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Highlights 

 We propose a many-objective optimization methodology to water resources allocation for

inter-basin water transfers. 

 An improved shuffled frog leaping algorithm is developed to solve the many-objective

optimization problem. 

 The proposed algorithm performs well in the Eastern Route of South-to-North Water

Transfer Project in Jiangsu, China. 

Abstract: Inter-basin water transfers (IBWT) are implemented to re-allocate unevenly 

distributed water resources. However, many conflicting objectives associated with society, 

economy, and environment have made the water resources allocation problem in IBWT more 

complicated than ever before. Thus, there is a continuous need for in-depth research with the 

latest optimization techniques to secure many-objective allocation of water resources for 

IBWT. In addition, being troubled of easily falling into local minima and premature 

convergence in some multi-objective optimization algorithms, it is necessary to explore new 

alternatives to improve their search quality. Here we propose a many-objective optimization 

methodology for IBWT, which includes three modules: (1) formulating a many-objective 

optimization problem based on realistic controls; (2) developing a new multi-objective real-

coded quantum inspired shuffled frog leaping algorithm (r-MQSFLA) to solve the 

optimization problem; (3) utilizing the Analytic Hierarchy Process (AHP)-Entropy method to 

filter the Pareto solutions. In r-MQSFLA, the real-coded quantum computer and the external 

archive with dynamic updating mechanism are applied to SFLA. The performance of r-

MQSFLA is first compared to that of other multi-objective evolutionary algorithms (MOEAs) 

in solving mathematical benchmark problems. A case study of the Eastern Route of South-to-

North Water Transfer Project in Jiangsu Province, China varying from a normal to an 
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extremely dry year, demonstrates that r-MQSFLA displays approximate performance on 

some compared algorithms and is improved significantly than MOSFLA in terms of 

convergence, diversity and reasonable solutions. This study can update the understanding of 

quantum theory to MOEAs and will provide a reference for better water resources allocation 

in IBWT under uncertainty. 

Key words：Many-objective optimization; inter-basin water transfers; r-MQSFLA; AHP-

Entropy method; Eastern Route of South-to-North Water Transfer Project  

1 Introduction 

Demand for water is relentlessly growing driven by industrial growth, irrigation, higher 

living standards and climate change. However, uneven distribution of water resources both in 

spatial and temporal scales is common in many countries, and thus results in water pressure 

and water shortage risks. The inter-basin water transfers (IBWT), referred to as the transfer of 

water from one geographically distinct river basin to another, or from one river reach to 

another, has been an effective engineering countermeasure to mitigate unevenly distributed 

water resources and balance the inter-basin water resource development (Akron et al., 2017; 

Zhou et al., 2017; Gallardo andAldridge, 2018). There are many IBWT projects such as the 

California State Water Project and the Central Utah Project in United States (Lopez, 2018), 

the Lesotho Highlands Water Project in Lesotho and South Africa (Matete andHassan, 2006), 

the West to East Water Transfer Project in Pakistan (Jeuland et al., 2019), and the Quebec 

Water Transfer Project in Canada (Lasserre, 2017). It is all known that China has planned and 

implemented many IBWT projects, one of which is the South-to-North Water Transfer 

(SNWT) Project (Yan andChen, 2013; Tang et al., 2014; Zhuang et al., 2019). After investing 

approximately $20 billion and resettling more than 300,000 people (Ministry of Water 

Resources, 2002), the SNWT project has become the largest and most expensive IBWT 

megaproject in the world (Pohlner, 2016).  

The water resources allocation problem related with supply-oriented IBTW is very 

complicated not only under the conditions of the changing water demands, but also the 

complex water diversion works, construction of long tunnels, mass water pumping, sluice and 

reservoir operation. Furthermore, many conflicting objectives have made the water resources 

allocation problem more complicated than ever before (Vogel et al., 2015). For example, in 

some IBWTs conflict may arise from maximizing water supply reliability as opposed to 

minimizing the use of water resources or hydraulic structures; on the other hand, minimizing 
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costs rather than maximizing water demand may also be important in other IBWTs. 

Undoubtedly, water resources allocation of IBWT would be operated from a regional scale 

concentrating in one objective by a central planner to an inter-basin scale balancing social, 

economics, and environmental concerns by different stakeholders. Accordingly, optimizing 

water allocation schemes between the supplying basin and the demanding basin is a crucial 

and challenging task. Multi-objective evolutionary algorithms (MOEAs) that using an 

iterative search process to modify and evolve a population of candidate solutions (Reed et al., 

2013) can effectively solve complex system problems and thus can be considered as a 

promising way to provide intelligent water allocation strategies. There have been many 

studies using the state-of-the-art MOEAs to investigate the applicability and effectiveness of 

water allocation in an inter-basin scale (Nouiri, 2014; Zeff et al., 2014; Yong et al., 2015; 

Zhou et al., 2015; Zhou et al., 2017; Fang et al., 2018a).  

According to the selection mechanisms, the MOEAs can be divided into three categories, 

namely Pareto-based method, Decomposition-based method, and Indicator-based method (Bai 

et al., 2019). The Pareto-based MOEAs rely on the Pareto dominance to identify high-quality 

solutions. Representations of these dominance-based approaches include Non-dominated 

Sorting Genetic Algorithm II (NSGA-II) (Deb et al., 2002), Strength Pareto Evolutionary 

Algorithm 2 (SPEA2) (Bleuler et al., 2001), and epsilon-MOEA (ε-MOEA) (Deb et al., 2005). 

The decomposition-based MOEAs transfer a multi-objective problem into multiple single-

objective subproblems, each of which is then solved in a cooperative manner. MOEA/D 

(Zhang et al., 2009) and reference vector-guided EA (RVEA) (Cheng et al., 2016) are typical 

examples of this kind. The Indicator-based MOEAs exploit performance indicators to guide 

the evolution process, such as representative approaches based on the hypervolume indicator 

including Hypervolume Indicator-Based Evolutionary Algorithm (IBEA) (Zitzler andKünzli, 

2004) and metric selection EMOA (SMS-EMOA) (Beume et al., 2007). However, some 

Pareto-based MOEAs perform invalidly when more objectives are involved; the approaches 

based on hypervolume prefer non-uniformly-distributed solutions on non-linear Pareto fronts, 

and the performance of MOEA/D is sensitive to the pre-defined weight vectors when 

decomposing the objective space (Yang et al., 2018). Overall, although some achievements 

have been obtained in the field of multi/many-objective optimization recently, MOEAs still 

have plenty of space to explore. 

Like the other MOEAs, the Pareto-based multi-objective shuffled frog leaping algorithm 

(MOSFLA) has been widely applied to solve multi-objective optimization problems in many 

fields, such as reservoir flood control (Li et al., 2010), mobile robot path planning (Hidalgo-
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Paniagua et al., 2015) and product transport (Lamboia et al., 2016). MOSFLA was developed 

based on SFLA which is one of the population-based EAs inspired by natural memetics with 

only a couple of parameters, fast calculation speed and excellent global search capability 

(Eusuff et al., 2006). However, SFLA can quickly fall into local minima and has slow 

convergence in the later stage of the evolution and poor calculation accuracy (Elbeltagi et al., 

2007), and thus it is commonly coupled with other advanced algorithms to find global optimal 

solutions effectively (Orouji et al., 2013; Ahandani andAlavi-Rad, 2015). One of the crucial 

topics concentrates on the quantum-inspired SFLA (QSFLA) characterized by certain 

principles of quantum mechanisms for a typical computer, and QSFLA was successfully used 

for its fast convergence (Gao andCao, 2012; Wang et al., 2019). Since there is rarely any 

published work to deal with many-objective optimization problems using QSFLA based on 

the Pareto theory, we use a real-coded quantum computer and an external archive with 

dynamic updating mechanism to save and update the non-dominated solutions in the multi-

objective r-QSFLA (r-MQSFLA). These are considered to not only efficiently improve the 

diversity and convergence of Pareto solutions for many-objective optimization problems, but 

apply the quantum theory to MOEAs. 

In this study, we aim to optimize water allocation for IBWT by developing a new multi-

objective algorithm r-MQSFLA to generate a number of candidates (Pareto solutions), from 

which stakeholders can then choose a desirable policy using multiple criteria decision-making 

(MCDM) methods. The performance of r-MQSFLA is first benchmarked on mathematical 

test problems by comparing its performance with that of NSGA-II, SPEA2, IBEA, ε-MOEA, 

MOEA/D and MOSFLA. Then an integrated methodology combining many-objective 

optimization model, r-MQSFLA, and MCDM to optimize water resources allocation for 

IBWT is performed on a case study of the Eastern route of SNWT Project in Jiangsu Province, 

China (JE-SNWT) under normal, dry, and extremely dry scenarios. This integrated 

methodology with r-MQSFLA can provide optimal solutions with preferred weights for 

decision makers who have diverse preferences with a number of high-order Pareto candidates. 

2 Methodology 

The proposed many-objective optimization methodology with r-MQSFLA is shown in 

Fig. 1. In this methodology, the many-objective optimization model to water resources 

allocation for IBWT aims to maximize the water resources benefits (e.g., social, economic 

and eco-environment) as much as possible while satisfying all kinds of constraints. The model 

operates by determining an optimal release for each reservoir/lake or pumpage for each 
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pumping station over the whole operation period. The objective function and associated 

constraints of the multi-objective optimization model for IBWT can be formulated as follows. 

      1 2  ( ) , ,..., nopt F x f x f x f x  (1) 

 .  s t x G x  (2) 

where  F x  is objective function set;  nf x  is the objective function considering maximum 

social, economic and eco-environmental benefits; n  is the number of the objective function; x  

is the decision variable;  G x  is the constraint sets. 

 

Fig. 1. Many-objective optimization methodology for water resources allocation of IWBT. 

 MOSFLA 2.1

Shuffled frog leaping algorithm (SFLA) is a meta-heuristic optimization method inspired 

from the memetic evolution of a group of frogs cooperating to look for food (Liu et al., 2019). 

It consists of a set of frogs divided into different groups referred to as memeplexes (sub-

populations). Within each memeplex, the individual frog holds ideas that can be influenced by 

the ideas of other frogs, and these ideas can evolve through a process of memetic evolution. 

MOSFLA is a Pareto-based MOEA of the original SFLA executing three stages (Hidalgo-

Paniagua et al., 2015). The first stage is to initialize both the variables and the initial 

population. The second stage consists of sorting the initial population according to the 

individual fitness and crowding distance and then dividing it into many sub-populations. In 

the last stage, the evolution of individuals is made per each sub-population. When all the 

iteration numbers in the sub-populations have been reached, the whole population is mixed 
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and then sorted again according to the Pareto front ranking and crowding distance. In this way, 

a set of non-dominated frogs will be made through the whole generation. 

  r-MQSFLA 2.2

 r-QSFLA 2.2.1

Quantum-inspired shuffled frog leaping algorithm (QSFLA) is based on the concepts of 

qubits and superposition of states of quantum mechanics. The smallest unit of information 

stored in a two-state quantum computer is called a qubit. A qubit may be in the ‘1’ state ( 1 ), 

in the ‘0’ state ( 0 ), or in any superposition of the two (Kirar andAgrawal, 2019). The state of 

a qubit can be represented by Eq.(3). 

 0 1     (3) 

where   and   are the probability amplitudes of the corresponding states, 2  gives the 

probability that the qubit will be found in the “0” state and 
2  gives the probability that the 

qubit will be found in the “1” state, following constraint, 
2 2

1   . 

QSFLA is a multi-agent optimization system inspired by social behaviour metaphor of a 

quantum frog. Each agent, called a quantum frog, shuffles and leaps in a D-dimensional space 

according to the historical experiences of its own and its colleagues. There are h quantum 

frogs in a quantum frog colony that is in a space of D dimensions. The position of the 

quantum frog colony is  1 2, ,..., hV v v v . The thi  quantum frog’s quantum position is 

 1 2, ,...,i i i iDv v v v , and a quantum position can be defined as a string of quantum bits. 

, , ,

, , ,

...

...

id id id m

id

id id id m

v
  

  

 
  
  

1 2

1 2

 (4) 

where 
2 2

1id id   , 1,2,...,d D , 1,2,...,i h , and m is the total numbers of a qubit. 

After all the quantum frogs are encoded in qubits, the thi  quantum frog’s quantum 

position is observed to generate the quantum frog  , ,...,i i i iDX x x x 1 2 . However, it is 

computationally complex to transform the quantum position to the real quantum variable in 

QSFLA. Our study attempts to apply the probabilistic representation of a real-coded quantum 

computer to SFLA to improve its global search ability. A frog population initialized by the 

quantum computer is implemented to overcome the shortcoming of the uneven distribution of 

the initial population in SFLA, while an adaptive strategy for the change of the quantum angle 
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is adopted to modify the quantum rotation gate, named as real-coded quantum inspired 

shuffled frog leaping algorithm (r-QSFLA). 

A qubit can be represented here to replace  ,
T

v    as    [cos ,sin ]Tv   ,
 
where 

cos sin  2 2 1 ,  0,2π  . Then, the thd  quantum position of the thi  quantum frog 

would be defined as an m-qubit shown below. 

 
 

 

 

 

 

 

, 1 , 2 ,

, 1 , 2 ,

cos cos cos...

...sin sin sin

id id id m

id

id id id m

v
  

  

 
  
 

 (5) 

Instead of evaluating the position as a binary code, a real two-dimensional variable value 

of the thd  quantum frog representation is generated using Eq. (6). The two-dimensional 

transfer function was firstly implemented in Quantum Differential Evolution (QDE) algorithm 

by Chen et al. (2013). Its effectiveness was verified in QDE algorithm using the function 

extreme value and traveling salesman problems compared with GA and PSO algorithm. 

where  ,id d dX a b , da  is the lower bound of the thd  dimensional variable and db  is the 

upper bound of the thd  dimensional variable. 

The thd  position of the local worst quantum frog wv  is updated by using the rotation gate 

(Arpaia et al., 2011), shown in Eq. (7). 

 cos( ) sin( )

sin( ) cos( )
w wv v

 

 

   
  

  
 (7) 

Here, we apply two methods to modify the rotation gate, a self-adapting change strategy 

of the quantum angle   and a self-correction of quantum position v . 

a. The small value of   causes low diversity while the big one hinders the algorithm 

convergence. To lessen this impact, we propose an adaptive strategy for the change of the 

quantum angle  , as shown in Eq. (8). 

 gen

min max min
maxgen

( ) exp( )
N

f rand
N

        (8) 

 
best, ,

1 best,

1

M

M
m i m

m m

fit fit
f

fit


 

 
(9) 

 
 

 

 

 

 

 

0
, 1 , 2 ,

1
, 1 , 2 ,

    0
cos cos cos... 2

2
...sin sin sin

    0 2
2

d d
d d id id id m

id

d d
id id id m d did

b a
b a

x
b a

b aX

  

  

 
     

       
             

 (6) 
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where min  is the lower bound of the quantum angle and max  is the upper bound of the 

quantum angle, ,i mfit is the fitness value of the thi  frog on objective m, ,best mfit is the global 

best fitness value for objective m, genN  is the present iteration times, M is the number of 

objectives, and maxgenN  is the times of maximum iteration.  

b. Moreover, the quantum position easily approaching 0 or 1 in the later stage of the 

algorithm leads to a local convergence. To avoid this,    cos  sin
T

v       reupdated by 

Eq.(10) has been successfully used in quantum generic algorithm (QGA) (Wang et al., 2016; 

Fang et al., 2018b). We also adopt this action here. 

 

 

2 2

2 2

2 2

1     cos( ) 1  and sin( )

  1   cos( )  and sin( ) 1

cos

  

 

si( )  ( )    cos( )  and sin n( ) 1
T

T

T

if

if

if

v

     

     

     

    
 
      

   


 

  (10) 

where   is a random variable ranging from 0 to 1. We assume =0.01  in this study. 

 External archive with dynamic updating mechanism  2.2.2

In this study, we use an external archive (ExA) with dynamic updating mechanism to 

save and update the non-dominated solutions obtained from the multi-objective algorithm 

(Modiri-Delshad andRahim, 2016). The dynamic updating mechanism consists of two 

primary operations, namely the simulated binary crossover (SBX) method and the dynamic 

crowding distance calculation. 

The SBX is a real-coded crossover which is inspired by the single-point crossover used 

in binary-coded. In a SBX operator, two parent individuals cross to generate new individuals, 

as shown in Eq.(11). It can be used to increase the number of individuals if there are not 

enough individuals in ExA. 

 
   

   

1 1 2

2 1 2

1
1 1

2

1
1 1

2

k k k k k

k k k k k

x p p

x p p

 

 

     

     

 (11) 

where ikx  is the thk  variable of the thi  individual, ikp  is the thi  variable of parent individuals, 

and k  is a random coefficient of the thk  variable, shown as follows. 
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 

1

1

1

1

2               0.5

1
      >0.5

2(1 )

c

c
k

u u

u
u














 

 
   

 (12) 

where u is a random number,  0,1u , and c  is the cross-distribution index, 0c  . 

The crowding distance can measure the density around a solution in the Pareto front 

distribution. A solution with a larger crowding distance is located at a less crowded region, 

which will result in better diversity in the population. Accordingly, solutions to its two 

neighbors with a shorter crowding distance will be removed when ExA overloads  (Xiang 

andZhou, 2015). The crowding distance for the thi  solution of the Pareto front can be 

calculated from Eq. (13). 

  , 1 , -1

1

M

i k i k i

k

D f f



   (13) 

where iD  is the crowding distance of the thi  solution with its two closest neighbours, , 1k if   

and , 1k if   are the thk  objective function of the  +1
th

i  and  1
th

i   solution, respectively, and 

M  is the number of objective functions, 1,2,...,k M . 

  r-MQSFLA 2.2.3

We propose a multi-objective algorithm referred to as multi-objective real-coded 

quantum inspired shuffled frog leaping algorithm (r-MQSFLA) by combining the r-QSFLA 

and ExA with dynamic updating mechanism, which is shown in Fig. 2. The main processes of 

r-MQSFLA are as follows. 

Step 1. Define objective function and specify parameters of the algorithm. The 

parameters used in r-MQSFLA include size of global population ( popN ), number of 

local population ( lN ), size of local population ( lpopN ), dimension of optimization 

problem ( dimN ), maximum number of generation for global population in each run 

( maxgenN ), maximum number of generation for local population in each run 

( lmaxgenN ), maximum number of model simulations ( simN ), and maximum number of 

the external archive ( ExAN ).  
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Step 2. Initialize the position of the quantum frog colony V , and from V  generate the 

real quantum frog colony X  using the two-dimensional transfer function described 

in Eq.(6). Then measure every individual of the entire quantum frog colony X . 

Step 3. Sort the population according to the Pareto front ranking and the non-dominated 

solution set is placed at front, followed by the dominated solution set. Divide it into 

many sub-populations and then save the non-dominated solutions in a temporary set 

(ND). 

Step 4. Update the ExA based on dynamic updating mechanism. 

a. Mix up the non-dominated solutions in the ND with those in the ExA. Sort the 

new solution sets according to the Pareto front ranking and save the new non-

dominated solutions in the ExA. 

b. Check the numbers of the non-dominated sets, ndsN , in the ExA. If nds ExAN N , 

perform step c; otherwise, increase the number of individuals to meet the defined 

requirements in ExA using the SBX method, and perform Step 4. 

c. Compute the crowding distance of each solution for the non-dominated sets, and 

remove solutions with the smallest crowding distance. An infinite distance value 

is assigned to the boundary solution. 

Step 5. Perform global exploration and local exploration by the r-QSFLA and SBX 

operator. 

a. Randomly select a solution from ExA, and tag it as a good solution gX . 

b. Divide the entire colony into many sub-populations by the shuffled method based 

on Eq.(14). 

  mod , lj i N  (14) 

where the thi  frog is selected into the 
thj  sub-population. 

c. For each sub-population, tag the first solution as a good solution bX  and the last 

solution as a bad solution wX . Thus, the quantum position of bX  is referred as 

one good position bV  and the position of wX  is referred as one bad position 

wV .  

d. Update wV
 
based on the improved quantum gate  G   with bV  using Eq.(7), and 

generate wX  by a new position wV . Compare the new solutions wX  with bX , and 

define the updated solutions ( wX ) using Eq. (15). 
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new      new  dominates  

            new  does not dominate  

w w w

w

w w w

X if X X
X

X if X X


 


 (15) 

e. Save the new wX . Alternatively, repeat Steps d-e with gX , and save or generate 

a new wX . 

f. Perform analogue binary crossover and then sort the sub-population according to 

the Pareto front ranking. Repeat steps c-e until the pre-defined maximum 

iteration lmaxgenN  is reached. 

g. Shuffle the sub-population to the new quantum frog colony X after the local 

searches are accomplished in all sub-populations.  

h.  Sort the newly formed frog colony according to the Pareto front ranking and 

divide it into sub-populations again and then save the non-dominated solutions in 

the ND. Repeat Steps 3-5 until the predetermined condition is satisfied.  

Step 6. Export the optimal Pareto solutions. 
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Fig. 2. Schematic diagram of the r-MQSFLA. 
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 Pareto solutions filtered using AHP-Entropy method 2.3

After Pareto solutions are obtained from the optimization, the stakeholders of IBWT 

need to address the many-objectives that conflict with each other to determine preferred 

options. There are two widely methods for filtering Pareto solutions in water resources 

management, i.e., visual analytic approach (Kollat et al., 2011; Kasprzyk et al., 2012; Reed 

andKollat, 2013) and multiple criteria decision-making (MCDM) method (Madani andLund, 

2011; Yang et al., 2016; Tian et al., 2019). Compared with the visual analytic approach, the 

MCDM method is less time-consuming in determining the preferred solution. In our case, we 

will implement the MCDM method to weight the objectives to seek operating options for 

IBWT. There are many evaluation methods in the field of MCDM, e.g., Analytic Hierarchy 

Process (AHP) (Chen et al., 2015), Entropy (Ridolfi et al., 2016), and TOPSIS (Zahmatkesh 

et al., 2015), which can be classified into three categories according to the weighting 

determining ways: subjective method, objective method, and combined subjective and 

objective method.  

AHP is one of widely subjective analysis methods using a combination of qualitative and 

quantitative analysis, which is based on the knowledge and experience of experts and the 

intentions and preferences of decision-makers determining the index weight sorting. AHP has 

high reliability, profound mathematical background and can be applied to water resources 

(Aşchilean et al., 2017), agriculture (Ren et al., 2019) and renewable energy development 

(Ghimire andKim, 2018), etc. Entropy is an objective weight method depending on the impact 

of the relative change degree of the index on the system by calculating the information 

entropy of index. The greater the relative change degree of the index, the higher a weight it 

will be (Al-Aomar, 2010). To avoid the one-sided decision, the AHP method and Entropy 

method are coupled here to seek a comprehensive solution and to satisfy different decision 

makers. The evaluation step of the AHP-Entropy method (Wang et al., 2017) is as follows. 

(1) Establish a hierarchical decision model.  

Assuming that the number of evaluation indicators is m (here refers to objectives as 

indicators in MCDM) and Pareto solution sets is n, the options corresponding to evaluation 

indicators constitute the target decision matrix  ij n m
Z z


 . 

(2) Standardize data. 

A decision matrix can be obtained after standardization which can be represented as

( )ij n mY y  .  

a. The standardization of "positive" indicator (the bigger, the better), 
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 min

max min

ij ij

ij

ij ij

z z
y

z z





 (16) 

b. The standardization of "reverse" indicator (the smaller, the better), 

 max

max min

ij ij

ij

ij ij

z z
y

z z





 (17) 

(3) Apply the AHP method to derive subjective weights w  for quantitative criteria 

where the decision-makers can establish full pairwise preference. In AHP, by analyzing the 

relationship between various factors in the system, the evaluation indictors will be scored 

according to a nine-scoring system (Hua andLing, 2010) and described in a judgment matrix. 

Then, the subjective weight of each evaluation indictor can be attained by weight calculation 

and random consistency test based on the judgment matrix. This research is based on a project 

launched by the Department of Water Resources of Jiangsu Province. Therefore, we collected 

the score for each performance indicator according to the advice and guidance of government 

managers.  

(4) Apply the Entropy method to derive objective weights w of quantitative criteria 

where decision preferences cannot be established.  

(5) Apply a combined AHP-Entropy module for assessing criteria weights w  of 

quantitative criteria where partial decision preference can be established using Eq. (18). 

  1w w w       (18) 

where   is a weight of the subjective results relative to the objective, (0,1) . 

(6) Define the preferred solution from the Pareto solutions with the maximum value of 

topvalf  using Eq. (19). 

 
topvalf Y w   (19) 

3 Case study: JE-SNWT Project 

 Study area  3.1

The SNWT aims to change the uneven spatial distribution of water resources in China by 

bringing water from the Yangtze River to the Hai, Yellow (Huang) and Huai River basins in 

North China. The project has three routes, namely western, middle and eastern routes, among 

which the middle and eastern ones have been in operation since 2014 and 2013, respectively, 

while the western one is still in planning. This study focuses on the eastern route of SNWT 

Project in Jiangsu Province (JE-SNWT), which is located between 32°15'-34°30' N and 

117°00'-119°45' E, as presented in Fig. 3. Water from the Yangtze River is pumped by 
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pumping stations and then flows along the Grand Canal in Jiangsu Province, through a tunnel 

under the Yellow River and down an aqueduct to reservoirs in Shandong Province. The total 

area of the case study is about 62,000 km
2
, and the total length of the main canals is about 404 

km. This project consists of two canals (West Canal and East Canal), three lakes (Hongze (HZ) 

Lake, Luoma (LM) Lake and Nansi (NS) Lake) and eighteen pumping stations (Baoying, 

Jiangdu, etc.). The West Canal includes Bulao River, Xuhong River, and Jinbao Channel 

River, while the East Canal consists of Hanzhuang River, Zhongyun River, and Liyun River. 

The features of the pumping stations and sluices in the JE-SNWT Project are listed in Table 1. 

The three lakes have a total water storage capacity of about 45.3×10
8
 m

3
, whose storage 

characters are presented in Table 2.  

 

Fig. 3. Location of the JE-SNWT Project. 

Table 1. Features of the pumping stations and sluices in the JE-SNWT Project. 

 Location Number 
Capacity 

(m
3
/s) 

 
Location Number 

Capacity 

(m
3
/s) 

Pumping 

station 

Baoying P1 100 

Pumping 

station 

Liulaojian P10 230 

Jiangdu P2 400 Pizhou P11 100 

Jinhu P3 400 Zaohe P12 175 

Huaian P4 300 Taierzhuang P13 125 

Hongze P5 150 Liushan P14 125 
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Huaiyin P6 300 Wannianzha P15 125 

Sihong P7 120 Xietai P16 125 

Siyang P8 230 Hanzhuang P17 125 

Suining P9 110 Linjiaba P18 75 

Sluice 

Huaiyin S1 500 

Sluice 

Erhe S4 500 

Yanhe S2 500 Gaoliangjian S5 500 

Yangzhuang S3 500 Nanyunxi S6 400 

Table 2. Features of the lakes in the JE-SNWT Project. 

Lake 

Dead water 

level 

(m) 

Normal water level 

(m) 

Regulation storage 

(10
8
m

3
) 

Monthly minimum lake level 

for water diversion (m) 

Flood 

season 

Non-flood 

season 

Flood 

season 

Non-flood 

season 

Apr. - 

Jun. 

Jul.- 

Aug. 

Sep. -

Dec. 

Nov. - 

Mar. 

HZ 11.30 12.50 13.50 15.30 31.35 12.20 12.00 11.95 12.25 

LM 21.00 22.50 23.00 4.30 5.90 22.60 22.15 22.15 22.55 

NS 31.30 32.30 32.80 4.94 8.00 32.30 31.80 31.70 32.35 

 Water demands 3.2

According to the flow duration curve of the annual natural inflow data for 60 years, three 

hydrological years with an exceedance probability of 50%, 75% and 95% are selected to 

represent normal (1971.6-1972.5, annual mean inflow: 250.43×10
8
m

3
), dry (1958.6-1959.5, 

annual mean inflow: 134.72×10
8
m

3
), and extremely dry (1959.6-1960.5, annual mean inflow: 

8.68×10
8
m

3
) scenarios, respectively. To provide the inputs associated with water demands for 

modelling water allocation under the three scenarios, the JE-SNWT Project is schematized 

and shown in Fig. 4.  

In our case, water users can be categorized into 16 groups based on their locations. The 

water demands of water-supplying basins are related mainly to domestic, agricultural, and 

industrial, shipping, and ecological sectors. According to Chinese Standard (GB/T 51051-

2014), the Water Quota Method is used to calculate the water demands for domestic, 

agriculture, and industrial sectors by integrating water quotas and activity levels with reuse 

rates and loss rates. The feasibility evaluation report of E-SNWT Project offers the shipping 

and ecological water demands. Year 2010 is selected as the base year for the designed 

scenarios in this study because no inter-basin water transfer project was implemented in this 

year, and scenarios are designed for 2030. Fig. 5 shows the annual water demands of each 

water user in 2030 under (a) normal, (b) dry, and (c) extremely dry scenario, respectively. The 

water demands of the domestic, and industrial, shipping, and ecological sectors are the same 

under three scenarios, while the water demands of the agriculture sector increase with the 

hydrological probability. A total water demands of 127.73, 143.02, and 179.90×10
8
m

3
 can be 
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observed under normal, dry, and extremely dry scenarios, respectively, where the water 

demands of the agricultural sector is 65.37, 80.66, and 117.54×10
8
m

3
. It’s noticed that the 

water demands of the agriculture sector is the largest in most water users. LYG User has the 

greatest demand for water, especially for the agricultural sector, followed by LM User and NS 

User. Regarding to the water demands for SD and AH user, we assume a specific value of 

14.62×10
8
m

3
 and 0, respectively, based on the Planning Report of SNWT Project. 

Shandong user= SD user                         Xielin user =XL user                    Liuxie user =LX user

Lianyungang user = LYG user                Suipi user = SP user                     Sisui user = SS User

Liuzao user =LZ user                               Siliu user =SL user                      Erhe-huaiyin user = Er-HY user

Guangaizongqu user = GGZQ user          Anhui user =AH user                  Sanhe user = SH user

Jinbaohangdao user = JBHD user            Liyunhe user = LYH user            Feihuanghe user = FHH user

SD user

XL 

user

LX 

user

SP 

user

SS 

user

LZ 

user

SL 

user

Er-HY 

user

GGZQ user

LYG user

FHH user

SH user
JBHD 

user LYH

user

LM Lake

HZ Lake

NS Lake

AH 

user

Yangtze  River

P18

P16

P14 P13

P11

P9

P7

P12

P10

P8

P6

P4
P2

P5

P1

S1

S3 S2

S4

S5

S7

P3

P17

P15
Bulao

River
Hanzhuang

River

Xuhong

River

Zhongyun

River

Liyun

River
Jinbao Channel River

Huaisuxin  River

Yan  River

Feihuang  River

--Sluice gate --Pumping station -- Lake -- User

 Fig. 4. Schematic diagram of the JE-SNWT Project. 
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Fig. 5. Annual water demands of each water user in 2030 under (a) normal, (b) dry, and (c) extremely 

dry scenario. 

 Many-objective optimization problem formulation for the JE-SNWT Project  3.3

Herein, we formulate a five-objective optimization problem using a monthly time step 

for the JE-SNWT Project with 24 decision variables (18 pumping stations and 6 sluices). The 

objective function and associated constraints can be formulated as follows. 

 Objectives 3.3.1

(1) Minimizing the operating costs 

A decision maker would consider a different suite of costs depending on whether an 

existing system is being managed or a completely new system is being designed. As water 

transfers occur in an existing system, costs considered in this study is the operating costs. The 

operating costs objective aims to minimize the costs for pumping stations operation here.  

 
ocost ,

1 1

min
T J

p

j j t

t j

f p q t
 

   (20) 



 

19 

where jp  (RMB/m
3
) is the operating cost of the 

thj  pumping station, ,

p

j tq  (m
3
/s) is water 

pumped by the 
thj  pumping station at time step t , 1,2,...,j J , J is the total number of 

pumping stations, 1,2,...,t T , T is the whole operating period, and t  is the time step. 

(2) Maximizing the water supply reliability 

The water supply reliability metric is a measure of how well the water demand for users 

is met in a water transfer system. It gives the extent of water deficit and can be adopted as an 

indicator to reflect water supply efficiency for water demand.  

 
,

1 1

wsrr

,

1 1

max  1 *100%

T N
s

n t

t n

T N
d

n t

t n

W

f

W

 

 

 
 
  
 
 
 




 (21) 

where ,

s

n tW  ( 3m ) is the water deficit of the thn  user at time step t , ,

d

n tW  ( 3m ) is the water 

demand of the thn  user at time step t , 1,2,...,n N  and N is the total numbers of the user, 

N=16. 

(3) Minimizing the water surplus 

Minimizing the amount of spill water, which can increase the amount of water to meet 

the water demand, is a widely used objective to evaluate water transfers systems operation 

performance.  

 
wsv ,

1 1

min
T M

p

m t

t m

f W
 

  (22) 

where ,

p

m tW  ( 3m ) is the water surplus of the thm  lake at time step t , 1,2,...,m M , and M is 

the total numbers of the lakes ( =3M  in this case study). 

(4) Minimizing the water withdrawn from the Yangtze River 

Reducing the water withdrawn from the river aims to decrease the amount of water 

imported from the transfer system other than the inflow of lakes and improve the regulation 

and storage capacity of lake.  

 
wrv

1

min
T

r

t

t

f W


  (23) 

where 
r

tW  ( 3m ) is the amount of water withdrawn from the river at time step t . 

(5) Minimizing the lake storage deficit 

Eq. (24) describes the ratio of the lake storage deficit at the end of a flood season. This 

objective seeks to maximize the lake storage at the end of a flood season, which potentially 
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reduces the amount of water transferred in the non-flood season and weakens the 

environmental impacts on water source basin.  

 
,

1

ladr

,max

1

min 1 *100%

L

l f

l

L

l

l

S

f

S





 



 (24) 

where ,maxtS  ( 3m ) is the maximum storage of the thl  lake at the end of flood season, 
,l fS  ( 3m ) 

is the ending storage of the thl  lake at the end of flood season. 

 Constraints 3.3.2

There are five main constraints, including water balance constraint, lake storage 

constraint, pumping station and sluice capacity, and minimum lake levels for water diversion. 

a. Water balance constraint 

The water balance constraint should be satisfied in the water transfer process.  

 1 , 1,( )i p p s r

t t t j t j t t tS S q q q q q t         (25) 

where tS  (m
3
) is the initial water storage at the beginning of period t, tS 1  (m

3
) is the ending 

water storage at the end of period t, 
i

tq , 
s

tq , 
r

tq  ( m
3
/s) are the inflow, water supply and 

release at time step t , respectively, ,

p

j tq , + ,

p

j tq 1  (m
3
/s) is the water pumped by the 

thj  and 

( )thj 1  pumping station at time step t , respectively.  

b. Lake storage constraint 

 
,min ,maxt t tS S S   (26) 

where ,mintS and ,maxtS  (m
3
) are the lower and upper storage boundary at time step t , 

respectively. 

c. Pumping capacity constraint 

 
,max0 p p

t tq q   (27) 

where ,max

p

tq  (m
3
/s) is the maximum pumping capacity at time step t . 

d. Sluice capacity constraint 

 
,max0 r r

t tq q 
  

(28) 

where ,max

r

tq  (m
3
/s) is the maximum sluice capacity at time step t .  

f. Minimum lake levels for water diversion 
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Water diverted will be stopped if the lake level is lower than the minimum level for 

water diversion. The monthly minimum lake level for water diversion is shown in Table 2. 

4 Results 

 Mathematical benchmark test of r-MQSFLA 4.1

We first applied r-MQSFLA and six widely used MOEAs, namely NSGA-II, SPEA-II, ε-

MOEA, IBEA, MOEA/D and MOSFLA, to solve five mathematical benchmark problems, 

ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6 (Perolat et al., 2015). Specifically, NSGA-II, SPEA2, 

ε-MOEA, IBEA, and MOEA/D were performed in a MATLAB platform for evolutionary 

multi-objective optimization, PlatEMO (Tian et al., 2017b), and MOSFLA and r-MQSFLA 

were performed in MATLAB 2018b. The parameters for all MOEAs used in the benchmark 

problems are listed in Table 3.  

Table 3. Parameter ranges/values for each MOEA used in the benchmark problems. 

No Parameters Range/value Algorithms 

1 Maximum number of model simulations 10 

All Algorithms 
2 Size of global population 100 

3 
Maximum number of iterations for 

global population 
20000 

4 Dimension of optimization problem 2 

5 Number of the external archive 100 
r-MQSFLA, NSGA-II, SPEA2, 

MOEA/D, ε-MOEA 

6 
Maximum number of iterations for local 

population  
10 r-MQSFLA, MOSFLA 

7 Number of local populations 10 r-MQSFLA, MOSFLA 

8 Number of qubits 1 r-MQSFLA 

9 ε-dominance 0.001-0.0075 ε-MOEA 

10 Simulated Binary Crossover (SBX) rate 0.5-1.0 
r-MQSFLA, NSGA-II, SPEA2, 

IBEA, ε-MOEA 

11 Distribution index for crossover 10-100 
r-MQSFLA, NSGA-II, SPEA2, 

IBEA, ε-MOEA 

12 Crossover probability 0.75-0.9 NSGA-II, SPEA2, MOEA/D 

13 Mutation probability 0.0-0.5 
NSGA-II, SPEA2, IBEA, ε-MOEA, 

MOEA/D 

14 Distribution index for mutation 10-100 
NSGA-II, SPEA2, IBEA, ε-MOEA, 

MOEA/D 

In the benchmark problems, we used the indicators of generational distance (Reed et al., 

2013), entropy for diversity (Deb andJain, 2002), hypervolume (Deb et al., 2003), and epsilon 

(Zitzler et al., 2003) to evaluate the performance of all algorithms. Note that a smaller 

generational distance and epsilon, and a larger diversity and hypervolume indicate a better 

performance. At the same time, we applied the Wilcoxon rank-sum test (Perolat et al., 2015), 
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which is a non-parametric test, to perform comparisons for each benchmark problem between 

r-MQSFLA and other algorithms. It shows that MOSFLA performs the worst for the five 

benchmark problems. We then mainly compared the r-MQSFLA with the other five 

algorithms (NSGA-II, SPEA2, IBEA, ε-MOEA, and MOEA/D). The results are shown in Fig. 

6. In ZDT1, r-MQSFLA demonstrates good hypervolume and epsilon measures. ε-MOEA 

performs the best in terms of generational distance but is the worst in terms of diversity. It can 

be seen that the six algorithms have very good convergence to the Pareto optimal front on 

ZDT2. For diversity, SPEA2, r-MQSFLA, and ε-MOEA are the best, followed by NSGA-II, 

MOEA/D, and IBEA. Except IBEA, the other five algorithms all have better hypervolume 

and epsilon values. r-MQSFLA has higher generational distance, and smaller diversity and 

epsilon measures than some algorithm on ZDT3, but has significant improvements in 

diversity values. In ZDT4, ε-MOEA is the best in terms of generational distance, but r-

MQSFLA is better than the other five MOEAs in terms of diversity, hypervolume and epsilon 

among obtained solutions. It is also evident that the performance measures of r-MQSFLA on 

ZDT6 are good, particularly in terms of diversity. Thus, from the two-objective problems 

studied above, we can conclude that the r-MQSFLA produces good convergence and diversity. 

 

Fig. 6. Performance comparison of (a) generational distance, (b) diversity, (c) hypervolume, and (d) 

epsilon for the five mathematical benchmark problems using NSGA-II, SPEA-II, ε-MOEA, IBEA, 

MOEA/D and r-MQSFLA analyzed by the Wilcoxon rank-sum test. Three symbols of the Wilcoxon 

rank-sum test indicate the observation of the null hypothesis, with ‘+’ indicating that the null 

hypothesis is rejected and r-MQSFLA displays statistically superior performance at the 95% 

significance level (α = 0.05) on the compared algorithm; ‘−’ indicating that the null hypothesis is 

rejected and r- MQSFLA displays statistically inferior performance at the 95% significance level on 
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the compared algorithm; ‘=’ indicating that the null hypothesis is accepted and r-MQSFLA display 

approximate performance at the 95% significance level on the compared algorithm. 

 Many-objective optimization with r-MQSFLA for JE-SNWT Project 4.2

We then applied NSGA-II, SPEA2, IBEA, ε-MOEA, MOEA/D, MOSFLA and r-

MQSFLA to solve the many-objective optimization problems for the JE-SNWT Project under 

normal, dry and extremely dry condtions. The parameters of maximum number of iterations 

for global population, dimension of optimization problem, and number of the external archive 

used in the case study are 2000, 5, and 500, respectively. The rest of the parameters are the 

same as those used in the benchmark problems. Unlike ZDT, where the analytical Pareto front 

is known, the JE-SNWT problems varying from a normal to an extremely dry year has 

unknown Pareto fronts. Fig. 7 provides visualizations of the reference Pareto sets attained for 

these three problems across five runs of all of the MOEAs tested (NSGA-II, SPEA2, IBEA, ε-

MOEA, MOEA/D, MOSFLA and r-MQSFLA). The geometries of the tradeoffs vary 

significantly across the applications, as would be expected given their different hydrological 

conditions. In each of the plots, the operating costs, water surplus, and water supply reliability 

are plotted on the x, y, and z axes, respectively. The color of the markers indicates the water 

withdrawn from the Yangtze River with color ranging from blue, representing low amount, to 

red, representing high amount. The lake storage deficit at the end of flood season is presented 

by the size of the makers, where the small marker means low deficit and the large one means 

high deficit. The black arrows have been added to guide the reader in understanding the 

directions of optimization. An ideal solution would be located at the bottom left corner (low 

operating costs, high water supply reliability, and low water surplus) of the plot and 

represented by a small (low lake storage deficit), dark blue (low water withdrawn from the 

Yangtze River) marker. The operating costs under all scenarios range from 0.62×10
8
 RMB to 

6.91×10
8
 RMB. The water supply reliability has a positive relationship with natural inflow 

(positive relationship, i.e., the former increase with the increase of the latter). In contrast, the 

water withdrawn from the Yangtze River has an inverse relationship (inverse relationship, i.e., 

the former decrease with the increase of the latter) with natural inflow. The volume of water 

surplus under normal scenario varies in the range of 85.37×10
8
 m

3
 to 133.85×10

8
 m

3
, which is 

much higher than that under extremely dry scenario with a value of 0.00×10
8
m

3
 to 

9.59×10
8
m

3
. Extremely dry scenario generates the widest range of the ratio of lake storage 

deficit at the end of the flood season while the other two scenarios have the similar smaller 

range. 
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Fig. 7. Illustration of reference Pareto fronts attained across all runs of all algorithms for (a) normal, (b) 

dry, and (c) extremely dry scenario. The black arrow indicates the direction of optimization. 

Fig. 8 (a), (c) and (e) provide the parallel reference Pareto sets with a total number of 

1111, 1292, and 1263 solutions in the reference sets across the normal, dry, and extremely dry 

problems, respectively. All algorithms are presented with different colors. In terms of the 

percentage of the reference Pareto fronts captured by each MOEA, shown in Fig. 8 (b), (d) 

and (f), r-MQSFLA (4.48%) and SPEA2 (3.79%) largely contribute to the reference sets for 

the normal condition; NSGA-II, SPEA2, ε-MOEA, and r-MQSFLA capture more compared 

with the remaining algorithms for both dry and extremely dry conditions. Although r-

MQSFLA does not always perform the best in capturing the highest percent of the reference 

sets, it consistently captures a certain large percentage across all of the problems. MOSFLA is 

the worst-performing algorithm in terms of capturing reference set for the three applications, 

following by MOEA/D and IBEA. The latter two fail to capture any reference set under 

normal and dry conditions. 
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The black arrows in Fig. 8 indicate the directions of optimization. An ideal solution 

would be a horizontal line intersecting the top of every vertical axis. However, the solutions 

with the greast operating costs incur large amounts of water surplus and water withdrawn 

from the Yangtze River while performing better in the water supply reliability and the lake 

storage deficit. For example, most solutions of r-MQSFLA and ε-MOEA overlap under 

normal and dry conditions and they prefer a position near the top values than SPEA2. These 

results imply that r-MQSFLA and ε-MOEA will generate higher operating costs and higher 

water withdrawn from the Yangtze River, but higher water supply reliability and lower lake 

storage deficit than SPEA2. It is interesting to note that r-MQSFLA has two distinct regions 

as reference Pareto front under normal and dry conditions, one of which has the largest 

operating costs and will widen the range of the reference sets. In addition, the geometries of 

the tradeoffs attained by r-MQSFLA, ε-MOEA, SPEA2 and NSGA-II vary significantly 

across the extremely condition. It is evident that r-MQSFLA captures the maximum operating 

costs (worst solutions) and maximum water supply reliability (best solutions). It is also worth 

noting that although most of the MOEAs tested are able to find portions of reference set under 

extremely condition, the problem is difficult with respect to finding well converged, 

consistent, and diverse solution sets by one MOEA. 
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Fig. 8. Illustration of parallel reference Pareto sets attained across all runs of all algorithms for (a) normal, 

(c) dry, and (e) extremely dry scenario and percent contributions (%) across all runs of all algorithms for (b) 

normal, (d) dry, and (f) extremely dry scenario. f1 represents operating costs (10
8
RMB), f2 represents water 

supply reliability (%), f3 represents water surplus (10
8
m

3
), f4 represents water withdrawn from the Yangtze 

River (10
8
m

3
), and f5 represents lake storage deficit (10

8
m

3
). The black arrow indicates the direction of 

optimization. 

While capturing the reference set is important, it is necessary to evaluate each MOEA 

using the performance indicators. In the JE-SNWT problems, we also used the indicators of 

generational distance, diversity, hypervolume, and epsilon. The results are shown in Fig. 9. 

This table shows that there is no top performing algorithm in terms of the four indictors. For 
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example, for normal condition, r-MQSFLA has the best generation distance measures across 

all MOEAs, but performs worse than NSGA-II in diversity; for dry condition, r-MQSFLA 

obtains the worse hypervolume and epsilon distance than ε-MOEA, but shows better results in 

diversity; for extremely condition, r-MQSFLA achieves approximate values in epsilon 

distance and better values in diversity with ε-MOEA, but fails to obtain ideal results in 

generational distance. Over all, MOSFLA, IBEA, and MOEA/D are the weakest algorithms 

for all these three problems with larger generational distance and epsilon, lower diversity and 

hypervolume. The remaining algorithms have fairly consistent better run results, in particular 

while comparing r-MQSFLA with MOSFLA, which can satisfy one of our purposes, that is, 

improving MOSFLA in terms of convergence and diversity. 

 

Fig. 9. Performance comparison of (a) generational distance, (b) diversity, (c) hypervolume, and (d) epsilon 

for the three JE-SNWT problems using NSGA-II, SPEA-II, ε-MOEA, IBEA, MOEA/D, MOSFLA and r-

MQSFLA analyzed by the Wilcoxon rank-sum test. S1-3 represents the scenario of normal, dry, and 

extremely dry. Three symbols of the Wilcoxon rank-sum test indicate the observation of the null hypothesis, 

with ‘+’ indicating that the null hypothesis is rejected and r-MQSFLA displays statistically superior 

performance at the 95% significance level (α = 0.05) on the compared algorithm; ‘−’ indicating that the null 

hypothesis is rejected and r- MQSFLA displays statistically inferior performance at the 95% significance 

level on the compared algorithm; ‘=’ indicating that the null hypothesis is accepted and r-MQSFLA display 

approximate performance at the 95% significance level on the compared algorithm. 
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 Pareto solutions filtered using AHP-Entropy method for JE-SNWT Project 4.3

The Pareto solutions are evaluated based on social, economic and eco-environment 

benefits. In our case, social benefits criteria include the performance metric of water supply 

reliability, economic benefits criteria include the performance metric of operating cost, the 

water withdrawn from the Yangtze River and water surplus, and eco-environment benefits 

criteria include the performance metric of lake storage deficit at the end of flood season. The 

water supply reliability is the "positive" evaluation indicator, while other performance metrics 

are the "reverse" evaluation indicators. 

This study first applied the AHP method to calculate the subjective weights and then 

used the Pareto solutions to determine the objective weights based on the Entropy method. 

According to the government managers, the operating costs and water supply reliability are 

the two most striking metrics. Given that people prefer to make decisions based on losses 

rather than gains, the operating costs makes the top indictor under normal scenario, while 

water supply reliability has the largest contribution under the dry and extremely dry 

conditions. This could be reasonable assuming that the government aims for a sustainability-

oriented policy, which may not be fully based on economic revenue, particularly in terms of 

severe conditions. An example is given with α=0.5 across all algorithms for the JE-SNWT 

Project under three scenarios, which is shown in Table 4. The water surplus has a minimal 

influence for all algorithms under extremely dry condition. This is because there is low inflow 

and not enough water to have a surplus. 

Table 4. Criteria weights derived by the AHP-Entropy method for the JE-SNWT Project using NSGA-II, 

SPEA-II, ε-MOEA, IBEA, MOEA/D, MOSFLA and r-MQSFLA. 

MOEA 
Weight 

Normal Dry Extremely dry 

f1 f2 f3 f4 f5 f1 f2 f3 f4 f5 f1 f2 f3 f4 f5 

w' 0.37 0.26 0.14 0.12 0.11 0.22 0.31 0.19 0.12 0.16 0.23 0.50 0.11 0.09 0.08 

r-MQSFLA 
w'' 0.29 0.24 0.18 0.23 0.06 0.26 0.19 0.18 0.23 0.14 0.24 0.21 0.06 0.29 0.19 

w 0.33 0.25 0.16 0.17 0.08 0.24 0.25 0.18 0.17 0.15 0.24 0.36 0.08 0.19 0.13 

MOSFLA 
w'' 0.27 0.17 0.26 0.29 0.01 0.27 0.27 0.20 0.24 0.02 0.24 0.22 0.16 0.25 0.14 

w 0.32 0.22 0.20 0.20 0.06 0.24 0.29 0.19 0.18 0.09 0.23 0.36 0.13 0.17 0.11 

NSGA-II 
w'' 0.09 0.17 0.26 0.18 0.30 0.06 0.27 0.17 0.14 0.35 0.18 0.25 0.14 0.19 0.24 

w 0.23 0.22 0.20 0.15 0.20 0.14 0.29 0.18 0.13 0.25 0.21 0.37 0.12 0.14 0.16 

SPEA2 
w'' 0.03 0.31 0.26 0.05 0.35 0.12 0.27 0.16 0.18 0.27 0.13 0.18 0.12 0.18 0.39 

w 0.20 0.29 0.20 0.08 0.23 0.17 0.29 0.17 0.15 0.21 0.18 0.34 0.11 0.13 0.23 

IBEA 
w'' 0.29 0.28 0.17 0.26 0.00 0.22 0.36 0.22 0.19 0.00 0.13 0.20 0.07 0.21 0.39 

w 0.33 0.27 0.16 0.19 0.05 0.22 0.34 0.21 0.16 0.08 0.18 0.35 0.09 0.15 0.23 

ε-MOEA 
w'' 0.24 0.26 0.21 0.09 0.21 0.18 0.25 0.08 0.22 0.27 0.16 0.23 0.03 0.20 0.39 

w 0.31 0.26 0.18 0.10 0.16 0.20 0.28 0.13 0.17 0.21 0.19 0.36 0.07 0.14 0.23 
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MOEA/D 
w'' 0.26 0.16 0.24 0.28 0.06 0.24 0.27 0.13 0.31 0.05 0.12 0.25 0.11 0.20 0.32 

w 0.32 0.21 0.19 0.20 0.08 0.23 0.29 0.16 0.22 0.10 0.17 0.37 0.11 0.15 0.20 

Note: f1 represents operating costs (108RMB), f2 represents water supply reliability (%), f3 represents water surplus (108m3), f4 

represents water withdrawn from the Yangtze River (108m3), and f5 represents lake storage deficit (108m3). w' represents the 

subjective weights, w'' represents the objective weights, and w represents the combined weights. 

Fig. 10 shows the variation of the six MOEAs relative to r-MQSFLA on the five metrics. 

For the metrics of water surplus and lake storage deficit, we only presented the absolute 

results of those more than zero obtained by some MOEAs. For example, SPEA2 can generate 

extra lake deficit with a value of 0.13 ×10
8
m

3
. Make the five metrics all be bigger the better, 

and consequently a good MOEA prefers a negative variation of the five metrics relative to 

other MOEAs. In this case, all metrics characterized by r-MQSFLA perform better than those 

characterized by SPEA2, MOEA/D, and MOSFLA for normal condition, and IBEA and 

MOSFLA for dry condition, demonstrating that r-MQSLA is able to reduce the operating 

costs while enhancing water supply reliability. In terms of extremely dry condition, r-

MQSFLA chooses to sacrifice economic cost in exchange for water supply reliability, 

resulting in the increase in water withdrawn from the Yangtze River and lake storage deficit. 

However, as we mentioned that people prefer to make decisions based on losses rather than 

gains, this result obtained by r-MQSFLA may accord with the aspirations of both government 

and general public and is more reasonable. MOSFLA will generate water surplus even under 

tremendous drought condition. The result of that water surplus is zero, indicating that our 

proposed many-objective optimization methodology with r-MQSFLA can fulfill the water 

resource utilization to secure water supply. 
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Fig. 10. Variation of the six MOEAs relative to r-MQSFLA on the five metrics for (a) normal, (b) dry, and 

(c) extremely dry scenario. 

We further presented the comparison between annual water supply and water demands 

characterized by the preferred solutions with r-MQSFLA under three scenarios, as shown in 

Fig. 11. According to the guiding policy of Water Resources Department of Jiangsu Province, 

water supply through the JE-SNWT project is planned to satisfy water demands for domestic 

sector firstly, followed by industrial, shipping and ecological sectors, and the last one is 
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agricultural sector. Thus, the water demands for domestic sector are fully met under three 

scenarios, while that for industrial sector cannot be satisfied in case of extremely dry 

condition with a lack of 5.58×10
8
m

3
. We find that water supply for shipping and ecological 

sectors can almost meet requirements under all hydrological conditions. However, the 

shortage of water supply for agricultural sector ranging from 4.45×10
8
m

3 
to 60.51×10

8
m

3
 is 

enlarged with the decreased natural inflow. This insufficiency is not caused by our many-

objective optimization methodology with r-MQSFLA, but resulted from the limitation of the 

capacity of pumping stations, sluices, and reservoirs in JE-SNWT Project. 

 

Fig. 11. Comparison between annual water supply and water demands under (a) normal, (b) dry, and (c) 

extremely dry scenario. 

5 Discussion 

 Improving algorithm efficiency for many-objective optimization problems 5.1

Tools such as MOEAs are suitable to solve many-objective optimization problems in 

real-word which exhibit nonlinear, convex or non-convex, and with discontinuous or non-

uniform distribution of the target space through the high-dimensional Pareto solutions (Kollat 

andReed, 2007). In addition, a branch of study on quantum-inspired EAs, for instance, QGA, 

quantum-inspired immune clonal particle swarm optimization algorithm, and quantum-

inspired immune clonal algorithm, have demonstrated the feasibility and efficiency of the 

novel EAs based on the concept and principles of quantum computing (Jiao et al., 2008; 

Vlachogiannis andLee, 2008). This study proposed a new MOEA named as r-MQSFLA to 

generate a diverse set of non-dominated solutions for many-objective optimization problem.  

The Multi-objective optimization algorithm aims to achieve two objectives: one is that 

the obtained non-dominated solution set should approach the real non-dominated solution set 

as quickly as possible, and the other one is that the solutions should be distributed as evenly 

as possible (Fonseca et al., 2003). The performance of r-MQSFLA was tested with that of 
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other MOEAs in solving five benchmark problems (ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6). 

The indicator measures of convergence and diversity for the five benchmark problems 

indicate that r-MQSFLA inspired from a real-coded quantum computer can strength the 

search ability of SFLA, while the ExA with dynamic updating mechanism can improve the 

diversity of Pareto solutions. 

In the case study, r-MQSFLA, SPEA2, ε-MOEA, and NSGA-II outperform the 

remaining algorithms in capturing the reference sets for all three problems. In particular, there 

are no Pareto solutions captured by the traditional MOSFLA. This result implies that the 

Pareto solutions of r-MQSFLA mostly dominating those of MOSFLA can facilitate higher 

water supply reliability with the same operating costs, which is critical to the decision makers 

in IBWT. The indicator measures of convergence and diversity argue that there is no top 

performing algorithm, but r-MQSFLA is improved significantly than MOSFLA. This further 

demonstrates that solutions updated by a rotation gate using an adaptive strategy of the 

quantum angle and a self-correction of quantum position in our study can successfully solve 

the local convergence of SFLA. In addition, from the comparison between the preferred 

solutions of r-MQSFLA and other MOEAs selected using AHP-Entropy, r-MQSFLA chooses 

to sacrifice economic cost in exchange for water supply reliability to get out of a tremendous 

drought condition. This result obtained by r-MQSFLA may accord with the aspirations of 

both government and general public and is more reasonable as people prefer to make 

decisions based on losses rather than gains. However, r-MQSFLA improves accuracy in 

solving complex many-objective optimization problems while sacrificing computational 

speed. r-MQSFLA is one time slower than MOSFLA for one simulation to perform one test 

problem. 

 Use of proposed approach for IBWT 5.2

Current optimization modelling of water transfer is operated based on economic 

measures and water demand. For example, Jain et al. (2005) analysed and designed a large 

IBWT system according to the water availability and demand in India. Sadegh et al. (2010) 

managed the inter-basin water resources based on the least-cost objective. Furthermore, 

Zhang et al. (2017) determined the amount of water transferred to maximize the water supply 

reliability involving the minimum water spillage. In addition to the least-cost and reliability 

objectives, there is still a need to add more pragmatic objectives in the water transfers process. 

Herein, we considered economic, social and environmental performance metrics together to 
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move beyond the general cost-reliability analysis by using volumetric metrics to measure the 

efficiency of water transfer, the utilization of natural inflow, and the influence on environment.  

This study dealing with a five-objective optimization problem simultaneously solves 31 

sub-problem (5 four-objective problems, 10 three-objective problems, 10 two-objective 

problems, and 5 single-objective problems). Many-objective visual analytics allows decision-

makers to seek a compromise solution according to the trade-offs between objectives. 

However, it takes several steps starting from a two-dimensional to a three-dimensional trade-

off to figure out the optimal solution. The AHP-Entropy method implemented in this study 

uses the quantitative objective metrics to directly explore the high-order Pareto sets. To avoid 

the subjective judge of the value of Pareto solutions, the subjective and objective weights are 

both considered to seek more comprehensive operating options for the water transfer 

managers. The AHP-Entropy method is able to provide optimal solution with preferred 

weights for decision makers who has diverse preferences. For instance, government workers 

could be more interested in how water supply meets for water users, water companies prefer 

least-cost solutions, while environmental protection agencies would like to minimize the 

influence on the environment. The comparison between r-MQSFLA and MOSFLA on the 

five-performance metrics argues that the approach can offer better solutions for IBWT.  

The three scenarios used in this study provide a useful guide for future IBWT under 

uncertainty. When considering multiple scenarios, we should not expect to find a universal 

solution that is optimal under all scenarios, especially when there are conflicting objectives 

(Tian et al., 2017a). This study shows variations in system performance when experiencing 

different natural inflow and water demands in a water transfer system, through different 

pathways of pumping stations, sluices and lakes. In addition, an IBWT project across regional, 

and local bound might be operated when a basin suffers drought or water shortage. This study 

performs well in fulfilling natural water resources utilization on a monthly time step for 

different hydrological (normal, dry, and extremely dry) years, which offers a baseline for a 

potential water transfer. Especially for the extremely dry scenario, it shows how the water 

transfer project helps to secure water supply with a low inflow and high demand. 

6 Conclusions 

IBWT are effective engineering countermeasures that can be taken to improve the inter-

basin water resource sustainable development and balance the uneven distribution of water 

resources. This study proposed an integrated many-objective optimization approach involving 

many-objective optimization model, MOEAs, and MCDM to water resources allocation for 
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IBWT under various scenarios. The approach included three parts: (1) formulating a many-

objective optimization problem (2) employing the r-MQSFLA to solve the optimization 

problem; (3) utilizing the AHP-Entropy method to filter the Pareto solutions derived by the r-

MQSFLA. Here, the AHP-Entropy method applied to select the preferred solution from 

Pareto sets could combine subjective and objective analysis for stakeholders who have diverse 

preferences. 

In r-MQSFLA, the real-coded quantum computer and ExA with dynamic updating 

mechanism were applied to SFLA aiming to improve the diversity and convergence of Pareto 

solutions. The performance of r-MQSFLA was tested with that of NSGA-II, SPEA-II, ε-

MOEA, IBEA, MOEA/D, and MOSFLA in solving five benchmark problems (ZDT1, ZDT2, 

ZDT3, ZDT4, and ZDT6). The indictors of convergence and diversity for the five benchmark 

problems indicated that r-MQSFLA inspired from a real-coded quantum computer could 

strength the search ability of SFLA, while the ExA with dynamic updating mechanism could 

improve the diversity of Pareto solutions. 

The many-objective approach was then applied to optimize water transfers of JE-SNWT 

Project under normal, dry, and extremely dry scenarios. The performance of r-MQSFLA was 

also tested with that of the six algorithms in solving three JE-SNWT problems. r-MQSFLA 

displayed approximate performance with SPEA2, ε-MOEA, and NSGA-II and its 

performance was improved significantly than MOSFLA in terms of convergence and diversity. 

Overall, the preferred solutions selected by the AHP-Entropy method with r-MQSFLA 

performed well in fulfilling natural water resources utilization on a monthly time step to get 

out of a tremendous drought condition through sacrificing economic cost.  

This study has proved the efficiency and usefulness of the proposed many-objective 

optimization methodology for obtaining water allocation guidelines to policymakers for 

IBWT under different scenarios. However, the formulation and scenarios used here can not 

completely represent the real-word problems. The further study will explore more realistic 

decisions with unknown inflows under uncertainty (Giuliani et al., 2016; Quinn et al., 2017). 
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