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Summary 
 
One of the most crucial estimates retrieved from measured seismic reflection data is the 
subsurface image. The image provides detailed information of the subsurface of the Earth. 
Seismic reflection data consists of so-called primary and multiple reflections. Primary 
reflections are events that have been reflected a single time, while multiple reflections have 
been reflected multiple times before they are recorded by the receivers. Most current 
migration algorithms assume all reflections in the data are primary reflections. Hence, in 
order to retrieve an accurate image of the subsurface, multiple reflections need to be 
eliminated before migration. Keeping the multiple reflections in the measured seismic 
reflection data will lead to a sub-optimal image of the subsurface, because the multiple 
reflections will be imaged as if they were primary reflections. Such artefacts in the image can 
cause erroneous interpretation. 
 
In this thesis, I studied the elimination of multiple reflections in the image domain and in the 
data domain. This is a challenging topic that attracts much attention from industry and 
academia. Free-surface and internal multiple reflections can be predicted without information 
about the subsurface and be subtracted from measured seismic reflection data based on 
adaptive filtering. Adaptive filtering minimises the energy in a seismic dataset, which is a 
constraint that cannot distinguish multiple reflections from primary reflections. As a 
consequence, when primary and multiple reflections are recorded as overlapping events, 
unintentionally, they will be removed together by the filter. The main research question is 
whether it is possible to eliminate multiple reflections without impairment of the primary 
reflections and to design a method that can easily be incorporated in routine work flows 
presently used in industry.   
 
An artefact-free (reverse time) migration scheme is derived from a revised implementation of 
the Marchenko redatuming scheme using a modified time-truncation operator. Because of the 
modified truncation operator, the time-reversed version of the standard wavefield-
extrapolation operator is used as initial estimate to retrieve the upgoing focusing function 
from the regular Marchenko equations. Then, the retrieved upgoing focusing function can be 
used to directly image the subsurface by correlating it with the standard wavefield-
extrapolation operator. Correspondingly, as I show using a synthetic example, an artefact-free 
RTM image of the subsurface is retrieved. 
 
Then, based on the projected version of the regular Marchenko equations with symmetric and 
asymmetric time-truncation operators, I derive the Marchenko multiple elimination (MME) 
and transmission compensated Marchenko multiple elimination (T-MME) schemes. Both 
schemes can eliminate internal multiple reflections in data domain without subsurface 
information or adaptive filtering. In the T-MME scheme, the amplitudes of the retrieved 
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primary reflections are compensated for transmission effects. Furthermore, the MME and T-
MME schemes are extended to account for free-surface related multiple reflections. Still, no 
subsurface information or adaptive filtering is required for the implementation. The potential 
benefits of MME and T-MME schemes are validated with synthetic examples, showing that 
multiple reflections can be successfully eliminated without subsurface information or 
adaptive filtering.  
 
Next, I present a fast implementation of T-MME and extended T-MME schemes to reduce 
the computational cost. The synthetic examples show that the computational cost is reduced 
by an order of magnitude. The fast implementation also works for MME and extended MME 
schemes. 
 
Finally, I apply the MME scheme to a measured laboratory and a field dataset to test the 
performance. The results show that the performance of the MME scheme largely depends on 
high-quality pre-processing. The investigation of the application of the MME and T-MME 
schemes shows that both are appropriate methods to remove internal multiple reflections in 
reflection data acquired in exploration geophysics.  
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Samenvatting 
 
De afbeelding van de ondergrond is een van de meest belangrijke schattingen verkregen uit 
seismische reflectiemetingen. The afbeelding verschaft gedetailleerde informatie over de 
ondergrond van de Aarde. Seismische reflecties bevatten zogenaamde primaire en 
meervoudige reflecties. Primaire reflecties zijn events die éénmaal gereflecteerd zijn, terwijl 
meervoudige reflecties meerdere reflecties ondergaan hebben voordat ze worden opgenomen 
door de ontvangers. Migratie algoritmen veronderstellen dat alle gemeten reflecties primaire 
reflecties zijn. Hierdoor moeten meervoudige reflecties eerst worden verwijderd om een 
nauwkeurig beeld te verkrijgen. Als de meervoudige reflecties in de metingen blijven zitten 
zal dat tot een suboptimale afbeelding van de ondergrond leiden, omdat de meervoudige 
reflecties zullen worden afgebeeld alsof zij primaire reflecties waren. Zulke artefacten in de 
afbeelding kunnen foutieve interpretaties veroorzaken. 
 
In dit proefschrift bestudeer ik het verwijderen van meervoudige reflecties in het domein van 
de afbeelding en in het domein van de data. Dit is een uitdagend onderwerp dat veel aandacht 
trekt van de industrie en academies. Vrije-oppervlakte en interne meervoudige reflecties 
kunnen worden voorspeld zonder informatie over de ondergrond en kunnen worden 
afgetrokken van de gemeten seismische reflectie data met behulp van zogenaamde adaptieve 
filtertechnieken. Adaptieve filtertechnieken minimaliseren de energie in een seismische 
dataset, wat een dwingende regel is die geen onderscheid kan maken tussen primaire en 
meervoudige reflecties. De consequentie is dat indien primaire en meervoudige reflecties 
overlappen in de meting, zij per ongeluk samen zullen worden verwijderd door het filter. De 
hoofdonderzoeksvraag is of het mogelijk is om meervoudige reflecties te verwijderen zonder 
negatieve invloed op de primaire reflecties en om een methode te ontwerpen die gemakkelijk 
kan worden ingevoegd in de huidige routinematige data verwerkingstechnieken die door de 
industrie worden gebruikt. 
 
Een artefact-vrij omgekeerde tijd migratieschema (RTM) wordt afgeleid uit de gewijzigde 
implementatie van het Marchenko schema waarbij de datum wordt verplaatst van het 
meetoppervlak naar een bepaald diepteniveau, door gebruik te maken van een nieuwe tijd-
afkap operator. Vanwege deze nieuwe tijd-afkap operator wordt de standaard golfveld 
extrapolatie operator gebruikt in omgekeerde tijd als eerste schatting om de omhoog 
propagerende golven in de focusserende functie te bepalen. Dat deel van de focusserende 
functie kan dan worden gebruikt om direct te ondergrond af te beelden door het te correleren 
met de standaard golfveldextrapolatie operator. Ik laat met een numeriek model zien dat de 
overeenkomstige artefact vrije RTM-afbeelding van de ondergrond wordt verkregen. 
 
Dan leid ik, gebaseerd op de geprojecteerde versie van de Marchenko vergelijkingen met 
symmetrische en niet symmetrische tijd-afkap operatoren, de Marchenko meervoudige 
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reflectie eliminatie (MME) en transmissie effect gecompenseerde Marchenko meervoudige 
reflectie eliminatie (T-MME) schema’s af. Beide schema’s kunnen interne meervoudige 
reflecties verwijderen uit de data zonder informatie over de ondergrond of adaptieve filters te 
gebruiken. In het T-MME schema worden de amplitudes van de primaire reflecties 
gecompenseerd voor de transmissie effecten die optreden tijdens de propagatie van oppervlak 
naar een reflector en weer terug naar het oppervlak. Verder worden beide schema’s uitgebreid 
zodat ze ook werken in het geval dat meervoudige reflecties die gerelateerd zijn aan het 
oppervlak in de data aanwezig zijn. Nog steeds zijn informatie over de ondergrond en 
adaptieve filtertechnieken niet nodig voor de implementatie.  De potentiële voordelen van de 
MME en T-MME schema’s worden gevalideerd met numerieke voorbeelden, die laten zien 
dat meervoudige reflecties succesvol kunnen worden verwijderd zonder informatie over de 
ondergrond of adaptieve filtertechnieken. 
 
Daarna presenteer ik een snelle implementatie van het T-MME schema en zijn uitbreiding om 
de rekenkosten te reduceren. De numerieke voorbeelden laten een reductie in rekentijd zien 
van een factor tien. De snelle implementatie werkt op het MME schema en zijn uitbreiding. 
 
Tenslotte pas ik het MME schema toe op een in het laboratorium gemeten dataset om de 
prestatie te testen. De resultaten laten zien dat de prestatie voornamelijk afhangt van de 
kwaliteit waarmee de data wordt verwerkt op een manier die recht doet aan de 
golfvergelijking. Het onderzoek naar de toepassing van het MME en T-MME schema op data 
gemeten in de exploratie geofysica laat zien dat beide methode geschikt zijn om interne 
meervoudige reflecties uit de data te verwijderen.  
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1 
Introduction 

 
The processing of acoustic or elastodynamic reflection data plays a central role in seismic 
exploration and seismology. For seismic exploration, the measured data is the earth reflection 
response, generated by an active source that emits a signal from the surface or inside the 
subsurface. The observations are made with the aid of receivers located up to kilometers 
away from the source. The measured data contain primary reflections followed by multiple 
reflections. In standard migration images, strong artefacts due to multiple reflections are 
present in marine (Van Borselen, 2002) and land seismic data (Verschuur et al., 1992; 
Kelamis et al., 2006) because migration schemes assume only primary reflections have 
occurred in the medium. The artefacts degrade the quality of the image (Weglein, 2016) and 
cause erroneous interpretation. 
 

1.1 Free-surface related multiple reflections 
 
The free-surface related multiple reflections can be very strong compared with the measured 
reflection responses from the subsurface. These free-surface related multiple reflections cause 
major ghost reflectors in the migration image. Several schemes have been developed to 
eliminate the free-surface related multiple reflections. The surface-related multiple 
elimination (SRME) scheme of Verschuur et al. (1992) is a good example. SRME consists of 
two steps: free-surface related multiple reflection prediction and subtraction. In the first step, 
free-surface related multiple reflections are predicted by convolution of the traces in the 
measured data. Because the source wavelet is not known exactly, the predicted events differ 
from actual events in the measured data. Hence, adaptive subtraction is required to subtract 
the predicted free-surface related multiple reflections from the measured data in the second 
step. Unfortunately, adaptive subtraction has a major problem. The energy is minimized 
which leads to removal of primary reflections when primary and free-surface related multiple 
reflections overlap in time, which happens quite often in field data. The estimation of 
primaries by sparse inversion (EPSI) (van Groenestijn and Verschuur, 2009) replaces the 
two-step processing of SRME, prediction and adaptive subtraction, by a full-waveform 
inversion process. Both the SRME and EPSI have achieved success for synthetic and field 
datasets (Lopez and Verschuur, 2015) and been widely accepted as robust tools for free-
surface related multiple reflection attenuation in the industry. 
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Many researchers try to use free-surface related multiple reflections in migration to improve 
the image quality. Verschuur and Berkhout (2005) propose to transform free-surface related 
multiple reflections into primary reflections and then the retrieved primary reflections can be 
imaged using conventional migration schemes. Guitton (2002) and Shan (2003) propose to 
use free-surface related multiple reflections as areal sources in the migration of single-sided 
dataset and VSP dataset (Xiao and Schuster, 2009). Zuberi and Alkhalifah (2013) propose to 
forward and backward propagate the recorded dataset with free-surface related multiple 
reflections in reverse time migration. Wang et al. (2014, 2017) propose to eliminate artefacts 
due to reverse time migration of free-surface related multiple reflections in angle domain 
common image gathers or by using the wavefield decomposition imaging condition. 
Although using free-surface related multiple reflections for migration can give extended 
illumination of the subsurface, crosstalk is present in the resulting image as coherent noise. 
 

1.2 Internal multiple reflections 
 
Besides free-surface related multiple reflections there are internal multiple reflections that 
also introduce ghost reflectors in the migration image. The internal multiple reflections can 
be strong enough to cause artefacts in land and marine seismic data and less effort has been 
devoted to their removal. 
 
A method that relies on discrimination of move-out between primary and internal multiple 
reflections is proposed by Hampson (1986). Unfortunately, it is difficult to distinguish the 
move-out velocities of internal multiple reflections from those of primary reflections in most 
cases. The internal multiple elimination scheme (IME) proposed by Berkhout and Verschuur 
(1997) is a layer-stripping scheme. The IME scheme downward extrapolates shot records to a 
virtual surface and attenuates internal multiple reflections related to that surface. Therefore, 
velocity information is required for its implementation. Adaptive subtraction is also required 
for subtracting predicted events from the measured data because of the approximate nature of 
the predicted events. Jakubowicz (1998) proposes to combine three primary reflections to 
predict and attenuate the first-order internal multiple reflections. However, these primary 
reflections need to be identified and picked from the measured reflection response. Araújo et 
al. (1994) derive a scheme for internal multiple reflection attenuation from Inverse Scattering 
Series (ISS), which has been developed in more detail by Weglein et al. (1997). The ISS aims 
to find the scattering potential of the subsurface relative to a chosen background model. Ten 
Kroode (2002) modified the ISS scheme to approximately predict and subtract internal 
multiple reflections from the data. This involves removing the background medium and 
changing depth truncations to time truncations. Löer et al. (2016) derive the same scheme 
from source-receiver interferometry and ISS. The approximate nature of the predicted events 
implies that a global or local matching filter is required to subtract the predicted internal 
multiple reflections from the measured reflection response (Matson et al., 1999; Luo et al., 
2011; de Melo et al., 2014). Using internal multiple reflections in imaging is done via full 
wavefield migration (FWM) in a close-loop scheme (Berkhout, 2014). Davydenko and 
Verschuur (2018) show results of applying FWM on field dataset. 
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1.3 Marchenko schemes 
 
Recently, Marchenko redatuming schemes have been introduced to deal with internal 
multiple reflections (Slob et al., 2014; Wapenaar et al., 2014a). For these schemes, up- and 
downgoing focusing functions with a focal point at an arbitrary position in the subsurface can 
be retrieved by solving the coupled Marchenko equations and up- and downgoing Green’s 
functions can be computed from the associated Green’s function representations once the 
focusing functions are known. By deconvolving the retrieved upgoing Green’s function with 
the downgoing Green’s function, a virtual reflection response with virtual source and virtual 
receivers in the subsurface can be obtained. The virtual reflection response forms the basis 
for obtaining an artefact-free image when the zero-time-lag crosscorrelation between the 
retrieved up- and downgoing virtual responses is extracted at all image points (Wapenaar et 
al., 2014b; Broggini et al., 2014). The image can also be formed by deconvolving the 
retrieved upgoing Green’s function with the first event of the downgoing Green’s function, 
which makes the deconvolution processing much cheaper (van der Neut et al., 2018). Singh 
et al. (2015, 2017) extend the Marchenko redatuming scheme to account for free-surface 
related multiple reflections, such that the free-surface and internal multiple reflections are 
accounted for in one step and do not end up in the migration image. Ravasi (2017) modifies 
the scheme of Singh et al. (2017) for marine data and shows the performance in synthetic and 
field examples. Thus, source and receiver ghosts, free-surface and internal multiple 
reflections are successfully accounted for in one step. Meles et al. (2018) propose a different 
time-focusing condition of the Marchenko redatuming scheme for the retrieval of virtual 
plane-wave response. The plane-wave scheme allows multiple-free imaging with a fraction of 
the computational cost of the regular Marchenko scheme. Although it is derived initially for 
acoustic wavefield, the Marchenko scheme has been extended to elastic media (Wapenaar 
and Slob, 2014) and to dissipative media (Slob, 2016). Except for the 1D case, these variants 
of Marchenko redatuming schemes require an estimate of the first arrival of the downgoing 
focusing function to be able to create a virtual receiver inside the medium. This estimation 
requires a smooth velocity model to be built before the method can be applied. The quality of 
this initial estimate has influence on the quality of the final image. 
 
Based on the Marchenko redatuming scheme and convolutional interferometry, an internal 
multiple reflection attenuation scheme has been proposed by Meles et al. (2015) to predict 
internal multiple reflections with approximate amplitude. Model information and adaptive 
subtraction are required for its implementation. Van der Neut and Wapenaar (2016) rewrite 
the coupled Marchenko equations by projecting focusing points back to the acquisition 
surface to avoid the requirement of macro model information. An overburden elimination 
scheme can be derived from the projected Marchenko scheme, which can be extended to 
eliminate all orders of internal multiple reflections that are initiated in the overburden. In the 
implementation, velocity model information is needed to create time truncations. Wapenaar 
et al. (2018) derive a homogeneous Green’s function retrieval scheme from the regular 
Marchenko redatuming scheme, where the homogeneous Green’s function between any two 
points inside a medium can be retrieved from the measured single-sided reflection response. 
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Staring et al. (2018) derive a source-receiver Marchenko redatuming scheme for internal 
multiple reflection attenuation and the application to field dataset validates the success. 
Knowledge of the medium and adaptive subtraction are required for this scheme. Many other 
methods, such as target oriented velocity analysis (Mildner et al., 2017), equations for inverse 
source problems (van der Neut et al., 2017) and immersive wave simulation (Elison et al., 
2018), are also derived from the regular Marchenko redatuming scheme. 
 

1.4 Thesis objective and outline 
 
The objective of this thesis is motivated by the presence of multiple reflections in the 
measured dataset in exploration geophysics. Despite the fact that a variety of schemes dealing 
with free-surface and internal multiple reflections exist, as described above, until now the 
multiple reflection elimination is still a popular topic and attracts much attention from 
academia and industry. The aim of this study is to develop schemes for dealing with multiple 
reflections without adaptive subtraction in data domain or in image domain that can be easily 
incorporated in routine operational workflows for seismic data processing. The main body of 
this thesis consists of six chapters. 

• Chapter 2 presents an improved reverse-time migration scheme to image the medium 
without artefacts arising from internal multiple reflections. This is based on a revised 
implementation of Marchenko redatuming scheme using a modified time-truncation 
operator. Because of the modified truncation operator, we can use the time-reversed 
version of the standard wavefield-extrapolation operator as initial estimate for 
retrieving the upgoing focusing function. Then, the retrieved upgoing focusing 
function can be used to directly image the medium by correlating it with the standard 
wavefield-extrapolation operator. This imaging scheme can be seen as an artefact-free 
reverse-time migration scheme with two terms. The first term gives the conventional 
reverse-time migration image with wrong amplitudes and artefacts due to internal 
multiple reflections. The second term gives a correction image which removes 
artefacts in the image generated by the first term. We illustrate the method with a two-
dimensional synthetic example that illustrates the effectiveness of the method. 

• Chapter 3 is split into two parts. In the first part we propose a Marchenko multiple 
elimination (MME) scheme to retrieve primary reflections in the two-way travel time 
domain. The MME scheme is derived from the projected version of the regular 
Marchenko equations presented by van der Neut and Wapenaar (2016). This scheme 
works with the acoustic subsurface reflection response. There is no model information 
or adaptive subtraction required for the implementation. In the second part, we propose 
a transmission compensated Marchenko multiple elimination (T-MME) scheme to 
remove internal multiple reflections and compensate for transmission losses in primary 
reflections. The T-MME scheme is also derived from the projected version of the 
modified Marchenko equations. Still, no model information or adaptive subtraction is 
required for its implementation. For both MME and T-MME methods, the measured 
data works as its own filter. The retrieved datasets by both schemes can be used as 
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inputs to construct better velocity models than the one that would be obtained by 
working directly with the original data, and to construct enhanced subsurface images. 
Synthetic examples show the effectiveness of both methods. We study limitations by 
analyzing the effects of the presence of a thin layer on the ability to remove internal 
multiple reflections. Presence of refracted and scattered waves are known limitations 
of both methods and we study them as well. Our analysis shows that a thin layer is 
treated as a more complicated reflector and internal multiple reflections related to the 
thin layer are properly removed. We find that the presence of refracted and scattered 
waves generate artefacts in the retrieved data. 

• Chapter 4 is also split into two parts. It is an extension of Chapter 3 to account for free-
surface related multiple reflections. In the first part we extend the MME scheme to 
account for free-surface related multiple reflections. Thus, both free-surface and 
internal multiple reflections can be eliminated in one step. In the second part, we 
extend the T-MME scheme to deal in one step with free-surface and internal multiple 
reflections and compensate for transmission losses in primary reflections. Still, no 
model information or adaptive subtraction is required for the implementation of these 
schemes. We evaluate the success of both methods with two-dimensional synthetic 
examples. 

• Chapter 5 presents the fast implementation of T-MME and extended T-MME schemes. 
The substantial computational cost of both MME and T-MME schemes can be reduced 
by an order of magnitude with a fast implementation version. This is achieved by using 
the previously computed filter functions as initial estimate for every new truncation 
time value. Considering the similarity of MME and T-MME schemes, we give only the 
fast implementation of the T-MME and the extended T-MME schemes in detail in this 
chapter. 2D synthetic examples are given to illustrate the success. 

• Chapter 6 shows the applications of the MME and T-MME schemes on Laboratory 
and field datasets. They are the first measured data examples to validate the 
capabilities of both schemes for removal of internal multiple reflections without model 
information or adaptive subtraction. Here we only focus on the application of both 
schemes, because the underlying theory is given in Chapter 3. The performance of both 
schemes is analysed in some detail in the discussion section. 

• Chapter 7 concludes the thesis. 
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2 
Artefact-free Reverse Time 

Migration 
 

In this chapter, we derive an improved reverse-time migration scheme to image the medium 
without artefacts arising from internal multiple reflections. This is based on a revised 
implementation of Marchenko redatuming scheme using a modified time-truncation operator. 
Because of the modified truncation operator, we can use the time-reversed version of the 
standard wavefield-extrapolation operator as initial estimate for retrieving the upgoing 
focusing function. Then, the retrieved upgoing focusing function can be used to directly 
image the medium by correlating it with the standard wavefield-extrapolation operator. This 
imaging scheme can be seen as an artefact-free reverse-time migration scheme with two 
terms. The first term gives the conventional reverse-time migration image with wrong 
amplitude and artefacts due to internal multiple reflections. The second term gives a 
correction image which removes artefacts in the image generated by the first term. We 
illustrate the method with a two-dimensional synthetic example that illustrates the success of 
the method. 
 
 
 
 
 
 
 
 
 
1 
 
 
 
 
 
 
 
 

                                                      
A modified version of this Chapter is published as Zhang et al., 2018, Geophysics. 
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2.1 Introduction      
 
Recently, a novel iterative method, named Marchenko redatuming, has been introduced to 
retrieve the Green’s function with a virtual receiver located in the subsurface of a 3D 
inhomogeneous medium. This Green’s function is obtained from the single-sided reflection 
response measured at the surface. The development of the single-sided Marchenko scheme 
has been inspired by Rose (2002), who demonstrates that solving the 1D Marchenko equation 
can be seen as focusing a wave field inside the 1D medium. Broggini and Snieder (2012) 
introduce this to the geophysical field. They find that the 1D focusing function can be 
combined with the measured, single-sided reflection response to give the 1D Green’s 
function with a virtual receiver at the focal point inside the medium. Wapenaar et al. (2013) 
derive the theory for 3D media. Slob et al. (2014) use reciprocity relations to create coupled 
Marchenko equations that can be solved for the up- and downgoing parts of the focusing 
function. The extension to 3D is given by Wapenaar et al. (2014a), where the obtained 
focusing function is used for retrieving the Green’s function. The retrieved up- and 
downgoing parts of the Green’s function can be used for retrieving the image without 
artefacts due to internal multiple reflections at any focal point (Wapenaar et al., 2014b). 
Singh et al. (2015, 2017) extend the Marchenko redatuming scheme to account for free-
surface related multiple reflections, such that the free-surface and internal multiple reflections 
are accounted for in one step. Ravasi (2017) modifies the scheme of Singh et al. (2017) for 
marine data and shows the performance in synthetic and field examples. Meles et al. (2018) 
propose a different time-focusing condition of the Marchenko redatuming scheme for the 
retrieval of virtual plane-wave response. The plane-wave scheme allows multiple-free 
imaging with a fraction of the computational cost of the regular Marchenko scheme. 
Although it is derived initially for acoustic wavefield, the Marchenko scheme has been 
extended to elastic media (da Costa Filho et al., 2014; Wapenaar and Slob, 2014) and to 
dissipative media (Slob, 2016). 
 
In this chapter, we present a revised Marchenko redatuming scheme by applying a modified 
truncation operator. We show that due to the modified truncation operator the seismic 
reflection data is redatumed using the first arrival of the downgoing Green’s function, which 
is a standard wavefield extrapolator used for redatuming the sources. Based on this scheme, 
we derive a migration scheme to image the medium without artefacts arising from internal 
multiple reflections. We show that the first term of this scheme is equal to the conventional 
reverse-time migration (RTM) scheme and the second term gives the correction image which 
eliminates the artefacts in the conventional RTM image. Hence, the second term can also be 
used to correct an existing RTM image when the same dataset and macro model are available. 
We give a 2D synthetic example to illustrate the performance of the proposed method. 

2.2 Theory  

We indicate time as t  and the position vector of a spatial coordinate as ( , , )x y z=x , where z  
denotes depth and ( , )x y  denote the horizontal coordinates. An acoustically transparent 
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acquisition boundary 0∂D  is defined at 0 0z = . For convenience, the coordinates at 0∂D  are 

denoted as 0 H 0( , )z=x x , with H ( , )x y=x . Similarly, the position vector of a point at an 

arbitrary depth level i∂D  is denoted as H( , )i iz=x x , where iz  denotes the depth of i∂D . We 

express the acoustic impulse reflection response as 0 0( , , )R t′x x , where 0x  denotes the source 

position and 0′x  denotes the receiver position, both located at the acquisition surface 0∂D . In 
practice when using field data, it means that first free-surface effects and source wavelet 
should be removed from the measured reflection response. The focusing function 1 0( , , )if tx x  
is the solution of the homogeneous wave equation in a truncated medium and focuses at the 
focal point ix . We define the truncated domain as 0 iz z z< < . Inside the truncated domain, 
the properties of the medium are equal to the properties of the physical medium. Outside the 
truncated domain, the truncated medium is reflection-free. The Green’s function 0( , , )iG tx x  

is defined for an impulsive source that is excited at 0x  and a receiver that is positioned at the 

focal point ix . The Green’s function is defined in the same physical medium as the measured 
data. The focusing and Green’s functions can be partitioned into up- and downgoing parts 
and for this we use pressure-normalized quantities (Wapenaar et al., 2014a). 

We start with the 3D versions of one-way reciprocity theorems for pressure-normalized wave 
fields and use them for the depth levels 0z  and iz . When the medium above the acquisition 

level 0z  is reflection-free, the Green’s function representations are given by (Slob et al., 
2014; Wapenaar et al., 2014a), 

0
0 0 0 0 1 0 1 00

( , , ) ( , , ) ( , , ) ( , , ),i i iG t d R t f t t dt f t
+∞− + −

∂
′ ′ ′ ′ ′ ′= − −∫ ∫D

x x x x x x x x x                (2.1) 

0

0

0 0 0 0 1 0 1 0( , , ) ( , , ) ( , , ) ( , , ).i i iG t d R t f t t dt f t+ − +

∂ −∞
′ ′ ′ ′ ′ ′− = − − − +∫ ∫D

x x x x x x x x x            (2.2) 

Superscripts +  and −  stand for downgoing and upgoing parts, respectively. We write the 
downgoing Green’s function as the sum of a direct part and a coda: 

0 0 0( , , ) ( , , ) ( , , ),i d i m iG t G t G t+ + += +x x x x x x                                     (2.3) 

where dG+  indicates the direct part and mG+  the following coda. As explained in Wapenaar et 
al. (2014a), the Green’s and focusing functions in equations 2.1 and 2.2 are separated in time 
except for the first event in 1f

+  and the last event in ( )G t+ −  in equation 2.2 that coincide 
with each other. We rewrite equations 2.1 and 2.2 with the help of equation 2.3 as 

0
1 0 0 0 0 1 00

( , , ) ( , , ) ( , , ) ,i if t d R t f t t dt
+∞− +

∂
′ ′ ′ ′ ′= −∫ ∫D

x x x x x x x  

 for d dt t tε ε− − < < +   (2.4) 

0

0

1 0 0 0 0 0 1 0( , , ) ( , , ) ( , , ) ( , , ) ,i d i if t G t d R t f t t dt+ + −

∂ −∞
′ ′ ′ ′ ′ ′− − = − −∫ ∫D

x x x x x x x x x  

for  d dt t tε ε− − < < +  (2.5) 
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where dt  denotes the one-way travel time from a surface point 0′x  to the focusing point ix , 
and ε  is a positive value to account for the finite bandwidth. Note that the truncation interval 
is longer in equations 2.4 and 2.5 than in the regular Marchenko scheme ( )d dt t tε ε− + < < −

given by Wapenaar et al. (2014a). The left extension of the truncation interval ensures that 
the time-reversed dG+  is present in equation 2.5, while it is excluded in the regular 
Marchenko scheme (Wapenaar et al., 2014a). The right extension of the truncation interval 
ensures that when the focusing point is at a reflector, the reflection of that reflector is the last 
event in 1f

− . For this focusing point, this reflection would be the first event in G−  in the 
scheme of Wapenaar et al. (2014a). We give equations 2.4 and 2.5 in operator form as 

1 0 1 0( , , ) [ ]( , , ),i if t f t− +′ ′= Θx x R x x                                          (2.6) 
* *

1 0 1 0( , , ) [ ]( , , ),i d if t f G t+ − +′ ′= Θ +x x R x x                                     (2.7) 

where *
dG+  indicates the time-reversed version of dG+ , R  indicates an integral operator of the 

measured data R  with any wavefield as in equation 2.4, *R  a similar correlation integral 
operator as in equation 2.5, and Θ  is a time window to exclude values outside the interval 
( , )d dt tε ε− − +  as indicated by the time window in equations 2.4 and 2.5. Then, we 

substitute equation 2.7 into equation 2.6 to get the final equation for 1f
−  as 

* *
1 0 0[(I ) ]( , , ) [ ]( , , ).i d if t G t− +′ ′− Θ Θ = ΘR R x x R x x                          (2.8) 

We expand equation 2.8 as a Neumann series to give the equation as  

* * *
1 0 0 0

1

( , , ) [ ]( , , ) [ ( ) ]( , , ).m
i d i d i

m
f t G t G t

∞
− + +

=

′ ′ ′= Θ + Θ Θ Θ∑x x R x x R R R x x             (2.9) 

The first term in the right-hand side of equation 2.9 is the reflection response redatumed to 
the subsurface point ix  by the redatuming operator dG+ . It is truncated to make sure the result 
is set to zero for dt t ε> + . The second term in the right-hand side of equation 2.9 predicts and 
removes multiple reflections that occur in the reflection data in the time window. It thereby 
removes the transmission effects of the primary reflections between the acquisition plane and 
the depth level of the focusing point. When the focal point coincides with an actual 
subsurface reflector, its primary reflection will occur in 1f

−  at time instant dt . Otherwise, the 

value in 1f
−  at that time instant will be zero. For each pair of points in the left-hand side of 

equation 2.9, we are interested only in the value of 1f
−  at time instant dt . By carrying out 

downward extrapolation at the receiver side, we create the image at the focal point. 
Correlating both sides of equation 2.9 with dG+ gives  

* * * * *

1

( , , ) [ ( ) ]( , , ),m
i i d d d d i i

m
t G G t

∞
+ + + +

=

= + Θ Θ Θ∑I x x G R G R R R x x                  (2.10) 

with ( , , )i i tI x x  defined as the space-time image function, and *
d
+G indicates a correlation 

integral operator of dG+  with any wavefield. The possible primary reflection of interest in 1f
−

at dt  occurs at 0t =  after the downward extrapolation. For this reason, we do not need to 
keep the time window in the first term in equation 2.10. We can now understand that the 
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image function ( , , )i i tI x x  can be used for estimating the artefact-free image of the point ix  at 
0t = . The first term in the right-hand side of equation 2.10 can be understood as the 

conventional RTM scheme. It produces the conventional RTM image of the point ix  at 0t = , 
in which artefacts due to internal multiple reflections can be present. Consequently, the 
second term in the right-hand side of equation 2.10 can be seen as an operator expression for 
eliminating transmission effects in the primary reflections and for removing artefacts 
contained in the conventional RTM image. It uses only the single-sided reflection response 
and simple time truncations together with the same information needed to construct a 
conventional RTM image. The scheme easily fits in routine RTM migration operations. We 
state that equation 2.10 presents an improved RTM scheme which can be used for retrieving 
the artefact-free image of the subsurface. 
 

2.3 Example 

The aim of the current method is to image the medium without artefacts arising from internal 
multiple reflections and without using more information than in standard migration schemes. 
To illustrate the method, we give a 2D synthetic example. Figure 2.1a shows the values for 
the acoustic velocity as a function of depth and horizontal position. Figure 2.1b is the 
smoothed velocity model which will be used to do the conventional and artefact-free RTM. 
The dipole source emits a Ricker wavelet with 20 Hz  centre frequency. We have computed 
the single-sided reflection responses with 601 sources and 601 pressure receivers on a fixed 
spread with a spacing of 10 m at the top of the model. Absorbing boundary conditions are 
applied around the model and the direct wave has been removed. One of the computed single-
sided reflection responses convolved with the source wavelet is shown in Figure 2.2a. Note 
that internal multiple reflections occur at later arrival times. First arrivals of the downgoing 
Green’s functions have been modelled based on the smoothed model shown in Figure 2.1b 
with sources at focal points and receivers at the acquisition surface. One of the computed first 
arrivals convolved with the source wavelet is shown in Figure 2.2b. The computed single-
sided reflection responses and time-reversed first arrivals are used as inputs to solve equation 
2.10 with 1, ,20m = ⋅⋅ ⋅ . The resulting artefact-free image of the target zone is shown in Figure 
2.3a. Then, the procedure as described using the first term in the right-hand side of equation 
2.10, is applied and leads to the conventional RTM image of the target zone shown in Figure 
2.3b. Note that Figure 2.3b contains artefacts from internal multiple reflections because they 
are imaged as if they were primary reflections. However, the image in Figure 2.3a obtained 
with the new scheme is nearly perfect without ghost images due to internal multiple 
reflections. For both images, the smoothed velocity model shown in Figure 2.1b was used 
and the two figures can be compared as best-case scenarios. 

In the derivation of the current method, we assumed the medium to be lossless. The method 
can be adapted to work with two-sided reflection and transmission data in dissipative media 
(Slob, 2016). We further assumed that the Green’s functions and the focusing functions can 
be separated in time, that the source wavelet can be well recovered and deconvolved, and we 
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ignored evanescent waves (Wapenaar et al., 2013). These restrictions limit the application of 
the current method. For situations in which these assumptions are fulfilled, the 2D synthetic 
example illustrates that the current method has a good potential for applying it to field data. 
Applicability to field data requires properly sampled data, which condition can be fulfilled in 
2D but is not fulfilled in 3D data acquisition and modifications will be necessary before the 
method can work on 3D data (Jia and Snieder, 2018). 

 

 

Figure 2.1: (a) Velocity model which will be used to model the reflection response, the red 
box gives the target zone which will be imaged. (b) The smoothed velocity model which will 
be used to model the first arrival of the downgoing Green’s function.  
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Figure 2.2: (a) The modeled reflection response with source and receivers at the acquisition 
surface. The red arrows indicate the internal multiple reflections. (b) The modeled first arrival 
of the downgoing Green’s function with source at the focal point in the subsurface and 
receivers at the acquisition surface.  

 

 

Figure 2.3: (a) The artefact-free image of the target zone retrieved by equation 2.10. (b) The 
image of the target zone retrieved by the first term in the right-hand side of equation 2.10.  
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2.4 Conclusions 

We have shown that an artefact-free reverse-time migration (RTM) image can be constructed 
based on a revised Marchenko scheme. The revised Marchenko redatuming scheme is applied 
using a modified truncation operator and a time-reversed version of the standard wavefield-
extrapolation operator as initial estimate. Based on this, we derived an artefact-free RTM 
scheme, which can be used to image the medium without artefacts arising from internal 
multiple reflections. The new migration scheme uses the same macro-velocity model as the 
conventional RTM scheme. The constructed image does not contain artefacts because the 
data acts as an operator to remove artefacts generated by the conventional RTM scheme in 
the imaging domain. When the velocity model is accurate, the image is nearly perfect as 
shown with a numerical example.  
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3 
Marchenko Multiple 

Elimination and 
Transmission compensated 

Marchenko Multiple 
Elimination 

 
In this chapter, we present two schemes (MME and T-MME) for internal multiple reflection 
elimination in the two-way travel time domain. The MME scheme focuses only on internal 
multiple reflection elimination without touching primary reflections. The T-MME scheme 
removes internal multiple reflections, while the amplitudes of the retrieved primary 
reflections are compensated for two-way transmission losses. For both schemes, the 
measured dataset is its own filter. It consists of convolutions and correlations of the data with 
itself. A truncation in the time domain is applied after each convolution or correlation. The 
retrieved dataset by both schemes can be used as inputs to construct better velocity models 
than the one that would be obtained by working directly with the original data and to 
construct artefact-free subsurface images. 2D synthetic examples show the effectiveness of 
both methods. We study bandwidth limitations by analyzing the effects of the presence of a 
thin layer on the ability of the scheme to remove associated internal multiple reflections. 
Presence of refracted and scattered waves are known limitations of both methods and we 
study them as well. Our analysis shows that a thin layer seems to be treated as a reflector with 
more complicated response and internal multiple reflections related to the thin layer are 
properly removed. We find that the presence of refracted and scattered waves generate 
artefacts in the retrieved data. 
 
2 

                                                      
This Chapter is a modified version of Zhang and Staring, 2018, Journal of Applied Geophysics and Zhang et al., 
2019, Geophysics. 
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3.1 Introduction 
 
In standard migration images, strong artefacts can occur due to internal multiple reflections in 
marine (Hadidi and Verschuur, 1997; Van Borselen, 2002) and land seismic data (Kelamis et 
al., 2006). Several schemes have been proposed to predict and subtract internal multiple 
reflections from measured data before the imaging procedure, such as internal multiple 
elimination (IME) (Berkhout and Verschuur, 2005) and inverse scattering series (ISS) 
(Weglein et al., 1997). IME is a layer-stripping method and requires the identification of the 
multiple generators in the input data. The subtraction of the predicted internal multiple 
reflections has to be performed by a least-squares matching filter with a minimum-energy 
criterion. The minimum-energy criterion can unintentionally lead to reduction or elimination 
of primary reflections. The ISS-based method predicts internal multiple reflections without 
model information (Weglein et al., 1997; Ten Kroode et al., 2002; Löer et al., 2016). A global 
or local matching filter is usually required to subtract the predicted internal multiple 
reflections from the measured data (Matson et al., 1999; Luo et al., 2011; de Melo et al., 
2014). 
 
Based on the Marchenko redatuming scheme and convolutional interferometry, an internal 
multiple reflection attenuation scheme has been proposed by Meles et al. (2015) to predict 
internal multiple reflections with approximate amplitude. Staring et al. (2018) derive a 
source-receiver Marchenko redatuming scheme for internal multiple reflection attenuation 
and the application to field dataset validates the success. The Marchenko redatuming scheme 
requires an estimate of the first arrival of the downgoing focusing function to be able to 
create a virtual receiver inside the medium. This estimation requires a smooth velocity model 
to be built before the method can be applied. Hence, both methods mentioned above require 
model information and adaptive subtraction for the implementation. 
 
Van der Neut and Wapenaar (2016) show that by projecting the focusing functions for all 
focusing points at a particular depth level back to a receiver location at the acquisition 
surface, the requirement of the estimation of the unknown initial downgoing focusing 
function is eliminated in this scheme. An internal multiple reflection elimination scheme can 
be derived from the projected version with a macro velocity model required for estimating the 
truncation time. In this chapter, we propose two model-free multiple elimination schemes 
(MME and T-MME). The MME scheme is a modified version of van der Neut and Wapenaar 
(2016) for internal multiple reflection elimination only. The T-MME scheme removes all 
orders of internal multiple reflections, while the amplitudes of the retrieved primary 
reflections are compensated for two-way transmission losses. This chapter is organized as 
follows. In the first section, we start with the single-sided Green’s function representations 
and show how the MME scheme can be derived from the regular Marchenko equations. In 
the second section, we start with the revised Marchenko equations and show how the T-MME 
scheme can be derived. 2D synthetic examples are given to validate the success of both 
schemes. A section about the limitations of the T-MME scheme investigates the effects of 
limited bandwidth with a thin layer model. Refracted and scattered waves are not accounted 
for in the theory and we also investigate the effects of their presence in the data. All 
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limitations of the T-MME scheme are shared with the MME scheme because both schemes 
are derived from the same basic theory. 
 

3.2 Marchenko multiple elimination (MME) 
 

3.2.1 Theory 
 
To develop the theory, we indicate time as t  and the position vector of a spatial coordinate as 

( , , )x y z=x , where z  denotes depth and ( , )x y  denote the horizontal coordinates. The 

acoustically transparent acquisition boundary 0∂D  is defined as 0 0z = . For convenience, the 

coordinates at 0∂D  are denoted as 0 H 0( , )z=x x , with H ( , )x y=x . Similarly, the position 

vector of a point at an arbitrary depth level i∂D  is denoted as H( , )i iz=x x , where iz  denotes 

the depth of i∂D . We express the acoustic impulse reflection response as 0 0( , , )R t′x x , where 

0x  denotes the source position and 0′x  the receiver position. In practice, it means that the 
free-surface effects should be removed from the data and the source time signature must be 
known. The focusing function 1 0( , , )if tx x  is the solution of the homogeneous wave equation 

in a truncated medium and focuses at the focal point ix . We define the truncated medium 

between 0 iz z z< < . Inside the truncated domain and on its boundaries, the properties of the 
medium are equal to the properties of the physical medium. Outside the truncated domain, the 
truncated medium is reflection-free. The Green’s function 0( , , )iG tx x  is defined for an 

impulsive source that is excited at 0x  and for a receiver positioned at the focal point ix . The 
Green’s function is defined in the same medium as the measured data. The focusing and 
Green’s functions can be partitioned into up- and downgoing constituents and for this we use 
pressure-normalized quantities (Wapenaar et al., 2014a).  
 
We start with the 3D versions of one-way reciprocity theorems for pressure-normalized wave 
fields and use them for the depth levels 0z  and iz . When the medium above the acquisition 

level 0z  is reflection-free, the Green’s function can be represented as (Slob et al., 2014; 
Wapenaar et al., 2014a) 

0
0 0 0 0 1 0 1 00

( , , ) ( , , ) ( , , ) ( , , ),i i iG t d R t f t t dt f t
+∞− + −

∂
′ ′ ′ ′ ′ ′= − −∫ ∫D

x x x x x x x x x                 (3.1) 

0

0

0 0 0 0 1 0 1 0( , , ) ( , , ) ( , , ) ( , , ).i i iG t d R t f t t dt f t+ − +

∂ −∞
′ ′ ′ ′ ′ ′− = − − − +∫ ∫D

x x x x x x x x x             (3.2) 

Superscripts +  and −  stand for downgoing and upgoing fields, respectively. The downgoing 
component of the focusing function 1 0( , , )if t+ x x  is the inverse of the transmission response 
in the truncated medium. We can write both the focusing function and the transmission 
response as the sum of a direct part and a coda 

1 0 1 0 1 0( , , ) ( , , ) ( , , ),i d i m if t f t f t+ + += +x x x x x x                                      (3.3) 
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0 0 0( , , ) ( , , ) ( , , ),i d i m iT t T t T t= +x x x x x x                                       (3.4) 

where 1df +  and dT  indicate the direct part, whereas 1mf +  and mT  indicate the following coda. 
Wapenaar et al. (2014b) show that 

0 1 0 H H0
( , , ) ( , , ) ( ) ( ),

i
i d i d id T t f t t dt td d

+∞ +

∂
′′ ′ ′ ′ ′′− = −∫ ∫D

x x x x x x x                    (3.5) 

where H( )d x  is a spatially band-limited 2D delta function in space and ( )td  is a delta 

function in time. Equation 3.5 means that dT  is the inverse of 1df +  in the sense that it 

collapses 1df +  to a delta function in horizontal coordinates and time. Following van der Neut 

and Wapenaar (2016), we apply multidimensional convolution with dT  as shown in equation 
3.5 to both sides of equations 3.1 and 3.2 to find 

0
0 0 2 0 0 2 0 0 0 H H 0 0 20

( , , , ) ( , , , ) ( , , )( ( ) ( ) ( , , , )) ,mU t t v t t d R t t t v t t t dtd d
+∞− − +

∂
′′ ′ ′ ′′ ′ ′ ′ ′′ ′′ ′ ′+ = − − + −∫ ∫D

x x x x x x x x x x x

     (3.6) 

0

0

H H 0 0 2 0 0 2 0 0 0 0 0 2( ) ( ) ( , , , ) ( , , , ) ( , , ) ( , , , ) ,mt v t t U t t d R t v t t t dtd d + + −

∂ −∞
′′ ′ ′ ′′ ′′ ′ ′ ′ ′′ ′ ′− + − − = − −∫ ∫D

x x x x x x x x x x x

       (3.7) 
with v−  and mv+  defined as  

0 0 2 0 1 00
( , , , ) ( , , ) ( , , ) ,

i
i d i iv t t d T t f t t dt

+∞− −

∂
′ ′′ ′′ ′ ′ ′ ′= −∫ ∫D

x x x x x x x                          (3.8) 

0 0 2 0 1 00
( , , , ) ( , , ) ( , , ) ,

i
m i d i m iv t t d T t f t t dt

+∞+ +

∂
′ ′′ ′′ ′ ′ ′ ′= −∫ ∫D

x x x x x x x                         (3.9) 

where U −  and U +  are G−  and G+  projected to the acquisition surface, similar as shown in 
equations 3.8 and 3.9 for 1f

−  and 1mf + , 2t  denotes the two-way travel time from a surface 

point 0′x  to the focusing level iz  and back to the surface point 0′′x . Note that, because U ±  and 

v±  are functions related to 2t , we introduce 2t  as a parameter of U ±  and v± . Based on the 
fact that the convolved Green’s and focusing functions in equations 3.6 and 3.7 are separated 
in time except for the first event in the convolved downgoing focusing function and last event 
in the convolved time-reversed downgoing Green’s function in equation 3.7 (both of them are 
delta functions after the convolution) that coincide with each other. We rewrite equations 3.6 
and 3.7 as 

0
0 0 2 0 0 0 H H 0 0 20

( , , , ) ( , , )( ( ) ( ) ( , , , )) ,mv t t d R t t t v t t t dtd d
+∞− +

∂
′ ′′ ′ ′ ′ ′′ ′′ ′ ′= − − + −∫ ∫D

x x x x x x x x x  

for   2t tε ε< < −        (3.10) 

0

0

0 0 2 0 0 0 0 0 2( , , , ) ( , , ) ( , , , ) ,mv t t d R t v t t t dt+ −

∂ −∞
′ ′′ ′ ′ ′′ ′ ′= − −∫ ∫D

x x x x x x x  

for   2t tε ε< < −     (3.11) 
where ε  is a positive value to account for the finite bandwidth. Then we give equations 3.10 
and 3.11 in the operator form as 

2 2
0 0 2 0 0 2( , , , ) ( )( , , , ),t t

mv t t v t tε ε
ε εd− −− +′ ′′ ′ ′′= Θ + Θx x R R x x                            (3.12) 

2 *
0 0 2 0 0 2( , , , ) ( )( , , , ),t

mv t t v t tε
ε
−+ −′ ′′ ′ ′′= Θx x R x x                                   (3.13) 
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where R indicates a convolution integral operator of the measured data R  with any wave 
field and *R  a correlation integral operator. 2t ε

ε
−Θ  is a time window to exclude values outside 

of the interval 2( , )tε ε− . Then we substitute equation 3.12 into equation 3.13 to give the 

final equation for mv+  as 
2 2 2 2* *

0 0 2 0 0 2(I ) ( , , , ) ( )( , , , ).t t t t
mv t t t tε ε ε ε

ε ε ε ε d− − − −+ ′ ′′ ′ ′′− Θ Θ = Θ ΘR R x x R R x x          (3.14) 
Following Van der Neut and Wapenaar (2016) we expand equation 3.14 as a Neumann series 
to give the equation as 

2 2*
0 0 2 0 0 2

1

( , , , ) [ ( ) ]( , , , ).t t k
m

k
v t t t tε ε

ε ε d
∞

− −+

=

′ ′′ ′ ′′= Θ Θ∑x x R R x x                        (3.15) 

We substitute equation 3.15 back into equation 3.6 to retrieve the projected U −  as 

2 2

2 2

*
0 0 2 0 0 0 0 2

1

( , , , ) ( , , ) [ ( ) ]( , , , ).t t k
t t

k
U t t R t t tε ε

ε ε ε ε d
∞

− −− ∞ ∞
− −

=

′′ ′ ′′ ′ ′′ ′= Θ + Θ Θ Θ∑x x x x R R R x x       (3.16) 

Equation 3.16 shows that U −  can be evaluated for a single pair of surface points at a single 
time instant, which means that the time window after the sum of repeated correlations and 
convolutions can be taken with constant values (ε  and 2t ε− ) for each source-receiver pair 
instead of a curve line corresponding to a horizontal subsurface level as shown in van der 
Neut and Wapenaar (2016). Thus, the 2t  in equation 3.16 can be any desired time value 
within the time window of the measurement. It describes a fictitious focusing level in the 
subsurface. When the focusing level coincides with an actual subsurface reflector, the first 
event in U −  at time instant 2t  will be the primary reflection of that reflector with two-way 

travel time 2t . Otherwise, the value in U −  at time instant 2t  will be zero. This means that U −  
can be evaluated and its first event can be picked to represent a possible primary reflection 
event of the medium. We collect the value of U −  for each time instant 2t  and store it in a 
new function containing only primary reflections. We can write it as 

0 0 2 0 0 2 0 0 2 2
1

( , , ) ( , , ) ( , , , ).t k
k

R t t R t M t t
∞

=

′′ ′ ′′ ′ ′′ ′= = +∑x x x x x x                            (3.17) 

with 
2 2*

0 0 2 1 0 0 2( , , , ) ( ) ( , , , ),t t
k kM t t M t tε ε

ε ε
− −

−′′ ′ ′′ ′= Θ Θx x R R x x                             (3.18) 
and 

0M R= ,                                                         (3.19) 

where tR  denotes the retrieved primary reflections and kM  with 1,...,k = ∞  give all orders of 
predicted internal multiple reflections. Equation 3.17 can be used to estimate tR . As shown 
in equation 3.19, the processing can be performed with reflection response R  as input only. 
 

3.2.2 Examples 

3.2.2.1 Horizontally layered example 
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In this subsection, we consider a model in which most reflectors are “invisible” to test the 
performance of the MME scheme. This model is a horizontally layered model with constant 
velocity (1000m/s) and constant layer thickness (100m); only the density in the different 
layers varies as shown in Figure 3.1. The values of density are given as: (1000, 2000, 300, 
702, 412, 594, 457, 553, 481, 533, 494, 523, 501) 3kg/ m . The interesting point is that, 
because of the parameters of this model, the primary reflection of the third reflector cancels 
the first internal multiple reflection between the first two reflectors. The third reflector causes 
a new multiple, which is cancelled by the primary reflection from the fourth reflector, and so 
on. Hence, from the third reflector onward, the model is invisible in the reflection response. 
In this example, dipole sources and pressure receivers are positioned at the top of a model 
and a Ricker wavelet with 20Hz centre frequency is emitted by the sources. The spacing of 
the sources and receivers is 5m. The reflection response is modelled using a finite-difference 
scheme (Thorbecke and Draganov, 2011). Absorbing boundary conditions are applied around 
the model and the direct wave has been removed from the modelled data. One of the 
computed shot gathers convolved with the source wavelet is shown in Figure 3.2a. Note that 
indeed only the primary reflections from the first two reflectors are visible. Figure 3.2b shows 
the result retrieved by the MME scheme, which is also convolved with source wavelet. It is 
important to note that in the retrieved dataset primary reflections due to deeper reflectors are 
perfectly recovered because of the elimination of the corresponding internal multiple 
reflections. We pick the zero-offset and nonzero-offset (800m) traces from the original and 
retrieved datasets and show them in Figure 3.3. All traces have been normalized by the same 
factor. Displayed in Figure 3.3a are the zero-offset traces from the original shot gather (OR) 
and retrieved dataset (IR) shown in Figure 3.2. It can be seen that later arriving primary 
reflections have been successfully recovered. A similar conclusion can be derived from 
Figure 3.3b where the comparison of nonzero-offset traces is given. 

 
Figure 3.1: The density values of the “invisible” model. 
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Figure 3.2: (a) The modelled shot gather and (b) the dataset retrieved by the MME scheme 
with 1,...,20k = . 

 

 

Figure 3.3: (a) The comparison of zero-offset traces from original and retrieved datasets 
shown in Figure 3.2, (b) the comparison of nonzero-offset (800m) traces from original and 
retrieved datasets shown in Figure 3.2. 
 
 
 

 b) 
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3.2.2.2 Complex model example 
 
Here, we use a complex 2D synthetic example to illustrate the MME method. Figure 3.4 
shows the values for the acoustic velocity and density as functions of depth and horizontal 
position. We have computed the single-sided reflection responses with 601 dipole sources 
and 601 pressure receivers on a fixed spread with a spacing of 10 m at the top of the model. 
A Ricker wavelet with 20Hz centre frequency is emitted by the sources. Absorbing boundary 
conditions are applied around the model and the direct wave has been removed. One of the 
computed reflection responses convolved with the source wavelet is shown in Figure 3.5a. 
Note that internal multiple reflections are present and some of them are indicated by red 
arrows. The modelled reflection responses are used as inputs to solve equation 3.17 for tR . 

Figure 3.5b shows the retrieved dataset with 1,...,20k = . Note that internal multiple 
reflections present in Figure 3.5a have been eliminated in Figure 3.5b. Figure 3.6 gives the 
comparison of zero-offset and nonzero-offset (1000) traces from the original gather (Figure 
3.5a) and eliminated gather (Figure 3.5b), the blue solid line (OR) in Figure 3.6 indicates the 
traces from the original gather and red dotted line (IR) indicates the traces from the 
eliminated gather (all traces have been normalized by the same factor). It shows that internal 
multiple reflections have been removed and primary reflections well preserved after this 
processing. We use the original and retrieved datasets as inputs to image the medium. The 
images retrieved by a one-way wave equation migration scheme are shown in Figures 3.7a 
and 3.7b. The image in Figure 3.7a contains artefacts arising from multiple scatterings 
because they are imaged as if they were primary reflections. However, the image in Figure 
3.7b, which is obtained from the retrieved dataset, is nearly perfect without ghost images due 
to internal multiple reflections. 
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Figure 3.4: (a) The velocity and (b) density values of the complex model. 

 

           
Figure 3.5: (a) Modelled shot gather and (b) the dataset retrieved by the MME scheme with 

1,...,20k = . Red arrows indicate internal multiple reflections. 
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Figure 3.6: (a) The comparison of zero-offset traces from original and retrieved datasets 
shown in Figure 3.5, (b) the comparison of nonzero-offset (1000m) traces from original and 
retrieved datasets shown in Figure 3.5. 

 
 

 b) 
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Figure 3.7: (a) The image retrieved from the modelled reflection responses and (b) the image 
retrieved from the resulting dataset of MME scheme. Red arrows indicate artefacts due to 
internal multiple reflections. 
 

3.3 Transmission compensated Marchenko multiple elimination 
(T-MME) 
 
3.3.1 Theory 

In this subsection we derive the modified Marchenko equations from single-sided Green’s 
function representations and, similar to the MME scheme, project the focusing wavefield 
from an arbitrary depth level back to the acquisition surface, such that the process takes place 
entirely in the data domain. Based on projected equations we show how the transmission 
compensated primary reflection from the focusing depth level is present as the last event in 
the projected focusing wavefield. We continue by presenting the scheme of iterative internal 
multiple reflection elimination such that only the primary reflections with compensation for 
transmission effects are retained in the retrieved dataset. 
 
We start with the single-sided Green’s function representations given in equations 3.1 and 3.2 
and rewrite them with the help of equation 3.3 to yield 

0
1 0 0 0 0 1 00

( , , ) ( , , ) ( , , ) ,i if t d R t f t t dt
+∞− +

∂
′ ′ ′ ′ ′= −∫ ∫D

x x x x x x x    for   d dt t tε ε− + < < +   (3.20) 

      
0

0

1 0 0 0 0 1 0( , , ) ( , , ) ( , , ) ,m i if t d R t f t t dt+ −

∂ −∞
′ ′ ′ ′ ′= − −∫ ∫D

x x x x x x x    for   d dt t tε ε− + < < +   (3.21) 

The time truncation operator in equations 3.20 and 3.21 is asymmetric and different from the 
regular Marchenko scheme ( )d dt t tε ε− + < < − . This can be justified as follows. As shown 

in Figure 3.8, the 1f
−  and G−  will be the same as in the regular case when the focusing point 
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is far from a specific reflector. When the focusing point is close to the reflector (relative to 
the size of the wavelet), because of the resolution problem a choice has to be made. One 
should either regard the reflection of this reflector as belonging to 1f

−  or G− . In Slob et al. 

(2014) and Wapenaar et al. (2014a), the choice is made to put it in G−  and that means the 
reflection event is moved to 1f

−  only when the focusing point is more than half a wavelet 

below the reflector. Here we choose the opposite: the reflection is put in 1f
−  as soon as the 

focusing point is within half a wavelet above the reflector. The fact that this choice has to be, 
and can be, made is due to the finite frequency bandwidth of the wavelet.  
 
Similar to equation 3.5, we convolve both sides of equations 3.20 and 3.21 with dT  to find 

0
0 0 2 0 0 0 H H 0 0 20

( , , , ) ( , , )( ( ) ( ) ( , , , )) ,mv t t d R t t t v t t t dtd d
+∞− +

∂
′ ′′ ′ ′ ′ ′′ ′′ ′ ′= − − + −∫ ∫D

x x x x x x x x x  

  for   2t tε ε< < +     (3.22) 

0

0

0 0 2 0 0 0 0 0 2( , , , ) ( , , ) ( , , , ) ,mv t t d R t v t t t dt+ −

∂ −∞
′ ′′ ′ ′ ′′ ′ ′= − −∫ ∫D

x x x x x x x  

for   2t tε ε< < +    (3.23) 

with v−  and mv+  defined in equations 3.8 and 3.9. Note that, similar to the MME scheme, with 
this step the requirement of the estimation of the initial downgoing focusing function has 
been removed because 1df +  has collapsed to be a delta function after convolution with dT . 

The physical explanation of v−  can be given as follows. 
 
Wapenaar et al. (2014b) give the relationship between two types of focusing functions as 

1 0 2 0( , , ) ( , , ),i if t f t+ −′ ′=x x x x                                               (3.24) 

1 0 2 0( , , ) ( , , ),i if t f t− +′ ′− − =x x x x                                              (3.25) 

where 2f  is a focusing function with its focal point at the acquisition surface. The 

relationship between 2f
+  and 2f

−  can be given as (Wapenaar et al., 2014a) 

2 0 2 00
( , , ) ( , , ) ( , , ) ,

i
i i i i if t d R t f t t dt

+∞+ ∩ −

∂
′ ′ ′ ′′ ′ ′ ′′ ′′= −∫ ∫D

x x x x x x x                   (3.26) 

where ( , , )i iR t∩ ′x x  is the reflection response of the truncated medium from below, with 

sources and receivers at i∂D . Then, we rewrite equation 3.8 with the help of equations 3.24, 
3.25 and 3.26 as 

0 0 2 0 00 0
( , , , ) ( , , ) ( , , ) ( , , ) ,

i i

inv
i d i i i i iv t t d T t d R t T t t t dt dt

+∞ +∞− ∩

∂ ∂
′ ′′ ′′ ′ ′ ′ ′′ ′ ′ ′ ′′ ′′ ′= − − + −∫ ∫ ∫ ∫D D

x x x x x x x x x x                        

(3.27) 
where invT  is the inverse of T  and note that 1f

+  is the inverse of T  as given by Wapenaar et 

al. (2014b). The last event in v−  is constructed by taking the first event in R∩  and the direct 
event in invT , hence the last event in v−  can be given as 
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0 0 2 0 00 0
( , , , ) ( , , ) ( , , ) ( , , ) ,

i i

inv
last i d i i first i i d iv t t d T t d R t T t t t dt dt

+∞ +∞− ∩

∂ ∂
′ ′′ ′′ ′ ′ ′ ′′ ′ ′ ′ ′′ ′′ ′= − − + −∫ ∫ ∫ ∫D D

x x x x x x x x x x                        

(3.28) 
where firstR∩  indicates the first event in R∩ , lastv−  indicates the last event in v−  and inv

dT  

indicates the direct event in invT . 
         
Figure 3.9 gives the ray path of lastv− . This is the reflection response with compensation for the 

transmission effects. Note that the amplitudes in dT  and inv
dT  only fully cancel each other 

when the medium is horizontally layered. It follows that the last event in v−  is the 
transmission loss compensated primary reflection of the reflector above i∂D  when its two-

way travel time is 2t . Note that the reflection coefficient contained in R∩  is opposite to the 
reflection coefficient in R , which compensates for the minus sign in equations 3.27 and 3.28. 
This means that v−  can be evaluated and its value at 2t  can be taken to represent a possible 
primary reflection event of the medium without transmission losses. Note that in the regular 
Marchenko scheme with symmetric time truncation this event will be the first event without 
transmission effect compensation in the upgoing part of the projected Green’s function (van 
der Neut and Wapenaar, 2016). 
         
Next, we give equations 3.22 and 3.23 in operator form as  

2 2
0 0 2 0 0 2( , , , ) ( )( , , , ),t t

mv t t R v t tε ε
ε ε
+ +− +′ ′′ ′ ′′= Θ + Θx x R x x                               (3.29) 

2 *
0 0 2 0 0 2( , , , ) ( )( , , , ),t

mv t t v t tε
ε
++ −′ ′′ ′ ′′= Θx x R x x                                     (3.30) 

The time window 2t ε
ε
+Θ  excludes values outside of the interval 2( , )tε ε+ . We substitute 

equation 3.30 into equation 3.29 to get the final equation for v−  as 
2 2 2*

0 0 2 0 0(I ) ( , , , ) ( , , ).t t tv t t R tε ε ε
ε ε ε
+ + +− ′ ′′ ′ ′′− Θ Θ = ΘR R x x x x                          (3.31) 

 
Similar to the MME scheme, we expand equation 3.31 as a Neumann series to give the 
equation as 

2 2 2 2*
0 0 2 0 0 0 0 2

1

( , , , ) ( , , ) [ ( ) ]( , , , ).t t t tk

k
v t t R t R t tε ε ε ε

ε ε ε ε

∞
+ + + +−

=

′ ′′ ′ ′′ ′ ′′= Θ + Θ Θ Θ∑x x x x R R x x            (3.32) 

         
Equation 3.32 is valid for each common shot gather with a single source at 0′′x  and all 

receivers at 0′x . The time window after the sum of repeated correlations and convolutions can 

also be taken with constant values (ε  and 2t ε+ ) for all traces. Similar to MME, the 2t  in 
equation 3.32 can be any desired time value within the time window of the measurement. We 
collect the value of v−  at each time instant 2t  and store it in a new function containing only 
transmission compensated primary reflections. We can write it as  

0 0 2 0 0 2 0 0 2 2
1

( , , ) ( , , ) ( , , , ).r k
k

R t t R t M t t
∞

=

′ ′′ ′ ′′ ′ ′′= = +∑x x x x x x                     (3.33) 



Marchenko Multiple Elimination and Transmission compensated Marchenko Multiple Elimination 

31 
 

with 
2 2 *

0 0 2 1 0 0 2( , , , ) ( ) ( , , , ),t t
k kM t t M t tε ε

ε ε
+ +

−′ ′′ ′ ′′= Θ Θx x R R x x                         (3.34) 
and 

0M R= ,                                                         (3.35) 

where rR  denotes the transmission compensated primary reflections and kM  with 1,...,k = ∞  
predict internal multiple reflections and transmission losses in the primary reflections. 
Equation 3.33 can be evaluated to obtain rR . The retrieved dataset rR  contains only 

transmission compensated primary reflections. Based on the retrieved dataset rR , a better 
velocity model can be built and clearer image of the subsurface can be obtained. Also, better 
AVA/AVO analysis can be done. 
 

 
 

Figure 3.8: (a) 1D sketch of 1f  and G−  in equation 3.1 with the focusing point just above the 

third reflector with regular time truncation operator ( , )d dt tε ε− + − ; (b) the 1f  and G−  in 

equation 3.1 with revised asymmetric time truncation operator ( , )d dt tε ε− + + ; (c) 1D sketch 

of 1f  and G−  in equation 3.1 with the focusing point far from reflectors with regular time 

truncation operator ( , )d dt tε ε− + − ; (d) the 1f  and G−  in equation 3.1 with revised 

asymmetric time truncation operator ( , )d dt tε ε− + + . The dotted horizontal line in (c) and (d) 
indicate the focusing level. In each plot the red star indicates the focusing point, the green 
arrow indicates the reflection event of the third reflector and the red dashed line indicates the 
right side of the regular or revised time truncation operator, the black dashed arrow-lines 
indicate G−  and black solid arrow-lines indicate 1f .  
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Figure 3.9: Ray path of lastv− , (*) indicates the time reversed version. Note that the dashed line 
at i∂D  denotes the depth level (not a reflector) along which the integration in equation 3.28 
takes place. 
 

3.3.2 Examples 
 
In this subsection, the same synthetic examples as shown in section 3.2 are used to test the 
performance of the T-MME scheme. 
 

3.3.2.1 Horizontally layered example 
 
The same “invisible” model given in Figure 3.1 is used here. One of the computed shot 
gathers convolved with the source wavelet is shown in Figure 3.10a and the result obtained 
with T-MME scheme is shown in Figure 3.10b. Similarly, in the dataset retrieved by T-MME 
scheme primary reflections due to deeper reflectors are perfectly recovered because of the 
elimination of the corresponding internal multiple reflections. Figure 3.10c gives the 
modelled primary reflections without transmission loss, which is convolved with the source 
wavelet and will be used as a reference to illustrate the success of the T-MME scheme for 
transmission loss compensation in primary reflections. We pick the zero-offset and nonzero-
offset (800m) traces from the modelled primary reflections and retrieved dataset and show 
them in Figure 3.11. All traces have been normalized by the same factor. Displayed in Figure 
3.11a are the zero-offset traces from the modelled primary reflections (MD) shown in Figure 
3.10c and retrieved dataset (IT) shown in Figure 3.10b. Note that the retrieved data by T-
MME scheme match well with the modelled primary reflections without transmission loss 
(quantitatively, around four percent errors occur in the amplitude of the retrieved primary 
reflections). A similar conclusion can be derived from Figure 3.11b where the comparison of 
nonzero-offset (800m) traces is given. 
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Figure 3.10: (a) The modelled shot gather, (b) the dataset retrieved by the T-MME scheme 
with 1,...,20k =  and (c) the modelled primary reflections without transmission losses.  
 

 

 
Figure 3.11: (a) The comparison of zero-offset traces from modelled primary reflections and 
retrieved dataset shown in Figures 3.10b and 3.10c, (b) the comparison of nonzero-offset 
(800m) traces from modelled primary reflections and retrieved dataset shown in Figures 
3.10b and 3.10c. 
 
 

 a) 



Marchenko Multiple Elimination and Transmission compensated Marchenko Multiple Elimination 

34 
 

3.3.2.2 Complex example 
 
The same complex model given in Figure 3.4 is used here. One of the computed shot gathers 
convolved with the source wavelet is shown in Figure 3.12a. Internal multiple reflections are 
present at later arrival times and some of them are indicated by red arrows. The computed 
reflection responses are used as inputs to solve equation 3.33. The resulting dataset 
convolved with the source wavelet is shown in Figure 3.12b. The retrieved dataset is nearly 
multiple-free. Detailed comparisons of amplitudes using zero-offset and nonzero-offset traces 
are given in Figure 3.13. All traces have been normalized by the same normalization factor. It 
can be seen in Figure 3.13a that the T-MME scheme eliminates internal multiple reflections 
and compensates for transmission losses in primary reflections. A similar conclusion can be 
derived from Figure 3.13b where the comparison of nonzero-offset (1000) traces is given.  
  
We use the computed and retrieved datasets to image the medium. The images obtained using 
a one-way wave equation migration scheme are shown in Figure 3.14. We can see that, in the 
image retrieved from the computed reflection responses, artefacts arising from internal 
multiple reflections are present. The image retrieved from the resulting dataset of T-MME 
clearly show the primary reflectors without strong artefacts due to internal multiple reflections. 

           
Figure 3.12: (a) Modelled shot gather and (b) the dataset retrieved by the T-MME scheme with 

1,...,20k = . Red arrows indicate the internal multiple reflections. 
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Figure 3.13: (a) The comparison of zero-offset traces from original and retrieved datasets 
shown in Figure 3.12, (b) the comparison of nonzero-offset (1000m) traces from original and 
retrieved datasets shown in Figure 3.12. OR indicates traces from Figure 3.12a and IT 
indicates traces from Figure 3.12b. 

 

 a) 
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Figure 3.14: (a) The image retrieved from the computed reflection responses and (b) the 
image retrieved from the resulting dataset of T-MME. Red arrows indicate artefacts due to 
internal multiple reflections. 
 

3.4 Limitation analysis 
 
In the derivation of both methods, we assumed a lossless medium. These methods can be 
adapted to work with two-sided reflection and transmission data in dissipative media (Slob, 
2016). We further assumed that the Green’s functions and the focusing functions can be 
separated in time, that the source time signature can be well recovered and deconvolved and 
we ignored evanescent waves (Wapenaar et al., 2013). In this section, the effect of limited 
bandwidth is analysed with a thin layer model. We also investigate the effects of refracted 
and scattered waves in the data, which are not accounted for by the underlying theory. 
Because the MME and T-MME schemes share the same basic theory, they suffer from the 
same limitations. In this section, we test the performance of T-MME scheme to explore the 
limitations. In the following examples, the dipole source emits a Ricker wavelet with 20 Hz  
centre frequency and the single-sided reflection responses with 401 sources and 401 pressure 
receivers with a spacing of 10 m at the top of the models have been computed. Absorbing 
boundary conditions are applied around the model and the direct wave has been removed.  
  

3.4.1 Thin layer example  
  
In this subsection, we compute synthetic data in a simple horizontally layered thin layer 
model to test the performance of the T-MME scheme. Figure 3.15 shows the values for the 
acoustic velocity and density of this model. The thickness of the thin layer is 30 meters (the 
wavelength at the centre frequency of the source time signature is 90 meters). One of the 
computed single-sided reflection responses convolved with the source wavelet is shown in 
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Figure 3.16a. Note that internal multiple reflections occur in the computed response. The 
computed reflection responses are used as inputs to solve equation 3.33 for 0 0( , , )rR t′ ′′x x  with 

1, ,20k = ⋅⋅ ⋅  and one of the retrieved datasets convolved with the source wavelet is shown in 
Figure 3.16b. The comparison of zero-offset traces from datasets shown in Figures 3.16a and 
3.16b is given in Figure 3.17. Please note that the mismatch happens in Figure 3.17. In the 
discussion section we will analyse this mismatch in detail. 
 

 
 

 
Figure 3.15: (a) The velocity and (b) density values of the model. 

a) 

b) 



Marchenko Multiple Elimination and Transmission compensated Marchenko Multiple Elimination 

38 
 

          
Figure 3.16: (a) The modelled reflection response and (b) the retrieved dataset by the T-MME 
scheme. 

 
Figure 3.17: The comparison of zero-offset traces from original and retrieved datasets, the 
blue solid line (OR) indicates the zero-offset trace from original gather and red dotted line 
(IT) indicates the zero-offset trace from retrieved dataset (both traces have been normalized 
by the same normalization factor).  
 

3.4.2 Refracted wave example  
  
In this subsection, we compute synthetic data in a horizontally layered model with a high 
velocity layer that generates refracted waves, to test the performance of the T-MME scheme. 
Figure 3.18 shows the values for the acoustic velocity of this model (constant density 

31200kg/ m ). One of the computed single-sided reflection responses convolved with the 
source wavelet is shown in Figure 3.19a. Note that internal multiple reflections occur in the 
computed response and the red arrows indicate the refracted wave. The computed reflection 
responses are used as inputs to solve equation 3.33 for 0 0( , , )rR t′ ′′x x  with 1, ,20k = ⋅⋅ ⋅  and the 
retrieved dataset convolved with the source wavelet is shown in Figure 3.19b. Note that 
internal multiple reflections visible in Figure 3.19a have disappeared, whereas the refracted 

a) b) 
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wave has been well preserved and new events (artefacts), which are not present in Figure 
3.19a, have clearly appeared in Figure 3.19b. The T-MME scheme did not process the 
refracted waves correctly and constructed ghost events. 

 

          Figure 3.18: Velocity values of the model. 

 

          
Figure 3.19: (a) The modelled reflection response and (b) the retrieved dataset by the T-MME 
scheme. Red arrows in (a) indicate refracted waves and red arrows in (b) indicate generated 
artefical events. 

 

3.4.3 Scattered wave example 
  
In this subsection, we compute the synthetic data in a model that contains a point scatter to test 
the performance of the current scheme when scattered waves are present. Figure 3.20 shows 
the values for the acoustic velocity and density of the model. The yellow star indicates the 

a) b) 
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position of the scattering point. One of the computed single-sided reflection responses 
convolved with the source wavelet is shown in Figure 3.21a. Note that scattered waves occur 
as indicated by red arrows. The computed reflection responses are used as inputs to solve 
equation 3.33 for 0 0( , , )rR t′ ′′x x  with 1, ,20k = ⋅⋅ ⋅  and one of the retrieved datasets convolved 
with the source wavelet is shown in Figure 3.21b. It can be seen that the internal multiple 
reflection indicated by the yellow arrow in Figure 3.21a has been partially supressed, whereas 
the multiple scattered waves are still present in Figure 3.21b.  

 

 
Figure 3.20: (a) The velocity and (b) density values of the model. Yellow star indicates the 
position of the point scatter. 

a) 

b) 



Marchenko Multiple Elimination and Transmission compensated Marchenko Multiple Elimination 

41 
 

         
Figure 3.21: (a) The modelled reflection response and (b) the retrieved dataset by the T-MME 
scheme. Red arrows indicate scattered waves and yellow arrows indicate internal multiple 
reflections. 
 

3.5 Discussion 
 
In the subsection of the thin layer example, Figure 3.17 shows that the thin layer is treated as 
a single reflector with more complicated behaviour. For this reason, the primary reflection of 
the lower boundary in the thin layer is not touched for transmission losses compensation and 
internal multiple reflections inside it are kept by the T-MME scheme. That is why the 
primary reflection from the second reflector (it is the third reflector, but we observe the thin 
layer as a single reflector with complicated behaviour) still has the imprint of the thin layer as 
shown in Figure 3.17. However, the amplitude of the primary reflection from the second 
reflector has been improved because of the compensation of transmission losses and the 
internal multiple reflections of this reflector and the thin layer have been successfully 
removed. This example shows that the effect of limited bandwidth on thin layer responses 
cannot be accounted for by the T-MME scheme, but the associated internal multiple 
reflections between other reflectors and the thin layer are properly eliminated. 
 
In the subsection of the refracted wave example, the refracted wave indicated by red arrows 
in Figure 3.19a is well preserved in Figure 3.19b after the processing because the underlying 
theory of the T-MME scheme does not account for it. The underlying theory assumes that all 
events are reflection events and associated internal multiple reflections are predicted and 
subtracted. Unfortunately, the multiple reflections related to refracted waves do not exist in 
the data and this leads to new events in Figure 3.19b with the same move-out as primary 
reflections at far-offsets but that disappear at near zero-offsets. Using the event indicated by 
the red arrows in Figure 3.19b as an example, this event disappears at near zero-offsets where 
the refracted wave is not present in the data and no false multiple reflections are predicted. 

a) b) 
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We observe that the presence of refracted waves in the data cannot be well accounted for 
during the processing and artificial events are generated in the retrieved dataset. 
 
In the subsection of the scattered wave example, the scattered waves indicated by red arrows 
are preserved in Figure 3.21b after the processing. The internal multiple reflection indicated 
by the yellow arrow in Figure 3.21a has been partially supressed after the processing as is 
shown in Figure 3.21b. The partial suppression is caused by the fact that, in order to 
completely remove the internal multiple reflection, the data should be recorded for larger 
offsets than used in this example. 
 
Except for the assumptions listed in the first paragraph of the limitation analysis section, 
some extra limitations would affect the application of the T-MME scheme in a field dataset, 
such as: incomplete deconvolution of the source wavelet and the presence of noise in the 
dataset. In both cases, the predicted internal multiple reflections and transmission losses do 
not have the correct amplitude and phase, thus internal multiple reflections cannot be 
completely removed and transmission losses cannot be completely compensated for. 
 

3.6 Conclusions 
 
We have derived two schemes for internal multiple reflection elimination without model 
information or adaptive subtraction. The MME scheme focuses only on internal multiple 
reflection elimination without touching the primary reflections, while the T-MME scheme 
removes all orders of internal multiple reflections and compensates for transmission losses in 
primary reflections. The layered and complex synthetic examples validate the success of both 
schemes. The following examples explore the limitations of the T-MME scheme and show 
that scattered waves, refracted waves and thin layer effects are partially beyond the capability 
of the T-MME scheme. All limitations of the T-MME scheme are shared with MME scheme. 
We expect that both methods can be used in seismic reflection imaging and monitoring of 
structures and processes in the Earth’s interior. These methods open a new way to investigate 
how independent information about the internal structure of a medium is contained in 
measured acoustic reflection data. It also allows to investigate how this information can be 
retrieved without having information about the medium, and how it can be used to produce 
an accurate image. 
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4 
Extension of MME and T-

MME schemes to account for 
free-surface related multiple 

reflections 
 
We extend the MME and T-MME schemes to account for free-surface related multiple 
reflections. Thus, the extended MME and T-MME schemes can remove free-surface and 
internal multiple reflections in one step, while the amplitudes of retrieved primary reflections 
by the extended T-MME scheme is compensated for transmission losses. Both extended 
schemes do not require model information or adaptive subtraction. They consist only of the 
reflection response as a correlation and convolution operator that acts on an intermediate 
wavefield from which we compute and capture the primary reflections. For each time instant 
we keep one value for each source-receiver pair and store it in a new dataset. A conventional 
migration scheme can then be used to compute an artefact-free image of the medium. We 
evaluated the success of both methods with 2D synthetic examples. 

 

 

 

 
3 

 

 

 

                                                      
This Chapter is published in modified version as Zhang and Slob, 2019, Geophysics. 
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4.1 Introduction 

Except for internal multiple reflections, the free-surface related multiple reflections also 
cause major ghost reflectors in the migration image. Several schemes have been developed to 
eliminate the free-surface related multiple reflections. The surface-related multiple 
elimination (SRME) scheme of Verschuur et al. (1992) is a good example. SRME consists of 
two steps: free-surface related multiple reflection prediction and subtraction. In the first step, 
free-surface related multiple reflections are predicted by convolution of the traces in the 
measured data. Because the source wavelet is not known exactly, the predicted events differ 
from actual events in the measured data. Hence, adaptive subtraction is required to subtract 
the predicted free-surface related multiple reflections from the measured data in the second 
step. Unfortunately, adaptive subtraction has two major problems. One is that only an overall 
amplitude correction is carried out. The other is that the energy is minimized which leads to 
removal of primary reflections when primary and free-surface related multiple reflections 
overlap in time, which happens quite often in field data. The estimation of primaries by 
sparse inversion (EPSI) (van Groenestijn and Verschuur, 2009) replaces the two-step 
processing of SRME, prediction and adaptive subtraction, by a full-waveform inversion 
process. Both the SRME and EPSI have achieved success for synthetic and field datasets 
(Lopez and Verschuur, 2015) and been widely accepted as robust tools for free-surface 
related multiple reflection attenuation in industry. Our aim is to find a way to remove free-
surface and internal multiple reflections from the measured dataset in one step without model 
information or adaptive filtering. 
 
In this chapter, we extend the MME and T-MME schemes to account for free-surface related 
multiple reflections. For both extended schemes, only the single-sided reflection response is 
required as input and the output contains only primary reflections (the output of extended 
MME scheme contains only physical primary reflections and the output of extended T-MME 
scheme contains only transmission compensated primary reflections). The chapter is 
organized as follows. In the first part, we show how the extended MME scheme can be 
derived by starting with the revised Marchenko equations presented by Singh et al. (2017). In 
the second part, we show how the extended T-MME scheme can be derived from the revised 
Marchenko equations presented by Singh et al. (2017) with a modified truncation operator. 
Synthetic examples follow to show how well both schemes eliminate the free-surface and 
internal multiple reflections from the computed single-sided reflection response, and also 
transmission compensation by the T-MME scheme. The limitations of both schemes are 
discussed and we end with conclusions. 
 

4.2 Extended MME scheme 
 

4.2.1 Theory 
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We indicate time as t  and the position vector of a spatial location as ( , , )x y z=x , where z  
denotes depth and ( , )x y  denote the horizontal coordinates. The pressure free surface 0∂D  is 

defined as 0 0z = . For convenience, the coordinates at 0∂D  are denoted as 0 H 0( , )z=x x , 

with H ( , )x y=x . Similarly, the position vector of a point at an arbitrary depth level i∂D  is 

denoted as H( , )i iz=x x , where iz  denotes the depth level of i∂D . The vertical axis points 

down and we have 0 iz z< . We express the acoustic impulse reflection response as 

0 0( , , )R t′x x , where 0x  denotes the source position and 0′x  denotes the receiver position, both 

located at the free surface 0∂D . The Green’s function 0( , , )iG tx x  is defined for an impulsive 

source that is excited at 0x  and a receiver is positioned at the focal point ix . The Green’s 
function is defined in the same physical medium as the measured single-sided reflection 
response. We define the truncated medium as 0 iz z z< <  in the same way as Wapenaar et al. 
(2014). Inside the truncated domain, the properties of the medium are equal to the properties 
of the physical medium. Outside the truncated domain, the truncated medium is reflection-
free. The focusing wave field 1 0( , , )if tx x  is the solution of the homogeneous wave equation 

in the truncated medium and focuses at the focal point ix  at 0t = . The focusing and Green’s 
functions can be partitioned into up- and downgoing constituents and for this we use 
pressure-normalized quantities. 
 
We start with the 3D versions of the Green’s function representations in the presence of a free 
surface at the acquisition level 0z  (Singh et al., 2017), 

0
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Superscripts +  and −  indicate downgoing and upgoing fields, respectively. The reflection 
coefficient of the free surface is denoted r . Note that the measured dataset R  in this chapter 
is different from it in chapters 2 and 3 because of presence of free-surface related multiple 
reflections. Similar to equation 3.5, we convolve both sides of equations 4.1 and 4.2 with dT  
to project focusing functions back to acquisition surface. The equations can be given as 

0
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(4.4) 
with U   defined as 

0 0 2 0 00
( , , , ) ( , , ) ( , , ( )) ,

i
i d i iU t t d T t G t t dt

+∞ +

∂
′′ ′ ′′ ′ ′ ′ ′± = ± −∫ ∫D

x x x x x x x                       (4.5) 

and v−  and mv+  are projected versions of 1f
−  and 1mf +  as shown in equations 3.8 and 3.9, 2t  

denotes the minimum two-way travel time from a surface point 0′x  to the focusing level iz  

and back to the surface point 0′′x , H( )d x  is a spatially band-limited 2D delta function in space 

and ( )td  is a delta function in time ( dT  is the inverse of 1df +  in the sense that it collapses 1df +  
to a delta function in horizontal coordinates and time). Because the projected Green’s and 
focusing functions in equations 4.3 and 4.4 are assumed to be separated in time except for 
one time instant (van der Neut and Wapenaar, 2016), we limit the time window in which we 
evaluate equations 4.3 and 4.4 and end up with 
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for   2t tε ε< < −    (4.6) 
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∫ ∫D
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for   2t tε ε< < −   (4.7) 
where ε  is a small positive value. These two equations can be seen as the projected version 
of the revised Marchenko equations for single-sided reflection response with free-surface 
related multiple reflections presented by Singh et al. (2017). These two equations can be 
solved for v−  and mv+  using only the single-sided reflection response (the 1df +  collapses to a 
delta function in the projected version such that no model information is required). The 
obtained v−  and mv+  from equations 4.6 and 4.7 can be used to compute U −  from equation 4.3 
as 
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( , , ) ( , , , )] ,
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−

′′ ′ ′′ ′ ′ ′ ′′ ′= + −

′ ′ ′′ ′ ′− −

∫ ∫D
x x x x x x x x x

x x x x
 

for   2t tε− ≤ < +∞    (4.8) 

The explanation of U −  can be given as follows. When the focusing point is at, but just above, 
an actual reflector as shown in Figure 4.1a, the Green’s function in equation 4.1 is the 
upgoing field at the surface generated by an impulsive source at the focusing point. The 
reflection from that reflector will be the first event in G− . By convolving this Green’s 
function with dT +  as given by equation 4.5, we have redatumed all focusing points at i∂D  
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back to a location at the surface to obtain U − . The first event in U −  indicated by red arrow in 
Figure 4.1b has two-way travel time 2t  and is the primary reflection of the reflector below 

our original focusing level. When the focusing point is far from a reflector, the value in U −  
with two-way travel time 2t  (indicated by green arrow in Figure 4.1d) is zero and the first 

event in U −  (indicated by red arrow in Figure 4.1d) has longer two-way travel time than 2t . 

Similar to MME and T-MME schemes in chapter 3, 2t  can be taken with constant values for 
each source-receiver pair instead of a curve line corresponding to a horizontal subsurface 
level. Thus, the 2t  in equation 4.8 can be any desired time value within the time window of 

the measurement. The 2t  describes a fictitious focusing level in the subsurface where we 
have focused to and projected back from. When the focusing level coincides with an actual 
subsurface reflector, the first event in U −  at time instant 2t  will be the primary reflection of 

that reflector with two-way travel time 2t . Otherwise, the value in U −  at time instant 2t  will 

be zero. This means that U −  can be evaluated and its first event can be picked to represent a 
possible primary reflection event of the medium. We collect the value of U −  for each time 
instant 2t  and store it in a new function containing only primary reflections. We can write it 
as 

0 0 2 0 0 2 2( , , ) ( , , , ).tR t t U t t−′′ ′ ′′ ′= =x x x x                                         (4.9) 

where tR  denotes the retrieved primary reflections. 
         
Equation 4.9 indicates that only primary reflections end up in tR . Note that the free-surface 
and internal multiple reflections are removed in one step, where no model information or 
adaptive subtraction is required. 
 
         
4.2.2 Example 
         
The aim of the extended MME method is to retrieve the primary reflections by removing the 
free-surface and internal multiple reflections in one step given the measured single-sided 
reflection response at the pressure free surface. A 2D synthetic example is given to illustrate 
the method. Figures 4.2a and 4.2b show the values for the acoustic velocity and density as 
functions of depth and horizontal position. The dipole source emits a Ricker wavelet with 
20 Hz  centre frequency. Absorbing boundary conditions are applied at two sides and bottom 
of the model, the top boundary of the model is set as free surface (the reflection coefficient of 
the free surface r  is 1− ). We have computed the single-sided reflection responses with 601 
sources and 601 particle-velocity receivers with a spacing of 10 m at the free-surface 
boundary. One of the computed single-sided reflection responses convolved with the source 
wavelet is shown in Figure 4.3a. Note that free-surface and internal multiple reflections 
occur, and the later primary reflections labelled by P7, P8 and P9 cannot be identified. The 
computed reflection responses are used as inputs to solve equations 4.6, 4.7 and 4.8 for U − . 
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Then the procedure as described using equation 4.9 leads to the retrieved dataset shown in 
Figure 4.3b. Note that free-surface and internal multiple reflections visible in Figure 4.3a 
have disappeared, whereas the last three primary reflection events labelled by P7, P8 and P9, 
which cannot be distinguished from multiple reflections in Figure 4.3a, are clearly retrieved 
in Figure 4.3b. We pick the zero-offset traces from the datasets shown in Figures 4.3a and 
4.3b and show them in Figure 4.4. It can be seen that free-surface and internal multiple 
reflections have been successfully removed and primary reflections labelled by P1,…,P6 in 
Figure 4.3 have been well retrieved. There is a mismatch of last three primary reflections 
labelled by P7, P8 and P9 in Figure 4.3 which is illustrated in Figure 4.4. This is caused by 
the fact that the last three primary reflections are overlapped with multiple reflections in the 
trace from the original shot gather. The red dotted line indicates the trace from the retrieved 
dataset and both traces have been normalised by the same normalization factor.  
         

 

Figure 4.1: (a) 1D sketch of the reciprocal of G−  in equation 4.1 with the focusing point at, 
but just above the third reflector; (b) the corresponding U −  in equation 4.5; (c) 1D sketch of 
the reciprocal of G−  in equation 4.1 with the focusing point far from reflectors; (d) the 
corresponding U −  in equation 4.5. The dotted horizontal line in (c) and (d) indicate the 
focusing level. In each plot the red star indicates the focusing point (source), the red arrow 
indicates the first event and the green arrow indicates a zero-valued event at 2t . The blue 
solid line indicates the pressure free surface.  
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Figure 4.2: (a) The velocity and (b) density models that will be used to model the single-sided 
reflection response. 
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Figure 4.3: (a) The modelled reflection response and (b) the retrieved primary reflections. Red 
dashed lines indicate zero-offset traces plotted at the right side, P1,…,P9 label the primary 
reflections. 
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Figure 4.4: Comparison of zero-offset traces from Figure 4.3. The blue solid line (OR) comes 
from the original shot gather shown in Figure 4.3a and the red dotted line (ER) comes from 
the retrieved primary reflections shown in Figure 4.3b.  
         

4.3 Extended T-MME scheme 
         

4.3.1 Theory 
         
We rewrite equations 4.6 and 4.7 with a modified truncation operator: 
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0 0 0 0 2

( , , , ) ( , , ) [ ( , , ) ( , , , )

( , , ) ( , , , )] ,
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rR t v t t t dt

+∞− +

∂

−

′ ′′ ′ ′′ ′ ′ ′′ ′= + −

′ ′ ′′ ′ ′− −
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x x x x x x x x x

x x x x
 

for   2t tε ε< < +    (4.10) 
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′ ′′ ′ ′ ′′ ′= − −

′ ′ ′′ ′ ′− − −
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x x x x x x x

x x x x
 

for   2t tε ε< < +   (4.11) 
Note that equations 4.10 and 4.11 are different from equations 4.6 and 4.7 (the truncation 
operator in equations 4.10 and 4.11 is different from it in equations 4.6 and 4.7) to capture the 
desired result at 2t  in the projected focusing function, which ensures the compensation for 
transmission losses in the primary reflections that will now be found in the projected upgoing 
focusing function. This transmission compensated primary reflection will be found at 2t  in 

case 2t  happens to be the two-way travel time of a reflector, otherwise the value in the 

projected upgoing focusing function at 2t  will be zero. Therefore, we store the value of v−  

for each time of 2t  in a new dataset. It can be written as  

0 0 2 0 0 2 2( , , ) ( , , , ).rR t t v t t−′ ′′ ′ ′′= =x x x x                                         (4.12) 

where rR  denotes the retrieved transmission compensated primary reflections.         
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Compared with the extended MME scheme, where free-surface and internal multiple 
reflections are eliminated in one step, the retrieved rR  from equation 4.12 is not only 
multiple-free, the transmission losses in the primary reflections are successfully compensated 
for. Still, no model information or adaptive filtering is required to run the scheme.  
 

4.3.2 Example 
         
In this section, two synthetic examples are given to validate the effectiveness of the extended 
T-MME scheme for multiple reflection elimination and transmission losses compensation. In 
these two examples, the reflection responses are modelled with absorbing boundary 
conditions applied at the two sides and the bottom of models, and the top surface is set as a 
pressure free surface, with the reflection coefficient of the free surface r  given as -1. Dipole 
sources and particle-velocity receivers are positioned at the free surface of each model and 
the spacing is 10m. A Ricker wavelet with 20Hz centre frequency is emitted by the sources. 
The direct wave has been removed from the modelled reflection responses.   
 

4.3.2.1 Horizontally layered model 
         
Here, we consider a horizontally layered model to evaluate the scheme for removing multiple 
reflections and compensating for transmission losses in the primary reflections. Figure 4.5a 
and 4.5b show the acoustic velocity and density values of the model. We have modelled the 
reflection responses with 401 sources and 401 traces per shot gather, one of the modelled 
reflection responses convolved with the source wavelet is shown in Figure 4.6a. It can be 
seen that free-surface and internal multiple reflections are present as indicated by red arrows. 
The modelled reflection responses are used to solve equations 4.10 and 4.11 for v−  at each 
time instant 2t . Then equation 4.12 is used to retrieve the transmission compensated primary 

reflections rR . One of the retrieved datasets convolved with the source wavelet is shown in 
Figure 4.6b. Figure 4.6c shows the modelled primary reflections without transmission losses, 
which is convolved with the source wavelet and will be used as a reference to validate the 
success of our scheme for compensating for transmission losses in primary reflections. It can 
be seen that the free-surface and internal multiple reflections, present in Figure 4.6a, are 
absent in Figure 4.6b. We select the zero-offset traces from Figures 4.6a, 4.6b and 4.6c and 
show them in Figure 4.7. Figure 4.7a shows the comparison of zero-offset traces from 
Figures 4.6a and 4.6b. It can be seen that multiple reflections are removed, and the 
amplitudes of primary reflections are changed in the retrieved dataset. Figure 4.7b shows the 
comparison of zero-offset traces from Figures 4.6b and 4.6c. It can be seen that the retrieved 
primary reflections match well with the modelled primary reflections without transmission 
losses (quantitatively, a four percent error occurs in the amplitudes in the retrieved primary 
reflections). A similar conclusion can be drawn from Figure 4.8 where the comparison of 
nonzero-offset (800m) traces from Figures 4.6a, 4.6b and 4.6c is given. All traces in Figures 
4.7 and 4.8 have been normalized by the same normalization factor. 
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Figure 4.5: The (a) velocity and (b) density values of the horizontally layered model. 
 
 

 
 

a) 

b) 
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Figure 4.6: (a) The modelled reflection response, (b) the dataset retrieved by the extended T-
MME scheme and (c) the modelled primary reflections without transmission losses. Red 
arrows indicate free-surface and internal multiple reflections. 
 

 

 
Figure 4.7: (a) The comparison of zero-offset traces from Figures 4.6a and 4.6b, (b) the 
comparison of zero-offset traces from Figures 4.6b and 4.6c. OR indicates zero-offset trace 
from Figure 4.6a, IT indicates trace from Figure 4.6b and MD indicates trace from Figure 
4.6c. 
 

a) b) c) 

a) 

b) 
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Figure 4.8: (a) The comparison of nonzero-offset (800m) traces from Figures 4.6a and 4.6b, 
(b) the comparison of nonzero-offset (800m) traces from Figures 4.6b and 4.6c. OR indicates 
trace from Figure 4.6a, IT indicates trace from Figure 4.6b and MD indicates trace from 
Figure 4.6c. 
 

4.3.2.2 Complex model 
         
We now apply our scheme to a complex 2D model to evaluate the performance. Figures 4.9a 
and 4.9b give the acoustic velocity and density values of the model. We have modelled the 
reflection responses with 601 sources and 601 traces per shot gather, two of the modelled 
reflection responses convolved with the source wavelet are given in Figures 4.10a and 4.10b. 
It can be seen that the two reflection responses contain many free-surface and internal 
multiple reflections which make it hard to identify later arrival primary reflections. The 
modelled reflection responses are used to solve equations 4.10 and 4.11 for v−  at each time 
instant 2t . The procedure described in equation 4.12 leads to the retrieved primary reflections 

rR  with compensation for transmission losses. Two of the corresponding retrieved shot 
gathers convolved with the source wavelet are shown in Figures 4.10c and 4.10d. It can be 
seen that free-surface and internal multiple reflections visible in Figures 4.10a and 4.10b have 
been successfully removed and later arrival primary reflections, which are submerged in 
Figures 4.10a and 4.10b, have been recovered in Figures 4.10c and 4.10d. Note that the first 
free-surface multiple reflection overlap with the second primary reflection in Figures 4.10a 
and 4.10b. The amplitude of the second primary reflection in Figures 4.10c and 4.10d 
becomes weaker because of the elimination of the overlapping free-surface multiple 
reflection. In order to compare the amplitude of primary reflections before and after the 

b) 

a) 
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processing, we select zero-offset traces from Figures 4.10a and 4.10c and show them in 
Figure 4.11a. It can be seen that multiple reflections have been removed and amplitudes of 
primary reflections have been changed because of the compensation for transmission losses. 
A similar conclusion can be drawn from Figure 4.11b where the comparison of nonzero-
offset (1000m) traces from Figures 4.10a and 4.10c is given. The traces in Figure 4.11 have 
been normalized by the same normalization factor. The transmission losses in the primary 
reflections are approximately compensated for because of the lateral heterogeneity of the 
complex medium model.  
         
We use the modelled and retrieved datasets to compute images of the medium. The correct 
velocity model is used for both datasets. The images are obtained using a one-way wave 
equation migration scheme and shown in Figures 4.12a and 4.12b. The image shown in 
Figure 4.12a is from the modelled dataset. It contains artefacts arising from free-surface and 
internal multiple reflections. The image shown in Figure 4.12b is from the retrieved dataset. 
It is free from artefacts arising from free-surface and internal multiple reflections.   

 

 
Figure 4.9: The (a) velocity and (b) density values of the complex model. 

a) 

b) 
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Figure 4.10: The (a) and (b) are two modelled reflection responses with sources at 0m and 
1700m, (c) and (d) are the corresponding retrieved datasets by the extended T-MME scheme.   

a) b) 

c) d) 
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Figure 4.11: (a) The comparison of zero-offset traces from Figures 4.10a and 4.10c, (b) the 
comparison of nonzero-offset (1000m) traces from Figures 4.10a and 4.10c. OR indicates 
traces from Figure 4.10a, IT indicates traces from Figure 4.10c. 
 

 

b) 

a) 

a) 
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Figure 4.12: The (a) image retrieved from the modelled reflection responses and (b) the 
image retrieved from the resulting dataset of the extended T-MME scheme. Red arrows 
indicate artefacts arising from free-surface and internal multiple reflections.  
         

4.4 Discussion 
 
Equations 4.6 and 4.7 for the extended MME scheme and equations 4.10 and 4.11 for the 
extended T-MME scheme can be solved by the Neumann series expansion or unconditionally 
convergent methods, e.g., least square scheme or matrix inversion presented by Dukalski and 
de Vos (2018). The limitations of both schemes have been studied in detail for the 
convergence properties in Dukalski and de Vos (2018). Because that analysis was done in 
1D, we have carried out some numerical experiments with very high impedance contrasts 
(leading to reflection coefficients up to 0.71) and found similar behaviour in 2D as reported 
in Dukalski and de Vos (2018). In the derivation of both methods, we assumed a lossless 
medium. The methods can be adapted to work with two-sided reflection and transmission 
data in dissipative media (Slob, 2016). We further assumed that the projected Green’s 
functions and the focusing functions can be separated in time except for one time instant, that 
the source wavelet can be well recovered and the evanescent waves are absent (Wapenaar et 
al., 2013) as well as refractions. These restrictions limit the application of both methods, but 
not more than existing methods that require model information or adaptive filtering before 
the free-surface and internal multiple reflections are removed. For situations in which these 
assumptions are fulfilled, the proposed methods have nearly perfect performances as shown 
in 2D synthetic examples. 
 
 
 

b) 
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4.5 Conclusions 
         
We have extended the MME and T-MME schemes to account for free-surface related 
multiple reflections, in which the single-sided reflection response is used to remove its own 
free-surface and internal multiple reflections. The reflection response is convolved and 
crosscorrelated with an intermediate wavefield that exists within a specific time window. 
From this intermediate wavefield the primary reflection is computed and stored in the new 
dataset. The 2D synthetic examples show that both methods effectively remove free-surface 
and internal multiple reflections in one step without any model information. The T-MME 
scheme also compensates for transmission losses in primary reflections.  
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5 
Fast implementation of T-

MME scheme 
 
The primary reflections can be obtained from the single-sided acoustic reflection response in 
the two-way travel time domain by the MME and T-MME schemes. The substantial 
computational cost of both schemes can be reduced by an order of magnitude with a fast 
implementation. This is achieved by using the previously computed filter functions as initial 
estimate for every new truncation time value. Considering the similarity of MME and T-
MME schemes, we give only the fast implementation of the T-MME and the extended T-
MME schemes in detail in this chapter. 2D synthetic examples are given to illustrate the 
success. 
 
 
 
 
 
 
 
4 
 
 
 

                                                      
The modified version of this Chapter has been submitted as Zhang and Slob, 2019, Geophysics Journal 
International, under review. 
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5.1 Fast implementation of T-MME 
         

5.1.1 Theory 
         
We indicate time as t  and a spatial location as ( , )zΗ=x x  with ( , )x yΗ =x , where z  denotes 

depth and Ηx  denotes the vector containing the horizontal coordinates. The acoustically 

transparent surface 0∂D  is defined at 0 0z = . We express the acoustic impulse reflection 

response as 0 0( , , )R t′x x , where 0′x  denotes the receiver position and 0x  denotes the source 

position at 0∂D . We start with the projected version of the modified Marchenko equations 
given in Chapter 3 (equations 3.22 and 3.23) 

0
0 0 2 0 0 0 0 0 0 0 20

( , , , ) ( , , ) ( , , ) ( , , , ) ,mv t t R t d R t v t t t dt
+∞− +

∂
′ ′′ ′ ′′ ′ ′ ′′ ′ ′= + −∫ ∫D

x x x x x x x x x  

  for   2t tε ε< < +   (5.1) 

0

0

0 0 2 0 0 0 0 0 2( , , , ) ( , , ) ( , , , ) ,mv t t d R t v t t t dt+ −

∂ −∞
′ ′′ ′ ′ ′′ ′ ′= − −∫ ∫D

x x x x x x x  

for   2t tε ε< < +   (5.2) 

where mv+  and v−  are projected versions of 1mf +  and 1f
−  as shown in equations 3.8 and 3.9, ε  

is a small positive value and 2t  denotes any desired time value within the time window of the 
measurement.  
 
Here we choose to solve equations 5.1 and 5.2 iteratively as follows: 

0
0 0 2 0 0 0 0 0 , 1 0 0 20

( , , , ) ( , , ) ( , , ) ( , , , ) ,k m kv t t R t d R t v t t t dt
+∞− +

−∂
′ ′′ ′ ′′ ′ ′ ′′ ′ ′= + −∫ ∫D

x x x x x x x x x  

for   2t tε ε< < +    (5.3) 

0

0

, 0 0 2 0 0 0 0 0 2( , , , ) ( , , ) ( , , , ) ,m k kv t t d R t v t t t dt+ −

∂ −∞
′ ′′ ′ ′ ′′ ′ ′= − −∫ ∫D

x x x x x x x  

for   2t tε ε< < +   (5.4) 
where 1,2,...k =  indicates the iteration number, and the choice 

0 0 0 2( , , , ) 0,v t t− ′ ′′ =x x                                                    (5.5) 

,0 0 0 2( , , , ) 0,mv t t+ ′ ′′ =x x                                                   (5.6) 

initialises the iterative scheme presented in equations 5.3 and 5.4. Thus, equations 5.1 and 5.2 
can be solved iteratively for each value of 2t  with 2t  starting from zero to cover the whole 

recording time and incrementing 2t  with the time sampling dt  of the dataset. 
 
We make an interesting observation from Figure 5.1. In Figure 5.1a, the two-way travel time 
associated with the horizontal dotted line is the time instant 2t . Suppose we have computed 

v±  for 2t  and we would like to compute it now for a later time instant 2t dt+ , such that the 

new depth level with two-way travel time 2t dt+  is still above the third reflector. In that case 
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the projected focusing functions v±  do not change and we have 

0 0 2 0 0 2( , , , ) ( , , , )v t t dt v t t± ±′ ′′ ′ ′′+ =x x x x . In Figure 5.1b, the value of 2t dt+  leads to inclusion of 
the third reflector. Even then, all previously obtained values remain unchanged and new 
values that need to be computed are associated only with the third reflector. These new values 
can occur in the entire time window ( 2t t dtε ε< < + + ) of the projected focusing function. 

Thus, for a new time instant 2t dt+ , the initial estimate is given by 

0 0 0 2 0 0 2( , , , ) ( , , , ),v t t dt v t t− −′ ′′ ′ ′′+ =x x x x                for 2t t dtε ε< < + +        (5.7) 

,0 0 0 2 0 0 2( , , , ) ( , , , ).m mv t t dt v t t+ +′ ′′ ′ ′′+ =x x x x               for 2t t dtε ε< < + +       (5.8) 

As long as each new depth level, with two-way travel time 2t dt+ , does not cross a new 
reflector, the iteration will terminate and we move to the next time instant. If the new depth 
level crosses a new reflector, 1 0 0 2( , , , )v t t dt− ′ ′′ +x x  will be different from 0 0 0 2( , , , )v t t dt− ′ ′′ +x x  
and more iterations are required to properly account for the related events. Generally, fewer 
iterations are required than when the initial estimates given in equations 5.5 and 5.6 are used 
for solving the iterative scheme presented in equations 5.3 and 5.4. In 2D or 3D modelled 
data and in field data, every new time instant 2t  will possibly include a new (part of a) 
reflector. Still, fewer iterations are needed than with zero initial estimates, because all 
previously computed values will remain correct and only new ones related to the new 
reflector need to be computed. The retrieval of primary reflections 

0 0 2 0 0 2 2( , , ) ( , , , )rR t t v t t−′ ′′ ′ ′′= =x x x x with the new initial estimates will reduce the computational 
cost compared with solving the equation with zero initial estimates for each time instant. 
 
 

 
Figure 5.1: (a) 1D sketch of the projected focusing functions with focusing level far from 
reflectors; (b) 1D sketch of the projected focusing functions with focusing level coinciding 
with a reflector. The downgoing arrows indicate the projected downgoing focusing function 
v+  and the upgoing arrows indicate the projected upgoing focusing function v− . The dotted 
horizontal line in (a) indicates the focusing level. In each plot, the red star indicates the 
source point, the green arrow indicates the event with two-way travel time 2t , and the red 
dotted line indicates the boundary inside the subsurface. Everything left of the red dotted line 
belongs to the projected focusing functions and everything right of the red dotted line belongs 
to the reflection data. 
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5.1.2 Example 
 
We now apply the fast implementation to a complex 2D model to evaluate the performance. 
Dipole sources and pressure receivers are placed at the top of the model with a spacing of 10m 
and a Ricker wavelet, with 20Hz centre frequency, is emitted by sources. Absorbing boundary 
conditions are applied around the model and the direct wave has been removed. Figures 5.2a 
and 5.2b show the acoustic velocity and density values of the model. We have modelled the 
reflection responses with 601 sources and 601 traces per shot gather. One of the modelled 
reflection responses convolved with the source wavelet is given in Figure 5.3a. It can be seen 
that the reflection response contains many internal multiple reflections. The modelled 
reflection responses are used to solve equations 5.3 and 5.4 for v−  in the conventional and fast 
implementations respectively at each time instant 2t . With zero initial estimates, the satisfied 

v−  is solved with max 20k =  whereas with the modified initial estimates we use max 2k = . The 

procedure described by 0 0 2 0 0 2 2( , , ) ( , , , )rR t t v t t−′ ′′ ′ ′′= =x x x x  leads to the retrieved primary 
reflection dataset with compensation for transmission losses. The resulting gather retrieved by 
the conventional implementation is shown in Figure 5.3b, and the resulting gather retrieved by 
the fast implementation is shown in Figure 5.3c. Both gathers are convolved with the source 
wavelet. It can be seen that internal multiple reflections visible in Figure 5.3a have been 
successfully removed in Figures 5.3b and 5.3c. Figure 5.3d shows the difference between the 
resulting gathers retrieved by the conventional and fast implementations. It validates the fact 
that the fast implementation can reduce the computational cost of the proposed scheme by an 
order of magnitude for retrieving the equivalent result ( max 20k =  versus max 2k = ). In order to 
compare the amplitudes of primary reflections before and after processing, we select zero-
offset traces from Figures 5.3a, 5.3b and 5.3c and show them in Figures 5.4a and 5.4b. It can 
be seen that multiple reflections have been removed and amplitudes of primary reflections 
have been changed because of the compensation for transmission losses in both resulting 
gathers. A similar conclusion can be drawn from Figures 5.5a and 5.5b where the comparison 
of nonzero-offset (1000m) traces from Figures 5.3a, 5.3b and 5.3c is given. All traces in 
Figures 5.4 and 5.5 have been normalized by the same normalization factor. Note that, the 
transmission losses in the primary reflections are approximately compensated for because the 
lateral heterogeneity of the complex medium model prevents a full compensation. 
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Figure 5.2: (a) The velocity and (b) density values of the model. 

 
 
 

 

a) 

b) 
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Figure 5.3: (a) The modelled reflection response, (b) the retrieved primary reflections by the 
conventional implementation and (c) the retrieved primary reflections by the fast 
implementation, (d) the difference between retrieved gathers by the conventional and fast 
implementations. 

a) 

c) d) 

b) 
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Figure 5.4: (a) The comparison of zero-offset traces from Figures 5.3a and 5.3b, (b) the 
comparison of zero-offset traces from Figures 5.3a and 5.3c. OR indicates trace from Figure 
5.3a and IT indicates traces from Figures 5.3b and 5.3c. 

 

 

 
 

Figure 5.5: (a) The comparison of nonzero-offset (1000m) traces from Figures 5.3a and 5.3b, 
(b) the comparison of nonzero-offset (1000) traces from Figures 5.3a and 5.3c. OR indicates 
trace from Figure 5.3a and IT indicates traces from Figures 5.3b and 5.3c. 
 
 

a) 

b) 

a) 

b) 
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5.2 Fast implementation of extended T-MME 
         

5.2.1 Theory 
 
We indicate time as t  and a spatial location as ( , )zΗ=x x  with ( , )x yΗ =x , where z  denotes 

depth and Ηx  denotes the vector containing the horizontal coordinates. The pressure-free 

surface 0∂D  is defined at 0 0z = . We express the acoustic impulse reflection response as 

0 0( , , )R t′x x , where 0′x  denotes the receiver position and 0x  denotes the source position at the 

free surface 0∂D . We start with the projected version of the modified Marchenko equations 
from Singh et al. (2017) (equations 4.10 and 4.11) 

0
0 0 2 0 0 0 0 0 0 0 2 0 0 20

( , , , ) ( , , ) ( , , )[ ( , , , ) ( , , , )] ,mv t t R t d R t v t t t rv t t t dt
+∞− + −

∂
′ ′′ ′ ′′ ′ ′ ′′ ′ ′′ ′ ′= + − − −∫ ∫D

x x x x x x x x x x x

 
for   2t tε ε< < +   (5.9) 

0

0

0 0 2 0 0 0 0 0 2 0 0 2( , , , ) ( , , )[ ( , , , ) ( , , , )] ,m mv t t d R t v t t t rv t t t dt+ − +

∂ −∞
′ ′′ ′ ′ ′′ ′ ′′ ′ ′= − − − −∫ ∫D

x x x x x x x x x  

for   2t tε ε< < +   (5.10) 

where mv+  and v−  are projected versions of 1mf +  and 1f
−  as shown in equations 3.8 and 3.9, ε  

is a small positive value and 2t  denotes any desired time value within the time window of the 
measurement, r  indicates the reflection coefficient of the free surface. As explained in 
Chapter 4, the retrieval of transmission compensated primary reflections can be done by 

0 0 2 0 0 2 2( , , ) ( , , , )rR t t v t t−′ ′′ ′ ′′= =x x x x . The retrieved new dataset rR  is free from free-surface and 
internal multiple reflections and contains only the corresponding transmission compensated 
primary reflections. 
         
Here we also choose to solve equations 5.9 and 5.10 iteratively as follows:  

0
0 0 2 0 0 0 0 0 , 1 0 0 2 1 0 0 20

( , , , ) ( , , ) ( , , )[ ( , , , ) ( , , , )] ,k m k kv t t R t d R t v t t t rv t t t dt
+∞− + −

− −∂
′ ′′ ′ ′′ ′ ′ ′′ ′ ′′ ′ ′= + − − −∫ ∫D

x x x x x x x x x x x

 
for   2t tε ε< < +    (5.11) 

0

0

, 0 0 2 0 0 0 0 0 2 , 1 0 0 2( , , , ) ( , , )[ ( , , , ) ( , , , )] ,m k k m kv t t d R t v t t t rv t t t dt+ − +
−∂ −∞

′ ′′ ′ ′ ′′ ′ ′′ ′ ′= − − − −∫ ∫D
x x x x x x x x x  

for   2t tε ε< < +   (5.12) 
where 1,2,...k =  indicates the iteration number, and the choice 

0 0 0 2( , , , ) 0,v t t− ′ ′′ =x x                                                    (5.13) 

,0 0 0 2( , , , ) 0,mv t t+ ′ ′′ =x x                                                   (5.14) 

initialises the iterative scheme presented in equations 5.11 and 5.12. Thus, equations 5.9 and 
5.10 can also be solved iteratively for each value of 2t  with 2t  starting from zero to cover the 
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whole recording time and incrementing 2t  with the time sampling dt  of the dataset. As 
shown in Figure 5.6, the initial estimates given in equations 5.13 and 5.14 can also be 
replaced by the solved projected focusing functions of previous time instant 

0 0 0 2 0 0 2( , , , ) ( , , , ),v t t dt v t t− −′ ′′ ′ ′′+ =x x x x                for 2t t dtε ε< < + +   (5.15) 

,0 0 0 2 0 0 2( , , , ) ( , , , ).m mv t t dt v t t+ +′ ′′ ′ ′′+ =x x x x               for 2t t dtε ε< < + +   (5.16) 

Similarly, fewer iterations are required than when the initial estimates given in equations 5.13 
and 5.14 are used for solving the iterative scheme presented in equations 5.11 and 5.12. 
Correspondingly, The retrieval of transmission compensated primary reflections with the new 
initial estimates will reduce the computational cost compared with solving the equations with 
zero initial estimates for each time instant.  

 

 
Figure 5.6: (a) 1D sketch of the projected focusing functions with focusing level far from 
reflectors; (b) 1D sketch of the projected focusing functions with focusing level coinciding 
with a reflector. The downgoing arrows indicate the projected downgoing focusing function 
v+  and the upgoing arrows indicate the projected upgoing focusing function v− . The dotted 
horizontal line in (a) indicates the focusing level. In each plot, the red star indicates the 
source point, the green arrow indicates the event with two-way travel time 2t , and the red 
dotted line indicates the boundary inside the subsurface. Everything left of the red dotted line 
belongs to the projected focusing functions and everything right of the red dotted line belongs 
to the data. The blue solid line indicates the pressure-free surface. Where the red dotted line 
crosses the blue line is the time instant 2t ε+  used for truncation.  
 

5.2.2 Example 
 
In this example, the reflection responses are modelled with absorbing boundary conditions 
applied at the two sides and the bottom of the model, and the top surface is set as a pressure-
free surface, with the reflection coefficient of the free surface r  given as -1. Dipole sources 
and particle-velocity receivers are positioned at the free surface of the model and the spacing 
is 10m. A Ricker wavelet with 20Hz centre frequency is emitted by the sources. The direct 
wave has been removed from the modelled reflection responses. Figures 5.7a and 5.7b show 
the acoustic velocity and density values of the model. The reflection responses have been 
modelled with 601 sources and 601 traces per shot gather. One of the modelled dataset 
convolved with the source wavelet is given in Figure 5.8a. It can be seen that the reflection 
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responses contain many free-surface and internal multiple reflections. The modelled 
reflection responses are used to solve equations 5.11 and 5.12 for v−  in the conventional and 
fast implementations respectively at each time instant 2t . With zero initial estimates, the 

satisfied v−  is solved with max 20k =  whereas with the modified initial estimates we use 

max 2k = . The resulting gather retrieved by the conventional implementation is shown in 
Figure 5.8b, and the resulting gather retrieved by the fast implementation is shown in Figure 
5.8c. Both gathers are convolved with the source wavelet. Note that multiple reflections 
visible in Figure 5.8a have been successfully removed in Figures 5.8b and 5.8c. Figure 5.8d 
shows the difference between the resulting gathers retrieved by the conventional and fast 
implementations. It validates the fact that the fast implementation can reduce the 
computational cost of the proposed scheme by an order of magnitude for retrieving the 
equivalent result ( max 20k =  versus max 2k = ). Figures 5.9a and 5.9b give the comparison of 
zero-offset traces from Figures 5.8a, 5.8b and 5.8c. It can be seen that multiple reflections 
have been removed and amplitudes of primary reflections have been changed because of the 
compensation for transmission losses in both resulting gathers. A similar conclusion can be 
drawn from Figures 5.10a and 5.10b where the comparison of nonzero-offset (1000m) traces 
from Figures 5.8a, 5.8b and 5.8c is given. The traces in Figures 5.9 and 5.10 have been 
normalized by the same normalization factor. Still, the transmission losses in the primary 
reflections are approximately compensated for because the lateral heterogeneity of the 
complex medium model prevents a full compensation. 
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Figure 5.7: The (a) velocity and (b) density values of the complex medium model. 

 
 
 
 
 
 

a) 

b) 
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Figure 5.8: The modelled reflection response, (b) the corresponding retrieved dataset by the 
conventional implementation and (c) the retrieved dataset by the fast implementation, (d) the 
difference between retrieved gathers by the conventional and fast implementations. 
 

a) b) 

c) d) 
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Figure 5.9: (a) The comparison of zero-offset traces from Figures 5.8a and 5.8b, (b) the 
comparison of zero-offset traces from Figures 5.8a and 5.8c. OR indicates trace from Figure 
5.8a and IT indicates traces from Figures 5.8b and 5.8c. 

 

 
Figure 5.10: (a) The comparison of nonzero-offset (1000m) traces from Figures 5.8a and 
5.8b, (b) the comparison of nonzero-offset (1000m) traces from Figures 5.8a and 5.8c. OR 
indicates trace from Figure 5.8a and IT indicates traces from Figures 5.8b and 5.8c. 
 
 
 

a) 

b) 

a) 

b) 
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5.3 Discussion 
 
The fast implementation modifies the starting point, but not the operator of the equation to be 
solved. This means that the same limitations apply to the fast implementation as for the 
conventional implementation.  
    
As explained in Chapters 3 and 4, the MME and extended MME schemes are derived from 
the same basic theory with T-MME and extended T-MME schemes with different truncation 
operators. Thus, the fast implementation proposed for T-MME and extended T-MME 
schemes in this Chapter also works for MME and extended MME schemes. Correspondingly, 
the computational cost of MME and extended MME schemes can also be reduced by an order 
of magnitude.  
 

5.4 Conclusions 
 
We have shown that, for the T-MME and the extended T-MME schemes, the projected 
focusing functions computed for a certain time instant can be used as an initial estimate for 
the next time instant. This reduces the computational cost of the schemes in our examples by 
an order of magnitude. No model information or adaptive subtraction is required. The 
complex synthetic examples illustrate the success of the fast implementation of both T-MME 
and extended T-MME schemes. The fast implementation also works for the MME and 
extended MME schemes. We think the fast algorithm can be of interest in exploration 
geophysics for retrieving datasets with only primary reflections, velocity model building, 
artefact-free migration, and inversion. 
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6 
Laboratory and Field 

Examples 
 
In this Chapter, we apply the MME and T-MME schemes to measured Laboratory and field 
datasets to test the performance. The main body can be split into two parts. In the first part, 
we apply the MME scheme to a measured Laboratory dataset to evaluate the success of the 
method. In the second part, both MME and T-MME schemes are applied to a deep-water 
field dataset from the Norwegian North Sea. The results suggest that the MME and T-MME 
schemes can be the appropriate choice, when high-quality pre-processing is performed 
successfully. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
5 

                                                      
This Chapter is modified from Zhang and Slob, 2019, under review in Geophysical Journal International and 
Zhang and Slob, 2019, Geophysics, in press. 
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6.1 Laboratory Example 
 
Here, a laboratory ultrasonic dataset acquired with a 3D geometry from a 3D physical model 
shown in Figure 6.1a is considered. The size of the model is 70 600 600× × mm. The model is 
composed of silicone gel and beeswax layers and is placed in a water tank. The acquisition is 
carried out along the horizontal line indicated in Figure 6.1a and the acquisition line is almost 
perpendicular to the main fault plane of the model. The ultrasonic signal with central 
frequency 1.1MHz is emitted and received by piezo-electric transducers 12 mm above the 
upper boundary of the model. The spacing of the transducers is 1.25 mm. A 2D cross-section 
of the model below the acquisition line is shown in Figures 6.1b (velocity) and 6.1c (density) 
(this 2D model is as close as possible to the real 2D slice of the physical model). The spatial 
dimensions have been scaled by the factor 20000. A more detailed description of the physical 
modelling tank and the 3D acquisition system can be found in Koek et al. (1995), Blacquiere 
et al. (1999) and Wapenaar et al. (2018). The measured data from the acquisition line is 
selected as a 2D experiment to test the performance of the MME scheme. There are 301 shot 
gathers in the selected 2D slice and each shot gather has 212 traces. Before further 
processing, the selected 2D data is interpolated to a receiver spacing of 0.625 mm to suppress 
spatial aliasing. The free surface multiple reflections fall well outside the measured time 
window. The 2D synthetic data computed from the model shown in Figures 6.1b and 6.1c is 
used as a reference to understand the performance of the MME scheme on the measured 
laboratory data. 
 

6.1.1 Synthetic 2D dataset 
         
We compute a 2D dataset from the model shown in Figures 6.1b and 6.1c with dipole sources 
and pressure receivers positioned at the top of the model to test the success of the MME 
scheme. There are 301 shot gathers in the computed 2D dataset and 424 traces per shot 
gather. The spacing of sources and receivers is 12.5 m. The sources emit a Ricker wavelet 
with 20 Hz central frequency. Absorbing boundary conditions are applied around the model 
such that there are no free surface multiple reflections present in the modelled dataset. The 
direct wave has been removed in the modelled dataset. Figures 6.2a and 6.2c show two of the 
modelled reflection responses (convolved with the source wavelet) with source positions 
indicated by the red stars (6000m and 8200m) in Figure 6.1b. Internal multiple reflections are 
indicated by red and green arrows in Figures 6.2a and 6.2c. They are so strong that later 
primary reflections are masked. We use the computed 2D reflection dataset as input to 
retrieve tR , and two of the corresponding retrieved datasets convolved with the source 
wavelet are shown in Figures 6.2b and 6.2d. Note that internal multiple reflections, indicated 
by the red and green arrows in Figures 6.2a and 6.2c, are absent and primary reflections that 
were masked are recovered and visible in Figures 6.2b and 6.2d. 
         
We use the velocity model shown in Figure 6.1b for migrating the computed and retrieved 
datasets. A one-way wave equation migration scheme is used here. The computed images of 
the target zone are shown in Figures 6.3a and 6.3b. The image shown in Figure 6.3a is from 
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the computed dataset and contains artefacts arising from internal multiple reflections, 
indicated by red arrows, because of the single-scattering assumption of the migration scheme. 
The image shown in Figure 6.3b, which is from the retrieved dataset, is free from these 
artefacts. Note that there are some gaps indicated by green arrows in Figures 6.3a and 6.3b, 
which are caused by the finite length of the acquisition. 
 

 

 

 
Figure 6.1: (a) The 3D physical model, (b) the velocity model of the scaled 2D cross section 
along the acqusition line, red stars indicate source positions of two reflection responses 
shown in Figure 6.2, the yellow box marks the target zone which is imaged, (c) the density 
model of the scaled 2D cross section along the acqusition line. 

a) 

b) 

c) 
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Figure 6.2: Two computed reflection responses with source positions at 6000 m (a) and 8200 
m (c) as indicated by the red stars in Figure 6.1b, the corresponding retrieved datasets by the 
MME scheme with source positions at 6000 m (b) and at 8200 m (d). Red and green arrows 
in (a) and (c) indicate internal multiple reflections.  

a) b) 

c) d) 
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Figure 6.3: (a) The image retrieved from the computed dataset and (b) the image retrieved 
from the resulting dataset of the MME scheme. Red arrows in (a) indicate artefacts arising 
from internal multiple reflections, green arrows in (a) and (b) indicate gaps in the image. 
 

6.1.2 Laboratory 2D dataset 
         
The physical model shown in Figure 6.1 has well-defined and well-separated interfaces and 
the measured dataset appears to be fit enough for internal multiple elimination by the MME 
scheme. We apply the MME scheme to the selected acquisition line of the laboratory dataset 
to test its performance. The measured laboratory dataset has been pre-processed with 
following steps: (1) mute direct wave, (2) interpolate the missing near-offset data using 
parabolic Radon transform (Kabir and Verschuur, 1995), (3) multiply the dataset with t  
time gain to correct from 3D to 2D propagation, (4) deconvolve source signature with 
predictive deconvolution and (5) interpolate receivers using sparse linear Radon transform 
(random noise was also attenuated in this step because of the denoising effect of the sparse 
Radon transform). Note that the ghosts and reflections from the free surface and both sides of 
the model fall well outside the measured time window. Thus, they are not present in the 
measured dataset. Two reflection responses with source positions indicated by red stars in 
Figure 6.1b are shown in Figures 6.4a and 6.4d. We use the selected line dataset as input to 
retrieve tR , and the predicted internal multiple reflections are given in Figures 6.4b and 6.4e, 
and the corresponding retrieved datasets are shown in Figures 6.4c and 6.4f. Internal multiple 
reflections indicated by red, yellow and green arrows are analysed in the discussion section. 
We use the velocity model shown in Figure 6.1b for migrating the measured and retrieved 
line datasets. The same migration scheme is used here as in the synthetic dataset. The 

a) 

b) 
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migration images of the target zone are shown in Figures 6.5a and 6.5b. We can see that 
artefacts due to internal multiple reflections indicated by red arrows in Figure 6.5a are absent 
in Figure 6.5b, which is from the retrieved dataset. However, the artefact indicated by the 
green arrow in Figure 6.5a becomes stronger in Figure 6.5b. Gaps in Figures 6.5a and 6.5b 
are caused by the limited length of the acquisition similar to those in the modelled dataset. 

           

           
Figure 6.4: The (a) and (d) are original reflection responses from the 2D slice of the 
Laboratory dataset with source positions indicated by red stars in Figure 6.1b, (b) and (e) are 
predicted internal multiple reflections by the MME scheme, (c) and (f) are the corresponding 
multiple-attenuated datasets. Red, yellow and green arrows indicate internal multiple 
reflections.   

a) b) c) 

d) e) f) 
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Figure 6.5: (a) The image from the 2D slice of the Laboratory dataset and (b) the image from 
the resulting dataset of the MME scheme. Red and green arrows in (a) indicate artefacts 
arising from internal multiple reflections and the green arrow in (b) indicates the artefact that 
has become stronger than the artefact in the image of the original data. 
 

6.1.3 Discussion 
 
The application of the MME scheme to the computed reflection responses shows that it has 
excellent performance, all orders of internal multiple reflections are successfully removed as 
shown in Figure 6.2. The migration image given in Figure 6.3b shows that the structure of the 
model can be imaged from the resulting dataset of the MME scheme without artefacts arising 
from internal multiple reflections. This validates the MME scheme for a synthetic model. No 
model information or adaptive subtraction is used to achieve these results.   
 
The MME scheme successfully predicts all orders of internal multiple reflections in the 
measured dataset as shown in Figures 6.4b and 6.4e. The resulting tR , shown in Figures 6.4c 

a) 

b) 
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and 6.4f, show that some of the internal multiple reflections are successfully removed. The 
events indicated by red arrows in Figures 6.4a and 6.4d are absent in Figures 6.4c and 6.4f. 
The related artefacts in the migration image have disappeared as shown in Figure 6.5. 
However, some internal multiple reflections are still visible in Figures 6.4c and 6.4f, such as 
events indicated by green arrows in Figures 6.4c and 6.4f. The polarity of the event indicated 
by the yellow arrow in Figure 6.4d is changed after the processing as shown in Figure 6.4f. 
This is caused by the fact that the amplitudes of these events do not conform to the 2D model 
assumption in processing a line dataset. These amplitude mismatches can be because of 3D 
effects, and possibly attenuation, such that the predicted events have different amplitudes 
from actual events in the measured dataset. Adaptive subtraction could be a possible option 
for the subtraction of internal multiple reflections from the measured Laboratory dataset. 
However, we prefer not to use it because adaptive subtraction could remove both primary and 
multiple reflections when they overlap each other.  
 
The event indicated by the green arrow in Figure 6.4e is the internal multiple reflection 
related to the first and second horizontal reflectors and is successfully predicted by the MME 
scheme. It is also present in the computed shot gather shown in Figure 6.2c and indicated by 
the green arrow. Also there it is successfully eliminated by the MME scheme as shown in 
Figure 6.2d. However, it is not present in the measured data shown in Figure 6.4d but present 
in the retrieved data shown in Figure 6.4f. This does not necessarily mean that the MME 
scheme introduces a non-physical event. A possible reason can be that this event is cancelled 
by other events in the 3D geometry of the Laboratory model such that it is missing in the 2D 
slice of the Laboratory data.  
 
High-quality pre-processing is crucial for any scheme that uses the data as a filter. The 
performance of the MME scheme in synthetic and laboratory datasets shows that its success 
depends on high amplitude fidelity. In the synthetic data all events have correct amplitudes 
and predicted multiple reflections have same amplitudes as the modelled multiple reflections, 
such that the MME scheme eliminates them. In the 2D slice of the Laboratory dataset, some 
internal multiple reflections are still present in the retrieved dataset because of incorrect 
amplitudes caused by imperfect source wavelet deconvolution, 3D effects, and possibly 
attenuation. 
 

6.2 Field example 
 

6.2.1 Application of MME scheme 
 
In this subsection, we describe the application of the MME scheme to a 2D field dataset 
provided by Equinor, which was measured in the Norwegian Sea in 1994. The water bottom 
(1.5km) is deep enough such that free-surface multiple reflections are well-separated from 
primary and internal multiple reflections. There are 399 shot gathers and 399 traces per 
gather in the field dataset. The spatial sampling of the sources and receivers is 25m. For this 
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field dataset, as illustrated in Davydenko and Verschuur (2018), (1) the direct wave has been 
muted, (2) near offset traces have been estimated via the parabolic Radon transform (Kabir 
and Verschuur, 1995), (3) 3D effects have been compensated for by multiplying t , (4) the 
source wavelet has been de-convolved and (5) free-surface related multiple reflections have 
been attenuated by SRME.   
         
Figure 6.6 shows a macro velocity model of the target basin where the dataset is acquired. 
This model is not used for internal multiple reflection elimination and merely serves to 
illustrate the environment. The yellow box marks the target zone which is imaged. Red stars 
indicate the source position of the three shot gathers (convolved with 20Hz Ricker wavelet) 
shown in Figures 6.7a, 6.7c and 6.7e. Note that, between 2.5s and 3.5s, internal multiple 
reflections indicated by red arrows are present. We use the MME scheme to remove internal 
multiple reflections from the field dataset. The multiple-attenuated gathers convolved with 
20Hz Ricker wavelet are given in Figures 6.7b, 6.7d and 6.7f. These results show that 
internal multiple reflections, indicated by red arrows in Figures 6.7a, 6.7c and 6.7e, are 
successfully removed or attenuated in the resulting gathers shown in Figures 6.7b, 6.7d and 
6.7f. Note that the events indicated by green arrows in Figures 6.7b and 6.7d are not visibly 
present in Figures 6.7a and 6.7c. It does not necessarily imply that the MME scheme 
introduces new events. It can be caused by the fact that these two events are cancelled by 
internal multiple reflections in the original shot gathers and after internal multiple reflection 
elimination, these cancelled primary reflections are recovered in the resulting shot gathers. 
No model information or adaptive subtraction is used in the implementation of the MME 
scheme, such that masked primary reflections can be recovered.     
         
We use the macro velocity model shown in Figure 6.6 in a one-way wave equation migration 
scheme to migrate both datasets before and after internal multiple reflection elimination. The 
resulting images are given in Figures 6.8a and 6.8b. The red boxes numbered 1, 2 and 3 mark 
the zones where internal multiple reflection related artefacts are visibly present in Figure 6.8a 
and almost absent in Figure 6.8b. We give the magnified portion of zones numbered 1, 2 and 
3 separately in Figures 6.9, 6.10 and 6.11 for detailed comparison. In Figure 6.9, the internal 
multiple reflection related artefact, indicated by the red arrow in Figure 6.9a, is effectively 
attenuated with weak residual as shown in Figure 6.9b. In Figure 6.10, most artefacts arising 
from overburden multiple scatterings are successfully predicted by the MME scheme and, 
after the processing, most of them are successfully removed as shown in Figure 6.10b. 
Similarly, most artefacts due to internal multiple reflections are successfully predicted and, 
correspondingly, they are removed in the image from the multiple-attenuated dataset as 
shown in Figure 6.11b. Besides, the continuity of structures indicated by green arrows 
numbered 1 and 2 has been improved and structures numbered 3 and 4 have been 
successfully recovered. This is due to the fact that the cancelled primary reflections are 
recovered after internal multiple reflection elimination by the MME scheme. Especially in the 
zones indicated by green boxes in Figures 6.11a and 6.11b, most artefacts due to internal 
multiple reflections have been successfully removed and the continuity of the synclinal 
reflectors has been greatly improved.   
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Figure 6.6: The macro velocity model that will be used to migrate the datasets before and 
after internal multiple reflection elimination. Red stars indicate source position of the shot 
gathers shown in Figure 6.7, the yellow box marks the target zone which is imaged. 
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Figure 6.7: The (a), (c) and (e) are original shot gathers; (b), (d) and (f) are the corresponding 
multiple-eliminated datasets. Red arrows in (a), (c) and (e) indicate internal multiple 
reflections, green arrows in (b) and (d) indicate primary reflections recovered after the 
processing. The red arrow in (b) indicates the trace which will be used to compare the 
difference between MME and T-MME schemes in Figure 6.13. 
 
 
 
 
 
 
 
 
 
 

e) (f) 
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Figure 6.8: (a) The image from the original measured field dataset and (b) the image from the 
resulting dataset of the MME scheme. The numbered red boxes mark zones which are 
magnified in Figures 6.9, 6.10 and 6.11 for detailed comparison. Red arrow in (b) indicates 
the trace which will be used for comparison in Figure 6.18. 
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Figure 6.9: (a) The magnified portion of the zone 1 in Figure 6.8a and (b) the magnified 
portion of the zone 1 in Figure 6.8b. The red arrow indicates the artefact due to internal 
multiple reflection, which is attenuated after the processing by the MME scheme.  
 
 
 
 
 
 
 

a) 
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Figure 6.10: (a) The magnified portion of the zone 2 in Figure 6.8a and (b) the magnified 
portion of the zone 2 in Figure 6.8b. The red arrows indicate artefacts due to internal multiple 
reflections, which are removed after the processing by the MME scheme.  
 
 
 
 
 
 
 
 
 
 
 
 

a) b) 
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Figure 6.11: (a) The magnified portion of the zone 3 in Figure 6.8a and (b) the magnified 
portion of the zone 3 in Figure 6.8b. The red arrows indicate artefacts due to internal multiple 
reflections. Green arrows indicate structures recovered and the green boxes indicate the zone 
where most artefacts are removed by the MME scheme.  
 

6.2.2 Application of T-MME scheme 
 
We apply the T-MME scheme to the same field dataset to remove internal multiple 
reflections and compensate for transmission losses in primary reflections. The same shot 
gathers are used here to illustrate the performance. Figures 6.12a, 6.12c and 6.12e give the 
original shot gathers convolved with 20Hz Ricker wavelet (source positions are indicated by 
red stars in Figure 6.6) and multiple-eliminated gathers convolved with 20Hz Ricker wavelet 
are shown in Figures 6.12b, 6.12d and 6.12f. These results show that internal multiple 
reflections, indicated by red arrows in Figures 6.12a, 6.12c and 6.12e, are removed or 
attenuated in the resulting gathers shown in Figures 6.12b, 6.12d and 6.12f. Similarly, the 
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events indicated by green arrows in Figures 6.12b and 6.12d are not visibly present in Figures 
6.12a and 6.12c but recovered after the processing by T-MME scheme. The nonzero-offset 
traces indicated by red arrows in Figures 6.12b and 6.7b are picked and shown in Figure 6.13. 
It can be seen that the trace from Figure 6.12b has higher amplitude because of the 
transmission compensation (the MME scheme only removes internal multiple reflections 
without touching primary reflections). Both traces have been normalised by the same factor.    
         
We use the macro velocity model given in Figure 6.6 to migrate the dataset retrieved by the 
T-MME scheme. Still, the one-way wave equation migration scheme is used. The resulting 
image is given in Figure 6.14b. Compared with the image given in Figure 6.14a, which is 
from the original dataset, internal multiple reflection related artefacts are successfully 
removed in zones marked by red boxes numbered 1, 2 and 3. The magnified portions of 
marked zones numbered 1, 2 and 3 are given separately in Figures 6.15, 6.16 and 6.17 for 
detailed comparison. Note that, similarly, the internal multiple reflection related artefacts 
have disappeared from the image from the multiple-attenuated dataset as shown in Figures 
6.15 and 6.16. In Figure 6.17, most artefacts due to internal multiple reflections, indicated by 
red arrows in Figure 6.17a, are successfully removed in the image from the multiple-
attenuated dataset as shown in Figure 6.17b. Besides, the continuity of structures indicated by 
green arrows numbered 1 and 2 has also been improved and structures numbered 3 and 4 
have been successfully recovered. We pick traces indicated by red arrows in Figures 6.8b and 
6.14b and show the comparison in Figure 6.18. Because of the compensation for transmission 
losses in primary reflections, the trace from Figure 6.14b has higher amplitude. This validates 
the effectiveness of the T-MME scheme for transmission losses compensation in primary 
reflections. Both traces have been normalised by the same factor.  
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Figure 6.12: The (a), (c) and (e) are original shot gathers; (b), (d) and (f) are the 
corresponding multiple-eliminated datasets. Red arrows in (a), (c) and (e) indicate internal 
multiple reflections, green arrows in (b) and (d) indicate primary reflections recovered after 
the processing. Red arrow in (b) indicates the trace which will be used for comparison in 
Figure 6.13. 

 
Figure 6.13: The comparison of traces from Figures 6.7b and 6.12b (indicated by red arrows 
in both Figures). IR indicates trace from Figure 6.7b and IT indicates trace from Figure 
6.12b. 
 
 
 
 

e) f) 
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Figure 6.14: (a) The image from the original measured field dataset and (b) the image from 
the resulting dataset of the T-MME scheme. The numbered red boxes mark zones which are 
magnified in Figures 6.15, 6.16 and 6.17 for detailed comparison. Red arrow in (b) indicates 
the trace which will be used for comparison in Figure 6.18. 
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Figure 6.15: (a) The magnified portion of the zone 1 in Figure 6.14a and (b) the magnified 
portion of the zone 1 in Figure 6.14b. The red arrow indicates the artefact due to internal 
multiple reflection, which is attenuated after the processing by the T-MME scheme.  
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Figure 6.16: (a) The magnified portion of the zone 2 in Figure 6.14a and (b) the magnified 
portion of the zone 2 in Figure 6.14b. The red arrows indicate artefacts due to internal 
multiple reflections, which are removed after the processing by the T-MME scheme.  
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Figure 6.17: (a) The magnified portion of the zone 3 in Figure 6.14a and (b) the magnified 
portion of the zone 3 in Figure 6.14b. The red arrows indicate artefacts due to internal 
multiple reflections. Green arrows indicate structures recovered and the green boxes indicate 
the zone where most artefacts are removed by the T-MME scheme.  
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Figure 6.18: The comparison of traces from Figures 6.8b and 6.14b (indicated by red arrows 
in both Figures). M-IR indicates trace from Figure 6.8b and M-IT indicates trace from Figure 
6.14b. 
 

6.2.3 Discussions 
         
As shown in the field example section, the MME and T-MME schemes successfully remove 
or attenuate most internal multiple reflections. Several primary reflections cancelled by 
internal multiple reflections are recovered and, correspondingly, the related structures are 
present in the image as shown in Figures 6.11 and 6.17. The transmission losses in primary 
reflections are compensated for by the T-MME scheme. From previous study in Verschuur 
and Berkhout (2005), where the IME scheme was applied to the same field dataset, most 
internal multiple reflections removed by the MME and T-MME schemes were effectively 
attenuated by the IME scheme. However, the cancelled primary reflections indicated by the 
green arrows in Figures 6.7 and 6.12 could not be recovered with the IME scheme, because 
of adaptive subtraction which is based on the minimum-energy criterion. Therefore, we 
surmise that other schemes that apply adaptive subtraction, such as ISS based schemes, can 
possibly attenuate internal multiple reflections which are removed by the MME and T-MME 
schemes, but cannot deal with the case where internal multiple reflections overlap with 
primary reflections. 
         
The 2D field dataset used here as an example, is measured from an area with a deep ocean 
bottom. The deep water helps in reducing the mismatch in amplitude of the 2D MME and T-
MME schemes that is necessarily applied to a 3D line dataset. The second advantage of deep 
water is the fact that the shallow part of the measured dataset is free from free-surface 
multiple reflections. High-quality de-noising, deghosting, source wavelet deconvolution and 
near offset traces estimation are necessary for the successful application of the MME and T-
MME schemes. When the input dataset has severe amplitude problems, the performance of 
the MME and T-MME schemes are limited. In the laboratory data section, the MME scheme 
was applied to a measured laboratory dataset with variable quality. Because of amplitude 
errors in some parts of data, some internal multiple reflections were effectively attenuated or 
removed by the MME scheme, while some were stronger and had opposite polarity after the 
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processing. These caused artefacts in the computed image. Combining the performance in the 
Laboratory example and the field example here, we conclude that high-quality pre-processing 
is crucial for the success of the MME and T-MME schemes.       
 

6.3 Conclusions 
 
We have applied the MME and T-MME schemes to measured laboratory and field datasets to 
test the performance. No model information or adaptive subtraction is used in the 
implementation. The laboratory data example shows that several internal multiple reflections 
are successfully removed or attenuated, but some remnant multiple reflections remained. The 
field example shows that most internal multiple reflections are successfully eliminated and, 
because of the independence from adaptive subtraction, the primary reflections which are 
cancelled by internal multiple reflections are recovered by the MME and T-MME schemes. 
Given the overall successful application to the Laboratory and field datasets, we think the 
MME and T-MME schemes are appropriate methods for multiple-free dataset retrieval. 
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7 
General Conclusions  

 
The aim of this thesis is to investigate the process of forming a subsurface image from 
acoustic reflection data without artefacts due to multiple reflections. Two kinds of strategies 
are proposed. The first strategy works in imaging domain and an artefact-free image of the 
subsurface can be retrieved with the same macro velocity model as used for conventional 
migration schemes. This requires to first build a smooth velocity model from the reflection 
data. This model is used to estimate a first arrival to any location in the subsurface. Then the 
Marchenko equations are solved, and the artefact-free image is formed. The second strategy 
works directly on the data. Two multiple reflection elimination schemes are derived to obtain 
a multiple-free dataset. Both can be applied before or after free surface multiple reflection 
elimination. Here, first the multiple reflections are eliminated from the reflection data without 
any subsurface information or adaptive subtraction. The smooth velocity model is built from 
the data with only primary reflections, which are then used to compute the artefact-free 
subsurface image. Both strategies can be implemented in routine industry processing 
workflows. The second strategy is advantageous for velocity model building. In practice, this 
may lead to a higher quality image than would be obtained following the first strategy. Both 
strategies were applied to synthetic datasets, whereas the two methods in the second strategy 
were applied to laboratory and field datasets as well.  
 
In Chapter 2, we have shown that an artefact-free reverse-time migration (RTM) image can 
be constructed based on a revised Marchenko scheme. To use RTM directly in Marchenko 
redatuming, a modified time truncation operator was designed. This allowed using the 
standard wavefield extrapolation operator in the Marchenko equations. An artefact-free RTM 
scheme has been derived, which can be used to image the medium without artefacts arising 
from internal multiple reflections. The new migration scheme uses the same macro-velocity 
model as the conventional RTM scheme. The constructed image does not contain artefacts 
because the data acts as a filter with time truncations to remove artefacts generated by the 
conventional RTM scheme. When the velocity model is accurate, the image is nearly perfect 
as shown with a synthetic example. 
 
In Chapter 3, we have presented the MME and T-MME schemes for internal multiple 
reflection elimination in the two-way travel time domain. The MME scheme focuses only on 
internal multiple reflection elimination without touching primary reflections. The T-MME 
scheme removes internal multiple reflections and compensates for transmission effects in the 
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retrieved primary reflections. For both schemes, the measured dataset is its own filter with a 
time truncation that is a free parameter for which reason the method is fully automated and 
works without model information or adaptive subtraction. The synthetic examples illustrate 
the success of both schemes. The limitations are explored, and the analysis shows that 
scattered waves and refracted waves as well as thin layer effects are partially beyond the 
capability of both methods. 
 
In Chapter 4, we have extended the MME and T-MME schemes to account for free-surface 
related multiple reflections. Thus, the extended MME and T-MME schemes remove free-
surface and internal multiple reflections in one step, while the amplitudes of retrieved 
primary reflections by extended T-MME scheme are compensated for transmission effects. 
Because the introduction of a free surface does not increase the number of unknowns, the 
implementation of both extended schemes does not require model information or adaptive 
subtraction. The synthetic examples show that the extended MME scheme effectively 
removes free-surface and internal multiple reflections, and extended T-MME scheme 
removes multiple reflections and compensates for transmission losses in primary reflections 
in one step. Both extended schemes can be of interest in exploration geophysics for retrieving 
datasets with only primary reflections. These are suitable for velocity model building, 
artefact-free migration, and inversion.  
 
In Chapter 5, we developed a fast implementation of T-MME and extended T-MME schemes 
by using the projected focusing functions computed for a certain time instant as an initial 
estimate for the next time instant. This reduces the computational cost in our examples by an 
order of magnitude. The same limitations apply to the fast implementation as for the 
conventional implementation of both schemes because the fast implementation modifies the 
starting point, but not the equation that is solved. The MME and extended MME schemes can 
be implemented in the same way and we did not repeat it in this Chapter. 
 
In Chapter 6, we applied the MME scheme to a measured laboratory dataset to test the 
performance and compared the results with results from synthetic data based on an estimate 
of the same model. The results show that several internal multiple reflections are successfully 
removed or attenuated, but some remnant multiple reflections remained. In one location a 
multiple was predicted that was present in the computed data but not in the measured data. It 
is likely that the absence of this multiple in the measured data comes from 3D effects not 
captured in the 2D model slice used for modelling the 2D dataset. Using a 2D scheme on 3D 
line data always comes with amplitude difficulties. The MME and T-MME schemes were 
also applied to a measured field dataset to evaluate the performance. The field example 
shows that most internal multiple reflections are successfully eliminated and, because of the 
independence from adaptive subtraction, the primary reflections which are masked or 
cancelled by internal multiple reflections are recovered by the MME and T-MME schemes. 
No model information or adaptive subtraction is required for the implementation of both 
schemes. Given the successful application to the laboratory and field datasets, we think that 
the MME and T-MME schemes are appropriate methods for removal of internal multiple 
reflections in exploration geophysics.  
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All of the proposed schemes for dealing with the very challenging topic “multiple reflection” 
in this thesis have been illustrated by synthetic and measured examples in detail and the 
success has been validated. We expect these schemes can be widely used in seismic reflection 
imaging and monitoring of structures and processes in the Earth’s interior. 
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