

Delft University of Technology

Distributed Convex Optimization
Based on Monotone Operator Theory
Sherson, Thomas

DOI
10.4233/uuid:fb60dba0-e5f9-451e-b664-e3ca0d45b36b
Publication date
2019
Document Version
Final published version
Citation (APA)
Sherson, T. (2019). Distributed Convex Optimization: Based on Monotone Operator Theory. [Dissertation
(TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:fb60dba0-e5f9-451e-b664-
e3ca0d45b36b

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:fb60dba0-e5f9-451e-b664-e3ca0d45b36b
https://doi.org/10.4233/uuid:fb60dba0-e5f9-451e-b664-e3ca0d45b36b
https://doi.org/10.4233/uuid:fb60dba0-e5f9-451e-b664-e3ca0d45b36b

DISTRIBUTED CONVEX OPTIMIZATION

BASED ON MONOTONE OPERATOR THEORY

DISTRIBUTED CONVEX OPTIMIZATION

BASED ON MONOTONE OPERATOR THEORY

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus Prof.dr.ir. T.H.J.J. van der Hagen,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op maandag 3 juni 2019 om 12:30 uur

door

Thomas William SHERSON

Bachelor of Engineering with Honors, Victoria University of Wellington, New Zealand
geboren te Petersfield, Verenigd Koninkrijk.

Dit proefschrift is goedgekeurd door de

Promotor: Prof.dr.ir. W.B. Kleijn
Promotor: Dr. ir. R. Heusdens

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof. dr. ir. W.B. Kleijn, Technische Universiteit Delft, Netherlands

Victoria University of Wellington, New Zealand,
Dr. ir. R. Heusdens, Technische Universiteit Delft, Netherlands

Onafhankelijke leden:
Dr. F.M. de Oliveria Filho Technische Universiteit Delft, Netherlands
Prof. dr. ir. M. Moonen Katholieke Universiteit Leuven, Belgium
Prof. dr. C. Richard Université de Nice Sophia-Antipolis, France
Prof. dr. ir. M. Verhaegen Technische Universiteit Delft, Netherlands
Prof. dr. ir. A.J. van der Veen Technische Universiteit Delft, Netherlands, reservelid

This research was funded as part of the “Distributed Processing of Audio Signals”
project sponsored by Huawei.

Keywords: Distributed Signal Processing, Convex Optimization, Monotone Oper-
ator Theory, Wireless Sensor Networks

Printed by: Ipskamp Printing

Front & Back: Ruby Urquhart

Copyright © 2019 by T. Sherson

ISBN 978-94-6384-041-5

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

CONTENTS

I Prologue 1

1 Introduction 3
1.1 Overview . 4
1.2 Motivation: Computing in a Networked World 4
1.3 Why Distributed Signal Processing? . 5
1.4 Distributed Convex Optimization . 7

1.4.1 Analysis of Existing Distributed Solvers 8
1.4.2 Designing Distributed Solvers . 9
1.4.3 Distributed Signal Processing in Practice. 10

1.5 Contributions and Thesis Outline . 11
1.6 List of Publications and Other Contributions 12

2 Monotone Operator Theory and Convex Optimization 15
2.1 Introduction . 16
2.2 Euclidean spaces Spaces and Relational Mappings 16

2.2.1 Monotone Operators and Convexity 17
2.2.2 Stronger Functional Properties. 19
2.2.3 Manipulations of Operators . 20
2.2.4 Finding Fixed Points of Nonexpansive Operators 25

2.3 Unconstrained Optimization . 26
2.3.1 Subgradient Descent . 26
2.3.2 Proximal Point Method . 28

2.4 Operator Splitting . 30
2.4.1 Forward-Backward Splitting . 31
2.4.2 Peaceman-Rachford Splitting . 33
2.4.3 Douglas-Rachford Splitting . 35

2.5 Duality . 36
2.5.1 Dual Ascent . 37
2.5.2 ADMM . 38
2.5.3 Primal-Dual Splitting . 40

2.6 Distributed Optimization . 41
2.6.1 Characteristics of Distributed Optimization Problems 41
2.6.2 Designing Distributed Solvers For Edge-Constrained Optimization

Problems. 43
2.6.3 Distributed Solver Design: Beyond ADMM. 45

2.7 A Pipeline for Distributed Signal Processing. 47
2.8 Conclusions. 48

v

vi CONTENTS

II Analysis of Existing Distributed Solvers 49

3 The Primal-Dual Method of Multipliers: A Monotone Perspective 51
3.1 Introduction . 52

3.1.1 Related Work. 53
3.1.2 Main Contribution . 53
3.1.3 Organization of the Chapter . 54

3.2 Nomenclature. 54
3.3 A Derivation of the Primal-Dual Method of Multipliers Based on Mono-

tone Operator Theory . 54
3.3.1 Problem Statement: Node Based Distributed Optimization 54
3.3.2 Exploiting Separability Via Lagrangian Duality 55
3.3.3 Simplification of Notation . 56
3.3.4 From the Extended Dual Problem to a Nonexpansive PDMM Oper-

ator . 57
3.3.5 On the Link with the Primal Dual Method of Multipliers 58
3.3.6 On the Link with the Distributed Alternating Direction Method of

Multipliers . 60
3.4 General Convergence Results for PDMM 61

3.4.1 Convergence of the Primal Error (‖x(k) −x∗‖2) of PDMM. 62
3.4.2 Primal Independence of a Non-Decreasing Subspace 62
3.4.3 Optimality of Auxiliary Limit Points 63
3.4.4 Averaged PDMM Convergence . 65
3.4.5 Lack of Convergence of PDMM for f ∈ Γ0 65

3.5 Geometric Convergence . 66
3.5.1 A Primal Geometric Convergence Bound for Strongly Convex and

Smooth Functions . 66
3.5.2 Contractive Nature of PDMM Over a Subspace. 67
3.5.3 Inequalities due to the Contraction of PDMM 67
3.5.4 A Geometric Rate Bound for PDMM Interpreted as an Optimization

Problem . 68
3.5.5 Relationship with the Method Alternating of Projections. 69
3.5.6 From an Auxiliary Error Bound to a Geometric Primal Convergence

Bound . 71
3.6 Numerical Experiments . 71

3.6.1 PDMM for Strongly Convex and Differentiable Functions 71
3.6.2 Geometric Convergence of PDMM for Strongly Convex and Smooth

Functions . 72
3.7 Conclusions. 74

Appendices 75
3.A Proof of Lemma 3.3.1 . 75
3.B Proof of Lemma 3.3.2 . 75
3.C Proof of Lemma 3.4.1 . 76
3.D Proof of Lemma 3.5.1 . 76
3.E Proof of Lemma 3.5.2 . 77

CONTENTS vii

4 Guaranteeing the Convergence of PDMM via Primal Regularization 79
4.1 Organization of the Chapter . 80
4.2 Nomenclature. 80
4.3 Modifying the PDMM algorithm . 80

4.3.1 From a Prototype Optimization Problem to Equivalent Dual Form. . 81
4.3.2 From an Unconstrained Optimization Problem to a Nonexpansive

Operator . 83
4.3.3 Simplifying The Computation of Reflected Resolvents 84
4.3.4 The Modified PDMM Algorithm (m-PDMM) 85

4.4 On the Guaranteed Convergence of the m-PDMM Algorithm 85
4.4.1 Convergence of the Primal Variables to a Limit State 86
4.4.2 Feasibility of the Primal Limit State 86
4.4.3 On the Limit States of the Dual Variables. 88
4.4.4 Optimality of the Primal-Dual Limit State 89

4.5 Numerical Experiments . 90
4.6 Conclusions. 91

Appendices 93
4.A Proof of Lemma 4.3.1 . 93
4.B Proof of Lemma 4.3.2 . 93

5 Network Topology and PDMM: Convergence Rate Analysis 95
5.1 Introduction . 96

5.1.1 Related Work. 96
5.1.2 Main Contributions . 98
5.1.3 Organization of Paper . 98

5.2 Nomenclature. 98
5.3 Distributed Optimization Via the Primal Dual Method of Multipliers 99

5.3.1 Problem Definition . 99
5.3.2 Simplification of Notation . 99
5.3.3 PDMM Algorithm . 100

5.4 A Tight Geometric Convergence Bound For PDMM for Strongly Convex,
Smooth Functions . 101
5.4.1 Preliminary Functional Assumptions 101
5.4.2 Independence of a Non-Contractive Subspace 103

5.4.3 Bounding the Primal Error y(k+1) −y∗ 103
5.4.4 Preservation of Strong Convexity and Smoothness 104
5.4.5 Forming the Ellipsoidal Bound. 105
5.4.6 Principal Angles and Alternating Projections. 106
5.4.7 Towards a Stronger Convergence Rate Bound for PDMM 107
5.4.8 Worst-Case Convergence Bound and Its Limiting Rate 109
5.4.9 Optimal Step Size Choice For a Given Network. 111

5.5 Additional Analysis and Results . 112
5.5.1 The Connection with The Geometric Bound of PDMM 112
5.5.2 A Problem Instance that Attains the Worst-Case Rate 112

viii CONTENTS

5.6 The Effect of Network Topology on Distributed Consensus 114
5.6.1 The Interplay Between Consensus and Topology. 114
5.6.2 Convergence of Deterministic Network Topologies 116
5.6.3 Finite Time Convergent PDMM 118

5.7 Conclusion . 119

Appendices 121
5.A Proof of Proposition 5.4.1 . 121
5.B Proof of Proposition 5.4.2 . 121
5.C Proof of Lemma 5.4.1 . 121
5.D Proof of Lemma 5.4.2 . 122

III Distributed Solver Design 123

6 A Distributed Algorithm for Separable Convex Optimization 125
6.1 Introduction . 126

6.1.1 Related Work. 126
6.1.2 Main Contributions . 127
6.1.3 Organization of Paper . 128

6.2 Nomenclature. 128
6.3 Deriving a Distributed Solver For Separable Convex Problems With Affine

Constraints . 128
6.3.1 Problem Statement and the Communication Graph 128
6.3.2 Implied Connectivity of the Constraint Graph 130
6.3.3 Exploiting Separability Via Lagrange Duality 131
6.3.4 A Communication Graph Preserving Dual Lifting 132
6.3.5 Network Topology Requirements 134
6.3.6 Simplifying the Problem Notation 135
6.3.7 From the Extended Dual Problem to a Monotonic Inclusion 138
6.3.8 Operator Splitting Via Peaceman-Rachford Splitting 139
6.3.9 Forming the Distributed Method Of Multipliers 140

6.4 Computation of the DMM Update Equations 140
6.4.1 Computing the Reflected Resolvent RT1,ρ 140
6.4.2 Computing the Reflected Resolvent RT2,ρ 141
6.4.3 Implementation in a Distributed Network 142
6.4.4 Convergence Guarantees . 143
6.4.5 Distributed Optimization of General Separable Problems 143

6.5 Application to Distributed Signal Processing 144
6.5.1 Random Network Modeling . 144
6.5.2 A Reference Centralized PR-Splitting Method 145
6.5.3 Distributed Beamforming . 145
6.5.4 Gaussian Channel Capacity Maximization 147
6.5.5 Portfolio Optimization . 148

6.6 Conclusions. 150

CONTENTS ix

Appendices 155
6.A Proof of Lemma 6.4.1 . 155
6.B Proof of Lemma 6.4.2 . 156

7 Distributed Consensus Over Time Varying Networks 157
7.1 Introduction . 158

7.1.1 Related Work. 158
7.1.2 Main Contributions . 159
7.1.3 Organization of Chapter . 159

7.2 Nomenclature. 160
7.3 Distributed Consensus . 160

7.3.1 Problem Definition . 160
7.3.2 Exploiting Separability Via Lagrangian Duality 161
7.3.3 Simplifying Notation . 162
7.3.4 Modifying the Extended Dual via a Change of Variables 163
7.3.5 Monotonic Inclusions and Fixed Point Problems. 164
7.3.6 Distributed Algorithm Implementation 165

7.4 Distributed Consensus in Time Invariant Networks 166
7.4.1 Removing the Dependence on the Auxiliary Variables 166
7.4.2 A Weighted Graph Laplacian Mixing Matrix 168
7.4.3 Optimal γ Variables and Network Topology 169

7.5 Convergence in Time Invariant Networks 169
7.6 Distributed Time Varying Consensus . 172

7.6.1 TVDC: Time Varying Algorithmic Convergence 172
7.7 Simulations . 177

7.7.1 Distributed Averaging . 177
7.7.2 Distributed L1 Consensus . 178

7.8 Conclusion . 179

Appendices 181
7.A Proof of Lemma 7.3.1 . 181
7.B Proof of Lemma 7.3.2 . 181
7.C Proof of Lemma 7.4.1 . 182
7.D Proof of Lemma 7.4.2 . 183
7.E Proof of Lemma 7.4.3 . 184
7.F Proof of Lemma 7.6.2 . 185

IV Practical Distributed Convex Optimization 187

8 Robust Distributed Linearly Constrained Beamforming 189
8.1 Introduction . 190
8.2 Signal Model . 192
8.3 Estimation of Signal Model Parameters 193

8.3.1 Estimation of RATF Vectors . 194
8.3.2 Estimation of CPSDMs . 194

x CONTENTS

8.4 Linearly Constrained Beamforming . 195
8.4.1 RATF estimation errors. 196
8.4.2 Fixed Superdirective Linearly Constrained Beamformers 197
8.4.3 Other Related Linearly Constrained Beamformers 198
8.4.4 Distributed Linearly Constrained Beamformers 198

8.5 Proposed Method . 199
8.5.1 BDLCMP Beamformer . 200
8.5.2 BDLCMV Beamformer . 202
8.5.3 Distributed Implementation of the Proposed Method 202
8.5.4 Acyclic Implementation via Message Passing 203
8.5.5 Cyclic Weight Vector Computation via PDMM 204
8.5.6 Beamformer Output Computation 204
8.5.7 Cyclic Beamforming with Finite Numbers of Iterations 205
8.5.8 Comparing the Transmission Costs of Different Beamformer Im-

plementations . 206
8.6 Experimental Results . 207

8.6.1 Experiment Setup . 207
8.6.2 Processing . 208
8.6.3 Robustness to RATF estimation errors 212
8.6.4 Limiting Iterations per Frame for PDMM Based BDLCMP/BDLCMV. 213

8.7 Conclusion . 214

V Epilogue 217

9 Conclusions and Future Work 219
9.1 Conclusions. 220

9.1.1 Analysis of Existing Distributed Solvers 220
9.1.2 Distributed Solver Design . 220
9.1.3 Practical Distributed Convex Optimization 221

9.2 Future Research. 221
9.2.1 Asynchronous Distributed Optimization. 221
9.2.2 Optimization in Directed Networks 222
9.2.3 Quantization Effects in Distributed Optimization 222
9.2.4 Distributed Non-Convex Optimization 222
9.2.5 Accelerated Solver Design . 223

9.3 Closing Remarks . 223

Summary 225

Samenvatting 227

Acknowledgements 229

Bibliography 231

Curriculum Vitæ 245

I
PROLOGUE

1

1
INTRODUCTION

“You don’t have to be a fantastic hero to do certain things, to compete. You can be just an
ordinary chap, sufficiently motivated to reach challenging goals. The intense effort, the

giving of everything you’ve got, is a very pleasant bonus”

Edmund Hillary

3

1

4 1. INTRODUCTION

1.1. OVERVIEW
The focus of this thesis is the analysis and design of various solvers for use in distributed
convex optimization. Motivated by the inherent link between signal processing and
convex problems, the design of such solvers aims to facilitate the implementation of
distributed signal processing algorithms in adhoc and large scale networks without the
need for packet passing or data aggregation. In particular, we approach the task of this
design process from the perspective of monotone operator theory which provides a uni-
fying perspective of many different first order convex solvers. In this initial chapter we
provide the contextual basis for this work by reflecting on the role of networking within
current society. We also provide an outline of the remainder of this thesis and our con-
tributions to the field of distributed optimization.

1.2. MOTIVATION: COMPUTING IN A NETWORKED WORLD
One of the hallmarks of the living world is the ability of members of a species to collabo-
ratively work together to achieve a common goal. Be it a pack of lions hunting gazelle, a
flock of geese flying in a V-formation to reduce air resistance, or a shoal of fish swimming
together to reduce their possibility of being eaten, collaboration is an essential compo-
nent to survival. The rise of humanity has also been inherently dependent on our ability
to work together. From the way we adopt complementary rolls in a society, through to
sharing ideas with one another, our ability to communicate and collaborate has driven
our success. A similar story is reflected in the world of computing. Since their concep-
tion at the end of the first half of the twentieth century, the paradigm of computing has
transformed from a landscape of isolated and disconnected entities through to a sprawl-
ing global web of interconnected devices.

Fast forward fifty years and in response to our ability to coordinate computers over
distances both short and long we have seen rapid advances in the utilities and services
that underpin out modern world. From the way that we share information via the inter-
net, to our interactions via social media [1], through to the way we store and process data
via cloud based services [2], and to more fundamental tasks such as power distribution
(e.g. smart-grid power networks, demand side management [3]) and transportation (e.g.
autonomous fleet navigation [4]), networking is playing an increasingly central role in
many facets of our lives.

Figure 1.1: Agent collaboration in nature and society. On the left a group of geese are flying in formation to
reduce are drag. On the right a swarm of drones are flying in formation as part of light show.

1.3. WHY DISTRIBUTED SIGNAL PROCESSING?

1

5

In parallel to the networking of more traditional computers, the emergence of the
"Internet of Things" (IoT) within the last few years has been driving the ubiquity of low
cost interconnected devices to new heights [5]. By the year 2025 for instance, it is pre-
dicted that more than 75 billion wireless equipped devices will be in active deployment, a
more than six fold increase since the estimated number of connected devices in 2012 [6].
Combined with the ever growing coverage of wireless communication platforms across
the world and the increasing computational capabilities of such devices, riding on the
crest of Moore’s law, everything from desktop computers, to cellphones, to home appli-
ances and even disposable low cost sensors can form part of a growing sea of networked
computers.

The fore-coming of a massively networked world and the plethora of information it
could capture offers interesting opportunities for us as signal processing engineers to
take advantage of. Be it traffic congestion tracking [7], intra-city weather detection[8],
air pollution monitoring [9] and more, a highly interconnected society provides an ideal
platform for new and innovative solutions for the modern world. Such tasks are often
labeled as “Big Data” problems, a name adopted due to the sheer scale of data which
is often available for processing, but this blanket term neglects an important feature of
such data sets; this information stems from a network of computational units. There-
fore, while we could process such data using a single super computer, a more interesting
question is whether a network can be made to work together to achieve the same feat.
Thus, just as a species must learn effective strategies to achieve a common goal, the
omnipotence of networked systems in our lives necessitates the design of special algo-
rithms to take full advantage of their capabilities. As computers lack the cognition to
design such methods for themselves (at least given the current state of play) it is our role
as engineers to address this task. We must be the ones to devise effective strategies to the
task of signal processing in networks and we must do so whilst simultaneously making
the most of what these systems have to offer as well as ensuring that we respect their
limitations.

At its heart, this thesis, explores the following problem:

Question 1. How can we design methods to allow computers to work together to achieve
a common goal in a landscape of networked devices?

In particular, we explore this question from the perspective of distributed signal process-
ing and its relationship with distributed optimization. The importance of this link and
in turn the specific focus of this thesis is introduced in the following sections.

1.3. WHY DISTRIBUTED SIGNAL PROCESSING?
Historically, signal processing is a task which is performed by a single machine. Crudely
speaking, data is collected, be it by a physical sensor or generated artificially, before be-
ing transmitted to a central location at which point we can apply our favorite tools be
it filtering, data transformation, clustering or more. Such systems are attractive as they
have a simple architecture and hierarchy (there is one master compute node while all
other sensor nodes act as slaves), all of the information exists at a single location, and ul-
timately they are familiar to work with. However, in the world of networked systems and
Big Data, these classical topologies are not without their faults. Perhaps the simplest

1

6 1. INTRODUCTION

drawback of such systems is scalability. As network size increases, the amount of data
generated by all of the sensors can increase dramatically necessitating the storage and
processing capabilities of the central node to increase in turn. For real world systems
with rapidly increasing number of nodes, this type of complexity scaling is unsustain-
able. Similarly, these networks offer little robustness to system failures as they exhibit a
single point of failure. Should the central processing point fail for any reason, the entire
process is compromised. To circumvent these limitations we must turn our attention to
other approaches.

Distributed signal processing aims to address the limitations of classical centralized
systems by directly exploiting the localized nature of generated data, i.e., that each node
in the network is associated with a subset of the overall data. If we can allow each node
to store this information, rather than aggregating it to a central point, the memory capa-
bilities of the network would scale with the number of nodes. Similarly, as each node has
some form of computational capabilities, if we can also partition any computation over
the set of nodes as well, the compute power of our network will scale with the number of
nodes. In such a paradigm we have also removed the hierarchy that perviously existed
in a centralized system by removing any dependence on a master computer. An exam-
ple, contrasting the network topologies of these centralized and distributed networks is
demonstrated in Figure 1.2.

Centralized Distributed

Figure 1.2: A comparison of the network structure of a centralized and distributed network. The gray circles
denote nodes in the network while the red lines denote communication channels between nodes.

In a distributed network, as every node takes part in both data storage and data pro-
cessing, the resulting system is also fundamentally more robust in the face of system
failures due to the absence of any single points of failure. However, the biggest challenge
for such systems becomes the actual implementation of the desired signal processing
operations in such a context. As no one node has access to all the information in the
network, even simple operations such as computing inner products become infeasible
without the use of data aggregation, the introduction of which essentially reduces the
distributed nature of the network back to that a centralized form.

To overcome address the limitation of restricted data locality, a name which reflects
the naturally localized nature of data within the network, we must let the nodes exchange
information. However, rather than letting nodes aggregate data across the entire net-
work, in distributed signal processing, we impose that nodes must only share informa-
tion with each other only if they can directly communicate. For a given node, those
other nodes with which it can communicate are referred to as its neighbors. An example

1.4. DISTRIBUTED CONVEX OPTIMIZATION

1

7

of such a neighborhood is given below in Figure 1.3.

Figure 1.3: An example of the set of neighbors of a node in a distributed network. The set of blue nodes are the
neighbors of the green node in this instance with the associated communication channels colored in black.

In practical contexts, the aforementioned restriction has two benefits. Firstly, if the
topology of a network is geographically generated, neighboring nodes will be closer to-
gether and thus exchanging data with each other will require less transmission power
than sharing information with other distant nodes. Secondly, by naturally restricting the
number of other nodes with which a given node can communicate, the amount of data
any one node may need to store need not increase with size network, preserving the
appealing scalability property introduced above. While in some contexts, allowing this
limited form of communication may be sufficient to perform some signal processing op-
erations, in general we require additional methods to develop a truly general distributed
signal processing platform.

Within the literature a myriad of existing approaches have been proposed to per-
form distributed computation including the likes of distributed consensus methods (dis-
tributed subgradient descent [10], subgradient-push optimization [11], randomized gos-
sip [12]), message passing or belief propagation (max-sum method [13], sum-product
[14], loopy belief propagation [15]), graph filtering (distributed FIR filtering [16], dis-
tributed ARMA filtering [17]) and more. Of additional interest to this work is the field
of distributed convex optimization which includes the likes of the alternating direction
method of multiplier (ADMM) [18], ADMM+ [19], AFBA [20] and more as special cases.
In the following we motivate why this approach represents an attractive option for dis-
tributed signal processing.

1.4. DISTRIBUTED CONVEX OPTIMIZATION
In parallel to the emergence of hugely networked systems, the field of signal processing
has seen a rapid uptake of optimization methods in recent years. Following the develop-
ment of powerful solvers, such as the interior point method using self concordant barrier
functions as proposed by Nesterov and Nemirovski [21], a plethora of traditional signal
processing problem have been rephrased as equivalent convex optimization problems.
Notably, the generality and flexibility of optimization has seen its emergence as a de-
facto approach for a wide range of applications in telecommunications [22], acoustic
signal processing [23], control theory [24], image processing [25] and more. In the con-
text of this thesis, the synergy between convex optimization and signal processing offers
an attractive stepping stone towards the goal of deriving distributed signal processing

1

8 1. INTRODUCTION

methods. Specifically, to circumvent the need for designing dedicated signal processing
solutions for a given application, we can instead develop distributed solvers for convex
optimization problems therefore reducing algorithm design to the more familiar area of
problem transformation.

The notion of using convex optimization in the context of distributed signal pro-
cessing is not itself new with a lineage dating back to the late 1970’s and early 1980’s
[26, 27, 28, 29, 30, 31, 32, 33]. In recent years however, driven by the explosion in the
use of networked systems, such applications have received wide spread attention in the
literature with a wide range of approaches being proposed as a result. While these ap-
proaches take on a variety of forms, they all share the common goal introduced above,
that for a network to effectively work the elements or nodes of network must combine
their own local computational capabilities with their ability to communicate with each
other to solve a given task. In other words, a given optimization problem should be
solved through a combination of local operations at each node in the network and an
exchange of information between connected devices. The hope is then that by repeat-
edly alternating between these operations, the network can jointly solve a given task.

To complement the plethora of existing research within the literature and to ulti-
mately address Question 1, in this thesis we explore three main branches of research;
improving the understanding and analysis of existing distributed solvers, proposing new
solvers to broaden the class of problems which can be solved in a distributed manner
and finally demonstrating the use of such methods in a practical distributed signal pro-
cessing context. These three areas are discussed in more detail in the following subsec-
tions.

1.4.1. ANALYSIS OF EXISTING DISTRIBUTED SOLVERS
The first portion of this thesis, focuses on understanding the performance of existing al-
gorithms for use in distributed optimization, answering questions such as how quickly
can an algorithm find an optimal solution, for which families of problems can an algo-
rithm converge and more. Unfortunately, the literature contains a broad spectrum of
convex solvers all with seemingly disparate derivations. This makes the analysis and un-
derstanding of different algorithms a challenging task as each necessitates specifically
tailored tools to verify its performance. Thankfully there exists a general mathemati-
cal framework, named monotone operator theory [34], through which many first order
convex solvers can be derived. An overview of this framework along with the relevant
properties for this thesis is provided in Chapter 2. Such a framework, which is highly
mature and well understood, represents a powerful tool for understanding the conver-
gence characteristics of existing distributed solvers from within the literature.

One such target for this analysis is the primal dual method of multipliers (PDMM),
a recently proposed distributed solver whose existing derivation was disjoint from other
approaches in the literature. Specifically while PDMM offers appealing performance in
empirical testing, its theoretical guarantees were limited at best, prior to our research,
due its atypical formulation. The first research question of this thesis was therefore as
follows:

Question 2. How does PDMM relate to other distributed solvers within the literature and
for what types of problems can guarantee convergence?

1.4. DISTRIBUTED CONVEX OPTIMIZATION

1

9

Namely, we wanted to demonstrate that PDMM could be unified with other approaches
within the literature by re-deriving it from the perspective of monotone operator theory.
Furthermore, if such a connection were to be made, we could then utilize the extensive
results from monotone operator theory to strengthen the convergence results for the
method and to offer insight into its theoretical performance guarantees.

Monotone operator theory can also be applied to the complementary task of under-
standing how the topology of a given network can influence the convergence character-
istics of a given solver. Specifically, in the case of PDMM we were curious if a connection
could be drawn between algorithmic convergence rate and the given connectivity be-
tween nodes. This led to our second research question for this thesis:

Question 3. How does network topology affect the convergence of PDMM and can this
impact be quantified?

Answering this question would allow designers to make informative decisions between
different network topologies as well as to better understand how parameter selection
may influence the performance of a given algorithm.

1.4.2. DESIGNING DISTRIBUTED SOLVERS
The second area of focus for this thesis was that of solver design. The design of op-
timization solvers is a classic task within the field of computer science with the main
objective being to identify how to exploit the specific structure of a class of problems to
develop computationally efficient algorithms. Throughout the 20th century, the devel-
opment of methods such as Dantzig’s simplex approach to solving linear programs [35],
Khachiyan’s interior point method for linear programming [36] (the first ever polynomial
time for this problem class) or the aforementioned log barrier interior point methods for
semi-definite programming revolutionized the field of applied mathematics. However,
driven by the need for optimization tools in Big Data applications, the last decade and
a half has a seen push towards computationally efficient methods for performing opti-
mization on a scale essentially unreachable by more general tools. As such problems are
typically solved in a centralized fashion, these algorithms often exploit stochastic up-
date procedures, subgradient methods and even problem approximation, all in an effort
to reduce the computational complexity of any one iteration. Similarly, solvers for dis-
tributed optimization problems impose their own restrictions, most notably that their
implementations naturally lead to the parallelization of operations between the nodes.
As previously, mentioned, the last decade has seem a dramatic increase in the variety
of solvers available [18, 37, 38, 19, 20] including everything from traditional approaches
such as ADMM through to novel state of the art methods.

Given the range of existing distributed solvers within the literature, it begs the ques-
tion why focus on developing new solvers? From a distributed signal processing perspec-
tive, the choice between different solvers relates to the basic prototype problem they can
be used to address. Specifically, when reducing distributed signal processing to that of
problem transformation, recasting a desired operation as an convex optimization prob-
lem, the generality of a given prototype problem is of upmost importance. Notable, the
more general the prototype problem, the easier it may be to convert a desired signal pro-
cessing approach to a distributed form. For this reason, the focus of this branch of our

1

10 1. INTRODUCTION

research was to broaden the types of problems we can solve in a distributed manner.
In particular, we were curious if we could define sufficient characteristics of problems
for which we could find a distributed solver ultimately leading to the following research
question:

Question 4. Is problem separability a sufficient condition for distributed optimization
and if so how can it be exploited?

A related area of distributed solver design focuses on where we allow for more natural
characteristics of the networks with which we want to work with. For instance, if we
build a network out of the cellphones of people walking within a city, the topology of our
network will vary with time. While there are methods within the literature for performing
distributed optimization in such networks [39, 40, 11], these often restrict the types of
problems for which convergence can be guaranteed. We were therefore interested in the
following research question:

Question 5. Does a time varying network topology still facilitate distributed optimization
of general convex problems and can solvers be derived for such a context?

Specifically, we wanted to utilize the same monotone operator framework used in the
analysis of existing algorithms in this formulation process. Such an approach would
again allow us to take advantage of the wealth of results offered by this framework to
develop an understanding of the theoretical performance of any proposed methods.

1.4.3. DISTRIBUTED SIGNAL PROCESSING IN PRACTICE

The final research direction considered in this thesis is that of applying the theoretical
methods developed herein in solving practical signal processing problems. The impor-
tance of this work is that it demonstrates both an exploration of the practical use of such
methods but also the considerations that must be made during the problem reformu-
lation stage of a distributed implementation. In particular, we considered an applica-
tion from audio signal processing. Given the ubiquity of cellphones in modern society
which, with their multiple microphones and wireless capabilities, could be made to form
a wireless acoustic sensor network (WASN), we were interested in seeing if the proposed
distributed optimization methods could be used for realtime acoustic signal processing.
A natural task for distributed acoustic signal processing is that of multichannel channel
noise reduction where we essentially want to combine the observations of a target signal
from multiple microphones (cellphones in this context) to improve the quality of a target
source. This led to the fifth question for this thesis:

Question 6. How can we perform beamforming within a distributed network of wireless
acoustic sensor nodes?

Specifically, we explored not only the theoretical requirements for implementing such a
method via distributed optimization, but also the practical considerations unique to an
audio signal processing context and how these can be accommodated for in a distributed
environment.

1.5. CONTRIBUTIONS AND THESIS OUTLINE

1

11

1.5. CONTRIBUTIONS AND THESIS OUTLINE
Based on the three branches of research introduced above, the main contribution of this
thesis can be summarized as an exploration of the different ways in which monotone
operator theory can be used to expand the scope of distributed convex optimization.
To support in this pursuit, Chapter 2 provides a general overview of monotone opera-
tor theory and its relation to convex optimization. In particular, we demonstrate how
monotone operator theory provides a unifying means of accessing the performance of
different first order solvers. Furthermore we motivate the key objectives of distributed
optimization and provide a simple example problem solved by the well known alternat-
ing direction method of multipliers (ADMM).

The subsequent chapters are separated based on the three research branches and
explore how this theory can be applied to these different aspects of distributed signal
processing. Chapter 3, for instance, demonstrates how the primal dual method of multi-
pliers (PDMM), which was recently proposed as a new method for distributed optimiza-
tion, can be derived from the perspective of monotone operator theory. In contrast to
efforts within the literature, this provides a concrete link between PDMM and other ex-
isting approaches such as ADMM and allows us to demonstrate stronger convergence
results such as sufficient conditions for convergence and, under stronger functional as-
sumptions, geometric convergence as well.

Chapter 4 acts as a supplement to Chapter 3 and demonstrates a modified PDMM al-
gorithm which, unlike its unmodified form, guarantees convergence for all closed, con-
vex and proper functions. In particular, by incorporating an additional primal regular-
ization step, which is shown to be derivable from the perspective of monotone operator
theory, the resulting method attains the same node-based structure of PDMM while im-
proving the convergence guarantees of the algorithm.

In Chapter 5 we change directions slightly and focus on analyzing the effect of net-
work topology on the convergence rate of PDMM. Notably, for such problems that PDMM
converges at a geometric rate, we demonstrate how this rate is parameterized by the ran-
dom walk rate of the underlying graph. This result not only provides us with an analytic
worst case convergence rate bound but also demonstrates an inherent link between a
distributed convex optimization algorithm and spectral graph theory. Using this result
we are able to then derive convergence characteristics for a number of deterministic
graphs and specifically to demonstrate a problem for which PDMM converges in a finite
number of iterations.

Chapter 6 then focuses on the task of broadening the class of problems which can
be solved in a distributed manner. By constructing a particular dual lifted problem, the
proposed distributed method of multipliers (DMM) can be used to solve general separa-
ble optimization problems, those with separable objectives and constraints) and can do
so in an entirely distributed fashion. We show how this approach can be derived from
the perspective of monotone operator theory and demonstrate its use in a number of
distributed signal processing applications.

Chapter 7 also focuses on a task relating to network topology by demonstrating a
novel algorithm for use in time varying networks. Specifically, the proposed method,
which again stems from monotone operator theory, exploits a time varying choice of
metric in conjunction with a clever reformulation of the update equations to construct

1

12 1. INTRODUCTION

an algorithm whose convergence does not depend on network topology. In particular,
we provide guaranteed convergence for a range of functions and also highlight more
general functional classes for which the method still works effectively.

Chapter 8 provides an example application of applying PDMM to a real signal pro-
cessing problem, that of acoustic beamforming. In this work, we present a novel dis-
tributed beamformer for use in wireless acoustic sensor networks, and demonstrate how
the proposed signal processing problem can be implemented using PDMM. The pro-
posed method offers improved robustness to steering vector mismatch whilst being en-
tirely distributable. Furthermore, we demonstrate how a warm start procedure can be
used to reduce the number of iterations required by the system while maintaining a high
level of performance.

Finally, in Chapter 9 we provide our concluding remarks of this thesis and highlight
potential avenues for future work in the field of distributed optimization based on mono-
tone operator theory.

The general flow of the chapters is given as follows:

1. Chapter 2 introduces appropriate background information on monotone operator
theory and its application to convex optimization.

2. Chapter 3 demonstrate how PDMM can be derived from the perspective of mono-
tone operator theory and uses this link to demonstrate new convergence results
for the method.

3. Chapter 4 demonstrates a simple modification for PDMM, again based on mono-
tone operator theory, which can be used to guarantee algorithmic convergence for
a broader class of objective functions.

4. Chapter 5 analyzes the effect of network topology on the convergence rate of PDMM
and links this rate with results from spectral graph theory

5. Chapter 6 demonstrates a novel algorithm for distributed optimization, allowing
for general separable problems to be solved in a fully distributed manner.

6. Chapter 7 demonstrates a novel algorithm for distributed consensus in time vary-
ing networks, again based on monotone operator theory.

7. Chapter 8 highlights the use of PDMM in an acoustic signal processing application
through the development of a novel beamforming algorithm for use in wireless
acoustic sensor networks.

8. Chapter 9 provides our concluding remarks and comments for future extensions
of this work.

1.6. LIST OF PUBLICATIONS AND OTHER CONTRIBUTIONS

LIST OF JOURNALS
1. Thomas Sherson, Richard Heusdens and W. Bastiaan Kleijn, Derivation and Anal-

ysis of the Primal-Dual Method of Multipliers Based on Monotone Operator Theory,

1.6. LIST OF PUBLICATIONS AND OTHER CONTRIBUTIONS

1

13

IEEE Transactions on Signal and Information Processing Over Networks, Accepted
for Publication October 2018.

2. Thomas Sherson, Richard Heusdens and W. Bastiaan Kleijn, On the Distributed
Method of Multipliers for Separable Convex Optimization Problems, IEEE Transac-
tions on Signal and Information Processing Over Networks, Accepted for Publica-
tion February 2019.

3. Thomas Sherson, Richard Heusdens and W. Bastiaan Kleijn, On the Effect of Net-
work Topology On the Primal Dual Method Of Multipliers, Submitted to IEEE Trans-
actions on Signal and Information Processing Over Networks, in submission.

4. Andreas Koutrouvelis, Thomas Sherson, Richard Heusdens and Richard Hen-
driks, A Low-Cost Robust Distributed Linearly Constrained Beamformer for Wire-
less Acoustic Sensor Networks with Arbitrary Topology, IEEE/ACM Transactions on
Audio, Speech and Language Processing, vol. 26, no. 8, 2018.

LIST OF CONFERENCE PAPERS
1. Thomas Sherson, Richard Heusdens and W. Bastiaan Kleijn ,A Distributed Algo-

rithm for Robust LCMV Beamforming, IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), 2016.

2. Thomas Sherson, Richard Heusdens and W. Bastiaan Kleijn, On the duality of
Globally Constrained Separable Problems and its Applciation to Distributed Signal
Processing, European Signal Processing Conference (EUSIPCO), 2016.

3. Daan Schellekens, Thomas Sherson and Richard Heusdens, Quantization Effects
in PDMM: A First Study for Synchronous Distributed Averaging, IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017.

4. Jake Jonkman, Thomas Sherson and Richard Heusdens, Quantization Effects in
Distributed Optimization, IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2018.

2
MONOTONE OPERATOR THEORY

AND CONVEX OPTIMIZATION

“If I have seen further, it is only by standing on the shoulders of giants.”

Isaac Newton

15

2

16 2. MONOTONE OPERATOR THEORY AND CONVEX OPTIMIZATION

2.1. INTRODUCTION
While this thesis focuses on the field of distributed optimization, in essence it boils down
to the treatment of convex optimization via the lens of monotone operator theory. Such
a perspective is useful as while the world of convex optimization is diverse and varied
in nature, many first order convex solvers can be interpreted from the aforementioned
monotone operator perspective. The importance of this link is that such theory can be
used as a common mathematical basis in the design and analysis of different solvers.
This chapter therefore serves as an introduction to this perspective. In Section 2.2 we
provide a short overview of monotone operator theory and introduce appropriate def-
initions and theory to analyze convex problems. In Sections 2.3, 2.4 and 2.5 we then
demonstrate how this theory can be used to derive and analyze a number of different
convex solvers for both unconstrained and constrained optimization problems. Finally,
in Section 2.6 we outline the important features of distributed optimization solvers and
rederive an existing solver that meets these criteria via monotone operator theory. For
the interested reader, a complete treatment of this topic can be in [34].

2.2. EUCLIDEAN SPACES SPACES AND RELATIONAL MAPPINGS
To start our discussion on monotone operator theory we begin with the notion of rela-
tional mappings. In particular, consider an N dimensional Euclidean space denoted by
RN . Unless otherwise stated, the inner product 〈•,•〉 and associated norm ‖•‖ are used
to denote the standard Euclidean inner product and norm respectively unless otherwise
stated. Monotone operator theory can also be applied in general Hilbert spaces with
similar definitions holding in those contexts. For simplicity however, we have chosen
not to treat these here and to instead focus on relevant content to support the remainder
of this thesis.

Let X ,Y ⊆RN be two subsets of the Euclidean space in question. A relation or oper-
ator T : X →Y describes a mapping between points in these subspaces. We can classify
this mapping via the associated graph of T which is defined as follows.

Definition 2.2.1. Graph of an Operator: Given a point to set operator T : X → Y the
graph of this operator is given by

gra(T) = {(
x,y

) ∈X ×Y | y ∈ T (x)
}

.

The vectors x ∈ X denote those points in the domain of T while y ∈ Y are those
points in the codomain for a given x. Note that here we allow T to be a general point to
set mapping such that each output vector y need not be unique for any given x. Similarly,
there may be input vectors x for which the output set may be empty, i.e., T(x) =;. In the
specific case that y is unique then the operator is referred to as single valued. All linear
operators for instance are single valued operators. An additional and simple example of
a single valued mapping is the derivative of a differentiable function f . In particular, if a
function f : X →R is differentiable over its domain then

∀x ∈X : ∃y | ∇ f (x) = y

where ∇ f denotes the gradient of f .

2.2. EUCLIDEAN SPACES SPACES AND RELATIONAL MAPPINGS

2

17

Similarly, sub-differentiable functions offer a simple non-trivial example of point to
set operators. In particular, if a function f : X →R is subdifferentiable then

∀x ∈X : ∃Y = {
y | y ∈ ∂ f (x)

}
,

where ∂ f denotes the subgradient operator of the function f .
For general relations we can also define the notion of an operational inverse by con-

sidering the graph of an operator. Specifically, we define the operational inverse as fol-
lows.

Definition 2.2.2. Operational Inverse: Given a point to set operator T : X →Y its opera-
tional inverse is defined in terms of its graph so that

gra
(
T−1)= {(

y,x
) ∈Y ×X | y ∈ T (x)

}
,

where we can note that we have inverted the order of the elements of the tuples to match
those vectors from the domain and codomain of the inverse operator.

In the later portion of this chapter we make use of this notion of an operational in-
verse in the construction of a number of different first order convex solvers.

2.2.1. MONOTONE OPERATORS AND CONVEXITY
We now move our attention to a family of operators relevant to this thesis. Specifically,
we will consider the set of monotone operators. As we will see in the coming section, this
family of operators is particularly interesting in our context due to its link with convex
optimization. Notably, the properties we develop here can be used to analyze a wide
range of convex solvers. These basic properties therefore provide a foundation for the
remaining analysis in this thesis.

An operator, be it single valued or a more general point to set mapping, is monotone
if it satisfies the following condition.

Definition 2.2.3. Monotonicity: The operator T : X →Y is monotone if for all (x1,y1),
(x2,y2) ∈ gra(T) 〈

y1 −y2,x1 −x2
〉≥ 0.

Here 〈•,•〉 denotes the inner product associated with the Euclidean space in ques-
tion. In a one dimensional case, monotonicity essentially means that an operator pre-
serves the directions between points in the domain and codomain. An immediate biprod-
uct of the definition of monotone operators is that their operational inverses are also
monotone. This can easily be seen by observing that any tuple (x,y) ∈ gra(T) exactly cor-
responds to a tuple (y,x) ∈ gra(T−1).

A subtle but important stricter class of operators are those which are maximally mono-
tone.

Definition 2.2.4. Maximal Monotonicity: An operator T : X →Y is maximal monotone
if it is monotone and furthermore if there does not exist a monotone T̃ : X̄ → Ȳ | X ⊂
X̄ , Y ⊂ Ȳ .

2

18 2. MONOTONE OPERATOR THEORY AND CONVEX OPTIMIZATION

In words, a monotone operator T is maximal if no tuple (x,y) can be added to its
graph without the new operator no longer being monotone. The importance of this class
of operators is not explored in detail here but this property is often essential in proving
convergence guarantees for convex solvers. Additionally, as with monotonicity, if an op-
erator is maximally monotone so is its inverse.

As alluded to in the introduction to this chapter, the motivation for considering mono-
tone operators in this thesis is their inherent link with convex optimization. In the fol-
lowing we extrapolate on this point by demonstrating the link between the subdiffer-
entials of convex functions and maximal monotone operators. Consider a subdifferen-
tiable convex function f : X → R which is closed, convex and proper (CCP). For short-
hand, we will denote the family of functions by the set Γ0. From the first order condition
of convexity, given two vectors x1, x2 ∈X we know that

f (x2) ≥ f (x1)+yT
1 (x2 −x1) ,

where g1 ∈ ∂ f (x1). Similarly, by defining y2 ∈ ∂ f (x2) we have that

f (x1) ≥ f (x2)+yT
2 (x1 −x2) .

By summing these two inequalities and rearranging, we find that
〈

y1 −y2,x1 −x2
〉≥ 0.

As this must hold for all y1, y2, it follows that the subdifferentials of convex functions are
monotone operators. The converse, of course, is not necessarily true as there are mono-
tone operators which are not the subdifferentials of convex functions. In the context of
this thesis, the fact that the forward relation holds is a crucial point. Additionally, under
the assumption that f ∈ Γ0 such operators are also maximal monotone. A proof of this
point can be found in [34] for those interested.

Considering the fact that the operational inverse of a maximal monotone operator is
maximal monotone, it follows that (∂ f)−1 is also monotone. Interestingly, in [34] it was
shown that given a function f ∈ Γ0, that

∂ f ∗ = (
∂ f

)−1 , f ∗ = sup
x

(
yT x− f (x)

)
, (2.1)

where f ∗ denotes the Fenchel conjugate of f . In this way the subdifferentials of con-
jugate functions are also maximally monotone. This in turn means that the conjugate
functions f ∗ in this case are also CCP.

We can also draw a number of interesting links between basic properties of a given
function f and associated properties of monotone operators. For instance, we already
saw above that when a function is differentiable then its derivative operator is single val-
ued. Similarly, in the case of strictly convex functions we can imply something stronger
about the resulting monotone subdifferential operator. Specifically, strict convexity is
defined as follows

Definition 2.2.5. Strict Convexity: A function f is strictly convex with if for all θ ∈ [0,1],x1 ∈
dom

(
f
)

,x2 ∈ dom
(

f
)

, x1 6= x2, y2 ∈ ∂ f (x2)

f (x1) > f (x2)+〈
y2,x1 −x2

〉
.

2.2. EUCLIDEAN SPACES SPACES AND RELATIONAL MAPPINGS

2

19

Following the same approach as we did for linking convexity and monotonicity, it
follows that for such functions we can define the notion of strict monotonicity which is
given below.

Definition 2.2.6. Strictly Monotone: The operator ∂ f is strictly monotone if for all x1 ∈
dom

(
f
)

,x2 ∈ dom
(

f
)

, x1 6= x2, y1 ∈ ∂ f (x1) , y2 ∈ ∂ f (x2),

〈
y1 −y2,x1 −x2

〉> 0.

In the case of a general strictly monotone operator T, a byproduct of this definition is
that T−1 must be single valued as no two points in the domain of T can map to the same
point in the codomain.

Combining the above results, this leads to the fact that differentiability and strict con-
vexity are in fact dual properties of one another with regards to Fenchel conjugation. In
other words, if f is differentiable so that ∂ f is single valued, then ∂ f ∗ is strictly mono-
tone such that f ∗ is strictly convex and visa versa. This duality property proves to be
extremely useful when deriving solvers and in particular will be exploited when we are
considering the case of solving constrained optimization problems.

2.2.2. STRONGER FUNCTIONAL PROPERTIES

Having formulated the link between convexity and monotonicity, we can leverage results
from the field of monotone operator theory to both analyze existing convex solvers and
devise new ones in turn. To assist in this process, in the following we introduce a number
of additional statements relating functional assumptions from convex optimization with
their equivalent monotone operator theory counterparts.

The first additional property we will consider is that of strong convexity which strength-
ens the strict convexity assumption made previously. This is defined as follows.

Definition 2.2.7. Strong Convexity: A function f is µ-strongly convex with µ> 0 if for all
x1 ∈ dom

(
f
)

,x2 ∈ dom
(

f
)

,y2 ∈ ∂ f (x2),

f (x1) ≥ f (x2)+〈
y2,x1 −x2

〉+ µ

2
‖x1 −x2‖2 .

This implies that, f − µ
2 ‖•‖2 is convex.

If f is µ-strongly convex, ∂ f is µ-strongly monotone which is defines as follows.

Definition 2.2.8. Strongly Monotone: The operator ∂ f is µ-strongly monotone with µ> 0,
if for all x1 ∈ dom

(
f
)

,x2 ∈ dom
(

f
)

,y1 ∈ ∂ f (x1),y2 ∈ ∂ f (x2),

〈
y1 −y2,x1 −x2

〉≥µ‖x1 −x2‖2

The next major property strengthens the notions of differentiability by also enforcing
that the function itself is smooth. Specifically, the smoothness of a function is defined in
the following.

2

20 2. MONOTONE OPERATOR THEORY AND CONVEX OPTIMIZATION

Definition 2.2.9. Smoothness: A convex function f is β-smooth with β > 0 if it is both
differentiable and for all x1 ∈ dom

(
f
)

,x2 ∈ dom
(

f
)
,

f (x1) ≤ f (x2)+〈∇ f (x2),x1 −x2
〉+ β

2
‖x1 −x2‖2 .

This implies that, β2 ‖•‖2 − f is convex.

If f is β-smooth, ∇ f is 1
β -cocoercive which is defined as follows.

Definition 2.2.10. Cocoercive: The monotone operator ∇ f is 1
β -cocoercive with β > 0 if

for all x1 ∈ dom
(

f
)

,x2 ∈ dom
(

f
)
,

〈∇ f (x1)−∇ f (x2),x1 −x2
〉≥ 1

β

∥∥∇ f (x1)−∇ f (x2)
∥∥2 .

Furthermore, if f is β-smooth, ∂ f is β-Lipschitz continuous, again defined below.

Definition 2.2.11. Lipschitz Continuous: The operator ∇ f is β-Lipschitz if for all x1 ∈
dom

(
f
)

,x2 ∈ dom
(

f
)
,

∥∥∇ f (x1)−∇ f (x2)
∥∥≤β‖x1 −x2‖

The notion of Lipschitz continuity can be used to define the notions of nonexpan-
siveness and contractiveness.

Definition 2.2.12. Nonexpansive and Contractive Operators: A β-Lipschitz operator ∇ f
is nonexpansive if β= 1 and contractive if β< 1.

The nonexpansiveness of an operator plays a central role in the design of numerous
convex solvers. Specifically, if an operator is nonexpansive, any two points mapped un-
der said operator are at least as close in the codomain as they were in the domain. As we
will show in the coming sections, this point lies at the heart of many convergence proofs.

As in the case of differentiability and strict convexity, these stronger properties, namely
smoothness and strong convexity are also duals of one another under Lagrangian dual-
ity. Specifically, if a function f ∈ Γ0 is β-smooth then its Fenchel conjugate f ∗ is 1

β -
strongly convex. Similarly, if a function f ∈ Γ0 is µ-strongly convex then its Fenchel con-
jugate f ∗ is 1

µ -smooth in turn.

2.2.3. MANIPULATIONS OF OPERATORS

The final piece of the puzzle in forming many of the solvers introduced in the remain-
der of this chapter is to demonstrate some manipulated forms of maximal monotone
operators. These manipulations include some basic operations which preserve mono-
tonicity as well as others which allow us to form nonexpansive operators from maximal
monotone operators.

2.2. EUCLIDEAN SPACES SPACES AND RELATIONAL MAPPINGS

2

21

SUMS OF MONOTONE OPERATORS

A straighforward but important property of monotone operators is that their monotonic-
ity is preserved under summation. Specifically, given two monotone operators T1 : X1 →
Y1 and T2 : X2 →Y2 their summation T1 +T2 is also monotone if X1 ∩X2 6= ;, i.e., their
domains share a common point.

To prove that summations preserve monotonicity, consider the following. Let xa ,xb ∈
X1 ∩X2 6= ;. For any such point define ya,1 ∈ T1(xa), ya,2 ∈ T2(xa), yb,1 ∈ T1(xb), yb,2 ∈
T2(xb) such that ya = ya,1 +ya,2 ∈ T1(xa)+T2(xa), yb = yb,1 +yb,2 ∈ T1(xb)+T2(xb).

From the definition of monotonicity, it follows that
〈

ya −yb ,xa −xb
〉= 〈

ya,1 +ya,2 −yb,1 −yb,2,xa −xb
〉

= 〈
ya,1 −yb,1,xa −xb

〉+〈
ya,2 −yb,2,xa −xb

〉≥ 0,

where the final inequality stems from the monotonicity of T1 and T2.

COMPOSITIONS OF MONOTONE OPERATORS AND LINEAR OPERATORS

An equally straighforward but important property is that of compositions of monotone
and linear operators. In particular, given a monotone operator T : Y → Y and a linear
mapping A : X →Y , the composition AT ◦T◦A : X →X is monotone. The notation ◦ is
used to denote the composition of two operators. For instance, given the operators T1 :
X →Y and T2 : Y →Z their composition T2◦T1 implies∀ (x,z)∈gra(T2 ◦T1) , ∃y | (x,y

)∈
gra(T1) ,

(
y,z

) ∈ gra(T2)
To prove that the composition of monotone and linear operators AT ◦T◦A is mono-

tone, consider the vectors x1,x2 ∈X , y1 ∈ T◦A(x1),y2 ∈ T◦A(x2). It follows that
〈

AT (
y1 −y2

)
,x1 −x2

〉= 〈
y1 −y2,A (x1 −x2)

〉≥ 0.

The final inequality follows from the linearity of the operator A, i.e., that AT is the conju-
gate of A in this case, and that y1 ∈ T◦A(x1),y2 ∈ T◦A(x2).

Assuming that T is the subdifferential of some function f , if we assume that f is
β-Lipschitz continuous, it follows that AT ∇ f A is βσ2

max (A) Lipschitz continuous where
σmax (A) denotes the largest singular value of A. To observe this, we can use the definition
of Lipschitz continuity to note that

∥∥AT (∇ f (Ax1)−∇ f (Ax2)
)∥∥≤σmax (A)

∥∥∇ f (Ax1)−∇ f (Ax2)
∥∥

≤βσmax (A)‖A (x1 −x2)‖ ≤βσ2
max (A)‖x1 −x2‖ ,

where the penultimate line uses the Lipschitz continuity of f .
Similarly, if f is µ-strongly convex and A has full row rank then AT ∇ f A is µσ2

min (A)
strongly convex where σ2

min (A) denotes the smallest singular value of A. This can be
observed by using the definition of strong convexity by noting that∀x1,x2 ∈ dom

(
f
)

,y1 ∈
∂ f (Ax1),y2 ∈∇ f (Ax2)

〈
AT (

y1 −y2
)

,x1 −x2
〉=〈

y1 −y2,A (x1 −x2)
〉≥µ‖A (x1 −x2)‖2

≥µσ2
min (A)‖x1 −x2‖2 .

where we have again made use of the linearity of A.

2

22 2. MONOTONE OPERATOR THEORY AND CONVEX OPTIMIZATION

RESOLVENT OF MONOTONE OPERATORS

A key manipulation of monotone operators and one which we shall use extensively through-
out this thesis is the so called resolvent. Such operators show up in a wide number of
solvers for both unconstrained and constrained optimization as we will see in Sections
2.3 and 2.4. The resolvent operator is defined as follows.

Definition 2.2.13. Resolvent: Given an operator T : X → X and a positive scalar ρ > 0,
the associated resolvent operator is given by

JT,ρ =
(
I+ρT

)−1

In the case that T is monotone, we can note that the resolvent operator is nonex-
pansive. This follows directly from the fact that the operator I+ρT is at least 1-strongly
monotone such that its inverse is 1 Lipschitz continuous. The strong monotonicity of
I+ρT also ensures that the resolvent operator is single valued. Additionally, in the case
that T is maximal monotone the domain of the resolvent operator is the entire Euclidean
space RN . A proof of this property can be found in [34][Theorem 21.1].

The nonexpansiveness of the resolvent of monotone operators is an important prop-
erty as it means that the operator is stable, i.e. that it does not increase the distance
between points mapped under it. In the case of optimization solvers, this type of prop-
erty is one way of showing that an algorithm will not diverge away from a good solution.
However, nonexpansiveness by itself is typically not strong enough to guarantee that an
algorithm will converge.

In the case that T is monotone, we can strengthen the nonexpansiveness of JT,ρ by
showing that it is firmly nonexpansive which is defined as follows.

Definition 2.2.14. Firmly Nonexpansive Operators: An operator T : X →Y is firmly non-
expansive if ∀x1,x2 ∈X , y1 ∈ T(x1), y2 ∈ T(x2)

∥∥y1 −y2
∥∥2 +∥∥x1 −y1 − (x2 −y2)

∥∥2 ≤ ‖x1 −x2‖2 .

From [34, Corollary 4.5] if we can also extend this definition by noting that the fol-
lowing statements are equivalent.

• The operator T is firmly nonexpansive.

• The operator I−T is firmly nonexpansive.

• The operator 2T− I is nonexpansive.

•
∥∥y1 −y2

∥∥2 ≤ 〈
y1 −y2,x1 −x2

〉
.

To prove that the resolvent of a monotone operator is firmly non-expansive, consider a
monotone operator T : X →Y and the vectors x1,x2 ∈X , y1 = JT,ρ(x1), y2 = JT,ρ(x2). By
definition of the resolvent operator and the operational inverse, we have that

x1 ∈ y1 +ρT(y1), x2 ∈ y2 +ρT(y2).

Taking the difference of both inclusions we find that

x1 −x2 ∈ y1 +ρT(y1)− (
y2 +ρT(y2)

)
.

2.2. EUCLIDEAN SPACES SPACES AND RELATIONAL MAPPINGS

2

23

By then taking the inner product of both sides with y1 −y2 it follows that

〈
x1 −x2,y1 −y2

〉 ∈ ∥∥y1 −y2
∥∥2 +ρ 〈

y1 −y2,T(y1)−T(y2)
〉

.

Using the monotonicity of T and rearranging we find that

∥∥y1 −y2
∥∥2 ≤ 〈

y1 −y2,x1 −x2
〉

,

or equivalently, that

∥∥JT,ρ(x1)− JT,ρ(x2)
∥∥2 ≤ 〈

JT,ρ(x1)− JT,ρ(x2),x1 −x2
〉

.

Ultimately, from the results of [34, Corollary 4.5] this implies that the resolvent is firmly
nonexpansive as desired.

REFLECTED RESOLVENT OF MONOTONE OPERATORS

Another basic modification based on the resolvent operator is that of the reflected resol-
vent or Cayley operator defined as follows

Definition 2.2.15. Reflected Resolvent (Cayley): Given an operator T and a positive scalar
ρ > 0, the reflected resolvent operator is given by

RT,ρ = 2JT,ρ − I.

As in the case of the resolvent operator, in the case that T is maximal monotone, the
domain of RT,ρ is the entire Euclidean space RN . In the case of monotone operators, the
reflected resolvent can be shown to be nonexpansive. This can be proved in a manner
similar to that of the resolvent. Consider a monotone operator T : X → Y and the vec-
tors x1,x2 ∈ X , y1 ∈ RT,ρ(x1), y2 ∈ RT,ρ(x2). By the definitions of the reflected resolvent
and resolvent we have that

y1 ∈
(
2
(
I+ρT

)−1 − I
)

(x1), y2 ∈
(
2
(
I+ρT

)−1 − I
)

(x2).

Rearranging these inclusions and using the definition of the operational inverse, it fol-
lows that

x1 ∈ y1 +x1

2
+ρT

(y1 +x1

2

)
, x2 ∈ y2 +x2

2
+ρT

(y2 +x2

2

)
.

By then taking the difference of these inclusions we find that

x1 −x2 ∈ y1 +x1

2
− y1 +x1

2
+ρT

(y1 +x1

2

)
−ρT

(y1 +x1

2

)
.

Taking the inner product of both sides with respect to y1+x1
2 − y1+x1

2 and using the mono-
tonicity of T, it follows that

〈
x1 −x2,

y1 +x1

2
− y1 +x1

2

〉
≥

∥∥∥y1 +x1

2
− y1 +x1

2

∥∥∥
2

.

Expanding both sides, we can form the inequality

1

2
‖x1 −x2‖2 + 1

2

〈
x1 −x2,y1 −y1

〉≥ 1

4
‖x1 −x2‖2 + 1

4

∥∥y1 −y2
∥∥2 + 1

2

〈
x1 −x2,y1 −y1

〉
.

2

24 2. MONOTONE OPERATOR THEORY AND CONVEX OPTIMIZATION

Cancelling common terms therefore demonstrates that ‖x1 −x2‖2 ≥ ∥∥y1 −y2
∥∥2 and thus

that RT,ρ is nonexpansive as desired. Alternatively, given the firm nonexpansiveness of
JT,ρ , the result follows immediately from the equivalent definitions of firmly nonexpan-
sive operators.

AVERAGED OPERATORS

The major difference in properties between the resolvent and reflected resolvent oper-
ators is that the prior was firmly nonexpansive. More generally speaking the resolvent
operator is an averaged version of the reflected resolvent. An averaged operator is de-
fined as follows.

Definition 2.2.16. Averaged Operator: An operator T : X →X is an averaged operator if
there exists a nonexpansive operator S : X →X , α ∈ (0,1) such that

T = (1−α)I+αS.

In the case of the resolvent JT,ρ we can verify it is averaged by setting α = 1
2 and S =

RT,ρ . Using these definitions, it follows that

1

2

(
I+RT,ρ

)= 1

2

(
I+2JT,ρ − I

)= JT,ρ ,

as desired. More generally, we can use a similar point to demonstrate the equivalence
of 1

2 -averaged and firmly non-expansive operators. Notably, we already know that an
operator T is firmly nonexpansive if and only if the operator S = 2T− I is nonexpansive.
With simple manipulation of this equality, we find that T = 1

2 (I+S) which is therefore
both 1

2 -averaged and firmly nonexpansive thus demonstrating their equivalence.
In general, operator averaging is a useful property to strengthen the characteristics

of an operator. Specifically, we can make use of an interesting norm identity given in [34,
Corollary 2.15] which we include here for completeness. Given two vectors x1,x2,

‖(1−α)x1 +αx2‖2 = (1−α)‖x1‖2 +α‖x2‖2 −α(1−α)‖x1 −x2‖2 . (2.2)

In the context of averaged operators, we can apply this property to show the following.
Consider a nonexpansive operator T : X → X , a scalar α ∈ (0,1) and the set of vectors
x1,x2 ∈X , y1 ∈ T(x1), y2 ∈ T(x2), z1 = (1−α)x1+αy1, z2 = (1−α)x2+αy2). It follows form
(2.2) that

‖z1 −z2‖2 = (1−α)‖x1 −x2‖2 +α∥∥y1 −y2
∥∥2 −α(1−α)

∥∥x1 −x2 − (y1 −y2)
∥∥2

≤ ‖x1 −x2‖2 −α(1−α)
∥∥x1 −x2 − (y1 −y2)

∥∥2 ,
(2.3)

where the final line stems from the nonexpansiveness of RT,ρ . Unlike a nonexpansive
operator, averaged operator therefore guarantee that points in the codomain are strictly
closer to each other than their domain counterparts unless x1 −x2 − (y1 −y2) = 0. As we
will see in the following section, operator averaging can be an effective means of guaran-
teeing the convergence of an algorithm when nonexpansiveness itself is not sufficient.

2.2. EUCLIDEAN SPACES SPACES AND RELATIONAL MAPPINGS

2

25

2.2.4. FINDING FIXED POINTS OF NONEXPANSIVE OPERATORS
The final basic theory we require before using monotone operator theory to analyze con-
vex optimization solvers relates to methods for finding fixed points of nonexpansive op-
erators. In the following we introduce one such approach, that being the Banach-Picard
iteration to achieve this. In particular, given a nonexpansive operator T, the Banach-
Picard iteration aims to find a vector x so that

x ∈ T (x) .

In other words, the Banach-Picard iteration wants to find a vector x∗ so that (x∗,x∗) ∈
gra(T). As previously mentioned, such vectors are referred to as the fixed points of an
operator and the set of all such points are denoted by fix(T) in the case of an operator T.

For a given operator T and a previous guess at a fixed point vector x(k), the Banach-
Picard iteration forms a new vector x(k+1) as

x(k+1) = T
(
x(k)

)
.

This updating procedure is then applied repeatedly to compute a fixed point, if such a
point exists. In the case of nonexpansive operators, it can be shown that this procedure
is stable, i.e. that the sequence of iterates generated, which we can denote via

(
x(k)

)
k∈N,

does not diverge away from a given fixed point x∗ ∈ fix(T). This point can be demon-
strated by noting that

∥∥∥x(k+1) −x∗
∥∥∥

2 =
∥∥∥T

(
x(k)

)
−T

(
x∗

)∥∥∥
2 ≤

∥∥∥x(k) −x∗
∥∥∥

2
,

where the final inequality stems from the nonexpansiveness of T.
While nonexpansiveness is sufficient to ensure that the sequence of iterates gener-

ated by the Banach-Picard iteration do not diverge from a fixed point, in general it is not
sufficient to guarantee convergence. A simple example of this is the nonexpansive op-
erator −I. Clearly, the only fixed point of this operator is the all zeros vector yet for any
other initial guess x(0) 6= 0, the sequence of iterates generated by the Banach-Picard iter-
ation will not converge, instead flipping between the two states x(0) and −x(0). However,
if we place stronger assumptions on our operator T, i.e., that it is contractive or averaged,
convergence to such a fixed point can be verified. In the case of aβ-contractive operator,

where β < 1, this result follows by again considering the quadratic form
∥∥x(k+1) −x∗

∥∥2

and noting that

∥∥∥x(k+1) −x∗
∥∥∥

2 =
∥∥∥T

(
x(k)

)
−T

(
x∗

)∥∥∥
2 ≤β2

∥∥∥x(k) −x∗
∥∥∥

2 ≤β2k ∥∥x(0) −x∗
∥∥2

,

where x(0) denotes some initial vector used in this iterative process. It follows that as β<
1 that the distance between x(k) and x∗ must decrease at a geometric rate. Furthermore,
this also means that x∗ = fix(T) is a unique point.

In general, the operators we are interested in may not be contractive but might ex-
hibit the weaker property of being averaged. Fortunately, we can again show that this
property is sufficient for the Banach-Picard iteration to converge to a fixed point. Specif-

ically, by considering the squared norm term
∥∥x(k+1) −x∗

∥∥2
, for an averaged operator

2

26 2. MONOTONE OPERATOR THEORY AND CONVEX OPTIMIZATION

T = (1−α)I+αS it follows that

∥∥∥x(k+1) −x∗
∥∥∥

2 =
∥∥∥T

(
x(k)

)
−T

(
x∗

)∥∥∥
2 =

∥∥∥((1−α)I+αS)
(
x(k)

)
− ((1−α)I+αS)

(
x∗

)∥∥∥
2

≤
∥∥∥x(k) −x∗

∥∥∥
2 −α(1−α)

∥∥∥S
(
x(k)

)
−x(k)

∥∥∥
2

,

where the final line stems from (2.3). Applying this property recursively, we find that

α(1−α)
k∑

i=0

∥∥∥S
(
x(i)

)
−x(i)

∥∥∥
2 ≤ ∥∥x(0) −x∗

∥∥2
.

By letting k tend to infinity, it follows that
∥∥S

(
x(k)

)−x(k)
∥∥2 → 0 and thus, due to the finite

dimensional nature of the problems considered, that S
(
x(k)

)− x(k) → 0. The notation
• → • is used here to denote convergence. It therefore follows that the averagedness of
an operator is sufficient to guarantee convergence of the Banach-Picard iterations to a
fixed point of the operator S and by association of the operator T.

In the following sections, we make use of Banach-Picard iterations to demonstrate
the convergence characteristics of a number of different convex optimization solvers.
Specifically, it can be shown that many classic solvers from within the literature can
be interpreted as instances of Banach-Picard iterations applied to averaged or contrac-
tive operators, allowing us to understand their performance from their fundamental link
with monotone operator theory.

2.3. UNCONSTRAINED OPTIMIZATION
With a set of basic properties and manipulations of monotone operators under our belt
we are now ready to move to applying this information to the task of distributed solver
design. To begin, we will consider the task of solving unconstrained convex problems.
Due to their simple structure, such problems provide a good platform to demonstrate
the link between monotone operator theory and first order solver design.

2.3.1. SUBGRADIENT DESCENT
Perhaps the simplest method of solving unconstrained convex optimization problems is
that of subgradient descent. Given the insight into the connection between the subgra-
dients of convex functions and monotone operator theory, this also makes subgradient
descent the ideal starting point for showing how this theory can be use in the analysis of
different convex solvers. With this in mind, consider a simple unconstrained optimiza-
tion problem given by

min
x∈RN

f (x), (2.4)

where the function f ∈ Γ0. Subgradient descent aims to solve this problem through the
evalutation of the subgradient operator itself.

There are a number of ways in which subgradient descent can be interpreted. Per-
haps the most intuitive approach stems from the perspective of convexity. As convex
functions possess a unique minimum value and as the subgradient of the function will
always contain a descent direction, we can simply find this minimum by moving along

2.3. UNCONSTRAINED OPTIMIZATION

2

27

any such path. Therefore, given some subdifferentiable convex function f :RN →Rwith
subgradient ∂ f , and a given estimate of the optimization variables x(k+1), mathemati-
cally we can write this procedure as

x(k+1) = x(k) −ρg(k), (2.5)

where the additional vector g(k) ∈ ∂ f
(
x(k)

)
while ρ > 0 is referred to as the step size.

Equivalently we can interpret this from an operator perspective. From the first order
condition of convexity, we know that for the vector x to be a minimizer of (2.4) it must
also satisfy the monotonic inclusion

0 ∈ ∂ f (x). (2.6)

We can therefore derive the subgradient descent approach by rephrasing (2.6) as a fixed
point condition as introduced in Section 2.2.4 by noting that

0 ∈ ∂ f (x) ⇐⇒ x ∈ (
I+ρ∂ f

)
(x) ⇐⇒ x ∈ (

I−ρ∂ f
)

(x) ,

where the additional scalar ρ > 0 is the step size of the algorithm. Given this fixed point
form, we can then apply classic fixed point finding techniques such as the Banach-Picard
iteration to arrive at the subgradient descent algorithm given in (2.5). We can therefore
think of gradient descent as a forward step type algorithm where the monotone operator
∂ f is evalutated at each iteration.

While the convex interpretation of gradient descent is somewhat more intuitive, by
directly noting the connection with monotone operator theory we can quickly derive
sufficient conditions for algorithmic convergence. For instance, consider the case of a
constant step-size algorithm where the underlying function is β-smooth. An immedi-
ate by-product of this assumption is that f must be differentiable such that ∂ f = ∇ f .
By restricting the problem class, we can show that the sequence of iterates

(
x(k+1)

)
k∈N

converge towards an optimal state.
To demonstrate convergence, firstly choose an x∗ ∈ X∗ where X∗ denotes the set of

minimizers of (2.4). For each iteration k, the squared Euclidean distance between the

variables x(k+1) and this optimal point x∗ is given by
∥∥x(k+1) −x∗

∥∥2
. Using the fact that

∇ f is single valued, combined with the definition of the gradient descent algorithm, it
follows that

∥∥∥x(k+1) −x∗
∥∥∥

2 =
∥∥∥x(k) −x∗−ρ

(
∇ f

(
x(k)

)
−∇ f

(
x∗

))∥∥∥
2

=
∥∥∥x(k) −x∗

∥∥∥
2 +

∥∥∥ρ
(
∇ f

(
x(k)

)
−∇ f

(
x∗

))∥∥∥
2

−2
〈
ρ

(
∇ f

(
x(k)

)
−∇ f

(
x∗

))
,x(k) −x∗

〉
.

(2.7)

We can now show that the sequence
(∥∥x(k+1) −x∗

∥∥2
)

k∈N is decreasing and furthermore

that
(∥∥∇ f

(
x(k)

)−∇ f (x∗)
∥∥2

)
k∈N converges to zero as k tends to +∞. To achieve this point

we can utilize the smoothness assumption of our function f . Recall that specifically, for

2

28 2. MONOTONE OPERATOR THEORY AND CONVEX OPTIMIZATION

the subdifferentials of convex functions, the β-smoothness of f implies the β-Lipschitz
continuity and thus 1

β -cocoercivity of ∇ f . It therefore follows that

〈(
∇ f

(
x(k)

)
−∇ f

(
x∗

))
,x(k) −x∗

〉
≥ 1

β

∥∥∥
(
∇ f

(
x(k)

)
−∇ f

(
x∗

))∥∥∥
2

. (2.8)

Rearranging the last two terms of (2.7) in combination with (2.8), it follows that

∥∥∥x(k+1) −x∗
∥∥∥

2 ≤
∥∥∥x(k) −x∗

∥∥∥
2 −ρ

(
2

β
−ρ

)∥∥∥∇ f
(
x(k)

)
−∇ f

(
x∗

)∥∥∥
2

,

and thus that restricting ρ ∈ (0, 2
β) guarantees that

(∥∥x(k) −x∗
∥∥2

)
k∈N forms a nonincreas-

ing sequence and thus that ∇ f
(
x(k)

)−∇ f (x∗) → 0. In the case of finite dimensional
problems, as f is a smooth function, the convergence of the gradient in turn ensures
that x(k+1) → x ∈ X∗.

We can strengthen the convergence result for gradient descent by making stronger
assumptions on the function f . Namely, if we restrict f to be µ-strongly convex such
that ∇ f is µ-strongly monotone, we an rewrite (2.7) as

∥∥∥x(k+1) −x∗
∥∥∥

2 ≤ (
1−2ρµ+ρ2β2)∥∥∥x(k) −x∗

∥∥∥
2

.

By restricting ρ ∈ (0, 2µ
β2) it follows that the term

(
1−2ρµ+ρ2β2

)< 1 such that
(∥∥x(k+1) −x∗

∥∥2
)

k∈N forms a geometrically contracting sequence. As in the case of Banach-

Picard iterations of contractive operators, from the strong convexity of f the vector x∗ is
unique in this case.

2.3.2. PROXIMAL POINT METHOD
While the guaranteed convergence of the gradient descent method for smooth functions
is an appealing property, in practice we are often interested in solving problems based
on a far broader class of functions. We are therefore interested in finding alternative
methods which remove the need for a smoothness prior on our functions. One such
approach to achieve this is the so called proximal point method. Unlike the gradient de-
scent method, with its elegant interpretation via convexity, the proximal point method
is slightly more mysterious. Thankfully, from an operator perspective it is both straight-
forward to derive and intuitive to understand.

Consider again the monotonic inclusion given in (2.6). As in the case of deriving the
gradient descent algorithm, we can instead use an alternate form of operator manipu-
lation to derive the proximal point method. Notably, due to the fact that f ∈ Γ0, ∂ f is
maximal monotone, it follows that

0 ∈ ∂ f (x) ⇐⇒ x ∈ (
I+ρ∂ f

)
(x) ⇐⇒ x = (

I+ρ∂ f
)−1

(x) = J∂ f ,ρ (x) ,

where we have utilized the definition of the operational inverse and the fact that the final
operator is simply a resolvent operator and is thus single valued. Where the gradient
descent algorithm could be thought of a forward step of our monotone operator, here
the proximal algorithm is more reflective of a backwards type operation.

2.3. UNCONSTRAINED OPTIMIZATION

2

29

Applying the Banach-Picard iteration of this fixed point inclusion, we come to the
proximal point method given by

x(k+1) = J∂ f ,ρ

(
x(k)

)
. (2.9)

Recall from Definition 2.2.13 that for ρ > 0 the resolvent operator is firmly nonexpansive
and therefore 1

2 -averaged. If we therefore consider the squared Euclidean error, it follows
that ∥∥∥x(k+1) −x∗

∥∥∥
2 ≤

∥∥∥x(k) −x∗
∥∥∥

2 − 1

4

∥∥∥x(k+1) −x(k)
∥∥∥

2 ∀k ∈N.

Applying this inequality recursively, it follows that
∥∥x(k+1) −x(k)

∥∥2 → 0 and thus that the
algorithm converges towards a fixed point. Again, from the finite dimensionality of this
problem this in turn guarantees that x(k+1) → x ∈ X∗.

The major drawback of the proximal point method is in the evalutation of the resol-
vent operator itself. In particular, if we consider the update equation given in (2.9) we
can rephrase this evalutation as a monotonic inclusion

x(k+1) = (
I+ρ∂ f

)−1
(
x(k)

)
⇐⇒ x(k) ∈ (

I+ρ∂ f
)

x(k+1)

⇐⇒ 0 ∈ ∂ f
(
x(k+1)

)
+ 1

ρ

(
x(k+1) −x(k)

)
.

Solving this monotonic inclusion, and thus computing the iterates of the proximal point
method, is equivalent to finding a minimizer of the following optimization problem

min
x∈RN

f (x)+ 1

2ρ

∥∥∥x−x(k)
∥∥∥

2
,

which is strongly convex such that at each iteration x(k+1) is unique.
The proximal point method therefore recasts solving the original optimization prob-

lem as a sequence of regularized problems. If solving such regularized problems is com-
putationally easier than solving the original optimization problem, such an approach
may be appealing. However, in the general case, this casting may be cumbersome and
may actually be more computationally expensive due to its iterative nature. Instead of
presenting an optimal method to solve convex optimization problems, the motivation
for introducing this method here is to preface the use of resolvent or proximal steps
within convex solvers which often naturally present themselves in more complicated
algorithms. This point is demonstrated in the remaining sections of this chapter where
resolvent steps appear in all other methods presented.

A simple instance where the proximal operator can be efficiently evalutated is in solv-
ing the L1 norm minimization problem given by

min
x∈RN

‖x−b‖1 . (2.10)

While this is a trivially easy problem to solve even without the proximal point method, in
Section 2.4.1 we demonstrate an example where the efficient method of computing the
resolvent operator of (2.10) is attractive in forming more complex solvers.

2

30 2. MONOTONE OPERATOR THEORY AND CONVEX OPTIMIZATION

Considering using the proximal point method to solve (2.10), each evaluation of the
resulting resolvent operator can be recast as the following convex optimization problem

min
x∈RN

‖x−b‖1 +
1

2ρ

∥∥∥x−x(k)
∥∥∥

2
. (2.11)

Considering the equivalent monotonic inclusion of (2.11), it follows that

0 ∈ sign
(
x(k+1) −b

)
+ 1

ρ

(
x(k+1) −x(k)

)
,

where the sign operator is an abuse of notation used to denote the elementwise sign of
the input vector and corresponds to the subdifferential of the L1 norm function. Due
to the separability of the sign operator over the elements of the input vector, for each
i ∈ {1,2, · · ·N } the scalar variable

[
x(k+1)

]
i is given by

[
x(k+1)

]
i
=

[
x(k)

]
i +ρ if

[
x(k)

]
i +ρ < [b]i[

x(k)
]

i −ρ if
[
x(k)

]
i −ρ > [b]i

[b]i otherwise

.

This update equation is equivalent to the soft thresholding operator and thus can be effi-
ciently implemented without directly having to solve an equivalent convex optimization
problem. In contrast, for other optimization problems, a more complicated solver may
be required to compute each resolvent step.

Under the additional assumption of strong convexity, the proximal point method
achieves geometric convergence and converges to the, now unique, optimal vector x∗.
This result again follows cleanly from monotone operator theory. To see this, consider
again the squared Euclidean error

∥∥∥x(k+1) −x∗
∥∥∥

2 =
∥∥∥
(
I+ρ∂ f

)−1 x(k) − (
I+ρ∂ f

)−1 x∗
∥∥∥

2
.

By definition, if f is µ-strongly convex, ∂ f is µ-strongly monotone. The operator I+ρ∂ f

is therefore 1+ρµ strongly convex so that
(
I+ρ∂ f

)−1 is 1
1+ρµ -Lipschitz continuous. It

follows that
∥∥∥x(k+1) −x∗

∥∥∥
2 =

∥∥∥
(
I+ρ∂ f

)−1 x(k) − (
I+ρ∂ f

)−1 x∗
∥∥∥

2

≤ 1
(
1+ρµ)2

∥∥∥x(k) −x∗
∥∥∥

2
,

and thus that the x variables converge at a geometric rate ∀ρ > 0.

2.4. OPERATOR SPLITTING
So far we have seen that through the lens of monotone operator theory, we can derive
and verify the convergence of two simple methods for solving unconstrained optimiza-
tion problems. However, the tradeoff between these two methods, namely the restricted
range of functions for which gradient descent can be guaranteed to converge, and the

2.4. OPERATOR SPLITTING

2

31

higher computational complexity of the proximal point method due to the need to eval-
uate the resolvent operator is discouraging. In particular we would like to be able to ex-
ploit as much structure within our functions as possible to compromise between these
two points, namely to provide guaranteed convergence for a broad range of functions
without incurring a dramatic increase in computational complexity.

One method for overcoming the limitations of the basic methods introduced above is
the notion of operator splitting. In the context of convex optimization, operator splitting
approaches are applicable to problems containing sums of convex functions and pro-
vide an efficient method to exploit the functional properties of individual functions in
such sums. As an example, consider the following L1 regularized least squares or LASSO
problem given by

min
x∈RN

1

2
‖Ax−b‖2 +θ‖x‖1 . (2.12)

Such problems have seen common usage in everything from machine vision [41, 42], to
signal processing [43, 44, 45, 46] as a means of encouraging the sparsity of the solution
vector x by penalizing the absolute sum of its elements (a convex approximation of L0
quasi-norm penalization).

The objective of (2.12) is comprised of two functions. The left hand term is the tra-
ditional least squares term which is smooth and is potentially also strongly convex with
the added assumption that A has full column rank. In contrast the right hand term is the
L1 norm term we introduced in Section 2.3.2 which is neither differentiable nor strongly
convex. We would like to find methods to allow us to make use of the stronger functional
assumptions of the least squares term without needing to resort to using the full proxi-
mal point method to solve this problem. As previously alluded to, the answer lies in the
fact that we are trying to find the minima of a sum of convex functions.

If we consider the subdifferential of (2.12), and by noting that both functions are
closed, convex and proper and share a common point within their domains, it follows
that the equivalent monotonic inclusion is given by

0 ∈ AT Ax−AT b+θsign(x) . (2.13)

In the following we will demonstrate a number of splitting methods to solve such mono-
tonic inclusions by recasting them as a more familiar fixed point inclusion. Note that the
operator splitting methods presented here are based on two operator splitting schemes.
While more general three operator splitting schemes have recently been proposed in
the literature these are not addressed in this chapter as they were not utilized in the re-
mainder of this thesis. For the interested reader, a number of key references on these
approaches, and there applications in the context of optimization can be found in [47].

2.4.1. FORWARD-BACKWARD SPLITTING
The simplest two operator splitting approach is that of Forward-Backward splitting. As
the name suggests, this approach produces an algorithm comprised of both forward op-
erator evaluations, as were used in the gradient descent method, and backward or re-
solvent steps, as used in the proximal point method. Specifically, given two functions
f , g ∈ Γ0, where we also assume that f is differentiable, consider the monotonic inclu-
sion 0 ∈ ∇ f (x)+ ∂g (x). We can use Forward-Backward splitting to rephrase this as an

2

32 2. MONOTONE OPERATOR THEORY AND CONVEX OPTIMIZATION

equivalent fixed point inclusion as follows

0 ∈∇ f (x)+∂g (x) ⇐⇒ 0 ∈−(
I−ρ∇ f

)
(x)+ (

I+ρ∂g
)

(x)

⇐⇒ (
I−ρ∇ f

)
(x) ∈ (

I+ρ∂g
)

(x)

⇐⇒ x = J∂g ,ρ ◦
(
I−ρ∇ f

)
(x) .

We can find such a fixed point via the Banach-Picard iteration, resulting in the Forward-
Backward algorithm

x(k+1) = J∂g ,ρ ◦
(
I−ρ∇ f

)(
x(k)

)
,

In the case of the L1-regularized least squares problem given in (2.13), by selecting
∇ f (x) = AT Ax−AT b and ∂g (x) = θsign(x), it follows that the Forward-Backward splitting
method is given by

y(k+1) = x(k) −ρ
(
AT Ax(k) −AT b

)

x(k+1) = argmin
x∈R

(
‖x‖1 +

1

2ρθ

∥∥∥x−y(k+1)
∥∥∥

2
)

,

where the final line corresponds to a soft thresholding operation, as in the case of the L1
norm minimization example in Section 2.3.2 and is thus efficient to compute.

Convergence of the algorithm follows in a similar fashion to that of both the gradi-
ent descent and proximal point methods. As this method combines both forward and
backward steps we require the additional assumption that f is β-smooth to prove con-
vergence. Like in the case of subgradient descent, this assumption ensures that ∇ f is
β-Lipschitz continuous and 1

β -cocoercive.

To prove convergence, firstly, consider the squared Euclidean distance
∥∥x(k+1) −x∗

∥∥2

where again x∗ ∈ X∗ and X∗ denotes the set of minimizers of (2.12). It follows that

∥∥∥x(k+1) −x∗
∥∥∥

2 ≤
∥∥∥y(k+1) −y∗

∥∥∥
2 − 1

4

∥∥∥x(k+1) −y(k+1) − (
x∗−y∗

)∥∥∥
2

≤
∥∥∥x(k) −x∗

∥∥∥
2 +

∥∥∥ρ
(
∂ f

(
x(k)

)
−∂ f

(
x∗

))∥∥∥
2 −

∥∥∥x(k+1) −y(k+1) − (
x∗−y∗

)∥∥∥
2

−2
〈
ρ

(
∂ f

(
x(k)

)
−∂ f

(
x∗

))
,x(k) −x∗

〉
,

where for the first inequality we have exploited the half averaged nature of the resolvents
of maximal monotone operators. Exploiting the smoothness of f , we can use the same
analysis as in Section 2.3.1 to show that that

∥∥∥x(k+1) −x∗
∥∥∥

2 ≤
∥∥∥x(k) −x∗

∥∥∥
2 − 1

4

∥∥∥x(k+1) −y(k+1) − (
x∗−y∗

)∥∥∥
2

−ρ
(

2

β
−ρ

)∥∥∥∂ f
(
x(k)

)
−∂ f

(
x∗

)∥∥∥
2

,

and thus by restricting ρ ∈ (0, 2
β) that

∥∥x(k+1) −y(k+1) − (
x∗−y∗

)∥∥ and
∥∥∂ f

(
x(k)

)−∂ f (x∗)
∥∥

converge to 0.

2.4. OPERATOR SPLITTING

2

33

In the limit where
∥∥∂ f

(
x(k)

)−∂ f (x∗)
∥∥= 0, it follows that

y(k+1) −y∗ = x(k) −x∗−ρ
(

f
(
x(k)

)
−∂ f

(
x∗

))= x(k) −x∗.

The residual term therefore satisfies the equality
∥∥∥x(k+1) −y(k+1) − (

x∗−y∗
)∥∥∥

2 =
∥∥∥x(k+1) −x(k)

∥∥∥
2

,

and is equivalent to the fixed point residual. As
∥∥x(k+1) −x(k)

∥∥2
converges to zero, this

ensures that x(k+1) → x ∈ X∗ and is thus optimal.
Forward-Backward splitting allows us to take advantage of the smoothness assump-

tion of f and the firm nonexpansiveness of the resolvent operator to handle g . In partic-
ular, if the resolvent operator with respect to ∂g can be computed efficiently, this repre-
sents an attractive method of solving inclusions of sums of monotone operators. In our
regularized least squares example for instance the resolvent of the L1 regularizer can be
computed through its equivalence with soft thresholding which, when coupled with the
analytic nature of the least squares gradient descent part, allows us to solve (2.12) in an
efficient manner.

2.4.2. PEACEMAN-RACHFORD SPLITTING
While Forward-Backward splitting is a great way to take advantage of the functional char-
acteristics of different components of our objective function, it does impose the restric-
tion that one of our operators should be at least smooth to guarantee convergence. In
practice we can easily come up with problems that don’t satisfy this criterion yet were we
may wish to use operator splitting to reduce the solver complexity. In this way, consider
a more general prototype optimization problem given by

min
x∈RN

f (x)+ g (x), (2.14)

where both f , g ∈ Γ0. As with the Forward-Backward splitting example, we can form an
alternate splitting technique by considering the equivalent monotonic inclusion of this
problem. In particular, assuming that f and g share a common point in their domains,
it follows that a minimizer of (2.14) must also satisfy the monotonic inclusion

0 ∈ ∂ f (x)+∂g (x) .

To form our alternate splitting method, we will again rephrase this problem as a fixed
point inclusion as

0 ∈ ∂ f (x)+∂g (x) ⇐⇒ 0 ∈ (
I+ρ∂ f

)
(x)− (

I−ρ∂g
)

(x)

⇐⇒ 0 ∈ (
I+ρ∂ f

)
(x)−

(
2
(
I+ρ∂g

)−1 − I
)
◦ (

I+ρ∂g
)

(x)

⇐⇒ 0 ∈ (
I+ρ∂ f

)◦ J∂g ,ρ (z)−R∂g ,ρ (z) , z ∈ (
I+ρ∂g

)
(x)

⇐⇒ (
I+ρ∂ f

)◦ J∂g ,ρ (z) ∈ R∂g ,ρ (z) , x = J∂g ,ρ (z)

⇐⇒ (
I+ρ∂ f

)−1 ◦R∂g ,ρz = J∂g ,ρz, x = J∂g ,ρz

⇐⇒ z = R∂ f ,ρ ◦R∂g ,ρ (z) , x = (
I+ρ∂g

)−1
(z)

(2.15)

2

34 2. MONOTONE OPERATOR THEORY AND CONVEX OPTIMIZATION

where in the second line we have used [47, Equation 11] and in the remainder of the
derivation we have made use of the definitions of the resolvent and reflected resolvent
operators. The introduced z variables will be referred to as auxiliary variables from here
on out. The above splitting approach is referred to as Peaceman-Rachford splitting and
recasts a monotonic inclusion of the sum of two maximal monotone operators as a fixed
point inclusion based on the composition of two reflected resolvent operators.

Considering the Banach-Picard iteration of the Peaceman-Rachford fixed point in-
clusion, it follows that

z(k+1) = R∂ f ,ρ ◦R∂g ,ρ

(
z(k)

)
. (2.16)

We can equivalently write this out in multiple steps by using the relationship between
the resolvent and reflected resolvent as

x(k+1) = J∂g ,ρ

(
z(k)

)
,

y(k+1) = J∂ f ,ρ

(
2x(k+1) −z(k)

)

z(k+1) = 2y(k+1) −2x(k+1) +z(k).

(2.17)

note that due to the single valued nature of the resolvent operator, any auxiliary fixed
point vector z∗ corresponds to an x∗ ∈ X∗.

As we know from Section 2.2.1, the reflected resolvents of maximal monotone opera-
tors have domains which span the entire Euclidean space allowing Peaceman-Rachford
splitting to be used regardless of variable initialization. Furthermore, the reflected resol-
vents in question are nonexpansive due to the monotonicity of ∂ f and ∂g . Considering
an auxiliary fixed point vector z∗ it follows from (2.16) that the squared Euclidean dis-

tance
∥∥z(k+1) −z∗

∥∥2
forms a non-increasing sequence. However, as we know from Sec-

tion 2.2.4, this alone is not sufficient to prove the convergence of the auxiliary variables
to a fixed point.

To guarantee convergence we must impose stronger assumptions on the original
functions f and g . In particular, if one function is strongly convex and differentiable,
it follows that the Peaceman-Rachford splitting algorithm must converge to an auxiliary
fixed point. To see this, assume that g is µ-strongly convex and differentiable. It follows
that ∇g is µ-strongly monotone and single valued.

To prove convergence, we first note that the auxiliary error satisfies the inequality

∥∥∥z(k+1) −z∗
∥∥∥

2 =
∥∥∥R∂ f ,ρ ◦R∂g ,ρ

(
z(k)

)
−R∂ f ,ρ ◦R∂g ,ρ

(
z∗

)∥∥∥
2

≤
∥∥∥R∂g ,ρ

(
z(k)

)
−R∂g ,ρ

(
z∗

)∥∥∥
2

=
∥∥∥z(k) −z∗

∥∥∥
2 +4

∥∥∥x(k+1) −x∗
∥∥∥

2 −4
〈

z(k) −z∗,x(k+1) −x∗
〉

=
∥∥∥z(k) −z∗

∥∥∥
2 −4

〈
z(k) −x(k+1) − (

z∗−x∗
)

,x(k+1) −x∗
〉

.

From the definition of the x updates in (2.17), and the differentiability of g it follows that

z(k) −x(k+1) = ρ∇g
(
x(k+1)

)
.

2.4. OPERATOR SPLITTING

2

35

It follows that

∥∥∥z(k+1) −z∗
∥∥∥

2 ≤
∥∥∥z(k) −z∗

∥∥∥
2 −4ρ

〈
∇g

(
x(k+1)

)
−∇g

(
x∗

)
,x(k+1) −x∗

〉

≤
∥∥∥z(k) −z∗

∥∥∥
2 −4ρµ

∥∥∥x(k+1) −x∗
∥∥∥

2
,

where in the final line we have used the strong convexity of g . Recursively applying this

inequality, the squared Euclidean error
∥∥x(k+1) −x∗

∥∥2 → 0 such that the x variables con-
verge to the unique optimal state x∗ (uniqueness stems from the strong convexity of g).
Similarly, due to the differentiability of g , the auxiliary iterates z(k) must also converge to
a fixed point in this instance which is unique. Unfortunately, for more general classes of
functions Peaceman-Rachford splitting cannot be guaranteed to converge which again
restricts the class of functions it can be used to solve.

Considering again the LASSO example given in (2.12), the Peaceman-Rachford im-
plementation to solve this problem is given by

x(k+1) = (
I+ρAT A

)−1
(
z(k) +ρAT b

)
,

y(k+1) = argmin
x∈R

(
‖x‖1 +

1

ρθ

∥∥∥x−2x(k+1) −z(k)
∥∥∥

2
)

z(k+1) = 2y(k+1) −2x(k+1) +z(k).

(2.18)

As with the Forward-Backward splitting approach, here we again can efficiently imple-
ment the second resolvent update by noting its link with soft thresholding. The first
reflected resolvent is much more expensive to implement, requiring the computation of

the matrix inverse
(
I+ρAT A

)−1
at each iteration. However, as this could be computed

once and stored in memory, the additional computational cost of such an operation can
be insignificant if a large number of iterations are required. Unlike Forward-Backward
splitting, we no longer require g to be smooth but we do need it to be strongly convex
and differentiable. For the LASSO problem considered we therefore need A to have full
column rank such that 1

2 ‖Ax−b‖2 is strongly convex, which may not hold. In particu-
lar, sparse regularization is commonly used as a to encourage the recovery of a solution
with high sparsity when solving underdetemined least squares problems. In such appli-
cations Peaceman-Rachford splitting is therefore not be a suitable choice of solver.

2.4.3. DOUGLAS-RACHFORD SPLITTING
To overcome the limitations of Peaceman-Rachford splitting, we can make a simple and
minor tweak to the algorithm to guarantee convergence for all closed, convex and proper
functions. In particular, by averaging the Peaceman-Rachford updates we can arrive at
what is termed Douglas-Rachford splitting. We can motivate this averaging in a number
of ways but perhaps the most intuitive is through an augmentation of the fixed point
inclusion given in (2.15). Notably for z to satisfy this fixed point inclusion, the following
equivalence condition must hold

z = R∂ f ,ρ ◦R∂g ,ρ (z) ⇐⇒ z = 1

2

(
I+R∂ f ,ρ ◦R∂g ,ρ

)
(z) .

2

36 2. MONOTONE OPERATOR THEORY AND CONVEX OPTIMIZATION

In general, the same averaging procedure could be performed for any α ∈ (0,1) however,
by definition, Douglas-Rachford splitting specifically refers to the half averaged case.

Applying the Banach-Picard iteration and separating out the iterates, it follows that

x(k+1) = J∂g ,ρ

(
z(k)

)
,

y(k+1) = J∂ f ,ρ

(
2x(k+1) −z(k)

)
,

z(k+1) = z(k) +y(k+1) −x(k+1).

The convergence of Douglas-Rachford splitting follows from the averaged nature of the
operator. Namely, as we know that Peaceman-Rachford splitting is nonexpansive, it fol-
lows that ∥∥∥z(k+1) −z∗

∥∥∥
2 ≤

∥∥∥z(k) −z∗
∥∥∥

2 −
∥∥∥y(k+1) −x(k+1)

∥∥∥
2

.

Recursively applying this ensure that
∥∥y(k+1) −x(k+1)

∥∥2 → 0 and thus that for fixed di-
mension problems that z(k+1) → z where z is an auxiliary fixed point.

Unlike Peaceman-Rachford splitting, the averaged nature of the Douglas-Rachford
splitting requires no additional assumptions on the functions f and g other than that
they are closed, convex and proper. Douglas-Rachford, and averaged versions of Peaceman-
Rachford splitting in general, provide us with a method for solving monotonic inclusions
of the sum of two general maximal monotone operators.

In the case of the LASSO example given in (2.12), the Douglas-Rachford implemen-
tation requires barely any modification from that given in (2.18) and is given by

x(k+1) = (
I+ρAT A

)−1
(
z(k) +ρAT b

)
,

y(k+1) = argmin
x∈R

(
‖x‖1 +

1

ρθ

∥∥∥x−2x(k+1) −z(k)
∥∥∥

2
)

z(k+1) = z(k) +y(k+1) −x(k+1).

This approach would be immediately preferred in the case that A is no longer full rank,
where we have previously noted that Peaceman-Rachford splitting would not be guar-
anteed to converge.

2.5. DUALITY
In the case of the unconstrained optimization problems considered above, the basic op-
erator splitting methods introduced thus far provide a template for efficient solver de-
sign. However, in many settings, we will typically be solving a more general form of
convex optimization problems, which will most likely contain constraint functions. In
particular, consider a general form optimization problem of the following form

min
x∈RN

f (x) s.t. g (x) ≤ 0, Ax−b = 0.

A common approach to addressing these constraints is to exploit Lagrangian duality to
rephrase this problem in the dual domain. This type of approach also has an elegant
interpretation through monotone operator theory by exploiting the duality of maximal
monotonicity in this instance. In the following we demonstrate a number of approaches
which exploit this point to solve constrained optimization problems.

2.5. DUALITY

2

37

2.5.1. DUAL ASCENT
As in the case of primal domain methods, the first algorithm we will consider for solving
constrained optimization problems is that of the dual ascent method. This method is
essentially the dual domain equivalent of subgradient descent presented in Section 2.3.1.
For this algorithm we will consider problems of the form

min
x∈RN

f (x) s.t. Ax−b = 0. (2.19)

To solve this problem, we can equivalently consider the task of finding a saddlepoint of
its associated Lagrangian [48][Chapter 5] given by

L (x,λ) = f (x)+λT (Ax−b) . (2.20)

Here, λ denotes the vector of dual variables associated with the constraints of (2.19). A
saddlepoint of (2.20) can be found by minimizing over the primal variables. The resulting
function of λ is referred to as the Lagrange dual function and is given by

g (λ) = min
x

(
f (x)+λT Ax

)−λT b,

which is a concave function ofλ. Recalling the definition of the Fenchel conjugate func-
tion f ∗ given in (2.1), it follows that

g (λ) =− f ∗ (−ATλ
)−λT b.

To find the optimal saddlepoint, all that remains is to find the optimal λ by maximizing
g (λ). We can therefore solve the convex minimization problem

min
x∈RN

f ∗ (−ATλ
)+bTλ, (2.21)

which is referred to as the dual problem of (2.20).
The dual ascent algorithm solves (2.21) via gradient descent. As in the case of the

subgradient descent algorithm, to prove convergence of this approach, we need to im-
pose some functional assumptions on our original function f . Specifically, we assume
that there is a feasible primal minimizer of (2.20) such that strong duality holds and fur-
thermore that f is µ-strongly convex such that f ∗ is 1

µ -smooth. We can therefore use

gradient descent in this dual domain to compute an optimal dual vector λ∗. Applying
gradient descent directly to this dual problem yields the iterates,

λ(k+1) =λ(k) +ρ
(
A∇ f ∗

(
−ATλ(k+1)

)
−b

)
.

In general, an analytic form of f ∗ may not be known such that the evaluation of its gra-
dient requires additional manipulation. Thankfully, as ∂ f ∗ = (∂ f)−1 ∈ Γ0 it follows that

x(k+1) =∇ f ∗
(
−ATλ(k)

)
⇐⇒ 0 ∈∇ f

(
x(k+1)

)
+ATλ(k)

⇐⇒ x(k+1) = arg min
x∈RN

(
f (x)+

〈
AT x−b,λ(k)

〉)
.

2

38 2. MONOTONE OPERATOR THEORY AND CONVEX OPTIMIZATION

The dual gradient step therefore requires first minimizing the Lagrangian of (2.19) given
a current estimate of the dual variablesλ. In this way, we are able to recover an estimate
of the primal variables at each iteration.

We can rewrite the dual ascent method introduced above as

x(k+1) = arg min
x∈RN

(
f (x)+

〈
AT x−b,λ(k)

〉)
,

λ(k+1) =λ(k) +ρ
(
Ax(k+1) −b

)
.

The use of the word “ascent” in the naming of this algorithm stems from the fact that the
dual update above is equivalent to a gradient ascent step where the gradient in this case
stems from the Laplacian in (2.20). In actual fact however, these updates are a result of
applying the classic gradient descent method to the dual problem and thus the name is
somewhat misleading.

e

∥∥∥λ(k+1) −λ∗
∥∥∥

2 =
∥∥∥λ(k) −λ∗

∥∥∥
2 +ρ2

∥∥∥A∇ f ∗
(
−Aλ(k)

)
−A∇ f ∗ (−Aλ∗)∥∥∥

2

−2ρ
〈
−A∇ f ∗

(
−Aλ(k)

)
+A∇ f ∗ (−Aλ∗)

,λ(k) −λ∗
〉

(2.22)

≤
∥∥∥λ(k) −λ∗

∥∥∥
2 −ρ

(
2σ2

max (A)

µ
−ρ

)∥∥∥A∇ f ∗
(
−Aλ(k)

)
−A∇ f ∗ (−Aλ∗)∥∥∥

2
.

Therefore, by restricting ρ ∈ (0,
2σ2

max(A)
µ), the dual ascent algorithm converges to a dual

optimal point. By association, as the primal variables as computed by minimizing the
Lagrangian of (2.19), it follows that they also converge to a primal optimal state.

As with gradient descent, we can strengthen this result by imposing stronger func-
tional assumptions on the function f . Notably, by making the additional assumption

that f is β-smooth and that A has full row rank, it follows that A∇ f ∗AT is
σ2

min6=0(A)

β -
strongly monotone where σmin6=0 (A) denotes the smallest non-zeros singular value of
A. We can strengthen (2.22) so that

∥∥∥λ(k+1) −λ∗
∥∥∥

2 =
∥∥∥λ(k) −λ∗

∥∥∥
2 +ρ2

∥∥∥A∇ f ∗
(
−Aλ(k)

)
−A∇ f ∗ (−Aλ∗)∥∥∥

2

−2ρ
〈
−A∇ f ∗

(
−Aλ(k)

)
+A∇ f ∗ (−Aλ∗)

,λ(k) −λ∗
〉

≤
(

1−
2ρσ2

min6=0 (A)

β
+ ρ2σ4

max (A)

µ2

)∥∥∥λ(k) −λ∗
∥∥∥

2
.

Therefore, restricting ρ ∈
(
0,

2σ2
min6=0(A)µ2

σ4
max(A)β

)
ensures dual convergence at a geometric rate.

2.5.2. ADMM
As in the case of primal unconstrained optimization, a combination of Lagrangian dual-
ity and monotone operator splitting can also be used to solve more complicated prob-
lems in an efficient manner. A well known and classic example of this is the alternating

2.5. DUALITY

2

39

direction method of multipliers (ADMM). ADMM can be used to solve convex optimiza-
tion problems of the following form.

min
x∈RN

f (x)+ g
(
y
)

s.t. Ax+By−c = 0,
(2.23)

where it is assumed that both functions are closed, convex and proper and that their
domains contain a common feasible point. The Lagrange dual of this prototype problem
is given by

min
λ

f ∗ (
ATλ

)+ g∗ (
BTλ

)−cTλ. (2.24)

Under our assumptions, both f ∗ and g∗ are closed, convex and proper. It follows that a
minimizer of (2.24) must also satisfy the monotonic inclusion

0 ∈ A∂ f ∗ (
ATλ

)+B∂g∗ (
BTλ

)−c. (2.25)

Directly applying Douglas-Rachford splitting to this problem and rearranging the resol-
vent operators, it follows that such a minima can be found via the algorithm

w(k+1) = z(k) −ρ
(
A∂ f ∗

(
AT w(k+1)

)
−c

)

ν(k+1) = 2w(k+1) −z(k) −ρB∂g∗
(
BTν(k+1)

)

z(k+1) = z(k) +ν(k+1) −w(k+1),

(2.26)

where we have also exploited the single valued nature of resolvent operators. To evaluate
the subdifferentials above we can utilize the same trick as in the case of dual ascent and
recast these evaluations as optimization problems. We will demonstrate specifically how
we can do this for the w updates but the same process holds for the computation of ν as
well.

Consider the computation of the iterate

w(k+1) = z(k) −ρ
(
A f ∗

(
AT w(k+1)

)
−c

)
. (2.27)

By defining the additional variable x(k+1) ∈ RN and making use of the relationship be-
tween ∂ f −1 and ∂ f ∗ presented in (2.1), it follows that

x(k+1) ∈ ∂ f ∗
(
AT w(k+1)

)
⇐⇒ 0 ∈ ∂ f

(
x(k+1)

)
−AT w(k+1).

By then substituting this into (2.27), it follows that

w(k+1) = z(k) −ρ
(
Ax(k+1) −c

)
.

and thus,

0 ∈ ∂ f
(
x(k+1)

)
−AT

(
z(k) −ρ

(
Ax(k+1) −c

))

⇐⇒ x(k+1) = arg min
x∈RN

(
f (x)−

〈
AT z(k),x

〉
+ ρ

2
‖Ax−c‖2

)
.

2

40 2. MONOTONE OPERATOR THEORY AND CONVEX OPTIMIZATION

Combining this equivalent method of computation with (2.26), it follows that

x(k+1) = arg min
x∈RN

(
f (x)−

〈
AT z(k),x

〉
+ ρ

2
‖Ax−c‖2

)

y(k+1) = arg min
y∈RN

(
g

(
y
)−

〈
BT

(
z(k) −2ρ

(
Ax(k+1) −c

))
,y

〉
+ ρ

2

∥∥By
∥∥2

)

z(k+1) = z(k) −ρ
(
Ax(k+1) +By(k+1) −c

)
.

As noted in [47], by making the substitution λ(k+1) =−z(k+1) +ρBy(k+1) and rearranging
it follows that

x(k+1) = arg min
x∈RN

(
f (x)+

〈
λ(k),Ax+By(k) −c

〉
+ ρ

2

∥∥∥Ax+By(k) −c
∥∥∥

2
)

y(k+1) = arg min
y∈RN

(
g

(
y
)+

〈
λ(k),Ax(k+1) +By−c

〉
+ ρ

2

∥∥∥2Ax(k+1) +By(k) +By−2c
∥∥∥

2
)

λ(k+1) =λ(k) +ρ
(
Ax(k+1) +By(k) −c

)
.

Finally, by noting that the final line has no dependence on y(k+1), we can use the defini-
tion of λ(k+1) and rearrange the order of computations such that

y(k+1) = arg min
y∈RN

(
g

(
y
)+

〈
λ(k),Ax(k) +By−c

〉
+ ρ

2

∥∥∥Ax(k) +By−c
∥∥∥

2
)

x(k+1) = arg min
x∈RN

(
f (x)+

〈
λ(k),Ax+By(k+1) −c

〉
+ ρ

2

∥∥∥Ax+By(k+1) −c
∥∥∥

2
)

λ(k+1) =λ(k) +ρ
(
Ax(k+1) +By(k+1) −c

)
,

(2.28)

which demonstrates the equivalence of the Douglas-Rachford interpretation of ADMM
and the augmented Lagrangian interpretation highlighted in [18].

2.5.3. PRIMAL-DUAL SPLITTING
In addition to primal and dual methods for designing convex solvers, we can combine
the two approaches to develop primal-dual approaches. For instance, consider again
the monotonic inclusion given in (2.25). By exploiting the relationship between ∂g∗ and
∂g−1 we can rephrase this inclusion so that.

[
0
x

]
∈

[
A∂ f ∗ (

ATλ
)+Bx−c

∂g∗ (
BTλ

)
]
⇐⇒ 0 ∈

[
A∂ f ∗AT B
−BT ∂g

][
λ

x

]
−

[
c
0

]
.

To demonstrate monotonicity we can show that the inner product

〈[
A∂ f ∗AT B
−BT ∂g

][
λ1

x1

]
−

[
A∂ f ∗AT B
−BT ∂g

][
λ2

x2

]
,

[
λ1

x1

]
−

[
λ2

x2

]〉

= 〈
A∂ f ∗ (

ATλ1
)−A∂ f ∗ (

ATλ2
)

,λ1 −λ2
〉+〈

∂g (x1)−∂g (x2) ,x1 −x2
〉≥ 0,

where the final inequality uses the monotonicity of the subdifferentials of convex func-
tions. It follows that this primal-dual operator is monotone. We can additionally impose

2.6. DISTRIBUTED OPTIMIZATION

2

41

various splittings upon this operator to recover different solvers. In the case that A = I,
one of the most well known primal-dual solvers is that of the Chambolle-Pock method
which introduces the splitting,

0 ∈
[
∂ f ∗ 0
−0 ∂g

][
λ

x

]
−

[
c
0

]
+

[
0 B

−BT 0

][
λ

x

]
,

where again, using inner products, it can be shown that both operators are monotone.
The Chambolle-Pock algorithm solves this particular monotonic inclusion via the itera-
tive sequence,

λ(k+1) = argmin
λ

(
f ∗ (λ)−cTλ+ 1

2

∥∥∥λ−
(
λ(k) −ρBT x(k)

)∥∥∥
2
)

x(k+1) = argmin
x

(
g (x)+ 1

2

∥∥∥x−
(
x(k) +ρB

(
2λ(k+1) −λ(k)

))∥∥∥
2
)

While this method was originally proposed as distinctly different from ADMM and Douglas-
Rachford splitting, with it containing a form of Douglas-Rachford splitting as a special
case, it was recently demonstrated that the Chambolle-Pock method is equivalent to a
special case of a lifted Douglas-Rachford splitting approach, given correct initialization.
Therefore, although not demonstrated here, it is entirely possible to derive Chambolle-
Pock from the perspective of monotone operator theory. For a complete version of this
derivation, as well as an in-depth analysis of the consequences of this link, we refer the
reader to [49].

2.6. DISTRIBUTED OPTIMIZATION
Now that we have a grasp on the application of monotone operator theory and the anal-
ysis of various convex optimization solvers, we move our attention to the main focus of
this thesis; understanding and proposing methods for solving distributed convex opti-
mization problems. In particular, we demonstrate how iterative methods derived from
monotone operator theory, coupled with functional separability naturally lead to dis-
tributed solutions appropriate for use in networks.

2.6.1. CHARACTERISTICS OF DISTRIBUTED OPTIMIZATION PROBLEMS
While being the central focus of this thesis, until this point we haven’t clearly defined
what we mean by a distributed solver. In contrast to a general method for use of a sin-
gle computer, we define a distributed solver as an algorithm which allows a network to
solve a given optimization problem while only requiring local computations at each ele-
ment of the network and exchanges of information between communicating computers.
Specifically, a distributed solver must respect the two key attributes of locality and topol-
ogy which characterize any given system.

The notion of locality is used here to refer to the inherently individual nature of el-
ements in a network. Notably, while we desire a network to function in a cooperative
manner, at a fundamental level it is comprised of unique components, each of which is
equipped with its own local information and objective. In the context of an optimization
problem, the local nature of such cost functions results in a naturally separable form.

2

42 2. MONOTONE OPERATOR THEORY AND CONVEX OPTIMIZATION

Specifically, for each node i , the vector xi ∈ RMi is used to denote a local variable. Each
node is also assumed to be equipped with a local cost function fi : RMi → R parameter-
ized by xi . The objective of a distributed optimization problem therefore contains the
node separable term ∑

i∈V
fi (xi) ,

where V denotes the set of nodes in the network. Such a cost function is appealing as
it can be evaluated independently at each node without the need for communication
across the network. However, this objective alone cannot facilitate collaboration as cur-
rently the nodes in the network would operate entirely independently of one another.
The second notion of topology addresses this point.

The term topology refers to the physical communication structure of the underly-
ing network. In this work we make use of graphical models to encapsulate this struc-
ture. In particular, for a given network, its graph G(V ,E), encodes both the set of nodes
of the network V , as well as the set of edges E which captures the ability of two nodes
to communicate. For any given pair of integers i , j ∈ V , the tuple (i , j) ∈ E if and only
if nodes i and j share a physical communication channel. In our context, these nodes
may be computers, wireless equipped sensor nodes, autonomous cars, or whatever form
the computational elements of our network may take. Figure 2.1 gives an example of
such a graphical modeling process in the case of set of flight paths between cities in New
Zealand. The nodes in this case are the cities themselves such as “Auckland”, “Welling-
ton” and “Christchurch” and are denoted via black circles. Key cities throughout the
country can be identified via an additional gray circle around their nodes and are also
labeled by name. The edges which describe the flights paths are denoted via red lines.

Auckland

Wellington

Dunedin

Queenstown Christchurch

Christchurch

Auckland

Wellington

Queenstown

Dunedin

Figure 2.1: A comparison of the route map for flights within New Zealand. On the left we have the physical
map of New Zealand with the flight paths overlaid while on the right we have a simple graphical model with
the geographic information removed.

To facilitate collaboration within a given network, a distributed optimization prob-
lem must be comprised of more than just the local objectives at each node. However,

2.6. DISTRIBUTED OPTIMIZATION

2

43

rather than just allowing additional terms to take on any form, in this context we require
that the topology of a network restricts the manner in which the local variables at each
node can interact. Specifically, if an additional cost function is to involve multiple local
variables, these must share a common edge of the network. In this way, we consider a
problem to be distributable if can be written as a composition of node separable and
edge based terms. An example of such a prototype optimization problem is given by

min
xi ∀i∈V

∑

i∈V
fi (xi)+

∑

(i , j)∈E
gi , j

(
xi ,x j

)
. (2.29)

A special case of (2.29) commonly considered within the literature occurs when each
gi j is restricted to impose an affine constraint between neighboring nodes. Such con-
straints, which correspond to restricting the functions gi | j to be indicator functions can
for instance be used to impose consensus agreements between neighboring nodes. The
resulting optimization problem is given below

min
xi ∀i∈V

∑

i∈V
fi (xi) s.t. Ai | j xi +A j |i x j −bi , j = 0 ∀(i , j) ∈ E , (2.30)

where the additional matrices Ai | j , A j |i and the vector bi , j define the constraint func-
tions referred to above. Unlike more general edge based terms, this prototype problem
has an appealing structure from the perspective of solver design, as it has been reduced
to a linearly constrained form. From Section 2.5, we have already seen that such prob-
lems can be readily solved using classic monotone operator splitting approaches via La-
grangian duality. Furthermore, it can be shown that the more general problem consid-
ered in (2.29) can be readily transformed to the form of (2.30) via the use of a primal
lifting approach. The term primal lifting in this case refers to the act of introducing addi-
tional variables to a primal problem such as (2.29) to recast it in an equivalent form. To
observe this point, consider introducing the additional variables yi | j , y j |i for each edge
of the network. By defining the neighborhood of node i by N (i) = { j | (i , j) ∈ E } and by
introducing the constraints xi = y j |i ∀ i ∈ V , j ∈N (i), it follows that (2.29) is equivalent
to

min
xi ∀i∈V

∑

i∈V

(
fi (xi)+

∑

j∈N (i)

1

2
gi , j

(
xi ,yi | j

)
)

s.t. xi = y j |i ∀ i ∈V , j ∈N (i). (2.31)

As the vector xi and the set of vectors {yi | j | j ∈ N (i)} are local variables of each node i ,
it immediately follows that (2.31) exhibits the same form as (2.30). Therefore, by forming
distributed solvers for (2.30) we can also facilitate more general distributed optimization
in turn.

2.6.2. DESIGNING DISTRIBUTED SOLVERS FOR EDGE-CONSTRAINED OP-
TIMIZATION PROBLEMS

Despite the fact that the optimization problems considered in 2.30 exhibit a structure
reflective of that of their underlying communication graph, these problems still require
network-wide collaboration to achieve optimality due to the coupling of local variables
at each node through the edge based constraints. The question therefore becomes how

2

44 2. MONOTONE OPERATOR THEORY AND CONVEX OPTIMIZATION

to exploit the structure of these problems in the design of solvers that also naturally re-
spect this underlying communication structure. The approach we will consider for this
task is that of monotone operator theory.

As we have seen in this chapter thus far, monotone operator theory is an effective tool
for the design and analysis of a variety of different convex solvers. Specifically, the use of
operator splitting allows for the exploitation of the functional characteristics of different
components of a given optimization problem to develop efficient algorithms. For in-
stance, in Section 2.4.1 it was shown that the smooth and non-smooth components of a
composite objective function could be operated on independently using operator split-
ting leading to a computationally efficient method of solving nonsmooth problems. Sim-
ilarly, this perspective forms a natural tool for utilizing the node and edge based structure
of distributed optimization problems in the construction of distributed solvers.

For the following example, reconsider the linearly constrained distributed optimiza-
tion problem in (2.30) given by

min
xi ∀i∈V

∑

i∈V
fi (xi) s.t. Ai | j xi +A j |i x j −bi , j = 0 ∀(i , j) ∈ E . (2.32)

As previously demonstrated in this chapter, monotone operator theory utilizes the subd-
ifferentials of CCP functions, be it in a forward step or gradient descent type approach or
a backward step or resolvent type operation. Importantly, the structure of our CCP func-
tions translates through to these operations. With this in mind, consider the node sep-
arable objective of (2.32). Specifically, in addition to the ability to evaluate this function
in parallel across nodes, if we consider the subdifferential of this objective with respect
to the variables at any one node i , we find that

∂

∂xi

(
∑

i∈V
fi (xi)

)
= ∂ fi (xi) .

It follows that both any forward steps and/or backward steps involving the operator
∂
(∑

i∈V fi (xi)
)

are also parallelizable across the set of nodes. In contrast however, the
constraint functions, although being all associated with physical edges of the network do
not exhibit the same parallelization as each xi variable is active in multiple constraints.

One way to overcome the coupling due to the constraint set, is to lift the dimension
of (2.32) by introducing additional local variables yi | j ∀ i ∈V , j ∈N (i) and equivalently
rephrasing it as

min
xi ∀i∈V

∑

i∈V
fi (xi)+

∑

(i , j)∈E
ι
(
yi | j +y j |i

)
s.t. Ai | j xi −

bi , j

2
−yi | j = 0 ∀i ∈V , j ∈N (i). (2.33)

The introduced ι here are indicator functions defined as

ι (x) =
{

0 if x = 0

+∞ otherwise
,

which impose consensus constraints between the pair of variables yi | j , y j |i associated
with each edge of the network.

2.6. DISTRIBUTED OPTIMIZATION

2

45

While being an equivalent problem, in contrast to (2.32), (2.33) now incorporates an
edge separable term in its objective. This can be easily observed by noting that each pair
of variables yi | j , y j |i only play an active role in a single indicator function, which in this
case are CCP functions. It follows that the subdifferential operator ∂

(∑
(i , j)∈E ι

(
yi | j −y j |i

))

is able to evaluated in parallel across the set of edges. In this way, we can think of the x
variables as being node based while the y variables are edge based.

At this point, we would like to note that the lifting introduced in (2.33) is but one
possible approach which introduces this combination of node and edge separable terms.
The main motivation for adopting this here is that it naturally leads to the formulation of
a distributed solver via the ADMM algorithm derived from monotone operator theory in
Section 2.5.2. Specifically, we can note that (2.33) is exactly in the form of the prototype
problem in (2.23) where, in this instance,

f (x) =
∑

i∈V
fi (xi) , g

(
y
)= ∑

(i , j)∈E
ι
(
yi | j +y j |i

)
.

By directly applying ADMM to this problem using (2.28), it follows that (2.33) can be
solved via the iterative algorithm

x(k+1)
i =argmin

xi

(
fi (xi)+

∑

j∈N (i)

〈
λ(k)

i | j ,Ai | j xi −
bi , j

2
−y(k)

i | j

〉

+ρ
2

∑

j∈N (i)

∥∥∥∥Ai | j xi −
bi , j

2
−y(k)

i | j

∥∥∥∥
2
)
∀i ∈V

(
y(k+1)

i | j , y(k+1)
j |i

)
= argmin

yi | j +y j |i=0

(〈
λ(k)

i | j ,Ai | j x(k+1)
i − bi , j

2
−yi | j

〉
+

〈
λ(k)

j |i ,A j |i x(k+1)
j − bi , j

2
−y j |i

〉

+ρ
2

∥∥∥∥Ai | j x(k+1)
i − bi , j

2
−yi | j

∥∥∥∥
2

+ ρ

2

∥∥∥∥A j |i x(k+1)
j − bi , j

2
−y j |i

∥∥∥∥
2
)
∀(i , j) ∈ E

λ(k+1)
i | j =λ(k)

i | j +ρ
(

Ai | j x(k+1)
i − bi , j

2
−y(k+1)

i | j

)
∀i ∈V , j ∈N (i).

(2.34)

Furthermore, due to its linearly constrained quadratic form, the y updates have an ana-
lytic solution given by

y(k+1)
i | j = y(k+1)

j |i = 1

2

(
λ(k)

i | j +λ(k)
j |i +ρ

(
Ai | j x(k+1)

i +A j |i x(k+1)
j −bi , j

))

which corresponds to a sharing of primal x and dual λ variables across each edge of the
network. The update equations of (2.34) can therefore be executed via a combination of
local operations at each node and a simple data sharing action over the physical com-
munication channels of the network.

2.6.3. DISTRIBUTED SOLVER DESIGN: BEYOND ADMM
While the distributed ADMM algorithm introduced above provides a useful means of
performing distributed optimization, it is just one way of achieving this goal. Further-
more, while distributed ADMM provides a general method for solving (2.32), it is not

2

46 2. MONOTONE OPERATOR THEORY AND CONVEX OPTIMIZATION

always the best choice of algorithm for a given application. This can be easily observed
if we consider practical considerations such as the convergence rate of an algorithm.
Specifically, the time taken for an algorithm to reach a desired precision has a strong
bearing on its ability to be used in a practical context. For distributed approaches which
exhibit some kind of dependence on the underlying topology of the network, large scale
problems can therefore exhibit slow convergence. This in turn requires a large number
of local computations at each node in addition to transmissions between neighboring
nodes, all of which consume power. For battery powered devices, slow convergence can
therefore be detrimental for the usability of an algorithm.

Recently, a method for distributed optimization termed the primal dual method of
multipliers (PDMM) was proposed to solve (2.32) [50]. With regards to its practical use,
it was empirically demonstrated that this method could achieve faster convergence than
ADMM when applied to the same problem [51]. If such a result could be analytically
shown to hold in general then clearly PDMM would be a more compelling method than
ADMM. However, at the onset of the research in this thesis, PDMM was not well under-
stood and its convergence characteristics were not quantified to argue this point one
way or the other. Chapters 3 and 5 were motivated by this point and serve to both unify
PDMM with monotone operator theory as well as to understand its convergence charac-
teristics. In particular we were interested in understanding when and how PDMM may
offer a competitive edge to its ADMM counterpart.

An additional limitation with distributed ADMM stems from the types of problems
it can be used to solve. Specifically, while offering a means of solving (2.32), there may
be target signal processing operations which cannot be easily transformed to this proto-
type form. The task of broadening the class of tractable distributed problems therefore
represents an important avenue of research. Recent efforts within the literature reflect
this point with a number of methods being proposed to solve more general prototype
problems in a distributed manner [52, 53, 54, 55, 56, 57, 58, 59]. These efforts are echoed
in Chapter 6 where we demonstrate a new method of distributed optimization capa-
ble of solving a broad class of separable problems, including (2.32) as a special case.
This approach was derived from the perspective of monotone operator theory leading
to straight forward convergence proofs based on the results introduced in this chapter.

A similar need for new algorithms arises in the context of networked systems which
vary over time. In particular if the nodes within a network are allowed to move the result-
ing variations in topology may not be able to be handled by existing methods. For the
distributed ADMM algorithm introduced in 2.34, for instance its inherent edge based
nature implicitly requires the maintenance of a fixed network topology during the entire
optimization process. For practical systems, this approach may therefore be infeasible
to deploy. In this way, it is interesting to explore the development of new approaches
which circumvent this issue. Within the literature, a number of methods have been
proposed for use in time varying networks for a range of different prototype problems
[10, 11, 40, 60, 61]. In Chapter 7 we contribute to this growing literature by demonstrat-
ing a new method of distributed optimization for time varying networks derived from
the perspective of monotone operator theory.

2.7. A PIPELINE FOR DISTRIBUTED SIGNAL PROCESSING

2

47

2.7. A PIPELINE FOR DISTRIBUTED SIGNAL PROCESSING

The appealing solver structure demonstrated in (2.34) follows as a repercussion of the
functional separability introduced in (2.33). This link provides us with a direct avenue
for distributed solver design by applying a combination of problem transformation and
operator splitting to form a variety of algorithms. In the case of the distributed ADMM
approach introduced above for instance we exploited a combination of primal lifting,
duality and Douglas-Rachford splitting to construct an ADMM solver for the consid-
ered class of linearly edge constrained distributed problems. Furthermore, this process
can be combined with the standard procedure of problem transformation used to re-
cast desired signal processing operations as convex problems to form a “pipeline” for
distributed signal processing. An example of this pipeline is demonstrated in Figure 2.2.

Desired Signal
Processing
Operation

Distributed
Convex Problem

Equivalent
Separable

Convex Problem
G(V ,E)

Operator Splitting
Distributed
Algorithm

Figure 2.2: A pipeline for forming a distributed signal processing algorithm. The first two stages within the red
dashed area denote the transformation of a desired signal processing problem to a convex form. The following
two blue stages denote the tasks of introducing problem separability and operator splitting to form the final
solver. The green circle is used in this instance to denote the dependence of the equivalent separable problem
stage on the underlying topology of the target network.

The various stages of this pipeline also highlight the ways in which one can broaden
the applicability of distributed signal processing to different tasks, namely via the trans-
formation of a desired signal processing problem to a convex form, the development of
new methods of separable problem transformation, and through the proposal of new
operator splitting techniques. In this thesis, we pay particular attention to the first two
of these stages. Specifically we focus on the broadening of basic problem classes we can
solve in a distributed manner as well as the proposing of novel methods of introducing
separability. At the heart of all of this, is monotone operator theory which not only pro-
vides us with a unified way to analyze different algorithms but also motivates and guides
particular design choices to proposed new approaches in kind.

2

48 2. MONOTONE OPERATOR THEORY AND CONVEX OPTIMIZATION

2.8. CONCLUSIONS
In this section we have provided a brief overview of monotone operator theory and how
it can be applied to convex optimization. We have shown how a number of first or-
der methods for both unconstrained and constrained optimization can be derived and
interpreted from this perspective and have provided convergence results for these ap-
proaches. In particular, the trade off between functional assumptions and computa-
tional complexity has been highlighted and we have emphasized how operator splitting
represents an effective method to exploit the summation structure of certain monotonic
inclusion problems. Similarly in the case of distributed optimization, we have shown
how the technique of operator splitting also provides a natural platform for the develop-
ment of distributed solvers. Specifically, the combination of functional separability and
the iterative nature of operator splitting methods can be exploited to generate naturally
distributed algorithms which respect the topology of a given network. In particular we
demonstrated how this process can be applied to form a distributed ADMM variant for
linearly edge constrained problems. In the remainder of this thesis, we will explore the
space of solver design and analysis following the same approach, by combining prob-
lem transformation to introduce separability and operator splitting to form a particular
algorithm.

II
ANALYSIS OF EXISTING

DISTRIBUTED SOLVERS

49

3
THE PRIMAL-DUAL METHOD OF

MULTIPLIERS: A MONOTONE

PERSPECTIVE

Thomas Sherson, Richard Heusdens,
and W. Bastiaan Kleijn

“All have their worth and each contributes to the worth of the others.”

J.R.R. Tolkien

In this chapter, we make use of the connection between monotone operator theory and
convex optimization to offer a novel perspective on an existing distributed solver termed
the primal dual method of multipliers (PDMM). In contrast to its initial derivation, this
perspective allows us to connect PDMM with other first-order methods such as Douglas-
Rachford splitting and the alternating direction method of multipliers thus providing
insight into its operation. In particular, we show how PDMM combines a lifted dual form
in conjunction with Peaceman-Rachford splitting to facilitate distributed optimization
in undirected networks. We additionally demonstrate sufficient conditions for primal
convergence for strongly convex differentiable functions and strengthen this result for
strongly convex functions with Lipschitz continuous gradients by introducing a primal
geometric convergence bound.

Parts of this chapter have been published in IEEE Transactions on Signal and Information Processing Over
Networks, Accepted for Publication October 2018.

51

3

52 3. THE PRIMAL-DUAL METHOD OF MULTIPLIERS: A MONOTONE PERSPECTIVE

3.1. INTRODUCTION

The world around us is evolving through the use of large scale networking. From the
way we communicate via social media [1], to the revolution of utilities and services via
the paradigm of the “Internet of Things” [5], networking is reshaping the way we operate
as a society. Echoing this trend, the last three decades has seen a significant rise in the
deployment of large scale sensor networks for a wide range of applications [62, 63, 64].
Such applications include environmental monitoring [65, 66], power grid management
[67, 68, 69], as well being used as part of home health care systems [70, 71].

Where centralized network topologies were once the port of call for handling data
processing of sensor networks, increasingly on-node computational capabilities of such
systems are being exploited to parallelize or even fully distribute data processing and
computation. In contrast to their centralized counterparts such distributed networks
have a number of distinct advantages including robustness to node failure, scalability
with network size and localized transmission requirements.

Unfortunately, these distributed networks are also often characterized by limited
connectivity. This limited accessibility between nodes implicitly restricts data availabil-
ity making classical signal processing operations impractical or infeasible to perform.
Therefore, the desire to decentralize computation requires the design of novel signal pro-
cessing approaches specifically tailored to the task of in-network computation.

Within the literature, a number of methods for performing distributed signal pro-
cessing have been proposed including distributed consensus [10, 12, 72], belief propa-
gation/message passing approaches [15, 14, 13], graph signal processing over networks
[73, 17, 74] and more. An additional method of particular interest to this work, is to ap-
proach the task of signal processing via its inherent connection with convex optimiza-
tion. In particular, over the last two decades, it has been shown that many classical sig-
nal processing problems can be recast in an equivalent convex form [75]. By defining
methods to perform distributed optimization we can therefore facilitate distributed sig-
nal processing in turn.

Recently, a new algorithm for distributed optimization called the primal dual method
of multipliers (PDMM) was proposed [50]. In [50], it was shown that PDMM exhibited
guaranteed average convergence, which in some examples were faster than competing
methods such as the alternating direction method of multipliers (ADMM) [51]. However,
there are a number of open questions surrounding the approach. In particular, prior to
this work, it was unclear how PDMM was connected with similar methods within the
literature.

To clarify the link between PDMM and existing works, we present a novel viewpoint
of the algorithm through the lens of monotone operator theory. By demonstrating how
PDMM can be derived from this perspective, we link its operation with classic opera-
tor splitting algorithms. The major strength of this observation is the fact that we can
leverage results from monotone operator theory to better understand the operation of
PDMM. In particular we use this insight to demonstrate new and stronger convergence
results for different classes of problems than those that currently exist within the litera-
ture.

3.1. INTRODUCTION

3

53

3.1.1. RELATED WORK
The work in this chapter builds upon the extensive history within the field of convex op-
timization in the areas of parallel and decentralized processing. In the 1970’s, Rockafel-
lar’s work in network optimization [76] and the relation between convex optimization
and monotone operator theory [26, 27, 28] helped establish a foundation for the field.
Importantly, Rockafellar showed how linearly constrained separable convex programs
can be solved in parallel via Lagrangian duality.

In the field of parallel and distributed computation, further development was under-
taken by Bertsekas and Tsitsiklis [29, 30, 31] throughout the 1980’s, where again separa-
bility was used as a mechanism to design a range of new algorithms. Similarly, Eckstein
[32, 33] adopted an approach more reflective of Rockafellar, utilizing monotone operator
theory and operator splitting to develop new distributed algorithms.

In recent years, there has been a renewed surge of interest in networked signal pro-
cessing [18, 37, 38] due to the continued expansion of networked systems. This pe-
riod has also seen the development of novel distributed optimization approaches for
both convex and potentially non-convex problems. In the convex case, the works of
[19, 20], echoing advances in three term operator splitting such as Vu-Condat splitting
[77, 78], provide general frameworks for distributed convex optimization. Including clas-
sical approaches, such as ADMM, as special cases, these algorithms leverage primal-dual
schemes and functional separability to create distributed implementations.

The work in [79, 80] focuses on the more general problem of potentially non-convex
optimization. In particular, by at each iteration approximating both objective and con-
straints with specific strongly convex and smooth surrogates, the proposed methods
have provable guarantees on convergence to local minima. Furthermore, in contrast
to other methods, the proposed approach need not explicitly require functional sepa-
rability, only the separability of the surrogates used. This allows for the optimization of
problems typically outside of the scope of distributed algorithms.

3.1.2. MAIN CONTRIBUTION
The main contributions of this chapter are two-fold. Firstly we provide a novel deriva-
tion for PDMM from the perspective of monotone operator theory. In particular, we
show how PDMM can be derived by combining a particular dual lifted problem with
Peaceman-Rachford (PR) splitting. In contrast to its original derivation, this approach
links PDMM with other classical first order methods from the literature including forward-
backward splitting, Douglas-Rachford (DR) splitting and ADMM (see [81] for a recent
overview).

The monotone operator perspective is also used to demonstrate a range of new con-
vergence results for PDMM. We show how PDMM is guaranteed to converge to a primal
optimal solution for strongly convex, differentiable objective functions. This result is
strengthened for strongly convex functions with Lipschitz continuous gradients where a
geometric convergence bound is demonstrated by linking the worst-case convergence of
PDMM with that of a generalized alternating method of projections algorithm. Notably,
while such results exist for PR splitting applied to dual domain optimization problems
[82], they require an additional full row rank1 assumption to ensure strong monotonic-

1Row rank refers to the dimension of the span of the row space of a matrix. Row rank deficient matrices have

3

54 3. THE PRIMAL-DUAL METHOD OF MULTIPLIERS: A MONOTONE PERSPECTIVE

ity which cannot be guaranteed in the case of PDMM. Furthermore, while a geometric
convergence proof exists for distributed ADMM [83], currently there is no such result for
PDMM. In this way the proposed work also strengthens the performance guarantees for
PDMM, an important point for practical distributed optimization.

3.1.3. ORGANIZATION OF THE CHAPTER
The remainder of this chapter is organized as follows. Section 3.2 introduces appropriate
nomenclature to support the manuscript. Section 3.3 introduces a monotone operator
derivation of PDMM based on a specific dual lifting approach. Section 3.4 demonstrates
the guaranteed primal convergence of PDMM for strongly convex and differentiable
functions. This is strengthened in Section 3.5 where we demonstrate primal geometric
convergence for strongly convex functions with Lipschitz continuous gradients. Finally,
Section 3.6 includes simulation results to reinforce and verify the underlying claims of
the document and the final conclusions are drawn in Section 3.7

3.2. NOMENCLATURE
In this work we denote by R the set of real numbers, by RN the set of real column vectors
of length N and by RM×N the set of M by N real matrices. Let X ,Y ⊆ RN . A set valued
operator T : X →Y is defined by its graph, gra(T) = {

(
x,y

) ∈X ×Y | y ∈ T (x)}. Similarly,
the notion of an inverse of an operator T−1 is defined via its graph so that gra

(
T−1

) =
{
(
y,x

) ∈ Y ×X | y ∈ T (x)}. JT,ρ = (
I+ρT

)−1 denotes the resolvent of an operator while
RT,ρ = 2JT,ρ − I denotes the reflected resolvent (Cayley operator). The fixed-point set of
T is denoted by fix(T) = {x ∈X | T (x) = x}. If T is a linear operator then ran(T) and ker(T)
denote its range and kernel respectively.

3.3. A DERIVATION OF THE PRIMAL-DUAL METHOD OF MUL-
TIPLIERS BASED ON MONOTONE OPERATOR THEORY

In this section we reintroduce a recently proposed algorithm for distributed optimiza-
tion termed the Primal-Dual method of multipliers (PDMM) [50]. Unlike earlier efforts
within the literature [50, 51], here we demonstrate how PDMM can be derived from the
perspective of monotone operator theory. In particular we show how PDMM can be de-
rived by applying PR splitting to a certain lifted dual problem. Additionally, we highlight
a previously unknown connection between PDMM and a distributed ADMM variant.

3.3.1. PROBLEM STATEMENT: NODE BASED DISTRIBUTED OPTIMIZATION
Consider an undirected network consisting of N nodes with which we want to perform
convex optimization in a distributed manner. The associated graphical model of such a
network is given by G(V ,E) where V = {1, ..., N } denotes the set of nodes and E denotes
the set of undirected edges so that (i , j) ∈ E if nodes i and j share a physical connection.
Note that these are simple graphs as they do not contain self loops or repeated edges.
We will assume that G forms a single connected component and will denote by N (i) =

more rows than their row rank. The notions of column rank and column rank deficiency are defined equiva-
lently.

3.3. A DERIVATION OF THE PRIMAL-DUAL METHOD OF MULTIPLIERS BASED ON

MONOTONE OPERATOR THEORY

3

55

{ j ∈ V | (i , j) ∈ E } the set of neighbors of node i , i.e. those nodes j so that i and j can
communicate directly. An example of such a network is given in Figure 3.1.

1 3

2

4

5

6

7

Figure 3.1: The communication graph G of a seven node network. Numbered circles denote nodes and while
the arrows denote the undirected edges. The neighborhood of node five is given by the set N (5) = {3,6,7}.

As previously mentioned, we are interested in using this network to perform dis-
tributed convex optimization. In this way, assume that each node i is equipped with
a function fi ∈ Γ0

(
RMi

)
parameterized by a local variable xi ∈ RMi . Here Γ0 denotes the

family of closed, convex and proper (CCP) functions. Under this model, consider solving
the following optimization problem in a distributed manner:

min
xi ∀ i∈V

∑

i∈V
fi (xi) s.t Ai | j xi +A j |i x j = bi , j ∀ (i , j) ∈ E . (3.1)

The matrices Ai | j ∈ RMi , j ×Mi while the vectors bi , j ∈ RMi , j . The identifier i | j denotes a
directed edge while i , j denotes an undirected edge. Furthermore, let MV = ∑

i∈V
Mi and

ME = ∑
(i , j)∈E

Mi , j . We will also assume that (3.1) is feasible. In such distributed convex

optimization problems the terms Ai | j and bi , j impose affine constraints between neigh-
boring nodes.

The prototype problem in (3.1) includes, as a subset, the family of distributed con-
sensus problems that minimize the sum of the local cost functions under network wide
consensus constraints. The algorithm presented in this chapter can therefore be used
for this purpose.

3.3.2. EXPLOITING SEPARABILITY VIA LAGRANGIAN DUALITY
Given the prototype problem in (3.1), the design of our distributed solver aims to address
the coupling between the set of primal variables xi due to the linear constraints. Echoing
classic approaches in the literature, we can overcome this point via Lagrangian duality.
In particular, the Lagrange dual problem of (3.1) is given by

min
ν

∑

i∈V

(
f ∗

i

(
∑

j∈N (i)
AT

i | jνi , j

)
− ∑

j∈N (i)

bi , j

2

T

νi , j

)
, (3.2)

where each νi , j ∈RMi , j denotes the dual vector variable associated with the constraint at
edge (i , j) and f ∗

i is the Fenchel conjugate of fi . By inspection, the resulting problem is

3

56 3. THE PRIMAL-DUAL METHOD OF MULTIPLIERS: A MONOTONE PERSPECTIVE

still separable over the set of nodes but unfortunately each νi , j in (3.2) is utilized in two
conjugate functions, f ∗

i and f ∗
j , resulting in a coupling between neighboring nodes.

To decouple the objective terms, we can lift the dimension of the dual problem by
introducing copies of each νi , j at nodes i and j . The pairs of additional directed edge
variables are denoted by λi | j ,λ j |i ∀(i , j) ∈ E and are associated with nodes i and j re-
spectively. To ensure equivalence of the problems, these variables are constrained so
that at optimality λi | j = λ j |i . The resulting problem is referred to as the extended dual
of Eq (3.1) and is given by

min
λ

∑

i∈V

(
f ∗

i

(
∑

j∈N (i)
AT

i | jλi | j

)
− ∑

j∈N (i)

bi , j

2

T

λi | j

)
s.t.λi | j =λ j |i ∀i ∈V , j ∈N (i).

The proposed lifting is appealing from the perspective of alternating minimization tech-
niques as it partitions the resulting problem into two sections: a fully node separable
objective function and a set of edge based constraints.

3.3.3. SIMPLIFICATION OF NOTATION
To assist in the derivation of our algorithm, we firstly introduce a compact vector nota-
tion for Eq. (3.3.2). Specifically we will show that (3.3.2) can be rewritten as

min
λ

f ∗(CTλ)−dTλ s.t (I−P)λ= 0. (3.3)

DUAL VECTOR NOTATION

Firstly we introduce the dual variable λ as the stacked vector of the set of λi | j where the
ordering of this stacking is given by 1|2 < 1|3 < ·· · < 1|N < 2|1 < 2|3 < ·· · < N |N −1. In
particular, λ is given by

λ=
[
λT

1|2, · · · ,λT
1|N ,λT

2|1, · · · ,λT
N |N−1

]T ∈RME .

COMPACT OBJECTIVE NOTATION

Given the definition of the dual vectorλ, we now move to simplifying the objective func-
tion. Firstly, we define the sum of local functions

f : RMV 7→R, x 7→ ∑

i∈V
fi (xi),

where RMV =RM1 ×RM2 × ...×RMN .
We can then define a matrix C ∈RME×MV and vector d ∈RME to rewrite our objective

using λ and f . In particular,

C =

C1 · · · 0
...

. . .
...

0 · · · CN

 , d = [

dT
1 , · · · ,dT

N

]T
,

3.3. A DERIVATION OF THE PRIMAL-DUAL METHOD OF MULTIPLIERS BASED ON

MONOTONE OPERATOR THEORY

3

57

where the components Ci and di are given by

Ci =
[

AT
i |1, · · · ,AT

i |i−1,AT
i |i+1, · · ·T ,AT

i |N
]T ∀i ∈V ,

di = 1

2

[
bT

i ,1, · · · ,bT
i ,i−1,bT

i ,i+1, · · · ,bT
i ,N

]T ∀i ∈V.

The terms Ai | j and bi , j are included in Ci and di respectively if only if (i , j) ∈ E .
The objective of Eq. (3.3.2) can therefore be rewritten as

f ∗(CTλ)−dTλ.

COMPACT CONSTRAINTS NOTATION

Similar to the objective, we can define an additional matrix to rewrite the constraint
functions using our vector notation. For this task we introduce the symmetric permuta-
tion matrix P ∈ RME×ME that permutes each pair of variables λi | j and λ j |i . This allows
the constraints in (3.3.2) to be rewritten as (I−P)λ = 0. The vector λ is therefore only
feasible if it is contained in ker(I−P).

3.3.4. FROM THE EXTENDED DUAL PROBLEM TO A NONEXPANSIVE PDMM
OPERATOR

Given the node and edge separable nature of the extended dual, we now move to forming
a distributed optimization solver which takes advantage of this structure. In particular
we aim to construct an operator of the form

S = SE ◦SN ,

where SN and SE are parallelizable over the nodes and edges respectively and ◦ is used to
denote their composition so that ∀ (x,z)∈gra(S1 ◦S2) , ∃y | (x,y

)∈gra(S1) ,
(
y,z

) ∈ gra(S2).
Furthermore, we would like such operators to be nonexpansive so that classic iterative
solvers can be employed. The nonexpansiveness of an operator is defined as follows.

Definition 3.3.1. Nonexpansive Operators: An operator T : X →Y is nonexpansive if

∀ (x,u) ,
(
y,v

) ∈ gra(T) : ‖u−v‖ ≤ ‖x−y‖,

We can construct such an S by making use of the relationship between monotone op-
erators and the subdifferentials of convex functions. In particular, an operator is mono-
tone if it satisfies the following definition.

Definition 3.3.2. Monotone Operators: An operator T : X →Y is monotone if

∀ (x,u) ,
(
y,v

) ∈ gra(T) : 〈u−v,x−y〉 ≥ 0,

Furthermore, T is maximal monotone if

there does not exist a monotone T̃ : X →Y | gra(T) ⊂ gra(T̃).

3

58 3. THE PRIMAL-DUAL METHOD OF MULTIPLIERS: A MONOTONE PERSPECTIVE

With these definitions in mind, consider the equivalent unconstrained form of (3.3)
given by

min
λ

f ∗(CTλ)−dTλ+ ιker(I−P) (λ) , (3.4)

where ιker(I−P) is an indicator function defined as

ιker(I−P)(y) =
{

0 (I−P)y = 0

+∞ otherwise.

As ker(I−P) is a closed subspace, it follows from [34, Example 1.25] that ιker(I−P) ∈ Γ0.
Furthermore, as f ∈ Γ0, using [34, Theorem 13.32, Prop. 13.11], it follows that f ∗ (

CT
) ∈

Γ0 as well. Due to our feasibility assumption of (3.1), the relative interiors of the domains
of f ∗ (

CT
)

and ιker(I−P) share a common point. From [34, Theorem 16.3], it follows that
λ∗ is a minimizer of (3.4) if and only if

0 ∈ C∂ f ∗ (
CTλ∗)−d+∂ιker(I−P)

(
λ∗)

. (3.5)

Note that the operators T1 = C∂ f ∗CT −d and T2 = ∂ιker(I−P) are by design separable
over the set of nodes and edges respectively. Furthermore, C∂ f ∗CT and ∂ιker(I−P) are
the subdifferentials of CCP functions and thus are maximal monotone. A zero-point of
(3.5) can therefore be found via a range of operator splitting methods (see [32] for an
overview).

In this particular instance, we will use PR splitting to construct a nonexpansive PDMM
operator by rephrasing the zero-point condition in (3.5) as a more familiar fixed-point
condition. This equivalent condition, as demonstrated in [47] (Section 7.3), is given by

RT2,ρ ◦RT1,ρ (z) = z, λ= JT1,ρ (z) ,

where RTi ,ρ and JTi ,ρ are the reflected resolvent and resolvent operators of Ti respec-
tively. Here, the introduced z variables will be referred to as an auxiliary variables.

We define the PDMM operator as

TP,ρ = RT2,ρ ◦RT1,ρ ,

which will be used repeatedly throughout this work. Importantly given the nature of the
operators considered, TP,ρ is nonexpansive. Specifically, as both T1 and T2 are maximal
monotone operators, JT1,ρ and JT2,ρ are both firmly nonexpansive. By [34, Proposition
4.2], it follows that RT1,ρ and RT2,ρ are nonexpansive. The nonexpansiveness of TP,ρ al-
lows us to utilize fixed-point iterative methods to solve (3.3.2) and ultimately (3.1) in a
distributed manner.

3.3.5. ON THE LINK WITH THE PRIMAL DUAL METHOD OF MULTIPLIERS
We now demonstrate how PDMM, as defined in [50], can be linked with classical mono-
tone operator splitting theory. For this purpose we will consider the fixed-point iteration
of TP,ρ given by

z(k+1) = TP,ρ

(
z(k)

)
= RT2,ρ ◦RT1,ρ

(
z(k)

)
. (3.6)

3.3. A DERIVATION OF THE PRIMAL-DUAL METHOD OF MULTIPLIERS BASED ON

MONOTONE OPERATOR THEORY

3

59

To aid in the aforementioned relationship, the evaluation of the reflected resolvent
operators RT1,ρ and RT2,ρ are outlined in the following Lemmas.

Lemma 3.3.1. y(k+1) = RT1,ρ
(
z(k)

)
can be computed as

x(k+1) =argmin
x

(
f (x)−〈CT z(k),x〉+ ρ

2
||Cx−d||2)

λ(k+1) =z(k) −ρ
(
Cx(k+1) −d

)

y(k+1) =2λ(k+1) −z(k).

A proof of this result can be found in Appendix 3.A. Note that the block diagonal
structure of C and the separability of f allow this reflected resolvent to be computed in
parallel across the nodes.

Lemma 3.3.2. z(k+1) = RT2,ρ
(
y(k+1)

)
can be computed as z(k+1) = Py(k+1).

The proof for this result is included in Appendix 3.B. The resulting permutation op-
eration is equivalent to an exchange of auxiliary variables between neighboring nodes
and is therefore distributable over the underlying network.

Utilizing Lemmas 3.3.1 and 3.3.2 it follows that

TP,ρ = P◦RT1,ρ , (3.7)

and thus that (3.6) is equivalent to

z(k+1) = P
(
z(k) −2ρ

(
Cx(k+1) −d

))
. (3.8)

By noting that z(k+1) = P
(
λ(k+1) −ρ (

Cx(k+1) −d
))

, the dependence on y(k+1) and z(k+1)

can be removed, reducing the scheme to that given in Algorithm 1.

Algorithm 1 Simplified PDMM

1: Initialise: λ(0) ∈RME , x(0) ∈RMV

2: for k=0,..., do
3: x(k+1) = argmin

x

(
f (x)−〈CT Pλ(k),x〉+ ρ

2 ||Cx+PCx(k) −2d||2)

4: λ(k+1) = Pλ(k) −ρ (
Cx(k+1) +PCx(k) −2d

)

5: end for

This algorithm is identical to a particular instance of PDMM proposed in [50]. Thus,
PDMM is equivalent to the fixed-point iteration of the PR splitting of the extended dual
problem, linking the approach with a plethora of existing algorithms within the literature
[18, 20, 84, 85].

The connection with PR splitting motivates why PDMM may converge faster than
ADMM for some problems, as demonstrated in [50]. In particular, [82, Remark 4] notes
that PR splitting provides the fastest bound on convergence even though it may not con-
verge for general problems. Specifically, the strong convexity and Lipschitz continuity of
the gradient of the averaging problem considered in [50] supports this link.

3

60 3. THE PRIMAL-DUAL METHOD OF MULTIPLIERS: A MONOTONE PERSPECTIVE

Algorithm 2 Distributed PDMM

1: Initialise: z(0) ∈RME

2: for k=0,..., do
3: for all i ∈V do . Primal Update

4: x(k+1)
i = argminxi

(
fi (xi)+ ∑

j∈N (i)

(
−〈AT

i | j z(k)
i | j ,xi 〉+ ρ

2 ||Ai | j xi − bi , j

2 ||2
))

5: for all j ∈N (i) do . Dual Update

6: y(k+1)
i | j = z(k)

i | j −2ρ
(
Ai | j x(k+1)

i − bi , j

2

)

7: end for
8: end for
9: for all i ∈V , j ∈N (i) do . Transmit Variables

10: Node j ← Nodei (y(k+1)
i | j)

11: end for
12: for all i ∈V , j ∈N (i) do . Auxiliary Update
13: z(k+1)

i | j = y(k+1)
j |i

14: end for
15: end for

The distributed nature of PDMM can be more easily visualized in Algorithm 2 where
we have utilized the definitions of C and d. Here the notation Node j ← Nodei (•) indi-
cates the transmission of data from node i to node j .

Each iteration of the algorithm only requires one-way transmission of the auxiliary
z variables between neighboring nodes. Thus, no direct collaboration is required be-
tween nodes during the computation of each iteration leading to an appealing mode of
operation for use in practical networks.

3.3.6. ON THE LINK WITH THE DISTRIBUTED ALTERNATING DIRECTION

METHOD OF MULTIPLIERS

Using the proposed monotone interpretation of PDMM we can also link its behavior with
ADMM. While in [50] it was suggested that these two methods were fundamentally dif-
ferent due to their contrasting derivations, in the following we demonstrate how they are
more closely related than first thought. Interestingly, this link is masked via the change
of variables typically used in the updating scheme for ADMM and PDMM (see [18, Sec-
tion 3] and [50, Section 4] respectively for such representations). For this purpose we
re-derive an ADMM variant from the perspective of monotone operator theory.

To begin, consider the prototype ADMM problem given by

min
x,y

f (x)+ g (y) s.t. Ax+By = c. (3.9)

We can recast (3.1), in the form of (3.9) by introducing the additional variables yi | j ,y j |i ∈

3.4. GENERAL CONVERGENCE RESULTS FOR PDMM

3

61

RMi , j ∀(i , j) ∈ E so that

min
x

∑

i∈V
fi (xi) s.t

Ai | j xi − bi , j

2 = yi | j

A j |i x j − bi , j

2 = y j |i
yi | j +y j |i = 0

∀(i , j) ∈ E . (3.10)

Defining the stacked vector y ∈RME and adopting the matrices C, P and d as per Section
3.3.3, (3.10) can be more simply written as

min
x

f (x)+ ιker(I+P)
(
y
)

s.t Cx−d = y. (3.11)

Here, the indicator function is used to capture the final set of equality constraints in
(3.10). It follows that (3.11) is exactly in the form of (3.9) so that ADMM can be applied.

The ADMM algorithm is equivalent to applying Douglas Rachford (DR) splitting [86]
to the dual of (3.11), given by

min
λi ∀ i∈V

f ∗ (
CTλ

)−dTλ+ ι∗ker(I+P) (λ) , (3.12)

whereλ, as in the case of PDMM, denotes the stacked vector of dual variables associated
with the directed edges.

Comparing (3.12) and (3.5), we can note that the apparent difference in the dual
problems is due to the use of ιker(I−P), in the case of PDMM, or ι∗ker(I+P) in the case of
ADMM. In actual fact these two functions are equal which stems from the definition of
the Fenchel conjugate of an indicator function,

ι∗ker(I+P) (λ) = sup
y

(〈y,λ〉− ιker(I+P)
(
y
))=

{
0 λ ∈ ran(I+P)

∞ otherwise.

As ran(I+P) = ker(I−P), it follows that ι∗ker(I+P) = ιker(I−P). The problems in (3.4) and
(3.12) are therefore identical.

As DR splitting is equivalent to a half averaged form of PR splitting [34], the opera-
tor form of ADMM is therefore given by TA,ρ = 1

2

(
I+TP,ρ

)
. In this manner, despite their

differences in earlier derivations, ADMM and PDMM are fundamentally linked. Within
the literature, PDMM could therefore also be referred to as a particular instance of gen-
eralised [87] or relaxed ADMM [82].

3.4. GENERAL CONVERGENCE RESULTS FOR PDMM
Having linked PDMM with PR splitting, we now move to demonstrate convergence re-
sults for the algorithm. In particular we demonstrate a proof of convergence for PDMM
for strongly convex and differentiable functions. This proof is required due to the fact
that the strong monotonicity of either T1 or T2, usually required to guarantee conver-
gence of PR splitting, cannot be guaranteed for PDMM due to the row rank deficiency of
the matrix C. We also highlight the use of operator averaging to guarantee convergence
for all f ∈ Γ0 and demonstrate its necessity with an analytic example where PDMM fails
to converge.

3

62 3. THE PRIMAL-DUAL METHOD OF MULTIPLIERS: A MONOTONE PERSPECTIVE

3.4.1. CONVERGENCE OF THE PRIMAL ERROR (‖x(k) −x∗‖2) OF PDMM
The first result we demonstrate is that of the primal convergence of PDMM. In particular,
we show that the sequence of primal iterates

(
x(k)

)
k∈N converges to an optimal state, i.e.,

∃x∗ ∈ X∗ | ‖x(k) −x∗‖2 → 0. (3.13)

where X∗ denotes the set of primal optimizers of (3.1) and • → • denotes convergence.
The term ‖x(k) −x∗‖2 will be referred to as the primal error from here on.

Many of the arguments used in this section make use of the properties of the kernel
and range matrices. These are defined below.

Definition 3.4.1. Range Space and Kernel Space: Given a matrix A, the range space of A
is denoted by ran(A) where

∀y ∈ ran(A) ,∃u | Au = y.

Similarly, the kernel space of A is denoted by ker(A) where

∀y ∈ ker(A) ,Ay = 0.

For any matrix, the subspaces ran(A) and ker
(
AT

)
are orthogonal and, furthermore, their

direct sum ran(A)+ker
(
AT

)
spans the entire space.

To demonstrate that (3.13) holds, we can make use of the relationship between the
primal x and auxiliary z variables of PDMM. In particular, we will demonstrate that both
the primal and auxiliary variables converge by ultimately showing that

∃z∗ ∈ fix
(
TP,ρ

) | ‖z(k) −z∗‖2 → 0,

which we will refer to as auxiliary convergence.

3.4.2. PRIMAL INDEPENDENCE OF A NON-DECREASING SUBSPACE
To prove auxiliary convergence, other approaches in the literature often leverage addi-
tional operational properties such as strict nonexpansiveness. Unfortunately, in the case
of PDMM, TP,ρ is at best nonexpansive due to the presence of a non-decreasing compo-
nent. Fortunately, this particular component does not influence the computation of the
primary variables and ultimately can be ignored.

To demonstrate that PDMM is at best nonexpansive, consider the equation for two
successive updates given by

z(k+2) =TP,ρ ◦TP,ρ

(
z(k)

)

=TP,ρ

(
P

(
z(k) −2ρ

(
Cx(k+1) −d

)))

=z(k) −2ρ
(
PCx(k+2) +Cx(k+1) −2d

)
,

(3.14)

where the second and third lines use the PDMM update in (3.8). From our feasibility
assumption of (3.1), ∃x∗ | PCx∗+Cx∗ = 2d so that d ∈ ran(PC)+ ran(C). Therefore, every
two PDMM updates only affect the auxiliary variables in the subspace ran(PC)+ ran(C).

3.4. GENERAL CONVERGENCE RESULTS FOR PDMM

3

63

By considering the projection of each iterate onto the orthogonal subspace of ran(PC)+
ran(C), which is given by ker

(
CT

)∩ker
(
CT P

)
, it follows that, for all even k,

Π
ker(CT)∩ker(CT P)

(
z(k+2)

)
= Π

ker(CT)∩ker(CT P)

(
z(k)

)

= Π
ker(CT)∩ker(CT P)

(
z(0)) ,

where Π
A

denotes the orthogonal projection onto A .

Every even-numbered auxiliary iterate z(k) contains a non-decreasing component
determined by our initial choice of z(0). Fortunately, from Lemma 3.3.1 it is clear that
each x(k) is independent of Π

ker(CT)

(
z(k) +ρd

)
. As ker

(
CT

)∩ker
(
CT P

)⊆ ker
(
CT

)
, any sig-

nal in the non-decreasing subspace of TP,ρ◦TP,ρ will not play a role in the primal updates.
For proving primal convergence, we will therefore consider the projected auxiliary error

‖ Π
ran(C)+ran(PC)

(
z(k) −z∗

)
‖2. (3.15)

Such a projection can be easily computed for even iterates due to the structure noted
in (3.14) by defining the vector

z¦ = z∗+ Π
ker(CT)∩ker(CT P)

(
z(0)) . (3.16)

From the nonexpansiveness of PDMM, the projected auxiliary error satisfies

‖z(k+2) −z¦‖ ≤ ‖z(k) −z¦‖.

The sequence
(
z(2k)

)
k∈N is therefore Fejér monotone with respect to z¦ and thus the se-

quence
(‖z(2k) −z¦‖)k∈N converges [34, Proposition 5.4]. To prove projected auxiliary

convergence, all that remains is to show that

lim
k→∞

(
z(2k) −z¦

)
= 0. (3.17)

3.4.3. OPTIMALITY OF AUXILIARY LIMIT POINTS
We will now demonstrate that (3.17) holds in the specific case of strongly convex and
differentiable functions, in turn allowing us to prove primal convergence. While the dif-
ferentiability of a function is straightforward, the notion of strong convexity is defined
below.

Definition 3.4.2. Strong Convexity: A function f is µ-strongly convex with µ> 0 if for all
θ ∈ [0,1],x,y ∈ dom

(
f
)
,

f
(
θx+ (1−θ)y

)≤θ f (x)+ (1−θ) f
(
y
)−µθ(1−θ)‖x−y‖2.

Additionally, if f is µ-strongly convex, ∂ f is µ-strongly monotone.

3

64 3. THE PRIMAL-DUAL METHOD OF MULTIPLIERS: A MONOTONE PERSPECTIVE

Definition 3.4.3. Strongly Monotone: An operator T : X → Y is µ-strongly monotone
with µ> 0, if

〈u−v,x−y〉 ≥µ‖x−y‖2 ∀ (x,u) ,
(
y,v

) ∈ gra(T) .

To verify that (3.17) holds under the aforementioned assumptions, we make use of
the following Lemma relating to the limit points of the primal and dual variables.

Lemma 3.4.1. If f is differentiable and µ-strongly convex then

lim
k→∞

x(k) =x∗,

lim
k→∞

Π
ran(C)

(
λ(k)

)
= Π

ran(C)

(
λ∗)

.

The proof for this Lemma can be found in Appendix 3.C.
Using Lemma 3.4.1, and rearranging the dual update equation in Lemma 3.3.1, it

follows that

lim
k→∞

Π
ran(C)

(
z(k)

)
= lim

k→∞
Π

ran(C)

(
λ(k+1) +ρ

(
Cx(k+1) −d

))

= Π
ran(C)

(
λ∗+ρ (

Cx∗−d
))= Π

ran(C)

(
z∗

)
.

(3.18)

From (3.18), if also follows that

0 = lim
k→∞

Π
ran(C)

(
z(k+1) −z∗

)

= lim
k→∞

Π
ran(C)

P
(
z(k) −z∗−2ρC

(
x(k+1) −x∗

))

= lim
k→∞

P Π
ran(C)

P
(
z(k) −z∗

)

= lim
k→∞

Π
ran(PC)

(
z(k) −z∗

)
,

(3.19)

where the second line uses Eq. (3.8), the third line uses that lim
k→∞

x(k+1) = x∗ and that P is

full rank, while the last line exploits that P = P−1 such that P Π
ran(C)

P = Π
ran(PC)

. Combining

(3.18) and (3.19), finally demonstrates that, under the restrictions of strong convexity
and differentiability of f , that

lim
k→∞

Π
ran(C)+ran(PC)

(
z(2k) −z∗

)
= lim

k→∞

(
z(2k) −z¦

)
= 0.

Primal convergence follows from Lemma 3.3.1, by noting,

x(k+1) =(∇ f +ρCT C
)−1

CT
(
z(k) +ρd

)

x∗ =(∇ f +ρCT C
)−1

CT (
z∗+ρd

)
.

(3.20)

The equality in this case follows from the fact that ∇ f is µ-strongly monotone such that(∇ f +ρCT C
)−1

is Lipschitz continuous and thus single-valued. Substituting (3.20) into

3.4. GENERAL CONVERGENCE RESULTS FOR PDMM

3

65

the primal error, it follows that

‖x(k+1) −x∗‖2 =‖(∇ f +ρCT C
)−1

CT
(
z(k) +ρd

)
− (∇ f +ρCT C

)−1
CT (

z∗+ρd
)‖2

≤ 1

µ2 ‖CT
(
z(k) −z∗

)
‖2 (3.21)

≤σ
2
max (C)

µ2 ‖z(k) −z¦‖2,

where, σmax denotes the largest singular value of a matrix.

The primal error ‖x(k+1)−x∗‖2 is therefore upper bounded by the projected auxiliary
error and thus converges.

3.4.4. AVERAGED PDMM CONVERGENCE

As with other operator splitting methods, PDMM can be combined with an averaging
stage to guarantee convergence ∀ f ∈ Γ0, even those which do not satisfy the strong con-
vexity or differentiability assumptions introduced in Section 3.4.3. The general form of
the averaged PDMM operator is given by

TP,ρ,α = (1−α)I+αTP,ρ ,

where the scalar α ∈ (0,1). In the particular case that α = 1
2 , averaged PDMM is equiva-

lent to ADMM, as was previously noted in Section 3.3.6. In this case, by [34, Proposition
4.4], the operator TP,ρ,α is firmly nonexpansive.

The fixed-point iteration of TP,ρ,α is therefore given by

z(k+1) = (1−α)z(k) +αTP,ρz(k).

This is referred to as the α-Krasnosel’skĭı-Mann iteration [34] of the operator TP,ρ which
is a well documented method of guaranteeing convergence for nonexpansive opera-
tors. Notably, recursively applying [34, Eq. 5.16], it follows that the fixed-point residual(
TP,ρ − I

)(
z(k)

)
converges at an asymptotic rate of O

(1
k

)
and thus z(k) converges to a point

in fix
(
TP,ρ

)
for finite dimensional problems.

3.4.5. LACK OF CONVERGENCE OF PDMM FOR f ∈ Γ0
Without the use of averaging, the convergence results demonstrated so far require f to
be both strongly convex and differentiable. While such a result is well known in the case
of PR splitting, it is not noted in the existing analysis of PDMM within the literature [50].

In the following, we reinforce the importance of this result by demonstrating a prob-
lem instance were PDMM does not converge despite f ∈ Γ0. For this purpose we con-
sider solving the following problem over two nodes.

min
x1,x2

|x1 −1|+ |x2 +1|
s.t. x1 −x2 = 0.

(3.22)

3

66 3. THE PRIMAL-DUAL METHOD OF MULTIPLIERS: A MONOTONE PERSPECTIVE

The objective in (3.22) is neither differentiable nor strongly convex. From Lemmas 3.3.1
and 3.3.2, the primal and auxiliary updates for PDMM are given respectively by

x(t+1)
1 =argmin

x

(
|x −1|− z(t)

1|2x + ρ

2
‖x‖2

)
,

x(t+1)
2 =argmin

x

(
|x +1|+ z(t)

2|1x + ρ

2
‖x‖2

)
,

z(t+1)
1|2 =z(t)

2|1 +2ρx(t+1)
2 , z(t+1)

2|1 = z(t)
1|2 −2ρx(t+1)

1 ,

(3.23)

By setting z(0)
1|2 = z(0)

2|1 = 0 and ρ = 1 it follows from (3.23) that after the first iteration

x(1)
1 =−x(1)

2 = 1 and z(1)
1|2 = z(1)

2|1 = 2. Note that x1 6= x2 such that x is not primal feasible.

For the second iteration x(2)
1 = −x(2)

2 = −1 and z(2)
1|2 = z(2)

2|1 = 0. Again, x1 6= x2 and
furthermore the auxiliary variables are back to their original configuration. The auxiliary
variables of PDMM are therefore stuck in a limit cycle and can never converge for this
problem. The primal variables also exhibit a limit cycle in this case. As such, f ∈ Γ0

is not a sufficient condition for the convergence of PDMM without the use of operator
averaging.

3.5. GEOMETRIC CONVERGENCE
While PR splitting is well known to converge geometrically under the assumption of
strong monotonicity and Lipschitz continuity, such conditions cannot be guaranteed in
the case of PDMM due to the row rank deficiency of C. However, by assuming that f is
strongly convex and has a Lipschitz continuous gradient, we can demonstrate a geomet-
rically contracting upper bound for the primal error of PDMM despite this fact.

3.5.1. A PRIMAL GEOMETRIC CONVERGENCE BOUND FOR STRONGLY CON-
VEX AND SMOOTH FUNCTIONS

In the following we demonstrate that for strongly convex functions with Lipschitz con-
tinuous gradients, the primal variables of PDMM converge at a geometric rate. More
formally we show that ∃ ε≥ 0,γ ∈ [0,1) so that

∀k ∈N, ‖x(k) −x∗‖2 ≤ γkε.

As in the case of Section 3.4.1, this is achieved by firstly forming a geometric bound for
the projected auxiliary error

‖ Π
ran(C)+ran(PC)

(
z(k) −z∗

)
‖2 = ‖z(k) −z¦‖2,

before linking back to the primal variables.
The process of bounding the projected auxiliary error is broken down into two stages.

Firstly, in Sections 3.5.2 and 3.5.3 we demonstrate how, for strongly convex functions
with Lipschitz continuous gradients, PDMM is contractive over a subspace. In Sections
3.5.4 and 3.5.5 we then show how a geometric convergence bound can be found by link-
ing PDMM with a generalized form of the alternating method of projections allowing us
to derive the aforementioned γ and ε.

3.5. GEOMETRIC CONVERGENCE

3

67

3.5.2. CONTRACTIVE NATURE OF PDMM OVER A SUBSPACE
Proving that the projected auxiliary error of PDMM converges geometrically relies on
strong monotonicity and the additional notion of Lipschitz continuity. This is defined as
follows.

Definition 3.5.1. Lipschitz Continuous: An operator T : X →Y is L-Lipschitz if

∀ (x,u) ,
(
y,v

) ∈ gra(T) : ‖u−v‖ ≤ L‖x−y‖.

If L = 1, T is nonexpansive while if L < 1 it is contractive.

Given this notion, we demonstrate the contractive nature of the PDMM operator over
ran(C) by showing that C∇ f ∗CT is strongly monotone and Lipschitz continuous over
this subspace. This is summarized in Lemma 3.5.1.

Lemma 3.5.1. If f is µ-strongly convex and ∇ f is β-Lipschitz continuous then C∇ f ∗CT

is

(i)
σ2

max(C)
µ -Lipschitz continuous

(ii)
σ2

min6=0(C)

β -strongly monotone ∀z ∈ ran(C),

where σmin6=0 denotes the smallest non-zero singular value.

The proof of this lemma can be found in Appendix 3.D. Lemma 3.5.1 reflects a similar
approach in [82] for general PR splitting problems. Note that the result demonstrated
therein does not hold in this context due to the row-rank deficiency of C. Specifically,
[82, Assumption 2] is violated.

As C∇ f ∗(CT •) is both strongly monotone and Lipschitz continuous over ran(C), from
[82], RT1,ρ is contractive ∀z ∈ ran(C) with an upper bound on this contraction given by

δ= max

ρ
σ2

max(C)
µ −1

ρ
σ2

max(C)
µ +1

,
1−ρ σ

2
min6=0(C)

β

1+ρ σ
2
min6=0(C)

β

 ∈ [0,1).

By the same arguments, the operator P◦RT1,ρ ◦P is δ contractive over ran(PC). Using
the definition of the PDMM operator (3.7), the two-step PDMM updates given in (3.14),
can equivalently be written as

z(k+2) = (
P◦RT1,ρ ◦P

)◦RT1,ρ

(
z(k)

)
.

Every two PDMM iterations is therefore the composition of the operators RT1,ρ and P ◦
RT1,ρ ◦P with each being δ-contractive over ran(C) and ran(PC) respectively.

3.5.3. INEQUALITIES DUE TO THE CONTRACTION OF PDMM
The contractive nature of RT1,ρ and P ◦RT1,ρ ◦P leads to two important inequalities. In
this case we will assume that k is even and that z¦ is defined as per (3.16).

3

68 3. THE PRIMAL-DUAL METHOD OF MULTIPLIERS: A MONOTONE PERSPECTIVE

Beginning with the operator RT1,ρ , consider the updates y¦ = RT1,ρ (z¦) and y(k+1) =
RT1,ρ

(
z(k)

)
. Using Lemma 3.3.1, it follows that

y(k+1) −y¦ =2λ(k+1) −z(k) − (
2λ¦−z¦

)

=z(k) −z¦−2ρC
(
x(k+1) −x∗

)
,

so that the projection onto ker(CT) satisfies

Π
ker(CT)

(
y(k+1) −y¦

)
= Π

ker(CT)

(
z(k) −z¦

)
.

Combining with the δ-contractive nature of RT1,ρ over ran(C), it follows that,

‖y(k+1) −y¦‖2 ≤ δ2‖ Π
ran(C)

(
z(k) −z¦

)
‖2

+‖ Π
ker(CT)

(
z(k) −z¦

)
‖2.

For the operator P◦RT1,ρ ◦P, as z¦ = P◦RT1,ρ ◦P
(
y¦

)
by the results of Section 3.4.2 and

z(k+2) = P◦RT1,ρ ◦P
(
y(k+1)

)
, it can be similarly shown that

Π
ker(CT P)

(
z(k+2) −z¦

)
= Π

ker(CT P)

(
y(k+1) −y¦

)
,

and furthermore that

‖z(k+2) −z¦‖2 ≤ δ2‖ Π
ran(PC)

(
y(k+1) −y¦

)
‖2

+‖ Π
ker(CT P)

(
y(k+1) −y¦

)
‖2.

While the contractive nature of RT1,ρ and P◦RT1,ρ ◦P suggests the geometric conver-
gence of PDMM, it is unclear what this convergence rate may be. In the following, this
will be addressed by deriving a geometric error bound for two-step PDMM by connect-
ing it with the method of alternating projections.

3.5.4. A GEOMETRIC RATE BOUND FOR PDMM INTERPRETED AS AN OP-
TIMIZATION PROBLEM

Using the results of Section 3.5.3 we now demonstrate that there exists a γ so that the
projected auxiliary error satisfies

‖z(k+2) −z¦‖2 ≤ γ2‖z(k) −z¦‖2, (3.24)

where γ2 can be computed via a non-convex optimization problem. Specifically, it is the
maximum objective value of

max
y,z,ẑ

‖ẑ−z¦‖2 (3.25a)

s.t. y = RT1,ρ (z) (3.25b)

ẑ = P◦RT1,ρ ◦P
(
y
)

(3.25c)

‖z−z¦‖2 ≤ 1. (3.25d)

3.5. GEOMETRIC CONVERGENCE

3

69

Here, (3.25a) captures the worst case improvement in the distance between the two-
step iterates (ẑ) and the projected fixed point (z¦). Due to (3.25d), the maximum of this
objective exactly determines the worst case convergence rate. The vector z corresponds
to the initial auxiliary variable, y and ẑ are generated via the one and two step PDMM
updates imposed by (3.25b) and (3.25c), and (3.25d) defines the feasible set of z. In a
similar manner to (3.16), z¦ = z∗+ Π

ker(CT)∩ker(CT P)
(z) so that z−z¦ ∈ ran(PC)+ ran(C).

Using the properties of RT1,ρ and P◦RT1,ρ◦P from Section 3.5.3, the optimum of (3.25)
can be equivalently computed via

max
y,z

‖
(
δ Π

ran(PC)
+ Π

ker(CT P)

)(
y−y¦

)‖2

s.t. ‖ Π
ran(C)

(
y−y¦

)‖2 ≤ δ2‖ Π
ran(C)

(
z−z¦

)‖2 (3.26a)

Π
ker(CT)

(
y−y¦

)= Π
ker(CT)

(
z−z¦

)
(3.26b)

‖z−z¦‖2 ≤ 1, (3.26c)

where y¦ = RT1,ρ (z¦) and in the objective we have exploited the orthogonality of ran(PC)
and ker

(
CT P

)
. The constraints of (3.26) increase the feasible sets of y and ẑ while includ-

ing the true updates due to RT1,ρ as special cases.
The constraints (3.26a), (3.26b) and (3.26c) collectively define the feasible set of the

vectors y−y¦. We can further simplify (3.26) by considering the form of this feasible set.
In particular, as (3.26c) denotes a sphere, the constraints (3.26a) and (3.26b) restrict the
vectors y−y¦ to lie in an ellipsoid given by

y−y¦ ∈
{(
δ Π

ran(C)
+ Π

ker(CT)

)
u | ‖u‖ ≤ 1

}
.

By defining the additional variable u = z−z¦, the optimization problem in (3.25) is there-
fore equivalent to

max
u

‖
(
δ Π

ran(PC)
+ Π

ker(CT P)

)(
δ Π

ran(C)
+ Π

ker(CT)

)
u‖2

s.t. ‖u‖2 ≤ 1,u ∈ ran(PC)+ ran(C) , (3.27)

where the additional domain constraint stems from the definition of z¦. In the following
we demonstrate how (3.27) exhibits an analytic expression for γ, ultimately allowing us
to form our primal convergence rate bound.

3.5.5. RELATIONSHIP WITH THE METHOD ALTERNATING OF PROJECTIONS

To compute the contraction factor γ in (3.24), we can exploit the relationship between
(3.27) and the method of alternating projections. Optimal rate bounds for generaliza-
tions of the classic alternating projections algorithm has been an area of recent attention
in the literature with two notable papers on the subject being [88] and [89]. Our analysis
below follows in the spirit of these methods.

3

70 3. THE PRIMAL-DUAL METHOD OF MULTIPLIERS: A MONOTONE PERSPECTIVE

Consider the particular operator from Eq. (3.27),

G=
(
δ Π

ran(PC)
+ Π

ker(CT P)

)(
δ Π

ran(C)
+ Π

ker(CT)

)
.

Given the domain constraint also from (3.27), it follows that γ corresponds to the largest
singular value of the matrix Π

ran(C)+ran(PC)
GTG Π

ran(C)+ran(PC)
. We can therefore compute γ

by taking advantage of the structure of G. In particular, from [89], there exists an or-
thonormal matrix D such that

Π
ran(C)

= D

I 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

DT , Π

ran(PC)
= D

cos2 (θ) cos(θ)sin(θ) 0 0
cos(θ)sin(θ) sin2 (θ) 0 0

0 0 I 0
0 0 0 0

DT ,

where cos(θ) and sin(θ) denote diagonal matrices of the cosines and sines of the prin-
cipal angles between ran(C) and ran(PC), respectively. It follow that for the considered
operator

G=D

δ2+δ(1−δ)sin(θ)2 −(1−δ)cos(θ)sin(θ)2 0 0
−δ(1−δ)cos(θ)sin(θ) (1−δ)cos(θ)2 +δ 0 0

0 0 δI 0
0 0 0 I

DH .

Note that the bottom right identity matrix corresponds to those vectors that lie outside
our feasible set.

Given the structure ofG and the diagonal nature of C and S , it follows that γ is either
given by δ or by σmax of any of the two by two submatrices

Gi =
[
δ2 +δ(1−δ)sin(θi)2 −(1−δ)cos(θi)sin(θi)

−δ(1−δ)cos(θi)sin(θi) δ+ (1−δ)cos(θi)2

]
,

where θi ∈ (0, π2] is the i th principal angle. The singular values of such a submatrix can
be computed via the following lemma.

Lemma 3.5.2. The singular values of Gi are given by

σ (Gi)=

√√√√
δ2+(1−δ2)cos(θi)

(
(1−δ2)cos(θi)

2
±

√
(1−δ2)2 cos(θi)2

4
+δ2

)
.

The proof for this lemma can be found in Appendix 3.E. As the singular values are
a nondecreasing function of cos(θi) and thus a nonincreasing function of θi , it follows
that

γ= max{δ, {σmax (Gi) ∀i }} =σmax (GF) . (3.28)

Here GF refers to the submatrix associated with the smallest non-zero principal angle
θF , which is referred to as the Friedrichs angle. Therefore, given δ and cos(θF),

γ=

√√√√
δ2+(1−δ2)cos(θF)

(
(1−δ2)cos(θF)

2
+

√
(1−δ2)2 cos(θF)2

4
+δ2

)
.

3.6. NUMERICAL EXPERIMENTS

3

71

3.5.6. FROM AN AUXILIARY ERROR BOUND TO A GEOMETRIC PRIMAL CON-
VERGENCE BOUND

Using (3.28), our primal convergence bound can finally be constructed. For two-step
PDMM we already know that

‖z(k+2) −z¦‖2 ≤ γ2‖z(k) −z¦‖2.

By recursively applying this result, it follows that, for even k,

‖z(k+1) −TP,ρ
(
z¦

)‖2 ≤γk‖z1 −TP,ρ
(
z¦

)‖2

≤γk‖z0 −z¦‖2,

so that the projected auxiliary error of PDMM satisfies

‖z(k+2) −z¦‖2 ≤γk+2 ‖z0 −z¦‖2

γ
. (3.29)

By applying (3.21) to (3.29), the final primal bound is given by

‖x(k+1) −x∗‖2 ≤σ
2
max (C)

µ2 ‖z(k) −z¦‖2 (3.30)

≤γk+2σ
2
max (C)

µ2γ
‖z(0) −z¦‖2

The primal error ‖x(k+2)−x∗‖2 is therefore upper bounded by a geometrically contracting
sequence and thus converges at a geometric rate. To the best of the authors knowledge,
this is the fastest rate for PDMM proven within the literature.

3.6. NUMERICAL EXPERIMENTS
In this section, we verify the analytical results of Section 3.4 and 3.5 with numerical ex-
periments. These results are broken down into two subsections: the convergence of
PDMM for strongly convex and differentiable functions and the geometric convergence
of PDMM for strongly convex functions with Lipschitz continuous gradients.

3.6.1. PDMM FOR STRONGLY CONVEX AND DIFFERENTIABLE FUNCTIONS
The first set of simulations validate the sufficiency of strong convexity and differentiabil-
ity to guarantee primal convergence, as introduced in Section 3.4. For these simulations,
as testing all such functions would be computationally infeasible, we instead consid-
ered the family of m-th power of m-norms for m ∈ {3,4,5, · · · } combined with an additive
squared Euclidean norm term to enforce strong convexity. The prototype problem for
these simulations is given by

min
x

∑

i∈V

(‖xi −ai‖m
m +µ‖xi −ai‖2)

s.t. xi −x j = 0 ∀(i , j) ∈ E ,

3

72 3. THE PRIMAL-DUAL METHOD OF MULTIPLIERS: A MONOTONE PERSPECTIVE

where ai are local observation vectors, µ controls the strong convexity parameter and,
for simplicity, edge based consensus constraints were chosen.

An N = 10 node undirected Erdős-Rényi network [90] was considered for these simu-
lations. Such networks are randomly generated graphs where ∀ i , j ∈V \ i , there is equal
probability that (i , j) ∈ E . This probability determines the density of the connectivity in

the network and in this case was set to log(N)
N . The resulting network had 12 undirected

edges and was verified as forming a single connected component as per the assump-
tions in Section 3.3. Additionally, a randomly generated initial z(0) was also used for all
problem instances. Finally the strong convexity parameter was set to µ= 10−3.

For m = 3, · · ·10, 150 iterations of PDMM were performed and the resulting primal
error computed. The squared Euclidean distance between the primal iterates and the
primal optimal set was used as an error measure. Figure 3.2 demonstrates the conver-
gence of this error with respect to iteration count. For each m the step sizes ρ were
empirically selected to optimize convergence rate. Note that the finite precision stems

0 50 100 150

10
-15

10
-10

10
-5

10
0

m=3

m=4

m=5

m=6

m=7

m=8

m=9

m=10

Figure 3.2: The primal convergence of different m-normm consensus problem for a 10 node Erdős-Rényi net-
work.

from the use of MATLABs fminunc function.

Figure 3.3 further demonstrates that the choice of ρ does not effect the guarantee of
convergence which in this instance was modeled via the number of iterations required
to reach an auxiliary precision of 1e−5. This measure was chosen as the auxiliary error
is monotonically decreasing with iteration count. In contrast the primal error need not
satisfy this point, as can be observed in Figure 3.2. Note that while there is a clear vari-
ation in the rate of convergence for different choices of ρ, the guarantee of convergence
of the algorithms are unaffected.

3.6.2. GEOMETRIC CONVERGENCE OF PDMM FOR STRONGLY CONVEX AND

SMOOTH FUNCTIONS

The final simulations verify the geometric bound from Section 3.5 by comparing the con-
vergence of multiple problem instances to (3.30). Specifically, 104 random quadratic op-

3.6. NUMERICAL EXPERIMENTS

3

73

10
0

10
1

10
2

10
3

10
4

10
5

20

40

60

80

m=3

m=4

m=5

m=6

m=7

m=8

m=9

m=10

Figure 3.3: A comparison to the required iterations for ‖z(k) − z¦‖2 ≤ 1e−5 for various step sizes
(
ρ
)
. The step

size is plotted on a log scale to better demonstrate the convergence characteristics of the different problems.

timisation problems were generated, each of the form

min
x

∑

i∈V

(
1

2
xT

i Qi xi −qT
i xi

)

s.t. xi −x j = 0 ∀(i , j) ∈ E .

For each problem, the local variables were configured so that xi ∈ R3 ∀i ∈ V and the
resulting objective was paired with a random 10 node Erdős-Rényi network. The con-

nection probability of each network was set to log(N)
N and the networks were verified as

forming single connected components.

For each problem instance, the matrices Qi º 0 were generated in such a way that
a constant convergence rate bound was achieved. In this case the contraction factor of
this rate bound was specified as γ = 0.9. Furthermore, the initial vector z(0) was gener-
ated randomly and for each the associated z¦ was computed as per Eq. (3.16). This ran-

domization procedure was implemented so that
σ2

max(C)
µ2γ

‖z(0) −z¦‖2 = 1 for all instances.

For each problem instance, a total of 120 iterations of PDMM, were performed and
the auxiliary errors, ‖z(k)−z¦‖2 for k even and ‖z(k)−TP,ρ (z¦)‖2 for k odd, were computed.
The distribution of the resulting data is demonstrated in Figure 3.4 which highlights the
spread of the convergence curves across all problem instances.

As expected, (3.29) provides a strict upper bound for all problem instances, with the
smoothness of the curves stemming from the linear nature of the PDMM update equa-
tions. Furthermore, the rate of the worst case sequence (100% quantile) does not exceed
that of the bound. Interestingly, while (3.29) holds for the worst case functions, most
problem instances exhibit far faster convergence. This suggests that, for more restrictive
problem classes, stronger bounds may exist.

3

74 3. THE PRIMAL-DUAL METHOD OF MULTIPLIERS: A MONOTONE PERSPECTIVE

20 40 60 80 100

10
-20

10
-10

10
0

Bound

100%

75%

50%

25%

0%

Figure 3.4: Convergence of simulated PDMM problem instances. From top to bottom, the solid green line
denotes the convergence rate bound while the remaining 5 lines denote the 100%, 75%, 50%, 25% and 0%
quantiles respectively.

3.7. CONCLUSIONS
In this chapter we have presented a novel derivation of the node-based distributed al-
gorithm termed the primal-dual method of multipliers (PDMM). Unlike existing efforts
within the literature, monotone operator theory was used for this purpose, providing
both a succinct derivation for PDMM while highlighting the relationship between it and
other existing first order methods such as PR splitting and ADMM. Using this derivation,
primal convergence was demonstrated for strongly convex, differentiable functions and,
in the case of strongly convex functions with Lipschitz continuous gradients, a geomet-
ric primal convergence bound was presented. This is despite the loss of a full row-rank
assumption required by existing approaches and is a first for PDMM. In conclusion, the
demonstrated results unify PDMM with existing solvers in the literature while providing
new insight into its operation and convergence characteristics.

APPENDICES

3.A. PROOF OF LEMMA 3.3.1
As RT1,ρ = 2JT1,ρ − I, we begin by defining a method for computing the update λ(k+1) =
JT1,ρ

(
z(k)

)
. Firstly, by the definition of the resolvent,

λ(k+1) = (
I+ρT1

)−1
(
z(k)

)

λ(k+1) ∈ z(k) −ρT1

(
λ(k+1)

)
.

From the definition of the operator T1, it follows that

λ(k+1) ∈ z(k) −ρ
(
C∂ f ∗

(
CTλ(k+1)

)
−d

)
.

Let x ∈ ∂ f ∗ (
CTλ

)
. For f ∈ Γ0, it follows from Proposition 16.10 [34], that x ∈ ∂ f ∗ (

CTλ
) ⇐⇒

∂ f (x) 3 CTλ so that

λ(k+1) = z(k) −ρ
(
Cx(k+1) −d

)

CTλ(k+1) ∈ ∂ f
(
x(k+1)

)
.

(3.31)

Thus, x(k+1) can be computed as

x(k+1) =argmin
x

(
f (x)−〈CT z(k),x〉+ ρ

2
||Cx−d||2)

Combining (3.31) with the fact that y(k+1) = (
2JT1,ρ − I

)(
z(k)

)
completes the proof. �

3.B. PROOF OF LEMMA 3.3.2
As RT2,ρ = 2JT2,ρ − I, we again begin by defining a method for computing the update
JT2,ρ

(
y(k+1)

)
,

From [84, Eq. 1.3], the resolvent of ιker(I−P), is given by

JT2,ρ

(
y(k+1)

)
= Π

ker(I−P)
y(k+1).

It follows that the reflected resolvent can be computed as

z(k+1) =
(
2 Π

ker(I−P)
− I

)
y(k+1) = Py(k+1),

completing the proof. �

75

3

76 3. THE PRIMAL-DUAL METHOD OF MULTIPLIERS: A MONOTONE PERSPECTIVE

3.C. PROOF OF LEMMA 3.4.1
Reconsider the auxiliary PDMM updates given in Eq. (3.8). Substituting (3.8) into (3.15),
it follows that

‖z(k+1) −z∗‖2 =‖P
(
z(k) −z∗−2ρC

(
x(k+1) −x∗

))
‖2

=‖z(k) −z∗−2ρC
(
x(k+1) −x∗

)
‖2

= ‖z(k) −z∗‖2−4ρ 〈λ(k+1) −λ∗,C
(
x(k+1) −x∗

)
〉

≤‖z(k) −z∗‖2, (3.32)

where the penultimate line uses the dual update in Lemma 3.3.1 and the final line uses
the nonexpansiveness of TP,ρ .

As CTλ=∇ f (x) (3.31), by Definition 3.4.3 it follows that,

〈λ1 −λ2,C (x1 −x2)〉 ≥µ‖x1 −x2‖2

∀x1 6= x2, Π
ran(C)

(λ1) 6= Π
ran(C)

(λ2) . (3.33)

Recursively applying (3.32) and by using (3.33), it follows that

lim
k→∞

4ρ
k∑

i=1
µ‖x(i) −x∗‖2 ≤ ‖z(0) −z∗‖2− lim

k→∞
‖z(k) −z∗‖2

so that
(‖x(k)−x∗‖2

)
k∈N is finitely summable. If

(‖x(k) −x∗‖2
)

k∈N is non-zero infinitely

often then lim
k→∞

‖x(k) −x∗‖2 = 0 and thus lim
k→∞

x(k) = x∗.

To demonstrate this point note that if ∃k | x(k+2) = x(k+1) = x∗ then by the two-step
PDMM update given in (3.14), z(k+2) = z(k). Thus, ∀M ≥ 1 the same primal updates will
be computed so that x(k+M) = x(k+M−1) = x∗.

Any z(k) which produces two successive primal optimal updates therefore guarantees
primal convergence. Thus, given our assumptions on f , any sequence which does not
guarantee primal convergence in finite iterations has to be non-zero infinitely often so
that lim

k→∞
x(k) = x∗. As ∇ f is single-valued, it also follows that lim

k→∞
Π

ran(C)

(
λ(k)

)= Π
ran(C)

(λ∗).

�

3.D. PROOF OF LEMMA 3.5.1
Under the assumption that f ∈ Γ0 is µ-strongly convex and ∇ f is β-Lipschitz, from The-
orem 18.15 [34], f ∗ is both 1

β -strongly convex and 1
µ -smooth. It follows that ∇ f ∗ is both

1
β strongly monotone and 1

µ Lipschitz continuous.

In the case of (i), due to the Lipschitz continuity of ∇ f ∗

||C(∇ f ∗(CT z1)−∇ f ∗(CT z2)
) || ≤σmax (C) ||∇ f ∗(CT z1)−∇ f ∗(CT z2)||

≤ σmax (C)

µ
||CT (z1 −z2) ||

≤ σ2
max (C)

µ
||z1 −z2||,

3.E. PROOF OF LEMMA 3.5.2

3

77

Therefore, C∇ f ∗(CT •) is σmax(C)2

µ -Lipschitz continuous. In the case of (ii), due to the

strong monotonicity of ∇ f ∗

〈C
(∇ f ∗(CTz1)−∇ f ∗(CTz2)

)
,z1−z2〉 ≥ ||CT (z1−z2) ||2

β
.

For all z1,z2 ∈ ran(C) it follows that

||CT (z1 −z2) ||2
β

≥
σ2

min6=0 (C) ||z1 −z2||2
β

,

completing the proof. �

3.E. PROOF OF LEMMA 3.5.2
Consider the two by two matrix

Gi =
[
δ2 +δ(1−δ)sin(θi)2 −(1−δ)cos(θi)sin(θi)

−δ(1−δ)cos(θi)sin(θi) δ+ (1−δ)cos(θi)2.

]

The squared singular values of this matrix are given by the eigenvalues of the matrix

GT
i Gi =

[
δ4 +δ2(1−δ2)sin(θi)2 −δ(1−δ2)cos(θi)sin(θi)

−δ(1−δ2)cos(θi)sin(θi) δ2 + (1−δ2)cos(θi)2.

]
(3.34)

The eigenvalues of (3.34) can be computed via its trace and determinant. With some
manipulation, these are given by

tr
(
GT

i Gi
)=2δ2 + (1−δ2)2 cos(θi)2, det

(
GT

i Gi
)= δ4.

It follows that the squared singular values of Gi are given by

σ2 (Gi) = tr
(
GT

i Gi
)

2
±

√
tr

(
GT

i Gi
)2

4
−det

(
GT

i Gi
)

= δ2 + (1−δ2)cos(θi)

(
(1−δ2)cos(θi)

2
±

√
(1−δ2)2 cos(θi)2

4
+δ2

)
,

completing the proof. �

4
GUARANTEEING THE

CONVERGENCE OF PDMM VIA

PRIMAL REGULARIZATION

Thomas Sherson

“The more that you read, the more things you will know.
The more that you learn, the more places you’ll go.”

Dr. Seuss

As the primal dual method of multipliers (PDMM) cannot be guaranteed to converge for
all closed, convex and proper functions, in this chapter we present a modified PDMM al-
gorithm to address this point. Specifically, we demonstrate how by introducing an addi-
tional regularization term into the computation of the primal variables we can guarantee
that they converge to an optimal state. Furthermore, we show how this modification can
be motivated from the perspective of monotone operator theory which again provides
the basis for our convergence analysis. This chapter is therefore best viewed as a supple-
ment to Chapter 3 by providing a means to improves the generality of the problems to
which PDMM can be applied.

79

4

80 4. GUARANTEEING THE CONVERGENCE OF PDMM VIA PRIMAL REGULARIZATION

4.1. ORGANIZATION OF THE CHAPTER

This chapter is arranged as follows. In Section 4.2 we introduce appropriate nomencla-
ture to support the remainder of the text. Section 4.3 introduces a modified version of the
primal dual method of multipliers based on a primal-dual reformulation. In Section 4.4,
we then demonstrate the sufficiency of this modification to guarantee the convergence
of the primal variables to an optimal state. Section 4.5 then verifies this convergence in
the case of a distributed L1 optimization problem which is also know to not be guaran-
teed to converge for the standard PDMM algorithm. Finally, in Section 4.6 we draw our
conclusions for the chapter.

4.2. NOMENCLATURE

In this work we denote by R the set of real numbers, by RN the set of real column vectors
of length N and by RM×N the set of M by N real matrices. Let X ,Y ⊆ RN . A set valued
operator T : X →Y is defined by its graph, gra(T) = {(

x,y
) ∈X ×Y | y ∈ T (x)

}
. Similarly,

the notion of an inverse of an operator T−1 is defined via its graph so that gra
(
T−1

) ={(
y,x

) ∈Y ×X | y ∈ T (x)
}
. JT,ρ = (

I+ρT
)−1 denotes the resolvent of an operator while

RT,ρ = 2JT,ρ − I denotes the reflected resolvent (Cayley operator).

4.3. MODIFYING THE PDMM ALGORITHM

The aim of this section is to devise a simple modification to the PDMM algorithm to
address its lack of convergence for general closed, convex and proper functions. Specif-
ically, we want to introduce a modification that doesn’t impact on the distributability of
the method, i.e. one that does not introduce any additional sharing of information be-
tween nodes. The obvious area to incorporate such a modification is in the computation
of the primal variables x(k+1). For the sake of completeness, an equivalent version of
the PDMM algorithm, originally proposed in Chapter 3 is provided in Algorithm 3. This
equivalent form of the algorithm is adopted as it more naturally facilitates the analysis
undertaken in the remainder of this chapter.

An interesting point we can note about the standard PDMM algorithm is that after
each dual update λ(k+1)

i | j , all information regarding the primal variables x(k+1)
i is essen-

tially discarded. However, these primal iterates represent an estimate of the optimal pri-
mal variables at each node based on the current information available to them at each
iteration. One can therefore think that adding some additional form of primal regular-
ization which penalizes deviation between primal iterates may aid in achieving conver-
gence by exploiting this information. In this work, we consider the use of a standard
squared Euclidean norm of the form ‖x− x(k)‖2 for this regularization. Such a modifi-
cation is also attractive as it is inherently local to each node and as such introduces no
additional communication between nodes. As we show in the later portion of this chap-
ter, this concept not only proves to be sufficient to guarantee primal optimality but can
also be derived from monotone operator theory as well.

4.3. MODIFYING THE PDMM ALGORITHM

4

81

Algorithm 3 Distributed PDMM

1: Initialize: z(0) ∈RME

2: for k=0,..., do
3: for all i ∈V do . Primal Update

4: x(k+1)
i = argmin

xi

(
fi (xi)+ ∑

j∈N (i)

(
−

〈
AT

i | j z(k)
i | j ,xi

〉
+ ρ

2

∥∥∥Ai | j xi − bi j

2

∥∥∥
2
))

5: for all j ∈N (i) do . Dual Update

6: λ(k+1)
i | j = z(k)

i | j −ρ
(
Ai | j x(k+1)

i − bi j

2

)

7: y(k+1)
i | j = 2λ(k+1)

i | j −z(k)
i | j

8: end for
9: end for

10: for all i ∈V , j ∈N (i) do . Transmit Variables

11: Node j ← Nodei

(
y(k+1)

i | j
)

12: end for
13: for all i ∈V , j ∈N (i) do . Auxiliary Update
14: z(k+1)

i | j = y(k+1)
j |i

15: end for
16: end for

4.3.1. FROM A PROTOTYPE OPTIMIZATION PROBLEM TO EQUIVALENT DUAL

FORM
To derive the proposed modified algorithm we begin by mimicking the derivation of
PDMM provided in Chapter 3. Firstly, consider a simple, undirected network consist-
ing of N nodes. The associated graphical model of this network is given by G(V ,E) where
V = {1, ..., N } and E denote the set of nodes and undirected edges respectively. Assume
that each node is equipped with a function fi ∈ Γ0

(
RMi

) ∀i ∈ V parameterized by a lo-
cal variable xi ∈ RMi . Here Γ0 is used to denote the set of closed, convex and proper
functions. Under this model, consider solving the following optimization problem in a
distributed manner.

min
xi ∀ i∈V

∑

i∈V
fi (xi) s.t Ai | j xi +A j |i x j = bi j ∀ (i , j) ∈ E . (4.1)

Here Ai | j ∈RMi , j ×Mi and bi j ∈RMi , j . Furthermore, let MV =∑
i∈V Mi and ME =∑

(i , j)∈E Mi , j .
Note the distinction between the subscripts i | j and i j . The prior is a directional identi-
fier used to denote the directed edge from node i to node j , while the later is an undi-
rected identifier.

The associated Lagrange dual [48] of (4.1) is given by

min
ν

∑

i∈V

(
f ∗

i

(
∑

j∈N (i)
AT

i | jνi j

)
− ∑

j∈N (i)

bi j

2

T

νi j

)
, (4.2)

where each νi j ∈ RMi , j denotes the dual vector variable associated with the constraint
function along edge (i , j), N (i) = { j ∈ V | (i , j) ∈ E } is the set of neighbors of node i

4

82 4. GUARANTEEING THE CONVERGENCE OF PDMM VIA PRIMAL REGULARIZATION

and f ∗
i is the Fenchel conjugate of fi . By inspection, each νi j in (4.2) is utilized in two

conjugate functions, f ∗
i and f ∗

j resulting in a coupling between neighboring nodes.

To address the linking of the objective terms, the dimension of the dual problem can
be lifted by introducing additional directed edge variables λi | j and λ j |i . These are then
constrained so that at optimality λi | j = λ j |i , leading to what we term as the extended
dual of Eq (4.1)

min
λ

∑

i∈V

(
f ∗

i

(
∑

j∈N (i)
AT

i | jλi | j

)
− ∑

j∈N (i)

bi j

2

T

λi | j

)

s.t. λi | j =λ j |i ∀i ∈V , j ∈N (i).

(4.3)

We denote byλ the stacked vector of allλi | j . The ordering of this stacking is given by
1|2 < 1|3 < ·· · < 1|N < 2|1 < 2|3 < ·· · < N |N −1. In the case of a fully connected network
the vector λ ∈RME is given by

λ= [
λ1|2; · · · ;λ1|N ;λ2|1; · · · ,λN |N−1

]
.

For the primal constraints we introduce the matrix C ∈ RME×MV and vector d ∈ RME

where in the case of a fully connected network

C =

C1 · · · 0
...

. . .
...

0 · · · CN

 , d = [

d1;d2; · · · ;dN
]

Ci =
[
Ai |1;Ai |2; · · · ;Ai |i−1;Ai |i+1; · · · ;Ai |N

]∀i ∈V

di = 1

2

[
bi 1;bi 2; · · · ;bi (i−1);bi (i+1);bi 2; · · · ;bi N

]∀i ∈V.

For other network topologies the unnecessary rows ofλ, C and d, corresponding to non-
existent edges, can be removed.

We further introduce the symmetric permutation matrix P that maps between each
pair of variables λi | j and λ j |i so that the constraints in (4.3) can be rewritten as λ= Pλ.
Finally, we define the function

f : RMV 7→R, x 7→ ∑

i∈V
fi (xi),

as the sum of all local functions where RMV = RM1 ×RM2 × ...×RMN . It follows that (4.3)
is equivalent to

min
λ

f ∗(CTλ)−dTλ+ ιker(I−P) (λ) , (4.4)

where ιker(I−P) is the indicator function of the edge based constraints defined as

ιker(I−P)(y) =
{

0 (I−P)y = 0

+∞ otherwise.

4.3. MODIFYING THE PDMM ALGORITHM

4

83

4.3.2. FROM AN UNCONSTRAINED OPTIMIZATION PROBLEM TO A NONEX-
PANSIVE OPERATOR

From the unconstrained optimization problem in (4.4) we now introduce a method of
solving (4.1) in a distributed manner. Unlike the standard PDMM algorithm we shall do
so via a primal-dual interpretation which ultimately can be shown to naturally introduce
the primal regularization alluded to at the onset of this section.

The first step in forming the aforementioned primal-dual reformulation is to recast
(4.4) as an equivalent monotonic inclusion. To achieve this, we can note that as the oper-
ator I−P is continuous, ker(I−P) is a closed subspace. It follows from [34] (Example 1.25)
that ιker(I−P) ∈ Γ0. By combining this point with Theorem 13.37 and Proposition 13.3,
both of [34], and the assumption that f ∈ Γ0, it follows that (4.4) is an unconstrained op-
timization problem of a closed, proper and convex function. By Fermat’s Rule (Theorem
16.3) [34], it follows that a point λ∗ is a minimizer of (4.4) if and only if

0 ∈ C∂ f ∗ (
CTλ

)−d+∂ιker(I−P) (λ) , (4.5)

where ∂ιker(I−P) is a normal cone operator [47].
Equivalently this can be rephrased in a primal-dual monotonic inclusion form by

noting the equivalence of (4.5) and

0 ∈Cx−d+∂ιker(I−P) (λ) , x ∈ ∂ f ∗ (
CTλ

)
.

Due to the relationship between the subdifferential of conjugates of CCP functions and
their inverses, by introducing the scalar β, it can be shown that

0 ∈Cx−d+∂ιker(I−P) (λ) , 0 ∈β(
∂ f (x)−CTλ

)
,

where we restrict β ∈ (0,+∞). With some manipulation, this set of monotonic inclusions
can be rewritten in the concise form

0 ∈
[

0 C
−βCT β∂ f

][
λ

x

]
−

[
d
0

]
+

[
∂δ(I−P) 0

0 0

][
λ

x

]
. (4.6)

The modified algorithm proposed in this chapter aims to solve (4.6) via operator splitting
methods. For compactness in the following sections, we define the two operators

T1

([
λ

x

])
=

[
0 C

−βCT β∂ f

][
λ

x

]
−

[
d
0

]
, T2

([
λ

x

])
=

[
∂δ(I−P) 0

0 0

][
λ

x

]
.

Before moving to the algorithm itself, firstly we will demonstrate a space for which
the aforementioned operators are monotone. For this purpose, we define the metric

I =
[
βI 0
0 I

]

which defines an inner product space with inner product
〈

x,y
〉
I = xT I y and induced

norm ‖y‖I =
√

yT I y. It follows that, given two vectors z1, z2,

〈
T1

([
λ1

x1

])
−T1

([
λ2

x2

])
,

[
λ1

x1

]
−

[
λ2

x2

]〉

I

=β〈
∂ f (x1)−∂ f (x2) ,x1 −x2

〉≥ 0,

4

84 4. GUARANTEEING THE CONVERGENCE OF PDMM VIA PRIMAL REGULARIZATION

where the inequality follows from the monotonicity of ∂ f such that T1 is monotone in
the proposed space. Futhermore, given the same two vectors, it follows that

〈
T2

([
λ1

x1

])
−T2

([
λ2

x2

])
,

[
λ1

x1

]
−

[
λ2

x2

]〉

I

=β〈
∂δ(I−P) (λ1)−∂δ(I−P) (λ2) ,λ1 −λ2

〉≥ 0,

such that T2 is also monotone. The maximality of both operators follows from the maxi-
mality of the original operators.

As the summation of two maximal monotone operators, it follows that (4.6) can be
solved via a number of classic monotone splitting methods. Whilst not strictly guar-
anteed to converge for general maximal monotone operators, in an effort to mimic the
derivation of PDMM, in this case we will consider applying Peaceman-Rachford split-
ting to (4.6). Using the results of Section 2.4.2, it follows that (4.6) can be equivalently
expressed by the fixed point inclusion

[
zλ
zx

]
= Rρ,T2 ◦Rρ,T1

([
zλ
zx

])
,

[
zλ
zx

]
= Jρ,T2 ◦Rρ,T1

([
λ

x

])
, (4.7)

where the operators Rρ,T1 and Rρ,T2 are non-expansive with respect to the inner product
space induced by the metric I . The introduced vectors zλ and zx are auxiliary variables
associated with λ and x respectively.

As demonstrated in Chapter 2, PR splitting is in general not sufficient for guaran-
teed convergence. Whilst operator averaging, such as that used in Douglas-Rachford
splitting is commonly used to address this, it can also reduce the convergence rate of an
algorithm, essentially acting as a sort of compromise between new and old iterates. In
this work we demonstrate a hybrid type approach which aims to address this point by
providing guaranteed convergence whilst only introducing an averaging over the primal
variables of (4.7). From a distributed perspective, the motivation for this approach is
that like the original PDMM algorithm we can show that any edge based operations are
purely exchanges of information within the network and thus do not require any direct
collaboration between nodes. The resulting iterative approach is given by

[
z(k+1)
λ

z(k+1)
x

]
=

([
0 0
0 1

2 I

]
+

[
I 0
0 1

2 I

]
Rρ,T2 ◦Rρ,T1

)([
z(k)
λ

z(k)
x

])

4.3.3. SIMPLIFYING THE COMPUTATION OF REFLECTED RESOLVENTS
To allow for the computation of the iterative algorithm defined above we introduce the
two following Lemmas which facilitate the computation of the reflected resolvents.

Lemma 4.3.1.

Rρ,T1

([
z(k)
λ

z(k)
x

])
=

[
z(k)
λ

z(k)
x

]
= 2

[
λ(k)+1

x(k+1)

]
−

[
z(k)
λ

z(k)
x

]
,

where

x(k+1) =argmin
x

(
f (x)−

〈
CT z(k)

λ
,x

〉
+ ρ

2
‖Cx−d‖2 + 1

2ρβ

∥∥∥x−z(k)
x

∥∥∥
2
)

λ(k+1) =z(k)
λ

−ρ
(
Cx(k+1) −d

)
, y(k+1)

λ
= 2λ(k+1) −z(k), y(k+1)

x = 2x(k+1) −z(k)
x

4.4. ON THE GUARANTEED CONVERGENCE OF THE M-PDMM ALGORITHM

4

85

The proof of this Lemma can be found in Appendix 4.A

Lemma 4.3.2.

Rρ,T2

([
y(k+1)
λ

y(k+1)
x

])
=

[
z(k+1)
λ

z(k+1)
x

]
=

[
P 0
0 I

][
y(k+1)
λ

y(k+1)
x

]
,

The proof for this Lemma can be found in Appendix 4.B

4.3.4. THE MODIFIED PDMM ALGORITHM (M-PDMM)
By applying Lemmas 4.3.1 and 4.3.2 and defining the scalar variable γ= 1

ρβ , the modified
PDMM scheme is summarized in Algorithm 4.

Algorithm 4 Modified PDMM (m-PDMM)

1: Initialise: z(0) ∈RME

2: for k=0,..., do

3: x(k+1) = argmin
x

(
f (x)−

〈
CT z(k)

λ
,x

〉
+ ρ

2 ‖Cx−d‖2 + γ
2

∥∥∥x−z(k)
x

∥∥∥
2
)

4: λ(k+1) = z(k)
λ

−ρ (
Cx(k+1) −d

)

5: y(k+1)
λ

= 2λ(k+1) −z(k)

6: y(k+1)
x = 2x(k+1) −z(k)

x
7: z(k+1)

λ
= Py(k+1)

λ

8: z(k+1)
x = 1

2

(
y(k+1)

x +z(k)
x

)
= x(k+1).

9: end for

Aside from the introduction of the additional auxiliary zx variables, the only distinc-
tion between the standard PDMM (Algorithm 3) and the proposed modification (Algo-
rithm 4) is the inclusion of the additional primal regularization alluded to at the begin-
ning of this chapter. The proposed approach also provides flexibility in how this reg-
ularization is utilized through the inclusion of the additional parameter γ. As with the
stepsize parameter ρ, the choice of γ has a dramatic effect on the convergence of the al-
gorithm as it directly controls the influence that the primal regularization plays at each
iteration. Importantly, so long as γ> 0 we demonstrate in the coming sections, that this
modification is sufficient to guarantee that the algorithm converges to a primal optimal
point.

4.4. ON THE GUARANTEED CONVERGENCE OF THE M-PDMM
ALGORITHM

We now move to demonstrating the convergence characteristics of the modified PDMM
algorithm (m-PDMM) for the general case of CCP functions. Notably, this proof is broken
down into four key stages which are ultimately combined to ensure that a primal optimal
point is obtained. These stages are outlined in the coming subsections.

4

86 4. GUARANTEEING THE CONVERGENCE OF PDMM VIA PRIMAL REGULARIZATION

4.4.1. CONVERGENCE OF THE PRIMAL VARIABLES TO A LIMIT STATE
The first step in the convergence proof is to verify that the primal variables x converge to
a fixed vector. To demonstrate this fact, we begin by defining the matrix

Ĩ =
[
βI 0
0 2I

]
.

We will use this matrix as a metric for a new quadratic form ‖x‖2
Ĩ
= xT Ĩ x. Furthermore

we will assume that there exists a z∗ ∈ fix
(
Rρ,T2 ◦Rρ,T1

)
i.e. that the auxiliary fixed point

set is non-empty. Here, z∗ = [
z∗T
λ

,z∗T
x

]T
is used to denotes the stacked vector of aux-

iliary variables. Similarly, from here on out z = [
zT
λ

,zT
x

]T
will be used to denote other

such stacked vectors. Using these definitions and by applying the m-PDMM algorithm
it follows that for any given iteration k, that

∥∥∥z(k+1) −z∗
∥∥∥

2

Ĩ
=β

∥∥∥z(k+1)
λ

−z∗λ
∥∥∥

2 +2
∥∥∥z(k+1)

x −z∗x
∥∥∥

2

≤β
∥∥∥z(k+1)

λ
−z∗λ

∥∥∥
2 +

∥∥∥y(k+1)
x −z∗x

∥∥∥
2 +

∥∥∥z(k)
x −z∗x

∥∥∥
2 − 1

2

∥∥∥y(k+1)
x −z(k)

x

∥∥∥
2

where in the first line we have used the definition of Ĩ , in the second line we have used
the averaged nature of the zx variables and the inequality in (2.2). As y(k+1)

x = z(k+1)
x from

the definition of the primal variables, it therefore follows that

∥∥∥z(k+1) −z∗
∥∥∥

2

Ĩ
≤

∥∥∥z(k+1) −z∗
∥∥∥

2

I
+

∥∥∥z(k)
x −z∗x

∥∥∥
2 − 1

2

∥∥∥y(k+1)
x −z(k)

x

∥∥∥
2

≤
∥∥∥z(k) −z∗

∥∥∥
2

I
+

∥∥∥z(k)
x −z∗x

∥∥∥
2 − 1

2

∥∥∥y(k+1)
x −z(k)

x

∥∥∥
2

≤
∥∥∥z(k) −z∗

∥∥∥
2

Ĩ
− 1

2

∥∥∥y(k+1)
x −z(k)

x

∥∥∥
2

=
∥∥∥z(k) −z∗

∥∥∥
2

Ĩ
−2

∥∥∥x(k+1) −x(k)
∥∥∥

2
,

where in the second line we have used the nonexpansiveness of the m-PDMM updates
in the metric space defined by I , in the third line we have used the definition of Ĩ and
the final inequality stems from the primal x updates in Algorithm 4.

It follows from [34, Definition 5.1] that the auxiliary updates (z(k+1)) are Fejér Mono-

tone with respect to z∗ and furthermore that the sequence
(∥∥x(k+1) −x(k)

∥∥2
)

k∈N
is finitely

summable and converges. We therefore find that for any sequence of primal variable(
x(k)

)
k∈N generated by the m-PDMM algorithm that ∃x̃ | x(k) → x̃. In other words, regard-

less of initialization, the primal variables of the m-PDMM algorithm will always converge
to a limit state.

4.4.2. FEASIBILITY OF THE PRIMAL LIMIT STATE
Given the convergence of the primal variables to a limit state, we now move to proving
that such a point is primal feasible. To do so, consider any fixed point z∗ of the m-PDMM
algorithm and an iteration number k. From the definitions of the primal and dual update

4.4. ON THE GUARANTEED CONVERGENCE OF THE M-PDMM ALGORITHM

4

87

steps in 4.3.1, it follows that

z(k+1)
λ

= P
(
z(k)
λ

−2ρ
(
Cx(k+1) −d

))
,

and thus that for any two successive iterations

z(k+2)
λ

= z(k)
λ

−2ρ
(
PCx(k+2) +Cx(k+1) −2d

)
.

For any M ∈N it follows that the corresponding 2M-step updates are given by

z(k+2)
λ

= z(k)
λ

−2ρ
k+2M∑

i=k+2

(
PCx(i) +Cx(i−1) −2d

)
. (4.8)

With this equality in mind, consider the auxiliary squared norm term given by

∥∥∥z(k+2M) −z∗
∥∥∥

2

Ĩ
=β

∥∥∥z(k+2)
λ

−z∗λ
∥∥∥

2 +2
∥∥∥z(k+2M)

x −z∗x
∥∥∥

2

=β
∥∥∥∥∥z(k)

λ
−2ρ

k+2M∑

i=k+2

(
PCx(i) +Cx(i−1) −2d

)
−z∗λ

∥∥∥∥∥

2

+2
∥∥∥z(k+2)

x −z∗x
∥∥∥

2

Combining this with (4.8), it follows that

∥∥∥z(k+2M) −z∗
∥∥∥

2

Ĩ
=β

∥∥∥z(k)
λ

−z∗λ
∥∥∥

2 −2

〈
2ρ

k+2M∑

i=k+2

(
PCx(i) +Cx(i−1) −2d

)
,z(k)
λ

−z∗λ

〉

+
∥∥∥∥∥2ρ

k+2M∑

i=k+2

(
PCx(i) +Cx(i−1) −2d

)∥∥∥∥∥

2

+2
∥∥∥z(k+2)

x −z∗x
∥∥∥

2

=
∥∥∥z(k) −z∗

∥∥∥
2

Ĩ
−2

〈
2ρ

k+2M∑

i=k+2

(
PCx(i) +Cx(i−1) −2d

)
,z(k)
λ

−z∗λ

〉

+
∥∥∥∥∥2ρ

k+2M∑

i=k+2

(
PCx(i) +Cx(i−1) −2d

)∥∥∥∥∥

2

+2
∥∥∥z(k+2)

x −z∗x
∥∥∥

2 −2
∥∥∥z(k)

x −z∗x
∥∥∥

2
,

where in the final line we have again used the definition of the auxiliary z variables of
m-PDMM. Moving all norm terms to the left hand side and taking limits it follows that

lim
k→∞

(∥∥∥z(k+2M) −z∗
∥∥∥

2

Ĩ
−

∥∥∥z(k) −z∗
∥∥∥

2

Ĩ
−2

(∥∥∥z(k+2)
x −z∗x

∥∥∥
2 −

∥∥∥z(k)
x −z∗x

∥∥∥
2
))

= lim
k→∞

(
−2

〈
2ρ

k+2M∑

i=k+2

(
PCx(i) +Cx(i−1) −2d

)
,z(k)
λ

−z∗λ

〉
+

∥∥∥∥∥2ρ
k+2M∑

i=k+2

(
PCx(i) +Cx(i−1) −2d

)∥∥∥∥∥

2)

=−2

〈
2ρM ((PC+C) x̃−2d) , lim

k→∞

(
z(k)
λ

−z∗λ
)〉

+∥∥2ρM ((PC+C) x̃−2d)
∥∥2 = 0

4

88 4. GUARANTEEING THE CONVERGENCE OF PDMM VIA PRIMAL REGULARIZATION

where we have used the fact that
(∥∥z(k) −z∗

∥∥2
Ĩ

)
k∈N is a convergent sequence and that

x(k) → x̃. By simple elimination of scalar coefficients, it follows that

〈
(PC+C) x̃−2d, lim

k→∞

(
z(k)
λ

−z∗λ
)〉

= ρM ‖(PC+C) x̃−2d‖2

which can only hold simultaneously for all M ∈ N+ if (PC+C) x̃−2d = 0, i.e. that x̃ must
be a primal feasible vector. Thus the primal variables of PDMM are guaranteed to con-
verge to a limit state which is a feasible solution of (4.1).

4.4.3. ON THE LIMIT STATES OF THE DUAL VARIABLES
Given the convergence of the primal variables to a primal feasible limit state, the next
step in the convergence proof is to demonstrate the convergence of the λ variables to
their limit states. Unlike the primal variables, in this section we show that the dual limit
state need not converge to a limit state but that the odd and even iterations must. For-
tunately, it turns out that this property is still sufficient to guarantee optimality of the
primal limit states.

To demonstrate convergence of the even and odd λ iterates to their respective limit
states, we begin by noting that from the two step update of the auxiliary variables, that

z(k+2)
λ

= z(k)
λ

−2ρ
(
PCx(k+2) +Cx(k+1) −2d

)
(4.9)

Using the feasibility of the primal variables in the limit, it follows that,

lim
k→∞

(
z(k+2)
λ

−z(k)
λ

)
= lim

k→∞

(
−2ρ

(
PCx(k+2) +Cx(k+1) −2d

))
=−2ρ ((PC+C) x̃−2d) = 0.

Assuming, without loss of generality, that k is even, we therefore find that the two se-

quences
(
z(2k)
λ

)
k∈N and

(
z(2k+1)
λ

)
k∈N converge to two limit points z̃λ,1 and z̃λ,2 for even

and odd iterations respectively. Note that we do not assume here that z̃λ,1 and z̃λ,2 are
equal. With these auxiliary limit points in mind, from the dual update equation in Algo-
rithm 4 we know that

λ(k+1) = z(k)
λ

−ρ
(
Cx(k+1) −d

)
.

By substituting this relationship into (4.9), it follows that

z(k+2)
λ

−z(k)
λ

=−2ρ
(
Pλ(k+2) −λ(k+1)

)
.

In the limit, we can therefore establish that

lim
k→∞

(
z(k+2)
λ

−z(k)
λ

)
=−2ρ lim

k→∞

(
Pλ(k+2) −λ(k+1)

)
=−2ρ

(
Pλ̃2 − λ̃1

)= 0, (4.10)

and thus that Pλ̃2 = λ̃1 where λ̃1 = z̃λ,1 −ρ (Cx̃−d) for even iterations and λ̃2 = z̃λ,2 −
ρ (Cx̃−d) for odd iterations. Given the existence of these dual limit states and the rela-
tionship between them, we are finally ready to prove the optimality of the primal iterates
in the limit.

4.4. ON THE GUARANTEED CONVERGENCE OF THE M-PDMM ALGORITHM

4

89

4.4.4. OPTIMALITY OF THE PRIMAL-DUAL LIMIT STATE
Given the properties developed in the previous sections, we are able to demonstrate that
the primal variables of m-PDMM converge to a minimizer of (4.1). To achieve this point,
we can adopt the simplified notation introduced in Section 4.3.1 to construct the equiv-
alent problem given by

min
xi ∀ i∈V

f (x) s.t
1

2
(PC+C)x = d. (4.11)

To prove that the vector x̃ solves (4.1) we can therefore show that it equivalently solves
(4.11). As (4.11) is convex, this can be achieved by considering its Lagrangian which is
given by

L
(
x,µ

)= f (x)− 1

2

〈
µ, (PC+C)x−2d

〉
, (4.12)

where the introduced vectorµ denotes the dual variables associated with the constraints
in (4.11) and has the same dimension as the λ variables of the modified PDMM algo-
rithm. As f ∈ Γ0, it follows that the necessary and sufficient Karush-Kuhn-Tucker (KKT)
conditions for solving (4.2) are given by

Primal Feasibility: (PC+C)x∗ = 2d

Subdifferential of Lagrangian: 0 ∈ ∂L
(
x∗,µ∗)

∂x
= ∂ f (x∗)− 1

2
(PC+C)T µ∗

If a limit states of the primal and dual variables satisfy these conditions then they also
correspond to a primal-dual optimal point. Specifically, from Section 4.4.2, we already
know that the point x̃ is primal feasible. Therefore, if we can show that the points

(
x̃,λ̃1

)

and
(
x̃,λ̃2

)
both correspond to a zero of the subdifferential of (4.12) then they correspond

to primal-dual optimal points of (4.11) and thus x̃ is primal optimal. To demonstrate this,
consider again the primal update equation given by

x(k+1) = argmin
x

(
f (x)−

〈
CT z(k)

λ
,x

〉
+ ρ

2
‖Cx−d‖2 + γ

2

∥∥∥x−x(k)
∥∥∥

2
)

,

where we have again used the fact that z(k)
x = x(k). By noting that z(k)

λ
= P

(
λ(k) −ρ (

Cx(k) −d
))

it follows that

x(k+1) = argmin
x

(
f (x)−

〈
CT Pλ(k),x

〉
+ ρ

2

∥∥∥Cx+PCx(k) −2d
∥∥∥

2 + γ

2

∥∥∥x−x(k)
∥∥∥

2
)

.

Assuming an even number of iterations, in the limit we have that

x̃ = argmin
x

(
f (x)−〈

CPλ̃1,x
〉+ ρ

2
‖Cx+PCx̃−2d‖2 + γ

2
‖x− x̃‖2

)
,

and thus that
0 ∈ ∂ f (x̃)−CPλ̃1 +ρ (Cx̃+PCx̃−2d)+γ (x̃− x̃) .

Using the primal feasibility of x̃, the fact that Pλ̃1 and cancelling common terms it fol-
lows that

0 ∈ ∂ f (x̃)−CT Pλ̃1 = ∂ f (x̃)−CT λ̃2.

4

90 4. GUARANTEEING THE CONVERGENCE OF PDMM VIA PRIMAL REGULARIZATION

Similarly, for an odd number of iterations, in the limit we have that

0 ∈ ∂ f (x̃)−CT Pλ̃2 = ∂ f (x̃)−CT λ̃1,

where we have made use of the result in (4.10). Combining these conditions, we find that

0 ∈ ∂ f (x̃)− 1

2
(PC+C)T λ̃1, 0 ∈ ∂ f (x̃)− 1

2
(PC+C)T λ̃2

It follows that
(
x̃,λ̃1

)
and

(
x̃,λ̃2

)
are both primal-dual optimal points of (4.12) and thus

that x̃ minimizer of (4.11) and therefore (4.1). In this way, the m-PDMM algorithm is
guaranteed to converge to an optimal primal point with only the use of primal averaging
for all CCP functions.

4.5. NUMERICAL EXPERIMENTS
In this section, we verify the convergence of the m-PDMM algorithm for the case of a
general CCP function. Specifically, we consider the counter example for PDMM demon-
strated in Chapter 3, that of the L1 consensus problem given by

min
x∈RN

∑

i∈V
‖xi −ai‖1 s.t. xi −x j = 0 ∀(i , j) ∈ E . (4.13)

For these simulations, we will restrict the dimension of each local variable to be of
length five, i.e. xi ∈R5 ∀i ∈V . Additionally, the underlying network will be a N = 51 node
Erdős-Rényi network. As in Chapter 3, the connection probability was selected as ln(N)

N
to produce, with high probability, a connected network with few connections between
nodes. Additionally the resulting network was ensured to form a single connected com-
ponent as per our assumptions outlined in Section 4.3.1. Finally, step sizes of ρ = γ = 1
were selected. Note that these step sizes were by no means optimal and were selected
purely for demonstration purposes. Incorporating the problem structure of (4.13) into
the m-PDMM scheme, it follows that the iterations can be computed via Algorithm 5

Algorithm 5 Distributed L1 Consensus via m-PDMM

1: Initialise: z(0) ∈RME

2: for k=0,..., do
3: x(k+1) = argmin

x

(
‖x−a‖1 −

〈
CT z(k)

λ
,x

〉
+ ρ

2 ‖Cx‖2 + γ
2

∥∥x−x(k)
∥∥2

)

4: z(k+1)
λ

= P
(
z(k)
λ

−2ρCx(k+1)
)

5: end for

The convergence plot in Figure 4.1 demonstrates the squared primal objective gap
‖ f (x)− f

(
x(k+1)

)‖2 with respect to the iteration number, i.e. the distance between the
objective of the current iterates and that of a primal optimal solution. This metric was
adopted due to the lack of uniqueness of the optimal solution for the proposed problem.
For comparisons sake we have also included the standard PDMM algorithm to demon-
strate its lack of convergence.

4.6. CONCLUSIONS

4

91

0 1000 2000 3000 4000 5000

10
-20

10
-10

10
0

m-PDMM

PDMM

Figure 4.1: An example convergence plot of distributed L1 consensus via the m-PDMM and PDMM algorithms.
While the PDMM algorithm fails to converge, the m-PDMM algorithm continues to converge towards a primal
optimal solution.

In contrast to the standard PDMM algorithm, which we know cannot be guaranteed
to converge for such problems, here we see that m-PDMM has no trouble in converging
to an optimal solution. While being a simple example, this result reflects our analysis
from the previous sections and shows that the m-PDMM approach allows us to address
the lack of convergence of PDMM for a broader class of functions.

4.6. CONCLUSIONS
In this chapter we have presented a novel method of modifying the PDMM algorithm
to guarantee convergence for all closed, convex and proper functions. Initially moti-
vated by the manner in which PDMM discards the primal variables between iterations,
in this work we have presented a method of incorporating this information through pri-
mal regularization. Notably, we demonstrated how this regularization can be incorpo-
rated through a primal-dual algorithmic formulation and the use of a partial averaging
step over the primal variables at each node. Importantly, this allowed us to interpret
the algorithm from the perspective of monotone operator theory and use results from
this area to guarantee convergence. We further validated this point by demonstrating
convergence in the case of a simple L1 consensus problem for which PDMM does not
converge. Overall, the proposed method broadens the functional class able to be solved
via a PDMM type approach without the use of a full averaging step and while preserving
the desired distributed nature of the algorithm.

APPENDICES

4.A. PROOF OF LEMMA 4.3.1
To compute the reflected resolvent operator we will first begin by computing the resol-
vent operator

Jρ,T1

([
z(k)
λ

z(k)
x

])
=

[
λ(k+1)

x(k+1)

]
= (

I+ρT1
)−1

[
z(k)
λ

z(k)
x

]
.

By simply rearranging it follows that

[
λ(k+1)

x(k+1)

]
=

[
z(k)
λ

z(k)
x

]
−ρT1

([
λ(k+1)

x(k+1)

])
,

such that

λ(k+1) =z(k)
λ

−ρ
(
Cx(k+1) −d

)
, x(k+1) ∈ z(k)

x −ρβ
(
∂ f

(
x(k+1)

)
−ρCT

(
z(k)
λ

−ρ
(
Cx(k+1) −d

)))
.

It follows that

0 ∈∂ f
(
x(k+1)

)
−CT z(k)

λ
+ρCT

(
Cx(k+1) −d

)
+ 1

ρβ

(
x(k+1) −z(k)

x

)
.

Given the inner product space determined by Ĩ it follows that

x(k+1) =argmin
x

(
f (x)−

〈
CT z(k)

λ
,x

〉
+ ρ

2
‖Cx−d‖2 + 1

2ρβ

∥∥∥x−z(k)
x

∥∥∥
2
)

.

Applying the definition of the reflected resolvent completes the proof. �

4.B. PROOF OF LEMMA 4.3.2
Again we will begin by exploiting the relationship between the reflected resolvent and
resolvent operators where

Jρ,T2

([
y(k+1)
λ

y(k+1)
x

])
= (

I+ρT2
)−1

[
y(k+1)
λ

y(k+1)
x

]
.

Immediately one can note that, due to the structure of T2 that

z(k+1)
x = y(k+1)

x .

93

4

94 4. GUARANTEEING THE CONVERGENCE OF PDMM VIA PRIMAL REGULARIZATION

In the case of z(k+1)
λ

, the computation of the resolvent is in fact a simple proximal step
such that

z
(k+ 1

2)

λ
= argmin

(I−P)u=0

(
1

2

∥∥∥y(k+1)
λ

−u
∥∥∥

2
)

.

By observation, the resulting vector is given by z
(k+ 1

2)

λ
= 1

2 (P+ I)y(k+1)
λ

. By then applying

the definition of the reflected resolvent it follows that z(k+1)
λ

= Py(k+1)
λ

completing the
proof. �

5
NETWORK TOPOLOGY AND PDMM:

CONVERGENCE RATE ANALYSIS

Thomas Sherson, Richard Heusdens,
and W. Bastiaan Kleijn

“Your not going to find your epiphany moment in some holy place. You want a real
epiphany, go stand on top of a mountain. Let the grandeur of it all wash over you and

bask in the glory of your insignificance compared to those majestic peaks. Then and only
then, when faced with the scale of it all can you reach a place of inner peace.”

Anonymous

As our final contribution with regards to the analysis of existing distributed solvers, in
this chapter we investigate the manner in which network topology impacts the conver-
gence rates of PDMM. Specifically, we consider the case in which the objective functions
are both strongly convex and smooth. We demonstrate a new convergence bound for
this algorithm by linking its worst-case convergence with that of the methods of alter-
nating projections and provide an analytic expression for the limiting convergence rate
as the number of iterations increases. For consensus type problems we then show how
this bound is related to the eigenvalues of the normalized adjacency matrix of the under-
lying network and thus with the mixing rate of random walks over its graph. Given this
insight, we compare the effect of network topology on the convergence of PDMM for a
range of different deterministic graphs and demonstrate convergence in finite iterations
in the case of distributing averaging over a certain fully connected bipartite graph.

To the Norse gods and your thirteen hour storm, I have not forgotten that day (July 5th, 2017, Lake Álftavatn,
Iceland). Your contributions to this chapter, however unintentional, are greatly appreciated.

95

5

96 5. NETWORK TOPOLOGY AND PDMM: CONVERGENCE RATE ANALYSIS

5.1. INTRODUCTION
The past three decades has seen an explosion in the dependency of services within our
society on networking. From the advent of the internet, to the development of social
media [1], the rise of the “Internet of Things" paradigm [5] and even the growth of block-
chain based utilities[91], our society is becoming increasingly dependent on networked
systems for everyday operation. However, as these systems grow in size and complexity,
traditional signal processing approaches quickly become infeasible to implement due to
the distribution of data within such networks and the scaling costs of data aggregation
and centralization.

In response to this challenge, the last decade has seen a dramatic increase in the
interest in and deployment of alternative methods of signal processing based on dis-
tributed computation. Such methods can take a variety of forms including the likes
of distributed consensus [10, 12, 72, 92, 93], belief propagation/message passing ap-
proaches [15, 14, 13, 94], graph signal processing over networks[73, 95, 17, 74], distributed
optimization [18, 96, 97, 19, 79] and more. The choice between these different approaches
is made based on the specific problems to be solved and often trades between complex-
ity and convergence rate.

An important question that arises for all distributed methods is how the underlying
topology of a network impacts their rate of convergence. In the case of distributed av-
eraging and graph filtering type approaches, the underlying linearity of the operators
involved allows for an analysis of this point [98, 17]. For instance, in the case of dis-
tributed averaging, a connection can be readily drawn between convergence rate and
the structure of the averaging operators involved, notably that the extremal eigenvalues
of such operators characterize their rate. However, for other approaches, such as those
based on message passing and distributed optimization, this question remains an open
problem.

The work in this article aims to address this question for a specific distributed opti-
mization algorithm recently proposed within the literature termed the primal dual method
of multipliers (PDMM) [96]. Following its initial introduction, this method was shown to
be equivalent to an instance of Peaceman-Rachford splitting applied to a certain lifted
dual problem [99] in which geometric convergence was also demonstrated for strongly
convex, smooth functions. Furthermore, it was shown in [96] that PDMM performs fa-
vorably compared to other distributed methods such as the alternating direction method
of multipliers (ADMM). Motivated by these findings, within this work a connection is
made between the convergence of PDMM for strongly convex, smooth functions and
the generalized alternating method of projections. Using this insight, a novel iteration-
tight convergence bound for the worst-case convergence of PDMM is demonstrated and,
more importantly, the rate of this bound is linked with the underlying structure of the
distributed network itself.

5.1.1. RELATED WORK
At its heart, this paper builds on efforts within the literature on distributed optimization
developed over the past four decades. While initial efforts within the literature began in
the 1980’s and early 1990’s in the context of parallel computing[29, 30, 31, 32, 33], dis-
tributed optimization has seen a resurgence in popularity in recent year for use in a vari-

5.1. INTRODUCTION

5

97

ety of applications including environmental monitoring [100], multi-agent coordination
[101] and more.

The specific task of considering the effect of network topology on distributed algo-
rithms has also been raised in recent years as an important aspect of algorithm selec-
tion (see [102] for a recent paper on this point). For different algorithms, this analysis
has taken on various forms but the need to understand the role network design plays is
nonetheless prevalent.

In [98] for instance, the problem of designing the transition matrix resulting in the
fastest convergence of a distributed averaging problem was considered for a given net-
work topology. Such an approach provides a lower bound on the fastest rates of conver-
gence that can be achieved for a given topology and in turn provides indirect insight into
the role network structure plays in algorithmic performance.

In the case of distributed graph filtering such as that in [17], the effect of network
topology is also considered. In particular, the distributed filters designed therein utilize
the Laplacian of the underlying graphical model as a kernel for ARMA style filters. The
convergence characteristics of these filters are in turn determined by the spectrum of
said Laplacians, as noted in the proof of [17, Proposition 2] and thus provide a clear link
between algorithm performance and network topology.

The main aspect that enables the analysis of the approaches mentioned above is the
underlying linearity of the algorithm updates. In the case of more general classes of dis-
tributed solvers, such approaches are less applicable. However, for specific algorithms, a
number of interesting results do exist. For instance, the work of [103] examined the case
of a proposed dual distributed averaging subgradient algorithm and drew an explicit link
between the underlying network topology and the convergence of the approach. It was
shown that for networks with favorable connectivity, faster convergence rates could be
guaranteed. Such a result reflects similar findings in the field of spectral graph theory
and highlights the importance of good network design in such a context.

The work of [104] examined the rate of convergence of a distributed instance of the
alternating direction method of multipliers (ADMM). A novel convergence proof was
demonstrated for the algorithm which again provides an explicit link with network topol-
ogy. In particular, the geometric convergence rate of ADMM for twice differentiable
functions was quantified and shown to be directly related to the underlying topology.
In the specific case of a star and a ring network, this rate was made explicit allowing a
comparison of their performance.

The effect of network topology on ADMM was also considered in [105] where a con-
nection was drawn between lifted Markov chains and ADMM. This work was extended in
the case of [106] to explore the overall affects of network topology on the performance of
over-relaxed ADMM. In particular, for a certain non-strongly convex quadratic problem,
the convergence of over-relaxed ADMM for a given network was quantified by exploit-
ing the aforementioned connection with lifted Markov chains. However, more general
problem classes were not considered therein.

More recently, the work of [102] provided an overview of distributed averaging al-
gorithms and a distributed subgradient generalization of such approaches. Within this
discussion, the authors provide insight into the role that network topology plays in such
methods but an explicit quantification of the effect on convergence rate is not provided

5

98 5. NETWORK TOPOLOGY AND PDMM: CONVERGENCE RATE ANALYSIS

in all circumstances. However, a particular point where this is addressed is in [102, Corol-
laries 5 and 9] for the case of distributed averaging over undirected networks and dis-
tributed convex consensus over the same networks. While only a certain set of graph
topologies were considered, the approach provides insight into the tradeoff between dif-
ferent network structures and overall algorithmic convergence.

5.1.2. MAIN CONTRIBUTIONS
The contributions of this paper are three-fold. Motivated by the promising performance
of PDMM for distributed optimization, we firstly demonstrate a new tighter bound for its
convergence for smooth, strongly convex functions. This bound strictly improves upon
the geometric convergence rate demonstrated in [99] for the same functional class. We
additionally extend this result as the number of iterations tends to infinity by defining
the limiting worst-case rate for PDMM.

Secondly, for consensus type problems, an explicit link between network topology
and convergence rate is highlighted. In particular, we demonstrate how PDMM is pa-
rameterized by the second largest absolute eigenvalue of the random walk matrix of the
network. In this way, we directly show that the mixing characteristics of the network
determine the overall convergence of PDMM for the considered problem class.

Finally we consider the role of network structure on the worst-case convergence rate
of PDMM for a number of specific graph topologies including chain, lattice, grid, bipar-
tite and fully connected graphs. This allows us to compare the performance of PDMM
for these structures and highlight the importance of good network design in a distributed
optimization context. We also demonstrate a specific problem instance where PDMM
converges in finite iterations.

5.1.3. ORGANIZATION OF PAPER
The remainder of the paper is constructed as follows. In Section 5.2 we introduce ap-
propriate nomenclature to support the remainder of this document. In Section 5.3 we
briefly outline the PDMM algorithm and its associated notation. Section 5.4 introduces a
new convergence bound for PDMM applied to strongly convex, smooth functions while
Section 5.5 complements this with a set of additional convergence results including a
problem instance which attains the worst-case convergence rate and a method for op-
timal step-size selection. Section 5.6 demonstrates the impact network topology has on
this bound in the case of consensus type problems and demonstrates this effect for spe-
cific graph topologies. Finally, in Section 5.7 we draw our conclusions on the paper.

5.2. NOMENCLATURE

We denote by R the set of real numbers, by RN the set of real column vectors of length
N and by RM×N the set of M by N real matrices. Similarly, regular lowercase letters or
symbols will be used to denote scalar values, i.e., x while bold font lower case will be
used to denote vectors, i.e., x. Matrices will be denoted by bold font uppercase letters or
symbols, i.e., X. Given a matrix A , the orthogonal projection onto the range of A is given

by Π
A

= A
(
A T A

)†
A T where † denotes the Moore-Penrose pseudo inverse. Finally, ∇ f

denotes the gradient of a differentiable function f .

5.3. DISTRIBUTED OPTIMIZATION VIA THE PRIMAL DUAL METHOD OF MULTIPLIERS

5

99

5.3. DISTRIBUTED OPTIMIZATION VIA THE PRIMAL DUAL METHOD

OF MULTIPLIERS
In this section we summarize a recently proposed algorithm for distributed optimization
termed the primal dual method of multipliers (PDMM). The original treatment of this
algorithm can be found in [96] while a more recent publication, which approaches the
analysis of PDMM from the perspective of monotone operator theory is given in [99].

5.3.1. PROBLEM DEFINITION
Consider a simple, undirected, N node network G(V ,E) parameterized by node/vertex
set V = {1,2, · · · , N } and an undirected edge set E = {(i , j)} where (i , j) ∈ E if nodes i
and j can communicate. Our objective it to use such a network to perform distributed
convex optimization. Assume that each node i ∈ V is equipped with a local function
fi ∈ Γ0

(
RMi

)
parameterized by xi ∈ RMi . Here Γ0 denotes the family of closed, convex

and proper (CCP) functions. Given such functions we will consider solving problems of
the form

min
xi ∀ i∈V

∑

i∈V
fi (xi) s.t Ai | j xi +A j |i x j = bi , j ∀ (i , j) ∈ E , (5.1)

where the terms Ai | j ∈RMi , j ×Mi and bi , j ∈RMi , j impose linear constraints between neigh-
boring nodes, the identifier i | j denotes a directed edge from i to j while i , j denotes an
undirected edge. Furthermore, let MV = ∑

i∈V
Mi and ME = ∑

(i , j)∈E
Mi , j and assume that

(5.1) is feasible. Importantly, (5.1) is a separable problem with the objective function
divided amongst the nodes and the constraints only acting over the physical edges of
the network. It is this fundamental structure which allows us to optimize (5.1) in a dis-
tributed manner.

5.3.2. SIMPLIFICATION OF NOTATION
To assist in the introduction of PDMM, we define a compact vector notation to simplify
the considered prototype problem. Specifically, we show that (5.1) can be rewritten as

min
x

f (x) s.t Cx+PCx = 2d, (5.2)

where C, P and d are defined in the following.

COMPACT OBJECTIVE NOTATION

To parameterize the simplified problem we firstly introduce the stacked vector variable

x = [xT
1 ,xT

2 , · · · ,xT
N]T .

Using this vector notation, the objective function can be simplified by defining the global
function

f : RMV 7→R, x 7→ ∑

i∈V
fi (xi)

as the sum of all local functions.

5

100 5. NETWORK TOPOLOGY AND PDMM: CONVERGENCE RATE ANALYSIS

COMPACT CONSTRAINTS NOTATION

Using the same vector notation, we can form a compact representation for the constraint
functions of (5.1). To do so, we define the additional matrix C ∈ RME×MV and vector
d ∈RME . In the case of a fully connected network, these terms are given by

Ci =
[

AT
i |1, · · · ,AT

i |i−1,AT
i |i+1, · · · ,AT

i |N
]T

, di = 1

2

[
bT

i ,1, · · · ,bT
i ,i−1,bT

i ,i+1, · · · ,bT
i ,N

]T ∀i ∈V ,

C =

C1 · · · 0
...

. . .
...

0 · · · CN

 , d = [

dT
1 , · · · ,dT

N

]T
. (5.3)

For other network topologies the unnecessary rows of C and d, corresponding to non-
existent edges, can be removed.

Given the parameterization of C and d by the underlying constraint matrices, Ai | j
and bi , j , all that remains is to define the symmetric permutation matrix P to ensure that
the constraints of (5.1) correspond to

Cx+PCx = 2d.

To define P, note that the particular structure of C and d imposes an ordering on the
directed edge index i | j where 1|2 < 1|3 < ·· · < 1|N < 2|1 < 2|3 < ·· · < N |N −1. It follows
that P is a symmetric permutation matrix given by

P =

P1|2,1|2 · · · P1|2,N |N−1

. . .
.

PN |N−1,1|2 · · · PN |N−1,N |N−1

where each block is defined as

Pi | j ,k|l =
{

IMi , j if i = l , j = k

0Mi , j ×Mk,l otherwise

5.3.3. PDMM ALGORITHM

Given the compact notation demonstrated above, it was shown in [99] that the simplified
problem in (5.2) can be optimized via PDMM iteratively for a given step size ρ ∈ (0,+∞)
as shown in Algorithm 6. The PDMM algorithm itself is in fact an instance of Peaceman-
Rachford splitting of a certain lifted dual form of (5.2).

As previously mentioned, PDMM reduces the global optimization of (5.1) into a se-
quence of parallelizable operations. The primal updates, corresponding to the primal
variables x(k+1) and y(k+1), are computed in parallel across all nodes due to the block di-
agonal structure of C and separability of f . In contrast, the permutation P, associated
with the auxiliary updates of the auxiliary variables z(k+1), corresponds to an exchange
of information along the edges of the network.

5.4. A TIGHT GEOMETRIC CONVERGENCE BOUND FOR PDMM FOR STRONGLY CONVEX,
SMOOTH FUNCTIONS

5

101

Algorithm 6 Primal-Dual Method of Multipliers (PDMM)

1: Initialise: z(0) ∈R2ME

2: for k=0,..., do
3: x(k+1) = argmin

x

(
f (x)−〈

CT z(k),x
〉+ ρ

2 ||Cx−d||2)

4: y(k+1) = z(k) −2ρ
(
Cx(k+1) −d

)

5: z(k+1) = Py(k+1)

6: end for

5.4. A TIGHT GEOMETRIC CONVERGENCE BOUND FOR PDMM
FOR STRONGLY CONVEX, SMOOTH FUNCTIONS

To demonstrate the relationship between the convergence rate of PDMM and the under-
lying network topology, we first need to understand the convergence characteristics of
PDMM itself. For distributed problems with strongly convex and smooth objective func-
tions, the fastest known convergence bound was demonstrated in Chapter 3 by linking
the worst-case rate of PDMM with the alternating method of projections. In this section
we strengthen this result by introducing a stronger convergence rate bound for PDMM
as well as demonstrating its limiting rate as the number of iterations increases. In par-
ticular we highlight the interplay between the local updates at each node and the mixing
effect that edge based exchanges between nodes has on overall convergence. In the case
of consensus problems, in Section 5.6 we demonstrate how this mixing effect is directly
parameterized by the random walk matrix of the underlying network.

5.4.1. PRELIMINARY FUNCTIONAL ASSUMPTIONS

The following section demonstrates a new bound on the auxiliary error
∥∥z(k) −z∗

∥∥2
where

the sequence
(
z(k)

)
k∈N is computed as per Algorithm 6 and z∗ denotes an optimal in-

stance of the auxiliary variables. Such a z∗ produces a primal optimal update x∗ which
solves (5.1). We also demonstrate that the proposed bound is stronger than that in [99].

For the formation of the aforementioned auxiliary error bound we make use of the
relationship between convexity of a function and the monotonicity of its subdifferential.
Specifically, monotonicity of an operator is defined as follows.

Definition 5.4.1. Monotone Operator: An operator T is monotone if for all (x1,y1), (x2,y2) ∈
gra(T) 〈

y1 −y2,x1 −x2
〉≥ 0.

If a convex function is subdifferentiable then its subdifferential is a monotone oper-
ator. In addition to convexity, in the following we assume that f is µ-strongly convex and
β-smooth. These properties are defined as follows.

Definition 5.4.2. Strong Convexity: A function f isµ-strongly convex withµ> 0 if∀x1,x2∈
dom

(
f
)

,y2∈∇ f (x2),

f (x1) ≥ f (x2)+〈
y2,x1 −x2

〉+ µ

2
‖x1 −x2‖2 .

5

102 5. NETWORK TOPOLOGY AND PDMM: CONVERGENCE RATE ANALYSIS

This implies that, f − µ
2 ‖•‖2 is convex.

If f is µ-strongly convex, ∇ f is µ-strongly monotone.

Definition 5.4.3. Strong Monotonicity: The operator ∇ f is µ-strongly monotone with µ>
0, if ∀x1,x2 ∈ dom

(
f
)

,y1 ∈∇ f (x1),y2 ∈∇ f (x2),

〈
y1 −y2,x1 −x2

〉≥µ‖x1 −x2‖2 .

Definition 5.4.4. Smoothness: A convex function f is β-smooth with β > 0 if it is differ-
entiable and ∀x1,x2 ∈ dom

(
f
)
,

f (x1) ≤ f (x2)+〈∇ f (x2),x1 −x2
〉+ β

2
‖x1 −x2‖2 .

This implies that, β2 ‖•‖2 − f is convex.

If f is β-smooth, ∇ f is 1
β -cocoercive.

Definition 5.4.5. Cocoercive: The monotone operator ∇ f is 1
β -cocoercive with β > 0 if

∀x1,x2 ∈ dom
(

f
)
,

〈∇ f (x1)−∇ f (x2),x1 −x2
〉≥ 1

β

∥∥∇ f (x1)−∇ f (x2)
∥∥2 .

Furthermore, as f ∈ Γ0 and differentiable, if f is β-smooth, ∇ f is β-Lipschitz contin-
uous.

Definition 5.4.6. Lipschitz Continuous: The operator∇ f isβ-Lipschitz if∀x1,x2 ∈ dom
(

f
)
,

∥∥∇ f (x1)−∇ f (x2)
∥∥≤β‖x1 −x2‖ .

If β= 1, ∇ f is nonexpansive while if β< 1 it is contractive.

Additionally, many of the arguments used in this section make use of the notions of
the kernel and range space of non-square matrices. These properties are defined below.

Definition 5.4.7. Range and Kernel Space: Given a matrix A ∈ RN×M , the range of A is
denoted by ran(A) where

∀y ∈ ran(A) ,∃u | Au = y.

Similarly, the kernel of A is denoted by ker(A) where

∀y ∈ ker(A) ,Ay = 0.

For any matrix, the subspaces ran(A) and ker
(
AT

)
are orthogonal and their direct sum

ran(A)+ker
(
AT

)=RN .

Under the assumption that f is µ-strongly convex and β-smooth, we are now ready
to proceed with demonstrating our new convergence rate bound for PDMM.

5.4. A TIGHT GEOMETRIC CONVERGENCE BOUND FOR PDMM FOR STRONGLY CONVEX,
SMOOTH FUNCTIONS

5

103

5.4.2. INDEPENDENCE OF A NON-CONTRACTIVE SUBSPACE

As a combination of nonexpansive operators, the auxiliary error sequence of PDMM(∥∥z(k) −z∗
∥∥2

)
k∈N is guaranteed to be nonincreasing. In general however, this is not suf-

ficient to guarantee convergence to an optimal z∗, even for the functional class we con-
sider. This point was previously noted in [99] and is reproduced here for completeness.
By considering the PDMM updates as defined in Algorithm 6 we find that for two suc-
cessive iterations of PDMM,

z(k+1) = P
(
z(k) −2ρ

(
Cx(k+1) −d

))
, z(k+2) = z(k) −2ρ

(
PCx(k+2) +Cx(k+1) −2d

)
.

From the feasibility of (5.1) and the definitions in Section 5.3.2, ∃x∗ | PCx∗ +Cx∗ = 2d
and thus that d ∈ ran(PC)+ ran(C). Every two PDMM updates can therefore only affect
the auxiliary variables in the subspace ran(PC)+ ran(C) while the component of z in
ker

(
CT

)∩ker
(
CT P

)
is unaffected. It follows that the auxiliary variables cannot be guar-

anteed to converge in general as any initial vector z(0 may contain a component in this
nondecreasing subspace.

From Algorithm 6, we can note that x(k+1) is only dependent on Π
ran(C)

(
z(k) +ρd

)
. As

we are interested in the ability of PDMM to compute the primal minimizers of (5.1), we
can therefore consider the convergence of the auxiliary variables within our domain of
interest, i.e. the norm term

∥∥∥∥ Π
ran(C)

(
z(k+1) −z∗

)∥∥∥∥
2

. (5.4)

In this work, we approach the task of bounding (5.4) by utilizing the fact that ker
(
CT

)∩
ker

(
CT P

)⊆ ker
(
CT

)
. It follows that by bounding the right hand side of the inequality

∥∥∥∥ Π
ran(C)

(
z(k+1)−z∗

)∥∥∥∥
2

≤
∥∥∥∥ Π

ran(PC)+ran(C)

(
z(k+1) −z∗

)∥∥∥∥
2

,

we can define an upper bound for (5.4) in turn. We shall refer to this as the projected
auxiliary error from here on out. In the following subsections, the analysis of this pro-
jected error is broken down into two stages, relating to the node based x(k+1) and y(k+1)

updates, and the edge based update of z(k+1).

5.4.3. BOUNDING THE PRIMAL ERROR y(k+1) −y∗
To form our convergence bound for PDMM, we begin by considering the effect of the
primal update equations. As per Algorithm 6, these updates are given by

x(k+1) = argmin
x

(
f (x)−

〈
CT z(k),x

〉
+ ρ

2
||Cx−d||2

)

y(k+1) = z(k) −2ρ
(
Cx(k+1) −d

)
. (5.5)

By using the functional assumptions of f outlined in Section 5.4.1, in the coming sub-
sections we show that, given an initial vector z(k) and an optimal auxiliary point z∗, the

5

104 5. NETWORK TOPOLOGY AND PDMM: CONVERGENCE RATE ANALYSIS

updates y(k+1) and y∗ = z∗−2ρ (Cx∗−d) satisfy the ellipsoid bound given by
∥∥∥∥ Π

ran(C)

(
y(k+1) −y∗− (1− β̂− µ̂)

(
z(k) −z∗

))∥∥∥∥≤ (β̂− µ̂)

∥∥∥∥ Π
ran(C)

(
z(k) −z∗

)∥∥∥∥ , (5.6a)

Π
ker(CT)

(
y(k+1) −y∗

)
= Π

ker(CT)

(
z(k) −z∗

)
, (5.6b)

where the terms β̂ and µ̂ are defined in Lemma 5.4.1.
The equality (5.6b) can be straightforwardly observed from the update equations

given in (5.5) by noting that x(k+1) can only influence those component of y(k+1) in ran(C).
This leaves the component y(k+1) contained within ker

(
CT

)
unaffected. In contrast,

(5.6a) requires a more careful analysis as provided in the following two subsections.

5.4.4. PRESERVATION OF STRONG CONVEXITY AND SMOOTHNESS
To prove that (5.6a) holds, we first need to examine how the functional assumptions on
f propagate through to the y(k+1) updates. To this end, consider again the x(k+1) update
of PDMM given by

x(k+1)=argmin
x

(
f (x)−

〈
CT z(k),x

〉
+ρ

2
||Cx−d||2

)
. (5.7)

As f is smooth and strongly convex, it follows that both x(k+1) and ∇ f (x(k+1)) are unique
such that (∇ f +ρCT C

)
x(k+1) = CT

(
z(k) +ρd

)
, (5.8)

where∇ f denotes the gradient written as an operator. By defining the set X = {
x(k+1) | ∃z(k)

so that (5.7) holds
}
, it follows from (5.8) that, ∀x ∈ X, ∇ f (x) ∈ ran(CT).

Reconsidering (5.7), we can note that neither the inner product
〈

CT z(k),x
〉

nor the
quadratic form ρ

2 ||Cx − d||2 has any dependence on the component xK = Π
ker(C)

x. By

defining the function g such that g (xR) = min
xK ∈ker(C)

f (xR + xK) where dom(g) =
{

xR | x ∈
dom

(
f
)

,xR = Π
ran(CT)

x
}

, it follows that x(k+1)
R = Π

ran(CT)
x(k+1) can be computed as

x(k+1)
R = argmin

xR∈ran(CT)

(
g (xR)−

〈
CT z(k),xR

〉
+ρ

2
||CxR−d||2

)
.

The function g can be thought of as the partial optimization of f over ker(C) for a
given instance of xR . As in the case of (5.8), using the operator ∇g , where differentiability
follows from that of f , we find that

(∇g +ρCT C
)

x(k+1)
R = CT

(
z(k) +ρd

)
, (5.9)

and thus that ∀x ∈ X,xR = Π
ran(CT)

x

∇g (xR) =∇ f (x) ∈ ran
(
CT)

, (5.10)

Using the definitions of X and XR , in conjunction with (5.10) allows us to demonstrate
that, g inherits the smoothness and strong convexity of f ∀xR ∈ XR . This is summarized
in the following two Propositions.

5.4. A TIGHT GEOMETRIC CONVERGENCE BOUND FOR PDMM FOR STRONGLY CONVEX,
SMOOTH FUNCTIONS

5

105

Proposition 5.4.1. If ∇ f is 1
β -cocoercive, then ∀xa ,xb ∈ XR ,

〈∇g (xa)−∇g (xb),xa −xb
〉≥ 1

β

∥∥∇g (xa)−∇g (xb)
∥∥2 ,

i.e., ∇g is 1
β -cocoercive with respect to XR .

Proposition 5.4.2. If ∇ f is µ-strongly monotone then ∀xa ,xb ∈ XR ,

〈∇g (xa)−∇g (xb),xa −xb
〉≥µ‖xa −xb‖2 ,

i.e.,∇g is µ-strongly monotone with respect to XR .

The proofs of these Propositions can be found in Appendix 5.A and 5.B respectively..
From the link between strong monotonicity, strong convexity, cocoercivity and smooth-
ness, it follows that g is µ-strongly convex and β-smooth with respect to XR .

5.4.5. FORMING THE ELLIPSOIDAL BOUND
Given the properties of g , we are now ready to form the ellipsoidal bound for∥∥∥∥ Π

ran(PC)+ran(C)

(
y(k+1) −y∗

)∥∥∥∥
2

given in Eq. (5.6). The approach adopted in this section

reflects the similar result demonstrated in [82] for the case of centralized optimization.
Note that the results therein cannot be guaranteed to hold in the case of PDMM due to
the potential violation of [82, Assumption 2].

Making use of the domain of ∇g the left hand side of (5.9) is equivalent to

CT
(
ρ

C†T

ρ
∇g

C†

ρ
+ I

)
ρCx(k+1). (5.11)

It follows by combining (5.9) and (5.11) that

ρCx(k+1)=
(
I+ρC†T

ρ
∇g

C†

ρ

)−1

Π
ran(C)

(
z(k)+ρd

)
. (5.12)

Using Eq. (5.12), the crux of the ellipsoidal bound is summarized in the following
Lemma.

Lemma 5.4.1. For g µ-strongly convex and β-smooth, and ρ ∈ (0,+∞), the operator(
I+ρ C†T

ρ ∇g C†

ρ

)−1 − µ̂I is 1
β̂−µ̂ cocoercive over ran(C), where

β̂= 1

1+ µ

ρσ2
max(C)

, µ̂= 1

1+ β

ρσ2
min6=0(C)

.

The proof of this Lemma, which closely follows the approach adopted in [82, Proposition
2], can be found in Appendix 5.C.

From the definition of cocoercivity and the PDMM updates, we can then form the
final Lemma for the ellipsoidal bond of the primal y(k+1) variables.

5

106 5. NETWORK TOPOLOGY AND PDMM: CONVERGENCE RATE ANALYSIS

Lemma 5.4.2. The primal updates y(k+1) of PDMM as defined in Algorithm 6 satisfy the
inequality

∥∥∥∥ Π
ran(C)

(
y(k+1) −y∗− (1− β̂− µ̂)

(
z(k) −z∗

))∥∥∥∥≤ (β̂− µ̂)

∥∥∥∥ Π
ran(C)

(
z(k) −z∗

)∥∥∥∥ .

The proof for this lemma can be found in Appendix 5.D, allowing us to form the complete
error bound given in (5.6a). This ellipsoidal bound demonstrates how the local updates
at each node cause a contraction of the variables within the desired subspace ran(C).

5.4.6. PRINCIPAL ANGLES AND ALTERNATING PROJECTIONS
The second component needed to form our bounding sequence for PDMM is an expres-
sion of how the permutation operation P affects the ellipsoidal bound in (5.6). In partic-
ular, P mixes the subspaces ran(C) and ker

(
CT

)
degrading the contraction introduced

by the primal updates.
To understand the mixing effect of P, we can note that

P= I+P

2
− I−P

2
= Π

ker(I−P)
− Π

ran(I−P)
=I−2 Π

ran(I−P)
. (5.13)

Thus, the subspace ran(I−P) is the component affected by the permutation operation.
We can then use the notion of principal angles between subspaces to analyze the afore-
mentioned mixing. This notion was first proposed by Jordan [107] and generalizes that
of angles between lines in a Euclidean space. In this way, the principal angles between
ran(I−P) and ran(C) can be used to quantify the aforementioned mixing effect. Notably,
we can exploit recent results on optimal rate bounds for generalizations of the classic al-
ternating projections algorithm [88],[89] to achieve this point. This observation was pre-
viously noted in [99] to construct the geometric convergence proof for PDMM therein.
In conjunction with the analysis of the previous Section, in this work we extend upon
this connection to provide tighter convergence results.

Consider the two projection operations Π
ran(C)

and Π
ran(I−P)

. It was shown in [89], that

there exists an orthonormal matrix D such that these two projections can be jointly fac-
torized as

Π
ran(C)

= D

I 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

DT , Π

ran(I−P)
= D

cos2 (θ) cos(θ)sin(θ) 0 0
cos(θ)sin(θ) sin2 (θ) 0 0

0 0 I 0
0 0 0 0

DT ,

where θ is a vector of principal angles between ran(C) and ran(I−P). Similarly, cos(θ)
and sin(θ) denote diagonal matrices of the cosines and sines of θ respectively. Using
(5.13), the operator P is therefore given by

P = D

−cos(2θ) −sin(2θ) 0 0
−sin(2θ) cos(2θ) 0 0

0 0 −I 0
0 0 0 I

DT .

5.4. A TIGHT GEOMETRIC CONVERGENCE BOUND FOR PDMM FOR STRONGLY CONVEX,
SMOOTH FUNCTIONS

5

107

-1 0 1

-1

0

1

-1 0 1

-1

0

1

-1 0 1

-1

0

1

Figure 5.1: Demonstration of the ellipsoidal bound of PDMM updates for the case of µ̂ = 1− β̂ = 0.25 and
θw = π

32 .

The lower right hand identity matrices correspond to those non-contractive compo-
nents of PDMM and as such do not contribute to the projected auxiliary variables. Sim-
ilarly, for any θ ∈ {0, π2 }, no mixing effect is introduced between ran(C) and ker

(
CT

)
and,

as we will see in the coming subsections, no degradation of the partial contraction oc-
curs.

5.4.7. TOWARDS A STRONGER CONVERGENCE RATE BOUND FOR PDMM
By combining our analysis of the primal and auxiliary updates defined in the previous
sections, we are finally ready to form our new worst-case bound for the projected auxil-
iary error of PDMM. For a given k iterations, bounding the worst-case convergence can
be rephrased as the following non-convex optimization problem:

max
z(0)

∥∥∥∥ Π
ran(PC)+ran(C)

(
z(k+1) −z∗

)∥∥∥∥
2

(5.14a)

s.t.
∥∥z(0) −z∗

∥∥2 ≤ ε0 (5.14b)
∥∥∥∥ Π

ran(C)

(
y(i+1)−y∗−(1−β̂−µ̂)

(
z(i)−z∗

))∥∥∥∥≤ (β̂−µ̂)

∥∥∥∥ Π
ran(C)

(
z(i)−z∗

)∥∥∥∥ , (5.14c)

Π
ker(CT)

(
y(i+1) −y∗

)
= Π

ker(CT)

(
z(i) −z∗

)
, (5.14d)

z(i+1) = Py(i+1) ∀i = 0,1, · · · ,k. (5.14e)

Using the results of Section 5.4.2, here we are maximizing the projected auxiliary er-
ror (5.14a) under the constraints (5.14c) and (5.14d) imposed by the primal ellipsoidal
bounds in (5.6), and the auxiliary update equations of PDMM (5.14e). Additionally,
(5.14b) bounds the initial error.

To simplify (5.14), reconsider the joint decomposition of ran(C) and ran(I−P) defined
in Section 5.4.6. We can use this decomposition and the resulting link between θ and the
matrix P to perform a change of variables that simplifies the matrix multiplication in

5

108 5. NETWORK TOPOLOGY AND PDMM: CONVERGENCE RATE ANALYSIS

(5.14e), allowing us to compute the maximum of (5.14). Specifically, by defining ẑ(i) =
DT z(i) and ŷ(i) = DT y(i), (5.14e) is equivalent to

ẑ(i+1) =

−cos(2θ) −sin(2θ) 0 0
−sin(2θ) cos(2θ) 0 0

0 0 −I 0
0 0 0 I

 ŷ(i+1). (5.15)

Importantly, as cos(2θ) and sin(2θ) are diagonal matrices, the submatrix[−cos(2θ) −sin(2θ)
−sin(2θ) cos(2θ)

]
is symmetrically permutable to a two by two block diagonal form.

As (5.14) is the maximization of a convex quadratically constrained quadratic prob-
lem, its worst-case solution will lie on the boundary of its constraint set. Furthermore,
due to the block structure in (5.15), the worst case solution must also correspond to a
particular two dimensional subspace parameterized by a worst-case principal angle θw

which is an element of θ. We can equivalently compute the maximum of (5.14) via the
solution of the two dimensional optimization problem

max
z(0)

R ,z(0)
K

|z(k+1)
R − z∗

R |2 +|z(k+1)
K − z∗

K |2

s.t. |z(0)
R − z∗

R |2 +|z(0)
K − z∗

K |2 ≤ ε0

|y (i+1)−(1−β̂−µ̂)z(i)
R | ≤ (

β̂−µ̂) |z(i)
R | (5.16)

[
z(i+1)

R
z(i+1)

K

]
=

[−cos(2θw) −sin(2θw)
−sin(2θw) cos(2θw)

][
y (i+1)

zK (i)

]
∀i = 0,1, · · · ,k,

where the scalars y (i), z(i)
R represent those components of y(i) and z(i) that coincide with

ran(C), while z(i)
K denotes the component of z(i) in ker

(
CT

)
. Our ability to omit the pro-

jection in the objective of (5.16) stems from the fact that an optimizer of (5.14) must
correspond to an initial vector z(0) contained within ran(PC) + ran(C) due to the use
of the projected auxiliary error introduced in Section 5.4.2. Hence, ∃z∗ | z(k+1) − z∗ ∈
ran(PC)+ ran(C). To further simplify things, we have also made explicit use of (5.14d)
to remove the need for a separate variable to model the component of y in ker

(
CT

)
. The

proposed reformulation is also attractive as it explicitly partitions the auxiliary variables
into those components which influence the primal x variables and those which do not.

For the worst-case iterates, the ellipsoidal constraints in (5.16) hold with equality. By
defining the scalar δ as

δ=
{

1−2β̂ if 2β̂−1 > 1−2µ̂

1−2µ̂ otherwise
, (5.17)

it follows that y (i+1) = δz(i)
R ∀i = 0,1, · · · ,k.

Substituting δ into (5.16), we find that for a given i = 1, · · · ,k the worst-case updates
are given by [

z(i+1)
R

z(i+1)
K

]
=Φ

[
z(i)

R
z(i)

K

]
, (5.18)

5.4. A TIGHT GEOMETRIC CONVERGENCE BOUND FOR PDMM FOR STRONGLY CONVEX,
SMOOTH FUNCTIONS

5

109

where the matrixΦ is defined as

Φ=
[−cos(2θw) −sin(2θw)
−sin(2θw) cos(2θw)

][
δ 0
0 1

]
. (5.19)

As our analysis thus far would suggest, the matrix Φ is comprised of two factors; a con-
traction factor (δ) dependent on the local functions at each node, and a mixing effect
(θw) due to the edge based constraint functions. In the case of the two dimensional
problem considered in (5.16), the mixing due to θw results in a rotation of the error el-
lipsoid at each iteration, as demonstrated in Figure 5.1. In the following we demonstrate
how this rotation influences the convergence rate of the projected auxiliary variables
which in turn allows us to define the worst case principal angle θw .

5.4.8. WORST-CASE CONVERGENCE BOUND AND ITS LIMITING RATE
As the worst-case auxiliary updates given in (5.18) all hold simultaneously, the solution
of (5.14) satisfies the inequality

∥∥∥∥ Π
ran(PC)+ran(C)

(
z(k+1) −z∗

)∥∥∥∥
2

=σ2
max

(
Φk

)
ε0, (5.20)

where σ2
max (•) denotes the maximum squared singular value of a matrix. Note that as

the bound given in (5.20) is based on the largest singular value, the worst-case rates for
different k need not correspond to the same initial vector z(0) or even the same worst-
case function. Like the primal variable error ellipsoids demonstrated in Figure 5.1, (5.20)
can also be visualized via a sequence of rotated error ellipsoids. An example of this point
is demonstrated in Figure 5.2 for a particular instance of PDMM. In this way, (5.20) is an
iteration specific bound.

The worst case principal angle θw corresponds to the element of θ which maximizes
the largest singular value of Φk . As θw ∈ [0, π2] by definition, one of two cases holds:
either θw ∈ {0, π2 } and lies on the boundary of the set, or θw ∈ (0, π2) and is contained

within the set. If we assume the prior, from (5.19) we can note that Φ = ±
[
δ 0
0 1

]
, and

thus no mixing occurs between the subspaces ran(C) and ker(C). This lack of mixing
enables us to immediately note that

∥∥∥∥ Π
ran(C)

(
z(k+1) −z∗

)∥∥∥∥
2

≤ |δ|2kε0, (5.21)

which follows from the structure of Φ and the definition of zR used in (5.16). We are
therefore able to directly bound the error in the auxiliary variables which influence the
primal updates.

Using (5.21), we can demonstrate that any θw ∈ (
0, π2

)
must result in slower conver-

gence than a θw ∈ {0, π2 } by considering the limiting rate of PDMM given by

γw = lim
k→∞

k
√
σmax

(
Φk

)≤ k
√
σmax

(
Φk

) ∀k ∈N. (5.22)

Here, γw describes the average contraction per iteration as the number of iterations k
tends to infinity, hence the use of the term limiting rate. By definition, this directly cor-
responds to the spectral radius ofΦ, its largest absolute eigenvalue.

5

110 5. NETWORK TOPOLOGY AND PDMM: CONVERGENCE RATE ANALYSIS

-1 0 1

-1

0

1

-1 0 1

-1

0

1

-1 0 1

-1

0

1

-1 0 1

-1

0

1

Figure 5.2: Demonstration of the contractive nature of PDMM over multiple iterations for the case of µ̂ = β̂ =
0.25 and θw = π

8 . The red dotted line demonstrates the worst-case convergence bound.

We can compute γw by using the fact thatΦ ∈R2×2 and thus that its eigenvaluesλ (Φ)
can be computed analytically from its trace and determinant given by

tr(Φ) = (1−δ)cos(2θw) , det(Φ) =−δ.

It follows that λ (Φ) can be computed as

λ (Φ)= (1−δ)

2
cos(2θw)±

√
(1−δ)

4

2

cos2 (2θw)+δ.

The limiting rate of PDMM is therefore given by

γw = max{|λ (Φ) |} .

As δ ∈ (−1,1), we can form an analytic expression for γw in terms of |δ| and |cos(2θw) |.
By defining α1= (1−|δ|)

4

2|cos(2θw) |2,α2= (1+|δ|)
4

2|cos(2θw) |2 it follows that

γw =

1−|δ|
2 |cos(2θw)|+

√
α1+|δ| δ∈[0,1)

1+|δ|
2 |cos(2θw)|+

√
α2−|δ| δ∈[−α2,0)√

|δ| δ ∈ (−1,−α2)

, (5.23)

where an increase in either |δ| or |cos(2θw) |, results in an increase in γw . For all such δ,
we therefore find that γw ≥

√
|δ| ≥ |δ| where the final equality follows as δ ∈ (−1,1).

5.4. A TIGHT GEOMETRIC CONVERGENCE BOUND FOR PDMM FOR STRONGLY CONVEX,
SMOOTH FUNCTIONS

5

111

By combining (5.22) and (5.23), we find that δ2k ≤ γ2k
w ≤σ2

max

(
Φk

)
and thus that θw ∈

(0, π2) must hold, assuming such a principal angle exists. Furthermore, as γw increases
with both |δ| and |cos(2θw) |, θw should be chosen as close to but not equal not to 0 or π

2
to achieve the worst case rate.

Remark 1. In the case that all principal angles are contained within the set {0, π2 }, it im-
plies that the matrix Π

ran(I−P)
and Π

ran(C)
are jointly diagonalizable. Due to the node block

structure of C and the edge structure of P, this can only occur in the case that the con-
straint functions impose no form of coupling between the local variables at each node,
i.e. each node operates entirely independently. As such a problem is not a true example
of distributed optimization, we can say that θw ∈ (0, π2) for all distributed optimization
problems.

5.4.9. OPTIMAL STEP SIZE CHOICE FOR A GIVEN NETWORK
In addition to understanding the convergence characteristics of PDMM, we can also
demonstrate a method of step size selection to optimize the worst-case convergence
bound. This is achieved by noting that, while the choice of the step size ρ influences
the configuration of µ̂ and β̂ (see Lemma 5.4.1) it does not affect θw which only depends
on the matrices C and P. We can therefore configure the step size to optimize |δ| and
thus the worst case bound. Note that following choice was initially provided in [82] but
is included here for completeness.

The optimal choice of ρ should minimize the magnitude of local contraction factor
δ as defined in (5.17). Specifically, as β̂≥ µ̂, such a step size corresponds to minimizer of

|δopt| = min
ρ>0

max

2

1+ µ

ρσ2
max(C)

−1,1− 2

1+ β

ρσ2
min6=0(C)

.

With some basic manipulation, it also follows that

|δopt| = min
ρ>0

max

ρ
σ2

max(C)
µ −1

ρ
σ2

max(C)
µ +1

,
1−ρ σ

2
min6=0(C)

β

ρ
σ2

min6=0(C)

β +1

. (5.24)

By inspection, the optimal choice of ρ occurs when the two terms in (5.24) are equal, i.e.,
that

ρopt
σ2

max(C)
µ −1

ρopt
σ2

max(C)
µ +1

=
1−ρopt

σ2
min6=0(C)

β

ρopt
σ2

min6=0(C)

β +1
.

Rearranging this equality and cancelling common terms, it follows that the optimal step
size is given by

ρopt =
√
µβ

σmax (C)σmin6=0 (C)
. (5.25)

Substituting this into the definition of δ in (5.17), we find that

|δopt| =
σmax (C)

√
β−σmin6=0 (C)

p
µ

σmax (C)
√
β+σmin6=0 (C)

p
µ

. (5.26)

5

112 5. NETWORK TOPOLOGY AND PDMM: CONVERGENCE RATE ANALYSIS

While this particular ρ optimizes the convergence rate bound, it need not be optimal for
a particular problem instance.

5.5. ADDITIONAL ANALYSIS AND RESULTS
In this section we outline a pair of additional results which stem from the newly intro-
duced convergence bound. Specifically we link our new convergence bound with that
demonstrated in [99] as well as highlighting a problem instance which converges at the
limiting rate γw .

5.5.1. THE CONNECTION WITH THE GEOMETRIC BOUND OF PDMM
Using the iteration specific convergence bound introduced above we can re-derive the
geometric rate introduced in [99] for the same functional class. We can draw this connec-
tion by considering the specific case when k = 2. Specifically, the k = 2-iteration specific
bound is parameterized by the matrix

Φ2=
[

δ2+δ(1−δ)sin2 (2θw) (δ−1)cos(2θw)sin(2θw)
δ(δ−1)cos(2θw)sin(2θw) δ+(1−δ)cos2 (2θw)

]
.

As this is a two by two matrix, we can determine its singular values from the eigenvalues

of
(
Φ2

)T
Φ2 by using the same analysis adopted in Section 5.4.8 i.e. from its trace and

determinant which are respectively by

tr
(
Φ2)= 2δ2 + (

1−δ2)2
cos2 (2θw) , det

(
Φ2)= δ4.

It follows that the squared singular values ofΦ2 are given by

σ2 (
Φ2)= δ2 +

(
1−δ2

)2
cos2(2θw)

2
± (

1−δ2) |cos(2θw)|
√(

1−δ2
)2 cos2(2θw)

4
+δ2 (5.27)

Comparing the result in (5.27) with that in [99, Lemma V.2], we can observe that the
convergence rate therein is identical if we apply the mapping |cos(2θw)| = cos(θF). It fol-
lows that the convergence rate bound of [99] is only tight for a single two-iterate update.
This leads to a reduction in the worst-case rate, particularly for those with favorable θw

and ω parameters.
Figure 5.3 highlights this difference in convergence bound by comparing the geo-

metric rates of [99] and that provided in (5.20). We can clearly note the stronger rate
provided by the iteration specific bound with equality between the two bounds for the
instance that k = 2. Figure 5.3 also demonstrates the limiting convergence rate γw given
in (5.23) with the iteration specific bound tending to this rate as k increases.

5.5.2. A PROBLEM INSTANCE THAT ATTAINS THE WORST-CASE RATE
In addition to drawing a connection with the existing geometric convergence bound of
PDMM in the literature, we can also show that the limiting rate of PDMM is in fact tight
by demonstrating a particular problem instance which converges at this rate. To do so,
consider a d-regular network where every node has d edges. For each node i we define

5.5. ADDITIONAL ANALYSIS AND RESULTS

5

113

0 2 4 6 8 10

0.3

0.5

0.8

1

σ2
max

(
Φk

)

[99]
γ2k

w

Figure 5.3: A comparison of the convergence rates of the proposed tight bound and the existing geometric
convergence bound of PDMM in [99] for the case of ω= 0.55 and θw = π

16 .

the local objective function fi = 1
2 xT

i

[
µ 0
0 β

]
xi with 0 ≤ µ ≤ β. Importantly, this ensures

that all local objectives are µ-strongly convex and β-smooth. Using this configuration,
consider solving the following problem with PDMM.

min
x

∑

i∈V

1

2
xT

i

[
µ 0
0 β

]
xi s.t xi = x j ∀(i , j) ∈ E ., (5.28)

where the constraints impose consensus between the local variables. In the following,
we demonstrate how the rate of PDMM is given by γw for this particular problem.

To determine the convergence rate of PDMM in solving (5.28) we can consider the
update equations given in Algorithm 6. Specifically, due to the quadratic nature of the
objective functions, the update equations for PDMM are linear. We can therefore express
PDMM via the single update equation

z(k+1) = P
(
I−2ρC

(
Q+ρCT C

)−1
CT

)
z(k),

where Q = IN ⊗
[
µ 0
0 β

]
and ⊗ denotes the Kronecker product. The linear nature of this

equation allows us to directly determine the convergence rate of PDMM. Specifically, as
the effect of the permutation matrix P has already been addressed in Section 5.4.6, it fol-

lows that all we need to verify to prove the tightness of (5.23) is to show thatρC
(
Q+ρCT C

)−1
CT

is β̂ Lipschitz continuous and µ̂ strongly monotone over ran(C).
Denoting the diagonal degree matrix of graph G by DG , where each diagonal element

di denotes the degree of node i , i.e., how many edges include i as a vertex, it follows that

CT C = DG ⊗ IM , (5.29)

where we have used the definition of C in (5.3) noting that Ai | j =±I for consensus prob-
lems. Furthermore, in the case of the networks considered in (5.28), DG = dI. It fol-
lows that for a connected network, C has full column rank. Thus the eigenvectors of

5

114 5. NETWORK TOPOLOGY AND PDMM: CONVERGENCE RATE ANALYSIS

I−2ρC
(
Q+ρCT C

)−1
CT whose eigenvalues are equal to 1 lie outside of ran(C). There-

fore using [108, Theorem 1.3.20], I−2ρC
(
Q+ρCT C

)−1
CT has the same non-unity eigen-

values as the smaller matrix

I−2ρCT C
(
Q+ρCT C

)−1=IN ⊗

1− 2
1+ µ

ρd
0

0 1− 2

1+ β
ρd

. (5.30)

Recalling from Lemma 5.4.1 that

β̂= 1

1+ µ

ρσ2
max(C)

, µ̂= 1

1+ β

ρσ2
min6=0(C)

,

in combination with the structure of (5.30), we can conclude that ρC
(
Q+ρCT C

)−1
CT is

β̂-Lipschitz and µ̂-strongly monotone over ran(C) as desired. It follows that the conver-
gence rate of PDMM is exactly given by (5.23) in this instance.

5.6. THE EFFECT OF NETWORK TOPOLOGY ON DISTRIBUTED

CONSENSUS
Given our analysis of the convergence rate of PDMM, we are finally able to quantify how
network topology influences algorithm performance. Specifically, we will show how the
convergence rate of consensus problems depends on both the minimum and maximum
degree of any node in the network, and the spectrum of the random walk matrix of the
underlying graph. Using this connection, we analyze the characteristics of a number of
different deterministic networks allowing us to compare their worst case convergence.
In particular, this allows us to demonstrate a problem instance where PDMM converges
in a finite number of iterations.

5.6.1. THE INTERPLAY BETWEEN CONSENSUS AND TOPOLOGY
Consider a consensus problem of the form

min
xi ∀ i∈V

∑

i∈V
fi (xi) s.t xi = x j ∀ (i , j) ∈ E , (5.31)

where Mi = M ∀i ∈ V . While such problems are more restrictive than those able to be
solved via PDMM, our motivation for this choice stems from the link that emerges be-
tween algorithm convergence and spectral graph theory in this case. Specifically, we
show how the spectrum of the random walk matrix of G , which we shall define shortly,
determines cos(2θw).

For the considered class of functions, we have previously seen that the limiting con-
vergence rate bound in (5.20) is parameterized by two key terms: the partial contraction
factor δ which is dependent of µ,β,ρ and the singular values of C, and the worst case
principle angle θw which is dependent on the matrices C and P. As the edge set E of the
underlying graph determines the form of the constraints in (5.31) it follows that both C
and P and thus δ and θw are dependent on the underlying topology. These effects are
quantified below.

5.6. THE EFFECT OF NETWORK TOPOLOGY ON DISTRIBUTED CONSENSUS

5

115

THE EFFECT ON THE LOCAL CONTRACTION PARAMETER δ

Considering first the local contraction factor δ, for a given µ,β,ρ and the considered
class of consensus problems, dependence on topology follows from (5.29) where we can
note that σmin6=0 (C) =

√
dmin, σmax (C) =

√
dmax are the squareroots of the minimum

and maximum degree of any node in the network respectively. Therefore, if we select the
stepsize ρ to optimize |δ|, as per Section 5.4.9, it follows from (5.26) that

|δ| =
√

dmaxβ−√
dminµ√

dmaxβ+√
dminµ

. (5.32)

For a fixed β and µ, an increase in the degree spread dmax −dmin increases |δ| and thus
reduces convergence rate. In this way, d-regular graphs, those where all nodes have the
same degree, potentially offer faster convergence bounds.

THE EFFECT ON THE SUBSPACE MIXING PARAMETER cos(2θw)
We can also infer the effect of topology on cos(2θw) by using the definition of the cosines
of the principal angles between ran(C) and ran(I−P). Specifically, from [89, Definition
3.1], the diagonal elements of the matrix cos(θ) are given by the singular values of the
matrix product

S = Π
ran(I−P)

Π
ran(C)

.

We can compute these singular values and thus cos(θ) as the square roots of the eigen-
values of the matrix

ST S = Π
ran(C)

Π
ran(I−P)

Π
ran(C)

= 1

2

(
Π

ran(C)
− Π

ran(C)
P Π

ran(C)

)

= 1

2
C

((
CT C

)† − (
CT C

)†
CT PC

(
CT C

)†
)

CT ,

where we have used the definition of orthonormal projections.
To analyze ST S we can again use [108, Theorem 1.3.22], such that the non-zero eigen-

values of ST S can equivalently be found via the spectrum of the smaller matrix

S = 1

2

((
CT C

)† − (
CT C

)†
CT PC

(
CT C

)†
)

CT C

= 1

2

(
I− (

D−1
G ⊗ IM

)
CT PC

)
,

where we have also used (5.29) to simplify notation.
To better interpret the structure of S we require the additional notion of the adja-

cency matrix of a graph. Specifically, for a given G , this matrix is denoted by AG ∈ RN×N

where [AG]i , j = 1 if (i , j) ∈ E and is zero otherwise. Using this definition, it follows that

CT PC = −AG ⊗ IM where the negative sign stems from the fact that ∀(i , j) ∈ E , Ai | j =
−A j |i ∈ {±I}. Thus, using the mixed product property of Kronecker products, it follows
that

S = 1

2

(
I+D−1

G AG
)⊗ IM .

5

116 5. NETWORK TOPOLOGY AND PDMM: CONVERGENCE RATE ANALYSIS

We can further determine a matrix whose spectrum corresponds to cos(2θ) via sim-
ple trigonometric manipulation. Specifically, as cos(2θ) = 2cos2(θ)−1 andλ (S) = cos2(θ),
the eigenvalues of the right stochastic matrix

ÂG ⊗ IM = 2S − I = (
D−1

G AG
)⊗ IM ,

are exactly equal to cos(2θ). The matrix ÂG corresponds to the random walk matrix of a
graph.

The above link between the random walk matrix and the cosines of principal an-
gles highlights a number of interesting properties. Firstly, applying the Gershgorin circle
theorem, the eigenvalues of ÂG are contained within [−1,1] which also logically follows
from the bounded nature of the cosine function. Furthermore, those eigenvalues with
magnitude 1 correspond to θ ∈ {0, π2 } which, for nontrivial distributed problems, do not
correspond to the θw . It follows that cos(2θw) is given by the largest non-unity absolute
eigenvalue of ÂG , i.e., by max{|λ(ÂG)| < 1} where λ(ÂG) is the spectrum of ÂG .

That the convergence of PDMM is parameterized by max{|λ(ÂG)| < 1} provides a di-
rect link with spectral graph theory. In particular, as ÂG is right stochastic, it describes
the transition probability between nodes during a random walk on the underlying net-
work, hence the name. The overall mixing rate of this random walk is again determined
by the largest non-unity absolute eigenvalue of ÂG as it describes the slowest converging
mode. The convergence rate of PDMM is therefore parameterized by this mixing rate
and thus networks which exhibit faster random walks also have the potential to exhibit
faster convergence as well.

5.6.2. CONVERGENCE OF DETERMINISTIC NETWORK TOPOLOGIES
Having linked network topology with convergence rate, we now demonstrate the effect
of a range of deterministic network structures on the worst case bound given in (5.23).
Specifically, for each considered network we select ρ as per (5.25) to optimize γw . With
this choice, in Table 5.1 we demonstrate analytic expressions for |δ| and |cos(2θw) for a
range of networks.

Many of the eigenvalue results in Table 5.1 leverage existing results in spectral graph
theory, namely that of Chung in [109], by exploiting the link between λ

(
ÂG

)
and the

spectrum of normalized graph Laplacians. Specifically, the normalized Laplacian of a
graph G is given by

L̂ = I−D
−1
2

G AG D
−1
2

G .

Using matrix similarity and the definition of ÂG , it follows that λ(ÂG) = λ(D−1
G AG) =

λ(D
−1
2

G AG D
−1
2

G) = λ(I − L̂) which provides a direct method of computing the eigenval-

ues of ÂG from the spectrum of L̂ . Unlike [109], our results also highlight the interplay
between the local functional characteristics and network topology in defining the con-
vergence rate bound for PDMM. In the case of the K -hop lattice and 2D periodic grid
graphs, these spectra are derived below.

5
.6

.T
H

E
E

F
F

E
C

T
O

F
N

E
T

W
O

R
K

T
O

P
O

L
O

G
Y

O
N

D
IS

T
R

IB
U

T
E

D
C

O
N

S
E

N
S

U
S

5

117

Graph Type: Example: |δ| (5.32) λ
(
ÂG

) |cos(2θw) |

Fully Connected [109, Example 1.1]
p

(N−1)β−p(N−1)µp
(N−1)β+p(N−1)µ

{
1, −1

N−1

} 1
N−1

Complete Bipartite [109, Example
1.2]. M denotes the number of

nodes in the larger partition

p
Mβ−p(N−M)µp
Mβ+p(N−M)µ

{-1,0,1} 0

Star [109, Example 1.3]
p

(N−1)β−pµp
(N−1)β+pµ {−1,0,1} 0

Path/Chain [109, Example 1.4]

p
2β−pµp
2β+pµ

{
cos

(iπ
N−1

) |
i ∈ {0, · · · , N−1}

} cos
(

π
N−1

)

Ring [109, Example 1.5]
p

2β−p2µp
2β+p2µ {

cos
(2iπ

N

) | i ∈ {0, · · · , N−1}
} cos

(2π
N

)

K -Cube [109, Example 1.6]
p

Kβ−pKµp
Kβ+pKµ

{ K−2i
K | i ∈ {0, · · · ,K }

} K−2
K

K -Hop Lattice. For K = 1 the
network forms a ring graph.

p
2Kβ−p2Kµp
2Kβ+p2Kµ

{
1
K

K∑
j=1

cos
(

2i jπ
N

)

| i ∈ {0, · · · , N −1}
} max

{|λ(
ÂG

) | < 1
}

m ×n Grid with Periodic Boundary
Condition with m ≥ n

p
4β−p4µp
4β+p4µ

{
1
2

(
cos

(2iπ
n

)+cos
(

2 jπ
m

))

| i ∈ {0, · · · ,n−1},

j ∈ {0, · · · ,m−1}
}

1
2

(
cos

(2π
n

)+cos
(2π

m

))

Table 5.1: Analytic expressions for the worst-case convergence rate for various network types.

5

118 5. NETWORK TOPOLOGY AND PDMM: CONVERGENCE RATE ANALYSIS

K -HOP LATTICE

The spectrumλ(ÂG) of a K -hop lattice graph can be derived from the fact that ÂG is circu-
lant. Specifically, denoting the first column of ÂG by the vector a = 1

2K [0,1T
K ,0T

N−2K−1,1T
K]T ,

λ
(
ÂG

)=
N−1∑

j=0

(
a j exp

(
2i jπ

p−1

N

))
∀i ∈ {0, · · · , N−1}.

Using the definition of a and Euler’s rule, it follows that

λ
(
ÂG

)= 1

K

K∑

j=1
cos

(
2i jπ

N

)
∀i = 0,1, · · · , N −1.

We can then compute |cos(2θw) | as max{|λ(ÂG)| < 1}.

2D PERIODIC GRID

The result for the 2D m ×n periodic grid is equally straightforward to derive. The ad-
jacency matrix of such a grid is equivalent to that of the Cartesian product of two ring
graphs of length m and n respectively. From [110, Theorem 3] it follows that the eigen-
values of the adjacency matrix of this grid is given by

λ (AG) = νm,i +νn, j ∀i = 0,1, · · ·m −1, j = 0,1, · · · ,n −1,

where νm,i and νn, j are the i th and j th eigenvalues of the adjacency matrix of the length
m and length n ring graph respectively. Given the d-regularity of the G, ÂG is simply a
scaled version of this matrix. In this case, the scaling results in the final eigenvalues

λ
(
ÂG

)=1

2

(
cos

(
2iπ

n

)
+cos

(
2 jπ

m

))
∀ j = 0,1, · · ·m −1,k = 0,1, · · · ,n −1,

Overall, it follows that |cos(2θw) | = 1
2 (cos(2π

n)+cos(2π
m)).

5.6.3. FINITE TIME CONVERGENT PDMM
We now move to the final result of this paper, that of demonstrating an instance where
PDMM converges in finite iterations. Specifically, from (5.23), for this to occur |δ| =
|cos(2θw)| = 0. The construction of such a finite convergence problem therefore requires
both a certain network structure and a certain primal problem. In the case of the prior,
from Table 5.1, the only networks considered therein which could achieve this point are
the fully connected bipartite graphs as for all others |cos(2θw)| 6= 0. Furthermore, we
know that any graph which is not d-regular will result in an increase of |δ| and thus can-
not achieve finite convergence. Fortunately, by assuming N is even and setting M = N

2 , it
follows that such a network is both a fully connected bipartite graph and also d-regular.

The final piece of the puzzle is then to choose an appropriate primal problem. No-
tably, for |δ| = 0, it follows from (5.32) that β= µ. One such problem which satisfies this
property is the average consensus problem

min
x

∑

i∈V

1

2
‖xi −ai‖2 s.t. xi = x j ∀(i , j) ∈ E ,

5.7. CONCLUSION

5

119

1 2 3 4 5 6 7 8 9 10

10
-30

10
-20

10
-10

10
0

Figure 5.4: Average consensus over a complete bipartite graph with M = N
2 ,ρ = 2

N converges in exactly three
iterations using PDMM regardless of the initialization used.

where β = µ = 1 in this instance. By selecting ρ = 2
N , as per (5.25), it follows from (5.32)

that |δ| = 0 as desired. Using the definition ofΦ in (5.19), we find thatΦ2 = 0 guarantee-
ing convergence of the iteration specific bound in only 2 steps.

The finite time convergence of PDMM is verified in Figure 5.4 for the case of a N =
500 network where a total of 1000 random starting vectors z(0) were generated. The plot
demonstrates the worst-case instance observed and shows that the primal variables of
PDMM converge in exactly three iterations in this instance. While the auxiliary variables
of PDMM converge in two iterations, a third primal update is required to compute the
optimal x variables.

5.7. CONCLUSION
In this work we have explored the convergence rate of PDMM for strongly convex and
smooth functions, and the role of network topology in this rate. The new convergence
bound demonstrated herein is stronger than those currently in the literature and pro-
vides a tight bound on the limiting rate of PDMM for the considered functional class. For
consensus problems, we have shown how this convergence is parameterized by the spec-
trum of the random walk matrix and used this insight to link the convergence of PDMM
with random walks on graphs. Furthermore, for specific problem classes we have pro-
vided analytic expressions to understand how different commonly used topologies im-
pact network convergence. Overall, this work provides insight into the effect of network
topology in distributed optimization and highlights the importance of good network de-
sign for such applications.

APPENDICES

5.A. PROOF OF PROPOSITION 5.4.1
As ∇ f is 1

β -cocoercive, from Definition 5.4.5, ∀x1,x2 ∈ X,

〈∇ f (x1)−∇ f (x2) ,x1 −x2
〉≥ 1

β

∥∥∇ f (x1)−∇ f (x2)
∥∥2 .

Combing this with (5.8) and (5.10), and defining xa = Π
ran(CT)

x1 and xb = Π
ran(CT)

x2, we find

that, ∀xa ,xb ∈ XR ,

〈∇g (xa)−∇g (xb) ,xa −xb
〉≥ 1

β

∥∥∇g (xa)−∇g (xb)
∥∥2 .

5.B. PROOF OF PROPOSITION 5.4.2
As ∇ f is µ-strongly monotone, from Definition 5.4.3, ∀x1,x2 ∈ X,

〈∇ f (x1)−∇ f (x2),x1 −x2
〉≥µ‖x1 −x2‖2 ,

Combing this with (5.8) and (5.10), and defining xa = Π
ran(CT)

x1 and xb = Π
ran(CT)

x2, we find

that, ∀xa ,xb ∈ XR ,

〈∇g (xa)−∇g (xb),xa −xb
〉≥µ‖x1 −x2‖2 ≥µ‖xa −xb‖2 .

5.C. PROOF OF LEMMA 5.4.1
As g is µ-strong convex and β-smooth with respect to XR , I+ρ C†T

ρ ∇g C†

ρ is 1+ µ

ρσ2
max(C)

-

strongly monotone and 1+ β

ρσ2
min6=0(C)

-Lipschitz continuous with respect to XR . Further-

more, I+ρ C†T

ρ ∇g C†

ρ =∇g̃ for a convex function g̃ . It follows that the Fenchel conjugate

function g̃∗ is β̂-smooth and µ̂-strongly convex over ran(C) where

β̂= 1

1+ µ

ρσ2
max(C)

, µ̂= 1

1+ β

ρσ2
min6=0(C)

.

Combining Definition 5.4.2 for strong convexity and 5.4.4 for smoothness it follows

that
(
β̂−µ̂)

2 ‖•‖2 −
(
g̃∗− µ̂

2 ‖•‖2
)

is convex such that g̃∗− µ̂
2 ‖•‖2 is β̂− µ̂-smooth. As ∂h∗ =

∂h−1 for h ∈ Γ0, it follows that ∇g̃∗− µ̂I =
(
I+ρ C†T

ρ ∇g
(

C†

ρ

))−1 − µ̂I is 1
β̂−µ̂ cocoercive. �

121

5

122 5. NETWORK TOPOLOGY AND PDMM: CONVERGENCE RATE ANALYSIS

5.D. PROOF OF LEMMA 5.4.2

As the operator
(
I+ρ C†T

ρ ∇g C†

ρ

)−1 − µ̂I is 1
β̂−µ̂ cocoercive it follows that the x iterates sat-

isfy the inequality

〈
ρC

(
x(k+1) −x∗

)
− µ̂

(
z(k) −z∗

)
, Π

ran(C)

(
z(k) −z∗

)〉

≥ 1

β̂− µ̂

∥∥∥∥ρC
(
x(k+1) −x∗

)
− µ̂ Π

ran(C)

(
z(k) −z∗

)∥∥∥∥
2

.

By then defining the vectors vc = β̂+µ̂
2 Π

ran(C)

(
z(k) −z∗

)
, vx = ρC

(
x(k+1) −x∗

)
and vz = Π

ran(C)

(
z(k) −z∗

)
,

it follows that we can rewrite this inequality as

〈
vx−vc+ β̂−µ̂

2
vz ,vz

〉
≥ 1

β̂−µ̂

∥∥∥∥∥vx−vc+ β̂− µ̂
2

vz

∥∥∥∥∥

2

,

which is equivalent to the more simplistic form

1

β̂− µ̂

〈
vx−vc+ β̂−µ̂

2
vz ,− (vx−vc)+ β̂−µ̂

2
vz

〉
≥ 0.

With some basic algebraic manipulation and by taking the square root of both sides of
the inequality, we can finally recover the ellipsoidal constraint on the vector vx given by

(β̂−µ̂)‖vz‖ ≥ ‖vz −2vx − (vz −2vc)‖ ,

Using the definitions of vc ,vx and vz , it follows that

(β̂− µ̂)

∥∥∥∥ Π
ran(C)

(
z(k) −z∗

)∥∥∥∥≥
∥∥∥∥ Π

ran(C)

(
y(k+1) −y∗− (1− β̂− µ̂)

(
z(k) −z∗

))∥∥∥∥

completing the proof. �

III
DISTRIBUTED SOLVER DESIGN

123

6
A DISTRIBUTED ALGORITHM FOR

SEPARABLE CONVEX

OPTIMIZATION

Thomas Sherson, Richard Heusdens,
and W. Bastiaan Kleijn

“Solving a problem for which you know there’s an answer is like climbing a mountain
with a guide, along a trail someone else has laid. In mathematics, the truth is somewhere
out there in a place no one knows, beyond all the beaten paths. And it’s not always at the

top of the mountain. It might be in a crack on the smoothest cliff or somewhere deep in
the valley.”

Yoko Ogawa - The Housekeeper and the Professor

In this chapter we move to the task of broadening the class of problems which can be
solved in a distributed manner. As our first contribution in this direction, we present
a novel method for convex optimization in distributed networks called the distributed
method of multipliers (DMM). The proposed method is based on a combination of a
particular dual lifting and classic monotone operator splitting approaches to produce
an algorithm with guaranteed asymptotic convergence in undirected networks. The pro-
posed method allows any separable convex problem with linear constraints to be solved
in undirected networks. In contrast to typical distributed approaches, the structure of
the network does not restrict the types of problems which can be solved. Furthermore,

Parts of this chapter have been published in IEEE Transactions on Signal and Information Processing Over
Networks, Accepted for Publication February 2019.

125

6

126 6. A DISTRIBUTED ALGORITHM FOR SEPARABLE CONVEX OPTIMIZATION

the solver can be applied to general separable problems, those with separable convex ob-
jectives and constraints, via the use of an additional primal lifting approach. Finally we
demonstrate the use of DMM in solving a number of classic signal processing problems
including beamforming, channel capacity maximization and portfolio optimization.

6.1. INTRODUCTION
Large scale optimization has become a significant topic of interest in the fields of com-
puter science and electrical engineering. Driven by applications from the likes of the
“Internet of Things” paradigm [5], cloud computing [111] and large scale machine learn-
ing [112], there is a growing need for efficient methods to solve large scale problems.

A family of approaches which has seen significant interest to address this need are
those based on distributed computation. Designed for use in networked systems, dis-
tributed methods are often characterized by only requiring local computations at nodes
within the network and short range communication. This removes the need for data
aggregation and centralized computations which can quickly become infeasible to im-
plement for large scale networks.

In recent years a wide range of techniques have been proposed to perform distributed
computation including the likes of distributed consensus/gossip [10, 12, 72], belief prop-
agation/message passing approaches [15, 14], graph signal processing over networks
[73, 95, 17, 74] and more. In this work, we draw particular attention to the additional field
of decentralized/distributed optimization as a method of achieving distributed compu-
tation. The motivation for this pursuit is the link between many signal processing ap-
plications and equivalent convex optimization problems [75]. By developing novel tools
for distributed optimization we can facilitate a range of signal processing applications in
a distributed manner.

While a number of distributed optimization algorithms exist within the literature,
many were conceived for use in parallel computing rather than in-network applications
[29]. The result is that while many algorithms allow for distribution over the structure
of the target optimization problem they may require communication which does not
respect the underlying network topology. As such, data aggregation approaches may
be required which, as in the case of centralized computation, can be cumbersome or
perhaps infeasible to implement. While the considered problem classes can be restricted
to circumvent this point, this action in turn heavily limits their applicability to real world
problems.

In this work we propose a novel method for distributed optimization which can be
used to solve general separable convex optimization problems. The family of separable
problems are characterized by having separable objectives functions and separable con-
straints. Unlike many existing approaches, for the proposed algorithm the underlying
structure of the network need not affect the types of problems which can be addressed,
allowing the solver to be readily applied to general undirected networked problems.

6.1.1. RELATED WORK

The field of parallel and distributed optimization has an extensive history upon which
this paper builds. Key figures within the literature include Rockafellar, whose fundamen-

6.1. INTRODUCTION

6

127

tal work on network optimization [76] and the relation between convex optimization and
monotone operator theory [26, 27, 28] remains central to many results to this day. No-
tably, Rockafellar showed how linearly constrained convex programs with separable ob-
jectives could be solved in parallel via Lagrangian duality. This fundamental notion was
further developed by the likes of Bertsekas, Tsitsiklis and Eckstein [29, 30, 31, 32, 86, 33]
where again separability was used as a mechanism to design a range of distributed algo-
rithms.

More recently, the demand for large scale data processing, has seen a return to form
of these approaches within the literature [18, 37, 38, 79, 96]. This period has also seen
the development of new methods of operator splitting [78, 77, 113] which in turn have
motivated the development of further distributed optimization algorithms [19, 20, 97]
again leveraging the fundamental links Rockafellar forged back in the 1970’s. Unfortu-
nately, a key limitations of many distributed algorithms is that they do not distribute in
a way which respects the underlying network structure. This is highlighted in [53] where
a distinction is drawn between the notions of distributability of an algorithm over the
constraints and communication structure of a given networked optimization problem.
The challenge is therefore to construct distributed algorithms that allow for simultane-
ous distribution over both the problem and network structure of a given application.

Within the literature, a number of approaches have been proposed to address the
need for solving simultaneous distribution via varying means [52, 53, 54, 55, 56, 57, 58,
59]. In [55, 56], the alternating direction method of multipliers (ADMM) was used as a
means of ensuring dual consensus, in turn guaranteeing primal optimality. Similarly, the
methods in[52, 59] exploit dual decomposition based approaches, in combination with a
consensus step and a proximal minimization step respectively to achieve the same feat.
The work of [53] continues this trend by utilizing a combination of Lagrangian duality
and an internal consensus algorithm (a gossip variant in this instance) to perform ap-
proximate dual updates. In contrast, the works of [57, 58, 54] utilize primal dual based
techniques to tackle the presence of global constraints. Notably, the method in [54] aims
to solve the more general problem of distributed saddle-point computation, a problem
which includes distributed optimization as a special case. For distributed convex opti-
mization, the proposed method reduces to a primal-dual sub-gradient algorithm incor-
porating a Laplacian averaging strategy.

6.1.2. MAIN CONTRIBUTIONS

The main contribution of this work is the proposal of a convex optimization solver termed
the distributed method of multipliers (DMM) that is simultaneously distributable in both
the network and problem structure. The proposed method is deployable in any undi-
rected network topology so long as the network forms a single connected component.
The result is an algorithm that respects the connectivity of the physical network whilst
being applicable to a wide range of optimization problems.

The DMM algorithm is derived from the perspective of monotone operator theory
and as such incorporates classic operator splitting approaches. This leads to a straight-
forward derivation closely related with other traditional algorithms from within the lit-
erature including the alternating direction method of multipliers (ADMM) [18], forward
backward splitting (FB) [114] and more. The convergence guarantees of DMM follow

6

128 6. A DISTRIBUTED ALGORITHM FOR SEPARABLE CONVEX OPTIMIZATION

from its relation with Krasnosel’skĭı-Mann iterations [115] and hold for all closed, con-
vex and proper functions.

We demonstrate the use of the proposed method in practical signal processing prob-
lems including beamforming, channel capacity maximization and portfolio optimiza-
tion. This numerically validates the performance claims of the algorithm while demon-
strating how the approach can be deployed in practice.

6.1.3. ORGANIZATION OF PAPER
The remainder of this paper is organized as follows. In Section 6.2 we introduce basic
nomenclature to support the remainder of the article. In Section 6.3 we derive our pro-
posed distributed method for separable problems with affine constraints from a basic
prototype optimization problem. Section 6.4 focuses on the computation of the iter-
ates of our algorithm, demonstrating the efficiency and locality of the proposed method.
Section 6.4.5 highlights a primal lifting stage, allowing the proposed method to also be
used for general separable problems and provides a means for further reducing com-
putational complexity. Section 6.5 demonstrates the use of the proposed method for a
range of distributed signal processing tasks including beamforming, channel capacity
maximization and portfolio optimization before making our concluding remarks in Sec-
tion 6.6.

6.2. NOMENCLATURE

In this work we denote by R the set of real numbers, by RN the set of real column vectors
of length N and by RM×N the set of M by N real matrices. Let X ,Y ⊆ RN . A set valued
operator T : X →Y is defined by its graph, gra(T) = {

(
x,y

) ∈X ×Y | y ∈ T (x)}. Similarly,
the notion of an inverse of an operator T−1 is defined via its graph so that gra

(
T−1

) =
{
(
y,x

) ∈ Y ×X | y ∈ T (x)}. JT,ρ = (
I+ρT

)−1 denotes the resolvent of an operator while
RT,ρ = 2JT,ρ−I denotes the reflected resolvent (Cayley operator). The fixed-point set of T
is denoted by fix(T) = {x ∈X | T (x) = x}.

6.3. DERIVING A DISTRIBUTED SOLVER FOR SEPARABLE CON-
VEX PROBLEMS WITH AFFINE CONSTRAINTS

In this section we introduce the derivation of the DMM algorithm for separable convex
problems with affine constraints. In particular we demonstrate how DMM can be con-
structed via monotone operator splitting while respecting the underlying structure of a
given physical network. This derivation also directly leads to convergence guarantees
by linking the method with Krasnosel’skĭı-Mann iterative schemes. This algorithm is ex-
tended to general separable problems in Section 6.4.5.

6.3.1. PROBLEM STATEMENT AND THE COMMUNICATION GRAPH
Consider an undirected network of compute nodes with which we want to perform dis-
tributed convex optimization. For now we make no assumptions on the structure of
the network other than that it is simple, undirected and connected. In Section 6.3.5
we highlight the structural considerations of this network and how they can influence

6.3. DERIVING A DISTRIBUTED SOLVER FOR SEPARABLE CONVEX PROBLEMS WITH

AFFINE CONSTRAINTS

6

129

the implementation of the algorithm. The communication structure of such a network
can be represented by an equivalent communication graph which we denote by G(V ,E)
where V is the set of nodes, |V | = N is the number of nodes, | • | denotes the cardinality
of a set and E denotes the set of undirected edges. These edges represent the physical
communication channels between nodes.

An example of such a graph is included in Figure 6.1 for a simple eight node network.
We denote by N (i) = { j ∈V | (i , j) ∈ E } the neighborhood of node i , i.e. the set of nodes
with which node i shares a physical connection. As an example, the neighborhood of
node four in Figure 6.1 is given by the set N (4) = {2,5,6}.

1

2

3

4

5

6

7

8

Figure 6.1: The communication graph G of a simple eight node network. Numbered circles denote nodes and
their identifiers while the double ended arrows denote the undirected edges.

In this work, we are interested in using such a network to solve convex optimiza-
tion problems in a distributed manner. For this section, we have restricted our attention
to separable convex optimization problems with affine constraints. In these problems,
each node is associated with a local objective function fi ∈ Γ0

(
RMi

)
, ∀i ∈ V , parame-

terized by xi ∈ RMi , where Γ0 denotes the set of closed, proper and convex functions.
We define the scalar MV = ∑

i∈V
Mi , which denotes the total number of variables in the

network. More specifically, we consider problems of the form

min
xi

∑

i∈V
fi (xi) s.t Ak x−bk Ï

k
0 ∀k ∈ κ (6.1)

where for each k, Ï
k

denotes either element-wise equality or inequality of the form ≥,

κ = {1,2, · · · ,K }, K denotes the total number of constraints and x = [
xT

1 , · · · ,xT
N

]T
. The

matrices Ak ∈RMk×MV and vectors bk ∈RMk impose linear constraints between the vari-
ables at each node where Mk denotes the dimensionality of the kth constraint set. Im-
portantly, we assume that (6.1) is strictly feasible such that strong duality holds.

Due to the separability of linear constraints, we can rewrite (6.1) by defining the sets
Vk which denote those nodes i whose variables xi play an active role in the kth con-
straint. More formally, for each k ∈ κ, this set is given by

Vk = {i ∈V | Ai ,k 6= 0}.

Using this notation, (6.1) can be equivalently written as

min
xi

∑

i∈V
fi (xi) s.t

∑

i∈Vk

(
Ai ,k xi −bi ,k

)Ï
k

0 ∀k ∈ κ. (6.2)

6

130 6. A DISTRIBUTED ALGORITHM FOR SEPARABLE CONVEX OPTIMIZATION

Here the matrices Ai ,k ∈RMk×Mi are the i th set of columns of Ak such that Ak x = ∑
i∈Vk

Ai ,k xi

while the vectors bi ,k are chosen such that
∑

i∈Vk

bi ,k = bk .

6.3.2. IMPLIED CONNECTIVITY OF THE CONSTRAINT GRAPH
The constraints in (6.2) imply a secondary set of relationships between the local variables
at each node which can be modeled via a constraint graph denoted by GC (V ,EC). Here,
the edge set EC captures the interdependence of node variables in the constraint func-
tions. In particular, if two nodes i , j are active in the same constraint k, then (i , j) ∈ EC . A
fundamental challenge in distributed optimization follows from the differences between
the edge sets of GC and G as was highlighted in [53]. This challenge is best demonstrated
with an example.

Consider again the network in Figure 6.1, equipped with the optimization problem

min
xi

8∑

i=1
fi (xi)

s.t
∑

i=1,2,3

(
AT

i ,1xi −bi ,1

)
= 0

∑

i=2,4,5,6

(
AT

i ,2xi −bi ,2

)
= 0

∑

i=4,6,7,8

(
AT

i ,3xi −bi ,3

)
= 0,

(6.3)

where κ = {1,2,3}, V1 = {1,2,3}, V2 = {2,4,5,6} and V3 = {4,6,7,8} in this instance. Note
that for this example, we need not consider the dimensionality of the local variables,
only the communication structure implied by the constraint set. Using the definition of
EC , we can form the constraint graph of (6.3) which is included in Figure 6.2.

1

2

3

4

5

6

7

8

Figure 6.2: The constraint graph GC for the same eight node network as in Figure 6.1. The green, blue and red
colouration is used to denote the dependencies between nodes for first, second and third set of constraints.
The purple edge between nodes four and six indicates the activity of both nodes in the red and blue constraint
sets.

Comparing Figures 6.1 and 6.2, we can note that the connectivity of the physical net-
work (G) and that imposed by the constraint functions (GC) may differ depending on the
optimization problem we are trying to solve. In particular, note the discrepancy between
the edges of the EC and E . The edge (2,6), for instance, is contained with EC but not in
E . This poses a challenge for many existing algorithms which aim to distribute over the

6.3. DERIVING A DISTRIBUTED SOLVER FOR SEPARABLE CONVEX PROBLEMS WITH

AFFINE CONSTRAINTS

6

131

1

2

3

4

5

6

7

8

ν1 ν2 ν3

Figure 6.3: Graph of the dual problem for the same eight node network as in Figure 6.2. The green, blue and
red colors denote the dependencies on the dual variables ν1, ν2 and ν3.

constraint set [18, 96, 32] as while an algorithm may be distributable in GC it may not be
in G . Figure 6.2 for instance suggests the need for communication between nodes two
and six which cannot be achieved in the physical network without relaying messages via
node four. In the following we demonstrate a method to address this mismatch through
a dual lifting approach.

6.3.3. EXPLOITING SEPARABILITY VIA LAGRANGE DUALITY
Inspired by classic results from Rockafellar [76], we can exploit the separability of (6.2) to
overcome both the coupling of our primal variables through the constraint functions and
thus the discrepancies between GC and G . Specifically, we can use Lagrangian duality to
rephrase (6.2) in an alternative form. For this purpose, at each node we define the set

κi = {k ∈ κ|i ∈Vk } ,

to denote those k such that i is active in said constraints. Furthermore, the set of indices
k ∈ κ associated with inequality constraints in (6.2) is denoted by

κ≥ =
{

k ∈ κ | Ï
k

is of the form ≥
}

.

The general form of the dual of (6.2) is therefore given by

min
νk

∑

i∈V

(
f ∗

i

(
∑

k∈κi

AT
i ,kνk

)
− ∑

k∈κi

bT
i ,kνk

)

s.t. νk ≥ 0 ∀k ∈ κ≥,

(6.4)

where f ∗
i (y) = sup

x

(
yT x− f (x)

)
denotes the Fenchel conjugate of fi and νk ∈ RMk de-

notes the dual variable associated with the kth constraints. In the case of the graph con-
sidered in (6.2), a visualization of this point is provided in Figure 6.3. Here, the dual
problem is parameterized by three dual variables (ν1, ν2 and ν3), with each associated
to a different constraint.

At this point many classic algorithms begin to directly solve (6.4) by distributing over
the set of constraints. However, as each dual variable ν can parameterize the local ob-
jective functions of multiple nodes, their updating can be challenging from a distributer
perspective.

6

132 6. A DISTRIBUTED ALGORITHM FOR SEPARABLE CONVEX OPTIMIZATION

To demonstrate this challenge, consider a problem with a single constraint k = 1 in
which every node plays an active note, i.e., V1 =V . The resulting graphical model of the
dual problem would exhibit a centralized topology in this instance. Such a topology im-
plies the need for data aggregation to compute the dual variable in this instance which
ultimately undermines the distributed intention of this work. For this reason, in the fol-
lowing we demonstrate a lifting approach which allows us to overcome this dual variable
coupling while naturally respecting the underlying topology of the physical network.

6.3.4. A COMMUNICATION GRAPH PRESERVING DUAL LIFTING
Motivated by the dual lifting approach adopted in [99], we propose to address the cou-
pling of the objectives functions by lifting the dimensionality of the dual problem. In
particular, our objective is to rephrase (6.4) into a set of node and edge based terms. The
proposed approach is referred to as the extended dual of Eq. (6.1) and is given by

min
λi | j ,k

∑

i∈V

(
f ∗

i

(
∑

k∈κi

∑

j∈Nk (i)

AT
i ,kλi | j ,k

|Nk (i)|

)

− ∑

k∈κi

∑

j∈Nk (i)

bT
i ,k

|Nk (i)|λi | j ,k

)
(6.5a)

s.t. λi | j ,k =λ j |i ,k ∀k ∈ κ, i ∈Vk , j ∈Nk (i) (6.5b)

λi | j ,k =λi |l ,k ∀k ∈ κ, i ∈Vk , j , l ∈Nk (i) (6.5c)

λi | j ,k ≥ 0 ∀k ∈ κ≥, i ∈Vk , j ∈Nk (i). (6.5d)

Here, Nk (i) denotes the constrained neighborhood of each node i ∈Vk where

Nk (i) = { j ∈Vk | j ∈N (i)},

i.e. the subset of N (i) active in the kth set of constraints.
To perform this dual lifting, ∀k ∈ κ new copies of each dual variable νk have been

introduced for each directed edge i | j | i , j ∈ Vk in the network. That is, ∀k ∈ κ, i , j ∈ Vk ,
the variables λi | j ,k , λ j |i ,k ∈RMk are introduced.

Equivalence with the original dual problem is insured via consensus constraints be-
tween dual variables corresponding to the same k. These can be divided into two types
of constraints: edge based constraints of the form λi | j ,k = λ j |i ,k ∀k ∈ κ, (i , j) ∈ E and
node based constraints λi | j ,k =λi |l ,k ∀k ∈ κ, i ∈Vk , j , l ∈Nk (i).

Performing the lifting in this way partitions the extended dual into four distinct sec-
tions: a fully node separable objective function (6.5a), a set of edge based consensus
constraints (6.5b), an additional set of node based consensus constraints (6.5c) and fi-
nally a set of element-wise non-negativity constraints (6.5d). Such a problem structure is
attractive in the context of alternating optimization methods as it partitions the problem
into node and edge based terms.

For the example problem considered in (6.2), a visualization of the resulting lifted
problem, indicating the relationship between the local copies of the dual variables, is
included in Figure 6.4.

6
.3

.D
E

R
IV

IN
G

A
D

IS
T

R
IB

U
T

E
D

S
O

LV
E

R
F

O
R

S
E

P
A

R
A

B
L

E
C

O
N

V
E

X
P

R
O

B
L

E
M

S
W

IT
H

A
F

F
IN

E
C

O
N

S
T

R
A

IN
T

S

6

133

4

λ(4,2),2

λ(4,6),2

λ(4,6),3

λ(4,5),2

λ(2,4),2

λ(6,4),2

λ(6,4),3

λ(5,4),2

2 6

5

λ(2,1),1λ(1,2),1

λ(2,3),1λ(3,2),13

1

λ(2,5),2

λ(5,2),2

λ(6,7),3 λ(6,7),3

λ(6,8),3 λ(8,6),3

7

8

Figure 6.4: A graph modeling the connectivity of extended dual problem for the same eight node network as in
Figure 6.2. The green, blue and red colors denote the dependencies on the three sets of constraints in (6.3).

6

134 6. A DISTRIBUTED ALGORITHM FOR SEPARABLE CONVEX OPTIMIZATION

Remark 2. While the proposed lifting results in an increase in the dimensionality of the
extended dual optimization problem, in Section 6.4, we demonstrate that this does not
translate to an increase in the computational complexity of the local updates at each node.
While not treated in this work, a more simplistic dual lifting such as introducing a single
local version of νk at each node i ∈ Vk , may not exhibit this favorable property, resulting
in an increase in the computational complexity.

6.3.5. NETWORK TOPOLOGY REQUIREMENTS

At this stage it is important to highlight the way in which the topology of G affects the
feasibility of the lifting proposed in Eq. (6.5). In particular, the equivalence of Eq. (6.4)
and (6.5) relies on the constraints enforcing consensus between dual variables ∀k. To
this end, we demonstrate how this is guaranteed for a restricted set of network topologies
which can then be generalized to the case of connected networks.

To begin, for the proposed lifting, a sufficient condition for the equivalence of Eq.
(6.4) and (6.5) is given in Lemma 6.3.1.

Lemma 6.3.1. If ∀k ∈ κ, the nodes i ∈ Vk form a connected subgraph of G then (6.4) and
(6.5) are equivalent problems.

Proof. If ∀k ∈ κ, the set of nodes i ∈ Vk form a connected subgraph of G then the con-
straints (6.5b) and (6.5c) ensure that ∃νk such that at consensus, ∀i ∈Vk , j ∈Nk (i), λi | j ,k =
νk . Hence the problems are equivalent.

The sufficiency of this condition can be demonstrated via the example problem in
Figures 6.1 and 6.2. Importantly, ∀k ∈ {1,2,3} we can note that the active nodes form
a connected subgraph of the underlying network G . This point is highlighted in Figure
6.5 where a distinction is drawn between the physical edges E (solid lines) and those
required for a particular constraint set (dashed lines).

1

2

3

4

5

6

7

8

Figure 6.5: Constraint graph GC for the eight node network as in Figure 6.2. Dashed line are used to identify
those edges in EC but not in E . ∀k, it can be noticed that the nodes i ∈ Vk form a connected subgraph of G .
As with Figure 6.2, the single purple edge between nodes four and six denotes the activity of both nodes in the
red and blue constraint sets.

While sufficient to guarantee equivalence, Lemma 6.3.1 seems restrictive. For in-
stance, if a network forms a single connected component, data aggregation could be
used to enforce dual consensus without satisfying this condition. As a demonstration,
consider the communication graph and constraint graph given in Figure 6.6a and 6.6b

6.3. DERIVING A DISTRIBUTED SOLVER FOR SEPARABLE CONVEX PROBLEMS WITH

AFFINE CONSTRAINTS

6

135

21 3

4

(a) Communication Graph

21 3

4

(b) Constraint Graph

Figure 6.6: An example of a simple four node network. The target problem of interest imposes no constraints
on the primal variables at node 2 but does affect the other three nodes. In contrast to Figure 6.5, the set of
active nodes do not form a connected subgraph of G .

respectively. Clearly, the network has the physical connectivity to enforce any set of con-
straints between nodes but, due to the lack of activity of node two in the constraints, the
set of active nodes forms a physically disjoint subgraph.

To generalize the class of applicable networks we can introduce a modification to the
dual lifting in (6.4) and (6.5) to ensure its equivalence to (6.6). The basic notion is that
∀k ∈ κ we can introduce additional nodes to the set Vk such that the resulting subnet-
works form connected subgraphs. This action can always be performed due to our initial
assumption that G forms a single connected component.

In the case of the networked problem in Figure 6.6, the initial constraint set Vk =
{1,3,4} can be augmented to include node two such that Vk = {1,2,3,4} which in turn
ensures that the constraint subgraph forms a single connected component. This intro-
duces local copies of νk at node two denoted by λ(2, j),k ∀ j ∈ Nk (2). These additional
variables in no way influence the objective cost of node two and exist only to enforce
consensus between the lifted dual variables ∀i ∈ Vk . The additional matrix A2,k = 0 and
vector b2,k = 0 are also introduced to complete the modification. For the remainder of
the document, should a network require this modification to solve a particular problem
we assume that this is performed.

6.3.6. SIMPLIFYING THE PROBLEM NOTATION
To assist with the remainder of this derivation, we introduce a compact notation to allow
us to simplify Eq. (6.5). In particular, we show that (6.5) can be rewritten as

min
λ

f ∗(CTλ)−dTλ

s.t. (I−P)λ= 0, Lλ= 0, Sλ≥ 0,
(6.6)

where the three constraints correspond to (6.5b), (6.5c) and (6.5d) respectively. The ad-
ditional matrices associated with this equivalent representation are defined below.

FORMING A SINGLE DUAL VECTOR

We firstly define a vector notation for the extended dual variables. For each k ∈ κ, de-
note by λk the stacked vector of all λi | j ,k . The ordering of this stacking is based on
the directed edge index and is given by (1,2) < (1,3) < ·· · < (1, N) < (2,1) < (2,3) < ·· · <

6

136 6. A DISTRIBUTED ALGORITHM FOR SEPARABLE CONVEX OPTIMIZATION

(N , N −1). In this way, λk is given by

λk = [
λ(1,2),k , · · · ,λ(1,N),k ,λ(2,1),k , · · · ,λ(N ,N−1),k

]T .

By stacking the set of all λk , we can then form a single dual vector λ as used in (6.6)
such that

λ= [
λT

1 , · · · ,λT
K

]T
.

COMPACT OBJECTIVE NOTATION

Given the compact notation of the dual variables, we now move to simplifying the ob-
jective function. Firstly, we define the global function

f : RMV 7→R

x 7→ ∑

i∈V
fi (xi)

where RMV =RM1 ×. . .×RMN . Similarly, the Fenchel conjugate of this function is denoted
by f ∗.

The next step is to define a matrix and vector to rewrite our objective usingλ and f ∗.
This stage is broken into multiple steps. Firstly, ∀k ∈ κ, i ∈Vk we define Ci ,k and di ,k as

Ci ,k = 1|Nk (i)|⊗
AT

i ,k

|Nk (i)| ∀i ∈Vk ,

di ,k = 1|Nk (i)|⊗
bi ,k

|Nk (i)| ∀i ∈Vk ,

where ⊗ denotes the Kronecker product of two matrices and the notation 1|Nk (i)| is used
to indicate a |Nk (i)|-length column vector of ones. For each k ∈ κ we therefore define
the matrices Ck and dk as

Ck =

C1,k . . . 0
...

. . .
...

0 . . . CN ,k

 , dk =

[
dT

1,k , · · · ,dT
N ,k

]T
. (6.7)

We can then form the final matrix C and vector d by stacking over the set of con-
straints so that

C = [
CT

1 , · · · ,CT
K

]T
,

d = [
dT

1 , · · · ,dT
K

]T
.

Combining these two definitions the objective function of (6.5) can be compactly
written as

f ∗(CTλ)−dTλ.

6.3. DERIVING A DISTRIBUTED SOLVER FOR SEPARABLE CONVEX PROBLEMS WITH

AFFINE CONSTRAINTS

6

137

COMPACT CONSTRAINT NOTATION

As with the objective, we can define a set of additional matrices to rewrite the constraints
using our dual vector notation. To capture the edge based constraints (6.5b), we define
for each k ∈ κ the symmetric permutation matrix Pk which interchanges the edge vari-
ables λi | j ,k ,λ j |i ,k ∀i , j ∈Vk . By concatenating over all k ∈ κ, we can define the permuta-
tion matrix

P =

P1 . . . 0
...

. . .
...

0 . . . PK

 .

Combining with the definition of λ allows us to rewrite (6.5b) as (I−P)λ= 0 to enforce
edge based consensus.

For the second set of constraints (6.5c), we define the matrices

L k =

L 1,k . . . 0
...

. . .
...

0 . . . L N ,k

⊗ IMk ∀k ∈ κ,

where

L i ,k = Di ,k −Ei ,k ∀i ∈Vk

Di ,k = (|Nk (i)|−1)I|Nk (i)| ∀i ∈Vk

Ei ,k = 1|Nk (i)|1T
|Nk (i)|− I|N (i)| ∀i ∈Vk .

Similar to 1M , here the matrix IM is used to denote an M ×M identity matrix. The matrix
L k can be thought of as a block diagonal matrix of graph Laplacians. Importantly, it can
be shown that ∀k ∈ κ, i ∈Vk

L i ,k 1|Nk (i)| =
(
Di ,k −Ei ,k

)
1|Nk (i)|

= |Nk (i)|1|Nk (i)|−|Nk (i)|1|Nk (i)|
= 0|Nk (i)|,

where in the third line we have used the mixed-product property of Kronecker prod-
ucts. In this way, the kernel space of L i ,k corresponds to the consensus vector and can
therefore be used to impose the consensus constraints in (6.5c). Concatenating over the
constraints, we can form the matrix

L =

L 1 . . . 0
...

. . .
...

0 . . . L K

 ,

such that (6.5c) can be rewritten as Lλ = 0. Furthermore, from the structure in (6.7),
L i ,k Ci ,k = 0, L i ,k di ,k = 0, ∀k ∈ κ, i ∈Vk such that L C = 0, L d = 0.

For the final set of constraints (6.5d), ∀k ∈ κ we define the selection matrices Sk ∈
RMk×Mk given by

Sk = sk IMk
∑

i∈Vk

|Nk (i)|, sk =
{

1 if k ∈ κ≥
0 otherwise,

6

138 6. A DISTRIBUTED ALGORITHM FOR SEPARABLE CONVEX OPTIMIZATION

which preserves those dual variables associated with the inequality constraints. Con-
catenating over the constraints, we can form the final selection matrix given by

S =

S1 . . . 0
...

. . .
...

0 . . . SK

 ,

such that (6.5d) can be rewritten as Sλ≥ 0.
Using this compact notation, we are now ready to define our proposed distributed

optimization algorithm.

6.3.7. FROM THE EXTENDED DUAL PROBLEM TO A MONOTONIC INCLU-
SION

Given the lifted dual problem (6.6), we now move to defining a distributed algorithm to
compute an optimizer of (6.1). In particular, we want to construct an iterative algorithm

y(t+1) = UE ◦UV
(
y(t)) , (6.8)

which converges to a minimizer of (6.1) where t indicates the iteration number, y ∈ Rp

are the variables of interest and the operators UE : Rp 7→ Rp are UV : Rp 7→ Rp are par-
allelizable over the nodes and edges respectively. The additional notation ◦ is used to
denote operator composition so that ∀ (x,z) ∈ gra(S1 ◦S2), ∃y | (

x,y
) ∈ gra(S1) ,

(
y,z

) ∈
gra(S2). We would like such operators to be at least nonexpansive so that classic itera-
tive solvers can be employed. The nonexpansiveness of an operator is defined as follows.

Definition 6.3.1. Nonexpansive Operators: An operator T : X →Y is nonexpansive if

‖u−v‖ ≤ ‖x−y‖ (x,u) ,
(
y,v

) ∈ gra(T) ,

where 〈x,y〉 denotes the inner product between x ∈X and y ∈Y and ‖x‖ denotes the asso-
ciated induced norm.

We can construct an iterative solver for (6.1) via classic operator splitting approaches.
In this case, we make use of the relationship between monotone operators and the sub-
differentials of convex functions. In particular, an operator is monotone if it satisfies the
following definition:

Definition 6.3.2. Monotone Operators: An operator T : X →Y is monotone iff

〈u−v,x−y〉 ≥ 0 ∀ (x,u) ,
(
y,v

) ∈ gra(T) ,

Furthermore, T is maximal monotone iff

Ø a monotone T̃ : X →Y | gra(T) ⊂ gra(T̃).

To form our iterative approach, consider the equivalent unconstrained form of (6.6),

min
λ

f ∗(CTλ)−dTλ+ ιC1 (λ)+ ιC2 (λ)+ ιC3 (λ) , (6.9)

6.3. DERIVING A DISTRIBUTED SOLVER FOR SEPARABLE CONVEX PROBLEMS WITH

AFFINE CONSTRAINTS

6

139

where ιC denotes an indicator function of the set C such that

ιC (λ) =
{

0 ifλ ∈C

+∞ otherwise
.

Here the convex sets C1, C2 and C3 are given by

C1 = ker(I−P) , C2 = ker(L) , C3 = {λ | Sλ≥ 0} ,

where ker(C) denotes the kernel of C .
As f ∈ Γ0, as the sets C1, C2 and C3 are closed subspaces such that ιC1 (λ), ιC2 (λ),

ιC3 (λ) ∈ Γ0, and as all functions contain a common feasible point, a minimizer of (6.9)
can be found by finding a zero-point of its subdifferential.

0 ∈C∂ f ∗ (
CTλ

)−d+∂ιC1 (λ)

+∂ιC2 (λ)+∂ιC3 (λ) .
(6.10)

Here ∂ f is used to denotes the subdifferential of f .
A zero-point of (6.10) can be found via a range of approaches including Forward

Backward (FB) splitting, Douglas-Rachford (DR) Splitting, Primal-Dual Hybrid Gradient
(PDHG) (Chambolle Pock) and more (see [47] for an overview of such splitting methods).
In the proposed distributed context however, the choice of a such splitting method must
be made to take advantage of the node and edge based structure we have introduced
into the subdifferentials of (6.10).

In this work, we adopt a classic two operator splitting scheme to rephrase (6.10) as a
more familiar fixed point inclusion. To do so, we define the two operators

T1 (λ) = C∂ f ∗ (
CTλ

)−d+∂ιC2 (λ) , (6.11a)

T2 (λ) = ∂ιC1 (λ)+∂ιC3 (λ) , (6.11b)

where, by design, T1 is node separable and T2 is edge separable. These operators are
both maximal monotone by combining the results of [28] and [116].

6.3.8. OPERATOR SPLITTING VIA PEACEMAN-RACHFORD SPLITTING
To find a minimizer of the extended dual problem, we can use PR splitting to recast (6.10)
as a fixed point problem of a nonexpansive operator. Our motivation for choosing this
approach is that, unlike methods such as FB splitting, we need not impose additional
functional restrictions beyond that f ∈ Γ0. Additionally, PR splitting allows us to take
advantage of the node and edge separability of T1 and T2 respectively. In contrast, other
methods such as PDHG cannot take advantage of this point. In particular, PDHG would
require that either T1 or T2 could be expressed as a composition of a subdifferential and a
linear operator. While we could define an alternative operator T̂1 = C∂ f ∗ (

CTλ
)−d such

that this method could be used, the second operator would be given by T̂2 (λ) = ∂ιC1 (λ)+
∂ιC3 (λ)+∂ιC2 (λ) which is neither edge or node separable, eliminating our ability to form
a distributed solver. In this way, PR splitting was a natural choice.

6

140 6. A DISTRIBUTED ALGORITHM FOR SEPARABLE CONVEX OPTIMIZATION

6.3.9. FORMING THE DISTRIBUTED METHOD OF MULTIPLIERS

Given two maximal monotone operators A and B and a positive scalar ρ > 0, PR split-
ting can be used to find a zero of A +B by rephrasing it as a more familiar fixed point
condition [47, Sec. 7.3] of the form

RB,ρ ◦RA ,ρ (z) ∈ z, λ= JA ,ρ (z) , (6.12)

where JA ,ρ and RA ,ρ denote the resolvent and reflected resolvent of A respectively. The
newly introduced z variables will be referred to as auxiliary variables from here on out.
In the particular case of (6.10), we can therefore form the fixed point condition

RT2,ρ ◦RT1,ρ (z) ∈ z, λ= JT1,ρ (z) . (6.13)

As we will show in the coming section, the node and edge separable structure of T1 and
T2, is inherited by the operators JT1,ρ and JT2,ρ respectively so that RT1,ρ and RT2,ρ form
the operators UV and UE outlined in Eq. (6.8).

To form our distributed algorithm, we define the nonexpansive distributed method
of multipliers (DMM) operator as TD,ρ = RT2,ρ ◦RT1,ρ . The nonexpansiveness here stems
from the maximal monotonicity of T1 and T2 and thus the nonexpansiveness of RT1,ρ

and RT2,ρ . As the composition of nonexpansive operators, it follows that TD,ρ is also
nonexpansive.

Remark 3. In the specific case that all the constraints are edge based (only two nodes are
active in each constraint and they correspond to a physical edge of G) the DMM operator
corresponds to the PDMM operator given in [99].

Given the nonexpansiveness of TD,ρ , we can employ a Krasnosel’skĭı-Mann type iter-
ative scheme to find a fixed point of the operator [115]. Such a scheme is given by

z(t+1) = (1−α(t))z(t) +α(t)TD,ρ
(
z(t)) . (6.14)

where ∀t ∈ N,α(t) ∈ (0,1) and the sequence of α(t) is non-convergent i.e.
+∞∑
t=0

α(t) = +∞.

As a special case of the general Krasnosel’skĭı-Mann scheme, when α(t) = 1
2 ∀t ∈ N, we

recover the Douglas-Rachford splitting variant of the DMM algorithm. Such an approach
is closely related to the well known alternating direction method of multipliers (ADMM).

6.4. COMPUTATION OF THE DMM UPDATE EQUATIONS
Given the basic iterative scheme for DMM, presented in (6.14), in this section we demon-
strate how the structure of (6.2) can be used to simplify the computation of the iterates.
This is comprised of two simplifications, one for each of the reflected resolvents, and is
summarized in the following two Lemmas.

6.4.1. COMPUTING THE REFLECTED RESOLVENT RT1,ρ
We begin with the first reflected resolvent operator RT1,ρ and its method of computation.

6.4. COMPUTATION OF THE DMM UPDATE EQUATIONS

6

141

Lemma 6.4.1.

RT1,ρ
(
z(t))= w(t+1) = 2λ(t+1) −z(t)

= 2γ(t+1) −2ρ
(
Cx(t+1) −d

)−z(t),

where,

λ(t+1) = JT1,ρ
(
z(t)) by (6.13) ,γ(t+1) = Π

ker(L)

(
z(t)) ,

x(t+1) = argmin
x

(
f (x)+ ρ

2
‖Cx−d‖2 −〈CTγ(t+1),x〉

)
.

The introduced x(t+1) iterates are estimates of the primal minimizers of (6.1).

The proof for this Lemma can be found in Appendix 6.A.

Note that the primal update, which involves a convex optimization problem, has lo-
cal variables of the same dimensionality as the original problem in (6.1). If an alternative
lifting were utilized, the increase in the number of local variables at each node may un-
necessarily result in a more complex local optimization problem per iteration.

6.4.2. COMPUTING THE REFLECTED RESOLVENT RT2,ρ

In the case of T2, it can be shown that the reflected resolvent RT2,ρ also exhibits a natu-
rally distributable solution.

Lemma 6.4.2.

Rρ,T2

(
w(t+1))= v(t+1) = 2y(t+1) −w(t+1)

= Pw(t+1) −min{S (I+P)w(t+1),0},

where

y(t+ 1
2) = 1

2
(I+P)w(t+1),

y(t+1) = y(t+ 1
2) −min{Sy(t+ 1

2),0}.

and min{•,•} is used to denote elementwise minimization.

The proof for this Lemma can be found in Appendix 6.B. Rρ,T2 reduces to a local
exchanging of information between neighboring nodes (indicated by the use of the per-
mutation operation) followed by a localized post processing at each node comprised of
linear operations and element-wise comparisons.

6

142 6. A DISTRIBUTED ALGORITHM FOR SEPARABLE CONVEX OPTIMIZATION

6.4.3. IMPLEMENTATION IN A DISTRIBUTED NETWORK
By combining Lemmas 6.4.1 and 6.4.2, the DMM algorithm can be expressed as

γ(t+1) = Π
ker(L)

z(t) (6.15a)

x(t+1) = argmin
x

(
f (x)−〈CTγ(t+1),x〉

+ρ
2
‖Cx−d‖2

)
(6.15b)

w(t+1) = 2γ(t+1) −2ρ
(
Cx(t+1) −d

)−z(t) (6.15c)

v(t+1) = Pw(t+1) −min{S (I+P)w(t+1),0} (6.15d)

z(t+1) = (
1−α(t))z(t) +α(t)v(t+1) (6.15e)

The computation of each iteration reduces to a local averaging step at each node (6.15a),
a single optimization over the primal variables (6.15b), the sharing of data between neigh-
boring nodes (6.15d) and a set of additional matrix vector multiplications and element-
wise comparisons. Furthermore, all of these operations are inherently distributable within
the original network with (6.15a), (6.15b) and (6.15c) corresponding to RT1,ρ and (6.15d)
to RT2,ρ . The final equation (6.15e) represents the averaging operation performed in
(6.14). The distributed nature of the method is highlighted in Algorithm 7.

Algorithm 7 Distributed Method of Multipliers

1: Initialize: z(0) ∈RME

2: for t=0,..., do
3: for all i ∈V do . Primal and Dual Updates
4: γ(t+1)

i ,k = 1
|Nk (i)|

∑
j∈Nk (i)

z(t)
i | j ,k

5: x(t+1)
i =argmin

xi

(
fi (xi)+ ∑

k∈κ

(
−〈AT

i ,kγ
(t+1)
i ,k ,xi 〉

+ ρ
2|Nk (i)|‖Ai ,k xi −bi ,k‖2

))

6: w(t+1)
i | j ,k =2γ(t+1)

i ,k −z(t)
i | j ,k−2ρ

(
Ai ,k xi
|Nk (i)|−

bi ,k
|Nk (i)|

)

7: end for
8: for all k ∈ κ, i ∈Vk , j ∈Nk (i) do . Tx. Variables
9: Node j ← Nodei (w(t+1)

i | j ,k)

10: end for
11: for all k ∈ κ, i ∈Vk , j ∈Nk (i) do . Aux. Updates

12: v(t+1)
i | j ,k = w(t+1)

j |i ,k − sk min
{ w(t+1)

i | j ,k +w(t+1)
j |i ,k

2 ,0
}

13: z(t+1)
i | j ,k = (1−α(t))z(t)

i | j ,k +α(t)v(t+1)
i | j ,k .

14: end for
15: end for

Here, we have made use of the fact that γ(t+1),w(t+1), y(t+1), z(t) all share the same

structure asλ(t+1), i.e. z(t) = [
zT

1 , · · · ,zT
K

]T
where zk = [zT

(1,2),k , · · · ,zT
(1,N),k ,zT

(2,1),k , · · · ,zT
(N ,N−1),k]T

6.4. COMPUTATION OF THE DMM UPDATE EQUATIONS

6

143

and so on for the other terms. Furthermore we have exploited the fact thatγ(t+1),λ(t+1) ∈
ker(L) such that γ(t+1)

i | j ,k =γ(t+1)
i ,k , λ(t+1)

i | j ,k =λ(t+1)
i ,k ∀k ∈ κ, i ∈Vk , j ∈Nk (i).

6.4.4. CONVERGENCE GUARANTEES
Having formed a solver for general separable convex optimization problems, we now
turn our attention to guaranteeing its convergence to an optimal solution. Thankfully,
due to the use of a classic operator splitting approach in its derivation, this convergence
follows directly from known results. Notably, for the considered class of objective func-

tions, that is fi ∈ Γ0 ∀i ∈ V and that ρ > 0,
+∞∑
t=0

α(t) = +∞, the convergence of the pro-

posed DMM algorithm follows directly from the convergence characteristics of the Kras-
nosel’skĭı-Mann method (see [34, Theorem 5.15]).

In the case that ∀t , α(t) = α, the auxiliary fixed point residual ‖z(t+1) − z(t)‖2 → 0
at a rate of O

(1
t

)
where • → • denotes convergence. As we are concerned with finite

dimensional problems, it follows that ∃z∗ ∈ fix
(
TD,ρ

)
so that z(t) → z∗ at the same rate.

6.4.5. DISTRIBUTED OPTIMIZATION OF GENERAL SEPARABLE PROBLEMS
While the prototype problem given in (6.1) may seem initially restrictive, in general any
problem which exhibits both a separable objective and separable constraints can be
solved by combining DMM with a primal lifting stage. Separability of the local func-
tions fi at each node can also be exploited to reduce the computational complexity of
the primal updates.

Consider a general separable optimization problem given by

min
xi

∑

i∈V

(
fi (xi)+ gi (Ai ,g xi −bi ,g)

)

s.t
∑

i∈V
hi (xi) ≤ 0

Ak x−bk Ï
k

0 ∀k ∈ κ

(6.16)

Here, the functions gi ,hi ∈ Γ0
(
RMi

) ∀i ∈V .
The aim is to convert (6.16) to the form of (6.1), a point which can be achieved by

introducing the additional primal variables wi , zi at each node and the slack variables yi

such that (6.16) can be equivalently expressed as

min
wi ,xi ,yi ,zi

∑

i∈V

(
fi (xi)+ gi (zi)

)

s.t
∑

i∈V
yi = 0

Ak x−bk Ï
k

0 ∀k ∈ κ
Ai ,g xi −bi ,g = zi ∀i ∈V

hi (wi) ≤ yi , xi = wi ∀i ∈V.

(6.17)

The additional constraints enforce the equivalence of (6.16) and (6.17). Note that the
only remaining constraints involving multiple nodes are affine with the convex con-
straints only acting locally at each node. By using indicator functions, we can shift these

6

144 6. A DISTRIBUTED ALGORITHM FOR SEPARABLE CONVEX OPTIMIZATION

non-affine inequality constraints to the objective so that (6.17) can be rephrased as

min
wi ,xi ,yi ,zi

∑

i∈V

(
fi (xi)+ gi (zi)+ ιhi (wi)≤yi

(
wi ,yi

))

s.t
∑

i∈V
yi = 0

Ak x−bk Ï
k

0 ∀k ∈ κ
xi −wi = 0, Ai ,g xi −zi −bi ,g = 0 ∀i ∈V.

This is exactly in the form of (6.1) and thus can be directly solved via the DMM algorithm.
In essence here, we have introduced a set of virtual nodes into the network with each
handling a subset of the newly introduced primal variables. By separating the roles of fi ,
gi and δhi (wi)≤yi across these virtual nodes we can potentially reduce the complexity of
the primal updates of the DMM algorithm. Furthermore as these virtual nodes only need
to communicate with a single physical node, this approach also introduces no additional
overhead in terms of communication cost making it an attractive choice for practical
distributed implementations.

6.5. APPLICATION TO DISTRIBUTED SIGNAL PROCESSING
The role of the following section is to demonstrate how the proposed DMM algorithm
can be used to solve a range of practical distributed optimization problems. For this
purpose we have chosen three signal processing examples including a weighted beam-
forming application, the maximization of the channel capacity of a set of transmit anten-
nas under a maximum power constraint and the optimization of a communal Markowitz
portfolio.

6.5.1. RANDOM NETWORK MODELING
For all of the following examples, the networks we consider are generated via classic
stochastic graph models. We consider three specific models: undirected Erdős-Rényi
(ER) graphs [117], Watts-Strogatz (WS) small world graphs [118] and geometric random
(GR) graphs [119]. Each different models, whilst being straightforward to implement,
is constructed via different means and exhibit different network characteristics. In par-
ticular, WS and GR networks have been shown to be good candidates for modeling real
world networks [118] [120]. Detailed explanations of the three topologies considered can
be found in [117, 118, 119].

Each network was ensured to be sparsely connected and to form a single connected
component as per our assumptions. This was achieved by configuring the associated
parameters of each of the three network models. For the ER graphs, the probability of
connection, which controls the set of constructed edges, was set to ln(N)

N . This is referred
to as the critical probability and generates networks with a low number of edges and
a high probability the network being connected. For the WS graphs, the configuration
process required two steps. Firstly, the initial K-hop lattice networks were configured so
that K = dln(N)e. This choice generates networks with a similar number of edges to that
of an equally sized ER graph. Secondly the probability of reconnection was configured
to 5% to create only a limited number of random connections. Finally for the GR graphs,

6.5. APPLICATION TO DISTRIBUTED SIGNAL PROCESSING

6

145

a three dimensional unit cube was used to bound the locations of the randomly placed

nodes while the transmission distance of the nodes was set to r = 3
√

ln(N)
N to again ensure

a low number of edges and a high probability of connectivity.

6.5.2. A REFERENCE CENTRALIZED PR-SPLITTING METHOD
In addition to demonstrating the performance of the DMM algorithm in different net-
work topologies, the following simulations also draw a comparison to a centralized PR-
splitting based method. The motivation for this comparison is to offer insight into the
degradation in performance experienced through the use of the proposed lifting. As with
the DMM algorithm, the centralized implementation stems from the prototype problem
in (6.1) which we can equivalently write in the unconstrained form

min
x

f (x)+ ∑

k∈κ
ιAk x−bkÏ

k
0 (x) . (6.18)

As with the extended dual problem, we can solve (6.18) by equivalently finding a solution
of the monotonic inclusion

0 ∈ ∂ f (x)+ ∑

k∈κ
∂ιAk x−bkÏ

k
0 (x) .

By setting T1 = ∂ f and T2 =∑
k∈κ∂ιAk x−bkÏ

k
0, we can therefore apply averaged PR-splitting

as in Section 6.3.9 to produce to the iterative centralized approach given in Algorithm 8.
As with the DMM algorithm, the convergence of this approach follows from its relation-
ship with Krasnosel’skĭı-Mann type iterations. In all coming simulations, any reference
to a centralized implementation refers to this approach.

Algorithm 8 Centralized PR-Splitting

1: Initialize: z(0) ∈RMV

2: for t=0,..., do
3: x(t+1) = argmin

x

(
f (x)+ ρ

2 ‖x−z(t)‖2
)

4: y(t+1) = argmin
Ak y−bkÏ

k
0 ∀k∈κ

(
‖y−2x(t+1) +z(t)‖2

)

5: z(t+1)=(1−α(t))z(t)+α(t)
(
2y(t+1)−2x(t+1)+z(t)

)
.

6: end for

6.5.3. DISTRIBUTED BEAMFORMING
For our first application, consider the use of an N node wireless sensor network (WSN)
where each node is equipped with a single receiver used to measure an acoustic signal.
Given a set of noisy measurements taken by our network, the aim is to recover an un-
known target signal of interest. The noise is assumed to be spatially uncorrelated Gaus-
sian noise at each node with variance σ2

i ∀ i ∈V .
Such sources are typically processed in the time-frequency domain such that any de-

lay can be expressed as a phase shift and thus as a complex scaling. For each frequency

6

146 6. A DISTRIBUTED ALGORITHM FOR SEPARABLE CONVEX OPTIMIZATION

bin our objective is to therefore to design a linear filter which preserves the signal in a
target subspace Λ while reducing the power of received noise. Such a filter is a mini-
mum variance distortionless response (MVDR) beamfomer for the specific case of un-
correlated noise [121] and can be computed as a solution to the following optimization
problem:

min
w

∑

i∈V

1

2
xH

i σ
2
i xi s.t.

∑

i∈V

(
Λi xi − 1

N

)
= 0,

Here, x denotes the vector of filter weights. Assuming that the elements of the vector Λi

and σi are known locally at each node i , this problem is exactly in the form of (6.1).
Directly applying DMM, we can define the distributed MVDR beamformer given in

Algorithm 9. Note that as there are no inequality constraints, the auxiliary updates have
been simplified to remove the dependences on S.

Algorithm 9 Distributed Beamforming for Uncorrelated Noise

1: Initialize: z(0) ∈RME

2: for t=0,..., do
3: for all i ∈V do . Primal and Dual Updates
4: γ(t+1)

i = 1
|N (i)|

∑
j∈N (i)

z(t)
i | j

5: x(t+1)
i =

(
σ2

i +
ρΛH

i Λi

|N (i)|

)−1 (
ΛH

i γ
(t+1)
i + ρΛH

i
N |N (i)|

)

6: w (t+1)
i | j = 2γ(t+1)

i − z(t)
i | j −2ρ

(
x(t+1)

i
|N (i)| − 1

N |N (i)|

)

7: end for
8: for all i ∈V , j ∈N (i) do . Transmit Variables
9: Node j ← Nodei (w (t+1)

i | j)

10: end for
11: for all i ∈V , j ∈N (i) do . Auxiliary Variables
12: z(t+1)

i | j = (1−α(t))z(t)
i | j +α(t)w (t+1)

j |i .

13: end for
14: end for

To demonstrate the performance of the proposed method, three 1000 node networks
were generated as per the different methods outlined in Section 6.5.1. The noise vari-
ances σi and target subspace Λi which were used for all three networks were generated
randomly. The step size of DMM was empirically chosen for each network to optimize
convergence rate. Additionally, ∀k ∈N,α(k) = 1

2 was selected, resulting in a DR splitting
variant of the DMM algorithm. The primal convergence of the algorithm is given in Fig-
ure 6.7 in addition to the convergence of the objective function and relative objective
error ‖ f (x)− f (x∗)‖2. In addition to the three types of networks considered, we also in-
clude results for the reference centralized approach where again the step size parameter
ρ was empirically optimized. The final precision of both algorithms is due to the physical
hardware utilized.

6.5. APPLICATION TO DISTRIBUTED SIGNAL PROCESSING

6

147

For the given number of nodes, the ability of the algorithm to achieve machine pre-
cision in less than N iterations is a satisfying result. Furthermore, due to the quadratic
nature of the local optimization problems at each node, the primal updates are analytic
and inexpensive to compute. The convergence rate is also far better than the asymp-
totic bound of Krasnosel’skĭı-Mann type schemes [34, Theorem 5.15] which most likely
stems from the strong convexity and smoothness of each local objective function. Of
additional interest is the fact that the proposed DMM offers comparable performance
to that of the centralized PR-splitting method. This is most clearly demonstrated in the
primal variables with the primal error only converging twice as fast in the centralized
case. In this way, the additional dual lifting has not come at a considerable reduction in
convergence rate while allowing for a fully distributable implementation.

6.5.4. GAUSSIAN CHANNEL CAPACITY MAXIMIZATION
As a second example, consider a WSN of N independent antennas trying to communi-
cate a signal back to a target location over a set of N additive white Gaussian channels
(AWGNs). Given a local bandwidth Bi for each channel, the objective of this problem is
to optimally configure the transmission power of the antennas (x) to maximize channel
capacity under a total power constraint. From the Shannon-Hartley theorem [122], the
capacity of each channel (Ci) is given by

Ci = Bi log2

(
1+ xi

σi

)
= Bi (ln(σi +xi)− ln(σi))

ln(2)
,

where σ2
i is the noise variance of the ith channel.

The channel capacity maximization problem under a maximum power constraint
can be rephrased as a convex optimization problem of the form

min
x

−∑

i∈V
Bi ln(xi +σi) s.t

∑

i∈V
xi = 1, x ≥ 0,

where the non-negativity constraints stem from the fact that power is non-negative. If
assuming each node i has an additional local maximum transmission power constraint
xi ≤βi , the final optimization problem is given by

min
x

−∑

i∈V
Bi ln(xi +σi) s.t

∑

i∈V
xi = 1, β≥ x≥0, (6.19)

where the vector β is the stacked vector of all βi .
By using indicator functions to move the local constraints to the objective, (6.19) can

be converted into the form of (6.1). The resulting problem is given by

min
x

∑

i∈V

(
−Bi ln(xi +σi)+ ι≥0 (xi)+ ι≤βi (xi)

)

s.t
∑

i∈V

(
xi − 1

N

)
= 0,

after which we can directly apply the proposed DMM algorithm. This is summarized in
Algorithm 10.

6

148 6. A DISTRIBUTED ALGORITHM FOR SEPARABLE CONVEX OPTIMIZATION

Algorithm 10 Distributed Channel Capacity Maximization

1: Initialize: z(0) ∈RME

2: for t=0,..., do
3: for all i ∈V do . Primal and Dual Updates
4: γ(t+1)

i = 1
|N (i)|

∑
j∈N (i)

z(t)
i | j

5: x(t+1)
i = argmin

0≤xi≤βi

(
−Bi ln(xi +σi)−

〈γ(t+1)
i , xi 〉+ ρ

2|N (i)| ||xi − 1
N ||2

)

6: w (t+1)
i | j =2γ(t+1)

i − z(t)
i | j −2ρ

(
x(t+1)

i
|N (i)| − 1

N |N (i)|

)

7: end for
8: for all i ∈V , j ∈N (i) do . Transmit Variables
9: Node j ← Nodei (w (t+1)

i | j)

10: end for
11: for all i ∈V , j ∈N (i) do . Auxiliary Variables
12: z(t+1)

i | j = (1−α(t))z(t)
i | j +α(t)w (t+1)

j |i .

13: end for
14: end for

Again, we consider the performance of this algorithm in three random networks,
each comprised of 100 nodes. For each, the same randomly generated σi and βi were
used. The resulting convergence characteristics are given in Figure 6.8 where the step
size ρ was chosen to optimize the convergence rate for each network. It was found that
for this particular problem large step sizes (on the order of 103) provided much faster
convergence rates. As with the DS beamformer, ∀k ∈N,α(k) = 1

2 was selected. Again, the
finite noise floor observed is due to the finite numerical precision of the simulations.

We can observe that the algorithm quickly converges, reaching a primal precision
of 10−15 in 200-350 iterations. As with the distributed DS beam-former, the proposed
algorithm exhibits a linear convergence rate. As in the case of the previous distributed
beamforming example, this most likely stems from the strong convexity and smoothness
of each local problem over the allowed domain βi ≥ xi ≥ 0 ∀i ∈ V although no proof of
this is offered at this time. Finally, we can also observe that, when compared with the
centralized approach, there is not a significant degradation in convergence rate through
the use of the DMM algorithm. In particular, the convergence of the primal iterates to
their optimal state takes roughly twice as long as the centralized solution.

6.5.5. PORTFOLIO OPTIMIZATION
As a final example we consider the task of Markowitz portfolio optimization [123]. While
this problem in its standard form is inherently non-distributed, here we consider a vari-
ant of this problem for a collaborative network of investors. In the non-collaborative case
[48, Sec. 4.4.1], the basic premise of this problem is that each node within the network
has a local portfolio of stocks or assets into which they want to invest a given local wealth
wi while minimizing the risk of the investment for a certain return ri . The return on the

6.5. APPLICATION TO DISTRIBUTED SIGNAL PROCESSING

6

149

set of such stocks is modeled by the random vector pi ∈ RMi such that E
[
pi

] = p̄i ∈ RMi

and E
[
(pi − p̄i)2

] = Qi ∈ RMi×Mi . The risk of investment can therefore be modeled as a
quadratic cost. Ultimately, each node i ∈V wants to solve a problem of the form

min
xi

1

2
xT

i Qi xi s.t. p̄T
i xi ≥ri ,1T xi =wi , xi ≥0,

where xi denotes the vector of investments made in the stocks considered and the fi-
nal set of constraints indicate that we do not want to considering short positions in our
investments.

We consider a variant of this problem where the set of nodes work together to lower
the total risk of the network by investing in each others portfolios while maintaining
their own individual return ambitions. Additionally we incorporate local investment
constraints which require a certain amount of each nodes wealth to be invested locally.
This reflects a prior favoritism by an investor in their own work. The collaborative variant
of the portfolio optimization problem is given by

min
x

∑

i∈V

1

2
xT

i Qi xi

s.t.
∑

i∈V

(
p̄T

i xi − ri
)≥ 0,

∑

i∈V

(
1T xi −wi

)= 0

xi ≥ 0, 1T xi ≥ ηi wi ∀ i ∈V.

(6.20)

Here, the first two constraints ensure that the total return and total wealth requirements
of the network are satisfied but in this case in a collaborative rather than node based case.
The third constraint is the non-shorting constraint while the final constraint captures
the required local portfolio investment at each node. The variables ηi ∈ [0,1] capture the
required ratio of local portfolio investment to local wealth.

Defining the matrices Ai and vector bi as

Ai =
[

p̄T
i 0

0 1T

]
, bi =

[
ri

wi

]
∀i ∈V ,

and by utilizing indicator functions to shift the local constraints to the objective function,
(6.20) can be rewritten as

min
x

∑

i∈V

(
1

2
xT

i Qi xi + ιxi≥0 (xi)+ ι1T xi≥ηi wi
(xi)

)

s.t
∑

i∈V
(Ai xi −bi) Ï 0, (6.21)

It follows that (6.21) is exactly in the form given by (6.1). Therefore, applying the DMM
algorithm, (6.20) can be solved distributedly via Algorithm 11. In Algorithm 11, ¯ is used
to denote the element-wise or Hadamard product of two vectors.

For demonstration purposes we consider an Erdős-Rényi network comprised of 100
nodes, each with a local portfolio size of 20 elements. The system parameters (Qi , p̄i ,ri , wi ,ηi)

6

150 6. A DISTRIBUTED ALGORITHM FOR SEPARABLE CONVEX OPTIMIZATION

Algorithm 11 Collaborative Markowitz Portfolio Optimization

1: Initialize: z(0) ∈RME

2: for t=0,..., do
3: for all i ∈V do . Primal and Dual Updates
4: γ(t+1)

i = 1
|N (i)|

∑
j∈N (i)

z(t)
i | j

5: x(t+1)
i = argmin

xi≥0,1T xi≥ηi wi

(
1
2 xT

i Qi xi −

〈Aiγ
(t+1)
i ,xi 〉+ ρ

2|N (i)|‖Ai xi −bi‖2
)

6: w(t+1)
i | j = 2γ(t+1)

i −z(t)
i | j −2ρ

(
Ai x(t+1)

i
|N (i)| − bi

|N (i)|

)

7: end for
8: for all i ∈V , j ∈N (i) do . Transmit Variables
9: Node j ← Nodei (w(t+1)

i | j)

10: end for
11: for all i ∈V , j ∈N (i) do . Auxiliary Variables

12: v(t+1)
i | j =w(t+1)

j |i −
[

1
0

]
¯min

{
w(t+1)

i | j +w(t+1)
j |i ,0

}

13: z(t+1)
i | j = (1−α(t))z(t)

i | j +α(t)v(t+1)
i | j .

14: end for
15: end for

were generated randomly and ρ was empirically selected to optimize convergence rate.
The resulting convergence characteristics are included in Figure 6.9.

As with our other two examples, we can observe the familiar linear convergence rate
of the primal error in addition to the rapid optimality of the configuration. In particular,
within around 200 iterations the total portfolio risk is within 0.1% of the optimal config-
uration. In contrast to the other two examples however, here we can note a significant
degradation in convergence between the DMM implementation and the centralized ap-
proach. Additionally, the DMM algorithm required far more iterations to converge in this
instance than for the other examples despite having a comparable network size. While
not as encouraging for the usability of DMM as the other two examples, this result is
more inline with our expectation for a distributed method.

6.6. CONCLUSIONS
In this paper we have presented a novel method for distributed optimization of sepa-
rable convex problems. In contrast to other existing methods within the literature, the
prototype problem of the proposed DMM algorithm is not restricted based on the topol-
ogy of the underlying network. This allows DMM to be used in a much broader range
of applications whilst preserving its distributed operation. Furthermore, the derivation
for this method is based on classical monotone operator theory with the DMM algo-
rithm itself being based on a combination of Peaceman-Rachford splitting and Kras-
nosel’skĭı-Mann iterations, providing an intuitive interpretation of the approach. The

6.6. CONCLUSIONS

6

151

convergence of DMM follows from the existing results for these methods. The use of
DMM was demonstrated for a range of practical signal processing problems including
beamforming, channel capacity maximization and portfolio optimization for a range of
network types. Overall, DMM demonstrates that any separable problem can be solved
in a distributed manner in undirected networks and thus provides a novel tool for dis-
tributed convex optimization.

6

152 6. A DISTRIBUTED ALGORITHM FOR SEPARABLE CONVEX OPTIMIZATION

50 100 150 200 250 300 350 400 450 500

10
-15

10
-10

10
-5

10
0

50 100 150 200 250

0.1

0.2

0.3

0.4

0.5

0.6

ER

WS

GR

Centralized

Opt

50 100 150 200 250

10-20

10-10

100

Figure 6.7: An example of uncorrelated MVDR beamforming for a 1000 node network via the DMM algorithm.
We compare the primal mean squared error, the variance of the resulting beamformed signal and the relative
objective error for the three networks in question and a centralized PR-splitting based approach.

6.6. CONCLUSIONS

6

153

50 100 150 200 250 300

10
-15

10
-10

10
-5

10
0

10 20 30 40 50 60 70 80 90 100

130

140

150

160

170

ER

WS

GR

Centralized

Opt

10 20 30 40 50 60 70 80 90 100

10-15

10-10

10-5

100

Figure 6.8: An example of channel capacity maximization for a 100 node network via the DMM algorithm. Note
that the initial overshoot in terms of channel capacity stems from the violation of the constraint functions for
these iterations

6

154 6. A DISTRIBUTED ALGORITHM FOR SEPARABLE CONVEX OPTIMIZATION

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

10
-20

10
-15

10
-10

10
-5

10
0

50 100 150 200 250

8

9

10

11

12

DMM

Centralized

Local

Opt

100 200 300 400 500 600 700 800 900 1000

10
-10

10
-5

10
0

Figure 6.9: Distributed Markowitz portfolio optimization for a 100 node network with 20 stocks per node solved
via the DMM algorithm. The red line denotes the total risk of the network without collaboration, the green is
the optimal configuration.

APPENDICES

6.A. PROOF OF LEMMA 6.4.1
From (6.13), the resolvent of z(t) is defined as

λ(t+1) = JT1,ρ
(
z(t)) .

From the definition of T1 (6.11a), it follows that

λ(t+1) ∈ z(t)−ρ (
C∂ f ∗ (

CTλ(t+1))−d+∂ιC2

(
λ(t+1))) .

Defining, x∈∂ f ∗ (
CTλ

)
, for a given x(t+1), λ(t+1) can be computed as

λ(t+1)=argmin
Lλ=0

(
1

2
‖λ−z(t)+ρ (

Cx(t+1)−d
)‖2

)
(6.22)

Given the structure of C and d, L
(
Cx(t+1) −d

) = 0 by design. We can therefore perform
a change of variables in the dual update of (6.22) by defining the additional variable

γ(t+1) =λ(t+1) +ρ (
Cx(t+1) −d

)
.

From (6.22), γ(t+1) can be computed as

γ(t+1) = argmin
Lγ=0

(
1

2
‖γ−z(t)‖2

)
= Π

ker(L)
z(t).

Using the definitions of x(t+1) and γ(t+1), it follows that

x(t+1) ∈ ∂ f ∗ (
CT (

γ(t+1) −ρ (
Cx(t+1) −d

)))
,

and thus that the primal updates satisfy the inclusion

∂ f
(
x(t+1)) 3 CT (

γ(t+1) −ρ (
Cx(t+1) −d

))
.

The primal updates x(t+1) can therefore be computed as

x(t+1) =argmin
x

(
f (x)+ ρ

2
‖Cx−d‖2 −〈CTγ(t+1),x〉

)
.

The definition of the reflected resolvent completes the proof. �

155

6

156 6. A DISTRIBUTED ALGORITHM FOR SEPARABLE CONVEX OPTIMIZATION

6.B. PROOF OF LEMMA 6.4.2
Define the output of the resolvent operator for a given iterate by the vector

y(t+1) = Jρ,T2

(
w(t+1)) .

By the definition of the operator T2 (6.11b), y(k+1) can be computed as the minimizer of

min
y

1

2
‖y−w(t+1)‖2

s.t. (I−P)y = 0, Sy∗ ≥ 0.
(6.23)

Equivalently, it can be computed by solving the KKT system of equations [48] given by

y∗−w(t+1) − (I−P)µ∗−Sν∗ = 0,

(I−P)y∗ = 0, Sy∗ ≥ 0, ν∗ ≥ 0,
(
Sy∗

)¯ν∗ = 0,

where ¯ denotes the Hadamard product, the element-wise product of two vectors. The
variables µ and ν denote the dual variables associated with the constraints in (6.23).

Combining the first two equalities and using the self-inverse property of P, P2 = I, it
follows that

− (I−P)µ∗ =1

2
(I−P)

(
w(t+1) +Sν∗)

,

and thus, that

y∗ = 1

2
(I+P)

(
w(t+1) +Sν∗)

.

For those dual variables corresponding to equality constraints, the corresponding en-
tries of ν variables play no role. For the remaining dual variables, combining the non-
negativity of y∗ and ν∗ with the complementary slackness condition

(
Sy∗

)¯ν∗ = 0, it
follows that y∗ = max{ 1

2 (I+P)w(t+1),0} where max{•,•} is an abuse of notation used to
denote element-wise maximization between two vectors. The vector y(t+1) can therefore
be succinctly computed as

y(t+ 1
2) = 1

2
(I+P)w(t+1),

y(t+1) = y(t+ 1
2) −Smin

{
y(t+ 1

2),0
}

,

where, similar to max{•,•}, min{•,•} denotes element-wise minimization. The definition
of the reflected resolvent completes the proof. �

7
DISTRIBUTED CONSENSUS OVER

TIME VARYING NETWORKS

Thomas Sherson

“Music has no effect on research work, but both are born of the same source and
complement each other through the satisfaction they bestow"

Albert Einstein

In this chapter we demonstrate a novel method for performing distributed consensus in
time-varying undirected networks. The proposed method combines classical monotone
operator splitting approaches with a specific time-varying metric choice to produce an
algorithm which allows the network topology to vary at each iteration. Based on aver-
aged Peaceman-Rachford splitting, we demonstrate guaranteed convergence in solving
strongly convex problems as well as highlighting how in practice more general closed,
convex and proper functions can be solved via this method as well. Additionally, the
proposed algorithm provides insight into how the topology of a given network mani-
fests itself in the implementation of distributed consensus through the formation of a
weighted graph Laplacian operator.

157

7

158 7. DISTRIBUTED CONSENSUS OVER TIME VARYING NETWORKS

7.1. INTRODUCTION
The omnipotence of wireless equipped devices in modern society is revolutionizing many
of the ways in which we conduct ourselves. From the emergence of new paradigms such
as the "Internet of Things" (IoT) [5] and blockchain technologies [91] through to more
salient tasks such as improving power generation in smart grids [67] and assisting in
the navigation of autonomous fleets of cars [4], these devices are playing an ever in-
creasing role in many of the fundamental utilities of our world. Motivated by this point,
the last few decades have seen a significant growth in the interest in parallel and dis-
tributed methods of computation. By leveraging the computational capabilities of all de-
vices within a network without the need for centralized data aggregation, these methods
promise to provide adaptive and robust solutions to many signal processing tasks. Re-
sults already exist in many areas such as cloud computing where problem parallelization
is utilized to distribute computational tasks across multiple machines. Similarly, a range
of algorithms from distributed averaging [12, 72, 92, 93], to graph filtering [17, 73, 74, 95],
belief propagation [13, 14, 15, 94] and convex optimization [18, 19, 79, 96, 97] have been
proposed within the literature to facilitate more general signal processing in such con-
texts.

One of the main drawbacks of many existing distributed approaches lies in the as-
sumption that the underlying network is time invariant. While in some cases, these net-
works may indeed be static, more generally we expect network topologies to change over
time. Such time varying features may stem from a variety of sources including, but not
limited to, link failure between nodes (e.g., loss of a powerline in a smart grid), node
movement within the network (e.g., autonomous cars moving as part of a fleet), varia-
tions in transmission power of nodes (e.g., cellphones switching to a low power mode
when their batteries are almost drained) and more. The design of distributed algorithms
to naturally handle these changes is therefore an attractive and, in many cases, necessary
requirement for applying such methods to real world problems.

While there are methods available within the literature to perform distributed op-
timization in a time varying context [11, 40, 60, 124], in general the types of problems
which can be solved limits their applicability to real world problems. The purpose of
this chapter is to develop a distributed solver for use in time varying networks based on
monotone operator theory with the desire to broaden the class of tractable problems via
such methods. Notably we introduce the Time Varying Distributed Consensus method
and verify the sufficiency of strong convexity to guarantee its convergence. We empiri-
cally show that for more general closed, convex and proper functions convergence can
also be achieved and as a biproduct, postulate the existence of a more general conver-
gence proof.

7.1.1. RELATED WORK
The work in this chapter builds upon that of many key figures within the literature in-
cluding Rockafellar, whose fundamental work on network optimization [76] and the re-
lation between convex optimization and monotone operator theory [26, 27, 28] remains
central to many results to this day. Additional works by the likes of Bertsekas and Tsitsik-
lis [29, 30, 31] are similarly important to the narrative where again separability was used
as a mechanism to design a range of distributed algorithms.

7.1. INTRODUCTION

7

159

Given the emergence of large scale networking problems in recent years, these ap-
proaches have been undergoing a revival within the literature [29, 30, 31, 32, 33]. As
previously mentioned however, many of these approaches are designed for time invari-
ant network topologies and do not easily generalize to the time varying case. While a few
methods offer the ability to adapt with the network, such as randomized gossip [12], such
approaches are often limited to linear signal processing tasks. In contrast, distributed
optimization type methods are traditionally able to address a much larger range of non-
linear tasks but are also typically based on time invariant network models.

A notable exception of the rule of time invariant network models are the subgradient
type algorithms for distributed optimization [11]. One of the earliest such methods was
proposed in [10], and follows as a natural extension of subgradient descent applied to
centralized network topologies. While in practice only approximating the standard sub-
gradient type method, the literature for these approaches has matured significantly over
the last ten years with variants that provide guaranteed convergence for asynchronous
operation where nodes do not necessarily update at the same time [40], directed net-
work topologies [11, 60] and more. Additionally a large amount of effort has gone into
understanding the effects of other practical considerations such as the impact of net-
work topology [102], link failure [61] and even quantization [125] on such algorithms.

Unfortunately, in terms of convergence, the approaches mentioned above typically
require strict assumptions on the class of functions considered, namely that the func-
tions have Lipschitz continuous gradients and in practice may prove unnecessarily re-
strictive for practical use. The motivation for this chapter was whether an algorithm
could be constructed for performing distributed consensus in time varying networks
using the perspective of monotone operator theory. In particular, we wanted to see if
guaranteed convergence could be demonstrated for more general functional classes,
hence broadening the number of distributed problems which could be addressed in a
time varying context.

7.1.2. MAIN CONTRIBUTIONS

The main contributions of this chapter are two fold. Firstly, by designing a solver for dis-
tributed consensus based on averaged Peaceman-Rachford splitting, we introduce an
equivalent algorithm tailored to the task of performing distributed consensus in time
varying networks via the use of a time varying change of variables at each iteration. Sec-
ondly, we demonstrate guaranteed convergence for closed, convex and proper functions
in the case of time invariant networks and for strongly convex functions demonstrate a
convergence proof for time varying networks as well. Furthermore, we provide empiri-
cal evidence which suggests that a more general convergence proof may exist for closed,
convex and proper functions in the time varying case.

7.1.3. ORGANIZATION OF CHAPTER

The remainder of this chapter is organized as follows. Section 7.2 includes the nomen-
clature used throughout the text. Section 7.3 provides the derivation for the template dis-
tributed consensus algorithm based on monotone operator theory. Section 7.4 demon-
strates a compact interpretation of the algorithm to remove dependence on the network
topology and demonstrates convergence in the static network case. Section 7.6 expands

7

160 7. DISTRIBUTED CONSENSUS OVER TIME VARYING NETWORKS

the proposed method to time-varying networks and demonstrates guaranteed conver-
gence of the fixed point residual for strongly convex functions. Section 7.7 demonstrates
the use of the algorithm in solving two simple distributed optimization problems. Finally
Section 7.8 presents our conclusions.

7.2. NOMENCLATURE

In this work we denote by R the set of real numbers, by RN the set of real column vectors
of length N and by RM×N the set of M by N real matrices. Let X ,Y ⊆ RN . A set valued
operator T : X →Y is defined by its graph, gra(T) = {

(
x,y

) ∈X ×Y | y ∈ T (x)}. Similarly,
the notion of an inverse of an operator T−1 is defined via its graph so that gra

(
T−1

) =
{
(
y,x

) ∈ Y ×X | y ∈ T (x)}. JT,ρ = (
I+ρT

)−1 denotes the resolvent of an operator while
RT,ρ = 2JT,ρ−I denotes the reflected resolvent (Cayley operator). The fixed-point set of T
is denoted by fix(T) = {x ∈X | T (x) = x}.

7.3. DISTRIBUTED CONSENSUS

In this section we introduce a basic distributed consensus problem which forms the cen-
tral focus of this chapter and demonstrate the derivation of a distributed solver based on
averaged Peaceman-Rachford splitting. This derivation follows along the same lines as
our previous chapters but incorporates an additional change of variables which depends
on the underlying network topology. In the later portion of this chapter, we will see that
this algorithm also forms the basis of a novel method for consensus in time varying net-
works (see Section 7.6).

7.3.1. PROBLEM DEFINITION

Consider a simple undirected network consisting of N nodes with which we want to per-
form convex optimization in a distributed manner. The associated graphical model of
such a network is given by G(V ,E) where V = {1, · · · , N } denotes the set of nodes and
E denotes the set of undirected edges so that (i , j) ∈ E if nodes i and j share a physi-
cal connection. We assume that G forms a single connected component and denote by
N (i) = { j ∈V | (i , j) ∈ E } the set of neighbors of node i , i.e., those nodes j so that i and j
can communicate directly. An example of such a network is given in Figure 7.1.

1 3

2

4

5

6

7

Figure 7.1: The communication graph G of a simple seven node network. Numbered circles denote nodes and
their identifiers while the double ended arrows denote the undirected edges.

7.3. DISTRIBUTED CONSENSUS

7

161

As previously mentioned, we are interested in using this network to perform dis-
tributed convex optimization. In this way, assume that each node is equipped with a
function fi ∈ Γ0

(
RM

) ∀i ∈V parameterized by a local variable xi ∈RM , i.e. that the local
variables at each node all have the same dimensionality, where, Γ0 denotes the family of
closed, convex and proper (CCP) functions. Based on these definitions, our objective is
to solve the following consensus problem in a distributed manner,

min
xi ∀ i∈V

∑

i∈V
fi (xi) s.t ai | j xi +a j |i x j = 0 ∀ (i , j) ∈ E , (7.1)

where the each scalar ai | j is defined as

ai | j =
{

1 if i > j

−1 otherwise
,

and the subscript i | j is a directed edge identifier denoting the edge from node i to node
j . The constraints of (7.1) ensure consensus between neighboring nodes within the net-
work where we also assume that (7.1) is feasible, i.e., ∩

i∈V
dom(fi) 6= ;.

For this work, we consider the case where the underlying network topology is allowed
to vary with time. In particular for each time step k, we will assume that there exists a
simple, undirected, connected graph G(k)

(
V ,E(k)

)
that encapsulates the structure of the

network. In this way, the set of nodes in the network does not vary with time while the
edge sets E (k) can vary. The objective function of (7.1) is therefore the same for all net-
work instances while the constraint functions simply enforce consensus between the lo-
cal variables at each node. This assumption in turn ensures that the set of minimizers of
(7.1), denoted by X∗, does not change with the network topology and is constant across
all time steps. This particular point raises the question of whether we can solve (7.1) in a
distributed fashion even in the presence of time varying connectivity. As we will show in
the coming sections, the answer is yes.

7.3.2. EXPLOITING SEPARABILITY VIA LAGRANGIAN DUALITY
Given the prototype problem in (7.1), the design of our distributed optimization solver
echoes our other efforts within this thesis by aiming to address the coupling between
the primal variables xi at each node due to the linear constraint functions. For now we
will consider the case of a fixed network topology but will return to the time varying
network case in Section sec:ch7:timevarying. As with many classic approaches in the
literature, we can exploit the separability of (7.1) via Lagrangian duality to overcome the
aforementioned variable coupling. In particular, the Lagrangian of (7.1) is given by

L
(
{xi | i ∈V }, {νi j | (i , j) ∈ E }

)= ∑

i∈V
fi (xi)− ∑

(i , j)∈E
νT

i j

(
ai | j xi +a j |i x j

)
, (7.2)

where the set N (i) = { j ∈ V | (i , j) ∈ E } denotes the neighborhood of node i and νi j ∈
RM is the vector of dual variables associated with the constraints along the undirected
edge (i , j). Note the distinction between the undirected edge identifier i j and directed
identifier i | j .

7

162 7. DISTRIBUTED CONSENSUS OVER TIME VARYING NETWORKS

To exploit the separability of (7.2), we can therefore consider solving (7.1) in the dual
domain. Specifically, the Lagrange dual problem of (7.1) is given by

min
ν

∑

i∈V
f ∗

i

(
∑

j∈N (i)
ai | jνi j

)
, (7.3)

where f ∗
i is the Fenchel conjugate of fi . By inspection, the resulting problem is still sepa-

rable over the set of nodes but unfortunately each νi j in (7.3) is utilized in two conjugate
functions, f ∗

i and f ∗
j , resulting in a coupling between neighboring nodes.

To decouple the objective terms, we can lift the dimension of the dual problem by
introducing copies of each νi j at nodes i and j . The pairs of additional directed edge
variables are denoted by λi | j ,λ j |i ∀(i , j) ∈ E and are associated with nodes i and j re-
spectively. Specifically, we substitute νi j with ai | jλi | j at node i and νi j with a j |iλ j |i at
node j . To ensure equivalence of the problems, these are constrained so that at opti-
mality ai | jλi | j = a j |iλ j |i or equivalently that λi | j +λ j |i = 0 as ai | j = a j |i ∀(i , j) ∈ E . The
resulting problem is referred to as the extended dual of Eq (7.1) and is given by

min
λ

∑

i∈V
f ∗

i

(
∑

j∈N (i)
λi | j

)
s.t.λi | j +λ j |i = 0 ∀i ∈V , j ∈N (i). (7.4)

The proposed lifted problem is appealing from the perspective of alternating minimiza-
tion techniques as it can be partitioned into two sections: a fully node separable objec-
tive function and a set of edge based constraints.

From (7.4) we can note that the the lifted dual is dependent on a set of dual vari-
ables which scale with the topology of the network, i.e., the extended dual problem has
different dimensions for different instances of G . While this lifting naturally leads to a
distributed implementation in time invariant networks, the dependence of dual vari-
able dimensionality on network structure limits the use of traditional monotone oper-
ator based methods. This is despite the fact that the primal optimal variables X∗ are
independent of network topology. In the coming sections, we introduce a specific topol-
ogy dependent change of variables to overcome this challenge, ultimately leading to a
distributed consensus algorithm for use in time varying networks in Section 7.6.

7.3.3. SIMPLIFYING NOTATION
To simplify our notation in the coming analysis, in this section we introduce the follow-
ing compact vector notation for Eq. (7.4). Specifically we show that (7.4) can be rewritten
as

min
λ

f ∗(CTλ) s.t. (I+P)λ= 0. (7.5)

DUAL VECTOR NOTATION

The basis of this simplified notation is the introduction of the dual vectorλ. Specifically,
λ is a stacked vector of all λi | j where the ordering of this stacking is given by 1|2 < 1|3 <
·· · < 1|N < 2|1 < 2|3 < ·· · < N |N −1. In the case of a fully connected network the vector
λ ∈RME is given by

λ=
[
λT

1|2, · · · ,λT
1|N ,λT

2|1, · · · ,λT
N |N−1

]T
. (7.6)

7.3. DISTRIBUTED CONSENSUS

7

163

In the case of other network topologies which are not fully connected, non-existent edge
variables can simply be omitted. In the following, the scalar ME = ∑

i∈V
|N (i)|M = 2|E |M

denotes the total number of dual variables in (7.4).

COMPACT OBJECTIVE NOTATION

Given the definition of the dual vectorλ, we now move to simplifying the objective func-
tion. Firstly, we define the global function

f : RMV 7→R, x 7→ ∑

i∈V
fi (xi), (7.7)

as the sum of all local functions where RMV = RM ×RM × ...×RM , the scalar MV = N M
denotes the total number of node variables. Similarly, f ∗, which denotes the conjugate
function of f has the same structure, i.e. f ∗ : RMV 7→R, v 7→ ∑

i∈V
f ∗

i (vi).

We can then define a matrix C ∈ RME×MV to rewrite our objective using λ and f . In
the case of a fully connected network these terms are given by

C =

C1 · · · 0
...

. . .
...

0 · · · CN

⊗ IM , Ci = 1|N (i)| ∀i ∈V , (7.8)

where 1|N (i)| and IM are a |N (i)|×1 ones vector and M ×M identity matrix respectively,
and the symbol ⊗ denotes the Kronecker product of two matrices. Combining (7.6), (7.7)
and (7.8), the objective function of Eq. (7.4) can be equivalently written as

f ∗(CTλ),

where the term CTλ produces a stacked set of M-dimensional vectors, one at each node
i , which are the sum of local directed edge variables.

COMPACT CONSTRAINTS NOTATION

Similarly to the objective, we can define an additional matrix to rewrite the constraint
functions using our vector notation. For this task we introduce the symmetric permuta-
tion matrix P ∈ RME×ME that permutes each pair of variables λi | j and λ j |i . This allows
the constraints in (7.4) to be rewritten as (I+P)λ= 0. The vector λ is therefore only fea-
sible if it is contained in ker(I+P). Using this compact notation, we are now ready to
continue with our derivation.

7.3.4. MODIFYING THE EXTENDED DUAL VIA A CHANGE OF VARIABLES
At this stage we could directly move to deriving a distributed solver for the case of a time
invariant network. However, to accommodate time varying network topologies in the
later portion of this chapter, we instead make a small modification to (7.5) in the form of
a change of variables given by λ =Φλ̃ where the matrix Φ Â 0. In this way, (7.5) can be
rewritten as

min
λ̃

f ∗(CTΦλ̃) s.t (I+P)Φλ̃= 0. (7.9)

7

164 7. DISTRIBUTED CONSENSUS OVER TIME VARYING NETWORKS

In particular, we defineΦ as being a diagonal matrix such that

Φ=
[
Φ1 . . . 0

...
. . . ΦN

]
⊗ IM , (7.10)

where the submatricesΦi are given by

Φi = 1p|N (i)| I|N (i)| ∀i ∈V ,

where we can note that each φi Â 0 due to the connected assumption of the underlying
network. Furthermore, this assumption will hold for all such networks.

The motivation behind this change of variables is as follows. From (7.4), it is clear
that the topology of the network influences the structure of the extended dual, notably
that the total number of extended dual variables changes for each network. Specifically,
at each node i , the associated set of variables λi | j are implicitly dependent on |N (i)|.
DefiningΦ as per (7.10) aims to remove this dependency. For instance, considering the
definition of C, it follows that the matrix product CTΦΦC satisfies

CTΦΦC =

C1 · · · 0
...

. . .
...

0 · · · CN

T [
Φ1Φ1 . . . 0

...
. . . ΦNΦN

]

C1 · · · 0
...

. . .
...

0 · · · CN

⊗ IM

=

1T
|N (1)|1|N (1)|
|N (1)| · · · 0

...
. . .

...

0 · · · 1T
|N (N)|1|N (N)|

|N (N)|

⊗ IM = IN ⊗ IM = IMV ,

(7.11)

where the first equality uses the mixed-product property of Kronecker products. In Sec-
tion 7.4, we show that this equality is a key step in removing the dependency of our pro-
posed distributed algorithm on network topology. In this way, our particular choice of
Φ ultimately allows us to form an algorithm where, like the primal variables, the set of
optimal dual variables also do not vary for different network topologies.

7.3.5. MONOTONIC INCLUSIONS AND FIXED POINT PROBLEMS
To solve (7.9) in a distributed fashion, we can firstly rewrite it in an equivalent uncon-
strained form given by

min
λ̃

f ∗(CTΦλ̃)+ ιker((I+P)Φ)
(
λ̃

)
, (7.12)

where ιker(I+P) is the indicator function of the edge based constraints defined as

ιker((I+P)Φ)(y) =
{

0 (I+P)Φy = 0

+∞ otherwise.

Under our assumptions that f is closed, convex and proper and the feasibility of
(7.1), a minimizer of (7.12) can be equivalently found as a zero point of its subdifferential

7.3. DISTRIBUTED CONSENSUS

7

165

which is given by

0 ∈ΦC∂ f ∗ (
CTΦT λ̃

)+∂ιker((I+P)Φ)
(
λ̃

)
. (7.13)

The operators T1 =ΦC∂ f ∗ (
CTΦT

)
and T2 = ∂ιker((I+P)Φ) are by design separable over

the set of nodes and edges respectively. The operators ∂ f ∗ and ∂ιker((I+P)Φ) are the subd-
ifferentials of CCP functions and thus are maximal monotone. It follows that a zero-point
of (7.13) can be found via a variety of operator splitting methods.

In the following we consider the use of Peaceman-Rachford splitting to solve (7.13).
However, other approaches such as Forward-Backward splitting, Primal-Dual splitting
methods and more could be used for this purpose as well. Peaceman-Rachford split-
ting allows for the rephrasing of the monotonic inclusion (7.13) as a fixed point problem
given by

RT2,ρ ◦RT1,ρ (z) = z, λ̃= JT1,ρ (z) (7.14)

where RTi ,ρ and JTi ,ρ are the reflected resolvent and resolvent operators of Ti respec-
tively and ρ > 0 is a non-negative step size. As both T1 and T2 are maximal monotone
operators, it follows that both RT1,ρ and RT2,ρ are nonexpansive and thus so too is their
composition RT2,ρ ◦RT1,ρ . The introduced z ∈RME variable will be referred to as an aux-
iliary variable. Like the extended dual variables in Section 7.3.2, here the dimensionality
of the auxiliary variables also varies with the topology of the network. While sufficient
for the time invariant case, it is this variability which poses challenges in the formation
of monotone operator based solvers for use in time varying networks. Fortunately this
will be addressed in the coming sections.

The fixed point problem in (7.14) can be solved via classic iterative methods for non-
expansive operators. We consider the use of an α-averaged Banach-Picard iteration (al-
though any Krasnosel’skĭı-Mann iteration could be used as well). The resulting iterative
scheme is given by

z(k+1) = (1−α)z(k) +αRT2,ρ ◦RT1,ρ

(
z(k)

)
,

where α ∈ (0,1).

7.3.6. DISTRIBUTED ALGORITHM IMPLEMENTATION

Before we can understand how the additional matrixΦ assists in the formation of a dis-
tributed solver for time-varying networks we first need to address the evaluation of the
reflected resolvents RT1,ρ and RT2,ρ . These two procedures are summarized in the fol-
lowing two Lemmas.

Lemma 7.3.1. y(k+1) = RT1,ρ
(
z(k)

)
can be computed as

x(k+1) =argmin
x

(
f (x)−

〈
CTΦT z(k),x

〉
+ ρ

2
||ΦCx||2

)

λ̃(k+1) =z(k) −ρΦCx(k+1)

y(k+1) =2λ̃(k+1) −z(k) = z(k) −2ρΦCx(k+1)

A proof of this result can be found in Appendix 7.A.

7

166 7. DISTRIBUTED CONSENSUS OVER TIME VARYING NETWORKS

Lemma 7.3.2. w(k+1) = RT2,ρ
(
y(k+1)

)
can be computed as

w(k+1) =K y(k+1) −Ry(k+1),

where K = Π
ker((I+P)Φ)

, R = I−K and the operator Π
A

denotes the orthogonal projection

onto the subspace A .

The proof for this result is included in Appendix 7.B. Utilizing Lemmas 7.3.1 and 7.3.2
and recalling from (7.11) that for our particular choice ofΦ that CTΦΦT C = IMV , it there-
fore follows that (7.14) can be computed via Algorithm 12. The convergence of this algo-

Algorithm 12 Distributed Consensus

1: Initialise: z(0) ∈RME

2: for k = 0, · · · , do
3: x(k+1) = argmin

x

(
f (x)−〈

CTΦz(k),x
〉+ ρ

2 ||x||2
)

4: y(k+1) = z(k) −2ρΦCx(k+1)

5: w(k+1) =K y(k+1) −Ry(k+1)

6: z(k+1) = (1−α)z(k) +αw(k+1)

7: end for

rithm follows from the properties of averaged operators which, due to the finite dimen-
sionality of the problems considered, guarantees convergence of the auxiliary variables
to a fixed point (see [34, Theorem 5.15]).

7.4. DISTRIBUTED CONSENSUS IN TIME INVARIANT NETWORKS
From the perspective of time varying consensus, the main problem with Algorithm 12
is the dependence of the dimensionality of many of the variables

(
y(k+1),w(k+1),z(k+1)

)

on the number of edges in the network which may change at each iteration. In contrast,
the dimensionality of the primal variables only depends on the number of nodes in the
network which, in our time varying model, is constant. Moreover, we are ultimately in-
terested in using this algorithm to compute the optimal x variables which are of much
lower dimensionality than either the dual or the auxiliary variables. This suggests that
there is redundancy in the way the algorithm represents its variables. Furthermore, the
fact that the dual and auxiliary are generated via linear operations suggests that this re-
dundancy can be eliminated. In this section we aim to address this point by demonstrat-
ing an equivalent set of update equations whose dimensionality do not depend on the
connectivity of the network but only on the number of nodes. In particular, we demon-
strate this equivalent form for the simpler time invariant case which we then extend to
the time varying case in Section 7.6.

7.4.1. REMOVING THE DEPENDENCE ON THE AUXILIARY VARIABLES

To remove our dependence on network connectivity, we firstly note that by splitting the
auxiliary z variables into two components z(k)

K = K z(k) and z(k)
R = Rz(k), Algorithm 12

7.4. DISTRIBUTED CONSENSUS IN TIME INVARIANT NETWORKS

7

167

Algorithm 13 Split Distributed Consensus

1: Initialise: z(0) ∈RME

2: for k = 0, · · · , do

3: x(k+1) = argmin
x

(
f (x)−

〈[
K ΦC
RΦC

]T
[

z(k)
K

z(k)
R

]
,x

〉
+ ρ

2 ||x||2
)

4: y(k+1) =
[

z(k)
K

z(k)
R

]
−2ρ

[
K ΦC
RΦC

]
x(k+1)

5: w(k+1) =
[

I 0
0 −I

]
y(k+1)

6:

[
z(k+1)

K
z(k+1)

R

]
= (1−α)

[
z(k)

K
z(k)

R

]
+αw(k+1)

7: end for

can be equivalently expressed as Algorithm 13. As in Lemma 7.3.2, here K = Π
ker((I+P)Φ)

,

while R = I−K .
Like Algorithm 12, due to nonexpansiveness and the use of operator averaging, this

split form is averaged in the stacked variables
[

z(k+1)T
K ,z(k+1)T

R

]T
and thus converges to a

fixed point asymptotically .
Using the split structure in Algorithm 13, we can demonstrate a compact form of

distributed consensus which is independent of the number of edges of the network. To
achieve this point, we firstly define the additional variables

γ(k+1)
K = CTΦz(k)

K , γ(k+1)
R = CTΦz(k)

R , (7.15)

where the vectors γ(k)
K ,γ(k)

R ∈RMV ∀k ∈N. We can then rewrite the primal x update from
Algorithm 13 in the more compact form

x(k+1) = argmin
x

(
f (x)−

〈[
I
I

]T
[
γ(k)

K
γ(k)

R

]
,x

〉
+ ρ

2
||x||2

)
. (7.16)

Other than the computation of the primal x update equations of Algorithm 13, all re-
maining operations are linear and thus can be combined to form a single update equa-
tion given by

[
z(k+1)

K
z(k+1)

R

]
=

[
z(k)

K
(1−2α)z(k)

R

]
+2ρα

[−K ΦC
RΦC

]
x(k+1).

Combining with the definition of the γ variables in (7.15), it follows that
[
γ(k+1)

K
γ(k+1)

R

]
=

[
γ(k)

K
(1−2α)γ(k)

R

]
+2ρα

[−CTΦK ΦC
CTΦRΦC

]
x(k+1).

By defining L̃ = CTΦK ΦC and recalling that R = I−K , CT C = I, it follows that
[
γ(k+1)

K
γ(k+1)

R

]
=

[
γ(k)

K
(1−2α)γ(k)

R

]
+2ρα

[−L̃

I−L̃

]
x(k+1). (7.17)

7

168 7. DISTRIBUTED CONSENSUS OVER TIME VARYING NETWORKS

As we will show in the following section, the matrix L̃ corresponds to a particular weighted
graph Laplacian and therefore defines a form of weighted averaging of data between
connected nodes.

Combining (7.16) and (7.17), we can replace the update procedure in Algorithm 13 to
form Algorithm 14. In doing so, we have removed the dependence of the dimensionality
of all variables on the connectivity of the underlying network, as desired.

Algorithm 14 Time Invariant Distributed Consensus

1: Initialise: γ(0)
R ,γ(0)

N = 0
2: for k = 0, · · · , do

3: x(k+1) = argmin
x

(
f (x)−

〈[
I
I

]T
[
γ(k)

K
γ(k)

R

]
,x

〉
+ ρ

2 ||x||2
)

4:

[
γ(k+1)

K
γ(k+1)

R

]
=

[
γ(k)

K
(1−2α)γ(k)

R

]
+2ρα

[−L̃

I−L̃

]
x(k+1)

5: end for

This particular representation is highly appealing as it casts distributed optimization
as a composition of local optimizations at each node with a data fusion step based on the
local connectivity of each node based on the matrix L̃ . This final operation corresponds
to a weighted averaging of data between connected nodes in the network, highlighting
the distributed nature of the algorithm. Notably, each node needs to only broadcast its
current primal estimate to its neighbors at each time step, removing the need for the
transmission of edge specific variables present in 13. The introduced γ variables also
have far lower dimensionality than their edge based dual and auxiliary counterparts.
Through the transformed update equations, we can draw a similarity with distributed
subgradient methods [11], where a combination of local forward update steps is followed
by a weighted averaging of variables.

In the following section we demonstrate that the particular weighted averaging per-
formed by the matrix L̃ is in fact a weighted graph Laplacian matrix which we use in
Section 7.5 to prove the convergence of the time invariant method in Algorithm 14 to a
primal optimal solution. This time invariant approach is extended in Section 7.6 to the
case of time varying networks.

7.4.2. A WEIGHTED GRAPH LAPLACIAN MIXING MATRIX

We now move to demonstrating how the matrix L̃ = CTΦK ΦC corresponds to a weighted
graph Laplacian. To this end we consider the following Lemma.

Lemma 7.4.1. The matrix L̃ represents a weighted graph Laplacian given by

L̃ = D̃−W̃ = (
D̂−Ŵ

)⊗ IM = L̂ ⊗ IM ,

where

W̃ =(
W® (

W1N 1T
N +1N 1T

N W
))⊗ IM = Ŵ⊗ IM

D̃ =diag
(
W̃1N M

)= D̂⊗ IM ,

7.5. CONVERGENCE IN TIME INVARIANT NETWORKS

7

169

where ® and ⊗ denote the element-wise division and the Kronecker product of two matri-
ces respectively. The matrix W denotes the adjacency matrix of G (V ,E).

The proof of this Lemma can be found in Appendix 7.C. Two useful properties of L̃ ,
which we will make use of in the future, are given in the following Lemmas.

Lemma 7.4.2. The kernel of L̃ is spanned by the columns of 1p
N

1⊗ IM . In other words

the columns of 1p
N

1⊗ IM are eigenvectors of L̃ with corresponding eigenvalues 0.

Lemma 7.4.3. The eigenvalues of L̃ are contained in [0,1]. Additionally, 1 is only an
eigenvalue of L̃ if G is a bipartite graph.

The proof for these Lemmas can be found in Appendix 7.D and 7.E respectively. In
Section 7.5, we use these properties to prove the convergence of the proposed method
in time invariant networks.

7.4.3. OPTIMAL γ VARIABLES AND NETWORK TOPOLOGY
The reduced form of Algorithm 14 allows us to also demonstrate that the optimal intro-
duced γ variables are invariant to changes in the network topology. Specifically, by con-
sidering the primal x updates, from the convexity of the minimized problem in (7.16), it
follows that for each x update,

x(k+1) = (
ρI+∂ f

)−1
[

I
I

]T
[
γ(k)

K
γ(k)

R

]
,

or equivalently that

x(k+1) =
(

I+ ∂ f

ρ

)−1
(

1

ρ

[
I
I

]T
[
γ(k)

K
γ(k)

R

])
. (7.18)

The operator
(
I+ ∂ f

ρ

)−1
is a resolvent operator due to the maximal monotonicity of

∂ f and is therefore single valued by nature. Defining the set of optimalγ variables by Γ∗,
it follows that

∀
[
γ∗

K
γ∗

R

]
∈Γ∗ ∃x∗ ∈ X∗

∣∣∣ x∗ = (
ρI+∂ f

)−1
[

I
I

]T [
γ∗

K
γ∗

R

]
.

It therefore follows that, like X∗, this Γ∗ does not vary with the underlying network topol-
ogy. As alluded to in Section 7.3.4, this consistency stems from our particular choice of
the topology dependent metricΦ.

7.5. CONVERGENCE IN TIME INVARIANT NETWORKS
While in the time-invariant network case the convergence of the method presented in
Algorithm 14 follows from its relationship to averaged Peaceman-Rachford splitting, we
can also show convergence directly by considering the introduced γ variables. The fol-
lowing analysis is also a useful stepping stone in understanding the convergence char-
acteristics in the more complicated time-varying context in Section 7.6.

7

170 7. DISTRIBUTED CONSENSUS OVER TIME VARYING NETWORKS

To demonstrate convergence, we firstly consider an equivalent form of theγ updates
of Algorithm 14 given by

[
γ(k+1)

K
γ(k+1)

R

]
= (1−α)

[
γ(k)

K
γ(k)

R

]
+α

[
I 0
0 −I

]([
γ(k)

K
γ(k)

R

]
−2ρ

[−L̃

I−L̃

]
x(k+1)

)
. (7.19)

Additionally, we require the use of the inner product
〈

x,y
〉
θ =

〈
x,θy

〉
and induced norm

‖x‖2
θ
= 〈x,θx〉, both of which are parameterized by the matrix

θ =
[
L̃

†
0

0
(
I−L̃

)†

]
,

where •† denotes the Moore-Penrose pseudo inverse. Note that despite the fact that L̃

and I−L̃ may be low rank, ‖•‖θ still defines a valid metric for all iterations as the stacked
γ variables are contained within the range space of θ by definition. Specifically, γK ∈
ran

(
L̃

)
and γR ∈ ran

(
I−L̃

)
for all iterations. Using this metric, we can show that the

γ variables are averaged and thus converge. To see this, consider the squared distance
measure
∥∥∥∥∥

[
γ(k+1)

K
γ(k+1)

R

]
−

[
γ∗

K
γ∗

R

]∥∥∥∥∥

2

θ

=
∥∥∥∥∥(1−α)

[
γ(k)

K
γ(k)

R

]
+α

[
I 0
0 −I

]([
γ(k)

K
γ(k)

R

]
−2ρ

[
L̃

I−L̃

]
x(k+1)

)
−

[
γ∗

K
γ∗

R

]∥∥∥∥∥

2

θ

= (1−α)

∥∥∥∥∥

[
γ(k)

K
γ(k)

R

]
−

[
γ∗

K
γ∗

R

]∥∥∥∥∥

2

θ

+α
∥∥∥∥∥

[
γ(k)

K
γ(k)

R

]
−

[
γ∗

K
γ∗

R

]
−2ρ

[
L̃

I−L̃

](
x(k+1) −x∗

)∥∥∥∥∥

2

θ

−4α(1−α)

∥∥∥∥
[

0
γ(k)

R

]
−

[
0
γ∗

R

]
−ρ

[
L̃

I−L̃

](
x(k+1) −x∗

)∥∥∥∥
2

θ

,(7.20)

where in the first line we have used the equivalent γ update in (7.19) while in the second

line we have used [34, Corollary 2.15] and the fact that

[
I 0
0 −I

]
is a nonexpansive operator

for any quadratic form. It follows that if
∥∥∥∥∥

[
γ(k)

K
γ(k)

R

]
−

[
γ∗

K
γ∗

R

]
−2ρ

[
L̃

I−L̃

](
x(k+1) −x∗

)∥∥∥∥∥

2

θ

≤
∥∥∥∥∥

[
γ(k)

K
γ(k)

R

]
−

[
γ∗

K
γ∗

R

]∥∥∥∥∥

2

θ

, (7.21)

then the sequence

(∥∥∥∥∥

[
γ(k)

K
γ(k)

R

]
−

[
γ∗

K
γ∗

R

]∥∥∥∥∥

2

θ

)

k∈N
is non-increasing. To show that (7.21) holds,

we begin by noting that
∥∥∥∥∥

[
γ(k)

K
γ(k)

R

]
−

[
γ∗

K
γ∗

R

]
−2ρ

[
L̃

I−L̃

](
x(k+1) −x∗

)∥∥∥∥∥

2

θ

=
∥∥∥∥2ρ

[
L̃

I−L̃

](
x(k+1) −x∗

)∥∥∥∥
2

θ

−2

〈
2ρ

[
L̃

I−L̃

](
x(k+1) −x∗

)
,

[
γ(k)

K
γ(k)

R

]
−

[
γ∗

K
γ∗

R

]〉

θ

+
∥∥∥∥∥

[
γ(k)

K
γ(k)

R

]
−

[
γ∗

K
γ∗

R

]∥∥∥∥∥

2

θ

(7.22)

= 4
∥∥∥ρ

(
x(k+1) −x∗

)∥∥∥
2 −4

〈
ρ

(
x(k+1) −x∗

)
,

[
I
I

]T
([
γ(k)

K
γ(k)

R

]
−

[
γ∗

K
γ∗

R

])〉
+

∥∥∥∥∥

[
γ(k)

K
γ(k)

R

]
−

[
γ∗

K
γ∗

R

]∥∥∥∥∥

2

θ

,

7.5. CONVERGENCE IN TIME INVARIANT NETWORKS

7

171

where in the third line we had used the definition of the inner product and induced norm〈
x,y

〉
θ and ‖x‖2

θ
and the fact that γ(k)

K ∈ ran
(
L̃

)
, γ(k)

R ∈ ran
(
I−L̃

) ∀k ∈N. From (7.18),
recall that

x(k+1) =
(

I+ ∂ f

ρ

)−1
(

1

ρ

[
I
I

]T
[
γ(k)

K
γ(k)

R

])
.

where the operator
(
I+ ∂ f

ρ

)−1
is a resolvent and thus firmly nonexpansive which is de-

fined as follows.

Definition 7.5.1. Firmly Nonexpansive Operators: An operator T : X →Y is firmly non-
expansive if ∀x1,x2 ∈X , y1 ∈ T(x1), y2 ∈ T(x2)

∥∥y1 −y2
∥∥2 ≤ 〈

y1 −y2,x1 −x2
〉

.

Using the structure of (7.18), it follows that

‖x(k+1) −x∗‖2 ≤
〈

x(k+1) −x∗,
1

ρ

[
I
I

]T
([
γ(k)

K
γ(k)

R

]
−

[
γ∗

K
γ∗

R

])〉
, (7.23)

which, when combined with (7.22) and (7.23), ensures that

∥∥∥∥∥

[
γ(k)

K
γ(k)

R

]
−

[
γ∗

K
γ∗

R

]
−2ρ

[
L̃

I−L̃

](
x(k+1) −x∗

)∥∥∥∥∥

2

θ

≤
∥∥∥∥∥

[
γ(k)

K
γ(k)

R

]
−

[
γ∗

K
γ∗

R

]∥∥∥∥∥

2

θ

. (7.24)

By substituting (7.24) into the final equality of (7.20), we find that

∥∥∥∥∥

[
γ(k+1)

K
γ(k+1)

R

]
−

[
γ∗

K
γ∗

R

]∥∥∥∥∥

2

θ

≤
∥∥∥∥∥

[
γ(k)

K
γ(k)

R

]
−

[
γ∗

K
γ∗

R

]∥∥∥∥∥

2

θ

−4α(1−α)

∥∥∥∥
[

0
γ(k)

R

]
−

[
0
γ∗

R

]
−ρ

[
L̃

I−L̃

](
x(k+1)−x∗

)∥∥∥∥
2

θ

,

which in turn means that the fixed point residual

∥∥∥∥
[

0
γ(k)

R

]
−

[
0
γ∗

R

]
−ρ

[
L̃

I−L̃

](
x(k+1) −x∗

)∥∥∥∥
2

θ

=

ρ2
∥∥∥L̃

(
x(k+1) −x∗

)∥∥∥
2

L̃
† +

∥∥∥γ(k)
R −γ∗

R −ρ (
I−L̃

)(
x(k+1) −x∗

)∥∥∥
2

(I−L̃)† ,

(7.25)

converges to zero.
The convergence of (7.25) highlights two points. Firstly, as L̃ x∗ = 0 by definition, the

convergence of L̃
(
x(k) −x∗

)
ensures that L̃ x(k) → 0 as well. As such, γ(k+1) −γ(k) → 0

and furthermore
〈
γ(k),x(k+1)

〉 → 0. Similarly, as γ∗
R −ρ (

I−L̃
)

x∗ = 0, the convergence

of γ(k)
R −γ∗

R −ρ (
I−L̃

)(
x(k+1) −x∗

)
ensures that γ(k)

R −ρ (
I−L̃

)
x(k+1) → 0. Combined

with the fact that L̃ x(k) → 0, it follows that γ(k)
R −ρx(k+1) → 0. Together with the primal

update equations, these properties ensure that x(k+1) − x(k) → 0 and thus that the pri-
mal variables converge to a fixed point. This in turn demonstrates that the γ variables
converge to a fixed point which in turn guarantees optimality of the primal fixed points.

7

172 7. DISTRIBUTED CONSENSUS OVER TIME VARYING NETWORKS

7.6. DISTRIBUTED TIME VARYING CONSENSUS
We now turn our attention to the original objective of this chapter; to demonstrate how
the proposed topology dependent change of variables leads to an algorithm for use in
time varying networks. As outlined in Section 7.3.1, for each time step k, we now assume
that the network takes on a potentially different connected topology given by G(k)

(
V ,E(k)

)
.

The matrices C(k) and P(k), and subsequentlyΦ(k), K (k), R(k) and L̃ (k), are defined ex-
actly as in the time invariant case for each G(k).

To form our proposed method for time varying consensus, we augment Algorithm
14 by allowing the weighted graph Laplacian L̃ to also vary with time. Additionally,
we will restrict ourselves to the case that α = 1

2 . The particular choice of this averaging
parameter can be motivated from the simplification it provides to the computation of the
γR variables, notably that they become a linear function of the primal x variables. This
can be observed in Algorithm 15, referred to as the time varying distributed consensus
(TVDC) method in the remainder of the text, which inherits the appealing node based
operation of its time invariant predecessor.

Algorithm 15 Time Varying Distributed Consensus (TVDC)

1: Initialise: γ(0)
R ,γ(0)

N = 0
2: for k = 0, · · · , do
3: Using G(k) compute L̃ (k) as per Lemma 7.4.1

4: x(k+1) = argmin
x

(
f (x)−

〈[
I
I

]T
[
γ(k)

K
γ(k)

R

]
,x

〉
+ ρ

2 ||x||2
)

5:

[
γ(k+1)

K
γ(k+1)

R

]
=

[
γ(k)

K
0

]
+ρ

[−L̃ (k)

I−L̃ (k)

]
x(k+1)

6: end for

In the following we demonstrate how this method provides a similar convergence
guarantee to the time invariant case despite the change in the update equations at each
iteration.

7.6.1. TVDC: TIME VARYING ALGORITHMIC CONVERGENCE
To prove the convergence of the proposed TVDC method we make two assumptions.
Firstly we restrict the function f to be µ-strongly convex, which also implies that x∗ is
unique. As noted in Chapter 2, the strong convexity of a function is defined below.

Definition 7.6.1. Strong Convexity: A function f isµ-strongly convex withµ> 0 if∀x1,x2 ∈
dom

(
f
)

,y2 ∈ ∂ f (x2),

f (x1) ≥ f (x2)+〈
y2,x1 −x2

〉+ µ

2
‖x1 −x2‖2 .

Importantly, in this section we only demonstrate that these conditions are sufficient
for convergence, not that they are necessary. In line with this statement, in Section 7.7
we demonstrate an example where these conditions do not hold while still allowing for
convergence of the TVDC algorithm which suggests that a weaker convergence guaran-
tee may be found. This has been left to future work.

7.6. DISTRIBUTED TIME VARYING CONSENSUS

7

173

To demonstrate convergence, we model the variation in network topology via a ran-
dom process. Assume that for all iterations k ∈ N, that the network topologies G (k)

are drawn from an independent and identically distributed process. In other words,
∀k, l ∈N and any graph G , the probabilities prob

(
G (k) =G

)= prob
(
G (l) =G

)
. With these

assumptions in mind we can use statistical expectation as a method for proving conver-
gence of Algorithm 15.

While we do not show that the TVDC algorithm will converge at every iteration, as
was the case of the time invariant algorithm, using the results of the previous section we
can show that x(k) → x∗ in expectation and variance where the point x∗ is unique due to
the strong convexity of f . Specifically, if x(k) converges in expectation then

∥∥∥EG

[
x(k) −x∗

]∥∥∥
2 → 0, k →∞.

Here the notation EG is used to denote expectation with respect to the random sequence
of connected graphs. Similarly, if we have convergence in variance then

tr

(
EG

[(
x(k) −x∗−EG

[
x(k) −x∗

])(
x(k) −x∗−EG

[
x(k) −x∗

])T
])

→ 0, k →∞,

where tr(•) denotes the trace of a matrix. Fortunately, both conditions must hold by

showing that EG

[∥∥x(k) −x∗
∥∥2

]
→ 0. Convergence in expectation follows directly from

Jensen’s inequality which for this case states that

∥∥∥EG

[
x(k) −x∗

]∥∥∥
2 ≤ EG

[∥∥∥x(k) −x∗
∥∥∥

2
]

.

Convergence in covariance can be shown by using a combination of the linearity of the
trace and expectation operators to show that

tr

(
EG

[(
x(k) −x∗−EG

[
x(k) −x∗

])(
x(k) −x∗−EG

[
x(k) −x∗

])T
])

= tr

(
EG

[(
x(k) −x∗

)(
x(k) −x∗

)T
]
−EG

[
x(k) −x∗

]
EG

[
x(k) −x∗

]T
)

= EG

[∥∥∥x(k) −x∗
∥∥∥

2
]
−

∥∥∥EG

[
x(k) −x∗

]∥∥∥
2 ≤ EG

[∥∥∥x(k) −x∗
∥∥∥

2
]

,

where in the final equality we have used the cyclic permutation property of the trace

operator. It follows that if EG

[∥∥x(k) −x∗
∥∥2

]
→ 0 then convergence is guaranteed in both

expectation and variance as desired.

To show that EG

[∥∥x(k) −x∗
∥∥2

]
→ 0, consider the sequence of expected norm terms

(
EG

[∥∥∥∥∥

[
γ(k+1)

K
γ(k+1)

R

]
−

[
γ∗

K
γ∗

R

]∥∥∥∥∥

2

θ̄

])

k∈N
, (7.26)

where the matrix θ̄ is given by

θ̄ =
[

EG
[
L̃ (k)

]
0

0 EG
[(

I−L̃ (k)
)]

]†

.

7

174 7. DISTRIBUTED CONSENSUS OVER TIME VARYING NETWORKS

Specifically, we show that the sequence in (7.26) is nondecreasing and as a by-product,

that EG

[∥∥x(k) −x∗
∥∥2

]
→ 0 as desired. Like in the time invariant case, the quadratic form

‖•‖θ̄ in (7.26) forms a valid metric for the given iterates as firstly all γK ∈ ran
(
EG

[
L̃ (k)

])

and secondly γR ∈ ran
(
EG

[
I−L̃ (k)

])
. The first property follows from a combination of

the definition of the update equations forγK in Algorithm 15, the fact that any realization
L̃ (k) º 0 (Lemma 7.4.3) and that for all realizations L̃ (k), the kernels ker

(
L̃ (k)

)
are the

same (Lemma 7.4.2). Due to its equivalence with a convex combination of realizations,
the matrix EG

[
L̃ (k)

]
therefore has the same range space as any single realization, which

ensures that γK ∈ ran
(
EG

[
L̃ (k)

])
as desired.

The second property follows from the following Lemma.

Lemma 7.6.1. For the set of variables
(
γ(k)

)
k∈N generated as per Algorithm 15

γ(k)
R ∈ ran

(
EG

[
I−L̃ (k)

]) ∀k ∈N.

Proof. From Lemma 7.4.3, the eigenvalues of any realization L̃ (k) are contained within
[0,1]. It follows that the eigenvalues of the matrix I − L̃ (k) are also contained within
this range. Therefore, as a convex combination of positive semidefinite matrices, the
matrix EG

[
I−L̃ (k)

]
has a range space either equal to or larger than any one realiza-

tion L̃ (k). To demonstrate this fact, consider the following scenario. Assume that for
all possible realizations of L̃ (k) there exists a shared vector v so that L̃ (k)v = v for all
such realizations. In this case, it follows that EG

[
I−L̃ (k)

]
would be rank deficient. How-

ever, from the update equations of γR in Algorithm 15, it follows that all γR ⊥ v and
thus γR ∈ ran

(
EG

[
I−L̃ (k)

])
. If such a v does not exist then EG

[
I−L̃ (k)

] Â 0 and thus
γR ∈ ran

(
EG

[
I−L̃ (k)

])=RMV by definition.

With these properties under our belt we are now ready to address the convergence of
the sequence (7.26). To achieve this, we can use conditional expectation to rewrite the
elements of the sequence as

EG

[∥∥∥∥∥

[
γ(k+1)

K
γ(k+1)

R

]
−

[
γ∗

K
γ∗

R

]∥∥∥∥∥

2

θ̄

]
= ∑

γ

(k)
K

γ(k)
R

∈Γ(k)

prob

([
γ(k)

K
γ(k)

R

])
EG

[∥∥∥∥∥

[
γ(k+1)

K
γ(k+1)

R

]
−

[
γ∗

K
γ∗

R

]∥∥∥∥∥

2

θ̄

∣∣∣∣

[
γ(k)

K
γ(k)

R

]]
,

(7.27)
where Γ(k) denotes the set of all possible γ vectors for the kth iteration. We can there-
fore approach the task of analysis of (7.26) by firstly considering each of the conditional
expected norm terms

EG

[∥∥∥∥∥

[
γ(k+1)

K
γ(k+1)

R

]
−

[
γ∗

K
γ∗

R

]∥∥∥∥∥

2

θ̄

∣∣∣∣

[
γ(k)

K
γ(k)

R

]]
∀

[
γ(k)

K
γ(k)

R

]
∈Γ.

7.6. DISTRIBUTED TIME VARYING CONSENSUS

7

175

Specifically, by using the inequality given in (7.20) it follows that

EG

[∥∥∥∥∥

[
γ(k+1)

K
γ(k+1)

R

]
−

[
γ∗

K
γ∗

R

]∥∥∥∥∥

2

θ̄

∣∣∣∣

[
γ(k)

K
γ(k)

R

]]
= 1

2
EG

[∥∥∥∥∥

[
γ(k)

K
γ(k)

R

]
−

[
γ∗

K
γ∗

R

]
−2ρ

[
L̃ (k)

I−L̃ (k)

](
x(k+1)−x∗

)∥∥∥∥∥

2

θ̄

∣∣∣∣

[
γ(k)

K
γ(k)

R

]]

+1

2

∥∥∥∥∥

[
γ(k)

K
γ(k)

R

]
−

[
γ∗

K
γ∗

R

]∥∥∥∥∥

2

θ̄

− 1

4
EG

[∥∥∥∥
[

0
2γ(k)

R

]
−

[
0

2γ∗
R

]
−2ρ

[
L̃ (k)

I−L̃ (k)

](
x(k+1) −x∗

)∥∥∥∥
2

θ̄

∣∣∣∣

[
γ(k)

K
γ(k)

R

]]
.

Therefore, if the inequality

∥∥∥∥∥

[
γ(k)

K
γ(k)

R

]
−

[
γ∗

K
γ∗

R

]∥∥∥∥∥

2

θ̄

≥ EG

[∥∥∥∥∥

[
γ(k)

K
γ(k)

R

]
−

[
γ∗

K
γ∗

R

]
−2ρ

[
L̃ (k)

I−L̃ (k)

](
x(k+1) −x∗

)∥∥∥∥∥

2

θ̄

∣∣∣∣

[
γ(k)

K
γ(k)

R

]]
,

(7.28)
holds for all γ(k) ∈ Γ(k) then each conditional expected norm term will satisfy the in-
equality

EG

[∥∥∥∥∥

[
γ(k+1)

K
γ(k+1)

R

]
−

[
γ∗

K
γ∗

R

]∥∥∥∥∥

2

θ̄

∣∣∣∣

[
γ(k)

K
γ(k)

R

]]
≤

∥∥∥∥∥

[
γ(k)

K
γ(k)

R

]
−

[
γ∗

K
γ∗

R

]∥∥∥∥∥

2

θ̄

,

and thus that, for any given k ∈N,

EG

[∥∥∥∥∥

[
γ(k+1)

K
γ(k+1)

R

]
−

[
γ∗

K
γ∗

R

]∥∥∥∥∥

2

θ̄

]
≤ EG

[∥∥∥∥∥

[
γ(k)

K
γ(k)

R

]
−

[
γ∗

K
γ∗

R

]∥∥∥∥∥

2

θ̄

]
.

To show that (7.28) holds for each conditional expected norm, we will again follow the
procedure adopted in the time invariant case by noting that

EG

[∥∥∥∥∥

[
γ(k)

K
γ(k)

R

]
−

[
γ∗

K
γ∗

R

]
−2ρ

[
L̃ (k)

I−L̃ (k)

](
x(k+1) −x∗

)∥∥∥∥∥

2

θ̄

∣∣∣∣

[
γ(k)

K
γ(k)

R

]]
=

∥∥∥∥∥

[
γ(k)

K
γ(k)

R

]
−

[
γ∗

K
γ∗

R

]∥∥∥∥∥

2

θ̄

+4EG

[∥∥∥∥ρ
[

L̃ (k)

I−L̃ (k)

](
x(k+1) −x∗

)∥∥∥∥
2

θ̃

−
〈[

γ(k)
K

γ(k)
R

]
−

[
γ∗

K
γ∗

R

]
,ρ

[
L̃ (k)

I−L̃ (k)

](
x(k+1) −x∗

)〉

θ̃

∣∣∣∣

[
γ(k)

K
γ(k)

R

]]
.

It follows that a sufficient condition for (7.28) to hold is if

EG

[∥∥∥∥ρ
[

L̃ (k)

I−L̃ (k)

](
x(k+1) −x∗

)∥∥∥∥
2

θ̃

∣∣∣∣

[
γ(k)

K
γ(k)

R

]]

≤ EG

[〈[
γ(k)

K
γ(k)

R

]
−

[
γ∗

K
γ∗

R

]
,ρ

[
L̃ (k)

I−L̃ (k)

](
x(k+1) −x∗

)〉

θ̃

∣∣∣∣

[
γ(k)

K
γ(k)

R

]]

=
〈[

I
I

]T
[
γ(k)

K
γ(k)

R

]
−

[
γ∗

K
γ∗

R

]
,ρ

(
x(k+1) −x∗

)〉
.

(7.29)

Note that the lack of expectation in the final equality stems from the fact that for a given
realization of γk , the primal x updates are deterministic (see Algorithm 15).

7

176 7. DISTRIBUTED CONSENSUS OVER TIME VARYING NETWORKS

To show that (7.29) holds for our considered functional class, we make use of the
inequality.

EG

[∥∥∥∥
[

L̃ (k)

I−L̃ (k)

](
x(k+1) −x∗

)∥∥∥∥
2

θ̃

∣∣∣∣

[
γ(k)

K
γ(k)

R

]]
≤β

∥∥∥x(k+1) −x∗
∥∥∥

2
,

where β corresponds to the largest eigenvalue of EG

[[
L̃

I−L̃

]T

θ̄

[
L̃

I−L̃

]]
so that

β=λmax

(
EG

[[
L̃

I−L̃

]T

θ̄

[
L̃

I−L̃

]])
. (7.30)

The following Lemma establishes the range of β.

Lemma 7.6.2. For a given set of unique positive semidefinite matrices {Ai | I º Ai º 0, i = 1, . . . , I }
and positive definite scalars {θi | 1 > θi > 0, i = 1, . . . , I } where

∑
i
θi = 1,

λmax

I∑

i=1
θi

[
Ai

I−Ai

]T

(
I∑

i=1
θi Ai

)†

0

0
(

I∑
i=1
θi (I−Ai)

)†

[
Ai

I−Ai

]

> 1.

The proof this Lemma can be found in Appendix 7.F. In the case that the set of matrices
correspond to the possible graph Laplacians L̃ and the scalars θi correspond to their
associated probabilities, this ensures that β > 1. Using this fact, by imposing that ρ ≤
µ
β−1 , it follows that

EG

[∥∥∥∥ρ
[

L̃ (k)

I−L̃ (k)

](
x(k+1) −x∗

)∥∥∥∥
2

θ̃

∣∣∣∣

[
γ(k)

K
γ(k)

R

]]
= ρ2EG

[∥∥∥∥
[

L̃ (k)

I−L̃ (k)

](
x(k+1) −x∗

)∥∥∥∥
2

θ̃

∣∣∣∣

[
γ(k)

K
γ(k)

R

]]

≤βρ2
∥∥∥x(k+1) −x∗

∥∥∥
2 ≤ ρ(ρ+µ)

∥∥∥x(k+1) −x∗
∥∥∥

2 ≤
〈[

I
I

]T
([
γ(k)

K
γ(k)

R

]
−

[
γ∗

K
γ∗

R

])
,ρ

(
x(k+1) −x∗

)〉
,

where the final inequality stems from the definition of the primal update equations and
the (µ+ρ)-strong convexity of f (•)+ ρ

2 ‖•‖2 which verifies that (7.29) holds. The condi-
tional norm therefore satisfies the inequality

EG

[∥∥∥∥∥

[
γ(k+1)

K
γ(k+1)

R

]
−

[
γ∗

K
γ∗

R

]∥∥∥∥∥

2

θ̄

∣∣∣∣

[
γ(k)

K
γ(k)

R

]]
≤

∥∥∥∥∥

[
γ(k)

K
γ(k)

R

]
−

[
γ∗

K
γ∗

R

]∥∥∥∥∥

2

θ̄

− 1

4
EG

[∥∥∥∥
[

0
2γ(k)

R

]
−

[
0

2γ∗
R

]
−2ρ

[
L̃ (k)

I−L̃ (k)

](
x(k+1) −x∗

)∥∥∥∥
2

θ̄

∣∣∣∣

[
γ(k)

K
γ(k)

R

]]
.

7.7. SIMULATIONS

7

177

Substituting back into the original quadratic form in (7.27) we find that

EG

[∥∥∥∥∥

[
γ(k+1)

K
γ(k+1)

R

]
−

[
γ∗

K
γ∗

R

]∥∥∥∥∥

2

θ̄

]
≤ EG

[∥∥∥∥∥

[
γ(k)

K
γ(k)

R

]
−

[
γ∗

K
γ∗

R

]∥∥∥∥∥

2

θ̄

]

−EG

[∥∥∥∥
[

0
γ(k)

R

]
−

[
0
γ∗

R

]
−ρ

[
L̃ (k)

I−L̃ (k)

](
x(k+1) −x∗

)∥∥∥∥
2

θ̄

]
,

where we have simplified the inequality by using the definition of expectation operation.
From this we can immediately note that

EG

[∥∥∥∥
[

0
γ(k)

R

]
−

[
0
γ∗

R

]
−ρ

[
L̃ (k)

I−L̃ (k)

](
x(k+1) −x∗

)∥∥∥∥
2

θ̄

]
→ 0,

which, like in Section 7.5, ensures convergence to a primal optimal fixed point. Due
to the strong convexity assumption of f , this fixed point is unique which guarantees

that EG

[∥∥x(k) −x∗
∥∥2

]
→ 0 as desired and thus that the primal variables converge in both

expectation and variance.

Remark 4. It is important to highlight that the proof presented in this section does not ex-
plicitly rely on the choice of using a half averaged version of TVDC. In fact we only require
that the algorithm be averaged for this proof to hold for the proposed functional class.
The reason for restricting ourselves to the half averaged case is the empirical observation
that this choice is also sufficient for convergence of more general functional classes as well.
This point is demonstrated in the following section where we also show how, in practice,
for strongly convex functions, larger step sizes can be used without causing algorithm di-
vergence. For this reason, by restricting the averaging parameter to a factor of a half we
postulate that the TVDC algorithm can be used for more general classes of functions and
perhaps time varying network models as well, although no such proof exists for this at this
time.

7.7. SIMULATIONS
We now demonstrate the performance of this algorithm in solving two simple consensus
problems. The first is the classic distributed averaging problem which satisfies the strong
monotonicity assumptions for convergence while the second is a L1 version of the same
problem. Interestingly, despite the fact that the second problem does not exhibit strong
convexity, we can demonstrate convergence for a wide range of tested step sizes which
alludes to the fact that a more general convergence proof may exist.

7.7.1. DISTRIBUTED AVERAGING
Consider the distributed averaging problem given by

min
x∈RN

∑

i∈V

1

2
‖xi −ai‖2 s.t. xi −x j = 0 ∀(i , j) ∈ E ,

where ai are local observation vectors at each node and, by inspection, x∗i = 1
N

∑
j∈V

a j ∀i ∈
V . Note that f is 1-strongly convex in this case such that we can select any ρ ∈ (0, 1

β−1],

7

178 7. DISTRIBUTED CONSENSUS OVER TIME VARYING NETWORKS

where in this caseβ= 1.27 as defined in (7.30) while still guaranteeing convergence. Such
a problem is therefore a perfect candidate for testing the proposed TVDC algorithm.

For these simulations, we considered a 100 node network where each local variable
was a single scalar given by xi ∈ R. Furthermore, each node was equipped with a local
observation ai ∈ R. Echoing our approach in previous chapters, the realizations of the
time varying networks for each iteration were generated via an Erdős-Rényi model with

a connection probability of log(N)
N . The resulting networks were verified as forming a

single connected network, as per our initial assumptions. The convergence curves for
the resulting simulations are presented in Figure 7.2 where the final accuracy stems from
the physical hardware utilized. Due to the uniqueness of the optimal primal variables x∗,
in this instance we use the quadratic form ‖x−x∗‖2 as a measure of convergence.

0 100 200 300 400 500

10
-30

10
-20

10
-10

10
0

 = 0.5

 = 1

 = 2

 = 4

 = 8

Figure 7.2: The primal objective gap of TVDC in solving the distributed averaging problem in a 100 node net-
work for a range of step sizes.

It is interesting to note that despite the fact that f is only 1-strongly convex, we can
use much larger step sizes than ρ = 1

β−1 , which is ≈ 3.7 in this case, while still achieving
convergence. Furthermore, we note that if the strong convexity parameter is not known
exactly, choosing a smaller step size to ensure that the conditions of the convergence
proof are met can result in a degradation in convergence rate.

7.7.2. DISTRIBUTED L1 CONSENSUS

In the distributed averaging case, we observed that larger step sizes than those sug-
gested by the convergence proof still resulted in algorithmic convergence. Motivated
by this point, in the following simulation we demonstrate a simple L1 problem exam-
ple for which the proposed TVDC algorithm converges despite the fact that the problem
exhibits no strong convexity. The aforementioned problem is a simple variant of the dis-
tributed averaging problem with the quadratic form replaced with an L1 norm term. The
resulting problem is given by

min
x∈RN

∑

i∈V
‖xi −ai‖1 s.t. xi −x j = 0 ∀(i , j) ∈ E

7.8. CONCLUSION

7

179

As in the previous subsection, we considered solving this problem for the case of a
100 node network where each node was equipped with a single observation and local
scalar variable. We additionally adopted the same Erdős-Rényi model for the network
realizations at each iteration and ensured that at each iteration the network formed a
single connected component. The convergence curves for the resulting simulations are
presented in Figure 7.3. Unlike the previous instance, as here the primal minimizers
need not be unique, we instead demonstrate convergence of the primal objective func-
tion to its optimal configuration.

0 100 200 300 400 500

10
-30

10
-20

10
-10

10
0

 = 2

 = 4

 = 6

 = 8

 = 10

Figure 7.3: The primal objective gap of TVDC in solving an L1 distributed consensus problem in a 100 node
network for a range of step sizes.

As in the case of its strongly convex predecessor, the L1 consensus problem poses
no problem for the TVDC algorithm in this instance. While the convergence rate of the
variables is still dependent on the step size selected, the algorithm converges for all ρ
considered. Combined with the observation that larger step sizes could be used in the
case of the distributed averaging problem, this result suggests that there may exist a more
general convergence proof for the TVDC algorithm which allows it to be used for the
more general case of CCP type objective functions. Contrasting with existing approaches
in the literature which typically rely on strict assumptions of the function class, such a
general purpose solver for time varying networks would be highly appealing.

7.8. CONCLUSION
In this chapter we have introduced a new algorithm for distributed consensus in time-
varying networks. Based on a combination of averaged Peaceman-Rachford splitting
and a particular network dependent change of variables, the proposed time varying dis-
tributed consensus (TVDC) algorithm was shown to have guaranteed convergence, a
point which was demonstrated for two simple example consensus problems. Further-
more, TVDC was shown to exhibit a node based form with the algorithm itself being
a combination of local optimization problems at each node and a particular weighted
Laplacian mixing stage. This type of structure reflects similar efforts within the literature
while having the distinct benefit of being derived from monotone operator theory. We

7

180 7. DISTRIBUTED CONSENSUS OVER TIME VARYING NETWORKS

demonstrated how the node based structure of TVDC to be used to solve any strongly
convex problems including those which are non-differentiable while retaining the same
convergence guarantees. The convergence of standard closed, convex and proper prob-
lems was also considered and demonstrated empirically for a distributed L1 example.
Ultimately, the proposed method provides an efficient approach for solving distributed
consensus problems in time varying networks.

APPENDICES

7.A. PROOF OF LEMMA 7.3.1
As RT1,ρ = 2JT1,ρ − I, we begin by defining a method for computing the update

λ̃= JT1,ρ (z) .

Firstly, by the definition of the resolvent of an operator,

λ̃= (
I+ρT1

)−1
(z) ⇐⇒ z ∈ (

I+ρT1
)(
λ̃

) ⇐⇒ λ̃ ∈ z−ρT1
(
λ̃

)
.

From the definition of the operator T1, it follows that

λ̃ ∈ z−ρ (
ΦC∂ f ∗ (

CTΦλ̃
))

.

Let x ∈ ∂ f ∗ (
CTΦλ̃

)
. For f ∈ Γ0, it follows that x ∈ ∂ f ∗ (

CTΦλ̃
) ⇐⇒ ∂ f (x) 3 CTΦλ̃ so

that

λ̃= z−ρΦCx, CTΦλ̃ ∈ ∂ f (x) . (7.31)

Thus, x can be computed as

0 ∈ ∂ f (x)−CTΦ
(
z−ρΦCx

)
,

or equivalently as

x =argmin
x

(
f (x)−〈

CTΦz,x
〉+ ρ

2
||ΦCx||2

)
. (7.32)

Combining (7.31) and (7.32) with the fact that y = (
2JT1,ρ − I

)
(z) = 2λ̃− z completes the

proof.

�

7.B. PROOF OF LEMMA 7.3.2
As in the proof Lemma 7.3.1 (see Appendix 7.A), we begin by utilising the definition of
the reflected resolvent where RT2,ρ = 2JT2,ρ − I. We therefore shift our attention to the
computation of JT2,ρ .

The resolvent of a normal cone operator can be computed via

JT2,ρ
(
y
)=argmin

u

(
ιker((I+P)Φ)(u)+ 1

2ρ
‖u−y‖2

)
= arg min

Φu+PΦu=0

(‖u−y‖2) .

181

7

182 7. DISTRIBUTED CONSENSUS OVER TIME VARYING NETWORKS

By inspection, the solution of this problem is given by the projection onto the set of
feasible u vectors. As such,

JT2,ρ
(
y
)= Π

ker((I+P)Φ)
y =K y.

It follows that the reflected resolvent can be computed as

RT2,ρ
(
y
)=

(
2 Π

ker((I+P)Φ)
− I

)
y = (K −R)y,

completing the proof.

�

7.C. PROOF OF LEMMA 7.4.1
To derive the compact form of L̃ = CTΦK ΦC, we will firstly consider the matrix

B =ΦK Φ=ΦΦ−ΦRΦ.

Expanding the definition of R, it follows that

B =Φ Π
ker((I+P)Φ)

Φ=

ΦΦ−ΦΦ (I+P) ((I+P)ΦΦ (I+P))† (I+P)ΦΦ.

Given the diagonal nature ofΦ, it follows that B is symmetrically permutable to a block
diagonal form with each block having a size of just two by two. Each such block corre-
sponds to an edge (i , j) and is given by

Bi , j =
[

1
|N (i)| 0

0 1
|N (j)|

]
−

[
1

|N (i)| 0

0 1
|N (j)|

][
1 1
1 1

]([
1 1
1 1

][
1

|N (i)| 0

0 1
|N (j)|

][
1 1
1 1

])† [
1 1
1 1

][
1

|N (i)| 0

0 1
|N (j)|

]
.

With some manipulation, this can be rewritten as

Bi , j =
[

1
|N (i)| 0

0 1
|N (j)|

]
−

[
1

|N (i)| 0

0 1
|N (j)|

][
1 1
1 1

][
1

|N (i)| 0

0 1
|N (j)|

]

1
|N (i)| + 1

|N (j)|

=

[
1+ |N (j)|

|N (i)| 0

0 1+ |N (i)|
|N (j)|

]

|N (i)|+ |N (j)| −

[|N (j)|
|N (i)| 1

1 |N (i)|
|N (j)|

]

|N (i)|+ |N (j)| =

[
1 −1
−1 1

]

|N (i)|+ |N (j)|
As the matrix C simply causes a summation of edge based terms at each node, it follows
that L̃ = CT BC = L̂ ⊗ IM where ⊗ denotes the Kronecker product and the matrix L̂ ∈
RN×N is given by

[
L̂

]
i , j =

−1
|N (i)|+|N (j)| if (i , j) ∈ E

∑
j∈N (i)

1
|N (i)|+|N (j)| if i = j

0 otherwise

.

7.D. PROOF OF LEMMA 7.4.2

7

183

The matrix L̂ = D̂− Ŵ can be thought of as a weighted graph Laplacian with weighted
adjacency matrix Ŵ and weighted degree matrix D̂ = diag

(
Ŵ1N

)
. This matrix describes

a process of weighted data combination at each node in the network.
Furthermore, we can note that Ŵ can be computed as

Ŵ = W® (
W1N 1T

N +1N 1T
N W

)
,

where ® denotes the element-wise division of a matrix. Using this information, we can
define the matrix L̃ so that

L̃ = W̃− D̃ = L̂ ⊗ IM ,

which is also a weighted graph Laplacian with

W̃ = Ŵ⊗ IM , D̃ = diag
(
W̃1N M

)= diag
(
Ŵ1N

)⊗ IM .

This completes the proof.

�

7.D. PROOF OF LEMMA 7.4.2
Firstly, note that due to the particular structure of L̃ = L̂ ⊗ IM , that its eigenvalue de-
composition L̃ = ŨΛ̃ŨT can be equivalently written as based on the eigenvalue decom-
position L̂ = ÛΛ̂ÛT . Specifically, it can be shown that

L̃ = L̂ ⊗ IM = (
ÛΛ̂ÛT)⊗ IM = (

Û⊗ IM
)(
Λ̂⊗ IM

)(
ÛT ⊗ IM

)= ŨΛ̃ŨT , (7.33)

where in the third equality we have twice used the mixed product property of Kronecker
products. By defining the kernel of L̂ we can therefore derive that of L̃ . Considering
this point, for 0 to be an eigenvalue of L̂ , the corresponding eigenvector x must satisfy
the equality

xT L̂ x = xT (
D̂−Ŵ

)
x = 0.

By rewriting the left hand term and using the definitions of D̂ and Ŵ, it follows that

∑

i∈V

∑

j∈V
xi [Ŵ]i , j (xi −x j) = ∑

i∈V

∑

j∈V

xi (xi −x j)

|N (i)|+ |N (j)| = 0. (7.34)

Using the symmetry of Ŵ, (7.34) can be equivalently written as

∑

(i , j)∈E

(xi −x j)2

|N (i)|+ |N (j)| = 0.

As |N (i)| ≥ 1 for all i , it follows that xi = x j ∀(i , j) ∈ E . As our networks are assumed
connected, it follows that xi = 1p

N
∀i ∈ V which is a single unique vector. As such Û =

1p
N

1N . Combined with the definitions of Ũ and Λ̃ in (7.33) completes the proof.

�

7

184 7. DISTRIBUTED CONSENSUS OVER TIME VARYING NETWORKS

7.E. PROOF OF LEMMA 7.4.3
As in the case of the proof of Lemma 7.4.2 in Appendix 7.D, we can use the relationship
between the eigenvalue decompositions of L̃ and L̂ to complete this proof. Specifically,
by bounding the spectra of L̂ , using (7.33), we can equivalently bound that of L̃ in turn.
With this point in mind, we begin by first noting that L̂ is diagonally dominant and
thus is positive semidefinite such that its eigenvalues are lower bounded by 0. The same
therefore holds for L̃ .

To upper bound the eigenvalues of L̂ to be less than 1 we can equivalently show that
its Rayleigh quotient satisfies

xT L̂ x

xT x
≤ 1 ∀x. (7.35)

By rearranging the Rayleigh quotient inequality above, it follows that we can equivalently
show that

xT L̂ x−xT x ≤ 0 ∀x. (7.36)

To demonstrate this point, firstly note that we can rewrite the left hand term of (7.36) as

xT L̂ x = xT (
D̃−W̃

)
x = ∑

i∈V
xi

(
∑

j∈N (i)

[
W̃

]T
i 1xi −

[
W̃

]
i , j x j

)

= ∑

i∈V

∑

j∈N (i)

x2
i −xi x j

|N (i)|+ |N (j)| =
∑

(i , j)∈E

(
xi −x j

)2

|N (i)|+ |N (j)| .

(7.37)

It follows that (7.37) can be equivalently written as

xT L̂ x−xT x = ∑

(i , j)∈E

(
xi −x j

)2

|N (i)|+ |N (j)| −
∑

i∈V
x2

i

= ∑

(i , j)∈E

((
xi −x j

)2

|N (i)|+ |N (j)| −
x2

i

|N (i)| −
x2

j

|N (j)|

)

= ∑

(i , j)∈E

−|N (j)|2x2
i −2|N (i)||N (j)|xi x j −|N (i)|2x2

j

|N (i)|(|N (i)|+ |N (j)|) |N (j)|

= ∑

(i , j)∈E

−(|N (j)|xi +|N (i)|x j
)2

|N (i)|(|N (i)|+ |N (j)|) |N (j)| ≤ 0.

It follows that (7.35) holds and thus that the eigenvalues of L̂ are contained within the
set [0,1].

We can also note from (7.35) that for 1 to be an eigenvalue of L̂ , then
|N (j)|xi = −|N (i)|x j ∀(i , j) ∈ E . This can only be true if the underlying network is bi-
partite, i.e., that V can be partitioned into two disjoint sets V1 and V2 so that ∀(i , j) ∈
E , i ∈V1, j ∈V2. Any other network topology cannot satisfy this point and thus the upper
bound must hold with strict inequality for all but bipartite graphs.

�

7.F. PROOF OF LEMMA 7.6.2

7

185

7.F. PROOF OF LEMMA 7.6.2
Given set of unique positive semidefinite matrices {Ai | I º Ai º 0, i = 1, . . . , I } and posi-

tive definite scalars {θi | 1 > θi > 0, i = 1, . . . , I } where
I∑

i=1
θi = 1, to prove that

λmax

I∑

i=1
θi

[
Ai

I−Ai

]T

(
I∑

i=1
θi Ai

)†

0

0
(

I∑
i=1
θi (I−Ai)

)†

[
Ai

I−Ai

]

> 1,

we shall demonstrate that the matrix

I∑

i=1
θi

[
Ai

I−Ai

]T

(
I∑

i=1
θi Ai

)†

0

0
(

I∑
i=1
θi (I−Ai)

)†

[
Ai

I−Ai

]
, (7.38)

is equivalent to an identity matrix plus a summation of positive semidefinite matrices.

To do so, we define the additional matrix C =
I∑

i=1
θi Ai . As a convex combination of Ai ’s, C

also satisfies the matrix inequality I º C º 0 such that I º I−C º 0. Using this notation,
we begin by noting that the matrix in (7.38) can be equivalently written as

I∑

i=1
θi

(
Ai C†Ai + (I−Ai) (I−C)† (I−Ai)

)
. (7.39)

By expanding right hand term, (7.39) can be equivalently written as

I∑

i=1
θi

(
Ai

(
C† + (I−C)†

)
Ai −Ai (I−C)† − (I−C)† Ai + (I−C)†

)
, (7.40)

which, using the definition of C, can be more compactly be written as

I∑

i=1
θi Ai

(
C† + (I−C)†

)
Ai + (I−C) (I−C)† + (I−C)† (I−C)− (I−C)† .

We can then define a family of equivalent matrices, one for each index i , by adding zero

in the form of (1−1)
I∑

j=1, j 6=i

(
A j

(
C† + (I−C)†

)
Ai

)
, so that (7.40) is equivalent to

(
CC† +C (I−C)†

)
Ai −

∑

j=1, j 6=i
θ j A j

(
C† + (I−C)†

)(
Ai −A j

)

+ (I−C) (I−C)† + (I−C)† (I−C)− (I−C)† .

(7.41)

Taking convex combinations of (7.41) for all i where each matrix is weighted by its cor-
responding θi it follows that (7.40) can be rewritten as

CC†C+C (I−C)† C+ (I−C) (I−C)† + (I−C)† (I−C)− (I−C)†

+
I∑

i=1

I∑

j=1

θiθ j

2

(
Ai −A j

)(
(I−C)† +C†

)(
Ai −A j

)
.

(7.42)

7

186 7. DISTRIBUTED CONSENSUS OVER TIME VARYING NETWORKS

By then noting that (I−C) (I−C)† (I−C) = C (I−C)† C+ (I−C) (I−C)† + (I−C)† (I−C)−
(I−C) and using the fact that CC†C = C and (I−C) (I−C)† (I−C) = (I−C), it follows that
we can compactly write (7.42) as

I+
I∑

i=1

I∑

j=1

θiθ j

2

(
Ai −A j

)(
(I−C)† +C†

)(
Ai −A j

)
. (7.43)

As (7.43) is the sum of an identity matrix and a sum of positive definite quadratic forms,
it follows that the largest eigenvalue of (7.39) must be strictly larger than one, completing
the proof.

�

IV
PRACTICAL DISTRIBUTED CONVEX

OPTIMIZATION

187

8
ROBUST DISTRIBUTED LINEARLY

CONSTRAINED BEAMFORMING

Andreas I. Koutrouvelis, Thomas Sherson, Richard
Heusdens and Richard C. Hendriks

“Theory without practice is empty. Practice without theory is blind.”

Immanuel Kant

This chapter is based on the article published as “A Low-Cost Robust Distributed Linearly Constrained Beam-
former for Wireless Acoustic Sensor Networks with Arbitrary Topology” by A.I. Koutrouvelis, T.W Sherson, R
Heusdens and R.C. Hendriks in IEEE/ACM Transactions on Audio Speech and Language Processing, vol 26,
no 8, pp 1434-1448, Jan 2018. Andreas I. Koutrouvelis had a significant contribution to Sections 8.3, 8.4, 8.5.1,
8.5.2 and 8.6.

189

8

190 8. ROBUST DISTRIBUTED LINEARLY CONSTRAINED BEAMFORMING

In this chapter we present a practical application of a selection of the distributed opti-
mization techniques presented in this thesis in the context of audio signal processing.
We propose a new robust distributed linearly constrained beamformer which utilizes a
set of linear equality constraints to reduce the cross power spectral density matrix to a
block-diagonal form. The proposed beamformer has a convenient objective function for
use in arbitrary distributed network topologies while having identical performance to a
centralized implementation. Moreover, the new optimization problem is robust to rela-
tive acoustic transfer function (RATF) estimation errors and to target activity detection
(TAD) errors. Two variants of the proposed beamformer are presented and evaluated in
the context of multi-microphone speech enhancement in a wireless acoustic sensor net-
work, and are compared with other state-of-the-art distributed beamformers in terms of
communication costs and robustness to RATF estimation errors and TAD errors.

8.1. INTRODUCTION
Beamforming(see e.g., [126, 127, 128] for an overview) plays an important role in multi-
microphone speech enhancement [129, 130, 131, 132]. The aim of a beamformer is
the joint suppression of interfering noise and the preservation of an unknown target
signal. The increasing usage of wireless portable devices equipped with microphones
and limited power supplies, makes the notion of distributed beamforming in wireless
acoustic sensor networks (WASNs) attractive compared to traditional centralized im-
plementations [133]. The last decade, there are several proposed low-complexity dis-
tributed beamformers [134, 135, 136, 137, 138, 139, 140, 141, 142, 143] that mainly focus
on achieving a good trade-off between noise reduction and communication cost.

Both centralized and distributed beamformers typically require an estimate of the
cross-power spectral density matrix (CPSDM) of the noise/noisy measurements, and es-
timate(s) of the relative acoustic transfer function (RATF) vector(s) of the acoustic source(s)
present in the acoustic scene. Estimation errors in these quantities result in performance
degradation of beamformers. Much attention has therefore been given to the develop-
ment of centralized robust beamformers which minimize the effects of RATF estimation
errors (see e.g., [127, 128] for an overview). Developing robust distributed beamform-
ers is more challenging than developing robust centralized beamformers, as distributed
beamformers cannot afford high-complexity robust solutions. Therefore, it is desired
to find very low-complexity robust distributed beamformers that achieve good perfor-
mance trade-offs as described previously.

A low-complexity and easily manipulated family of beamformers are those that are
calculated through linearly constrained quadratic problems such as: the minimum power
distortionless responce (MPDR) beamformer [144] and its multiple constrained gener-
alization, the linearly constrained minimum power (LCMP) beamformer [145]. Both
beamformers minimize the total power of the noisy measurements while preserving the
target. Therefore, their performance highly depends on the estimation accuracy of the
RATF vector of the target source [127, 146, 128]. RATF estimation errors might result
in removal of the actual target source and preservation in the direction of the wrongly
estimated RATF vector.

Two straightforward, low-complexity, robust alternatives to MPDR and LCMP are the
minimum variance distortionless response (MVDR) beamformer [146] and the linearly

8.1. INTRODUCTION

8

191

constrained minimum variance (LCMV) beamformer [127], respectively. Both methods
minimize the output noise power instead of the total noisy power, and thus require an es-
timate of the noise-only CPSDM. The noise CPSDM is typically estimated using a target
activity detector (TAD) to identify target-free time-segments of audio. When the target
is speech, this typically takes the form of a voice activity detector (see e.g., [131] for an
overview). In [147], an alternative method was proposed to track the noise CPSDM also
in time regions where the target is present. This method, however, highly depends on
the estimation accuracy of the RATF vector of the target and its robustness to RATF esti-
mation errors has not been tested.

Another family of low-complexity, robust alternatives to MPDR and LCMP are their
diagonal loaded versions (see e.g., [148, 149, 150]). In both versions, the diagonal load-
ing parameter, which is added to the main diagonal of the CPSDM, trades-off robustness
against noise suppression. Specifically, by increasing the value of the diagonal loading
parameter, a higher robustness to RATF estimation errors and a lower noise suppression
is achieved. With diagonal loading, the use of a TAD is unnecessary. To the authors’
knowledge, there are no low-complexity distributed approaches for choosing the opti-
mal diagonal loading parameter. Additionally, a constant diagonal loading parameter
will not be optimal for all acoustical scenarios and all frequency bins.

From the above it becomes clear that in addition to robustness and low-cost dis-
tributed calculations, LCMV and LCMP beamformers have the additional challenge of
the RATF vector estimation of the target source and possibly the interferers. There are
several centralized methods for RATF vector estimation (see e.g., [132] for an overview),
however, there are yet no low-complexity distributed alternatives for arbitrary network
topologies. In several applications, such as teleconferencing, the sources do not change
their locations significantly over time and, therefore, one may estimate the RATF vec-
tors of the target and/or the interferers only during initialization using a centralized ap-
proach and then use these estimated RATF vectors in the distributed beamformer. The
slight positional errors that will most likely occur after this initial estimation require ro-
bust distributed beamformers. Note that in this paper, we mainly focus on this type of
applications, i.e., the sources that do not significantly change their locations with respect
to an initial reference location.

Notably, existing distributed beamformers can be classified based on how they ad-
dress the issue of forming CPSDMs in WASNs. In the first class, the CPSDMs are approxi-
mated to form distributed implementations [134, 135, 136, 137] leading to approximately
optimal performance. In the second class, the proposed beamformers obtain statistical
optimality but do so at the expense of restricting the topology of the underlying WASN
[138, 139, 140]. Statistically optimal beamformers which operate in unrestricted network
topologies are much less common. An early example of such a beamformer is provided
in [141], based on a maximum likelihood estimated LCMP beamformer. Unfortunately,
this approach suffers from scaling communication costs as the number of samples used
to construct the estimated CPSDM increases. In a similar vein, in [151], a distributed
beamformer based on the pseudo-coherence principle was proposed. Similar to [141],
the method in [151] can operate in cyclic networks. Furthermore, the authors demon-
strated how the algorithm could perform near optimally with only a finite number of
iterations, resulting in low transmission complexity. More recently, in [143] a topology

8

192 8. ROBUST DISTRIBUTED LINEARLY CONSTRAINED BEAMFORMING

independent distributed beamformer (i.e. able to operate in cyclic networks) was pro-
posed. Similar in its design to [139], this method requires very limited communication
between nodes while guaranteeing convergence to the optimal beamformer. However,
it was also demonstrated that the rate of this convergence was slow, requiring a large
number of iterations to achieve this point. In practice, with even slowly varying sound
fields such a rate of convergence may be detrimental to overall performance.

In this paper, we propose a new robust distributed linearly constrained beamformer,
addressing the aforementioned challenges. The optimization problem of the proposed
method nulls each interferer using a linear equality constraint, reducing the full-element
noise or noisy CPSDM to a block-diagonal form. In contrast to MVDR, MPDR, LCMV and
LCMP beamformers, the proposed objective function does not take into account corre-
lation between different nodes in the WASN. Additionally, such an objective function
is more convenient for distributed beamforming in WASNs of arbitrary topologies and
significantly reduces the communication costs therein.

We show under realistic conditions, i.e., when the algorithms use non-ideally esti-
mated RATF vectors and a non-ideal TAD, that the proposed method achieves a better
predicted intelligibility than the MVDR and LCMV. The proposed method is less sensi-
tive to RATF estimation errors, when TAD errors are not negligible, because of the block-
diagonal form of the CPSDM.

The remainder of the paper is organized as follows. Section 8.2 presents the signal
model. Section 8.3 reviews several methods of estimating the RATF vectors of the sources
and the noisy/noise CPSDMs. Section 8.4 reviews the centralized and distributed lin-
early constrained beamformers. Section 8.5 presents the centralized and distributed
versions of the proposed method. Section 8.6 shows the experimental results. Finally,
concluding remarks are drawn in Section 8.7.

8.2. SIGNAL MODEL
Consider an arbitrary undirected WASN of N nodes. Without loss of generality, we as-
sume that the underlying network (which is potentially cyclic) is connected. Denote by
V = {1, · · · , N } the set of node indices and by E the set of edges of the network whereby
(i , j) ∈ E ⇐⇒ i , j ∈V , i 6= j can communicate with one another. Each nodeκ is equipped
with Mκ microphones, where

∑
κ∈V Mκ = M , thus forming an M-element microphone

array. One of the M microphones is selected as the reference microphone for the beam-
forming purpose. The distributed beamformers presented in this paper are formulated
in the short-time Fourier transform (STFT) domain on a frame-by-frame basis. The noisy
DFT coefficient of the j -th (j = 1, · · · , M) microphone of the k-th frequency bin of the β-
th frame is given by

y j (k,β) = a j (k,β)s(k,β)
︸ ︷︷ ︸

x j (k,β)

+
r∑

i=1
bi j (k,β)vi (k,β)
︸ ︷︷ ︸

ni j (k,β)

+u j (k,β) (8.1)

with s(k,β) and vi (k,β) the target source and the i -th interferer at the reference mi-
crophone, a j (k,β) and bi j (k,β) the RATF vectors elements of each with respect to the
j -th microphone, and x j (k,β), ni j (k,β) and u j (k,β) the target source, the i -th inter-
ferer and ambient noise at the j -th microphone. Note that the reference microphone

8.3. ESTIMATION OF SIGNAL MODEL PARAMETERS

8

193

element of the RATF vectors is always equal to 1. Moreover, in the case of reverberant
environments, the RATF vectors may also include a component due to early reverbera-
tion [152, 153]. Late reverberation and microphone self-noise are typically included in
the ambient noise component. Note that even the late reverberation of the target has to
be assigned to the ambient noise component because it reduces intelligibility [154, 155].
Thus, it should be reduced via the use of the beamformer. However, the early reflec-
tions (typically the first 50 ms [155]) are desired to be maintained because they typically
contribute to intelligibility [154, 155]. Therefore, the ambient noise component is given
by

u j (k,β) = l s
j (k,β)+

r∑

i=1
l vi

j (k,β)+ c j (k,β),

where l s
j (k,β) is the late reverberation component due to the target, l vi

j (k,β) is the late

reverberation component due to the i -th interferer, and c j (k,β) is the microphone self-
noise.

In the sequel, we neglect the frame and frequency indices for the sake of brevity.
Stacking all variables into vectors, Eq. (8.1) can be rewritten as

y = x+
r∑

i=1
ni +u

︸ ︷︷ ︸
n

∈CM×1.

The CPSDM of y is given by Py = E[yyH], where E[·] denotes statistical expectation. As-
suming all sources are mutually uncorrelated, we have

Py = Px +
r∑

i=1
Pni +Pu

︸ ︷︷ ︸
Pn

∈CM×M , (8.2)

where Px = E[xxH] = ps aaH and Pni = E[ni nH
i] = pvi bi bH

i are the CPSDMs of the target
source and the i -th interferer at the microphones, respectively. Note that ps and pvi are
the power spectral densities of the target and the i -th interferer, respectively. Finally, the
CPSDM of the ambient noise component, Pu, is given by

Pu = E[uuH] = Pls +
r∑

i=1
Plui

︸ ︷︷ ︸
Pl

+Pc ∈CM×M ,

where Pl denotes the CPSDM of the late reverberation, and Pc the CPSDM of the micro-
phone self-noise.

8.3. ESTIMATION OF SIGNAL MODEL PARAMETERS
The CPSDMs and the RATF vectors of the sources are unknown and have to be estimated
in order to be available to the beamformers discussed in the sequel. In Sections 8.3.1
and 8.3.2, we review some existing methods for RATF vector and CPSDM estimation,
respectively.

8

194 8. ROBUST DISTRIBUTED LINEARLY CONSTRAINED BEAMFORMING

8.3.1. ESTIMATION OF RATF VECTORS
In practical applications, the true RATF vectors are reverberant due to room acoustics [153,
156, 157]. Several centralized methods have been proposed to estimate these RATF vec-
tors (see e.g., [132] for an overview). In [153], the RATF vector of the target source is
estimated by exploiting the assumption that the noise field is stationary. However, when
the interferers are non-stationary, this can result in significant degradation in perfor-
mance [156]. In [157] the subspaces of the target and interferers are estimated using a
generalized eigenvalue decomposition (GEVD) combined with a TAD. While distributed
methods have been proposed in the literature for performing GEVD-based subspace es-
timation in restricted network topologies (i.e., fully connected) [158], to our best knowl-
edge, there are currently no distributed versions of the GEVD that operate in general
cyclic networks.

In this work, we assume that estimates of the RATF vectors, â and b̂i , for i = 1, · · · ,r ,
are available at the initialization phase. In situations where the sources do not change
their locations significantly with respect to an initial position, such as teleconferencing,
the RATF vectors can be estimated (e.g., in a centralized way) during such an initializa-
tion. This will result in RATF estimation errors if the sources make some slight move-
ments and, therefore, robust beamformers are required.

8.3.2. ESTIMATION OF CPSDMS

The LCMP and the MPDR beamformers depend on an estimate of the noisy CPSDM, P̂y.
Typically, this estimate is computed using the sample average, which is given by

P̂y = 1

|Ly |
∑

ly∈Ly

y(ly)yH (ly),

where Ly is the set of frames of the entire time horizon and |·| denotes the cardinality of a
set. The LCMV and the MVDR beamformers depend on an estimate of the noise CPSDM,
P̂n. The noise CPSDM is estimated using the set of noise-only frames denoted by Ln , i.e.,

P̂n = 1

|Ln |
∑

ln∈Ln

y(ln)yH (ln),

where |Ln | < |Ly |. In order to obtain P̂n, a TAD is required to detect target presence/ab-
sence for each frame. The above two averages are updated in an online fashion, i.e., the
average is updated for every frame using the average of the previous frame. This pro-
cedure becomes computationally demanding in a distributed context for two reasons.
Firstly, the entire observation vector must be available at each time frame resulting in
the need for data flooding. Secondly, that the storage of the entire CPSDM scales with
the network size.

Estimation of the ambient noise CPSDM Pu is a difficult task due to the late reverber-
ation CPSDM Pl. Using a TAD it is nearly impossible to estimate Pl alone. For sufficiently
large rooms, the late reverberation is typically modelled as an ideal spherical isotropic
noise field [159, 132].That is,

P̂l = p̂isoPiso,

8.4. LINEARLY CONSTRAINED BEAMFORMING

8

195

0 4 8
frequency (kHz)

0

0.5

1

P
is

o
,i

,j

di,j = 50 cm

di,j = 4 cm

Figure 8.1: The spherically isotropic noise field correlation between two microphones i , j of distances di , j =
4,50 cm and fs = 16 kHz. The star marker denotes the first zero-crossing fc .

where for the k-th frequency bin, the (i , j)-th element of Piso is given by

Piso,i , j = sinc

(
2πk fs di , j

Φc

)
,

where di , j is the distance between microphones i and j , fs is the sampling frequency, Φ
is the number of frequency bins, and c is the speed of sound. The scaling p̂iso can be es-
timated using several centralized methods (see e.g., [159]). To the best of our knowledge,
there are no distributed methods for obtaining p̂iso.

Fig. 8.1 shows the values of the correlation function of Eq. (8.3.2) for various frequen-
cies and distances di , j . The correlation can be roughly divided into two interesting fre-
quency regions: one highly correlated on the left and one much less correlated on the
right. The boundary between these regions occurs at the first zero-crossing given by
fc = c/(2di , j). It is clear that, the larger di , j becomes, the smaller fc is.

The CPSDM of the microphone self-noise, Pc = cI (where c is the power at each mi-
crophone), can be estimated in silent frames only (i.e., neither target nor interferers are
active).

8.4. LINEARLY CONSTRAINED BEAMFORMING
Most linearly constrained beamformers are obtained from the following general opti-
mization problem [145, 126, 127]

ŵ = arg min
w

wH Pw s.t. wHΛ= fH ,

where Λ ∈ CM×d , f ∈ Cd×1, and P ∈ CM×M is typically the CPSDM of the noise or noisy
measurements. The d constraints used in the optimization problem of Eq. (8.4) include
at least the distortionless constraint for the target source, i.e., wH a = 1, and, commonly,
the nulling of the interferers, wH bi = 0 [126, 157, 160]. If we assume that r < M − 1,
the linearly constrained beamformer can null all interferers and still have control on the
minimization of the objective function. In this case, Λ and f are given by

Λ= [
a b1 · · · br

]
, and f = [

1 0 · · · 0
]H

. (8.3)

8

196 8. ROBUST DISTRIBUTED LINEARLY CONSTRAINED BEAMFORMING

It should be noted that by increasing the number of nulling constraints, the ambient
output noise power may be boosted. The boost depends on the locations of the inter-
ferers [127] and the number of available degrees of freedom (M − r − 1). However, in
applications when r ¿ M −1 this impact is much less significant. If r < M −1 and P is
invertible, the optimization problem in Eq. (8.4), using the constraints in Eq. (8.3), has a
closed-form solution given by [127]

ŵ = P−1Λ
(
ΛH P−1Λ

)−1
f.

When P = Py, the linearly constrained beamformer takes the form of the LCMP beam-
former given by

ŵ = arg min
w

wH Pyw s.t. wHΛ= fH , (8.4)

while if P = Pn, the LCMV is obtained and is given by

ŵ = arg min
w

wH Pnw s.t. wHΛ= fH .

In the sequel, when we use the acronyms LCMV and LCMP we mean the LCMV and
LCMP versions with the constraints given in Eq. (8.3). Another interesting linearly con-
strained beamformer is the one that has only the ambient noise component in the ob-
jective function [161], i.e.,

ŵ = arg min
w

wH Puw s.t. wHΛ= fH . (8.5)

In this paper, we will refer to the linearly constrained beamformer in Eq. (8.5) as the
ambient LCMV (ALCMV).

Using Eq. (8.2), the objective function of the LCMP problem, as noted in Eq. (8.4), is
given by

wH Pyw = ps wH aaH w+
r∑

i=1
pvi wH bi bH

i w+wH Puw.

Due to the included constraints in the LCMP (see Eq. (8.3)), the contributions of the early
components of the sources to the objective function of Eq. (8.4) are constant. Thus, if
P̂y =Py, P̂n =Pn, P̂u =Pu, and Λ̂=Λ, the LCMP, LCMV and ALCMV beamformers are all
equivalent. In practice, this never happens as there are always RATF estimation errors
and CPSDM estimation errors, as explained previously.

8.4.1. RATF ESTIMATION ERRORS

There are two interesting cases. In the first case, if P̂y = Py, P̂n = Pn, and â = a, LCMP is
equivalent to LCMV [127]. However, if â 6= a, the LCMV beamformer (provided that P̂n

is accurately estimated), is more robust than the LCMP [127]. This is because LCMP will
try to remove the actual target related to the RATF a as this is included in Py, while the
preservation constraint is on the wrongly estimated â. However, if there are also TAD
errors, P̂n may also contain portions of Px and, as a result, the LCMV may also have
severe performance degradation like the LCMP.

In the second case, if P̂n = Pn, P̂u = Pu, and b̂i = bi , for i = 1, · · · ,r , LCMV is equiva-
lent to ALCMV. However, if any of the b̂i ’s contain estimation errors, there will be power

8.4. LINEARLY CONSTRAINED BEAMFORMING

8

197

leakage of the corresponding interferer(s), which is not controllable, neither by the ob-
jective function nor by the constraints of the ALCMV problem in Eq. (8.5). Moreover, if
there are interferers whose RATF vectors have not been placed in the constraints, the
ALCMV will also be unable to reduce them in a controlled way. In contrast, if P̂n is es-
timated accurately, the LCMV will reduce these power leakages. In this case, the LCMV
will most likely have a better noise reduction performance than its ALCMV counterpart.

We can conclude that the performance degradation of linearly constrained beam-
formers due to RATF estimation errors is mainly influenced by the selection of the CPSDM,
P, in the objective function of Eq. (8.4). A low-cost robust linearly constrained beam-
former should have good performance under both RATF estimation errors and TAD er-
rors. There are several approaches to achieve this. The most popular is via diagonal
loading of P. However, to the authors’ knowledge there are no low-cost distributed ap-
proaches for optimally selecting the diagonal loading value. Another robust low-cost
option is to use a fixed superdirective linearly constrained beamformer, i.e., a linearly
constrained beamformer with a (semi)fixed P [130]. A fixed linearly constrained beam-
former does not use a TAD and guarantees that there will not be any portion of Px in
P. Two interesting fixed linearly constrained beamformers are discussed in the next sec-
tion.

8.4.2. FIXED SUPERDIRECTIVE LINEARLY CONSTRAINED BEAMFORMERS
The fixed superdirective beamformers [130] assume a certain noise field and use in the
objective function a certain coherence function like the one in Eq. (8.3.2). Since the early
components of the interferers can be nullified using a linearly constrained beamformer,
the noise field that remains is the late reverberation as explained previously in this sec-
tion. Recall from Section 8.3.2, that the estimation of Pu is a difficult task due to the
CPSDM of the late reverberation, Pl. Typically, in the literature (see e.g., [162, 130, 163])
models of Pl are used in beamformers instead. The most common choice is to use Piso. If
one chooses P = Piso, the microphone self-noise will be boosted in low frequencies [130].
Thus, a diagonal-loaded version is typically used [164, 130], i.e.,

ŵ = arg min
w

wH (pisoPiso +Pc)w s.t. wHΛ= fH ,

where Pc = cI (see Section 8.3.2). Although, the microphone-self noise power, c, typically
remains constant over time, piso changes. To the best of our knowledge, there are no
distributed estimation methods of the scaling coefficient piso. We call the beamformer
in Eq. (8.4.2) as isotropic LCMV (ILCMV).

Another popular fixed linearly constrained beamformer uses in the objective func-
tion the most simplistic option which is P = I, i.e.,

ŵ = arg min
w

wH w s.t. wHΛ= fH .

In this paper, we will refer to this as the linearly constrained delay and sum (LCDS) beam-
former. It is identical to the fixed beamformer of the generalized side-lobe canceller im-
plementation of the LCMP beamformer (using the constraints in Eq. (8.3)) in [157]. Un-
like ILCMV, the LCDS is easily distributable due to the separable nature of the objective
function. This can be achieved via similar methods to those demonstrated in Section

8

198 8. ROBUST DISTRIBUTED LINEARLY CONSTRAINED BEAMFORMING

8.5.3 and need only be performed once. Following this, the output can be computed
via data aggregation or by solving a simple averaging problem, again lending itself to
distributed implementations.

Similar to ALCMV, the ILCMV and LCDS beamformers cannot control power leakages
due to inaccurate estimates of the interferers’ RATF vectors and cannot control interfer-
ers which are not included in the constraints.

8.4.3. OTHER RELATED LINEARLY CONSTRAINED BEAMFORMERS
If we skip the nulling constraints and only impose the target distortionless constraint,
the LCMV (LCMP) reduces to the MVDR (MPDR) [144, 126]. Similar to LCMV and LCMP,
MVDR and MPDR are equivalent under the assumption that P̂y = Py and P̂n = Pn and
â = a [127]. However, when â 6= a, the MVDR is more robust to RATF estimation er-
rors [146, 127]. A special case of the MPDR is the delay and sum (DS) beamformer [152]
which replaces the noisy CPSDM with the identity matrix. The DS has worse perfor-
mance compared to the MVDR (MPDR) in correlated noise fields but results in very ro-
bust performance to RATF estimation errors [146] and TAD errors.

8.4.4. DISTRIBUTED LINEARLY CONSTRAINED BEAMFORMERS
The development of distributed beamformers has focused on adapting LCMV (LCMP)
based approaches for use in WASNs. However, this adaptation has not come without
additional challenges [165]. Most notable is the limited communication between de-
vices which makes the formation of estimated CPSDMs nearly impossible without the
use of a fusion center [133]. To address this, two main classes of distributed beamformers
have appeared in the literature: approximately optimal variants and optimal approaches
which operate in certain networks.

One such sub-optimal variant is the distributed DS beamformer introduced in [134].
Based on randomised gossip [12], this low-cost method operates in general cyclic net-
works but fails to exploit spatial correlation to improve noise reduction. In contrast,
distributed approximations of the MVDR beamformer [135, 136] assume that disjoint
nodes are uncorrelated essentially masking the true CPSDMs. While lending themselves
to distributed implementations, such approaches fail to take into account the true cor-
relations between observed signals across the network, resulting in sub-optimal perfor-
mance.

By restricting the network topology, typically to be acyclic or fully connected, opti-
mal distributed beamformers have been proposed. These algorithms [139, 140] exploit
efficient data aggregation to construct global beamformers from a composition of local
filters and have been shown to be iteratively optimal. However, the additional commu-
nication overhead required to maintain a constant network topology across frames can
be prohibitively expensive due to unpredictable network dynamics. Furthermore, such
maintenance may be impossible in the case of node failure.

It is worth mentioning that it is not the use of an acyclic network in [139, 140] itself
which is limiting, but rather the need for this network to be invariant over time. In [143],
this point was exploited to form a fully distributed beamformer for use in general cyclic
topologies. Like [139] and [140], [143] constructs a global beamformer as a composition
of local beamformers at each node. Importantly, the method by which these local beam-

8.5. PROPOSED METHOD

8

199

formers are combined does not depend on the underlying network topology. This allows
the network to vary between frames, overcoming the need for maintaining a fixed topol-
ogy in all time instances. The method in [143] was shown to be iteratively optimal with
its main drawback being a decrease in convergence rate compared to [139], requiring a
larger number of frames to obtain near optimal performance.

In contrast, in [141], an optimal distributed beamformer was proposed for use in
cyclic networks by exploiting the structure of estimated CPSDMs to cast LCMP beam-
forming as distributed consensus. However, for CPSDM estimates based on a large num-
ber of frames, the proposed algorithm’s communication cost scaled poorly. In contrast
to [138, 139, 140] and [143], a benefit of [141] was that the proposed implementation was
frame-optimal, i.e. that it obtained the performance of an equivalent centralized imple-
mentation in each frame. The beamformer proposed in [151] exploited a similar method
of distributed implementation, but exploited the pseudo coherence principle of human
speech to overcome the scaling communication costs found in [141].

The approaches of both [141] and [151] made use of internal optimization schemes
which require a large number of iterations per frame to obtain optimal performance.
However, in [151] it was shown that near optimal performance could be obtained using
only a finite number of iterations of this internal solver. Such a result raises the ques-
tion whether a similar approach could be employed as a general way of reducing the
transmission costs associated with cyclic beamforming methods. For the beamformers
proposed in this work, this point is touched upon in Section 8.5.7.

In contrast to the methods above, the beamformers proposed in Section 8.5 are fully
distributable without imposing restrictions on the underlying network topology or scal-
ing communication costs while also being optimally computable in each frame. In this
way, the proposed methods combine the strengths of existing distributed beamformers
while also avoiding their various limitations.

8.5. PROPOSED METHOD
In the previous section, we have highlighted the susceptibility of several existing beam-

formers to RATF estimation errors and TAD errors and the challenge of deploying these
algorithms in distributed contexts. Here, we propose two different linearly constrained
beamformers which are efficiently distributable for arbitrary network topologies, robust
to RATF estimation errors and TAD errors, while at the same time are able to control the
power leakage of the interferers.

Typically, the microphones within a node are nearby, while the microphones from
different nodes are further away. Therefore, the late reverberation will be highly corre-
lated in the first case, while in the latter less correlated (see Fig. 8.1). Therefore, providing
that the nodes are sufficiently far away from each other, one may approximate the full
element matrix Pu with the block-diagonal matrix P̄u where every block corresponds to
the CPSDM of the late reverberation of one node only and the microphone-self noise.
Therefore, we propose the block-diagonal ALCMV (BDALCMV) which is given by

ŵ = arg min
w

wH P̄uw s.t. wHΛ= fH . (8.6)

Note that if every node has only one microphone, P̄u becomes diagonal. This block-

8

200 8. ROBUST DISTRIBUTED LINEARLY CONSTRAINED BEAMFORMING

diagonalization lends itself to distributed implementations, reflecting a similar objective
structure to that of the DS and LCDS beamformer.

While the proposed BDALCMV beamformer has a number of benefits from the per-
spective of distributed signal processing, like ALCMV, the challenge becomes the esti-
mation of P̄u, and handling the possible power leakages of the interferers as in the case
of DS, LCDS, ALCMV. Therefore, in Sections 8.5.1, and 8.5.2 we introduce two variations
of the BDALCMV beamformer which do not require the estimation of P̄u and are robust
to power leakages of the interferers. Moreover, in Sections 8.5.3—8.5.7, we introduce
distributed implementations of the proposed beamformers.

8.5.1. BDLCMP BEAMFORMER
The first proposed practical variant of BDALCMV is the BDLCMP which uses in the ob-
jective function the block-diagonal noisy CPSDM, P̄y. That is,

ŵ = arg min
w

wH P̄yw s.t. wHΛ= fH . (8.7)

This results in a local estimation problem, which can be carried out independently at
each node without the need of a TAD. This method handles the possible power leakages
due to inaccurate estimates of the interferers’ RATF vectors and can suppress the inter-
ferers that are not included in the constraints.

In case of RATF estimation errors of the target source, the BDLCMP will have similar
problems to the LCMP because in the block-diagonal matrices, there will be portions of
the corresponding target block-diagonal CPSDMs. However, the performance degrada-
tion will not be that great as with the LCMP. This can be easily explained by considering
the extreme scenario of a fully correlated noise field in which we assume that M > r +1,
P̂y = Py, Pu ≈ 0, b̂i = bi , i = 1, · · · ,r and â 6= a. In this case, the optimization problem of
LCMP in Eq. (8.4) will be approximately equivalent1 to the following optimization prob-
lem:

ŵ = arg min
w

wH P̂yw s.t. wH Λ̃= f̃H ,

where
Λ̃= [

â a b̂1 · · · b̂r
]
, and f̃H = [

1 0 0 · · · 0
]

.

That is, the LCMP will approximately nullify the target source. In contrast, due to the
block-diagonal CPSDM, the BDLCMP will approximately nullify the target source iff M >
r N +2r +1, where N is the number of nodes. Specifically, if M > r N +2r +1 is satisfied,
the BDLCMP will be approximately equivalent to the following optimization problem:

ŵ = arg min
w

wH ˆ̄Pyw s.t. wH Λ̃= f̃H ,

where

Λ̃=[
â ã1 ã2 · · · ãN b̂1 · · · b̂r b̃11· · ·b̃1N · · · b̃r 1 · · · b̃r N

]
,

f̃H = [
1 0 0 · · · 0

]

ãi =
[
0 ai 0

]H
, b̃ j i =

[
0 b j i 0

]H ∈CM×1.

1It is approximately equivalent because Pu ≈ 0. Moreover, the target RATF estimation errors should be suffi-
ciently large.

8.5. PROPOSED METHOD

8

201

-1.5 0 1.5
x (m)

0

1.5

y
 (

m
)

0 10 50 80 90 160
θ (degrees)

-40

-20

0

|w
H
a
(θ
)|
2
(d
B
)

2 kHz

θ=50
θ=80θ=90

θ=160
θ=10

Figure 8.2: Example: three interferers (with marker ’x’) and one target (with marker ?) at 80◦. The RATF vector
of the target points at 90◦. The directivity pattern, |wH a(θ)|2 (in dB), is computed in the range 0◦ ≤ θ ≤ 180◦,
for BDLCMP (solid line) and LCMP (dotted line), for the frequency 2 kHz.

Here ai ,b j i are the elements of the RATF vector a,b j corresponding to node i , respec-
tively. Note that for M < r N +2r +1 the BDLCMP will not have enough degrees of free-
dom to achieve wH ãi = 0 (i = 1, · · · , N) and, thus, will not nullify the target signal. Thus,
more microphones are needed in the BDLCMP beamformer to nullify the target signal
compared to the LCMP beamformer. Hence, the BDLCMP is more robust to target RATF
estimation errors compared to the LCMP for the same number of microphones M , when
M < r N +2r +1, in this particular scenario of a fully correlated noise field. In more gen-
eral noise fields, where Pu is not negligible, both LCMP and BDLCMP will not nullify
the target using the same finite number of microphones. However, LCMP will suppress
more the target signal than the BDLCMP, because the first exploits the full-element noisy
CPSDM matrix.

Fig. 8.2 shows the directivity patterns of LCMP and BDLCMP for a simple acoustic
scenario with a linear microphone array separated into two nodes where each node has
three microphones. The target source is at 80◦, but the estimated RATF vector of the
target is at 90◦. The interferers and their RATF vectors are at 10◦,50◦ and 160◦. All RATF
vectors are anechoic in this example and there is a slight amount of microphone-self
noise. It is clear from the directivity pattern in Fig. 8.2, that LCMP suppresses the target
signal significantly, while BDLCMP does not.

It is worth mentioning that if b̂i 6= bi , it easy to show (following the same steps as be-
fore) that the LCMP will typically suppress more the i -th interferer than BDLCMP, if both
use the same number of microphones. This means that the power leakages of the inter-
ferers will be suppressed more with the LCMP compared to the BDLCMP. Nevertheless,
we will experimentally show in Section 8.6, that the final intelligibility improvement of
BDLCMP is much greater than the LCMP, because BDLCMP distorts much less the target.

8

202 8. ROBUST DISTRIBUTED LINEARLY CONSTRAINED BEAMFORMING

8.5.2. BDLCMV BEAMFORMER
To further increase the robustness of the proposed method, we introduce the BDLCMV
variant which uses in the objective function the block-diagonal version of the noise
CPSDM, P̄n. Therefore, the BDLCMV is given by

ŵ = arg min
w

wH P̄nw s.t. wHΛ= fH . (8.8)

Similar to the relationship between LCMV and LCMP, the BDLCMV typically enjoys more
robustness than the BDLCMP when P̄n is estimated accurately enough. However, when
there are TAD errors, we will show that the performance gap reduces between the two
methods. The BDLCMV also handles the possible power leakages of the interferers, and
can suppress the interferers that are not included in the constraints.

If each node has only one microphone, then BDLCMV becomes diagonal. In this
case, it can be viewed as a weighted version of the LCDS beamformer, and without nulling
constraints, can be viewed as a weighted DS beamformer.

8.5.3. DISTRIBUTED IMPLEMENTATION OF THE PROPOSED METHOD

Given a block-diagonal matrix P̄, which can be P̄u, P̄n or P̄y, and a known constraint
matrix Λ, we now demonstrate how we can form a distributed version of the proposed
methods for use in general cyclic networks by using a similar technique to that presented
in [141]. Importantly, the imposed block diagonal structure of the estimated CPSDM
results in a naturally separable objective function, leading to a substantial reduction in
communication costs compared to those in [141]. To demonstrate this, denote by wκ,
Λκ and P̄κ the elements of w, the rows of Λ and the block diagonal component of P̄
associated with node κ, respectively. Eqs. (8.6), (8.7) and (8.8) can therefore be rewritten
as

ŵ = arg min
w

1

2

N∑
κ=1

wH
κ P̄κwκ s.t.

N∑
κ=1

wH
κ Λκ = fH .

The real-valued Lagrangian of this problem is given by

L (w,µ) =
N∑
κ=1

(
wH
κ P̄κwκ

2
−ℜ

(
µH

(
ΛH
κ wκ− f

N

)))
,

where we have partitioned the constraint vector f into N equal parts, f/N ,one for each
node i ∈V . Taking complex partial derivatives [166], it follows that

ŵκ = P̄−1
κ Λκµ, (8.9)

such that the corresponding dual function is thus given by

q(µ) =−
N∑
κ=1

µHΛH
κ P̄−1

κ Λκµ

2
+ℜ

(
µH f

)
.

The resulting dual optimization problem is given by

µ̂= arg min
µ

N∑
κ=1

(
µHΛH

κ P̄−1
κ Λκµ

2
−ℜ

(
µH f

N

))
. (8.10)

8.5. PROPOSED METHOD

8

203

8.5.4. ACYCLIC IMPLEMENTATION VIA MESSAGE PASSING
We begin by demonstrating how, when the underlying network is acyclic (tree struc-
tured), the problem in Eq. (8.10) can be solved in a distributed manner. Similar to the
approach introduced in [143], there is no need for this acyclic network to be constant be-
tween frames, allowing it to adapt to the time-varying connectivity of dynamic networks.
This contrasts [139, 140] where the network topology must remain constant.

In the following, we consider two different approaches to compute the optimal µ in
tree structured networks. In the first approach, we exploit the fact that Eq. (8.10) can
be directly solved by aggregating the sum of the local matrices 1

2Λ
H
κ P̄−1

κ Λκ to a common
location. In the case of acyclic networks, this aggregation can be performed efficiently
with the common location forming the root node of the network. This root node can
simply be a point in the network where we choose to extract the beamformer output
signal.

To sketch the process of this data aggregation, we partition the set of neighbors of
each node κ into two groups. The first group, denoted by Cκ, represents the set of chil-
dren of node κ. The second set, which is a unique node identifier, is the parent of node κ
denoted by Pκ. In particular, Pκ∪Cκ=N (κ) ∀κ ∈ V , where N (κ) = {ι | (κ, ι) ∈ E }. Note
that for the root node Pκ=;. These sets can be determined per frame by selecting a root
node and forming a spanning tree via a breadth-first or depth-first search.

Once these sets are known, the process begins at the leaf nodes of the networks (those
nodes for which Cκ =;) and consists of the transmission of a message from these nodes
(κ) to their parents (Pκ). The aggregation messages are matrices and take the form

Mκ→Pκ =
ΛH
κ P̄−1

κ Λκ

2
.

Of the set of remaining nodes, those nodes which have received a message from all but
one of their neighbors can repeat this process (the remaining neighbor is their parent
node). Their messages take a more general form given by

Mi→P i =
ΛH

i P̄−1
i Λi

2
+ ∑

k∈Ci

Mk→i ,

whereby local information at each node is first combined with that from their children.
This process is repeated until the root node has received messages from all its children
at which point the aggregation operation is complete.

Due to their positive semidefinite structure, the transmission of each message per
node comprises 1

2 ((r +1)2+r +1) unique variables resulting in a total of 1
2 (r 2+3r +2)(N−

1) transmitted variables for each frequency bin per frame. The optimal dual variables can
then be diffused back into the network to allow the optimal beamformer weight vector to
be computed at each node in parallel. This additional diffusion stage results in a further
(r + 1)(N − K) transmitted variables where K denotes the number of leaf nodes. The
beamformer output can then be computed by simply aggregating the sum

∑
i∈V wH

i yi

through the network, incurring a total cost of (N −1) transmissions per frequency bin.
Finally, if the estimate of P̄ does not change between frames, i.e., ∆P̄ = 0, the estimated
weight vector need not be recomputed. An example of this occurs in noisy frames for the

8

204 8. ROBUST DISTRIBUTED LINEARLY CONSTRAINED BEAMFORMING

proposed BDLCMV method, reducing the cost of this algorithm in such frames to that of
simply computing the beamformer output.

8.5.5. CYCLIC WEIGHT VECTOR COMPUTATION VIA PDMM
For more general network structures, Eq. (8.10) can be transformed to a fully distributable
form. To do so, we introduce local versions ofµ at each node, denoted byµκ, and impose
that µκ =µι ∀ (κ, ι) ∈ E . The resulting problem is given by

µ̂= arg min
µ

N∑
κ=1

(
µH
κ Λ

H
κ P̄−1

κ Λκµκ

2
−ℜ

(
µH
κ

f

N

))
s.t.µκ =µι ∀(κ, ι) ∈ E . (8.11)

Note that at optimality, this problem is entirely equivalent to the problem in Eq. (8.10),
assuming the network is connected. Due to its separable quadratic structure, Eq. (8.11)
can be solved via a wide range of existing distributed solvers [?, ?, 96]. In this work, we
consider solving Eq. (8.11) using the primal dual method of multipliers (PDMM) pro-
posed in [96].

To define the PDMM updating scheme, we begin by again considering the equiv-
alent graph representation of the network, parameterised by node set V and edge set
E . For each node κ and edge (κ, ι) ∈ E , define the vectors µ(0)

κ = γ(0)
κ,ι = 0 ∈ Cr+1, ∀κ =

1, . . . , N , (κ, ι) ∈ E respectively. As per the PDMM algorithm in [96], the optimizers of
Eq. (8.11) can then be computed by iteratively updating the dual variables (µκ) and di-
rected edge variables (γκ|ι) as

µ(t+1)
κ =

(
ΛH
κ P̄−1

κ Λκ+ρ|N (κ)|I
)−1(f

N
+ ∑

ι∈N (κ)

(κ− ι
|κ− ι|γ

(t)
ι|κ+ρµ(t)

ι

))

γ(t+1)
κ|ι =γ(t)

ι|κ−ρ
κ− ι
|κ− ι|

(
µ(t+1)
κ −µ(t)

ι

)
,

where each ρ ∈ (0,+∞) is the step size for the iterative algorithm and t denotes the it-
eration index. The notation κ|ι is used to define the edge variable computed at node κ
related to the edge (κ, ι) ∈ E .

The edge based update requires the transmission of information between neigh-
bouring nodes, as can be noted in the dependence of γ(t+1)

κ|ι on γ(t)
ι|κ and µ(t)

ι . As high-
lighted in [96] however, this only requires the transmission of theµκ variables and, thus,
can be performed via a broadcast transmission protocol at each node. These updates
can then be iterated until a desired level of precision is achieved after which ŵ j can be
calculated locally at each node via Eq. (8.9).

Each iteration of the proposed algorithm requires the transmission of r +1 variables
per node. In an existing optimal cyclic beamformer [141] this cost was r +1+|Ly |, where
|Ly | is the number of frames used to form a maximum likelihood estimated version of the
CPSDM. The proposed method therefore requires |Ly | less transmissions per iteration,
resulting in a substantial saving in transmission costs.

8.5.6. BEAMFORMER OUTPUT COMPUTATION
Once the weight vector is known, the beamformer output can then be computed via
various distributed averaging techniques (see [38] for an overview). In the case of this

8.5. PROPOSED METHOD

8

205

work we again consider the use of PDMM for this task. Consider the standard distributed
averaging problem given by

min
x

1

2

N∑
κ=1

‖xκ−wH
κ yκ‖2 s.t. xκ = xι ∀(κ, ι) ∈ E . (8.12)

Again, from [96], the PDMM update equations for this problem are given by

x(t+1)
κ =

(
wH
κ yκ+∑

ι∈N (κ)

(
κ−ι
|κ−ι|z

(t)
ι|κ+ρx(t)

ι

))

1+ρ|N (κ)|
z(t+1)
κ|ι =z(t)

ι|κ−ρ
κ− ι
|κ− ι|

(
x(t+1)
κ −x(t)

ι

)
,

where zκ|ι denotes the directed edge variable owned by node κ. By iterating these up-
dates, every node in the network can learn the average of the vector wH y. Once the aver-
age is known, this can be scaled by a factor of N to recover the beamformer output. Al-
ternatively, we can employ the same acyclic beamformer output computation approach
as used in Sec. 8.5.4. While this removes the entirely cyclic nature of the algorithm as the
tree structured network used can change in each frame, the overhead of using an acyclic
network is still substantially reduced in contrast to the work of [139, 140].

8.5.7. CYCLIC BEAMFORMING WITH FINITE NUMBERS OF ITERATIONS
In general distributed applications, deterministic signal processing is desirable. This
point is even more pressing in the case of distributed audio processing. Thus, an un-
bounded requirement on the iteration count of an algorithm is cumbersome. Unfortu-
nately, in practice, the total number of transmissions required to solve the problems in
Eq. (8.11) and (8.12), via general cyclic solvers such as PDMM, is dependent not only
on the choice of the solver but also on the WASN topology. As such, it is not possible
to analytically bound this transmission cost for arbitrary networks. However, in the dis-
tributed beamforming method presented in [151], which also used PDMM as a solver, it
was found that near optimal performance was achieved in only a limited number itera-
tions. In this way it is expected that the number of iterations required to achieve a good
level of performance is not unnecessarily large. As such we can impose a hard limit on
the number of iterations performed without significantly degrading performance.

An additional observation is that, due to its dependence on a recursively averaged
covariance matrix, the weight vector w will vary smoothly with time. With regards to the
PDMM algorithm, this corresponds to the fact that both the dual and edge variables will
also vary somewhat smoothly. As such, one way to improve precision even under the
scenario of a finite number of iterations it to use a warm-start procedure. Defining the
maximum number of iterations by tmax, this warm-start procedure is implemented by
setting

µ(0)
β

=µ(tmax)
β−1 and γ(0)

β,κ|ι =γ
(tmax)
β−1,κ|ι, (8.13)

where the additional subscript denotes the frame index β. In the case of a constant
CPSDM estimate this procedure allows the finite iterations in multiple frames to be used
to solve the same problem i.e. a higher precision weight vector can be achieved. In

8

206 8. ROBUST DISTRIBUTED LINEARLY CONSTRAINED BEAMFORMING

Table 8.1: Transmission costs of distributed beamformers in dynamic sound fields. N denotes the number
of nodes, K denotes the number of leaf nodes, r denotes the number of interferers, and tmax denotes the
maximum number of iterations.

Beamformer Weight Vector Computation

Algorithm Transmissions per frame & frequency bin

BDLCMV/BDLCMP (Cyclic) tmax(r +1)N

BDLCMV/BDLCMP (Acyclic) 1
2 (r 2 +3r +2)(N −1)+(r +1)(N −K)

BDLCMV (Acyclic ∆P̄ = 0) 0

DLCMV (Acyclic) [139] (2N −1−K)

DGSC (Acyclic) [140] (2N −1−K)+ (r +1)(N −K)

TI-DANSE (Cyclic) [143] (2N −1−K)(r +1)

Beamformer Output Computation

Algorithm Transmissions per frame & frequency bin

Cyclic tmaxN

Acyclic N −1

the case of slowly varying weight vectors, this allows the algorithm to track the optimal
weight vector while still only incurring a finite iteration cost per frame.

A warm-start procedure cannot be used in the case of the beamformer output com-
putation as it varies rapidly between frames. However, only a finite number of itera-
tions are required per frame to achieve near-optimal performance. Thus, an iteration
limit can be imposed to achieve a fully cyclic implementation. The performance of this
iteration-limited output computation and the warm-started weight vector computation
introduced above are demonstrated in Sec. 8.6.4.

8.5.8. COMPARING THE TRANSMISSION COSTS OF DIFFERENT BEAMFORMER

IMPLEMENTATIONS

Table 8.1 includes the transmission costs of the distributed implementations of the BDL-
CMV/BDLCMP algorithm proposed in this paper. It is worth noting that these trans-
mission costs do not include the additional overhead associated with those algorithms
which exploit a TAD or the costs of forming a spanning tree. However, due to the per fre-
quency bin nature of the algorithm, these costs are assumed to be far lower than those
associated with running the algorithm.

From Table 8.1, our proposed acyclic implementation appears to require a notable
increase in total transmission cost when we allow P̄ to vary. However unlike existing ap-
proaches, it does so while ensuring we exactly solve the problem in each frame. In con-
trast, the alternative methods listed require multiple frames to reach optimality [167].
As such, the proposed acyclic approach offers a competitive advantage as it exactly at-
tains the performance of a centralized implementation in each frame while incurring a
fixed transmission cost. In contrast, the iterative nature of DLCMV, DGSC and TI-DANSE

8.6. EXPERIMENTAL RESULTS

8

207

means that they require multiple frames to achieve the same precision, essentially scal-
ing their effective transmission costs.

The proposed cyclic implementation of BDLCMV/BDLCMP, like other existing ap-
proaches within the literature [139, 140] allows for a tradeoff between per-frame opti-
mality and communication overhead. Importantly, when combined with the warm-start
procedure introduced in Eq. (8.13), this allows for near-optimal performance while re-
ducing the total transmission overhead per frame. In particular, in Sec. 8.6.4 we will
demonstrate the effect of combining this warm-start procedure with a single iteration,
that is tmax = 1. In this case, a negligible decrease in performance is achieved while in-
curring a transmission cost in line with existing acyclic distributed beamformers.

Finally, by providing two methods of beamformer output computation, we allow de-
signers to implement a fully cyclic beamforming algorithm if they desire. Perhaps more
attractive though is a hybrid style approach, similar to that used in [143], which com-
bines cyclic weight vector computation with an acyclic output computation stage. This
takes advantage of the transmission savings of both approaches while, as the acyclic
topology can vary between frames, removes the need for acyclic network management
in contrast to [139, 140].

8.6. EXPERIMENTAL RESULTS
We compare the performance of the proposed beamformers (except of the BDALCMV,
where an estimate of P̄u is difficult to obtain), and six existing centralized beamform-
ers (the MPDR, MVDR, LCMP, LCMV, LCDS and DS) in terms of noise suppression, pre-
dicted intelligibility improvement, robustness to RATF estimation errors and TAD errors.
Table 8.2 summarizes the compared linearly constrained beamformers. Note that the
ALCMV and ILCMV are not included in the comparisons since there are no distributed
estimation methods of piso. Note that the MPDR, MVDR, LCMP, LCMV, LCDS and DS are
distributable under the distributed LCMV (DLCMV) [139], as well as the distributed DS
beamformer proposed in [134]. Specifically, we examine the performance of centralized
implementations of the aforementioned beamformers to which their distributed coun-
terparts converge [139].

8.6.1. EXPERIMENT SETUP

The simulations are conducted in a simulated reverberant environment with reverber-
ation times T60 = 0.2 s and T60 = 0.5 s using the image method [168]. A box-shaped
room with dimensions 6× 4× 3 is selected for the reverberant environment. The con-
figuration of the nodes and acoustic sources are depicted in Fig. 8.3. We considered an
example scenario where a number of people are sitting around a table with a set of mo-
bile phones on the table, each equipped with multiple microphones. In this case, N = 5
nodes were placed on a virtual surface (with no physical properties) and four sources
were placed around the surface. Each node was equipped with 3 microphones forming
a uniform linear array with an inter-microphone distance of 2 cm. This resulted in a to-
tal of M = 15 microphones. Three of the four sources were interferering talkers (2 female
and 1 male) with the remainder being the target source (a male talker). Each signal had
a simulated duration of 30 s and was sampled at fs = 16 kHz. The power of each inter-

8

208 8. ROBUST DISTRIBUTED LINEARLY CONSTRAINED BEAMFORMING

Table 8.2: Summary of compared linearly constrained beamformers which are all special cases of the optimiza-
tion problem in Eq. (8.4). Note that wHΛ= fH is the constraints in Eq. (8.3).

Method P Constraints Target activity detection

MPDR Py wH a = 1 no

MVDR Pn wH a = 1 yes

DS I wH a = 1 no

LCMP Py wHΛ= fH no

LCMV Pn wHΛ= fH yes

LCDS I wHΛ= fH no

BDLCMP P̄y wHΛ= fH no

BDLCMV P̄n wHΛ= fH yes

ferer at its original position was set to be approximately equal to the power of the target
source at its original position (i.e., a 0 dB SNR). The impulse responses between micro-
phones and sources were computed using the toolbox in [169], with length 200 ms. The
closest microphone to the target was selected as the reference microphone (see Fig. 8.3).
The microphone-self noise was white Gaussian noise with 40 dB SNR with respect to the
target signal at the reference microphone.

As can be noted in Fig. 8.3, the distance between any two nodes was quite big (i.e., the
distance between the closest microphone-pair, where the two microphones belonged to
two different nodes, was at least 0.5091 m). Thus, the ambient noise was approximately
spatially uncorrelated between different nodes. As explained in Section 8.2, the late re-
verberation, which is the main contribution in the ambient noise component, becomes
approximately uncorrelated between two microphones with distance d above a certain
threshold fc = c/(2d). Here, the distance of the closest microphone-pair where the mi-
crophones belong to two different nodes is 0.5091 m corresponding to fc = 333.9 Hz (if
c = 340 m/s). Note that the correlation between any other microphone-pair with micro-
phones in different nodes will have even smaller fc .

On the other hand, the late reverberation for microphones within a node is highly
correlated. The distance between two consecutive microphones is d = 0.02 m and, re-
sulting in fc = 8.5 kHz, which is greater than fs /2 = 8 kHz.

8.6.2. PROCESSING

STFT frame-based beamforming was performed using an overlap and save (OLS) pro-
cedure [170]. We used a rectangular analysis window with length 2Lfr = 50 ms, where
Lfr = 25 ms is the length of the current frame. Thus, the early-reverberant RATF vectors
of the sources are associated with an impulse response of length 50 ms. The analysis
window was applied on the current frame and the previous frame in order to a) miti-
gate circular convolution problems, and b) to be able to handle large phase shifts in the

8.6. EXPERIMENTAL RESULTS

8

209

0 1 2 3 4 5 6

x

0

1

2

3

4

y

1.6

2

2.1 ref.

mic.

2
1
5

3
4

0

1

4

2

z

3

y

2 6

x

420 0

Figure 8.3: Experimental setup from two different angles: three interferers (two female talkers with markers
’+’ and ’x’ and one male talker with marker ’o’), one target (a male talker with marker ?), and five nodes, with
three microphones each, sitting on the virtual surface. The height of the virtual surface is 1 m.

constraints due to the large microphone array aperture. The FFT length is Φ= 1024.
In order to achieve a smoother processing than standard OLS, the analysis window

was shifted by Lfr/2 samples2. A Hann window (synthesis window) was then applied,
with length Lfr, on the last Lfr processed samples. Finally, the last Lfr/2 processed sam-
ples were saved in order to add them to the corresponding samples of the next windowed
segment.

The CPSDMs, for the k-th frequency bin and β-th analysis segment, were estimated
via recursive averaging as described in Section 8.3.2. Note that the block-diagonal CPS-
DMs were recursively averaged locally at each node. The noise CPSDM and the block-
diagonal noise CPSDM were estimated using an ideal TAD and a non-ideal state-of-the-
art voice activity detector proposed in [171]. For simplicity, the TAD decision is based
only on the reference microphone signal.

2The standard OLS procedure usually shifts the analysis window by Lfr.

8

210
8

.R
O

B
U

S
T

D
IS

T
R

IB
U

T
E

D
L

IN
E

A
R

LY
C

O
N

S
T

R
A

IN
E

D
B

E
A

M
F

O
R

M
IN

G

0 0.05 0.1 0.15 0.2 0.25 0.3
positional error (m)

-2

0

2

4

6

8

10

S
S

N
R

 G
ai

n
 (

d
B

)

MPDR

MVDR-idealTAD

MVDR-VAD

LCMP

LCMV-idealTAD

LCMV-VAD

LCDS

BDLCMP

BDLCMV-idealTAD

BDLCMV-VAD

DS

0 0.05 0.1 0.15 0.2 0.25 0.3
positional error (m)

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

S
T

O
I

G
ai

n

Figure 8.4: Reverberation time T60 = 0.2 s: Comparison of the beamformers in Table 8.2 as a function of positional error between training and testing positions. The
methods that depend on a TAD are computed using an ideal TAD and the state-of-the-art voice activity detector (VAD) proposed in [171].

8
.6

.E
X

P
E

R
IM

E
N

T
A

L
R

E
S

U
LT

S

8

211

0 0.05 0.1 0.15 0.2 0.25 0.3
positional error (m)

0

1

2

3

4

5

6

7

8

9
S

S
N

R
 G

ai
n
 (

d
B

)
MPDR

MVDR-idealTAD

MVDR-VAD

LCMP

LCMV-idealTAD

LCMV-VAD

LCDS

BDLCMP

BDLCMV-idealTAD

BDLCMV-VAD

DS

0 0.05 0.1 0.15 0.2 0.25 0.3
positional error (m)

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

S
T

O
I

G
ai

n

Figure 8.5: Reverberation time T60 = 0.5 s: Comparison of the beamformers in Table 8.2 as a function of positional error between training and testing positions. The
methods that depend on a TAD are computed using an ideal TAD and the state-of-the-art voice activity detector (VAD) proposed in [171].

8

212 8. ROBUST DISTRIBUTED LINEARLY CONSTRAINED BEAMFORMING

The RATF vectors were estimated once using additional 2 s recordings per source.
Specifically, each talker spoke alone for 2 s, while all the others were silent. The CPSDM
matrices of each talker were computed as described in Section 8.3.2 and the dominant
relative eigenvector from each CPSDM was selected as an estimate of the RATF vector for
each source3. These initial positions of the talkers, in which the RATF vectors were esti-
mated, will be referred to as training positions and were nearby to the testing positions
depicted in Fig. 8.3. Therefore, the RATF estimation errors of all sources can be modeled
as a function of positional error between the training positions and the testing positions.

8.6.3. ROBUSTNESS TO RATF ESTIMATION ERRORS
Figs. 8.4 and 8.5 show the performance of the aforementioned beamformers in terms of
segmental-signal-to-noise-ratio (SSNR) gain and the short-time objective intelligibility
measure (STOI) [172] gain as a function of positional error for T60 = 0.2 s and T60 = 0.5 s,
respectively. Note that the noise that is computed in the SSNR consists of the inter-
ferers, background, and target distortion noise. The erroneous training locations were
uniformly distributed over a sphere centered around the true source locations having a
radius ranging from 0−0.30 m in 0.01 m steps. For every value of positional error, the
average performance of 20 different setups was measured. Each setup used the same
source signals at the same testing locations as shown in Fig. 8.3. However, a different
set of initial training positions, computed as mentioned previously, were used in each
setup. Likewise, different realizations of the microphone-self noise were also used in
each setup.

It is clear that the proposed beamformers are more robust for the combination of
large positional and TAD errors. Specifically, the BDLCMV and the BDLCMP provide sig-
nificantly better predicted intelligibility improvement compared to all the other meth-
ods using a non-ideal TAD or not using a TAD. The BDLCMV with the non-ideal TAD is
slightly better than the BDLCMP. Thus, in this particular scenario a TAD is not neces-
sary for the proposed method, since it will create errors and the performance advantage
will be small. Note that for T60=0.5 s and for large positional errors, the proposed meth-
ods achieve worse noise reduction, but better intelligibility improvement, than the other
methods. As explained in Section 8.5, this is because the proposed beamformers distort
the target signal much less than the other beamformers.

The LCMV using the non-ideal TAD is much more robust than the LCMP and gives
much higher predicted intelligibility improvement. It is worth noting that for T60 = 0.2 s
the fixed LCDS has almost the same predicted intelligibility improvement as the LCMV.
This makes the usage of the LCMV beamformer, in this particular acoustic scenario,
obsolete in the distributed context since LCDS has significantly lower communication
costs. On the other hand, for T60 = 0.5 s the performance of LCDS deteriorates signifi-
cantly and becomes also worse compared to the DS beamformer. Moreover, the MVDR
using a non-ideal TAD has almost the same predicted intelligibility improvement with
the LCMV using the non-ideal TAD for T60 = 0.5 s.

In conclusion, for those simulations using a non-ideal TAD, the proposed methods
are the most robust out of those considered. Moreover, the proposed method incurs

3If there is a noise component which is always active, such as an air-condition, a more accurate method of
estimating the RATF of the talkers is by using the GEVD approach [157].

8.6. EXPERIMENTAL RESULTS

8

213

1 2 3 4 5

(a) Chain

1

2 5

3 4

(b) Ring

1

32 4

5

(c) Star

Figure 8.6: Chain, Ring and Star topologies for the considered five node network.

lower communication costs, as explained in Section 8.5, making it a strong candidate for
distributed beamforming.

8.6.4. LIMITING ITERATIONS PER FRAME FOR PDMM BASED BDLCMP/B-
DLCMV

We now compare the impact of a finite iteration cap on the optimality of both the com-
puted beamformer weight vector and beamformer output signal. For these simulations,
the same setup, as introduced in Sec. 8.6.1, was used. The case of BDLCMP with no RATF
estimation errors was considered where by the centralized beamformers used previously
were substituted with their cyclic counterparts introduced in Sec. 8.5.5. For these simu-
lations, three standard network configurations (a chain, a ring and a star network) were
considered to highlight the impact network topology can play on convergence. Exam-
ples of these three network topologies are included below in Figures 8.6a, 8.6b, 8.6c re-
spectively. A step size of ρ = 1

2 was heuristically selected for all simulations. With a more
refined selection of this parameter, we expect that faster convergence could be achieved.

Fig. 8.7 shows a comparison of convergence rates of both cold and warm-started
beamformer weight vector computation for the three networks considered. As expected,
while all three methods require many iterations (> 30) to achieve reasonable weight vec-
tor estimation, when combined with a warm-start procedure, even a single iteration
per frame achieves near optimal gains in both STOI and SSNR. Thus, for slowly varying
CPSDM estimates, the cyclic BDLCMP/BDLCMV approach offers an opportunity to dra-
matically reduce transmission costs while maintaining near optimal performance. Fur-
thermore, the effectiveness of this warm-start does not seem to vary significantly with
network topology.

For beamformer output computation, as demonstrated in Fig. 8.8, the story is similar.
While the dynamic nature of the beamformer output does not facilitate a warm-start
procedure, the simplicity of the problem means that within 10 iterations or so a near
optimal beamformer output is computed.

Unlike the beamformer weight vector computation, here we can more clearly ob-
serve the effect of network topology on convergence. In particular, the chain network,
which has a larger diameter than either the ring or the star network, requires roughly
twice the number of iterations to approach optimal convergence. This point is consis-
tent with the fact that an even length chain network has twice the diameter of a ring

8

214 8. ROBUST DISTRIBUTED LINEARLY CONSTRAINED BEAMFORMING

0 5 10 15 20 25 30

3

4

5

6

7 Centralized

Chain (Cold)

Ring (Cold)

Star (Cold)

Chain (Warm)

Ring (Warm)

Star (Warm)

0 5 10 15 20 25 30

0.1

0.15

0.2

0.25 Centralized

Chain (Cold)

Ring (Cold)

Star (Cold)

Chain (Warm)

Ring (Warm)

Star (Warm)

Figure 8.7: Comparing the effect of a finite iteration limit on PDMM beamformer weight vector computation.
Cold-start (cold) and warm-start (warm) scenarios are considered with the beamformer output being com-
puted exactly via acyclic data aggregation.

network of the same size. However, this may be able to be remedied with more careful
step size selection.

8.7. CONCLUSION
In this paper, we proposed a new distributed linearly constrained beamformer, which
provides increased robustness to TAD and RATF estimation errors compared to tradi-
tional LCMV-based beamformers. Moreover, the proposed approach is immediately dis-
tributable due to its use of a block-diagonal CPSDM. Unlike most competing distributed
beamformers, the proposed method can be applied in arbitrary network topologies,
while at the same time having much lower communication costs in comparison to com-
peting cyclic approaches and comparable costs to acyclic ones. Furthermore, the general
nature of the distributed algorithm facilitates a trade off between transmission costs and
per-frame optimality allowing it to be tailored to the needs of a particular application.

8.7. CONCLUSION

8

215

2 4 6 8 10 12 14

2

4

6 Centralized

Chain

Ring

Star

2 4 6 8 10 12 14

0.1

0.15

0.2

0.25

Centralized

Chain

Ring

Star

Figure 8.8: Comparing the effect of a finite iteration limit on PDMM beamformer output computation. For
each of the networks considered the beamformer weight vector is computed exactly via acyclic data aggrega-
tion.

V
EPILOGUE

217

9
CONCLUSIONS AND FUTURE WORK

“They were close to the end of the beginning . . .”

Stephen King - The Gunslinger

219

9

220 9. CONCLUSIONS AND FUTURE WORK

9.1. CONCLUSIONS
Distributed convex optimization provides a flexible basis for performing signal process-
ing in computational networks, particularly those that lack structure and hierarchy. For
applications such as those involving IoT devices, adhoc sensor networks and more, such
approaches represent an opportunity to capitalize on the large volumes of data being
generated as we transition towards a massively networked world. In support of this, in
this thesis we have used monotone operator theory as a tool to both expand our under-
standing of existing solvers within the literature, as well as to propose new approaches to
broaden the scope of what can be optimized in a distributed fashion. Our contributions
to these general goals are summarized below.

9.1.1. ANALYSIS OF EXISTING DISTRIBUTED SOLVERS
In the area of solver analysis, we demonstrated how the primal dual method of multi-
pliers (PDMM) can be derived from a monotone operator theoretic perspective, link-
ing its convergence characteristics with the well known Peaceman-Rachford (PR) oper-
ator splitting approach. The importance of this link is that, unlike existing derivations
from within the literature, the monotone operator perspective adopted allowed us to
demonstrate firstly how strong convexity and differentiability were sufficient conditions
to guarantee convergence to a primal optimal solution and furthermore that under the
additional assumption of Lipschitz continuity, that this convergence would occur at a
geometric rate. Specifically, we were able to show how, in the case of consensus prob-
lems, this rate was dependent on the underlying topology of the network and thus to
provide a framework to quantify the performance of a range of deterministic network
topologies. Additionally, we provided example problems for which PDMM would not
converge, an important point currently missing from the literature. While a drawback
for the generality of the use of PDMM, using our new insight into the operation of the
algorithm from a monotone perspective, we were able to propose a simple modification
to address this via the inclusion of additional primal regularization.

9.1.2. DISTRIBUTED SOLVER DESIGN
In complement to our research on the analysis of PDMM, in Chapters 6 and 7, our ob-
jective was to broaden the classes of problems which we could solve in a distributed
manner. Our first efforts in this direction highlighted how problem separability was a
sufficient property to guarantee distributability of a problem. Using this point we in-
troduced a novel algorithm called the distributed method of multipliers (DMM) to solve
such problems. Specifically, in Chapter 6 we showed how DMM could be formed via
monotone operator theory by combining a particular lifted dual form with classic aver-
aged Peaceman-Rachford iterations. Our second contribution in this area focused on the
design of a novel solver for distributed consensus in time-varying networks. Using a par-
ticular time-varying metric choice, in Chapter 7 we demonstrated how classic monotone
operator theory could be combined with a certain iterate reparameterization procedure
to produce an algorithm somewhat akin to that seen in Push-Sum type methods [11, 40],
i.e. being comprised of local computations at each node followed by an averaging step
using a certain weighted graph Laplacian. We further demonstrated how the proposed
method exhibited guaranteed convergence for strongly convex objective functions as

9.2. FUTURE RESEARCH

9

221

well as highlighting its empirical performance in the case of more general closed, con-
vex and proper functions. Overall, the proposed methods both address open problem
areas within the literature and complement existing efforts to broaden the applicability
of distributed optimization solvers.

9.1.3. PRACTICAL DISTRIBUTED CONVEX OPTIMIZATION

In addition to the more fundamental contributions, we demonstrated the use of PDMM
in the practical signal processing task of multichannel speech enhancement in wire-
less acoustic sensor networks (WASN). In particular, we demonstrated how a particular
modeling of the acoustic scene leads to a separable equivalent optimization problem to
which PDMM can be naturally applied. This particular model had the additional benefit
of providing increased robustness to steering vector mismatch which typically plagues
more traditional beamforming methods. Furthermore, we explored the practical con-
siderations which must be traded off in the context of processing in WASNs such as the
necessity for deterministic signal processing, i.e., signal processing in a predefined time
window. Such practical considerations represent an area of distributed signal processing
not directly handled by distributed convex optimization. This practical example there-
fore also highlighted the importance of both understanding the underlying target prob-
lem as well as the distributed optimization techniques required to produce algorithms
for deployment in real world systems.

9.2. FUTURE RESEARCH
In addition to the initial questions which motivated the work of this thesis, a number
of complementary topics presented themselves over the course our research. To con-
clude this dissertation, we therefore present a selection of potential directions for future
research which fall into the area of distributed convex optimization.

9.2.1. ASYNCHRONOUS DISTRIBUTED OPTIMIZATION

One of the biggest limitations of the research undertaken thus far is that we assume that
computation across multiple nodes can be synchronized. While this could be addressed
through the use of some form of additional clock synchronization technique, such an
overhead is an undesirable addition, particularly for adhoc systems. In a similar vein, in
heterogenous problems, i.e., where the local objectives of each node are different, some
nodes may require move time to compute local updates. In such a context a synchro-
nized updating scheme is dependent on the needs of the slowest node. A more desirable
system model addressing both of these issues would be to allow the nodes in the network
to update independently of one another, while again achieving the same node based
computation and edge based communication as the synchronous methods presented in
this work.

In the case of PDMM, asynchronous operation can be trivially implemented due to
its inherently node based structure. Our initial empirical results in this direction indi-
cate stronger convergence results than in the synchronous context. In particular, the
types of problems for which synchronous PDMM may not converge, such as problems
objective functions lack strong convexity and differentiability, exhibit convergence when

9

222 9. CONCLUSIONS AND FUTURE WORK

solved asynchronously in our preliminary simulations. This leads to the following re-
search questions.

Question 7. Is node asynchronicity a sufficient condition for the convergence of PDMM
for CCP functions? If so how does this asynchronous operation affect existing convergence
rate bounds for stronger function classes such as those which exhibit strong convexity and
smoothness?

9.2.2. OPTIMIZATION IN DIRECTED NETWORKS
In addition to the challenge of asynchronous updating schemes, a second limitation of
this thesis is the assumption that the underlying networks can be modeled using undi-
rected graphs. In particular, for a heterogenous network topology, i.e., one where the
nodes of the network may exhibit different physical architectures, it may be that two way
communication cannot be guaranteed between all pairs of nodes in the network. For in-
stance, if one node has a greater transmission power than the other, a uni-directional
communication link would establish itself. This would in turn result in a directed graph
topology. While there are methods within the literature that support such a directed net-
work structure, such as the Push-Sum family of algorithms [39], it would be interesting
to see if the methods proposed in this work could be generalized to such a context. This
therefore raises the following research question.

Question 8. How can we design distributed optimization solvers for use in directed net-
works? In particular, can we use monotone operator theory to facilitate this process?

9.2.3. QUANTIZATION EFFECTS IN DISTRIBUTED OPTIMIZATION
Another consideration of practical systems is that data shared between nodes will be
encoded using some form of finite precision. Quantization effects within distributed al-
gorithms have received reasonable attention within the optimization literature with in-
exact Krasnosel’skĭı-Mann iterations [173] representing one way to analyze these affects.
However, the question of distributed quantizer design, how one can design quantizers
for the specific task of distributed optimization, is still an open area of research. For in-
stance, some of our preliminary work demonstrated how dynamic one-bit quantization
could be combined with PDMM to yield guaranteed convergence to optimal solutions
while offering a significant reduction in bit rate for certain problem classes [174]. This
raises the more general research question:

Question 9. How can we design quantization schemes for use in distributed signal pro-
cessing applications without compromising convergence? If so, how do these methods af-
fect algorithmic convergence and overall data transmission?

9.2.4. DISTRIBUTED NON-CONVEX OPTIMIZATION
A more general branch of additional research and one which we did not touch on in
this work, is the design of distributed solvers for non-convex optimization problems.
In particular, while the world of distributed convex optimization has seen a reasonable
treatment within the literature, solving non-convex problems, if even only to a station-
ary point, has not seen such an extensive investigation. It would be interesting to see if

9.3. CLOSING REMARKS

9

223

the monotone operator theory perspective can be applied in this context to yield conver-
gence results, even if one to local stationary points. In particular, in the case of fields such
as machine learning and deep learning, non-convex optimization and their associated
solvers form an essential component of network training and so devising efficient dis-
tributed implementations for this context could have appealing implications for a large
family of real world tasks.

Question 10. Can monotone operator theory be used to design distributed solvers for non-
convex optimization?

9.2.5. ACCELERATED SOLVER DESIGN
Finally, one of the inherent drawbacks of distributed optimization is its iterative na-
ture. As we have shown in our work, this iterative nature can lead to slow convergence
rates particularly for ill-chosen network topologies. This problem is also reflected across
many commonly used convex solvers and thus algorithm acceleration has become a
strong focus for a number of methods. An interesting question to ask is whether such
acceleration procedures can also be applied in the case of distributed optimization to
improve convergence. One such area of focus for these methods could be through the
use of quasi-newton type methods where by previous iterates are stored locally at each
node which can then be used to construct more informed updates in turn. Again, im-
proving distributed solver time can only increase their applicability to real world tasks
and thus could offer a significant benefit to the world of distributed signal processing. A
particular research question which therefore sparked our attention was the following.

Question 11. How can we accelerate the convergence rates of distributed solvers through
the use of on node memory?

9.3. CLOSING REMARKS
The work summarized in this thesis represents our first foray into the use of monotone
operator theory in the world of distributed convex optimization. Providing a mathe-
matical basis for the treatment of nonlinear solver design in networks, this perspective
facilitated the analysis of a variety of approaches in a systematic format. Importantly,
this connection has lead to the development of both a better understanding of existing
distributed methods as well as the design of new approaches in turn. While only a drop
in the ocean of the knowledge on distributed signal processing, we therefore hope that
the contributions in this work, as well as the additional branches of research proposed,
have been engaging for the reader and perhaps even stimulated an interest in distributed
signal processing in turn.

SUMMARY

Collaboration - The act of working together to achieve a common goal.

FOLLOWING their conception in the mid twentieth century, the world of computers has
evolved from a landscape of isolated entities into a sprawling web of interconnected

machines. Yet, given this evolution, many of the methods we use for allowing computers
to work together still reflect their inherently isolated origins with the aggregation of data
or master-slave relationships still commonly seeing use. While sufficient for some types
of applications, these approaches do not naturally reflect the collaboration strategies we
observe in nature and so the question is raised as to whether we can do better?

In parallel to the improvements in computer to computer communication, the emer-
gence of new paradigms such as the Internet of Things (IoT), Big Data processing and
cloud computing in recent years has placed an increasing importance on networked
systems in many facets of the modern world. From power grid management, to au-
tonomous vehicle navigation, to even our basic means of interaction through social me-
dia, these networks are a pervasive presence in our day to day lives. The vast amounts of
data generated by these networks and their ever increasing sizes makes it impractical if
not impossible to resort to traditional centralized processing and therefore necessitates
the search for new methods of signal processing within networked systems.

In this thesis we approach the task of distributed signal processing by exploiting the
synergy between such tasks and equivalent convex optimization problems. Specifically,
we focus on the task of distributed convex optimization, that of solving optimization
problems involving groups of computers in a collaborative manner and the develop-
ment of distributed solvers for such tasks. Such solvers distinguish themselves by only
allowing local computations at each computer in a network and the exchange of infor-
mation between connected computers. In this way, distributed solvers naturally respect
the structure of the underlying network in which they are deployed.

In the pursuit of our goal, we approach the task of distributed solver design via the
lens of monotone operator theory. Providing a well known platform for the derivation of
many first order convex solvers, herein we demonstrate the use of this theory as a means
of constructing and analyzing a number of algorithms for distributed optimization. The
first major contribution of this thesis lies in the analysis and understanding of an exist-
ing algorithm for distributed optimization within the literature termed the primal dual
method of multipliers (PDMM). In particular, by demonstrating a novel interpretation of
PDMM from the perspective of monotone operator theory we are able to better under-
stand its convergent characteristics and highlight sufficient conditions for which PDMM
will converge at a geometric rate. Furthermore we quantify the impact that network
topology has on these convergence rates, drawing a direct connection between spectral
characteristics of networks and distributed optimization.

225

9

226 SUMMARY

Secondly, we explored the space of solver design by proposing novel algorithms for
distributed networks. For the family of separable optimization problems, those with sep-
arable objectives and constraints, we demonstrated a distributed solver design using a
specific lifted dual form. Based on monotone operator theory, the convergence analy-
sis of the proposed method followed naturally from well known results and broadened
the class of distributable problems compared to the likes of PDMM. Furthermore, in
the case of time-varying consensus problems, we again proposed a new algorithm by
combining a network dependent metric choice with classic operator splitting methods.
Again the monotone basis of this algorithm facilitated the convergence analysis of this
method which empirically was also shown to converge for general closed, convex and
proper functions.

Finally, we demonstrated how these methods could be used for practical distributed
signal processing in networks by considering the case of multichannel speech enhance-
ment in wireless acoustic sensor networks. By combining a particular modeling of the
acoustic scene with the algorithms mentioned above, the proposed method was not only
distributable but also offered increased resilience to steering vector mismatch than other
standard approaches. This example also highlights the importance of understanding
both the target application and the distributed solvers themselves in developing effec-
tive solutions.

Overall, this thesis provides a first foray into the world of distributed optimization
via the lens of monotone operator theory. We feel that this perspective provides an ideal
reference for the analysis of such algorithms while also providing a general framework
for convex optimization solver design in turn. While this thesis is not the end of this
branch of research, it indicates the potential of the monotone operator theory as a uni-
fying method for the development and analysis of distributed optimization solutions.

SAMENVATTING

VANAF de introductie van de computer halverwege de twintigste eeuw, is de wereld
van computers veranderd van een landschap van geïsoleerde entiteiten tot een uit-

gestrekt web van onderling verbonden computers. Desalniettemin, gegeven deze evo-
lutie, zijn de technieken die we gebruiken om computers te laten samenwerken nog
steeds gebaseerd op de oorspronkelijke situatie waarbij het verzamelen van data en het
master-slave principe veelvuldig voorkomt. Hoewel dit principe volstaat voor sommige
toepassingen, reflecteert deze aanpak niet de samenwerkingsstrategieën die we in de
natuur tegenkomen en rijst de vraag of we computers op een betere manier kunnen laten
samenwerken.

Naast de verbeterde communicatie tussen computers heeft de opkomst van nieuwe
paradigma’s zoals het Internet-of-things (IoT), Big Data verweking en cloud-computing
er voor gezorgd dat vele facetten van netwerksystemen een steeds belangrijker rol hebben
gekregen. Zo zijn power-grid management, navigatie van autonome voertuigen, en zelfs
onze manier van interactie via sociale media, tegenwoordig niet meer weg te denken
uit ons dagelijks leven. De enorme hoeveelheden gegevens die door deze netwerken
worden gegenereerd maken het onpraktisch, zo niet onmogelijk, om op de traditionele,
gecentraliseerde manier verwerkt te worden en vereist daarom nieuwe methoden voor
signaalverwerking binnen netwerksystemen.

In dit proefschrift benaderen we het probleem van gedistribueerde signaalverwerk-
ing door gebruik te maken van de synergie die dit probleem heeft met equivalente con-
vexe optimalisatieproblemen. We richten ons in het bijzonder op de taak van gedis-
tribueerde convexe optimalisatie, het oplossen van optimalisatieproblemen met behulp
van verschillende samenwerkende computers, en de ontwikkeling van gedistribueerde
methoden om dergelijke taken op te lossen. Dergelijke methoden onderscheiden zich
door het uitwisseling van informatie tussen met elkaar verbonden computers en het feit
dat alleen lokale berekeningen op de computers in het netwerk zijn toegestaan. Op deze
manier maken de gedistribueerde methoden op een natuurlijke manier gebruik van de
structuur van het onderliggende netwerk.

Om ons doel te bereiken benaderen we het probleem van het ontwerp van gedis-
tribueerde methoden door gebruik te maken van de theorie van monotone operatoren.
Gegeven een bekend platform voor het ontwerp van eerste-orde convexe methoden,
laten we in dit proefschrift zien dat deze theorie ook goed gebruikt kan worden voor
het analyseren en ontwikkelen van een aantal algoritmen voor gedistribueerde optimal-
isatie. De eerste belangrijke contributie van dit proefschrift bestaat uit het analyseren
en begrijpen van een bestaand algoritme voor gedistribueerde optimalisatie, welke in de
literatuur bekend is onder de naam primal-dual method of multipliers (PDMM). Door
een nieuwe interpretatie van het PDMM algoritme zijn we in staat om het convergen-
tiegedrag beter te begrijpen en geven we voldoende voorwaarden voor lineaire conver-
gentie. Daarnaast kwantificeren we de invloed van de netwerktopologie op de conver-

227

9

228 SAMENVATTING

gentiesnelheid door een directe link te leggen tussen spectrale eigenschappen en gedis-
tribueerde optimalisatie.

De tweede bijdrage van dit proefschrift is het exploreren van ontwerpvrijheden door
nieuwe algoritmen te introduceren voor gedistribueerde netwerken. We demonstreren
een gedistribueerde methode voor de klasse van scheidbare optimalisatieproblemen,
problemen waarbij zowel de kostfunctie als de randvoorwaarden scheidbaar zijn, door
gebruik te maken van een specifieke uitbreiding van de duale probleembeschrijving.
Door gebruik te maken van monotone operatortheorie volgt de convergentieanalyse op
een natuurlijke manier uit bestaande resultaten en zorgt daarmee voor een uitbreiding
van de klasse van gedistribueerde methoden die vergelijkbaar zijn met het PDMM al-
goritme. Daarnaast introduceren we een algoritme dat gebruikt kan worden om tijd-
variërende consensus problemen op te lossen door een netwerk afhankelijk maat in te
voeren en deze te combineren met klassieke operator scheidingstechnieken. Ook hier
faciliteert de monotone operatoreigenschap de convergentieanalyse waarbij we tevens,
hetzij empirisch, laten zien dat het algoritme voor algemene gesloten, convexe en eigen-
lijke functies convergeert.

Tot slot laten we zien hoe dergelijke methoden gebruikt kunnen worden in een prak-
tische toepassing van meerkanaals spraakverbetering in draadloze akoestische sensor-
netwerken. Door de akoestisch omgeving op een bepaalde manier te modeleren, en deze
te combineren met de hierboven genoemde algoritmes, laten we zien dat het probleem
niet alleen gedistribueerd opgelost kan worden, maar dat deze aanpak ook leidt tot een
zekere ongevoeligheid voor fouten in de akoestische overdrachtsfunctie. Dit voorbeeld
toont eens temeer aan dat het noodzakelijk is om kennis te hebben van zowel de appli-
catie als gedistribueerde methoden om dergelijke problemen efficiënt op te lossen.

Samenvattend geeft dit proefschrift een eerste kennismaking met de wereld van gedis-
tribueerde optimalisatie bekeken door de lens van monotone operatortheorie. We zijn
van mening dat dit perspectief een ideale referentie biedt voor de analyse van dergeli-
jke algoritmen en tegelijkertijd een algemeen kader schetst voor convex optimalisatie
methoden. Hoewel dit proefschrift niet het einde van deze tak van onderzoek is, toont
dit werk het potentieel van monotone operatortheorie als een overkoepelende methode
voor de ontwikkeling en analyse van gedistribueerde optimalisatiemethoden.

ACKNOWLEDGEMENTS

“Well, we knocked the bastard off.”

Sir Edmund Hillary

This thesis, while a byproduct of my studies over the last four years, is certainly not
something I have achieved on my own. While I cannot name everybody here, I would
like to offer my sincerest thanks to a number of people.

Firstly, to my promotors Bastiaan and Richard, your guidance these past four years
has been unending and your patience unwavering. There were many times when I could
not see the wood for the trees, when I felt lost and overwhelmed and you were always
solid references. Thank you for letting me explore when I could and for nudging me
back on track when I strayed to far off course. In particular, to Bastiaan I am so grateful
for the faith you put in me by offering me the chance to come to Delft. I am so lucky to
have had the chance to have you both guiding me through this time.

To my office mates, Andreas, Aydin, Elvin, Jamal, Jie, Pim and Wangyang, thanks for
putting up with me for these last four years. Through it all, the laughs, the sport, the cake,
the camaraderie, the philosophy and the jokes, I feel that I have grown so much during
my time with you. To my other colleagues, whether it be running, football, volleyball,
rock climbing, cross country skiing, exploring, dinner, coffee or more, thank you so much
for making my years in Delft enjoyable and rememberable. I am so happy to have been
a part of the quirky family we have at CAS.

To my friends, where ever you are in the world, be it New Zealand, the Netherlands,
or even further afield, thank you for being who you are. I know that I am not the best
at keeping in touch but when we do meet up I cherish every moment. It is hard living
between both sides of the world but at the same time it makes the times we have shared
and will continue to share in the future that much more special.

To my family, my mother Mandy, my father Glenn and my brother Ben, I am sorry I
have been gone for so long and I am sorry that I will be gone for a while longer. Being so
far away from you for so long has been hard and I am so grateful for your constant love
and support. While I hope that one day we can live closer together again, I am glad that
we live in an age where Skype exists and we can talk in a way that makes the distance feel
a bit less, even if only for a moment. You mean the world to me and I miss you every day.

Finally, to Elke. I don’t think I would be the person I am now if we had not met. Thank
you for picking me up when things were too tough, for reveling in the good times when
things were good and for always pushing me to be the best that I can. Through all the
mountains we have climbed, and valleys we have walked, thank you for just being you. I
love you and I can’t wait to see what the future for us together holds.

229

BIBLIOGRAPHY

[1] R. Hanna, A. Rohm, and V. L. Crittenden, “We’re all connected: The power of the
social media ecosystem,” Business horizons, vol. 54, no. 3, pp. 265–273, 2011.

[2] N. Antonopoulos and L. Gillam, Cloud computing. Springer, 2010.

[3] P. Palensky and D. Dietrich, “Demand side management: Demand response, intel-
ligent energy systems, and smart loads,” IEEE transactions on industrial informat-
ics, vol. 7, no. 3, pp. 381–388, 2011.

[4] M. Gerla, E.-K. Lee, G. Pau, and U. Lee, “Internet of vehicles: From intelligent grid
to autonomous cars and vehicular clouds,” in Internet of Things (WF-IoT), 2014
IEEE World Forum on. IEEE, 2014, pp. 241–246.

[5] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,” Computer
networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[6] T. Danova, “Morgan stanley: 75 billion devices will be connected to the internet of
things by 2020,” Business Insider, vol. 2, 2013.

[7] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet of things for
smart cities,” IEEE Internet of Things journal, vol. 1, no. 1, pp. 22–32, 2014.

[8] H. Messer, “Wireless communication links as opportunisic iot for near ground rain
monitoring,” in 2018 IEEE Statistical Signal Processing Workshop (SSP). IEEE,
2018, pp. 115–119.

[9] P. Kumar, L. Morawska, C. Martani, G. Biskos, M. Neophytou, S. Di Sabatino,
M. Bell, L. Norford, and R. Britter, “The rise of low-cost sensing for managing air
pollution in cities,” Environment international, vol. 75, pp. 199–205, 2015.

[10] A. Nedic, A. Olshevsky, A. Ozdaglar, and J. Tsitsiklis, “On distributed averaging
algorithms and quantization effects,” IEEE Trans. on Automatic Control, vol. 54,
no. 11, pp. 2506–2517, 2009.

[11] A. Nedić and A. Olshevsky, “Distributed optimization over time-varying directed
graphs,” IEEE Transactions on Automatic Control, vol. 60, no. 3, pp. 601–615, 2015.

[12] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip algorithms,”
IEEE/ACM Trans. on Networking (TON), vol. 14, no. SI, pp. 2508–2530, 2006.

[13] Y. Weiss and W. Freeman, “On the optimality of solutions of the max-product
belief-propagation algorithm in arbitrary graphs,” IEEE Trans. on Information
Theory, vol. 47, no. 2, pp. 736–744, 2001.

231

9

232 BIBLIOGRAPHY

[14] A. Schwing, T. Hazan, M. Pollefeys, and R. Urtasun, “Distributed message pass-
ing for large scale graphical models,” in Computer vision and pattern recognition
(CVPR), 2011 IEEE Conf. on. IEEE, 2011, pp. 1833–1840.

[15] K. Murphy, Y. Weiss, and M. Jordan, “Loopy belief propagation for approximate
inference: An empirical study,” in Proceedings of the Fifteenth Conf. on Uncertainty
in artificial intelligence. Morgan Kaufmann Publishers Inc., 1999, pp. 467–475.

[16] S. Segarra, A. G. Marques, and A. Ribeiro, “Distributed implementation of linear
network operators using graph filters,” in Communication, Control, and Comput-
ing (Allerton), 2015 53rd Annual Allerton Conference on. IEEE, 2015, pp. 1406–
1413.

[17] A. Loukas, A. Simonetto, and G. Leus, “Distributed autoregressive moving average
graph filters,” IEEE Signal Processing Letters, vol. 22, no. 11, pp. 1931–1935, 2015.

[18] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization
and statistical learning via the alternating direction method of multipliers,” Foun-
dations and Trends® in Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.

[19] P. Bianchi, W. Hachem, and I. Franck, “A stochastic coordinate descent primal-dual
algorithm and applications,” in Machine Learning for Signal Processing (MLSP),
2014 IEEE Int. Workshop on. IEEE, 2014, pp. 1–6.

[20] P. Latafat and P. Patrinos, “Asymmetric forward-backward-adjoint splitting for
solving monotone inclusions involving three operators,” Computational Opt. and
Applications, pp. 1–37, 2016.

[21] Y. Nesterov and A. Nemirovskii, Interior-point polynomial algorithms in convex
programming. Siam, 1994, vol. 13.

[22] D. P. Palomar and Y. C. Eldar, Convex optimization in signal processing and com-
munications. Cambridge university press, 2010.

[23] A. B. Gershman, N. D. Sidiropoulos, S. Shahbazpanahi, M. Bengtsson, and B. Ot-
tersten, “Convex optimization-based beamforming,” IEEE Signal Processing Mag-
azine, vol. 27, no. 3, pp. 62–75, 2010.

[24] G. E. Dullerud and F. Paganini, A course in robust control theory: a convex ap-
proach. Springer Science & Business Media, 2013, vol. 36.

[25] M. Zibulevsky and M. Elad, “L1-l2 optimization in signal and image processing,”
IEEE Signal Processing Magazine, vol. 27, no. 3, pp. 76–88, 2010.

[26] R. Rockafellar, Convex analysis. Princeton, NJ: Princeton University Press, 1970.

[27] ——, “Monotone operators and the proximal point algorithm,” SIAM journal on
control and Opt., vol. 14, no. 5, pp. 877–898, 1976.

[28] ——, “On the maximal monotonicity of subdifferential mappings,” Pacific Journal
of Mathematics, vol. 33, no. 1, pp. 209–216, 1970.

BIBLIOGRAPHY

9

233

[29] D. Bertsekas and J. Tsitsiklis, Parallel and distributed computation: numerical
methods. Prentice hall Englewood Cliffs, NJ, 1989, vol. 23.

[30] J. Tsitsiklis, “Problems in decentralized decision making and computation.” Mas-
sachusetts Inst of Tech Cambridge lab for information and decision systems, Tech.
Rep., 1984.

[31] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous deterministic
and stochastic gradient optimization algorithms,” IEEE Trans. on automatic con-
trol, vol. 31, no. 9, pp. 803–812, 1986.

[32] J. Eckstein, “Splitting methods for monotone operators with applications to paral-
lel optimization,” Ph.D. dissertation, Massachusetts Institute of Technology, 1989.

[33] ——, “Parallel alternating direction multiplier decomposition of convex pro-
grams,” Journal of Opt. Theory and Applications, vol. 80, no. 1, pp. 39–62, 1994.

[34] H. Bauschke and P. Combettes, Convex analysis and monotone operator theory in
Hilbert spaces. New York, NY.: Springer NY, 2017, vol. 408.

[35] J. C. Nash, “The (dantzig) simplex method for linear programming,” Computing in
Science & Engineering, vol. 2, no. 1, pp. 29–31, 2000.

[36] L. G. Khachiyan, “A polynomial algorithm in linear programming,” in Doklady
Academii Nauk SSSR, vol. 244, 1979, pp. 1093–1096.

[37] M. Zhu and S. Martínez, “On distributed convex optimization under inequality
and equality constraints,” IEEE Trans. on Automatic Control, vol. 57, no. 1, pp. 151–
164, 2012.

[38] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-agent opti-
mization,” IEEE Trans. on Automatic Control, vol. 54, no. 1, pp. 48–61, 2009.

[39] K. I. Tsianos, S. Lawlor, and M. G. Rabbat, “Consensus-based distributed optimiza-
tion: Practical issues and applications in large-scale machine learning,” in Com-
munication, Control, and Computing (Allerton), 2012 50th Annual Allerton Con-
ference on. IEEE, 2012, pp. 1543–1550.

[40] ——, “Push-sum distributed dual averaging for convex optimization,” in Decision
and Control (CDC), 2012 IEEE 51st Annual Conference on. IEEE, 2012, pp. 5453–
5458.

[41] A. Chambolle, V. Caselles, D. Cremers, M. Novaga, and T. Pock, “An introduction to
total variation for image analysis,” Theoretical foundations and numerical meth-
ods for sparse recovery, vol. 9, no. 263-340, p. 227, 2010.

[42] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust face recognition via
sparse representation,” IEEE transactions on pattern analysis and machine intelli-
gence, vol. 31, no. 2, pp. 210–227, 2009.

9

234 BIBLIOGRAPHY

[43] D. L. Donoho, “Compressed sensing,” IEEE Transactions on information theory,
vol. 52, no. 4, pp. 1289–1306, 2006.

[44] R. G. Baraniuk, “Compressive sensing [lecture notes],” IEEE signal processing mag-
azine, vol. 24, no. 4, pp. 118–121, 2007.

[45] S. Mallat, A wavelet tour of signal processing: the sparse way. Academic press,
2008.

[46] D. Malioutov, M. Cetin, and A. S. Willsky, “A sparse signal reconstruction perspec-
tive for source localization with sensor arrays,” IEEE transactions on signal pro-
cessing, vol. 53, no. 8, pp. 3010–3022, 2005.

[47] E. Ryu and S. Boyd, “Primer on monotone operator methods,” Appl. Comput.
Math, vol. 15, no. 1, pp. 3–43, 2016.

[48] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press,
2004.

[49] D. O?Connor and L. Vandenberghe, “On the equivalence of the primal-dual hybrid
gradient method and douglas-rachford splitting,” 2017.

[50] G. Zhang and R. Heusdens, “Distributed optimization using the primal-dual
method of multipliers,” IEEE Trans. on Signal and Information Processing over Net-
works, 2016, accepted for publication.

[51] ——, “On simplifying the primal-dual method of multipliers,” in 2016 IEEE Int.
Conf. on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2016, pp. 4826–
4830.

[52] A. Simonetto and H. Jamali-Rad, “Primal recovery from consensus-based dual de-
composition for distributed convex optimization,” Journal of Opt. Theory and Ap-
plications, vol. 168, no. 1, pp. 172–197, 2016.

[53] D. Mosk-Aoyama, T. Roughgarden, and D. Shah, “Fully distributed algorithms for
convex optimization problems,” SIAM Journal on Opt., vol. 20, no. 6, pp. 3260–
3279, 2010.

[54] D. Mateos-Núnez and J. Cortés, “Distributed subgradient methods for saddle-
point problems,” in Decision and Control (CDC), 2015 IEEE 54th Annual Confer-
ence on. IEEE, 2015, pp. 5462–5467.

[55] T.-H. Chang, A. Nedić, and A. Scaglione, “Distributed constrained optimization
by consensus-based primal-dual perturbation method,” IEEE Trans. on Automatic
Control, vol. 59, no. 6, pp. 1524–1538, 2014.

[56] T.-H. Chang, “A proximal dual consensus admm method for multi-agent con-
strained optimization,” IEEE Trans. on Signal Processing, vol. 64, no. 14, pp. 3719–
3734, 2016.

BIBLIOGRAPHY

9

235

[57] S. Lee and M. M. Zavlanos, “Distributed primal-dual methods for online con-
strained optimization,” in American Control Conference (ACC), 2016. IEEE, 2016,
pp. 7171–7176.

[58] I. Notarnicola and G. Notarstefano, “Constraint coupled distributed optimization:
Relaxation and duality approach,” arXiv preprint arXiv:1711.09221, 2017.

[59] A. Falsone, K. Margellos, S. Garatti, and M. Prandini, “Dual decomposition for
multi-agent distributed optimization with coupling constraints,” Automatica,
vol. 84, pp. 149–158, 2017.

[60] A. Nedić and A. Olshevsky, “Stochastic gradient-push for strongly convex functions
on time-varying directed graphs,” IEEE Transactions on Automatic Control, vol. 61,
no. 12, pp. 3936–3947, 2016.

[61] B. Gerencsér and J. M. Hendrickx, “Push sum with transmission failures,” IEEE
Transactions on Automatic Control, 2018.

[62] D. Estrin, L. Girod, G. Pottie, and M. Srivastava, “Instrumenting the world with
wireless sensor networks,” in Acoustics, Speech, and Signal Processing, 2001. Pro-
ceedings.(ICASSP’01). 2001 IEEE Int. Conf. on, vol. 4. IEEE, 2001, pp. 2033–2036.

[63] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor net-
works: a survey,” Computer networks, vol. 38, no. 4, pp. 393–422, 2002.

[64] A. Swami, Q. Zhao, Y.-W. Hong, and L. Tong, Wireless sensor networks: Signal pro-
cessing and communications. John Wiley & Sons, 2007.

[65] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson, “Wireless sen-
sor networks for habitat monitoring,” in Proceedings of the 1st ACM Int. workshop
on Wireless sensor networks and applications. Acm, 2002, pp. 88–97.

[66] A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, and J. Zhao, “Habitat monitor-
ing: Application driver for wireless communications technology,” ACM SIGCOMM
Computer Communication Review, vol. 31, no. 2 supplement, pp. 20–41, 2001.

[67] V. C. Gungor, B. Lu, and G. P. Hancke, “Opportunities and challenges of wireless
sensor networks in smart grid,” IEEE Trans. on industrial electronics, vol. 57, no. 10,
pp. 3557–3564, 2010.

[68] F. Blaabjerg, R. Teodorescu, M. Liserre, and A. Timbus, “Overview of control and
grid synchronization for distributed power generation systems,” IEEE Trans. In-
dustrial Electronics, vol. 53, no. 5, pp. 1398–1409, 2006.

[69] M. Erol-Kantarci and H. T. Mouftah, “Wireless sensor networks for cost-efficient
residential energy management in the smart grid,” IEEE Trans. on Smart Grid,
vol. 2, no. 2, pp. 314–325, 2011.

9

236 BIBLIOGRAPHY

[70] C. R. Baker, K. Armijo, S. Belka, M. Benhabib, V. Bhargava, N. Burkhart, A. Der Mi-
nassians, G. Dervisoglu, L. Gutnik, M. B. Haick et al., “Wireless sensor networks for
home health care,” in Advanced Information Networking and Applications Work-
shops, 2007, AINAW’07. 21st Int. Conf. on, vol. 2. IEEE, 2007, pp. 832–837.

[71] H. Alemdar and C. Ersoy, “Wireless sensor networks for healthcare: A survey,”
Computer Networks, vol. 54, no. 15, pp. 2688–2710, 2010.

[72] F. Bénézit, V. Blondel, P. Thiran, J. Tsitsiklis, and M. Vetterli, “Weighted gossip: Dis-
tributed averaging using non-doubly stochastic matrices,” in Information theory
proceedings (isit), 2010 IEEE Int. symposium on. IEEE, 2010, pp. 1753–1757.

[73] D. Shuman, S. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, “The emerging
field of signal processing on graphs: Extending high-dimensional data analysis to
networks and other irregular domains,” IEEE Signal Processing Mag., vol. 30, no. 3,
pp. 83–98, 2013.

[74] E. Isufi, A. Simonetto, A. Loukas, and G. Leus, “Stochastic graph filtering on time-
varying graphs,” in Computational Advances in Multi-Sensor Adaptive Processing
(CAMSAP), 2015 IEEE 6th Int. Workshop on. IEEE, 2015, pp. 89–92.

[75] Z. Luo and W. Yu, “An introduction to convex optimization for communications
and signal processing,” IEEE Journal on selected areas in communications, vol. 24,
no. 8, pp. 1426–1438, 2006.

[76] R. Rockafellar, “Network flows and monotropic optimization,” 1984.

[77] L. Condat, “A primal-dual splitting method for convex optimization involving lips-
chitzian, proximable and linear composite terms,” Journal of Opt. Theory and Ap-
plications, vol. 158, no. 2, pp. 460–479, 2013.

[78] B. Vũ, “A splitting algorithm for dual monotone inclusions involving cocoercive
operators,” Advances in Computational Mathematics, vol. 38, no. 3, pp. 667–681,
2013.

[79] G. Scutari, F. Facchinei, and L. Lampariello, “Parallel and distributed methods for
constrained nonconvex optimization-part i: Theory.” IEEE Trans. Signal Process-
ing, vol. 65, no. 8, pp. 1929–1944, 2017.

[80] G. Scutari, F. Facchinei, L. Lampariello, S. Sardellitti, and P. Song, “Parallel and dis-
tributed methods for constrained nonconvex optimization-part ii: Applications in
communications and machine learning,” IEEE Trans. on Signal Processing, vol. 65,
no. 8, pp. 1945–1960, 2017.

[81] J. Eckstein and W. Yao, “Augmented Lagrangian and alternating direction methods
for convex optimization: A tutorial and some illustrative computational results,”
RUTCOR Research Reports, vol. 32, p. 3, 2012.

BIBLIOGRAPHY

9

237

[82] P. Giselsson and S. Boyd, “Linear convergence and metric selection for Douglas-
Rachford splitting and ADMM,” IEEE Trans. on Automatic Control, vol. 62, no. 2,
pp. 532–544, 2017.

[83] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “On the linear convergence of the
ADMM in decentralized consensus optimization.” IEEE Trans. Signal Processing,
vol. 62, no. 7, pp. 1750–1761, 2014.

[84] N. Parikh, S. P. Boyd et al., “Proximal algorithms.” Foundations and Trends in Opt.,
vol. 1, no. 3, pp. 127–239, 2014.

[85] P. Bianchi, W. Hachem, and F. Iutzeler, “A coordinate descent primal-
dual algorithm and application to distributed asynchronous optimization,”
ArXiv:1407:0898, 2014.

[86] J. Eckstein and D. Bertsekas, “On the Douglas-Rachford splitting method and the
proximal point algorithm for maximal monotone operators,” Math. Programming,
vol. 55, no. 1-3, pp. 293–318, 1992.

[87] W. Deng and W. Yin, “On the global and linear convergence of the generalized
alternating direction method of multipliers,” Journal of Scientific Computing,
vol. 66, no. 3, pp. 889–916, 2016.

[88] M. Fält and P. Giselsson, “Optimal convergence rates for generalized alternating
projections,” arXiv preprint arXiv:1703.10547, 2017.

[89] H. Bauschke, J. Cruz, T. Nghia, H. Pha, and X. Wang, “Optimal rates of linear
convergence of relaxed alternating projections and generalized douglas-rachford
methods for two subspaces,” Numerical Algorithms, vol. 73, no. 1, pp. 33–76, 2016.

[90] P. Erdos and A. Rényi, “On the evolution of random graphs,” Publ. Math. Inst.
Hung. Acad. Sci, vol. 5, no. 1, pp. 17–60, 1960.

[91] M. Swan, Blockchain: Blueprint for a new economy. " O’Reilly Media, Inc.", 2015.

[92] F. Bénézit, A. Dimakis, P. Thiran, and M. Vetterli, “Gossip along the way: Order-
optimal consensus through randomized path averaging,” in Allerton, no. LCAV-
CONF-2009-004, 2007.

[93] M. Mehyar, D. Spanos, J. Pongsajapan, S. Low, and R. Murray, “Asynchronous dis-
tributed averaging on communication networks,” IEEE/ACM Trans. on Networking
(TON), vol. 15, no. 3, pp. 512–520, 2007.

[94] F. R. Kschischang, B. Frey, and H. Loeliger, “Factor graphs and the sum-product
algorithm,” IEEE Trans. on information theory, vol. 47, no. 2, pp. 498–519, 2001.

[95] S. Chen, A. Sandryhaila, J. Moura, and J. Kovacevic, “Signal denoising on graphs
via graph filtering,” in Signal and Information Processing (GlobalSIP), 2014 IEEE
Global Conf. on. IEEE, 2014, pp. 872–876.

9

238 BIBLIOGRAPHY

[96] G. Zhang and R. Heusdens, “Distributed optimization using the primal-dual
method of multipliers,” IEEE Trans. on Signal and Information Processing over Net-
works, 2017.

[97] P. Latafat, L. Stella, and P. Patrinos, “New primal-dual proximal algorithm for dis-
tributed optimization,” in Decision and Control (CDC), 2016 IEEE 55th Conf. on.
IEEE, 2016, pp. 1959–1964.

[98] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,” Systems &
Control Letters, vol. 53, no. 1, pp. 65–78, 2004.

[99] T. Sherson, R. Heusdens, and W. B. Kleijn, “Derivation and analysis of the primal-
dual method of multipliers based on monotone operator theory,” arXiv preprint
arXiv:1706.02654, 2018.

[100] G. Barrenetxea, F. Ingelrest, G. Schaefer, and M. Vetterli, “Wireless sensor networks
for environmental monitoring: The sensorscope experience,” in Communications,
2008 IEEE International Zurich Seminar on. IEEE, 2008, pp. 98–101.

[101] Y. Cao, W. Yu, W. Ren, and G. Chen, “An overview of recent progress in the study of
distributed multi-agent coordination,” IEEE Transactions on Industrial informat-
ics, vol. 9, no. 1, pp. 427–438, 2013.

[102] A. Nedić, A. Olshevsky, and M. G. Rabbat, “Network topology and communication-
computation tradeoffs in decentralized optimization,” Proceedings of the IEEE, vol.
106, no. 5, pp. 953–976, 2018.

[103] A. Agarwal, M. J. Wainwright, and J. C. Duchi, “Distributed dual averaging in net-
works,” in Advances in Neural Information Processing Systems, 2010, pp. 550–558.

[104] F. Iutzeler, P. Bianchi, P. Ciblat, and W. Hachem, “Explicit convergence rate of a
distributed alternating direction method of multipliers,” IEEE Transactions on Au-
tomatic Control, vol. 61, no. 4, pp. 892–904, 2016.

[105] G. França and J. Bento, “Markov chain lifting and distributed ADMM,” IEEE Signal
Processing Letters, vol. 24, no. 3, pp. 294–298, 2017.

[106] ——, “How is distributed admm affected by network topology?” arXiv preprint
arXiv:1710.00889, 2017.

[107] C. Jordan, “Essai sur la géométriean dimensions,” Bull. Soc. Math. France, vol. 3,
pp. 103–174, 1875.

[108] R. A. Horn, R. A. Horn, and C. R. Johnson, Matrix analysis. Cambridge university
press, 1990.

[109] F. R. Chung, Spectral graph theory. American Mathematical Soc., 1997, no. 92.

[110] S. Barik, R. B. Bapat, and S. Pati, “On the Laplacian spectra of product graphs,”
Applicable Analysis and Discrete Mathematics, pp. 39–58, 2015.

BIBLIOGRAPHY

9

239

[111] G. Lu and W. H. Zeng, “Cloud computing survey,” in Applied Mechanics and Mate-
rials, vol. 530. Trans. Tech. Publ, 2014, pp. 650–661.

[112] R. Bekkerman, M. Bilenko, and J. Langford, Scaling up machine learning: Parallel
and distributed approaches. Cambridge University Press, 2011.

[113] D. Davis and W. Yin, “A three-operator splitting scheme and its optimization ap-
plications,” Set-valued and variational analysis, vol. 25, no. 4, pp. 829–858, 2017.

[114] P. L. Combettes and V. R. Wajs, “Signal recovery by proximal forward-backward
splitting,” Multiscale Modeling & Simulation, vol. 4, no. 4, pp. 1168–1200, 2005.

[115] V. Berinde, Iterative approximation of fixed points. Springer, 2007, vol. 1912.

[116] R. Rockafellar, “On the maximality of sums of nonlinear monotone operators,”
Trans. of the American Mathematical Society, vol. 149, no. 1, pp. 75–88, 1970.

[117] P. Erdös and A. Rényi, “On random graphs, i,” Publicationes Mathematicae (Debre-
cen), vol. 6, pp. 290–297, 1959.

[118] D. J. Watts and S. H. Strogatz, “Collective dynamics of “Small-World” networks,”
nature, vol. 393, no. 6684, p. 440, 1998.

[119] M. Penrose, Random geometric graphs. Oxford university press, 2003, no. 5.

[120] P. Gupta and P. Kumar, “The capacity of wireless networks,” IEEE Trans. on Infor-
mation Theory, vol. 46, no. 2, pp. 388–404, 2000.

[121] H. L. Van Trees, Optimum array processing: Part IV of detection, estimation, and
modulation theory. John Wiley & Sons, 2004.

[122] C. Shannon, “Communication in the presence of noise,” Proceedings of the IRE,
vol. 37, no. 1, pp. 10–21, 1949.

[123] H. Markowitz, “Portfolio selection,” The journal of finance, vol. 7, no. 1, pp. 77–91,
1952.

[124] A. Nedic, A. Olshevsky, and W. Shi, “Achieving geometric convergence for dis-
tributed optimization over time-varying graphs,” SIAM Journal on Optimization,
vol. 27, no. 4, pp. 2597–2633, 2017.

[125] A. Nedic, A. Olshevsky, A. Ozdaglar, and J. N. Tsitsiklis, “Distributed subgradient
methods and quantization effects,” in Decision and Control, 2008. CDC 2008. 47th
IEEE Conference on. IEEE, 2008, pp. 4177–4184.

[126] B. D. Van Veen and K. M. Buckley, “Beamforming: A versatile approach to spatial
filtering,” IEEE ASSP Mag., vol. 5, no. 5, pp. 4–24, Apr. 1988.

[127] H. L. Van Trees, Detection, Estimation, and Modulation Theory, Optimum Array
Processing. John Wiley & Sons, 2004.

9

240 BIBLIOGRAPHY

[128] S. A. Vorobyov, “Principles of minimum variance robust adaptive beamforming
design,” ELSEVIER Signal Process., vol. 93, no. 12, pp. 3264–3277, Dec. 2013.

[129] J. Benesty, M. M. Sondhi, and Y. Huang (Eds), Springer handbook of speech process-
ing. Springer, 2008.

[130] M. Brandstein and D. Ward (Eds.), Microphone arrays: signal processing techniques
and applications. Springer, 2001.

[131] P. Vary and R. Martin, Digital speech transmission: Enhancement, coding and error
concealment. John Wiley & Sons, 2006.

[132] S. Gannot, E. Vincet, S. Markovich-Golan, and A. Ozerov, “A consolidated per-
spective on multi-microphone speech enhancement and source separation,” IEEE
Trans. Audio, Speech, Language Process., vol. 25, no. 4, pp. 692–730, April 2017.

[133] A. Bertrand, “Applications and trends in wireless acoustic sensor networks: A sig-
nal processing perspective,” in 18th IEEE Symp. on Comm. and Vehicular Tech.,
Nov. 2011, pp. 1–6.

[134] Y. Zeng and R. C. Hendriks, “Distributed delay and sum beamformer for speech
enhancement via randomized gossip,” IEEE Trans. Audio, Speech, Language Pro-
cess., vol. 22, no. 1, pp. 260–273, Jan. 2014.

[135] R. Heusdens, G. Zhang, R. C. Hendriks, Y. Zeng, and W. B. Kleijn, “Distributed
MVDR beamforming for (wireless) microphone networks using message passing,”
in Int. Workshop Acoustic Signal Enhancement (IWAENC), Sep. 2012, pp. 1–4.

[136] M. O’Connor and W. B. Kleijn, “Diffusion-based distributed MVDR beamformer,”
in IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), May 2014, pp. 810–814.

[137] M. O’Connor, W. B. Kleijn, and T. Abhayapala, “Distributed sparse MVDR beam-
forming using the bi-alternating direction method of multipliers,” in IEEE Int.
Conf. Acoust., Speech, Signal Process. (ICASSP), Mar. 2016.

[138] A. Bertrand and M. Moonen, “Distributed node-specific LCMV beamforming in
wireless sensor networks,” IEEE Trans. Signal Process., vol. 60, no. 1, pp. 233–246,
Sep. 2012.

[139] ——, “Distributed LCMV beamforming in a wireless sensor network with single-
channel per-node signal transmission,” IEEE Trans. Signal Process., vol. 61, no. 13,
pp. 3447–3459, Apr. 2013.

[140] S. Markovich, S. Gannot, and I. Cohen, “Distributed multiple constraints general-
ized sidelobe canceler for fully connected wireless acoustic sensor networks,” IEEE
Trans. Audio, Speech, Language Process., vol. 21, no. 2, pp. 343–356, Oct. 2013.

[141] T. Sherson, W. B. Kleijn, and R. Heusdens, “A distributed algorithm for robust
LCMV beamforming,” in IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP),
Mar. 2016.

BIBLIOGRAPHY

9

241

[142] S. Doclo, M. Moonen, T. V. den Bogaert, and J. Wouters, “Reduced-bandwidth and
distributed MWF-based noise reduction algorithms for binaural hearing aids,”
IEEE Trans. Audio, Speech, Language Process., vol. 17, no. 1, pp. 38–51, Jan. 2009.

[143] J. Szurley, A. Bertrand, and M. Moonen, “Topology-independent distributed adap-
tive node-specific signal estimation in wireless sensor networks,” IEEE Trans. Sig-
nal and Info. Process. Over Networks, vol. 3, no. 1, pp. 130–144, 2017.

[144] J. Capon, “High-resolution frequency-wavenumber spectrum analysis,” Proc. of
the IEEE, vol. 57, no. 8, pp. 1408–1418, Aug. 1969.

[145] O. L. Frost III, “An algorithm for linearly constrained adaptive array processing,”
Proc. of the IEEE, vol. 60, no. 8, pp. 926–935, Aug. 1972.

[146] H. Cox, “Resolving power and sensitivity to mismatch of optimum array proces-
sors,” J. Acoust. Soc. Amer., vol. 54, no. 3, pp. 771–785, Sep. 1973.

[147] R. C. Hendriks and T. Gerkmann, “Noise correlation matrix estimation for multi-
microphone speech enhancement,” IEEE Trans. Audio, Speech, Language Process.,
vol. 20, no. 1, pp. 223–233, Jan. 2012.

[148] H. Cox, “Robust adaptive beamforming,” IEEE Trans. Acoust., Speech, Signal Pro-
cess., vol. ASSP-35, no. 10, pp. 1365–1376, Oct. 1987.

[149] B. D. Carlson, “Covariance matrix estimation errors and diagonal loading in adap-
tive arrays,” IEEE Trans. Aerosp. Electron. Systems, vol. 24, no. 4, pp. 397–401, July
1988.

[150] J. Li, P. Stoica, and Z. Wang, “On robust Capon beamforming and diagonal load-
ing,” IEEE Trans. Signal Process., vol. 51, no. 7, pp. 1702–1715, July 2003.

[151] V. M. Tavakoli, J. R. Jensen, R. Heusdens, J. Benesty, and M. G. Christensen, “Ad hoc
microphone array beamforming using the primal-dual method of multipliers,” in
EURASIP Europ. Signal Process. Conf. (EUSIPCO). IEEE, 2016, pp. 1088–1092.

[152] J. L. Flanagan, A. C. Surendran, and E. E. Jan, “Spatially selective sound capture
for speech and audio processing,” ELSEVIER Speech Commun., vol. 13, no. 1-2, pp.
207–222, Oct. 1993.

[153] S. Gannot, D. Burshtein, and E. Weinstein, “Signal enhancement using beamform-
ing and nonstationarity with applications to speech,” IEEE Trans. Signal Process.,
pp. 1614–1626, Aug. 2001.

[154] J. S. Bradley, “Predictors of speech intelligibility in rooms,” J. Acoust. Soc. Amer.,
vol. 80, no. 3, pp. 837–845, Sept. 1986.

[155] J. S. Bradley and H. Sato, “On the importance of early reflections for speech in
rooms,” J. Acoust. Soc. Amer., vol. 113, no. 6, pp. 3233–3244, June 2003.

9

242 BIBLIOGRAPHY

[156] S. Gannot and I. Cohen, “Speech enhancement based on the general transfer func-
tion GSC and postfiltering,” IEEE Trans. Speech Audio Process., pp. 561–571, Nov.
2004.

[157] S. Markovich, S. Gannot, and I. Cohen, “Multichannel eigenspace beamforming in
a reverberant noisy environment with multiple interfering speech signals,” IEEE
Trans. Audio, Speech, Language Process., pp. 1071–1086, Aug. 2009.

[158] A. Bertrand and M. Moonen, “Distributed adaptive generalized eigenvector esti-
mation of a sensor signal covariance matrix pair in a fully connected sensor net-
work,” ELSEVIER Signal Process., vol. 106, pp. 209–214, Jan. 2015.

[159] S. Braun and E. A. P. Habets, “Dereverberation in noisy environments using ref-
erence signals and a maximum likelihood estimator,” in EURASIP Europ. Signal
Process. Conf. (EUSIPCO), Sep. 2013.

[160] M. Souden, J. Benesty, and S. Affes, “A study of the LCMV and MVDR noise reduc-
tion filters,” IEEE Trans. Signal Process., vol. 58, no. 9, pp. 4925–4935, Sep. 2010.

[161] E. Hadad, S. Doclo, and S. Gannot, “The binaural LCMV beamformer and its per-
formance analysis,” IEEE Trans. Audio, Speech, Language Process., vol. 24, no. 3,
pp. 543–558, Jan. 2016.

[162] J. Bitzer, K. U. Simmer, and K. Kammeyer, “Theoretical noise reduction limits of
the generalized sidelobe canceler (GSC) for speech enhancement,” in IEEE Int.
Conf. Acoust., Speech, Signal Process. (ICASSP), vol. 5, March 1999, pp. 2965–2968.

[163] I. A. McCowan and H. Bourlard, “Microphone array post-filter based on noise field
coherence,” IEEE Trans. Audio, Speech, Language Process., vol. 11, no. 6, pp. 709–
716, Nov. 2003.

[164] E. N. Gilbert and S. P. Morgan, “Optimum design of directive antenna arrays sub-
ject to random variations,” Bell Labs Technical Journal, vol. 34, no. 3, pp. 637–663,
May 1955.

[165] D. Estrin, L. Girod, G. Pottie, and M. Srivastava, “Instrumenting the world with
wireless sensor networks,” in IEEE Int. Conf. Acoust., Speech, Signal Process.
(ICASSP), vol. 4, May 2001, pp. 2033–2036.

[166] D. Brandwood, “A complex gradient operator and its application in adaptive array
theory,” IEE Proc. Pts. F and H, vol. 130, no. 1, pp. 11–16, Feb. 1983.

[167] S. Markovich, A. Bertrand, M. Moonen, and S. Gannot, “Optimal distributed
minimum-variance beamforming approaches for speech enhancement in wire-
less acoustic sensor networks,” ELSEVIER Signal Process., vol. 107, pp. 4–20, Feb.
2015.

[168] J. B. Allen and D. A. Berkley, “Image method for efficiently simulating small-room
acoustics,” J. Acoust. Soc. Amer., vol. 65, no. 4, pp. 943–950, Apr. 1979.

BIBLIOGRAPHY

9

243

[169] E. A. P. Habets, “Room impulse response generator,” https://www.
audiolabs-erlangen.de/fau/professor/habets/software/rir-generator/, 2010.

[170] J. J. Shynk, “Frequency-domain and multirate adaptive filtering,” IEEE Signal Pro-
cess. Mag., vol. 9, no. 1, pp. 14–37, Jan. 1992.

[171] T. Drugman, Y. Stylianou, Y. Kida, and M. Akamine, “Voice activity detection:
Merging source and filter-based information,” IEEE Signal Process. Lett., vol. 23,
no. 2, pp. 252–256, 2016.

[172] C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen, “An algorithm for intelli-
gibility prediction of time-frequency weighted noisy speech,” IEEE Trans. Audio,
Speech, Language Process., vol. 19, no. 7, pp. 2125–2136, Sep. 2011.

[173] C. Kanzow and Y. Shehu, “Generalized krasnoselskii–mann-type iterations for
nonexpansive mappings in hilbert spaces,” Computational Optimization and Ap-
plications, vol. 67, no. 3, pp. 595–620, 2017.

[174] J. A. G. Jonkman, T. Sherson, and R. Heusdens, “Quantisation effects in distributed
optimisation,” in 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing, ICASSP 2018, Calgary, AB, Canada, April 15-20, 2018, 2018, pp.
3649–3653. [Online]. Available: https://doi.org/10.1109/ICASSP.2018.8461782

https://www.audiolabs-erlangen.de/fau/professor/habets/software/rir-generator/
https://www.audiolabs-erlangen.de/fau/professor/habets/software/rir-generator/
https://doi.org/10.1109/ICASSP.2018.8461782

CURRICULUM VITÆ

Thomas William Sherson was born in Petersfield,
United Kingdom on the 30th of March 1992. His high
school education was undertaken at Mount Aspiring
College, Wanaka, New Zealand from 2004 to 2010. In
2011 he moved to Wellington, New Zealand where he
undertook his bachelor of engineering degree at Victo-
ria University of Wellington which he completed with
first-class Honors, majoring in electrical and computer
systems engineering, in 2014. During this time, he took
part in an exchange to Limerick University, Limerick,
Ireland as part of the Industrialized Countries Instru-
ment Education Cooperation Program (ICIEP) in 2012
where he worked as a researcher developing low cost
sensor nodes for remote animal tracking. In 2013 he
worked as a research assistance for Victoria University
of Wellington while during his Honors year (2014) he worked with Callaghan Innovation,
Wellington, New Zealand, on the development of high-voltage, low-current power sup-
plies for medical microfluidic applications. He was also the recipient of the 2015 Victoria
University Medal of Academic Excellence for his work during his undergraduate studies.

In January of 2015, Thomas joined the Circuits and Systems (CAS) group at Delft Uni-
versity of Technology, Delft, The Netherlands to pursue his PhD under the supervision
of Professor W. Bastiaan Kleijn and Professor Richard Heusdens. This research was part
of the “Distributed Processing of Audio Signals” project sponsored by Huawei and fo-
cused on the area of distributed signal processing and in particular distributed convex
optimization. In 2018, he visited the Electrical and Computer Engineering department
at the University of California, Los Angeles (UCLA) under the supervision of Professor
Lieven Vandenberghe. His research interests include the likes of signal processing in
wireless sensor networks, distributed/decentralized optimization, monotone operator
theory, and audio signal processing. Additionally, he is an avid outdoorsman with a pas-
sion for nature, particularly mountains, and a love for music and music technology.

245

	I Prologue
	Introduction
	Overview
	Motivation: Computing in a Networked World
	Why Distributed Signal Processing?
	Distributed Convex Optimization
	Analysis of Existing Distributed Solvers
	Designing Distributed Solvers
	Distributed Signal Processing in Practice

	Contributions and Thesis Outline
	List of Publications and Other Contributions

	Monotone Operator Theory and Convex Optimization
	Introduction
	Euclidean spaces Spaces and Relational Mappings
	Monotone Operators and Convexity
	Stronger Functional Properties
	Manipulations of Operators
	Finding Fixed Points of Nonexpansive Operators

	Unconstrained Optimization
	Subgradient Descent
	Proximal Point Method

	Operator Splitting
	Forward-Backward Splitting
	Peaceman-Rachford Splitting
	Douglas-Rachford Splitting

	Duality
	Dual Ascent
	ADMM
	Primal-Dual Splitting

	Distributed Optimization
	Characteristics of Distributed Optimization Problems
	Designing Distributed Solvers For Edge-Constrained Optimization Problems
	Distributed Solver Design: Beyond ADMM

	A Pipeline for Distributed Signal Processing
	Conclusions

	II Analysis of Existing Distributed Solvers
	The Primal-Dual Method of Multipliers: A Monotone Perspective
	Introduction
	Related Work
	Main Contribution
	Organization of the Chapter

	Nomenclature
	A Derivation of the Primal-Dual Method of Multipliers Based on Monotone Operator Theory
	Problem Statement: Node Based Distributed Optimization
	Exploiting Separability Via Lagrangian Duality
	Simplification of Notation
	From the Extended Dual Problem to a Nonexpansive PDMM Operator
	On the Link with the Primal Dual Method of Multipliers
	On the Link with the Distributed Alternating Direction Method of Multipliers

	General Convergence Results for PDMM
	Convergence of the Primal Error ("026B3B0 x(k) - x*"026B3B0 2) of PDMM
	Primal Independence of a Non-Decreasing Subspace
	Optimality of Auxiliary Limit Points
	Averaged PDMM Convergence
	Lack of Convergence of PDMM for f0

	Geometric Convergence
	A Primal Geometric Convergence Bound for Strongly Convex and Smooth Functions
	Contractive Nature of PDMM Over a Subspace
	Inequalities due to the Contraction of PDMM
	A Geometric Rate Bound for PDMM Interpreted as an Optimization Problem
	Relationship with the Method Alternating of Projections
	From an Auxiliary Error Bound to a Geometric Primal Convergence Bound

	Numerical Experiments
	PDMM for Strongly Convex and Differentiable Functions
	Geometric Convergence of PDMM for Strongly Convex and Smooth Functions

	Conclusions

	Appendices
	Proof of Lemma 3.3.1
	Proof of Lemma 3.3.2
	Proof of Lemma 3.4.1
	Proof of Lemma 3.5.1
	Proof of Lemma 3.5.2

	Guaranteeing the Convergence of PDMM via Primal Regularization
	Organization of the Chapter
	Nomenclature
	Modifying the PDMM algorithm
	From a Prototype Optimization Problem to Equivalent Dual Form
	From an Unconstrained Optimization Problem to a Nonexpansive Operator
	Simplifying The Computation of Reflected Resolvents
	The Modified PDMM Algorithm (m-PDMM)

	On the Guaranteed Convergence of the m-PDMM Algorithm
	Convergence of the Primal Variables to a Limit State
	Feasibility of the Primal Limit State
	On the Limit States of the Dual Variables
	Optimality of the Primal-Dual Limit State

	Numerical Experiments
	Conclusions

	Appendices
	Proof of Lemma 4.3.1
	Proof of Lemma 4.3.2

	Network Topology and PDMM: Convergence Rate Analysis
	Introduction
	Related Work
	Main Contributions
	Organization of Paper

	Nomenclature
	Distributed Optimization Via the Primal Dual Method of Multipliers
	Problem Definition
	Simplification of Notation
	PDMM Algorithm

	A Tight Geometric Convergence Bound For PDMM for Strongly Convex, Smooth Functions
	Preliminary Functional Assumptions
	Independence of a Non-Contractive Subspace
	Bounding the Primal Error y(k+1)-y*
	Preservation of Strong Convexity and Smoothness
	Forming the Ellipsoidal Bound
	Principal Angles and Alternating Projections
	Towards a Stronger Convergence Rate Bound for PDMM
	Worst-Case Convergence Bound and Its Limiting Rate
	Optimal Step Size Choice For a Given Network

	Additional Analysis and Results
	The Connection with The Geometric Bound of PDMM
	A Problem Instance that Attains the Worst-Case Rate

	The Effect of Network Topology on Distributed Consensus
	The Interplay Between Consensus and Topology
	Convergence of Deterministic Network Topologies
	Finite Time Convergent PDMM

	Conclusion

	Appendices
	Proof of Proposition 5.4.1
	Proof of Proposition 5.4.2
	Proof of Lemma 5.4.1
	Proof of Lemma 5.4.2

	III Distributed Solver Design
	A Distributed Algorithm for Separable Convex Optimization
	Introduction
	Related Work
	Main Contributions
	Organization of Paper

	Nomenclature
	Deriving a Distributed Solver For Separable Convex Problems With Affine Constraints
	Problem Statement and the Communication Graph
	Implied Connectivity of the Constraint Graph
	Exploiting Separability Via Lagrange Duality
	A Communication Graph Preserving Dual Lifting
	Network Topology Requirements
	Simplifying the Problem Notation
	From the Extended Dual Problem to a Monotonic Inclusion
	Operator Splitting Via Peaceman-Rachford Splitting
	Forming the Distributed Method Of Multipliers

	Computation of the DMM Update Equations
	Computing the Reflected Resolvent RT1,
	Computing the Reflected Resolvent RT2,
	Implementation in a Distributed Network
	Convergence Guarantees
	Distributed Optimization of General Separable Problems

	Application to Distributed Signal Processing
	Random Network Modeling
	A Reference Centralized PR-Splitting Method
	Distributed Beamforming
	Gaussian Channel Capacity Maximization
	Portfolio Optimization

	Conclusions

	Appendices
	Proof of Lemma 6.4.1
	Proof of Lemma 6.4.2

	Distributed Consensus Over Time Varying Networks
	Introduction
	Related Work
	Main Contributions
	Organization of Chapter

	Nomenclature
	Distributed Consensus
	Problem Definition
	Exploiting Separability Via Lagrangian Duality
	Simplifying Notation
	Modifying the Extended Dual via a Change of Variables
	Monotonic Inclusions and Fixed Point Problems
	Distributed Algorithm Implementation

	Distributed Consensus in Time Invariant Networks
	Removing the Dependence on the Auxiliary Variables
	A Weighted Graph Laplacian Mixing Matrix
	Optimal Variables and Network Topology

	Convergence in Time Invariant Networks
	Distributed Time Varying Consensus
	TVDC: Time Varying Algorithmic Convergence

	Simulations
	Distributed Averaging
	Distributed L1 Consensus

	Conclusion

	Appendices
	Proof of Lemma 7.3.1
	Proof of Lemma 7.3.2
	Proof of Lemma 7.4.1
	Proof of Lemma 7.4.2
	Proof of Lemma 7.4.3
	Proof of Lemma 7.6.2

	IV Practical Distributed Convex Optimization
	Robust Distributed Linearly Constrained Beamforming
	Introduction
	Signal Model
	Estimation of Signal Model Parameters
	Estimation of RATF Vectors
	Estimation of CPSDMs

	Linearly Constrained Beamforming
	RATF estimation errors
	Fixed Superdirective Linearly Constrained Beamformers
	Other Related Linearly Constrained Beamformers
	Distributed Linearly Constrained Beamformers

	Proposed Method
	BDLCMP Beamformer
	BDLCMV Beamformer
	Distributed Implementation of the Proposed Method
	Acyclic Implementation via Message Passing
	Cyclic Weight Vector Computation via PDMM
	Beamformer Output Computation
	Cyclic Beamforming with Finite Numbers of Iterations
	Comparing the Transmission Costs of Different Beamformer Implementations

	Experimental Results
	Experiment Setup
	Processing
	Robustness to RATF estimation errors
	Limiting Iterations per Frame for PDMM Based BDLCMP/BDLCMV

	Conclusion

	V Epilogue
	Conclusions and Future Work
	Conclusions
	Analysis of Existing Distributed Solvers
	Distributed Solver Design
	Practical Distributed Convex Optimization

	Future Research
	Asynchronous Distributed Optimization
	Optimization in Directed Networks
	Quantization Effects in Distributed Optimization
	Distributed Non-Convex Optimization
	Accelerated Solver Design

	Closing Remarks

	Summary
	Samenvatting
	Acknowledgements
	Bibliography
	Curriculum Vitæ

