Signal Integrity: Scientific Approach of WERAN project

Splitting of the signal path

Nonlinear part
(Radar signal processing)

Linear part
(channel, wave propagation)

Goal of WERAN project:
„Signal integrity of terrestrial navigation and radar systems – obtain changes caused by WT (by measurement and numerical simulation).“

Feed airborne receiver/radar
Obtain effect on airliner, aircraft
Measurement capabilities and results on

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-directional beacons (NDB) and direction finder (ADF)</td>
<td>500 kHz</td>
</tr>
<tr>
<td>VHF Omnidirectional radio range (CVOR, DVOR)</td>
<td>112 MHz</td>
</tr>
<tr>
<td>Airport surveillance radar (ASR)</td>
<td>some GHz</td>
</tr>
<tr>
<td>Military radar systems (LVR)</td>
<td>some GHz</td>
</tr>
<tr>
<td>DWD weather radar (C-Band precipitation radar)</td>
<td>5.6 GHz</td>
</tr>
<tr>
<td>DWD VHF Wind profiler</td>
<td>482 MHz</td>
</tr>
<tr>
<td>Instrument landing system (ILS) Loc and GP</td>
<td>110/330 MHz</td>
</tr>
</tbody>
</table>

Image:

- **Doppler-VOR (D-VOR) groundstation w/ DME**: Signal-in-space – AM and FM
 - Cone of silence
 - Antenna pattern

Source: Wikipedia
Geometry of the Problem

Minimum IFR height 3500 ft (~1000 m)

Distance to VOR ➞ 300 m, 4 km, 5 km, 23 km

80 NM, 150 km

Signal-in-space

“radio horizon”
Minimum service level at low altitude

VHF Antenna installed at the UAS

Center of gravity equals phase center of antenna ➔ dipole-like reception
VHF Antenna installed at the UAS

Dipole-like reception pattern, best uncertainty possible

Validation of VHF Antenna installed at the UAS

Traceable calibration against field probe using substitution method
DVOR Measurement at Ground Level (Phase test)

Phase resolution of AM and FM On-Site ~ 0.01 degree

W/out WT Influence: Measurements at DVOR Klasdorf

„I profile close to DVOR KLF (100 m distance)“

Level variation of 30dB does not change AM phase noise

AM phase noise ± 1 deg in spite of close distance to DVOR and large receiver level

Without scatterer: FM phase ± 0.05 deg
Measuring Slow down, Stop and Restart of 4 WT at DVOR

DVOR in 8 km distance

cp video

Measuring Slow down and Stop of 4 WT at DVOR Klasdorf

„turn-off 4 WT“

FM-Phase
± 0.05 deg
Shift 0.1 deg

AM-Phase
± 1 deg
No Shift

Modulated receiver level depending on rpm of WT

4 WT, in 8 km distance to DVOR, 140 m hub height, 112 m rotor diameter
Flight Track used for Comparison (DVOR)

Comparison of Measurement and Simulation (DVOR)

Horizontal flight track 100 m behind WT in 2.5 km distance to DVOR:
Good agreement for FM phase deviation
Numerical Simulation of Error Propagation into Space

Contribution LUH

DVOR in coordinate center, 1 WEA @ 2 km (E-101, 150 m total height, λ-configuration)

Measurement of Error Propagation into Space
Measurement of Error Propagation into Space

![Graph and image showing measurement of error propagation into space](image-url)

DVOR-WT 8 km, WT-Meas 1000 m
Measurement of Error Propagation into Space

Does a simple model by Anderson & Flint hold?

\[x \approx \frac{2AJ_1(2\beta_2 r \sin \left(\frac{90^\circ - \phi}{2} \right)) \cos \left(\frac{\phi - 90^\circ}{2} \right) \cos [\beta_2(r_0 - r_1) - \delta]}{\beta_2 r} \]

S. R. Anderson and R. B. Flint, „The CAA Doppler Omnirange“ in the Proceedings of the IRE, May 1959, Page 813:
Does a simple model by Anderson & Flint hold?
Summary and outlook

- For the first time worldwide: Influence of WT on DVOR was shown by experiment!
- Measurements of DVOR/CVOR AM and FM signal channel properties now possible
- State-of-the-art instrumentation (receiver technology on UAS) and software tools for data mining
- Validation of numerical results by measurements (show good agreement)
- Operator (ANSP) / regulator (CAA) decides about tolerable “change” of key value such as bearing error

WERAN plus

- Understand error distribution in close and far distance to obstacles (WT, tower, high-rise building)
- Understand error propagation into free space (i.e. by using full-wave numerical simulations)
- Validation by measurement
- → build up scientific foundation for simple model

Model based estimation of influence on DVOR signal integrity of future installations of WT