating 

deterministic feasible region by moving the probabilistic constraint boundary (denoted as 

a limit state function gi) into the feasible design region at least a distance i as shown 

Figure 1. The notations in the figure are defined as follows: the pink curve represents the 

limit-state function gi; The blue curve is the boundary of the transformed deterministic 

constraint ig ; The dotted area is the deterministic feasible region;  
T

,θ x p  is the 

vector that combines both random variables and random parameters; 
T

,   θ x pμ μ μ  is 

the mean of  ; and  1

i ir   where   is the normal standard distribution. 

The transformation ensures that the smallest distance between any point on the pink 

curve and the blue curve is i. By doing this, the transformed deterministic constraint can 

guarantee that the solutions satisfy the probabilistic constraint [Li et al. (2013)]. For more 

detail of demonstrations, we refer the interested readers to references [Li et al. (2013); 

Shan and Wang (2008)]. 

 

 

Figure 1. Illustration of the feasible design region. 
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2.2.  Formulation of approximating deterministic constraints  

In this section, the formulation of the transformed deterministic constraints as depicted in 

Figure 1 is presented. Let gi(d,) and ( , )ig d  are the limit-state function and the 

deterministic constraint function, respectively. Suppose that θμ  is any point on ig , the 

most probable point (MPP) MPPθ  corresponding to the point θμ  can be acquired by 

moving the point θμ  on ig  back to gi at least i. 

According to reference [Shan and Wang (2008)], the MPP MPPθ  on the failure surface in 

the standard normal space for the case ri ≥ 0.5 can be defined by  
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where the subscript u denotes the standard normal distribution space and the derivatives
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i jg 


   are evaluated at the MPP ,MPP

u
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The relationship of random parameters in the original design space and the normal 

standard space is depicted as follows 
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 is the deviation vector of j. 

From Eq. (3) we have  
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From Eqs. (2), (3), and (4), the relationship between θμ  and its corresponding MPP point 

MPPθ  in the original design space is denoted by 
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where the derivatives  /i jg 


   are evaluated at the MPP 
,MPPj  in the original space. 

It has been shown in reference [Shan and Wang (2008)] that the derivatives  /i jg 


   

can be approximately assessed at 
j

  by substituting  /i jg 


   with  /
jig   . 

Thus, Eq. (5) can be rewritten by 
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Once the MPP in the original design space MPPθ  is determined, the feasible design 

domain of the RBDO problem can be denoted by approximating deterministic constraints 

as  

   , , 0i i ig g          d d
 

(7) 

where 
( )

( )

i

i

g

g






θ θ θ

θ θ θ

σ μ
α

σ μ
 is the approximately normalized gradient vector evaluated at 

θμ  on gi(d,).  

It is worth mentioning that the derivatives ( )igθ θμ  can be easily acquired through 

the direct derivative of an explicit limit state function. Nevertheless, for the practical 

application problems, the structural behaviours are often analyzed by numerical methods, 

and hence the limit-state functions are often implicit. Therefore, to calculate the 

derivatives ( )igθ θμ , the finite difference method, a numerical derivative method, is 

used. 

3. NSGA-II algorithm 

Unlike the single-objective optimization problem which provides only a single optimal 

solution, the multi-objective optimization problem will provide a set of points known as a 

Pareto-optimal set which represents the trade-off solutions between conflicting 

objectives. To obtain the Pareto-optimal solutions, a number of techniques have been 

proposed in the literature [Marler and Arora (2004)] in which the multi-objective 

evolutionary algorithms (MOEAs) such as NSGA-II [Deb et al. (2002)], SPEA-II [Zitzler 

et al. (2001)], and MOEA/D [Zhang and Li (2007)] gained much attention from the 

researchers due to their effectiveness and easy implementation. Among these attended 

MOEAs, the NSGA-II is considered as one of the most powerful methods. This algorithm 

is an improved version of NSGA [Srinivas and Deb (1994)] developed from the well-

known genetic algorithm ([Liu et al. (2005); Liu and Chen (2001); Xu et al. (2002); 

Zheng et al. (2005)]) and non-dominated sorting concept by Goldberg [Goldberg (1989)]. 

In the past decade, the NSGA-II has been improved and widely applied in design 

optimization of various problems (see, for example, references [Dhanalakshmi et al. 

(2011); Kannan et al. (2009); Martínez-Vargas et al. (2016); Soyel et al. (2011)]) and 

also in design optimization of laminated composite plate structures [Honda et al. (2013); 

Pelletier and Vel (2006)]. In this paper, the NSGA-II algorithm is used to solve a multi-

objective optimization problem related to the truss structures presented in section 6. The 

brief description of the algorithm is presented as follows.  

(1) Generate an initial population P0 with N random solutions. 

(2) Create an offspring population Qt using binary tournament selection based on the 

crowding-comparison operator, crossover and mutation performed on the parent 

population (Pt), where subscript “t” denotes the number of generations. The 

offspring population and its parent population are then combined to produce the 

entire population Rt.  
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(3) Perform a fast non-dominated sorting approach on the entire population Rt to 

identify different non-dominated fronts of objective functions F1, F2, etc.  

(4) Create a new parent population (Pt+1) of size N from the obtained fronts (Fi).  

(5) Repeat the process until the maximum number of iterations is reached. 

For more details of the above procedure, the readers are encouraged to refer to the 

original paper [Deb et al. (2002)]. 

4. An effective couple method for solving reliability-based multi-objective 

optimization problems  

By integrating the SLDM method in Section 2 into the NSGA-II algorithm in Section 3, 

the coupled method for solving reliability-based multi-objective optimization problems, 

namely SLDM-NSGA-II, is obtained. The flow chart of the proposed method is 

illustrated in Figure 2. 

 

 

Figure 2. Flow chart of the SLDM-NSGA-II method. 

 

5. Formulation of the deterministic and reliability-based multi-objective 

optimization problems for truss structures  

In this section, the deterministic and reliability-based multi-objective optimization 

problems for truss structures are formulated. The objective functions are to minimize the 

Apply the SLDM method: 

For each probability constraint, calculate its 

derivatives with respect to random variables and 

formulate a corresponding deterministic constraint. 

Obtain a DMOO Problem; 

Evaluate objectives, deterministic constraints, and 

perform NSGA-II operators; 

Results 

Establish the RBMOO problem: define 

objectives, constraints, design variables 

and random parameters; 

Loop optimization 

(NSGA-II) 

Maximum  

generation reach? 
No 

Yes 
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mass and minimize the displacement of trusses. The constraints include frequencies, 

displacement and stress of elements. For the deterministic multi-objective optimization 

(DMOO) problem, the design variable is the cross-sectional area of each element while 

the uncertainty of other parameters such as mass density, added mass, young modulus 

and applied force is not taken into account. For the reliability-based multi-objective 

optimization (RBMOO) problem, the cross-sectional areas of elements are considered as 

design variables and also random variables while the mass density, added mass, young 

modulus and applied force are considered as random variables that follow normal 

distribution. 

The mathematical formulations of these problems are stated as follows: 

 

(i) The deterministic multi-objective optimization problem  

max

low up

up

max

up

max

( )
min

s.t.

       

       

                                        

( )

( )

( )

k k

weight

disp

disp u
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f f k
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(8) 

 

(ii) The reliability-based multi-objective optimization problem 
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 (9) 

where 
1

( ) = 
ne

i i

i

weight l A


A  is the mass of the truss structure; li is the length of the ith 

bar;  max max 1,2,.. ,( ) .jdisp j nnA u  is the maximum displacement of the truss; 

 max ( m) ax mstress A , m = 1,2,…,ne; uj is the displacements of the jth node; σm is 

the stress of the mth element; ne, nn and nc are the total number of bars, total number of 

nodes and number of constraints, respectively; 
kf  is the minimum allowable limit of the 

kth frequency; “low” and “up” denote the minimum and maximum allowable limits, 

respectively; A is the vector of random design variable consisting of cross-section areas 

of bars; Z = (ρ, W0, P, E) is the vector of random parameters including mass density ρ, 

added mass W0, concentrated load P and Modulus of Elasticity E;  l  are desired 
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probabilities of constraint satisfaction; l  is the target reliability index of the lth 

probabilistic constraint.  

6. Numerical examples 

In this section, the deterministic and reliability-based multi-objective optimization 

problems are solved for three truss structures including 10-bar, 72-bar and 200-bar 

trusses. These structures were previously solved by many researchers. However, they 

almost carried out the deterministic single-objective optimization problem subject to 

either static constraints or dynamic constraints. In the present paper, these truss structures 

are solved with two conflicting objectives subject to both static and dynamic constraints 

as introduced in Section 5. Furthermore, in each example, the reliability-based multi-

objective optimization problem is studied. 

All programming codes (including finite element analysis of the truss, the NSGA-II 

and SLDM-NSGA-II) are written in Matlab. The NSGA-II method and the SLDM-

NSGA-II method are applied with a population size of 50 and a maximum generation of 

500. It should be noted that with these given values, the number of function calls for the 

DMOO problems is 50500. Meanwhile, for the RBMOO problems, by using the finite 

difference method, each random parameter (including random design variables) needs 

two function calls to evaluate the derivatives of constraints that are used for transforming 

probabilistic constraints into deterministic constraints. Therefore, the number of function 

calls for the RBMOO problems is 2n50500, where n is the total number of random 

parameters. Furthermore, since the advantages of the SLDM method has been 

demonstrated to be much more effective compared to the double loop method and some 

other methods in previous studies [Li et al. (2013); Shan and Wang (2008)], and to avoid 

wordiness of the paper as well as the huge computational efforts, the integration of 

NSGA-II with the double loop method is not included in the investigation of the 

following examples. However, the reliability and efficiency of the proposed SLDM-

NSGA-II are validated and compared with the DMOO results and some of the RBDO 

results which are available in the literature. In addition, to check whether the solutions by 

obtained SLDM-NSGA-II satisfy the reliability constraints or not, the first order 

reliability method (FORM) is used to evaluate the reliability of all obtained solutions, and 

some of them are extracted for comparison purposes. 

6.1. A 10-bar planar truss structure  

The 10-bar truss structure was previously studied by many researchers (see, for example, 

[Camp et al. (1998); Kaveh and Talatahari (2009); Lee and Geem (2004); Li et al. 

(2007)]). However, these studies have focused on single objective optimization with the 

goal of minimizing the weight of the structure subject to stress constraints. The geometry, 

boundary condition and loading condition of the 10-bar truss are illustrated in Figure 3. 

Four added masses are attached from nodes 1 to 4. The parameters of the truss are given 

in Table 1. 
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Table 1. Data for the 10-bar planar truss structure. 

Parameter Value (unit) 

Modulus of elasticity E 6.895x1010 (N/m2) 

Material density ρ 2767 (kg/m3) 

Added mass W0 454 (kg)  

Force P 444.82x103 (N) 

Minimum allowable limits of the first three 

frequencies 
1f  = 7 (Hz), 2f  = 15 (Hz), 3f  = 20 (Hz) 

Maximum allowable stress 172.375x106 (N/m2)  

Allowable range of cross-sections 0.6452 (cm2) ≤ Ai ≤ 225.80 (cm
2) 

 

 

Figure 3. A 10-bar planar truss. 

 

6.1.1. Deterministic multi-objective optimization  

The DMOO of the 10-bar truss structure is examined with three different cases of 

constraints as follows. Case 1 includes displacement and stress constraints, and 

displacement constraint limit of 5.08 cm. Case 2 includes displacement, stress and 

frequency constraints and the displacement constraint limit of 5.08 cm. Case 3 includes 

displacement, stress and frequency constraints and the displacement constraint limit of 

10.16 cm. The cross-section areas of all bar elements are considered as deterministic 

design variables. The allowable limits of variables and constraints are given in Table 1. 

Three deterministic Pareto optimal fronts: P1, P2 and P3 corresponding with three cases 

are shown in Figure 4. It can be seen from Figure 4 that P1 and P2 are very close to each 

other. However, the solutions in P2 satisfy the frequency constraints while the solutions 

in P1 do not satisfy the frequency constraints. Also, P3 is very close to P1 and P2 in a 

range of displacement less than 5.08 cm.  

To evaluate the efficiency of the NSGA-II, some results (points A, B, C and D) in the 

deterministic Pareto optimal fronts in Figure 4 are extracted to compare with those 

obtained by Kaveh and Talatahari (2009), Li et al. (2007), Lee and Geem (2004) and 
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Camp et al. (1998) in Table 2. It can be seen from Table 2 that the weight at specific 

points of the Pareto optimal fronts, for example, points B and D, are nearly the same as 

those of other authors. Furthermore, the displacement and stress constraints of these 

results are satisfied. However, the frequency constraints of the present results are satisfied 

while the frequency constraints of reference results are violated. 

 

 

Figure 4. The deterministic Pareto-optimal solutions of the 10-bar planar truss structure with different cases 

of constraints. 

 

Table 2. Comparison of deterministic results for the10-bar planar truss structure. 

Design variable 
(cm2) 

Camp et al. 
(1998)  

 

Lee and 

Geem 

(2004)  

 
Li et al. 
(2007)  

 Kaveh and 

Talatahari 

(2009)  
 Present study (NSGA-II) 

GA  HS  PSO  HPSACO  A(*) B(**) C(***) D(***) 

A1 186.59  194.53  198.10  195.54  195.17 194.40 106.47 211.85 

A2 0.65  0.66  0.65  0.65  0.65 5.33 5.27 5.95 

A3 155.30  146.52  149.47  151.20  141.11 150.01 69.81 155.63 

A4 90.07  98.52  97.96  100.04  105.24 97.15 44.68 92.80 

A5 0.65  0.66  0.65  0.65  0.65 0.65 0.65 0.65 

A6 3.61  3.51  3.56  3.38  4.23 6.10 5.30 10.17 

A7 49.62  48.65  48.13  47.98  49.20 47.65 38.76 52.23 

A8 141.62  139.11  135.35  136.00  139.89 133.55 66.47 130.54 
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A9 142.52  138.40  138.77  136.97  136.83 143.97 68.88 135.33 

A10 0.65  0.65  0.65  0.65  0.645 0.645 1.650 0.645 

Weight (kg) 2302.60  2294.24  2295.62  2293.64  2300 2314 1216 2348 

Displacement (cm) 5.08  5.08  5.08  5.08  5.0797 5.0797 10.159 5.058 

Frequency 

f1 =5.94  f1 = 5.96  f1 =5.93  f1 =5.93  f1 =5.92 f1 =11.2 f1 =9.2 f1 =11.89 

f2 =10.4  f2 = 10.3  f2 =10.4  f2 =10.3  f2 =10.78 f2 =15.02 f2 =15.1 f2 =15.76 

f3 =18.6  f3 = 18.5  f3 =18.5  f3 =18.3  f3 =19.14 f3 =20.23 f3 =20 f3 =21.29 

       Notes:          (*): Case 1 
   (**): Case 2 
 (***): Case 3  

6.1.2 Reliability-based multi-objective optimization 

The RBMOO problem in Eq. (9) is adopted for the 10-bar truss configuration in this 

section. It is assumed that all random parameters are normally distributed with mean 

values given in Table 1 and the coefficient of variation (C.O.V.) of 0.05. Ten cross-

section areas of the truss are considered as random design variables. The allowable range 

of these random design variables is provided in Table 1. The probability constraints are 

formulated from the constraints in Case 2 of the deterministic multi-objective 

optimization problem in Section 6.1.1. The reliability index of 3, causing a reliability of 

99.87%, is investigated. In previous studies, the 10-bar truss structure has been studied 

for reliability-based single-objective optimization by several authors (see, for example 

[Shayanfar et al. (2014)] and [Lee et al. (2002)]) with the goal of minimizing the weight 

subject to displacement and stress constraints and the reliability index of 3.  

The reliability-based Pareto optimal front is shown in Figure 5 in comparison with the 

deterministic Pareto optimal front. It can be observed that the reliability-based Pareto 

optimal front is almost overlapped by the deterministic Pareto optimal front. However, 

the range of the reliability-based Pareto optimal front is shorter and restricted to a safer 

design region compared with that of the deterministic Pareto optimal front. This is 

reasonable because the solutions of the reliability-based Pareto optimal front will have to 

move into the feasible design region where solutions have lower displacement and larger 

weight.  

Several solutions of the deterministic and reliability-based Pareto optimal solutions 

(points A and B for deterministic optimization and point C for reliability-based 

optimization) are listed in Table 3 in comparison with those of Shayanfar et al. (2014) 

and Lee et al. (2002). It can be observed from Table 3 that the frequency constraints in 

reference solutions are violated while those of the points A, B and C are satisfied. In 

addition, some reliability indexes of point A and B are smaller than the given reliability 

index, for example, β1 = 0.04, β2 = 0.09, β4= 0.03 and β5= 0.34 for the case of point A 

and β2= 0.06 and β5= 0.94 for the case of point B. On the contrary, the reliability indexes 

for all constraints of the point C are satisfied. 
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Figure 5. Comparison of the deterministic and reliability-based Pareto optimal fronts for the 10-bar planar 

truss structure. 

Table 3. Comparison of deterministic and reliability-based results for the10-bar planar truss structure. 

Design variable 

(cm2) 

Shayanfar et al. (2014)  Lee et al. (2002)  Present study 

DLM-GA TPB - β 
DMOO  RBMOO  

A B C 

A1 221.64 248.47 194.40 225.81 225.43 

A2 0.65 0.65 5.33 7.32 7.04 

A3 191.51 173.43 150.01 220.77 215.34 

A4 169.53 123.04 97.15 123.36 137.69 

A5 0.65 0.65 0.65 0.65 0.65 

A6 0.65 0.65 6.10 26.36 8.95 

A7 21.53 39.87 47.65 51.83 66.91 

A8 182.94 176.46 133.55 207.26 197.47 

A9 168.64 175.04 143.97 202.88 204.04 

A10 0.65 0.65 0.645 0.645 0.645 

Weight (kg) 2817.43 2787.17 2314 3184 3184 

Displacement (cm) - - 5.0797 3.72 3.72 

Frequency 

f1 = 5.12 f1 = 5.12 f1 = 11.2 f1 = 13.38 f1 = 12.68 

f2 = 6.68 f2 = 6.7 f2 = 15.02 f2 = 17.17 f2 = 17.10 

f3 = 13.12 f3 = 16.43 f3 = 20.23 f3 = 20.70 f3 = 22.31 
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βFORM 3.060 

 

2.999 

 β1= 0.04 (51.74%) β1= 2.96 (99.85%) β1= 3.00 (99.87%) 

  β2= 0.09 (53.46%) β2= 0.06 (52.26%) β2= 3.04 (99.88%) 

  β3= 11.46 (100%) β3= 14.13 (100%) β3= 13.41 (100%) 

  β4= 0.03 (51.36%) β4= 3.26 (99.94%) β4= 3.11 (99.91%) 

  β5= 0.34 (63.36%) β5= 0.94 (82.68%) β5= 3.00 (99.87%) 

 

The reliability-based Pareto optimal fronts of various reliability indexes are given in 

Figure 6. Here, we have investigated the reliability indexes which vary between 2 and 

3.5, which corresponds to the reliabilities between 97.73% and 99.98%. It can be 

observed that the reliability-based Pareto optimal fronts almost match with each other. 

However, the larger the reliability index is, the narrower the range of Pareto optimal front 

becomes. This is reasonable because when the target reliability indexes become larger, 

the optimal solutions will have to move further from the constraint boundaries into the 

feasible design region to guarantee the larger target reliability index, and hence the range 

of weight will be shorter. The solutions having the smallest weight for each case of 

reliability index are listed in Table 4. 

 

 
Figure 6. Reliability-based Pareto optimal fronts of the 10-bar planar truss structure with different reliability 

indexes. 
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Table 4. Comparison of the reliability-based results of the 10-bar planar truss structure with different reliability 

indexes. 

Design variable (cm2) 
β = 2 

(A) 

β = 2.5 

(B) 

β = 3 

(C) 

β = 3.5 

(D) 

A1 225.79 225.80 225.43 225.78 

A2 6.81 6.92 7.04 7.45 

A3 184.52 201.79 215.34 224.42 

A4 116.97 131.26 137.69 153.49 

A5 0.65 0.65 0.65 0.65 

A6 7.12 6.96 8.95 8.51 

A7 62.36 65.99 66.91 73.57 

A8 173.34 187.13 197.47 214.05 

A9 181.40 184.29 204.04 212.93 

A10 0.645 0.645 0.645 0.645 

Weight (kg) 2866 3018 3184 3363 

Displacement (cm) 4.11 3.91 3.72 3.55 

βFORM 

β1 2.00 2.50 3.00  3.50 

β2 2.30 2.91 3.04  3.98 

β3 12.71 12.84 13.41  13.47 

β4 2.72 2.92 3.11  3.70 

β 5 2.43 2.52 3.00 3.50 

 

6.2. A 72-bar spatial truss structure 

The 72-bar spatial truss structure was studied by many researchers (see, for example, 

[Erbatur et al. (2000); Lee et al. (2002); Lee and Geem (2004); Perez and Behdinan 

(2007)]). In these studies, the truss was studied for single-objective (the weight of the 

truss) with displacement and stress constraints. The geometry and parameters of the truss 

are shown in Figure 7 and Table 5, respectively. Four masses are added into nodes 17, 

18, 19 and 20 of the truss. Two separate load conditions are considered for designing of 

the truss as given in Table 6. The cross-section areas of the 72-bar’s members of the truss 

are classified into 16 groups: (1) A1-A4, (2) A5-A12, (3) A13-A16, (4) A17-A18, (5) A19-A22, (6) 

A23-A30, (7) A31-A34, (8) A35-A36, (9) A37-A40, (10) A41-A48, (11) A49-A52, (12) A53-A54, (13) 

A55-A58, (14) A59-A66 (15), A67-A70, and (16) A71-A72. 
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Figure 7. A 72-bar spatial truss structure. 

Table 5: Data for the 72-bar spatial truss structure. 

Parameters  Value (unit) 

Modulus of elasticity E 6.895x1010 N/m2 

Material density ρ 2767 kg/m3 

Added mass W0 2268 kg  

Minimum allowable limits of the first and the third 

frequencies   
f
1
 = 4 Hz, 

  
f

3
 = 6 Hz 

Maximum allowable stress 172.375x106 N/m2  

Allowable range of cross-sections 0.6452 cm2 ≤ Ai ≤ 20. 5 cm
2 

 

Table 6: Load cases for the 72-bar spatial truss structure. 

Node 
Case 1  Case 2 

Px (kN) Py (kN) Pz (kN)  Px (kN) Py (kN) Pz (kN) 

17 22.25 22.25 -22.25  0.0 0.0 -22.25 
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18 0.0 0.0 0.0  0.0 0.0 -22.25 

19 0.0 0.0 0.0  0.0 0.0 -22.25 

20 0.0 0.0 0.0  0.0 0.0 -22.25 

6.2.1 Deterministic multi-objective optimization 

Similarly to the previous example in Section 6.1.1, three cases of constraints are carried 

out in this example. Case 1 considers only displacement and stress constraints with the 

maximum allowable displacement of 0.635 cm. Case 2 includes displacement, stress and 

frequency constraints with the maximum allowable displacement of 0.635 cm. Case 3 

includes displacement, stress and frequency constraints with the maximum allowable 

displacement of 1.27 cm. The bar element cross-section areas of 16 groups are considered 

as deterministic design variables. 

The deterministic Pareto optimal fronts of three cases are illustrated in Figure 8. It 

can be seen that P2 and P3 almost match with each other and they match partly with P1 

in the safer design region. In addition, the maximum displacement of P2 and P3 equals to 

0.503 that is less than the maximum allowable displacement. According to these results, 

it can be seen that the frequency constraint influences on the range of Pareto optimal 

front of the optimization problem.  

Some solutions of the three deterministic Pareto optimal fronts are listed in Table 7 in 

comparison with those of the previous studies. It is worthy to note that the value of 

fitness functions at some points in P1, P2 and P3 are the same, however, the values of 

constraint functions at these points are different. The frequency constraints of the present 

solutions are satisfied while those of other authors are violated. 

Figure 8. The deterministic Pareto-optimal solutions of the 72-bar spatial truss structure with different cases of 

constraints. 
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Table 7. Comparison of deterministic results for the 72-bar spatial truss structure. 

Design variable (cm2) 

Erbatur et al. 

(2000)  

Lee and Geem 

(2004)  
Lee et al. (2002)  

Perez and Behdinan 

(2007)  
Present study (NSGA-II) 

    A(*) D(*) B(**) C(***) 

1 A1-A4 1.00 11.55 11.97 1.04 11.65 15.77 17.11 17.11 

2 A5-A12 3.45 3.36 3.25 3.29 3.15 4.74 7.69 7.83 

3 A13-A16 3.10 0.65 0.65 3.20 0.65 1.49 1.14 1.39 

4 A17-A18 3.36 0.65 0.65 3.63 0.65 1.26 0.65 0.65 

5 A19-A22 2.97 7.93 8.08 3.32 8.90 9.57 12.77 12.25 

6 A23-A30 3.42 3.37 3.26 3.53 3.37 3.55 7.76 7.70 

7 A31-A34 0.77 0.65 0.65 0.65 0.65 1.02 0.65 0.65 

8 A35-A36 1.06 0.65 0.65 0.71 0.65 0.67 0.65 0.65 

9 A37-A40 7.45 3.34 3.21 8.44 3.94 5.04 7.81 8.46 

10 A41-A48 3.77 3.25 3.28 3.33 3.21 3.28 7.84 8.09 

11 A49-A52 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 

12 A53-A54 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 

13 A55-A58 11.32 1.01 0.65 11.24 1.02 1.18 3.43 3.31 

14 A59-A66 3.26 3.53 3.39 3.35 3.27 4.81 8.50 8.12 

15 A67-A70 0.68 2.85 2.54 0.65 3.18 3.59 0.65 0.65 

16 A71-A72 0.68 4.45 3.45 0.65 3.40 7.82 0.65 0.65 

Weight (kg) 174.98 172.04 167.67 173.23 171.22 224.57 325.86 325.86 

Displacement (cm)  - - - - 0.643 0.508 0.503 0.503 

Frequency 
f1 = 1.7 f1 = 2.8 f1 = 2.7 f1 = 1.8 f1 = 2.8 f1 = 3.12 f1 = 4.0 f1 = 4.0 

f3 = 4.0 f3 = 3.9 f3 = 3.9 f3 = 3.9 f3 = 3.8 f3 = 4.25 f3 = 6.0 f3 = 6.0 

 Notes:             (*): Case 1 

  (**): Case 2 

      (***): Case 3 

6.2.2 Reliability-based multi-objective optimization 

The RBMOO problem in Eq. (9) is solved for the 72-bar truss structure. Five probability 

constraints formulating for Case 2 in Section 6.2.1 are considered. All random parameters 

obey normal distribution with the mean values in Table 5 and C.O.V. of 0.05. Reliability 

indexes of the optimization problem are chosen to be 3. The bar element cross-section 

areas of the 16 groups are considered as random design variables. The allowable range of 

these random design variables is given in Table 5. 

The result of this problem is shown in Figure 9 in comparison with those of Case 2 in 

Section 6.2.1. It is seen that unlike the 10-bar truss structure, the reliability-based Pareto 

optimal front almost matches with deterministic Pareto optimal front in the safer design 

region and separates in the remainder. Several solutions in the Pareto optimal fronts are 

listed in Table 8. 
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Figure 9. Comparison of the deterministic and reliability-based Pareto optimal fronts for the 72-bar spatial 

truss structure. 

 

Table 8. Comparison of deterministic and reliability-based results for the 72-bar spatial truss structure. 

Design variable (cm2) DMOO  RBMOO 

A B D C E 

1 A1-A4 17.11 17.28 20.65 20.51 20.64 

2 A5-A12 7.69 7.70 10.01 9.57 9.59 

3 A13-A16 1.14 1.17 1.15 2.13 2.13 
4 A17-A18 0.65 0.65 0.65 0.65 0.65 

5 A19-A22 12.77 12.80 16.12 16.86 20.65 

6 A23-A30 7.76 7.76 11.90 10.20 10.32 
7 A31-A34 0.65 0.65 0.67 0.65 0.77 

8 A35-A36 0.65 0.65 0.66 0.65 0.88 

9 A37-A40 7.81 7.85 10.03 10.44 11.02 
10 A41-A48 7.84 8.27 7.09 10.65 10.52 

11 A49-A52 0.65 0.68 0.65 0.65 0.65 

12 A53-A54 0.65 0.65 3.11 0.65 0.65 
13 A55-A58 3.43 3.52 2.75 4.11 2.39 

14 A59-A66 8.50 8.50 7.95 10.02 10.36 

15 A67-A70 0.65 0.72 8.16 0.65 3.45 
16 A71-A72 0.65 2.28 11.28 0.75 5.18 

Weight (kg) 325.86 334 436 412.9 441 

Displacement (cm)  0.503 0.415 0.26 0.419 0.26 

Frequency 
f1 = 4.0 f1 = 4.02 f1 = 4.29 f1 = 4.50 f1 = 4.51 

f3 = 6.0 f3 = 6.04 f3 = 6.33 f3 = 6.76 f3 = 6.78 

βFORM  β1= 2.25 (98.77%) β1= 4.20 (99.99%) β1= 8.92 (100%) β1= 4.10 (99.99%) β1= 8.87 (100%) 
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 β2= 11.88 (100%) β2= 11.96 (100%) β2= 11.53 (100%) β2= 14.19 (100%) β2= 9.59 (100%) 

 β3= 0.00 (42.91%) β3= 0.00 (48.26%) β3= 1.77 (96.13%) β3= 3.00 (99.87%) β3= 3.05 (99.88%) 

 β4= 0.00 (43.11%) β4= 0.004 (50.16%) β4= 1.30 (90.24%) β4= 3.00 (99.87%) β4= 3.10 (99.90%) 

 
The Pareto optimal fronts for various reliability indexes of the 72-bar spatial truss 

structure are depicted in Figure 10. The results show that the larger the reliability index 

is, the shorter the Pareto optimal front becomes. Also, the Pareto optimal fronts are 

separate in the range of the weight less than 500 kg. Some solutions having minimum 

weight and maximum displacement for various reliability indexes are shown in Table 9. 

 

 
Figure 10. Reliability-based Pareto optimal fronts of the 72-bar spatial truss structure with different 

reliability indexes. 

 

Table 9. Comparison of the reliability-based results of the 72-bar spatial truss structure with different reliability 

indexes. 

Design variable (cm2) 
β = 2 

(A) 

β = 2.5 

(B) 

β = 3 

(C) 

β = 3.5 

(D) 

1 A1-A4 19.27 20.59 20.51 20.64 

2 A5-A12 9.47 10.03 9.57 10.52 

3 A13-A16 1.82 1.91 2.13 2.21 

4 A17-A18 0.65 0.65 0.65 0.65 

5 A19-A22 15.45 15.73 16.86 17.45 
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Design variable (cm2) 
β = 2 

(A) 

β = 2.5 

(B) 

β = 3 

(C) 

β = 3.5 

(D) 

6 A23-A30 9.52 9.88 10.20 10.20 

7 A31-A34 0.65 0.65 0.65 0.65 

8 A35-A36 0.65 0.65 0.65 0.65 

9 A37-A40 9.14 9.31 10.44 11.14 

10 A41-A48 9.58 9.37 10.65 10.41 

11 A49-A52 0.65 0.65 0.65 0.65 

12 A53-A54 0.65 0.65 0.65 0.65 

13 A55-A58 4.35 4.31 4.11 4.69 

14 A59-A66 8.89 9.59 10.02 10.82 

15 A67-A70 0.65 0.65 0.65 0.65 

16 A71-A72 0.82 0.74 0.75 0.77 

Weight (kg) 383.28 396.86 412.85 428.00 

Displacement (cm)  0.44 0.43 0.42 0.41 

βFORM 

β1 

β2 

β3 

β4 

3.61 3.76 4.10 4.36 

14.02 13.68 14.19 14.59 

2.01 2.50 3.00 3.50 

2.01 2.50 3.00 3.50 

 

6.3. A 200-bar planar truss structure 

In the previous works, the 200-bar truss structure was studied for single-objective 

optimization with various cases of constraints. For example, Kaveh and Talatahari 

(2009), Lamberti (2008), Sonmez (2011), and Lee and Geem (2004) minimized the 

weight of the truss structure subject to stress constraints. Pholdee and Bureerat (2012), 

(2013) minimized the weight of the truss subject to displacement constraints. Farshchin et 

al. (2016), Kaveh and Ilchi Ghazaan (2015) and Khatibinia and Sadegh Naseralavi (2014) 

optimized the weight of the truss with frequency constraints. The geometry, node 

numbering, material numbering and group numbers of the 200-bar truss are shown in 

Figure 11. The 200 bars of the truss structure are categorized into 29 groups as given in 

Table 10. The truss structure is subjected to three loading conditions: (1) 4.45 kN acting 

in the positive x direction at nodes 1, 6, 15, 20, 29, 34, 43, 48, 57, 62, and 71; (2) 44.5 kN 

acting in the negative y direction at nodes 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 19, 

20, 22, 24, 26, 28, 29, 30, 31, 32, 33, 34, 36, 38, 40, 42, 43, 44, 45, 46, 47, 48, 50, 52, 54, 

56, 57, 58, 59, 60, 61, 62, 64, 66, 68, 70, 71,72, 73,74, and 75; (3) cases 1 and 2 are 

combined together. Five added masses are attached in nodes 1, 2, 3, 4 and 5. The 

parameters of the truss structure are provided in Table 11. 



T. Vo-Duy, D. Duong-Gia, V. Ho-Huu, T. Nguyen-Thoi 
 
22 

 
Figure 11. A 200-bar planar truss structure.  

 

Table 10. Element groups for the 200-bar planar truss structure. 

Group Elements Group Elements 

1 1 2 3 4 16 82 83 85 86 88 89 91 92 103 104 106 107 109 

110 112 113 

2 5 8 11 14 17 17 115 116 117 118 
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Group Elements Group Elements 

3 19 20 21 22 23 24 18 119 122 125 128 131 

4 18 25 56 63 94 101 132 139 170 177 19 133 134 135 136 137 138 

5 26 29 32 35 38 20 140 143 146 149 152 

6 6 7 9 10 12 13 15 16 27 28 30 31 33 34 

36 37 

21 120 121 123 124 126 127 129 130 141 142 

144 145 147 148 150 151 

7 39 40 41 42 22 153 154 155 156 

8 43 46 49 52 55 23 157 160 163 166 169 

9 57 58 59 60 61 62 24 171 172 173 174 175 176 

10 64 67 70 73 76 25 178 181 184 187 190 

11 44 45 47 48 50 51 53 54 65 66 68 69 71 

72 74 75 

26 158 159 161 162 164 165 167 168 179 180 

182 183 185 186 188 189 

12 77 78 79 80 27 191 192 193 194 

13 81 84 87 90 93 28 195 197 198 200 

14 95 96 97 98 99 100 29 196 199 

15 102 105 108 111 114   

 

Table 11. Data for the 200-bar planar truss structure. 

Parameters  Value (unit) 

Modulus of elasticity E 2.06x1011 (N/m2) 

Material density ρ 7933.410 (kg/m3) 

Added mass W0 100 (kg) 

Minimum allowable limits of the first three 

frequencies   
f
1
 = 5 (Hz), 

  
f

2
 = 10 (Hz), 

  
f

3   = (15 Hz) 

Maximum allowable stress 68.95x106 (N/m2) 

Allowable range of cross-sections 0.6452 (cm2) ≤ Ai ≤ 12 .0  (cm
2) 

 

6.3.1 Deterministic multi-objective optimization 

Similar to the previous examples, three cases of constraints are carried out in this 

example. Case 1 considers only displacement and stress constraints with the maximum 

allowable displacement of 1.5 cm. Case 2 includes displacement, stress and frequency 

constraints with the maximum allowable displacement of 1.5 cm. Case 3 includes 

displacement, stress and frequency constraints with the maximum allowable displacement 

of 3 cm. The bar element cross-section areas of 29 groups are deterministic design 

variables.  

The deterministic Pareto optimal fronts of the optimization problem are shown in 

Figure 12. It can be seen that these results are not similar to those in the 10-bar planar and 

72-bar spatial truss structures. Three Pareto optimal fronts almost match with each other 
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although the constraints are different for each case. In addition, the maximum 

displacement of the Pareto optimal front of Case 3 is less than the maximum allowable 

displacement.  

Some specific solutions in Figure 12 are provided in Table 12 in comparison with the 

studies of Kaveh and Talatahari (2009); Lamberti (2008); Lee and Geem (2004); and 

Sonmez (2011).  

 
Figure 12. The deterministic Pareto-optimal solutions of the 200-bar planar truss structure with 

different cases of constraints. 

 

Table 12. Comparison of deterministic results for the 200-bar planar truss structure. 

Design variables 

(cm2) 

Lamberti 

(2008)  
 

Sonmez 

(2011)  
 

Lee and 

Geem 

(2004)  

 

Kaveh and 

Talatahari 

(2009)  

 Present study  

CMLPSA  ABC-AP  PSO  HPSACO  A(*) B(**) C(***) 

1 0.95  0.67  5.17  0.67  1.23 1.23 1.23 

2 6.06  6.11  15.50  5.93  7.33 7.33 7.33 

3 0.65  0.67  28.01  0.78  0.65 0.65 0.65 

4 0.65  0.73  36.76  0.65  0.76 0.76 0.76 

5 12.52  12.59  25.51  12.04  17.00 17.00 17.00 

6 1.91  1.89  3.84  1.82  0.65 0.65 0.65 

7 0.65  0.69  36.18  0.65  2.03 2.03 2.03 

8 20.03  20.16  59.33  19.15  25.71 25.71 25.71 

9 0.65  0.69  29.12  0.65  0.65 0.65 0.65 

10 26.48  26.64  29.69  25.46  28.73 28.73 28.73 

11 2.60  2.74  3.58  2.41  5.51 5.51 5.51 
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Design variables 

(cm2) 

Lamberti 

(2008)  
 

Sonmez 

(2011)  
 

Lee and 

Geem 

(2004)  

 

Kaveh and 

Talatahari 

(2009)  

 Present study  

CMLPSA  ABC-AP  PSO  HPSACO  A(*) B(**) C(***) 

12 1.23  0.67  120.98  2.90  4.21 4.21 4.21 

13 35.02  35.36  38.67  32.00  44.61 44.61 44.61 

14 0.65  0.68  0.65  6.93  2.13 2.13 2.13 

15 41.48  41.84  52.62  38.57  51.60 51.60 51.60 

16 3.70  3.61  1.75  5.07  7.26 7.26 7.26 

17 0.86  1.18  71.95  4.76  2.04 2.04 2.04 

18 51.43  51.90  45.98  47.62  65.39 65.39 65.39 

19 0.65  0.66  28.81  4.31  0.83 0.83 0.83 

20 57.89  58.28  59.13  53.55  75.99 75.99 75.99 

21 4.55  5.06  17.82  7.72  7.29 7.29 7.29 

22 2.71  4.84  3.58  6.45  2.00 2.00 2.00 

23 70.09  72.94  104.29  69.85  88.54 88.54 88.54 

24 0.65  1.42  3.21  0.65  13.90 13.90 13.90 

25 76.52  79.19  104.68  75.47  94.50 94.50 94.50 

26 6.67  9.07  6.48  8.85  15.10 15.10 15.10 

27 43.11  33.29  23.29  31.95  43.89 43.89 43.89 

28 69.75  64.47  53.99  56.77  86.22 86.22 86.22 

29 89.32  94.85  100.41  94.61  116.55 116.55 116.55 

Weight (kg) 11542.92  11582.05  19995.19  11410.914  15470.20 15470.20 15470.20 

Displacement (cm) 1.93  1.93  1.57  2.00  1.497 1.497 1.497 

Frequency 

f1 = 5.7  f1 = 5.7  f1 = 3.38  f1 = 5.8  f1 = 6.11 f1 = 6.11 f1 = 6.11 

f2 =15.8  f2 =16.0  f2 =11.3  f2 =15.7  f2 =13.87 f2 =13.87 f2 =13.87 

f3 =20.6  f3 =20.8  f3 =17.5  f3 =21.5  f3 =22.19 f3 =22.19 f3 =22.19 

Notes:  (*): Case 1 

           (**): Case 2 

         (***): Case 3 

 

6.3.2 Reliability-based multi-objective optimization 

In this section, the RBMOO problem as presented in Eq. (9) is solved for the 200-bar 

truss. All random parameters obey the normal distribution. The mean values of these 

parameters are given in Table 11, with C.O.V. of 0.05. The probability constraints of a 

single displacement, single stress and three frequencies are formulated similarly as the 

Case 2 in the Section 6.3.1. Reliability indexes of the optimization problem are chosen to 

be β = 2.5 corresponding with the probability of safety of 99.38%. The bar element cross-

section areas of 29 groups are random design variables having a normal distribution with 

C.O.V. of 0.05. The allowable ranges of these random design variables are given in Table 

11.  

The results of this problem are shown in Figure 13 in comparison with those of Case 

2 for the DMOO problem in Section 6.3.1. It can be seen from Figure 13 that similar to 

the previous results, the reliability-based Pareto optimal front is nearly overlapped by the 

deterministic Pareto front. However, the range of the reliability-based Pareto optimal 

front is shorter and restricted to a safer design region compared with that of the 
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deterministic Pareto optimal front. Several solutions having the smallest weight of the 

Pareto optimal fronts are shown in Table 13. 

 

 
Figure 13. Comparison of the deterministic and reliability-based Pareto optimal fronts for the 200-bar planar 

truss structure. 
 

Table 13. Comparison of deterministic and reliability-based results for the 200-bar planar truss structure. 

Design variables (cm2) 
DMOO  RBMOO  

A B C 

1 1.23 3.51 3.14 

2 7.33 24.68 19.89 

3 0.65 0.66 8.51 

4 0.76 3.71 2.31 

5 17.00 63.71 47.34 

6 0.65 2.90 0.65 

7 2.03 6.64 0.65 

8 25.71 32.38 65.18 

9 0.65 0.65 6.83 

10 28.73 69.04 57.71 

11 5.51 6.70 10.06 

12 4.21 0.65 6.05 

13 44.61 69.19 72.88 

14 2.13 1.72 0.65 

15 51.60 85.40 80.12 

16 7.26 7.08 14.12 
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Design variables (cm2) 
DMOO  RBMOO  

A B C 

17 2.04 1.58 0.74 

18 65.39 116.46 80.79 

19 0.83 0.79 0.65 

20 75.99 107.39 95.29 

21 7.29 10.25 12.45 

22 2.00 0.65 1.98 

23 88.54 107.03 100.91 

24 13.90 6.77 5.18 

25 94.50 113.76 108.96 

26 15.10 11.74 14.46 

27 43.89 97.07 81.92 

28 86.22 129.03 128.08 

29 116.55 128.12 128.99 

Weight (kg) 15470.20 22528.90 22270.10 

Displacement (cm) 1.497 0.96 0.98 

Frequency 

f1 =6.11 f1 =5.41 f1 =5.55 

f2 =13.87 f2 =16.38 f2 =12.56 

f3 =22.19 f3 =21.98 f3 =23.23 

βFORM 

β1=0.06 (52.39%) β1=4.43 (99.99%) β1=4.21 (99.99%) 

β2=0.05 (51.99%) β2=2.26 (98.81%) β2=2.50 (97.79%) 

β3=5.59 (100%) β3=2.38 (99.13%) β3=2.93 (99.83%) 

β4=8.32 (100%) β4=11.85 (100%) β4=5.75 (100%) 

β5=9.56 (100%) β5=8.62 (100%) β5=10.69 (100%) 

 
The reliability-based Pareto optimal fronts for various reliability indexes are 

illustrated in Figure 14. Similar to the previous examples, the reliability index influences 

on the range of the Pareto optimal fronts, i.e. the range of the Pareto optimal fronts 

becomes narrower when the reliability index is larger. The solutions having the lowest 

weight of Pareto optimal fronts for each reliability index are shown in Table 14. As can 

be seen in Table 14 that the reliability indexes computed by FORM algorithm are greater 

than or equal the defined reliability index. 
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Figure 14. Reliability-based Pareto optimal fronts of the 200-bar planar truss structure with different 

reliability indexes. 

 

Table 14. Comparison of the reliability-based results of the 200-bar planar truss structure with different 

reliability indexes. 

Design variables (cm2) 
β = 1.8 

(A) 

β = 2.0 

(B) 

β = 2.3 

(C) 

β = 2.5 

(D) 

1 0.70 1.32 0.65 3.14 

2 17.30 34.27 13.12 19.89 

3 0.65 0.65 13.43 8.51 

4 1.81 1.12 1.30 2.31 

5 29.00 36.90 32.80 47.34 

6 1.00 0.65 0.65 0.65 

7 5.99 0.65 6.20 0.65 

8 27.54 40.59 41.88 65.18 

9 0.65 0.65 2.88 6.83 

10 36.73 71.71 73.87 57.71 

11 7.41 5.07 6.61 10.06 

12 1.54 18.34 0.65 6.05 

13 50.92 53.80 76.78 72.88 

14 0.65 1.68 0.65 0.65 

15 59.96 70.93 66.23 80.12 

16 8.50 8.69 7.56 14.12 
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Design variables (cm2) 
β = 1.8 

(A) 

β = 2.0 

(B) 

β = 2.3 

(C) 

β = 2.5 

(D) 

17 3.35 8.09 0.65 0.74 

18 73.49 72.73 106.86 80.79 

19 0.65 0.65 0.65 0.65 

20 85.23 79.77 96.67 95.29 

21 10.11 10.79 8.61 12.45 

22 5.15 2.35 5.73 1.98 

23 100.13 98.51 100.90 100.91 

24 0.65 0.65 0.65 5.18 

25 117.61 108.48 107.55 108.96 

26 9.44 10.57 15.68 14.46 

27 70.79 101.79 89.13 81.92 

28 126.23 115.57 118.93 128.08 

29 126.01 127.74 129.03 128.99 

Weight (kg) 18903.2 20397.2 21086.5 22270.1 

Displacement (cm) 1.18 1.07 1.04 0.98 

βFORM

β1 2.34 3.38 3.56 4.21 

β2 1.90 2.06 2.44 2.50  

β3 5.27 2.36 3.12 2.93 

β4 10.08 4.93 6.57 5.75  

β 5 6.55 5.77 7.84 10.69  

7. Conclusions

In this article, an effective couple method is proposed for solving the reliability-based 

multi-objective optimization problems of truss structure subject to both static and 

dynamic constraints. In the optimization problems, the conflicting objective functions are 

to minimize the weight and minimize the displacement of truss structures under 

uncertainties in structural design variables, loading conditions and material parameters. 

The design variables are cross-section areas of the bars. The couple method is proposed 

by integrating a single-loop deterministic method (SLDM) into the NSGA-II algorithm to 

give the called SLDM-NSGA-II. Thanks to the advantage of SLDM, the probabilistic 

constraints are treated as approximate deterministic constraints. And therefore the 

reliability-based multi-objective optimization problems can be transformed into the 

deterministic multi-objective optimization problems of which the computational cost is 

reduced significantly. To illustrate the efficiency and robustness of the proposed method, 

three benchmark-type truss structures including a 10-bar planar truss, a 72-bar spatial 

truss and a 200-bar planar truss are studied. The influence of various parameters on the 

reliability-based Pareto optimal fronts is also demonstrated. Based on the obtained 

results, some concluding remarks can be withdrawn as follows: 

i) The frequency constraint has certain influences on the Pareto optimal front

of the truss structures. The level of the influence depends on the specific

truss structures. In addition, the allowable limit of displacement also effects

on the Pareto optimal fronts for some truss structures.

ii) The reliability-based Pareto optimal front is almost overlapped by
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deterministic Pareto optimal front. However, the range of the reliability-

based Pareto optimal front is shorter and restricted to a safer design region 

compared with that of the deterministic Pareto optimal front.  

iii) The reliability index effects on the range of the Pareto optimal fronts. The 

different reliability-based Pareto optimal fronts almost match with each 

other. However, the range of Pareto optimal fronts becomes narrower when 

the reliability index is larger. For some truss structures, it also effects on the 

form of the Pareto optimal front. 

It can be seen that various parameters effect on Pareto optimal fronts and for each truss 

structure the effect of these parameters is different. As a result, the reliability-based 

multi-objective optimization should be taken into account for each truss structure to get 

the optimal design. In the future, the proposed approach can be extended to various types 

of structures. 
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