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Abstract
In this thesis, the repetition code for bit flip errors is examined. Based the stabilizer measurements
outcome of a run of the repetition code, one does not know exactly which errors have occurred. Statis-
tics can be used to estimate the probability of all possible error events. This probability estimation is
investigated for simulated data assuming phenomenological and circuit level noise. Experiments on
the repetition code are performed by the DiCarlo group at the Delft University of Technology on a super-
conducting quantum computer. For this data, some error probabilities are estimated to be nonphysical.
The goal of this thesis is to investigate these nonphysical probabilities and to determine whether they
result from sampling noise or a problem with the assumed error model that determines the estimation of
the probabilities. By estimating the standard deviation using the bootstrap method it is shown that the
nonphysical probabilities are not due to sampling noise. Therefore, it is possible that non-conventional
errors, such as leakage or crosstalk, are affecting these estimates.

In a further analysis on the error probabilities and their standard deviation, it is shown that the
standard error for space and time edges in the experiment is consistent with the standard error from
phenomenological noise initialised with the average error data and ancilla error probabilities, even when
these may be affected by non-conventional errors.
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1
Introduction

Quantum computing promises exponential speedup for certain tasks compared to a classical computer
(Feynman, 1982). One example is Shor’s algorithm that could solve RSA encryption exponentially
faster than any classical algorithm available. However, a practical large-scale quantum computer has
not been realized yet. One major problem is that quantum states are vulnerable to environmental inter-
actions, leading to errors on the quantum states. To extend the time over which quantum information
can be stored and used to perform fault-tolerant computations, quantum error correction has to be ap-
plied continuously. The surface code is currently a popular quantum error correcting code due to its
practical implementations as it requires only nearest-neighbor connectivity, can be realized in planar
2D architectures and has demonstrated high fault-tolerant thresholds (Raussendorf and Harrington,
2007; Fowler et al., 2012)

In this thesis, the repetition code for bit flip errors will be examined. The repetition code can be
seen as a 1D version of the surface code that corrects only 𝑋 or 𝑍 errors, while the surface code is able
to correct both. For quantum error correction with CSS codes, like the surface code or the repetition
code, one measures a set of stabilizers. An error on the qubit states leads to a change in one or more
stabilizer eigenvalues. Based on the measurement outcome of a run of the repetition code, one does
not know exactly which errors have occurred. It is the task of a decoder to find the most likely set of
errors that have occurred. Given that errors lead to changes in the stabilizer eigenvalues, one way
of estimating the error probabilities is by attempting to extract these values from the statistics on the
stabilizer measurements. This research focuses on the estimation of the probabilities for possible error
events.

Experiments on the repetition code are performed by the DiCarlo group at the Delft University of
Technology on a superconducting quantum computer. When estimating the error probabilities from the
measured syndromes, some error probabilities were observed to be nonphysical. The goal of this the-
sis is to investigate these nonphysical probabilities and to determine whether they result from sampling
noise or a problem with the assumed error model that determines the estimation of the probabilities.

First, in Chapter 2, the most important theory necessary for understanding this thesis will be pre-
sented. Here, the basic principles of classical and quantum error correction will be introduced. The
noise models that will be analysed, are introduced as well. This includes the error rates and coherence
times characterized for the quantum chip that is used for the experiments as well. Finally, two statis-
tical methods to estimate the standard deviation of some estimator are presented. In Chapter 3, the
equations for estimating the error probabilities will be derived based on the model assumptions. These
equations are applied to numerically simulated data and experimental data. Chapter 4 includes further
analysis on the error probabilities and their standard deviations. Finally the results will be concluded
and discussed in Chapter 5.

This bachelor thesis has been written as part of the double degree Applied Physics and Applied
Mathematics at Delft University of Technology.
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2
Theory

This chapter provides all theory that is necessary for understanding the research of this thesis. First,
an introduction will be given on the repetition code for the classical and the quantum case. Then, the
formalism for the quantum repetition code will be made more precise using the stabilizer formalism.
Furthermore, it will be explained how the measurements of an experiment are converted into defects.
Also, two error models are introduced. Assuming these error models, we have that an error is defined
by an edge that connects two defects. In later chapters, the probability of such an edge occurring will
be estimated. Finally, two statistical methods are presented to estimate the standard deviation of a
certain estimator. These methods will later be used to estimate the standard deviation of the edge
probabilities.

2.1. The Repetition Code
In this section, the classical error correction and quantum error correction will be introduced. The
repetition code is the simplest example of a classical error correcting code. It can also be applied for
quantum error correction, but it can not correct each type of error. Here, the repetition code will be
explained for both the classical and quantum setting.

2.1.1. The Classical Model
Say we want to send some information to a receiver. When the data is transmitted through a noisy
channel, the receiver could obtain different data than was initially sent. How could the receiver know
that the information is wrong? And is it possible to obtain the initial information from this possibly
corrupted information? Error correcting codes are a solution to this. The idea is to add redundant infor-
mation before sending the data. This redundancy allows the receiver to see that an error has occurred
and possibly also what the initial information was. We already know this principle from our natural lan-
guage. When the word ”maphemotics” is read, we know that this word is incorrect. This is because of
redundancy. Not every combination of letters is an existing word. We, as humans, are able to see that
this word does not exist and we can probably also guess what the word is most likely supposed to be:
”mathematics”. Error correcting codes aim to do the same thing, but now computers have to recog-
nise and correct the errors. In this subsection, the basics for classical error correction will be introduced.

To start, we will describe the mathematical model of a noisy channel. Digital data is encoded in
0’s and 1’s: binary information. A common way to model the noise is to say that there is a probability
𝑝 for a bit to flip, leading to 0 → 1 and 1 → 0. This model is called the Binary Symmetric Channel
(BSC). The input of the BSC is the encoded message from the sender and the output is the data that
will be decoded by the receiver. Note that the reciever in this case does not know the information that
is initially sent by the sender. Ideally, the decoded message is equal to the message that is initially
sent. This structure is summarized in Figure 2.1.

3



4 2. Theory

Figure 2.1: Structure of sending and receiving a message 𝑚 over a Binary Symmetric Channel with
error probability 𝑝. The message 𝑚 that will be sent, is first encoded to 𝐸(𝑚). This 𝐸(𝑚) is then sent
through the BSC. The output 𝑦 is decoded to a message 𝐷(𝑦) = 𝑚′. Ideally, 𝑚′ = 𝑚.

Now, there are countless ways to encode information. The most basic error correcting code is the
repetition code. As the name suggests, for a repetition code of length 𝑑, the information is simply
repeated 𝑑 times. For a repetition code of length 3, every 0 will be encoded as 000 and every 1 as
111. After the data is transmitted through the BSC, there may have occurred some errors on the data.
For decoding of the data majority voting is commonly used. Majority voting essentially means that we
choose for the option that is most likely to be the case, i.e. the option where the least amount of error
have occurred. This means that, for example, 010 will be decoded to a 0 and 110 to a 1. As can be
seen, our repetition code with length 3 can correct any corrupted data when at most one error has
occurred. When two errors occur on different bits, majority voting results in the wrong outcome. This is
called a logical error. For example, when 000 is sent and 101 is received, the message will be corrected
to 111. In general, a repetition code of length 𝑑 can correct up to ⌊𝑑−12 ⌋ errors.

Example Probability of a logical error for the repetition code of length 3. Say there is a probability
𝑝 that a bit flip occurs. The chance that there occurs no error on all three bits is then (1 − 𝑝)3.
The probability of one error on any bit is 3𝑝(1 − 𝑝)2, since there are three possibilities of one error
occurring. Similarly, the probability of two errors is 3𝑝2(1 − 𝑝). Finally, the probability that three
errors occur is 𝑝3. Therefore, the chance that majority voting gives the wrong outcome, and thus
results in a logical error, is 3𝑝2(1 − 𝑝) + 𝑝3. For an error probability of 𝑝 = 10%, the probability of a
logical error for the repetition code of length 3 is 2.8%.

The repetition code is an example of a linear code. Linear error correcting codes are characterised
as a [𝑛, 𝑘, 𝑑]-code, where 𝑛 is the length, 𝑘 is the dimension and 𝑑 is the distance of the code. For a
repetition code, the dimension is always 1 as the original message consists of 1 bit. The distance of
the code is defined as the minimal distance between the code words. For the classical repetition code,
this is always equal to the length of the code.

2.1.2. Quantum Model
In the classical world, errors occur during the transmission of data. Quantum systems are sensitive to
interactions with the environment. The quantum states of 0 and 1 are defined as two different eigen-
states. One example of noise is that the higher energy state can decay into the lower energy state.
The process where quantum information gets lost due to the environmental interactions is called deco-
herence. Due to this continuous decoherence, error correction has to be applied continuously to store
quantum information and do calculations with it (Rieffel and Polak, 2011).

Due to the fundamentals of the quantum world, classical error correction cannot be directly applied
to quantum systems. First we have the notion of superposition. A quantum bit, or qubit, can be a 0 and
1 simultaneously. Mathematically, we describe this as a qubit being in a state |𝜓⟩ = 𝛼|0⟩+𝛽|1⟩, where
𝛼, 𝛽 ∈ ℂ and |𝛼|2 + |𝛽|2 = 1. Now if we would measure this qubit, it will collapse to |0⟩ with probability
|𝛼|2 or to |1⟩ with probability |𝛽|2. This directly describes a problem with quantum states. When a
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qubit is measured, the state is collapsed to the observed outcome, i.e. the superposition is destroyed.
Therefore, information about its true state is lost. For this reason, we do not want to measure the qubits
while performing error correction.

The most simple error correcting code to correct any single bit-flip error is the 3 qubit repetition
code, similar to the classical case. The state |0⟩ is encoded as |000⟩ and |1⟩ as |111⟩. Now, as
described above, we cannot measure the qubits itself to apply the majority voting. What is allowed,
however, is to measure the parity between two qubits. The parity of two qubits can be projected onto an
additional qubit, called an ancilla qubit. More details about this indirect measurement will be discussed
in Subsection 2.2.3. The qubits that hold the initial data will now be called data qubits. The value of
the ancilla qubit will then be the sum, modulo 2, of the states of two adjacent data qubits. So, we have

• ancilla qubit 1 = data qubit 1⊕ data qubit 2, and
• ancilla qubit 2 = data qubit 2⊕ data qubit 3.

Note that the number of ancilla qubits is one less than the number of data qubits. Figure 2.2 visually
explains the idea of the ancilla measurement.

(a) Notation of data
qubits 𝑑𝑖 and ancilla
qubits 𝑎𝑖.

(b) Two different data errors and their cor-
responding ancilla measurements.

(c) One ancilla measurement corre-
sponds to two different data qubit config-
urations.

Figure 2.2: Ancilla measurement for the 3 qubit repetition code. Here, a blue dot means a 1 and a
white dot means 0. Note, however, that it does not matter whenever a blue/white dot for the data qubits
means 1/0 or defect/no defect, because the ancilla measures only the difference between two data
qubits.

Now if we would measure the ancilla qubits, we don’t know in which state the data qubits are.
However, from the measurement of the ancilla bits, it is possible to apply the majority voting principle.
Table 2.1 describes the required decoding step, dependent on the ancilla qubit measurements.

ancilla qubit1 ancilla qubit2 Error correction
0 0 do nothing
0 1 flip data qubit 3
1 0 flip data qubit 1
1 1 flip data qubit 2

Table 2.1: Decoding steps for the 3 qubit repetition code, depending on the outcome of the ancilla
measurement.

As described, the repetition code of length 3 can correct any single bit-flip error. This is however
not a very practical quantum error correcting code as it cannot correct phase-flip errors. As described
before, a qubit can be in a superposition of two states. Two different superposition states are, for
example, |𝜓1⟩ =

1
√2 |0⟩+

1
√2 |1⟩ and |𝜓2⟩ =

1
√2 |0⟩−

1
√2 |1⟩. A transition between these two states is what

we call a phase flip. The repetition code that is presented above does not recognise these phase-flips.
A similar 3 qubit repetition code can however be constructed to correct only phase-flip errors. More
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complex error correcting codes are necessary to correct both bit- and phase-flip errors. The simplest
of these is the 9-qubit Shor’s code where the 3-qubit repetition code for bit-flips is concatenated with
the 3-qubit repetition code for phase-flips (Terhal, 2015). For now, it is only necessary to understand
the repetition code that corrects bit-flips.

Example Bit-flip error correction on a superposition. The superposition |𝜓⟩ = 𝛼|0⟩+𝛽|1⟩ is encoded
as |𝜓⟩ = 𝛼|000⟩ + 𝛽|111⟩. Now if a bit-flip error occurs on the first data qubit, we obtain the state
𝛼|100⟩ + 𝛽|011⟩. In both cases, the ancilla qubits will measure a difference between the first and
second data qubits. Therefore, without knowing the superposition state, we still know that the first
data qubit needs to be flipped.

Example Phase-flip error on a superposition. Suppose we again have the state |𝜓⟩ = 𝛼|000⟩ +
𝛽|111⟩. Now if a phase-flip error occurs on the first data qubit, we obtain the state 𝛼|000⟩ − 𝛽|111⟩.
Now, the ancilla qubits will not measure a difference between the first and second data qubits. The
ancilla measurement therefore suggests that no error has occurred.

2.2. Stabilizer Formalism
In this section, the mathematical model of the class of stabilizer codes will be described. This section
is not necessary for the general understanding of the experiment but provides a more formal frame-
work. Additionally, examples for the distance 3 quantum repetition code are provided to explain some
abstract concepts. First, a small introduction into quantum computation will be given. Then, the stabi-
lizer formalism will be introduced. This subsection is based on Terhal’s ”Quantum Error Correction for
Quantum Memories” (Terhal, 2015). Finally, the indirect parity measurement will be explained.

2.2.1. Introduction to Quantum Computation
Qubit states are represented as vectors in a two-dimensional Hilbert space, as qubits ideally are two-
state quantum systems. The two states form an orthonormal basis for the vector space of the qubit.

The general state of a qubit is |𝜓⟩ = (𝛼𝛽) = 𝛼|𝜙⟩ + 𝛽|𝜙⊥⟩, with |𝛼|2 + |𝛽|2 = 1. Unless mentioned
otherwise, we will use the {|0⟩, |1⟩} basis. Some common qubit states in the {|0⟩, |1⟩} basis are

|0⟩ = (10) , |1⟩ = (01) , |+⟩ = 1
√2

(11) , and |−⟩ = 1
√2

( 1−1) .

Here, the ket |𝜓⟩, is a column vector using Dirac notation. On the contrary, we have the bra vector ⟨𝜓|,
which is the conjugate transpose of the ket vector. An inner product between two states |𝜙⟩ and |𝜓⟩ is
defined to be ⟨𝜙|𝜓⟩. Similarly, an outer product between two states |𝜙⟩ and |𝜓⟩ is defined to be |𝜙⟩⟨𝜓|.
Now if we would measure a qubit with state |𝜓⟩ in the {|𝜙⟩, |𝜙⊥⟩} basis, |𝜙⟩ is measured with probability
|⟨𝜙|𝜓⟩|2 = |𝛼|2. Similarly, |𝜙⊥⟩ is measured with probability |⟨𝜙⊥|𝜓⟩|2 = |𝛽|2.

Operations that are used to manipulate a qubit can be represented as an unitary matrix1. Measure-
ments work slightly different and are represented by a Hermitian matrix2. The resulting qubit state, |𝜌⟩,
after operation 𝑂 is applied on |𝜓⟩ can simply be calculated using standard matrix multiplication, i.e.
𝑂|𝜓⟩ = |𝜌⟩. The Pauli operators describe the errors that are typically modelled to occur on a qubit state:
a bit-flip, phase-flip or both a bit- and phase-flip. The Pauli operators, excluding the identity matrix, are
given by

𝑋 = (0 1
1 0) , 𝑍 = (1 0

0 −1) , and 𝑌 = (0 −𝑖
𝑖 0 ) = 𝑖𝑋𝑍.

Note that for all Pauli operators 𝑃, we have 𝑃2 = 𝐼, where 𝐼 is the identity matrix. Also, for all Pauli
operators 𝑃 and 𝑄, we have 𝑃𝑄 = ±𝑄𝑃. The eigenvalues of all Pauli operators are ±1.
1A unitary matrix 𝑈 is a matrix such that the conjugate transpose (Hermitian transpose) 𝑈† is equal to the inverse of 𝑈. So by
definition, 𝑈𝑈† = 𝑈𝑈−1 = 𝐼.

2A Hermitian matrix is a matrix 𝑄 such that it is equal to the conjugate transpose, so 𝑄† = 𝑄.
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Example Pauli operators applied on the state |𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩:
• 𝑋|𝜓⟩ = 𝛽|0⟩ + 𝛼|1⟩,
• 𝑍|𝜓⟩ = 𝛼|0⟩ − 𝛽|1⟩,
• 𝑌|𝜓⟩ = 𝑖(−𝛽|0⟩ + 𝛼|1⟩).

When we have a system of 𝑘 qubits, states are given in a 2𝑘-dimensional vector space. The com-
bined state can sometimes be represented as a tensor product of the individual qubit states3. For
example, the product state of three qubits in the |0⟩-state is given as |000⟩ = |0⟩⊗ |0⟩⊗ |0⟩. When we
now want to apply a Pauli-𝑋 gate on the third qubit and identity on the other ones, we take the tensor
product of the individual gates. We therefore would apply the operation 𝑂 = 𝐼1𝐼2𝑋3 = 𝐼1 ⊗ 𝐼2 ⊗ 𝑋3.
This can also be abbreviated as 𝐼𝐼𝑋.

2.2.2. Formalism
The idea of stabilizer codes is to encode states |𝜓⟩ of 𝑘 logical qubits into states |𝜓⟩ of 𝑛 qubits that
are ”stabilized” by operators in the stabilizer group 𝒮. Here, |𝜓⟩ denotes the encoded state. For the 3
qubit repetition code we have |0⟩ = |000⟩ and |1⟩ = |111⟩. An operator is called a stabilizer if it doesn’t
change the state of a code word, when applied. The code space of a stabilizer code with stabilizer
group 𝒮 is therefore defined to be

𝐶 = {|𝜓⟩∶ 𝑃|𝜓⟩ = |𝜓⟩ ∀𝑃 ∈ 𝒮}.

Here, 𝒮 is an Abelian subgroup of the Pauli group 𝒫𝑛 with −𝐼⊗𝑛 ∉ 𝒮. The Pauli group is defined to be
the group generated by the Pauli operators and ±𝑖, i.e.

𝒫𝑛 = ⟨𝑖, 𝐼1, 𝑋1, 𝑍1, … , 𝐼𝑛 , 𝑋𝑛 , 𝑍𝑛⟩.

A stabilizer group 𝒮 consists of 𝑛 − 𝑘 linearly independent operators that generate the group. This
means that instead of defining a code by its code space in a 2𝑛 dimensional vector space, the code
can be defined by at most 𝑛 − 𝑘 linearly independent operators.

Example Stabilizers of the repetition code with length 3. For the repetition code of length 3, we
can find that the states in the code space 𝐶 = {|000⟩, |111⟩} are invariant under the action of the
stabilizers

𝒮 = {𝐼𝐼𝐼, 𝐼𝑍𝑍, 𝑍𝐼𝑍, 𝑍𝑍𝐼} = ⟨𝐼𝑍𝑍, 𝑍𝑍𝐼⟩.
Note that the stabilizer group 𝒮 can be generated by two operators. We have (𝐼1𝑍2𝑍3)(𝑍1𝑍2𝐼3) =
𝑍1𝐼2𝑍3 and (𝐼1𝑍2𝑍3)(𝐼1𝑍2𝑍3) = 𝐼1𝐼2𝐼3, since 𝑍𝑖𝑍𝑖 = 𝐼𝑖. For this repetition code we have 𝑛 = 3 and
𝑘 = 1 because one qubit is encoded as three qubits. Therefore, it is true that 𝒮 is generated by
𝑛 − 𝑘 = 2 generators.

Logical operators are the Pauli operators 𝑋, 𝑍 ∈ 𝒫𝑛 such that 𝑋|0⟩ ↔ |1⟩ and 𝑍|+⟩ ↔ |−⟩. For a code
encoding 𝑘 qubits, there are 𝑘 pairs of logical operators 𝑋𝑖 , 𝑍𝑖 with 𝑖 = 1,… , 𝑘. Logical operators applied
on states in the code space, return states that are in the code space as well. This means that logical
operators commute with the stabilizers 𝑠 ∈ 𝒮. For example 𝑠𝑋|0⟩ = 𝑠|1⟩ = |1⟩ and 𝑋𝑠|0⟩ = 𝑋|0⟩ = |1⟩.
Due to the fact that logical operators preserve the code space, we have that errors that are logical
operators cannot be detected. We define the centralizer 𝒞(𝒮) to be the set Pauli operators in 𝒫𝑛 that
commute with 𝒮. So, we have

𝒞(𝒮) = {𝑃 ∈ 𝒫𝑛 ∶ 𝑃𝑠 = 𝑠𝑃 ∀𝑠 ∈ 𝒮}.

The logical operators are the operators in the set 𝒞(𝒮) ⧵ 𝒮. All the other Pauli operators that are not
in 𝒞(𝒮), anti-commute with at least one element in 𝒮 and therefore map a code word outside the code
space. These Pauli operators 𝑃 ∈ 𝒫𝑛 ⧵ 𝒞(𝒮) are called the detectable Pauli errors 𝐸.

3A combined state can not be represented as a tensor product of the individual qubit states if the states entangled. For example,
|000⟩ + |111⟩.
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Example Logical operators of the repetition code with length 3. For the repetition, we have 𝑘 = 1.
Therefore we have one pair of logical operators; 𝑋 and 𝑍. For 𝑋 we need to have 𝑋|000⟩ = |111⟩,
so 𝑋 = 𝑋1𝑋2𝑋3. For 𝑍 we need to have 𝑍(|000⟩+|111⟩) = |000⟩−|111⟩. Therefore 𝑍 can be 𝑍1𝐼2𝐼3,
𝐼1𝑍2𝐼3, 𝐼1𝐼2𝑍3 or 𝑍1𝑍2𝑍3. Here we see that logical operators don’t have to be unique.

The weight |𝑃| of a Pauli operator 𝑃 ∈ 𝒫𝑛 is the number of nontrivial single-qubit Pauli operators.
Now, the distance of a stabilizer code is defined to be the minimum weight of the logical operators, i.e.

𝑑 = min
𝑃∈𝒞(𝒮)⧵𝒮

|𝑃|.

Example Distance of the 3 qubit repetition code. We have seen that the logical operators are
𝑋 = 𝑋1𝑋2𝑋3 and 𝑍 = 𝑍1. The minimum weight of these operators is 1. Therefore the distance of
the quantum repetition with length 3 is 𝑑 = 1. Note that this is different from the classical repetition
code with length 3, where 𝑑 = 3.

The class of stabilizer codes is attractive in use because (1) they are the quantum generalization
of classical binary linear codes, (2) their logical operators and distance are easily determined, and it is
relatively simple to (3) understand how to construct universal sets of logical gates and (4) execute a
numerical analysis of the code performance (Terhal, 2015).

2.2.3. Parity Checks
In the previous subsection it was described that a stabilizer code is defined by the operators in the
stabilizer group. These operators are the parity checks that are used to determine the error. The
eigenvalues of the parity checks are called the error syndrome and will be projected on the ancilla
qubits. A general circuit for measuring a parity check with stabilizer 𝑆 looks like Figure 2.3a.

Now, why is it ’allowed’ to measure the parity where it was not ’allowed’ to measure the qubits di-
rectly? Measuring a quantum state is equivalent to projecting the state onto one of the two vectors
of the measurement basis. So, when a qubit is the superposition |𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩ and we measure
it in the {|0⟩, |1⟩} basis, we essentially force it to be in one of those two states. This means that the
information about 𝛼 and 𝛽 is lost. When the parity is measured, we also perform a projective measure-
ment. However, by making sure the states from the different qubits remain indistinguishable, the qubit
states are not destroyed. So by measuring the parity, just enough information is revealed such that
error correction can be applied without losing the information about the encoded state.

𝑆⋮ ⋮

|+⟩ • 𝐻 

(a)

|+⟩ • • 𝐻 

(b)

•
•

|+⟩ • • 𝐻 

(c)

Figure 2.3: Measuring the parity checks in a quantum circuit. (a) Circuit to measure a general stabilizer
𝑆 using a controlled-𝑆 gate. The controlled gate applies 𝐼 if the control qubit is |0⟩ and applies 𝑆 when
the control qubit is |1⟩. (b) Circuit to apply an 𝑋𝑋-check. (c) Circuit to apply a 𝑍𝑍-check.

What happens to the combined quantum state when measuring a stabilizer using the circuit from
Figure 2.3a? Because all stabilizers consists of Pauli operators, the stabilizers also have eigenvalues
±1. We can decompose the incoming quantum state into the two eigenvectors of 𝑆, namely |𝜓𝑖𝑛⟩ =
𝛼|𝜓+⟩ + 𝛽|𝜓−⟩. Note that 𝑆|𝜓±⟩ = ±|𝜓±⟩. We will go through the circuit from left to right. The input
state, combined with the ancilla, is given by

1
√2
|0⟩[𝛼|𝜓+⟩ + 𝛽|𝜓−⟩] +

1
√2
|1⟩[𝛼|𝜓+⟩ + 𝛽|𝜓−⟩].
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Now, the controlled-𝑆 gate applies stabilizer 𝑆 on the input state if the ancilla qubit is |1⟩. Therefore,
the state becomes

1
√2
|0⟩[𝛼|𝜓+⟩ + 𝛽|𝜓−⟩] +

1
√2
|1⟩[𝛼|𝜓+⟩ − 𝛽|𝜓−⟩].

Finally, the Hadamard gate changes the ancilla qubit such that |0⟩ → |+⟩ and |1⟩ → |−⟩. When also
reorganising the terms, we obtain.

1
√2
|+⟩[𝛼|𝜓+⟩ + 𝛽|𝜓−⟩] +

1
√2
|−⟩[𝛼|𝜓+⟩ − 𝛽|𝜓−⟩] = |0⟩𝛼|𝜓+⟩ + |1⟩𝛽|𝜓−⟩.

Here, we can see that when the ancilla is measured, the state collapses to one of the eigenvectors of
𝑆. This means that a superposition between the two states is lost. However, this is now actually a good
thing. With this projection we get rid of a possible superposition of having an error/no error.

Example Direct measurement of the 𝑍𝑍-check. Say we have the following input of the data qubits:

• |𝜓𝑑1⟩ = 𝑎|0⟩ + 𝑏|1⟩, and
• |𝜓𝑑2⟩ = 𝑐|0⟩ + 𝑑|1⟩.

Of course, it holds that |𝑎|2+|𝑏|2 = |𝑐|2+|𝑑|2 = 1. First, say we don’t apply the ancilla measurement
and just do a direct measurement. When measuring |𝜓𝑑1⟩, there is a |𝑎|2 chance the state collapses
to |0⟩ and a |𝑏|2 chance the state collapses to |1⟩. The same holds for |𝜓𝑑2⟩ with |𝑐|2 and |𝑑|2.
Therefore, the probability to measure |00⟩ is |𝑎|2|𝑐|2 = |𝑎𝑐|2. Similarly, the probability to measure
|01⟩ is |𝑎𝑑|2, etc. Therefore, if the parity is measured by measuring the qubits individually, the
outcome would be even (|00⟩ or |11⟩) with probability |𝑎𝑐|2 + |𝑏𝑑|2 and odd (|01⟩ or |10⟩) with
probability |𝑎𝑑|2 + |𝑏𝑐|2. Note that after this direct measurement, |𝜓⟩ has collapsed to one of the
four states |00⟩, |01⟩, |10⟩ or |11⟩.

Example Indirect measurement of the 𝑍𝑍-check. Now, say we measure the parity indirectly using
the ancilla qubit according to Figure 2.3c. Assume the same input as for the direct measurement.
The input state, including the ancilla qubit, is given by

1
√2
|0⟩ ⊗ ((𝑎|0⟩ + 𝑏|1⟩) ⊗ (𝑐|0⟩ + 𝑑|1⟩)) + 1

√2
|1⟩ ⊗ ((𝑎|0⟩ + 𝑏|1⟩) ⊗ (𝑐|0⟩ + 𝑑|1⟩)),

where the first qubit denotes the ancilla qubit and the other two denote the data qubits. The
controlled-𝑍 gates now give the state

1
√2
|0⟩ ⊗ ((𝑎|0⟩ + 𝑏|1⟩) ⊗ (𝑐|0⟩ + 𝑑|1⟩)) + 1

√2
|1⟩ ⊗ ((𝑎|0⟩ − 𝑏|1⟩) ⊗ (𝑐|0⟩ − 𝑑|1⟩)).

Finally, the Hadamard gate rotates the ancilla qubit such that

1
√2
|+⟩ ⊗ ((𝑎|0⟩ + 𝑏|1⟩) ⊗ (𝑐|0⟩ + 𝑑|1⟩)) + 1

√2
|−⟩ ⊗ ((𝑎|0⟩ − 𝑏|1⟩) ⊗ (𝑐|0⟩ − 𝑑|1⟩)).

Reorganising some terms gives

|0⟩ ⊗ (𝑎𝑐|00⟩ + 𝑏𝑑|11⟩) + |1⟩ ⊗ (𝑎𝑑|01⟩ + 𝑏𝑐|10⟩).

Note that for this state it holds that the ancilla qubit is measured to be |0⟩ with a probability |𝑎𝑐|2 +
|𝑏𝑑|2 and |1⟩ with a probability |𝑎𝑑|2+ |𝑏𝑐|2. This is the same result as for the direct measurement.
However, in this case we do not know whether the individual qubits are in |0⟩ or |1⟩.
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2.3. Defect Analysis for Different Noise Models
In Subsection 2.1.2, the idea of ancilla measurement is introduced in the context of the repetition code.
Implicitly it was assumed that errors only occur on the data qubits. However, the ancillas are also
qubits. Therefore, errors could occur on them as well. Now if an ancilla is measured to be 1, how can
we know if the the corresponding data qubit(s) have an error or if the ancilla qubit has an error? To find
out what kind of error has occurred, we will measure the parity multiple times. Each cycle the parity of
the data qubits is measured, is called a quantum error correction round, or QEC round.

The measurements of the error syndromes over multiple QEC rounds are converted into a so-called
defect matrix. This defect matrix will later be used to estimate the probability of certain error occurring.
In this section, the defect matrix will be introduced on the basis of two different error models. For the first
model it is assumed that there may occur errors at the start of each QEC round with some probability.
For the second model it is assumed that error may occur after the logic gates performing the operations
to measure the syndrome. For both models, only Pauli errors are taken into account. This means that
there is some probability that one of the Pauli operators is applied on a qubit.

2.3.1. Phenomenological Noise
A simple error model one can think of is to assume that bit-flip (Pauli-𝑋) errors may occur on the data
and ancilla qubits at the start of each QEC round with some probability 𝑝4. We also assume that the
quantum gates performing the operations during the QEC round work perfectly. This noise model is
called phenomenological noise.

When the parity is measured multiple times, and the error probability is low, we would expect to
measure the same outcomes multiple times in the event of a data error. Since we are only interested
in the change an error makes in the measurements, it makes sense to take the time difference of the
measurements. We call these time differences the defects syndromes. The defects are computed by
𝑑𝑎,𝑟 = 𝑚𝑎,𝑟 ⊕ 𝑚𝑎,𝑟−1, where 𝑎 indicates the ancilla qubit and 𝑟 indicates the QEC round. 𝑚𝑎,−1 is
defined to be the parity of the initial data qubit state (Varbanov et al., 2020). Here, it is assumed that
the ancilla qubits are reset after each QEC round. Figure 2.4 demonstrates the ancilla measurement
over multiple QEC rounds and the corresponding defect syndrome of a single data qubit error. Figure
2.5 demonstrates the ancilla measurement over multiple QEC rounds and the corresponding defect
syndrome of a single ancilla qubit error.

(a) Ancilla measurement over multiple QEC rounds
of a single data error at data qubit 2.

(b) Defect syndrome of a data error. The data error
corresponds to a ’space edge’.

Figure 2.4: Ancilla measurement and defect syndrome for a data error at data qubit 𝑑2 before QEC
round 3. For the ancilla measurement it is assumed that the qubits are reset after each QEC round.

It can be seen in Figure 2.4 and 2.5 that the defects come in pairs. These pairs of defect can happen
in the same round on neighbouring qubits, leading a space edge, or on the same qubit at two following
QEC rounds, leading to a time edge. One exception is when an error occurs on a data qubit that is
located at the boundary. An example of this is shown in Figure 2.6. In this case, the defect will be
connected to the boundary. In total we therefore have three types of edges: space and time edges,
which together are called bulk edges, and boundary edges.

4An error at the start of a QEC round means that the error occurs before a single gate of the QEC round has been applied.
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(a) Ancilla measurement over multiple QEC rounds
of a single ancilla error at ancilla qubit 1.

(b) Defect syndrome of an ancilla error. The ancilla
error corresponds to a ’time edge’.

Figure 2.5: Ancilla measurement and defect syndrome for an ancilla error at ancilla qubit 𝑎1 before
QEC round 3. For the ancilla measurement it is assumed that the qubits are reset after each QEC
round.

(a) Ancilla measurement over multiple QEC rounds
of a single data error at data qubit 1.

(b) Defect syndrome of an data error at the bound-
ary. The ancilla error corresponds to a boundary
space edge.

Figure 2.6: Ancilla measurement and defect syndrome for an data error at data qubit 𝑑1 before QEC
round 3. For the ancilla measurement it is assumed that the qubits are reset after each QEC round.

When constructing the defect syndrome, it was assumed that the ancilla qubits were reset after
every QEC round. However, in practice, superconducting qubits are hard to reset quickly with high-
fidelity (McEwen et al., 2021; Egger et al., 2018; Magnard et al., 2018). Therefore, an extra cal-
culation step is required to construct the same defect syndromes. A sequence of ancilla measure-
ments ”1111” will look like ”1010” when the qubits are not reset after a measurement. Now, the syn-
drome can be calculated5 by 𝑠𝑎,𝑖 = 𝑚𝑎,𝑖−1 ⊕ 𝑚𝑎,𝑖. Then the defects can be calculated again using
𝑑𝑎,𝑖 = 𝑠𝑎,𝑖−𝑖 ⊕ 𝑠𝑎,𝑖 = 𝑚𝑎,𝑖−2 ⊕𝑚𝑎,𝑖. Here, 𝑚𝑎,−1 is set to be 0 and 𝑠𝑎,−1 is set to be the parity of the
initial state of the data qubits (Varbanov et al., 2020). After 𝑁𝑟 quantum error correction rounds, the
data qubits are measured to construct the final syndrome. Therefore, the syndrome is calculated 𝑁𝑟+1
times. Note that the final measurement can obtain errors as well. This is modeled using a last bit-flip
channel with probability 𝑝 on the data qubits. The QEC experiment model with phenomenological noise
is summarized in Figure 2.7.

Repeat 𝑁𝑟 times:
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Figure 2.7: QEC experiment for phenomenological noise. The experiment starts with initialising all the
qubits in a certain state. Then, 𝑁𝑟 rounds of quantum error correction are applied. Because of the
phenomenological noise model, there are incoming errors to a perfect QEC circuit. Finally, the data
qubits are measured to give the final syndrome.

5If the ancilla qubits would be reset after each round, then the syndrome would be equal to the measurement.
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For one experiment of a repetition code of length 𝑑 and 𝑁𝑟 QEC rounds will now return a defect
matrix of size (𝑑 − 1) × (𝑁𝑟 + 1). During the experiment, multiple data and ancilla errors will occur.
All those errors that occur will result in an edge between two vertices or an edge from a vertex to the
boundary. However, from the experiment we only obtain the defect syndromes. The goal will therefore
be to use statistics to estimate the probability of all the possible edges. These probabilities can then be
used to guess what errors actually occurred on the qubits. Before the formulas for the edge probabilities
will be derived, a more accurate noise model will be introduced.

2.3.2. Circuit Level Noise
With phenomenological noise, it was assumed that errors may occur before a QEC round and that the
operations in the QEC round work perfectly. In reality, however, the latter is not true. It is therefore
possible to construct a noise model that better represents reality. Errors will now be assumed to occur
with some probability at the end of each gate, based on the actual performance of operations on the
individual qubits. Still, only Pauli errors are assumed. This model is called circuit level noise. The error
probabilities can be based on the probabilities of the individual qubits.

Before the circuit of a QEC round is introduced, it will be explained how errors propagate through
a circuit. When an error occurs an a certain qubit, it is possible that the error will also propagate to
another qubit via the applied two-qubit gates. This also holds for classical data. An easy example is
the controlled NOT gate. A controlled NOT gate flips the output of the second bit if and only if the input
of the first bit is a 1, which is also shown in Table 2.2. Here, we can see that an error on the target bit
does not change the output of the control bit. However, when an error occurs on the control bit, then
the output of the target bit also obtains the error. The error is propagated onto the other bit as well.

Input Output
Control Target Control Target
|0⟩ |0⟩ |0⟩ |0⟩
|0⟩ |1⟩ |0⟩ |1⟩
|1⟩ |0⟩ |1⟩ |1⟩
|1⟩ |1⟩ |1⟩ |0⟩

Table 2.2: Input/Output table of a controlled-NOT gate.

In the case of the repetition code that corrects bit flips, the only two-qubit gates used are controlled-
𝑍 gates. For the controlled-𝑍 gates, only 𝑋 errors propagate onto the other qubit in the form of a 𝑍
error. With the bit-flip repetition code, we cannot detect 𝑍 errors. Therefore, error propagation does
not have to be taken into account for this error correcting code. Circuit level noise does however give
other types of errors than the phenomenological noise model. To understand these type of errors, the
QEC circuit has to be explained first.

Proof Errors propagating through a controlled-𝑍 gate. We want to know how errors propagate
through a certain two-qubit gate. To find this, we can say Pauli errors E1 and E2 appear before the
two qubit gate. We then want to know what the errors E1’ and E2’ are after the gate. We can set
the following two circuits to be equivalent:

𝐸1 •

𝐸2 •
=

• 𝐸′1

• 𝐸′2

Now, we will determine 𝐸′1 and 𝐸2’ for certain inputs E1 and E2. First, note that a controlled-𝑍 gate
(𝐶𝑍) applied twice is equivalent to the identity operation. Therefore, we have

𝐶𝑍 ⋅ 𝐸1𝐸2 = 𝐸1′𝐸2′ ⋅ 𝐶𝑍 ⟹ 𝐸1′𝐸2′ = 𝐶𝑍 ⋅ 𝐸1𝐸2 ⋅ 𝐶𝑍.

For convenience, the matrix representation for the operators will be used. The operators we need
are represented as
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• 𝐼 = |0⟩⟨0| + |1⟩⟨1|
• 𝑋 = |0⟩⟨1| + |1⟩⟨0|
• 𝑍 = |0⟩⟨0| − |1⟩⟨1|
• 𝐶𝑍 = |0⟩⟨0| ⊗ 𝐼 + |1⟩⟨1| ⊗ 𝑍 = 𝐼 ⊗ |0⟩⟨0| + 𝑍 ⊗ |1⟩⟨1|.

Now assume the input to be 𝐸1𝐸2 = 𝐼𝑋. Then

𝐸′1𝐸′2 = 𝐶𝑍 ⋅ 𝐼𝑋 ⋅ 𝐶𝑍 = (|0⟩⟨0| ⊗ 𝐼 + |1⟩⟨1| ⊗ 𝑍)(𝐼 ⊗ 𝑋)(|0⟩⟨0| ⊗ 𝐼 + |1⟩⟨1| ⊗ 𝑍)
= (|0⟩⟨0| ⊗ 𝐼 + |1⟩⟨1| ⊗ 𝑍)(|0⟩⟨0| ⊗ 𝑋 + |1⟩⟨1| ⊗ 𝑋𝑍)
= |0⟩⟨0| ⊗ 𝑋 + |1⟩⟨1| ⊗ 𝑍𝑋𝑍
= |0⟩⟨0| ⊗ 𝑋 − |1⟩⟨1| ⊗ 𝑋 = 𝑍 ⊗ 𝑋.

So the 𝑋 error is unchanged on the second qubit and the first qubit obtains a 𝑍 error. Since the
controlled-𝑍 gate is symmetric, we also have that 𝐸1𝐸2 = 𝑋𝐼 results in 𝐸′1𝐸′2 = 𝑋𝑍.

Now assume the input to be 𝐸1𝐸2 = 𝐼𝑍. Using similar calculation we obtain

𝐸′1𝐸′2 = 𝐶𝑍 ⋅ 𝐼𝑍 ⋅ 𝐶𝑍 = (|0⟩⟨0| ⊗ 𝐼 + |1⟩⟨1| ⊗ 𝑍)(𝐼 ⊗ 𝑍)(|0⟩⟨0| ⊗ 𝐼 + |1⟩⟨1| ⊗ 𝑍)
= (|0⟩⟨0| ⊗ 𝐼 + |1⟩⟨1| ⊗ 𝑍)(|0⟩⟨0| ⊗ 𝑍 + |1⟩⟨1| ⊗ 𝐼)
= |0⟩⟨0| ⊗ 𝑍 + |1⟩⟨1| ⊗ 𝑍 = 𝐼 ⊗ 𝑍.

Therefore, the 𝑍 error does not propagate through a controlled-𝑍 gate. Again, by symmetry, an input
of 𝐸1𝐸2 = 𝑍𝐼 results in 𝐸′1𝐸′2 = 𝑍𝐼. Since 𝑌 is a combination of 𝑋 and 𝑍, we do not need to work out
the propagation of a 𝑌 error. ⊠

The quantum chip that will be used for the repetition code experiment, is from the DiCarlo Lab at
Delft University of Technology. This chip is initially is designed to run the surface code. This is a 2D
extension of the repetition code that is able to correct both bit- and phase-flip errors. The layout of
the chip is shown in Figure 2.8a. The data qubits are labeled by 𝐷𝑖 and the ancilla qubits are labeled
𝑋𝑖 and 𝑍𝑖. The 𝑋/𝑍 label of an ancilla indicate whether the ancilla performs an 𝑋- or 𝑍-check on the
data qubits. To run the repetition code, some data and ancilla qubits can be connected in a specific
way to construct a string of qubits. This setup is shown in Figure 2.8b. Note that the ancilla qubits
are labeled 𝑋/𝑍 just to indicate their parity check for the surface code. This does not mean a 𝑍-ancilla
cannot perform an 𝑋-check.

(a) (b)

Figure 2.8: Layout of the quantum chip from the DiCarlo group for (a) the surface-17 code and (b) the
repetition code of length 7. The labels indicate the data qubits 𝐷𝑖 and ancilla qubits 𝑋𝑖/𝑍𝑖.
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For this experiment we look at the repetition with length 7, as can be seen in Figure 2.8b. So there
are 7 data qubits and 6 ancilla qubits. The stabilizer group of this error correcting code is given by

⟨𝑍1𝑍2, 𝑍2𝑍3, 𝑍3𝑍4, 𝑍4𝑍5, 𝑍5𝑍6, 𝑍6𝑍7⟩.

The circuit of a single 𝑍𝑍-check was shown in Figure 2.3c. The full circuit is given in Figure 2.9. One
can check that this layout corresponds with Figure 2.8b. For now, we will only focus on the 𝑍𝑍-checks,
not the 𝑋 gates. If an error appears on a data qubit, say on 𝐷1 before QEC round 𝑛 (but after 𝑛 − 1),
then the ancilla qubits 𝑋1 and 𝑍1 detect that error in round 𝑛, which results in a space edge at round 𝑛.
Now assume an error occurs on 𝐷1, during QEC round 𝑛 after the first 𝑍𝑍-check (𝑍𝐷1𝑍𝐷5), but before
the second 𝑍𝑍-check (𝑍𝐷2𝑍𝐷1). In this case, 𝑋1 detects the error in round 𝑛 but 𝑍1 detects the error in
round 𝑛+1 since the error happened after the check of round 𝑛. The edges that represent these errors
are called space-time edges, since these edges connect nodes of a different ancilla and different QEC
round. The direction of the space-time edges is determined by the order of the 𝑍𝑍-checks in the circuit.
For the circuit level noise we now have 4 types of edges: space, time and space-time edges (called
the bulk edges) and boundary edges. These edges are illustrated in Figure 2.10.

𝐷6 • 𝑋
𝑍2 𝐻 • • 𝐻 

𝐷3 • • 𝑋
𝑋2 𝐻 • • 𝐻 

𝐷2 • • 𝑋
𝑋1 𝐻 • • 𝐻 

𝐷1 • • 𝑋
𝑍1 𝐻 • • 𝐻 

𝐷5 • • 𝑋
𝑋3 𝐻 • • 𝐻 

𝐷8 • • 𝑋
𝑋4 𝐻 • • 𝐻 

𝐷9 • 𝑋

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _�
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Figure 2.9: Quantum circuit for one QEC round. Each round, the parity of a 𝑍𝑍-check between two
data qubits is projected on the ancilla between them. At the end of each round, the ancilla is measured.
An 𝑋-gate is applied to change the data qubits states.
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(a) Space edge be-
tween ancilla 𝑋1 and
𝑋2.

(b) Time edge on an-
cilla 𝑋3.

(c) Space-time edge
between ancilla 𝑋4 and
𝑋3.

(d) Boundary edge on
ancilla 𝑋4.

Figure 2.10: The grid shows the possible edges between nodes for circuit level noise. The four edge
types that appear from errors are highlighted to be yellow.

The error rates of the qubit gates are initialised to be the values obtained from randomized bench-
mark experiments. The gate error rates 𝑝gate for single qubit gates can be found in Table 2.3. The error
rates of all the two-qubit gates, 𝑝gate, that are used can be found in Table 2.4. This information is pro-
vided by the DiCarlo Lab. The gate errors are modelled using a depolarizing channel with parameter
𝑝 after the gate. The parameter is determined by 𝑝 = 𝑑

𝑑−1𝑝gate, where 𝑑 is the dimension of the Hilbert
space (Magesan et al., 2012). For a single qubit depolarizing channel, Pauli errors 𝑋, 𝑌 and 𝑍 occur
each with probability 𝑝/3. For a two qubit depolarizing channel, each non-identity two qubit Pauli error
occurs with probability 𝑝/15.

The assignment error 𝑝assign is the probability of observing an incorrect measurement outcome and
the post measurement error 𝑝QND is the probability of an error after the measurement (which is only
relevant for the ancilla qubits). The gate errors are modeled using a bit-flip channel with parameter
𝑝assign after the readout and a bit-flip channel with parameter 𝑝QND after the measurement.
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Qubit 𝑇1 (ns) 𝑇2 (ns) Gate error 𝑝gate Assignment error 𝑝assign Post meas. error 𝑝QND
𝐷1 13973 7181 0.0011 0.0281 -
𝐷2 14460 12197 0.0016 0.1182 -
𝐷3 10244 15769 0.0061 0.0275 -
𝐷5 11508 10684 0.0009 0.0135 -
𝐷6 5858 9737 0.0033 0.0216 -
𝐷8 11273 14264 0.0024 0.0502 -
𝐷9 18161 14397 0.0041 0.0563 -
𝑋1 9902 6587 0.0027 0.031 0.0906
𝑋2 12423 13410 0.0050 0.0156 0.0914
𝑋3 8717 11483 0.0032 0.0182 0.0601
𝑋4 7058 11125 0.0033 0.0302 0.0349
𝑍1 5105 4471 0.0093 0.0198 0.0533
𝑍2 10612 18038 0.0022 0.0381 0.0383

Table 2.3: Characteristics of the qubits used in the repetition code experiment, provided by the DiCarlo
Lab.

qubit 1 qubit 2 Gate error 𝑝gate
𝐷1 𝑋1 0.0179
𝐷2 𝑋1 0.0216
𝐷2 𝑋2 0.0259
𝐷3 𝑋2 0.0143
𝐷3 𝑍2 0.0124
𝐷6 𝑍2 0.0334
𝐷1 𝑍1 0.0270
𝐷5 𝑍1 0.0256
𝐷5 𝑋3 0.0340
𝐷8 𝑋3 0.0149
𝐷8 𝑋4 0.0180
𝐷9 𝑋4 0.0290

Table 2.4: Error probabilities of gates between the pairs of qubits used in the repetition code experiment,
provided by the DiCarlo Lab.

A qubit can, over time, decay from the excited state |1⟩ to |0⟩. Furthermore, it can acquire random
phase shifts. This relaxation and dephasing are described by the decoherence times 𝑇1 and 𝑇2. These
values can also be found in Table 2.3. We can describe this process by the amplitude and phase
damping channels, corresponding to the Pauli transfer matrices (O’Brien et al., 2017)

𝑅𝑇1 =
⎛
⎜

⎝

1 0 0 0
0 √1 − 𝑝1 0 0
0 0 √1 − 𝑝1 0
𝑝1 0 0 1 − 𝑝1

⎞
⎟

⎠

, (2.1)

𝑅𝑇𝜙 = ⎛

⎝

1 0 0 0
0 √1 − 𝑝𝜙 0 0
0 0 √1 − 𝑝𝜙 0
0 0 0 1

⎞

⎠

. (2.2)

The probabilities 𝑝1 and 𝑝𝜙 are defined to be 𝑝1 = 1 − 𝑒−𝑡/𝑇1 and 𝑝𝜙 = 1 − 𝑒−𝑡/𝑇𝜙 , where

1
𝑇𝜙

= 1
𝑇2
− 1
2𝑇1

.
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Now, the amplitude and phase damping is approximated as a depolarizing channel using the Pauli
twirling approximation (Geller and Zhou, 2013). This approximation essentially takes the diagonal
elements of the 𝑅𝑇1 and 𝑅𝑇𝜙 matrices. The parameters 𝑝𝑋 , 𝑝𝑌 , 𝑝𝑍 of the depolarizing channel are given
by

𝑝𝑋 =
𝑝1
4 , 𝑝𝑌 =

𝑝1
4 , and 𝑝𝑍 =

1
2 −

𝑝1
4 −

√1 − 𝑝1 − 𝜆
2 . (2.3)

Here, 𝜆 is defined to be 𝜆 = 𝑒−𝑡/𝑇1 (1 − 𝑒−2(𝑡/𝑇𝜙)2). We can now define the depolarizing channel in
terms of the 𝑇1 and 𝑇2 times and the running duration of certain gates.

The duration of a Hadamard gate and an 𝑋-gate are approximated to be 𝑡 = 20 ns, the duration of a
controlled-𝑍 gate is approximated to be 𝑡 = 40 ns and the duration of a measurement is approximated
to be 𝑡 = 800 ns. These times are based on experimental performance.

Since the amplitude damping is asymmetric, an 𝑋 gate is applied on all data qubits each round to
prevent the qubits from decaying to |0⟩ as time goes on. Note that the 𝑋 gates do not change the parity
of the data qubits (when of course applied on all data qubits), so they do not make a difference in the
ancilla measurements.

As a final note, it should be mentioned that the logical states |0⟩ and |1⟩ are often not encoded
as |00⋯0⟩ and |11⋯1⟩. To symmetrize the results, balanced stings of 0’s and 1’s can be used, e.g.
|0⟩ = |0101101⟩ and |1⟩ = |1010010⟩. In this case, a nontrivial parity of the initial state is used for
computing the defect syndrome at the first QEC round, as described in Subsection 2.3.1.

2.3.3. Other Noise
In the phenomenological and circuit level noise models, only Pauli errors were assumed to happen on
the data and ancilla qubits. With this assumption, it is therefore assumed that a single error results
in at most 2 defects. In reality, more complex errors may also occur like leakage, crosstalk or cosmic
rays that cannot be modelled using Pauli errors (Google Quantum AI, 2021). These errors will not be
investigated in this thesis. Non-Pauli errors can lead to unconventional edges that do not result 3 or
more defects. These edges are called hyperedges (Google Quantum AI, 2021; Chen et al., 2022). The
presence of non-conventional errors in the experiment may then affect the estimated edge probabilities
and lead to the observation of non-zero probabilities for some edges that should otherwise be zero in
the absence of these non-Pauli errors.

2.4. Statistics
In statistics, we often want to estimate an unknown parameter 𝜃 with estimator 𝑇𝑁. The question will
now be: how good or how accurate is that estimator? In this section, two methods will be introduced to
estimate the standard deviation of an estimator. First, an analytical method will be presented which is
based on the central limit theorem; the delta method. Secondly, the bootstrap method will be presented,
which is a computer-based method.

2.4.1. Delta Method
Theorem 2.1 Suppose we have an estimator 𝑇𝑁 of parameter 𝜃 and we are interested in 𝑔(𝜃) for some
function 𝑔 that is differentiable at 𝜃. Now, when we assume that

√𝑁(𝑇𝑁 − 𝜃) ⇝ 𝒩(0, 𝜎2)

as 𝑁 approaches infinity. Then

√𝑁(𝑔(𝑇𝑁) − 𝑔(𝜃)) ⇝ 𝑔′(𝜃)𝒩(0, 𝜎2) = 𝒩(0, 𝜎2𝑔′(𝜃)2).

Here, ⇝ denotes a convergence in distribution. This result follows from writing out the first order
approximation of the Taylor expansion of 𝑔. In greater generality, the distribution doesn’t have to be a
normal distribution (van der Vaart, 1995).
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Proof We assume that 𝑔′ is a continuous function and that 𝑇𝑁 converges in probability to 𝜃, i.e.
𝑇𝑁

𝑃→ 𝜃. Now, by the mean value theorem, we have

𝑔′(�̃�) = 𝑔(𝑇𝑁) − 𝑔(𝜃)
𝑇𝑁 − 𝜃

⟺ 𝑔′(�̃�)(𝑇𝑁 − 𝜃) = 𝑔(𝑇𝑁) − 𝑔(𝜃)

where �̃� is in between 𝑇𝑁 and 𝜃. Therefore we also have |𝑇𝑁 − 𝜃| > |�̃� − 𝜃|, so ℙ(|𝑇𝑁 − 𝜃| > 𝜀) ≥
ℙ(|�̃� − 𝜃| > 𝜀). By definition of 𝑇𝑁

𝑃→ 𝜃,

ℙ(|𝑇𝑁 − 𝜃| > 𝜀) → 0.

Therefore, �̃� 𝑃→ 𝜃 as well. By the continuous mapping theorem we then also have 𝑔′(�̃�) 𝑃→ 𝑔′(𝜃).
To conclude, we find

√𝑁(𝑔(𝑇𝑁) − 𝑔(𝜃)) = 𝑔′(�̃�)√𝑁(𝑇𝑁 − 𝜃) ⇝ 𝑔′(𝜃)𝒩(0, 𝜎2).

⊠

2.4.2. Bootstrap
The delta method that was presented, is an analytical method to estimate the standard deviation. The
bootstrap method, on the other hand, replaces the analytical derivations with an extensive amount of
computations. The advantage of the bootstrap method is that it can handle functions that are ana-
lytically too complex to analyse for the delta method. The downside of bootstrap is that the amount
of calculations is rather computer-intensive, even for relatively simple problems (Efron and Tibshirani,
1986).

Suppose that the observed data x = (𝑥1, 𝑥2, … , 𝑥𝑁) is independent and identically distributed ac-
cording to an unknown distribution 𝐹. We are interested in the standard deviation of the estimate 𝑇𝑁.
Note that when we are given a certain data set, we are not able generate more samples, since 𝐹 is
unknown. The idea of the bootstrap method is to replace the distribution 𝐹 with the empirical distri-
bution function �̂�. Since we know this empirical distribution function, it is possible to sample from this
distribution as often as desired.

A bootstrap sample is defined to be

x∗ = (𝑥∗1, 𝑥∗2, … , 𝑥∗𝑁),

where each 𝑥∗𝑖 is drawn randomly from the original sample (𝑥1, 𝑥2, … , 𝑥𝑁), with replacement. From each
bootstrap sample it is possible to compute a bootstrap replication of the estimator 𝑇𝑁, denoted as 𝑇∗𝑁.
Now, the bootstrap estimate of the standard deviation for 𝑇𝑁 is given by

�̂�𝐵 = [
𝐵

∑
𝑏=1

(𝑇∗𝑏𝑁 − 𝑇∗⋅𝑁 )
2 /(𝐵 − 1)]

1/2

, with 𝑇∗⋅𝑁 =
𝐵

∑
𝑏=1

𝑇∗𝑏𝑁 /𝐵,

(Efron and Hastie, 2016). Since �̂� approaches 𝐹 for large 𝑁, �̂�𝐵 correctly approaches the standard
deviation of 𝑇𝑁 in most cases (Efron and Hastie, 2016). To estimate the standard deviation, a 𝐵 in
the range of 50 to 200 is sufficient (Efron and Tibshirani, 1986). Under the assumption that the data
is normally distributed, a 95% confidence interval can be constructed by 𝑇𝑛 ± 1.96𝜎. To construct
confidence intervals using bootstrap, 𝐵 in the order of 2000 is desirable (Efron and Hastie, 2016). Note
that the bootstrap sample size is equal to the original sample size. If they are not equal, then the
standard deviation �̂�𝐵 will not converge to the standard deviation of 𝑇𝑁 (Bickel and Freedman, 1981).



3
Estimating Edge Probabilities

In Section 2.3, it is described how a QEC experiment returns a matrix of defect syndromes. Now, we
are interested in the probabilities of errors that may have occurred. An error is characterised by an edge
between two defects or between a defect and the boundary. However, there may be countless ways to
connect the defects. It is therefore not possible to know for sure which errors did occur, when the only
data available is the defect matrix. It is however possible to assign a probability to every edge. With
these probabilities, the most likely combination of errors can be found using a decoder. This research
only focuses on estimating the probabilities, so not the decoding process itself.

This chapter will start with the derivation of edge probabilities for bulk and boundary edges. In
this derivation it is assumed that every error leads to at most 2 defects. These estimations will then be
tested for simulated data. Data will be simulated for the two presented error models: phenomenological
noise and circuit level noise. Finally, the estimation formulas will be tested for experimental data.

3.1. Derivation of Probabilities
In this section, it will be described how the probabilities of edges can be estimated from the defect
syndromes. Furthermore, the probabilities are estimated from simulated and experimental data.

3.1.1. Bulk edges
An error event at edge 𝑒 is denoted as the binary random variable 𝑦𝑒 where 𝑦𝑒 = 1 means that an
error happens at edge 𝑒 and 𝑦𝑒 = 0 means that no error happens at edge 𝑒. Note that 𝑦𝑒 is a hidden
random variable we cannot measure. However, 𝑦𝑒 influences the binary random 𝑑𝑖 that can be mea-
sured. These 𝑑𝑖 ’s are the defects in the defect matrix. Here, each node {𝑎, 𝑟} is indicated with one
index number 𝑖 = 𝑟 + 𝑎 ⋅ (𝑁𝑟 + 1). We are interested in the probability 𝑝𝑒 = ℙ(𝑦𝑒 = 1) that an error
happened at edge 𝑒 between node 𝑖 and 𝑗, as illustrated in Figure 3.1.

Figure 3.1: Bulk edge 𝑒 occurring with probability 𝑝𝑒 = ℙ(𝑦𝑒 = 1) between nodes 𝑖 and 𝑗.

From experimental data we can estimate the quantities ⟨𝑑𝑖⟩ and ⟨𝑑𝑖𝑑𝑗⟩ by 𝑑𝑖 and 𝑑𝑖𝑑𝑗 respectively.
Here, 𝑑𝑖 means an average of 𝑑𝑖 over the number of experiments. Theoretically, these values are equal
to

19
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⟨𝑑𝑖⟩ = 𝔼[𝑑𝑖] = ∑
𝑥𝑖∈{0,1}

𝑥𝑖ℙ(𝑑𝑖 = 𝑥𝑖) = ℙ(𝑑𝑖 = 1), (3.1)

⟨𝑑𝑖𝑑𝑗⟩ = 𝔼[𝑑𝑖𝑑𝑗] = ∑
𝑥𝑖∈{0,1},𝑥𝑗∈{0,1}

𝑥𝑖𝑥𝑗ℙ(𝑑𝑖 = 𝑥𝑖 , 𝑑𝑗 = 𝑥𝑗) = ℙ(𝑑𝑖 = 1, 𝑑𝑗 = 1). (3.2)

For a defect to become 𝑑𝑖 = 1, there needs to be an error event 𝑦𝑒 = 1 on an edge that is connected
to node 𝑖. However, for two error events 𝑦𝑒1 = 1 and 𝑦𝑒2 = 1 connected to node 𝑖, we have 𝑑𝑖 = 0. This
is because an error event ”flips” the connected nodes, i.e. 0 → 1 and 1 → 0. Therefore, there needs to
be an odd number of error events connected to node 𝑖 to have 𝑑𝑖 = 1. Let 𝐴𝑖 denote the set of edges
connected to node 𝑖. We then have

ℙ(𝑑𝑖 = 1) = ℙ( ∑
𝑒∈𝐴𝑖

𝑦𝑒 = odd).

Since we are interested in the probability of edge 𝑒, we will ”extract” 𝑝𝑒 from this ℙ(𝑑𝑖 = 1). Let 𝐴𝑖𝑒
denote set of edges connected to node 𝑖, excluding edge 𝑒. So 𝐴𝑖𝑒 = 𝐴𝑖 ⧵ {𝑒}. We can now write
ℙ(𝑑𝑖 = 1) as a function of 𝑝𝑒 to get

ℙ(𝑑𝑖 = 1) = 𝑝𝑒ℙ( ∑
𝑒′∈𝐴𝑖𝑒

𝑦𝑒′ = even) + (1 − 𝑝𝑒)ℙ( ∑
𝑒′∈𝐴𝑖𝑒

𝑦𝑒′ = odd).

A similar expression can be constructed for ⟨𝑑𝑖𝑑𝑗⟩. We have

ℙ(𝑑𝑖 = 1, 𝑑𝑗 = 1) = 𝑝𝑒ℙ( ∑
𝑒′∈𝐴𝑖𝑒

𝑦𝑒′ = even)( ∑
𝑒′∈𝐴𝑗𝑒

𝑦𝑒′ = even)+(1−𝑝𝑒)ℙ( ∑
𝑒′∈𝐴𝑖𝑒

𝑦𝑒′ = odd)( ∑
𝑒′∈𝐴𝑗𝑒

𝑦𝑒′ = odd).

Define the quantity 𝑞eff𝑖,𝑒 = ℙ( ∑
𝑒′∈𝐴𝑖𝑒

𝑦𝑒′ = odd). Using this 𝑞eff𝑖,𝑒 and 𝑞eff𝑗,𝑒, we can write the system of

equations for ⟨𝑑𝑖⟩, ⟨𝑑𝑗⟩ and ⟨𝑑𝑖𝑑𝑗⟩ as

⟨𝑑𝑖⟩ = 𝑝𝑒(1 − 𝑞eff𝑖,𝑒) + (1 − 𝑝𝑒)𝑞eff𝑖,𝑒 , (3.3)
⟨𝑑𝑗⟩ = 𝑝𝑒(1 − 𝑞eff𝑗,𝑒) + (1 − 𝑝𝑒)𝑞eff𝑗,𝑒 , (3.4)

⟨𝑑𝑖𝑑𝑗⟩ = 𝑝𝑒(1 − 𝑞eff𝑖,𝑒)(1 − 𝑞eff𝑗,𝑒) + (1 − 𝑝𝑒)𝑞eff𝑖,𝑒𝑞eff𝑗,𝑒 . (3.5)

We can now solve 𝑞eff𝑖,𝑒 and 𝑞eff𝑗,𝑒 from Equation (3.3) and (3.4), and substitute these in Equation (3.5).
Finally, we can solve Equation (3.5) for the edge probability 𝑝𝑒 to find

𝑝𝑒 = 𝑝𝑖𝑗 =
1
2 − √

1
4 −

⟨𝑑𝑖𝑑𝑗⟩ − ⟨𝑑𝑖⟩⟨𝑑𝑗⟩
1 − 2⟨𝑑𝑖⟩ − 2⟨𝑑𝑗⟩ + 4⟨𝑑𝑖𝑑𝑗⟩

. (3.6)

The full calculations can be found in Appendix A. This means that the edge probability can now be
determined from only the estimates of ⟨𝑑𝑖⟩, ⟨𝑑𝑗⟩ and ⟨𝑑𝑖𝑑𝑗⟩. This is actually a great result because 𝑞eff𝑖,𝑒
is quite a complex expression.

3.1.2. Boundary edges
Note that Equation (3.6) cannot be used for an edge between a node 𝑖 and the boundary as there is
no data available for ⟨𝑑𝑗⟩ and ⟨𝑑𝑖𝑑𝑗⟩. The boundary edge probability from node 𝑖 to the boundary 𝐵 can
still be estimated using Equation (3.3). Solving for 𝑝𝑒 gives the boundary edge probability

𝑝𝑒 = 𝑝𝑖𝐵 =
⟨𝑑𝑖⟩ − 𝑞eff𝑖,𝑒
1 − 2𝑞eff𝑖,𝑒

. (3.7)

So in order to estimate a boundary edge probability, the term 𝑞eff𝑖,𝑒 is required. 𝑞eff𝑖,𝑒 was defined to be the
probability that an odd number of adjacent edges 𝑒′, excluding 𝑒, have 𝑦𝑒′ = 1. This results in a sum



3.1. Derivation of Probabilities 21

over the different combinations with an odd number of events 𝑦𝑒′ = 1. The full expression is given by

𝑞eff𝑖,𝑒 = ∑
𝑏∈{0,1}|𝐴𝑖𝑒| ∶ ∑ 𝑏𝑒′=odd

(∏
𝑒′∈𝐴𝑖𝑒

𝑝𝑏𝑒′𝑒′ (1 − 𝑝𝑒′)(1−𝑏𝑒′ )) . (3.8)

Now there are two approaches in calculating 𝑞eff𝑖,𝑒 . The difference is in defining the adjacency set 𝐴𝑖𝑒.
For the first approach, we assume to know the correct error model. This means that edges only exist
between certain pairs. For the phenomenological noise model, only space and time edges between
direct neighbouring nodes are expected. The adjacent edges for the two boundary qubits are repre-
sented in Figure 3.2 by blue edges. Here, we can see that the size of the adjacency set of a boundary
edge for phenomenological noise is given by |𝐴𝑖𝑒| = 3. For the circuit level noise, space-time edges
are also allowed. These are represented as grey lines in Figure 3.2. In this case we have |𝐴𝑖𝑒| = 4 for
a boundary edge.

Figure 3.2: Adjacent edges for the boundary nodes of the two data qubits at the boundary. Here, the
horizontal axis is the time axis and the vertical axis is the space axis. Considering phenomenological
noise, only the blue lines form the adjacent edges. The grey lines (space-time edges) are also adjacent
edges when considering circuit level noise.

For the second approach we assume we do not know the error model. This means that edges may
exist between any pair of nodes. Therefore, the size of the adjacency set is given by the total number
of other nodes, so |𝐴𝑖𝑒| = (𝑑 − 1) × (𝑁𝑟 + 1) − 1. For this approach, every node may be connected to
the boundary instead of just the data qubits that are located at the boundary.

Instead of calculating the full sum of products in Equation (3.8), which is computationally expensive,
one can implement an equivalent equation presented by Google Quantum AI, 2021. The 𝑞eff𝑖,𝑒 term can
also be calculated by1

𝑞eff𝑖,𝐵 = 𝑔(𝑝𝑖𝑗𝑘 , … 𝑔(𝑝𝑖𝑗3 , 𝑔(𝑝𝑖𝑗2 , 𝑝𝑖𝑗1))…), (3.9)
𝑔(𝑝, 𝑞) = 𝑝(1 − 𝑞) + (1 − 𝑝)𝑞 = 𝑝 + 𝑞 − 2𝑝𝑞, (3.10)

Here 𝑘 denotes the number of edges connected to 𝑖. Equation (3.9) is computationally faster because
it can used in combination with the numpy.reduce function over the whole matrix of 𝑝𝑖𝑗 elements to
allow vectorized computation.

1Equation (3.9) may look a bit confusing. Here, the function 𝑔 is applied each time on 𝑔 itself with a new edge probability. For 5
elements 𝑝𝑖𝑗𝑘 , the function looks like 𝑞eff𝑖,𝐵 = 𝑔(𝑝𝑖𝑗5 , 𝑔(𝑝𝑖𝑗4 , 𝑔(𝑝𝑖𝑗3 , 𝑔(𝑝𝑖𝑗2 , 𝑝𝑖𝑗1 )))).
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Example Calculating the probability 𝑞eff𝑖,𝑒 for a small graph. Suppose we have the following graph
and we want to determine 𝑞eff𝑖,𝑒 and 𝑞eff𝑗,𝑒.

First, 𝑞eff𝑖,𝑒 is the probability of 𝑑𝑖 = 1 when considering edges 𝑒′ ∈ 𝐴𝑖𝑒 = {𝐴, 𝐵}. This happens when
𝑦𝐴 = 1 and 𝑦𝐵 = 0 or when 𝑦𝐴 = 0 and 𝑦𝐵 = 1. Therefore the probability is given by

𝑞eff𝑖,𝑒 = 𝑝𝐴(1 − 𝑝𝐵) + (1 − 𝑝𝐴)𝑝𝐵 .

The expression for 𝑞eff𝑗,𝑒 can be constructed in a similar manner, with 𝐴
𝑗
𝑒 = {𝐶, 𝐷}, resulting in

𝑞eff𝑗,𝑒 = 𝑝𝐶(1 − 𝑝𝐷) + (1 − 𝑝𝐶)𝑝𝐷 .

3.2. Simulations
In this section, the estimated probabilities will be presented for numerically simulated data. First, phe-
nomenological noise is assumed. The bulk and boundary edges are estimated using the equations
derived in Section 3.1. Also, the two different approaches for estimating the boundary edges are com-
pared. Thereafter, the analysis will be repeated for the circuit level noise model.

3.2.1. Phenomenological Noise
With the assumption of phenomenological noise, only space and time edges are expected to occur with
probability 𝑝, as described in Subsection 2.3.1. Remember that a space edge exists between nodes
of two neighboring ancillas that are connected to the same data qubit and that are in the same QEC
round. A time edges exists between nodes of the same ancilla with adjacent QEC rounds.

A simulation is run with error probability 𝑝 = 0.05 for both data and ancilla qubits, with 𝑁𝑟 = 7 QEC
rounds and is repeated𝑁exp = 200, 000 times. Each run is called a ’shot’. The code for running the sim-
ulations can be found in Appendix C. The probabilities of all bulk edges are estimated using Equation
(3.6), where the terms ⟨𝑑𝑖⟩, ⟨𝑑𝑗⟩ and ⟨𝑑𝑖𝑑𝑗⟩ are replaced by the observed averages. These estimated
probabilities are shown in Figure 3.3. In this figure, the x- and y-axis represent the nodes 𝑖 and 𝑗. The
major ticks represent the different ancilla qubits and the minor ticks represent the QEC rounds. Note
that this matrix has 8 QEC rounds, this is because the syndrome of the last round is obtained from
the data measurement. Each square in the graph is now the probability between nodes 𝑖 and 𝑗. For
illustrative purposes, the diagonal is set to be zero. Because 𝑝𝑖𝑗 = 𝑝𝑗𝑖, the matrix is symmetric about
the diagonal. The upper half and lower half are represented on different scales, which will become
relevant if different edges have different probabilities. The estimated probabilities for the space and
time edges are �̂�𝑒 ≈ 0.05.

The boundary edges are estimated using the two approaches, described in Subsection 3.1.2. For
the first approach, only the direct adjacent edges are taken into account when calculating the boundary
edge probability. The estimated probabilities are shown in Figure 3.4a. Here, the squares represent
the probability of an edge from node 𝑖 to the boundary. The boundary edge probabilities for the ancilla
qubits at the boundary are correctly estimated to be �̂�𝑒 ≈ 0.05. For the other ancilla qubits, the boundary
edge probability is initialised to be 0 because we assume no edge exists to the boundary.

For the second approach, all edges are taken into account when calculating the boundary prob-
ability. The estimated probabilities using this approach are shown in Figure 3.4b. Note that some
probabilities here are estimated to be negative. We want to better understand these negative prob-
abilities. Therefore, the estimated boundary edge probabilities are also plotted as a function of QEC
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Figure 3.3: Probability matrix for the bulk edges of a simulation with phenomenological noise. The
major ticks represent the different ancilla qubits and the minor ticks represent the QEC rounds. Each
square represents the probability of an edge between the nodes 𝑖 and 𝑗. The matrix is symmetric about
the diagonal. The upper half and lower half are represented on different scales, which is not relevant for
this specific figure. The outer diagonals represent the space edges, since they connect nodes between
two different ancillas. The inner diagonals represent the time edges, since they connect nodes for the
same ancilla but a different QEC round.

rounds in Figure 3.5. To also provide a standard error2, the boundary edge estimation is repeated
using the bootstrap method with 200 resamples, like explained in Section 2.4.2. The values for the
estimated probabilities of the boundary edges with their standard error averaged over the QEC rounds
are given in Table 3.1. Here, the values are averaged over the QEC rounds3. We can see that some
probabilities, which are expected to be 0, are estimated to be negative. Note however that estimated
edge probabilities are within the range of the standard error around the expected value of 𝑝𝑒 = 0. This
means that a sampling error can explain the observed nonphysical probabilities.

2The standard error is the standard deviation of the sample distribution.
3Note that the standard deviation cannot simply be averaged. The average standard deviation is found by taking the square root

of the average variance. We therefore have 𝜎 = 1
𝑘2√𝜎

2
1 +⋯+ 𝜎2𝑘 .
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(a) (b)

Figure 3.4: Boundary edge matrices for phenomenological noise. Each square represents the proba-
bility of an edge from that node 𝑖 to the boundary. (a) The boundary edges are estimated using only the
edges to the adjacent nodes. (b) The boundary edges are estimated considering every other edges.

Figure 3.5: Estimated boundary edge probabilities for the ancilla qubits over QEC rounds. The proba-
bilities are estimated by considering all other edges. The error bars represent the standard errors and
are determined using bootstrap with 200 resamples. It can be seen that the edges for the ancillas at
the boundary, 𝑋4 and 𝑍2, are estimated to be 𝑝𝑒 =≈ 0.05. The other edges are estimated to be 𝑝𝑒 ≈ 0.

In Figure 3.6, the two approaches for estimating the boundary edge probability for ancilla qubits 𝑋4
and 𝑍2 are compared. Here it becomes clear that both methods estimate about the same probability.
However, when taking only the edges with adjacent nodes into account, the probability is estimated to
be more accurate and with a lower standard error (about 5 times smaller).
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Figure 3.6: Estimated boundary edge probabilities over QEC rounds for simulated data of the phe-
nomenological noise model. The two approaches for estimating the boundary edge probability are
compared for the two boundary ancillas: considering all or only the adjacent edges. Both methods
estimate about the same probabilities. The error bars represent the standard error and are determined
using bootstrap with 200 resamples. Considering all other edges when estimating the boundary edges
shows a larger standard error.

adj all
�̂�𝑒 𝑆𝐸 �̂�𝑒 𝑆𝐸

𝑋4 0.0504 0.000948 0.0518 0.00535
𝑋3 0 0 0.00283 0.00570
𝑍1 0 0 -0.000745 0.00590
𝑋1 0 0 0.00164 0.00583
𝑋2 0 0 0.00271 0.00575
𝑍2 0.0508 0.000944 0.0492 0.00507

Table 3.1: Estimated boundary probabilities and their standard errors for simulated data with phe-
nomenological noise, averaged over the QEC rounds, calculated using bootstrap with 200 resamples.

3.2.2. Absolute Error for Phenomenological Noise
For the phenomenological noise model, we do know the true value of the error probability. Therefore,
we are able calculate the difference |�̂�𝑒−𝑝𝑒| for each edge type, where �̂�𝑒 denotes the estimated edge
probability 𝑝𝑒. This quantity is called the absolute error of the edge probability 𝑝𝑒. The absolute errors
are averaged per edge type. This mean absolute error can be analysed as a function of 𝑁, number of
shots, and 𝑝, initialised error probability. The results are shown Figure 3.7 and 3.8.

For the mean absolute error over 𝑁exp, the results are fitted to the function 𝑎 ⋅ 𝑁𝑏exp. It follows that
the absolute error has 1/√𝑁exp behaviour for all edge types. It can also be seen the absolute error for
the boundary edges is almost a factor of 10 higher if all edges are taken into account.

The absolute error over 𝑝 also shows that the error is a lot larger for the boundary edges if all
other edges are taken into account. This suggests that, if possible, one should only look at edges with
adjacent nodes to reduce the error of edge estimation. This is of course only possible if the edges with
adjacent nodes are the only expected errors to affect the boundary node.
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Figure 3.7: Average absolute error per edge type as a function of number of shots. The simulation is
run for phenomenological noise with error probability 𝑝 = 0.05 and 𝑁𝑟 = 7 QEC rounds.

Figure 3.8: Average absolute error per edge type as a function of initialised error probability. The
simulation is run for phenomenological noise with 𝑁𝑟 = 7 QEC rounds and 200, 000 shots.

3.2.3. Circuit Level Noise
The analysis we did for the phenomenological noisemodel will now be repeated for circuit level noise. In
this case, the probability of an edge cannot be initialised directly because the gate errors are initialised
using the actual qubit characteristics, explained in Subsection 2.3.2. The provided experimental data
has 𝑁exp = 163, 840 runs for 𝑁𝑟 = 7 QEC rounds. Since we want to try to replicate this data with the
circuit level noise model, we will also initialise the numerical simulation of circuit level noise with 𝑁𝑟 = 7
QEC rounds and 𝑁exp = 163, 840 runs.

Figure 3.9 shows the bulk edge probabilities estimated from the simulation with circuit level noise.
We can again see the space and time edges, like for the phenomenological noise. However, now
we can also see the space-time edges. These edges follow the structure of Figure 2.10c. It can
also be seen that for some ancilla qubits, the last round has a higher probability for the space edges.
Remember that after the last QEC round, the data qubits are measured. From this measurement, the
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last syndrome is obtained. A relatively high assignment error for some data qubits results in the higher
space edge probability for the last round. One can also see that the space edge probability for the first
round is lower. This is because the syndrome of the initialised state, for which it is assumed that it is
prepared perfectly, was used to construct the defects of the first round. This results in a lower space
edge probability for the first round.

Figure 3.9: Probability matrix for the bulk edges of a simulation with circuit level noise. The major
ticks represent the different ancilla qubits and the minor ticks represent the QEC rounds. Each square
represents the probability of an edge between the nodes 𝑖 and 𝑗. The matrix is symmetric about the
diagonal. The upper half and lower half are represented on different scales. The space and time edges
are similar to Figure 3.3. The new edges that appear here are the space-time edges.

The estimated boundary edge probabilities are shown in Figure 3.10. Similar as before, the two
different approaches are used to estimate the boundary edge probabilities. The only difference with
phenomenological noise is that now also space-time edges are taken into account when considering
only adjacent nodes. Note that the ancilla qubits 𝑋4 and 𝑍2 have different error probabilities, this is
because of different qubit characteristics mentioned in Table 2.3. One can also see the lower/higher
probability for the first/last QEC round. Again, the bootstrap method is used with 200 resamples to plot
the boundary edge probabilities with their standard error over the QEC rounds. The results are shown
in Figure 3.11 and the values, averaged over the QEC rounds, are given in Table 3.2.
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(a) (b)

Figure 3.10: Boundary edge matrices for circuit level noise. Each square represents the probability of
an edge from that node 𝑖 to the boundary. (a) The boundary edges are estimated using only the edges
to the adjacent nodes. (b) The boundary edges are estimated considering every other edges.

Figure 3.11: Estimated boundary edge probabilities for the ancilla qubits over QEC rounds. The prob-
abilities are estimated by considering all other edges. The error bars represent the standard errors and
are determined using bootstrap with 200 resamples. It can be seen that the edges for the ancillas at
the boundary, 𝑋4 and 𝑍2, are estimated to be �̂�𝑒 ≈ 0.05 and �̂�𝑒 ≈ 0.1 respectively when not considering
the first and final round. The other edges are estimated to be �̂�𝑒 ≈ 0.

The two approaches for estimating the boundary edge probability for ancilla 𝑋4 and 𝑍2 are compared
in Figure 3.12. Here, we can see a similar result as for the phenomenological noise. Both approaches
estimate about the same probability but when taking more edges into account, the standard error in-
creases.
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Figure 3.12: Estimated boundary edge probabilities over QEC rounds. The two approaches for esti-
mating the boundary edge probability are compared for the two boundary ancillas: considering all or
only the adjacent edges. Both methods estimate about the same probabilities. The error bars repre-
sent the standard error and are determined using bootstrap with 200 resamples. Considering all other
edges when estimating the boundary edges shows a larger standard error.

adj all
�̂�𝑒 𝑆𝐸 �̂�𝑒 𝑆𝐸

𝑋4 0.0565 0.00131 0.0546 0.00678
𝑋3 0 0 -0.00233 0.00776
𝑍1 0 0 -0.000804 0.00899
𝑋1 0 0 0.00220 0.00755
𝑋2 0 0 -0.00461 0.00738
𝑍2 0.0885 0.00158 0.0867 0.00709

Table 3.2: Estimated boundary probabilities and their standard error for numerically simulated data with
circuit level noise, averaged over the QEC rounds, calculated using bootstrap with 200 resamples.

3.3. Experiment
Now that we have seen how the edge estimation performs on simulations, we will try to do the same for
the experimental data. Figure 3.13 show the estimated edge probabilities. Here, the space and time
edges are actually quite visible. The space-time edges can also be recognised for some qubits, like for
𝑋3. There is however also a lot of other noise, which we did not see in the simulations. Note also that
the color scales are higher than for Figure 3.9. This might suggests that the noise parameters in the
circuit level noise model are not correctly describing reality. Besides the additional noise we can also
see some patterns of higher probability appearing, like the red coloured triangle under the time edges
of ancilla 𝑋3 or the coloured regions between ancilla qubits 𝑋2/𝑍1 and 𝑍2/𝑋1. This suggests that there
are other errors occurring than our noise models allowed, like leakage or cross-talk. Note that these
other errors could also be the reason for the larger color scales.
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Figure 3.13: Probability matrix for the bulk edges of the experimental data. The major ticks represent
the different ancilla qubits and the minor ticks represent the QEC rounds. Each square represents the
probability of an edge between the nodes 𝑖 and 𝑗. The matrix is symmetric about the diagonal. The
upper half and lower half are represented on different scales. Themarked areas show non-conventional
errors.

Even though there may be unexpected errors, it is still possible to try to estimate the boundary prob-
abilities. Remember that the second approach of choosing an adjacency set allowed all other edges
between any pair of nodes. The estimated boundary edge probabilities, using the two approaches, are
shown in Figure 3.14. One can easily see that these probabilities are nonphysical.

(a) (b)

Figure 3.14: Boundary edgematrices for the experimental data. Each square represents the probability
of an edge from that node 𝑖 to the boundary. (a) The boundary edges are estimated using only the edges
to the adjacent nodes. (b) The boundary edges are estimated considering every other edges. It can be
seen that (a) shows a few negative probabilities. However, (b) shows that all probabilities are estimated
to be negative with a probability that is out of the color scale.
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To estimate the standard deviation of these probabilities, bootstrap is again applied with 200 re-
samples. This is to check if the standard error may be even larger than the negative probabilities. The
results are shown in Figure 3.15, where the boundary probability was estimated by taking all edges into
account, also when considering the standard error. This shows that the probabilities are not estimated
to be negative due to some undersampling, which suggests that the error model that was assumed
when constructing the equations for edge estimations might not be correct. The averaged values for
the probability and standard error over QEC rounds are shown in 3.3.

Figure 3.15: Estimated boundary edge probabilities for the ancilla qubits over QEC rounds. The prob-
abilities are estimated by considering all other edges. The error bars represent the standard error and
are determined using bootstrap with 200 resamples. All probabilities are estimated to be negative,
even when taking the standard error into account.

It can be seen in Table 3.3 that the average values turn out to be positive when the boundary prob-
abilities are calculated considering only the edges to adjacent nodes. In Figure 3.16, the estimated
boundary edge probabilities are shown for this approach. It can be seen, however, that some edges
are still estimated to be negative, even when also considering the standard error. The average prob-
abilities turn out to be positive due to the higher probability at later QEC rounds. The edge probability
is not consistent over the QEC rounds. Therefore, even though the probabilities are way less negative
compared to Figure 3.15, this approach still does not give physical probabilities. We can conclude that
the assumed error model does not correctly describe all errors that occur during the experiment.
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Figure 3.16: Estimated boundary edge probabilities for the ancilla qubits over QEC rounds. The prob-
abilities are estimated by considering only the edges to adjacent nodes. The error bars represent the
standard error and are determined using bootstrap with 200 resamples. Some probabilities are still
estimated to be negative, even when taking the standard error into account.

adj all
�̂�𝑒 𝑆𝐸 �̂�𝑒 𝑆𝐸

𝑋4 0.0347 0.00372 -0.739 0.102
𝑋3 0 0 -4.81 0.447
𝑍1 0 0 -5.347 0.479
𝑋1 0 0 -15.4 2.33
𝑋2 0 0 -31.1 4.30
𝑍2 0.0159 0.00831 -5.17 0.777

Table 3.3: Estimated boundary probabilities and their standard error for experimental data, averaged
over the QEC rounds, calculated using bootstrap with 200 resamples.



4
Further Analysis on Bulk Edges

In the previous chapter we have seen that it is not possible to estimate the probability of the boundary
edges from the experimental data. There may be multiple solutions to better estimate the boundary
probabilities, but what if the boundary edges can be removed? Just like an ancilla measures the parity
between two adjacent data qubits, we are also allowed to add an additional ancilla that measures the
parity between the two boundary qubits. Note that in this case there is no boundary edge at all. We call
this the ”circular repetition code”. More details about this circular repetition code can be found in Ap-
pendix B. Currently, there is no data available on the circular repetition code. What can be investigated
further, however, are the bulk edges and their standard deviation. It is expected that the circular repe-
tition code returns similar results for the bulk as the ”normal” repetition code, for which we do have data.

We will start this chapter by investigating the standard deviation of bulk edges for different numbers
of shots and different initialised error probabilities. The standard deviation is calculated using three
analytic approximation formulas and using the bootstrap method. These methods are compared. Fur-
thermore, the standard deviations for the bulk edges of the experimental data are analysed. Finally,
the bulk edges are estimated and compared to the circuit level noise model.

4.1. Standard Deviation of Bulk Edges for Simulated Data
In this section, the standard deviation of bulk edges will be evaluated. Since bulk edges have a relatively
easy expression for the probability of that edge, multiple approximation formulas can be constructed.
First, two approximations for the standard deviation will be presented, that were derived by Google
Quantum AI, 2021. Secondly, the delta method from Subsection 2.4.1 will be applied to Equation
(3.6) to also find an approximation for the standard deviation of the edge probability. Finally, these
expressions will be compared with the standard deviation from the bootstrap method as a function of
number of shots and initialised edge probability.

4.1.1. Approximation Formulas
In 2021 Google Quantum AI presented their results on a similar experiment of the repetition code. In
addition, they presented two analytic expressions for the standard deviation of the bulk edges, 𝜎𝑝𝑒 .
Under the assumption that 𝑝𝑒 ≪

1
4 . Equation (3.6) can then be approximated as

𝑝𝑒 ≈
⟨𝑑𝑖𝑑𝑗⟩ − ⟨𝑑𝑖⟩⟨𝑑𝑗⟩

(1 − 2⟨𝑑𝑖⟩)(1 − 2⟨𝑑𝑗⟩)
.

The two analytic expressions for the standard deviation will be presented here as Theorem 4.1 and
Corollary 4.1.1.

33
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Theorem 4.1 (Google Quantum AI, 2021: S19) Assume that ⟨𝑑𝑖⟩ ≪ 1 and 𝑝𝑒 ≪ 1. Then the standard
deviation of the bulk edge probability 𝑝𝑒 from Equation (3.9) can be approximated by

𝜎𝑝𝑒 ≈
1

√𝑁𝑒𝑥𝑝
√𝑝𝑒(1 − 𝑝𝑒) +

⟨𝑑𝑖⟩⟨𝑑𝑗⟩(1 − ⟨𝑑𝑖⟩)(1 − ⟨𝑑𝑗⟩)
(1 − 2⟨𝑑𝑖⟩)2(1 − 2⟨𝑑𝑗⟩)2

. (4.1)

Corollary 4.1.1 (Google Quantum AI, 2021: S20) Under the assumption of ⟨𝑑𝑖⟩ ≪ 1 and 𝑝𝑒 ≪ 1,
Equation (4.1) can be further simplified by neglecting the factors (1 − 𝑝𝑒) and (1 − ⟨𝑑𝑖⟩)(1 − ⟨𝑑𝑗⟩).
Neglecting these factors should increase 𝜎𝑝𝑒 . We obtain

𝜎𝑝𝑒 ≈
1

√𝑁𝑒𝑥𝑝
√𝑝𝑒 +

⟨𝑑𝑖⟩⟨𝑑𝑗⟩
(1 − 2⟨𝑑𝑖⟩)2(1 − 2⟨𝑑𝑗⟩)2

. (4.2)

4.1.2. Delta Method
The delta method, which was introduced in Subsection 2.4.1, provided an expression to estimate the
variance of a function of a random variable satisfying a known distribution. In our case we have
the estimator 𝑑𝑖 for the parameter ⟨𝑑𝑖⟩, 𝑑𝑗 for ⟨𝑑𝑗⟩ and 𝑑𝑖𝑑𝑗 for ⟨𝑑𝑖𝑑𝑗⟩. We are interested in 𝑝𝑒 =
𝑓(⟨𝑑𝑖⟩, ⟨𝑑𝑗⟩, ⟨𝑑𝑖𝑑𝑗⟩), where

𝑓(𝑥, 𝑦, 𝑧) = 1
2 − √

1
4 −

𝑧 − 𝑥 ⋅ 𝑦
1 − 2𝑥 − 2𝑦 + 4𝑧 .

Let 𝑌1, 𝑌2, … , 𝑌𝑛 , … be independent and identically distributed random vectors such that

𝑌𝑛 = (
𝑑𝑖,𝑛
𝑑𝑗,𝑛

𝑑𝑖,𝑛𝑑𝑗,𝑛
) , 𝑌𝑁 = (

𝑑𝑖
𝑑𝑗
𝑑𝑖𝑑𝑗

) and 𝜇 = (
⟨𝑑𝑖⟩
⟨𝑑𝑗⟩
⟨𝑑𝑖𝑑𝑗⟩

) .

Here, 𝑑𝑖,𝑛 denotes the measurement of 𝑑𝑖 in experiment 𝑛 and 𝑑𝑖 denotes the average of 𝑑𝑖 over 𝑁
experiments. Now, by the multivariate central limit theorem (van der Vaart, 1995), we have

√𝑁(𝑌𝑁 − 𝜇) ⇝ 𝒩3(0, Σ),

where Σ is the covariance matrix

Σ = (
cov(𝑑𝑖 , 𝑑𝑖) cov(𝑑𝑖 , 𝑑𝑗) cov(𝑑𝑖 , 𝑑𝑖𝑑𝑗)
cov(𝑑𝑗 , 𝑑𝑖) cov(𝑑𝑗 , 𝑑𝑗) cov(𝑑𝑗 , 𝑑𝑖𝑑𝑗)
cov(𝑑𝑖𝑑𝑗 , 𝑑𝑖) cov(𝑑𝑖𝑑𝑗 , 𝑑𝑗) cov(𝑑𝑖𝑑𝑗 , 𝑑𝑖𝑑𝑗)

) .

Since 𝑑𝑖 holds binary values, we have 𝑑2𝑖 = 𝑑𝑖 and (𝑑𝑖𝑑𝑗)2 = 𝑑𝑖𝑑𝑗. This simplifies the expressions in
the covariance matrix. The multivariate central limit theorem may now be written as

√𝑁((
𝑑𝑖
𝑑𝑗
𝑑𝑖𝑑𝑗

)− (
⟨𝑑𝑖⟩
⟨𝑑𝑗⟩
⟨𝑑𝑖𝑑𝑗⟩

)) ⇝ 𝒩3 ((
0
0
0
) , (

⟨𝑑𝑖⟩ − ⟨𝑑𝑖⟩2 ⟨𝑑𝑖𝑑𝑗⟩ − ⟨𝑑𝑖⟩⟨𝑑𝑗⟩ ⟨𝑑𝑖𝑑𝑗⟩(1 − ⟨𝑑𝑖⟩)
⟨𝑑𝑖𝑑𝑗⟩ − ⟨𝑑𝑖⟩⟨𝑑𝑗⟩ ⟨𝑑𝑗⟩ − ⟨𝑑𝑗⟩2 ⟨𝑑𝑖𝑑𝑗⟩(1 − ⟨𝑑𝑗⟩)
⟨𝑑𝑖𝑑𝑗⟩(1 − ⟨𝑑𝑖⟩) ⟨𝑑𝑖𝑑𝑗⟩(1 − ⟨𝑑𝑗⟩) ⟨𝑑𝑖𝑑𝑗⟩ − ⟨𝑑𝑖𝑑𝑗⟩2

)) .

Let �̂�𝑒 = 𝑓(𝑑𝑖 , 𝑑𝑗 , 𝑑𝑖𝑑𝑗) and 𝑝𝑒 = 𝑓(⟨𝑑𝑖⟩, ⟨𝑑𝑗⟩, ⟨𝑑𝑖𝑑𝑗⟩). Now, for the multivariate case of the delta
method, we have that

√𝑁(�̂�𝑒 − 𝑝𝑒) ⇝ 𝒩(0, 𝜎2), where 𝜎2 = 𝑓′(𝜇)Σ(𝑓′(𝜇))𝑇 .

If we now take the variance on both sides, and divide by 𝑁, we obtain

var(�̂�𝑒) ≈ 𝜎2/𝑁,

since var(𝑝𝑒) = 0. The derivative of 𝑓(𝑥, 𝑦, 𝑧) at 𝜇 is given by

𝑓′(𝜇) = (𝜕𝑓𝜕𝑥 (𝜇)
𝜕𝑓
𝜕𝑦 (𝜇)

𝜕𝑓
𝜕𝑧 (𝜇)) ,
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with

𝜕𝑓
𝜕𝑥 =

𝑦 − 2𝑦2 + 4𝑧𝑦 − 2𝑧
√(1 − 2𝑥)(1 − 2𝑦)(1 − 2𝑥 − 2𝑦 + 4𝑧)3/2

,

𝜕𝑓
𝜕𝑦 =

𝑥 − 2𝑥2 + 4𝑧𝑥 − 2𝑧
√(1 − 2𝑥)(1 − 2𝑦)(1 − 2𝑥 − 2𝑦 + 4𝑧)3/2

,

𝜕𝑓
𝜕𝑧 = −

(1 − 2𝑥)(1 − 2𝑦)
√(1 − 2𝑥)(1 − 2𝑦)(1 − 2𝑥 − 2𝑦 + 4𝑧)3/2

.

We now have an expression for the variance of the edge probabilities. We can take the square root
to find the standard deviation. It is possible to work out the matrix multiplications of 𝑓′(𝜇)Σ(𝑓′(𝜇))𝑇.
This does however not lead to a nice simple expression. Therefore, the matrix multiplications will be
worked out using a numerically.

4.1.3. Standard Deviation over 𝑁exp
In Section 3.2 we have seen that the phenomenological noise model and the circuit level have about
the same expected behaviour for edge estimation, i.e. no unexpected errors. To analyse the standard
deviation, simulations of phenomenological noise are used to find the estimates since it is more con-
venient to initialise simulations with this noise model. We will first analyse the standard deviation as a
function of number of shots.

The three analytic expressions for the standard deviation from the delta method, Theorem 4.1 and
Corollary 4.1.1 are compared with the estimated standard deviation of space edge probabilities using
the bootstrap method with 200 resamples. The results for initalised error probabilities 𝑝 = 0.05 and
𝑝 = 0.10 are shown on a log-log scale in Figure 4.1. Note that the 1/√𝑁𝑒𝑥𝑝 behaviour is linear on
a log-log scale. Also note that a constant difference between two lines on the log-log scale means
an decreasing difference on a linear scale. From this we can conclude that all methods agree on the
standard deviation as 𝑁exp → ∞. A similar plot for time edges shows the same results.

From the difference between Figure 4.1a and 4.1b we can already see that a higher error probability
results in a higher standard deviation.

(a) (b)

Figure 4.1: Average standard deviation 𝜎 of space edges as a function of number of experiments 𝑁exp.
The data is obtained from a simulation assuming phenomenological noise with error probability (a)
𝑝 = 0.05 and (b) 𝑝 = 0.10. Time edges show a similar plots.
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4.1.4. Standard Deviation over 𝑝
Equation (4.1) and (4.2) suggest that the standard deviation also depends on the edge probability.
Therefore, we will also analyse the standard deviation as a function of error probability 𝑝. The simu-
lations are again based on phenomenological noise to easily be able to initialise the simulation with
a certain error probability. The results for the three analytical expressions are again compared to the
bootstrap method. The results are shown in Figure 4.2. It can be seen that the difference between the
methods increases as the probability increases. Theorem 4.1 and Corollary 4.1.1, seem to estimate
the highest standard deviation. This can be attributed to the assumption that 𝑝 ≪ 1/4.

It can also be seen that the standard deviation does not behave like a √𝑝 function as Equation (4.1)
and (4.2) might suggest, but shows an exponential dependence on 𝑝. This means that a more complex
dependence of 𝑝 is indirectly incorporated in the ⟨𝑑𝑖⟩ terms of these equations.

Figure 4.2: Average standard deviation 𝜎 for space edge probability as a function of initialised error
probability 𝑝. The data is obtained from a simulation assuming phenomenological noise with 𝑁exp =
200, 000. The average standard deviation 𝜎 for time edge probability shows a similar plot.

It should be mentioned that the probability estimation for bulk edges resulted in negative values
under the square root of Equation (3.6) for high error probabilities combined with a low number of ex-
periments. For 𝑁exp ≈ 105, the edge probability could be calculated without problems up to 𝑝 ≈ 0.2.
For 𝑁exp ≈ 106, the edge probability could be calculated up to 𝑝 ≈ 0.3. This seems to be a sampling
noise error. This error is not further investigated because higher values of 𝑝 do not have any practical
meaning. Due to the computational time as 𝑁exp increases, the standard deviation is estimated from
simulations up to a initialised error probability of 𝑝 = 0.2.

4.2. Bulk Edge Estimation for Experimental Data
There is no experimental data for the circular repetition code. However, we can expect that the bulk
edges behave similarly as the bulk edges for the normal repetition code, since those edges are the
same. Therefore, we will analyse the probability of the different type of bulk edges for the experimental
data of the normal repetition code. These estimated probabilities will be compared to the estimated
probabilities from the circuit level noise model to check this noise model1.

1Note that this information could also be obtained by comparing Figure 3.9 with Figure 3.13. However, these are shown on
different color scales and there is a lot of other information in the figures. This makes the comparison less convenient.
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Figure 4.3 shows the estimated probabilities of space edges for simulated data and the experimental
data. It can be seen that the probabilities for experimental data are two to four times higher. Similar
results can be seen in Figure 4.4 where the estimated probabilities are shown for time edges. Figure
4.5 shows the estimated probabilities of space-time edges. Here it can be seen that the probabilities for
experimental data are two to eight times higher. These three figures might suggests that the initialised
values for error probability on the data and ancilla qubits are incorrect. Note that difference can also
be caused by errors we did not model with circuit level noise.

(a) (b)

Figure 4.3: Estimated probabilities of space edges for each QEC round. (a) Probabilities for simulations
of the circuit level noise model. (b) Probabilities for experimental data.

(a) (b)

Figure 4.4: Estimated probabilities of time edges for each QEC round. A time edge is defined on a
certain ancilla qubit from QEC round 𝑖 to round 𝑖 +1. (a) Probabilities for simulations of the circuit level
noise model. (b) Probabilities for experimental data.
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(a) (b)

Figure 4.5: Estimated probabilities of space-time edges for each QEC round. (a) Probabilities for
simulations of the circuit level noise model. (b) Probabilities for experimental data.

4.3. Standard deviation of Bulk Edges for Experimental Data
In Section 4.1, the standard deviation of the space and time edges are investigated for simulated data.
In this section, the standard deviations will be analysed for experimental data. Note that for the experi-
mental data, the error probability 𝑝 is not a parameter we can change. Also, the experimental data that
is provided for 𝑁𝑟 = 7 QEC rounds is limited to 163, 840 shots. As a final note, the minimal number
shots to not obtain the errors described in Subsection 4.1.4 is 30, 000. Therefore, it is only possible
to analyse the standard deviation for experimental data as a function of number of shots in the range
[30000, 163840].

In Section 4.2 it is shown that the circuit level noise model is not correctly simulating the bulk edges
for experimental data. We still want to compare the standard deviation of the edge probabilities with
simulated data. Therefore, the standard deviation is again estimated for the phenomenological noise
model. The noise model is initialised with two parameters: the error probability for data qubits and for
ancilla qubits. For these values we take the average probabilities of space and time edges respectively
from experimental data: 𝑝data = 0.1176 and 𝑝ancilla = 0.1341. Again, the standard deviation is calcu-
lated using the four different methods described in Section 4.1. Note that we are not able to estimate
the standard deviation of space-time edges when using the phenomenological noise model. Therefore,
we fill focus on the space and time edges only.

The average standard deviation of the space edge probabilities are shown in Figure 4.6. It can be
seen that the delta method and bootstrap show similar results for the simulated and experimental data.
The approximation formulas from Theorem 4.1 and Corollary 4.1.1 show a slightly larger difference
between the results from simulated and experimental data. They do however still approximate the
standard deviation to be in the same order of magnitude.
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(a) (b)

Figure 4.6: Average standard deviation 𝜎 of space edges as a function of number of experiments 𝑁exp.
(a) The data is obtained from a numerical simulation assuming phenomenological noise with error
probabilities 𝑝data = 0.1176 and 𝑝ancilla = 0.1341. (b) The data is obtained from the experiment of the
repetition code on the superconducting quantum computer.

The average standard deviation of the time edge probabilities are shown in Figure 4.7. Here, we
can see similar results as for the space edges. The standard deviation for the experimental data is
estimated to be slightly higher than for the simulated data.

(a) (b)

Figure 4.7: Average standard deviation 𝜎 of time edges as a function of number of experiments 𝑁exp.
(a) The data is obtained from a numerical simulation assuming phenomenological noise with error
probabilities 𝑝data = 0.1176 and 𝑝ancilla = 0.1341. (b) The data is obtained from the experiment of the
repetition code on the superconducting quantum computer.

We conclude that, for similar 𝑁exp, the standard error for space and time edges in the experiment is
consistent with the standard error from phenomenological noise initialised with the average error data
and ancilla error probabilities, even when these may be affected by non-conventional errors.





5
Conclusion

The goal of this thesis was to investigate the nonphysical error probabilities estimated from the experi-
mental data. We have seen that some boundary edges are also estimated to be negative for numerically
simulated data. These values are however within the range of the standard error around the expected
value 𝑝𝑒 = 0. Therefore, the nonphysical probabilities can be explained by sampling noise. This was
not the case for the experimental data. Here, some edges are estimated to have a negative probability
that is way outside of the range of the standard error around 𝑝𝑒 = 0. Therefore, we conclude that the
current error model does not model all errors that occur in reality.

The error model assumed only Pauli errors, which implies that every error results in at most 2 de-
fects. Since we have shown that the nonphysical probabilities are not due to sampling noise, it is
possible that non-conventional errors, such as leakage or crosstalk, are affecting these estimates. The
inclusion of these errors, by for example also considering edges of higher order, is a subject of future
work. Note that, instead of improving the error model, it is also possible to improve the experiments. If
the error rates of non-conventional errors are much lower than the error rates of conventional errors, we
can expect that the non-conventional errors would not affect the estimated error probabilities as much.
Reducing non-Pauli errors like leakage or crosstalk is therefore also of great importance for improving
quantum error correction.

Additionally, two approaches for estimating the boundary edge probability are compared. For the
first approach, only edges to adjacent nodes are considered. For the second approach all other edges
are considered. We have seen that the absolute error for boundary edges is significantly higher for
the second approach. For phenomenological noise with error probability 𝑝 = 0.05, the difference was
already almost a factor of 10. The difference increases even more for higher error probabilities. We can
conclude that the first approach results in a more accurate estimate for the boundary edge probabilities.
The problem with this approach, however, is that one needs to have sufficient understanding of the
errors occurring during the circuit and the edges they lead to.

We have also seen that the boundary edge probabilities for experimental data are way less negative
for the first approach then for the second approach. Moreover, the average boundary edge probabili-
ties over QEC rounds are positive for the first approach. Some edges, however, still show nonphysical
probabilities that cannot be explained by sampling noise. Therefore, the boundary edges can still be
incorrectly estimated via this procedure.

Furthermore, the circular repetition code gave the motivation to further investigate the bulk edge
probabilities because this code does not have any boundary edges. First, the average standard de-
viation of the bulk edges are analysed as a function of 𝑁exp and 𝑝 for phenomenological noise. The
standard deviations are estimated using bootstrap, the delta method and two approximation formulas
from Google Quantum AI, 2021. It is shown that all methods agree when 𝑁exp → ∞. We have also seen
that for a constant 𝑁exp, the approximation formulas diverge from the bootstrap estimate for standard
deviation as 𝑝 increases.

The standard deviation is also analysed from the experimental data as a function of 𝑁exp. Since
the circuit level noise model, using the characterized error rates, estimates much lower error prob-
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abilities compared to what is observed in the experiment, we instead performed a comparison with
a phenomenology model parameterized by the average data and ancilla qubit error probabilities ex-
tracted from experiment. It is shown that the phenomenological noise model estimates similar standard
errors compared to the experimental data. So, for similar 𝑁exp, the standard error for space and time
edges in the experiment is consistent with the standard error from phenomenological noise initialised
with the average error data and ancilla error probabilities, even when these may be affected by non-
conventional errors. The reason why both show similar results has not yet been investigated and would
be interesting for further research.

To improve this report, it would be interesting to have a more in-depth analysis on the edge prob-
abilities and standard deviations over QEC rounds instead of averaging them, because we have seen
that for experimental data, the probabilities are not constant over the QEC rounds. Also note that it was
not appropriate to average over all QEC rounds, since the first and last round are calculated differently
from the other rounds.

In addition, for the bootstrap method it was chosen to estimate the standard deviation with a maxi-
mum of 200 samples due to computation times. If one wants to construct a confidence interval, a more
efficient code would be desirable for running bootstrap with 2000 samples.

Finally, for the bootstrap method, it is assumed that the QEC experiments are independent and
identically distributed. This is however not further investigated, but should be confirmed in order to
make sure that the estimated standard deviations are more reliable.
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A
Derivation of the Edge Probability

In Section 3.1, the system of equations for ⟨𝑑𝑖⟩, ⟨𝑑𝑗⟩ and ⟨𝑑𝑖𝑑𝑗⟩ was written as

⟨𝑑𝑖⟩ = 𝑝𝑒(1 − 𝑞eff𝑖,𝑒) + (1 − 𝑝𝑒)𝑞eff𝑖,𝑒 ,
⟨𝑑𝑗⟩ = 𝑝𝑒(1 − 𝑞eff𝑗,𝑒) + (1 − 𝑝𝑒)𝑞eff𝑗,𝑒 ,

⟨𝑑𝑖𝑑𝑗⟩ = 𝑝𝑒(1 − 𝑞eff𝑖,𝑒)(1 − 𝑞eff𝑗,𝑒) + (1 − 𝑝𝑒)𝑞eff𝑖,𝑒𝑞eff𝑗,𝑒 .

We can solve the first two equations for 𝑞eff𝑖,𝑒 and 𝑞eff𝑗,𝑒 to find

𝑞eff𝑖,𝑒 =
⟨𝑑𝑖⟩ − 𝑝𝑒
1 − 2𝑝𝑒

, and 𝑞eff𝑗,𝑒 =
⟨𝑑𝑗⟩ − 𝑝𝑒
1 − 2𝑝𝑒

.

These can be substituted in the equation for ⟨𝑑𝑖𝑑𝑗⟩ to obtain

⟨𝑑𝑖𝑑𝑗⟩ = 𝑝𝑒 (1 −
⟨𝑑𝑖⟩ − 𝑝𝑒
1 − 2𝑝𝑒

)(1 −
⟨𝑑𝑗⟩ − 𝑝𝑒
1 − 2𝑝𝑒

) + (1 − 𝑝𝑒) (
⟨𝑑𝑖⟩ − 𝑝𝑒
1 − 2𝑝𝑒

)(
⟨𝑑𝑗⟩ − 𝑝𝑒
1 − 2𝑝𝑒

) .

Multiplying both sides by (1 − 2𝑝𝑒)2 gives

⟨𝑑𝑖𝑑𝑗⟩(1 − 2𝑝𝑒)2 = 𝑝𝑒(1 − 2𝑝𝑒 − ⟨𝑑𝑖⟩ + 𝑝𝑒)(1 − 2𝑝𝑒 − ⟨𝑑𝑗⟩ + 𝑝𝑒) + (1 − 𝑝𝑒)(1 − ⟨𝑑𝑖⟩ − 𝑝𝑒)(1 − ⟨𝑑𝑗⟩ − 𝑝𝑒).

Writing out all terms, we are left with a simple quadratic equation for 𝑝𝑒,

(4⟨𝑑𝑖𝑑𝑗⟩ − 2⟨𝑑𝑖⟩ − 2⟨𝑑𝑗⟩ + 1)𝑝2𝑒 + (−4⟨𝑑𝑖𝑑𝑗⟩ + 2⟨𝑑𝑖⟩ + 2⟨𝑑𝑗⟩ − 1)𝑝𝑒 + (⟨𝑑𝑖𝑑𝑗⟩ − ⟨𝑑𝑖⟩⟨𝑑𝑗⟩) = 0.

Finally, we can solve this equation for the edge probability 𝑝𝑒 to find

𝑝𝑒 =
1
2 − √

1
4 −

⟨𝑑𝑖𝑑𝑗⟩ − ⟨𝑑𝑖⟩⟨𝑑𝑗⟩
1 − 2⟨𝑑𝑖⟩ − 2⟨𝑑𝑗⟩ + 4⟨𝑑𝑖𝑑𝑗⟩

.
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B
Circular Repetition Code

In this Section, the idea behind the circular repetition code will be explained. Just like an ancilla can
measure the parity between two adjacent data qubits, an ancilla can also measure the parity between
the two boundary qubits. This is only possible if the 1D string of data qubits can be folded in a 2D
plane such that the boundary qubits become adjacent qubits as well. Note that this is exactly what is
happening at our experiment. The 1D sting is connected on the layout of the surface code, which is
2D. One may have already seen how the boundary qubits can be connected in Figure 2.8b. The setup
for the circular repetition code of length 7 on the surface code quantum chip is shown in Figure B.1.
Note that the boundary qubits can not be connected for all lengths of a repetition code.

Figure B.1: Possible layout for the circular repetition code with length 7 on the quantum chip for the
surface code.

Now what happens to the edge probability estimations for this circular repetition code? First, we as-
sume that the bulk edges that are similar to the normal repetition code experiment. The only difference
is that the boundary edges for the qubits at the boundary will be replaced by (bulk) space edges. In the
probability matrix of all bulk edges we would therefore expect to find additional space edges between
ancilla 𝑋4 and 𝑍4 and between 𝑍2 and 𝑍4. The results for simulated data of the circular repetition code
with phenomenological noise are shown in Figure B.2. Here, the expected additional space edges can
be found in the upper left and lower right corner.
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Figure B.2: Probability matrix for the bulk edges of a simulation of the circular repetition code with
phenomenological noise. The major ticks represent the different ancilla qubits and the minor ticks
represent the QEC rounds. Each square represents the probability of an edge between the nodes 𝑖
and 𝑗. The matrix is symmetric about the diagonal. The upper half and lower half are represented on
different scales, which is not relevant for this specific figure.

For now, there are no experimental results available for the circular repetition code.



C
Code and Data availability

The data and code that produce the plots for this thesis are available upon reasonable request. The
Python function that are used for the simulations and analysis are presented in the following sections.
The experimental data is provided by the DiCarlo group. The simulated data of the circuit level noise
model is provided by Boris Varbanov.

C.1. Obtaining Data
C.1.1. Simulation of QEC Circuit
import st im

def gene ra t e_c i r cu i t (
data_qubi ts ,
anc_qubits ,
qec_round ,
error_model ,
p_error ,
f inal_measurement ,
num_rounds ,

) :
qub i t s = data_qub i ts + anc_qubi ts
c i r c u i t = s t im . C i r c u i t ( )

i f error_model == ” incoming_error ” :
qub i t_ inds = [ qub i t s . index ( qub i t _ l abe l ) for qub i t _ l abe l in data_qub i ts ]
c i r c u i t . append_operation ( ”X_ERROR” , qub i t_ inds , p_er ro r [ 0 ] )
qub i t_ inds = [ qub i t s . index ( qub i t _ l abe l ) for qub i t _ l abe l in anc_qubi ts ]
c i r c u i t . append_operation ( ”X_ERROR” , qub i t_ inds , p_er ro r [ 1 ] )

for opera t ion in qec_round :
gate , t a r ge t _qub i t s = opera t ion
qub i t_ inds = [ qub i t s . index ( qub i t _ l abe l ) for qub i t _ l abe l in t a r ge t _qub i t s ]
i f error_model == ” e r r o r_a f t e r _ga te ” :

i f gate == ”M” :
c i r c u i t . append_operation ( ”X_ERROR” , qub i t_ inds , p_er ro r )
c i r c u i t . append_operation ( gate , qub i t_ inds )

e l i f gate == ”CZ” :
c i r c u i t . append_operation ( gate , qub i t_ inds )
c i r c u i t . append_operation ( ”DEPOLARIZE2” , qub i t_ inds , p_er ro r )

else :
c i r c u i t . append_operation ( gate , qub i t_ inds )
c i r c u i t . append_operation ( ”DEPOLARIZE1” , qub i t_ inds , p_er ro r )

else :
c i r c u i t . append_operation ( gate , qub i t_ inds )

c i r c u i t *= num_rounds

gate , t a r ge t _qub i t s = f inal_measurement
qub i t_ inds = [ qub i t s . index ( qub i t _ l abe l ) for qub i t _ l abe l in t a r ge t _qub i t s ]
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c i r c u i t . append_operation ( ”X_ERROR” , qub i t_ inds , p_er ro r [ 0 ] )
c i r c u i t . append_operation ( gate , qub i t_ inds )

return c i r c u i t

# ===== I n i t i a l i s a t i o n =====
DATA_QUBITS = [ ”D9” , ”D8” , ”D5” , ”D1” , ”D2” , ”D3” , ”D6” ]
NUM_DATA = len (DATA_QUBITS)
ANC_QUBITS = [ ”X4” , ”X3” , ” Z1 ” , ”X1” , ”X2” , ” Z2 ” ]
NUM_ANC = len (ANC_QUBITS)
QUBITS = DATA_QUBITS + ANC_QUBITS

INIT_ANC_STATE = xr . DataArray (
data=np . zeros (NUM_ANC, dtype= i n t ) ,
dims =[ ” anc_qubi t ” ] ,
coords=dic t ( anc_qubi t=ANC_QUBITS) ,

)

p_data = 0.05
p_anc i l l a = 0.05

error_model = ” incoming_error ”
p_er ro r = ( p_data , p_anc i l l a )

QEC_ROUND = [
( ”H” , [ ”X2” ] + [ ”Z1 ” ] + [ ”X4” ] ) ,
( ”CZ” , [ ”D3” , ”X2” ] + [ ”D1” , ” Z1 ” ] + [ ”D8” , ”X4” ] ) ,
( ” TICK ” , [ ] ) ,
( ”CZ” , [ ”D2” , ”X2” ] + [ ”D5” , ” Z1 ” ] + [ ”D9” , ”X4” ] ) ,
( ”H” , [ ”X2” ] + [ ”Z1 ” ] + [ ”X4” ] ) ,
( ”H” , [ ” Z2 ” ] + [ ”X1” ] + [ ”X3” ] ) ,
( ”CZ” , [ ”D6” , ” Z2 ” ] + [ ”D2” , ”X1” ] + [ ”D5” , ”X3” ] ) ,
( ” TICK ” , [ ] ) ,
( ”CZ” , [ ”D3” , ” Z2 ” ] + [ ”D1” , ”X1” ] + [ ”D8” , ”X3” ] ) ,
( ”H” , [ ” Z2 ” ] + [ ”X1” ] + [ ”X3” ] ) ,
( ”M” , ANC_QUBITS) ,
( ”X” , DATA_QUBITS) ,

]
FINAL_MEAS = ( ”M” , DATA_QUBITS)

# ===== Def ine c i r c u i t and ob ta in Defects =====
NUM_ROUNDS = 7
QEC_ROUNDS = np . arange (NUM_ROUNDS)

NUM_SHOTS = 200000
SHOTS = np . arange (NUM_SHOTS)

c i r c u i t = gene ra t e_c i r cu i t (
DATA_QUBITS, ANC_QUBITS, QEC_ROUND, error_model , p_error , FINAL_MEAS, NUM_ROUNDS

)

sampler = c i r c u i t . compile_sampler ( )

samples = sampler . sample ( shots=NUM_SHOTS)
anc_outcomes , data_outcomes = np . s p l i t ( samples , [ −NUM_DATA] , ax is =1)
anc_outcomes = anc_outcomes . reshape (NUM_SHOTS, NUM_ROUNDS, NUM_ANC)

anc_meas = xr . DataArray (
data=anc_outcomes ,
dims =[ ” shot ” , ” qec_round ” , ” anc_qubi t ” ] ,
coords=dic t ( shot=SHOTS, qec_round=QEC_ROUNDS, anc_qubi t=ANC_QUBITS) ,

)
data_meas = xr . DataArray (

data=data_outcomes ,
dims =[ ” shot ” , ” da ta_qub i ts ” ] ,
coords=dic t ( shot=SHOTS, data_qub i ts=DATA_QUBITS) ,

)

syndrome_proj = syndrome_project ion ( data_meas , SHOTS, ANC_QUBITS)
syndrome_proj [ ” qec_round ” ] = NUM_ROUNDS
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syndrome_meas = get_syndrome (anc_meas )
syndromes = xr . concat ( [ syndrome_meas , syndrome_proj ] , ” qec_round ” )
NUM_ROUNDS += 1

de fec t_mat r i x = get_defec ts ( syndromes , INIT_ANC_STATE)

C.1.2. Experiment
import numpy as np
import netCDF4 as nc
import xar ray as xr

# ===== Loading data f o r c i r c u i t l e v e l noise , qec_rounds=7 , i n i t _ s t a t e = 0101101 =====
n c _ f i l e = nc . Dataset ( ” . . / data / c i r c u i t _ l e v e l / In i t_0101101 / bitf l ip_code_mem_exp_nrounds_7_data . nc ” , ’ r ’ )
dataset = xr . open_dataset ( x r . backends . NetCDF4DataStore ( n c _ f i l e ) )

NUM_ROUNDS = np . s ize ( dataset . qec_round )
QEC_ROUNDS = np . arange (1 ,NUM_ROUNDS+1)

NUM_SHOTS = 163840 #np . s ize ( dataset . shot )
SHOTS = np . arange (1 ,NUM_SHOTS+1)

i n i t i a l _synd rome = dataset . i n i t _ s t a t e . data [ : −1 ] ^ dataset . i n i t _ s t a t e . data [ 1 : ]
INIT_ANC_STATE = xr . DataArray (

data=np . ar ray ( i n i t i a l _synd rome ) ,
dims =[ ” anc_qubi t ” ] ,
coords=dic t ( anc_qubi t=ANC_QUBITS) ,

)

anc_meas = dataset . anc_meas [ :NUM_SHOTS]
data_meas = dataset . data_meas [ :NUM_SHOTS]

# ===== Loading exper imenta l data , qec_rounds=7 , i n i t _ s t a t e = 0101101 =====
n c _ f i l e = nc . Dataset ( ” . . / data / experiment / In i t_0101101 / bitf l ip_code_mem_exp_nrounds_7_data . nc ” , ’ r ’ )
dataset = xr . open_dataset ( x r . backends . NetCDF4DataStore ( n c _ f i l e ) )

NUM_ROUNDS = np . s ize ( dataset . qec_round )
QEC_ROUNDS = np . arange (1 ,NUM_ROUNDS+1)

NUM_SHOTS = np . s ize ( dataset . shot )
SHOTS = np . arange (1 ,NUM_SHOTS+1)

i n i t i a l _synd rome = dataset . i n i t _ s t a t e . data [ : −1 ] ^ dataset . i n i t _ s t a t e . data [ 1 : ]
i n i t i a l _synd rome ^= dataset . pa r_co r rec t i ons
INIT_ANC_STATE = xr . DataArray (

data=np . ar ray ( i n i t i a l _synd rome ) ,
dims =[ ” anc_qubi t ” ] ,
coords=dic t ( anc_qubi t=ANC_QUBITS) ,

)

anc_meas = dataset . anc_meas [ :NUM_SHOTS]
data_meas = dataset . data_meas [ :NUM_SHOTS]

anc_meas = dataset . anc_meas . transpose ( ’ shot ’ , ’ qec_round ’ , ’ anc_qubi t ’ )
anc_meas = xr . where ( anc_meas < dataset . anc_threshold , 0 ,1)

data_meas = dataset . data_meas . transpose ( ’ shot ’ , ’ da ta_qub i t ’ )
data_meas = xr . where ( data_meas < dataset . data_threshold , 0 , 1)

C.2. Decoding
C.2.1. Samples to Defects
import xar ray as xr

def get_syndrome ( meas_matrix : x r . DataArray ) :
syndrome_matrix = meas_matrix ^ meas_matrix . s h i f t ( qec_round=1 , f i l l _ v a l u e =0)
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return syndrome_matrix

def get_defec ts ( syndrome_matrix : x r . DataArray , i n i t i a l _ s t a t e : x r . DataArray ) :
syndrome_matrix_copy = syndrome_matrix . copy ( )
syndrome_matrix_copy . data [ : , −1 , : ] = i n i t i a l _ s t a t e
de fec t_mat r i x = syndrome_matrix ^ syndrome_matrix_copy . r o l l ( qec_round=1)
return de fec t_mat r i x

def syndrome_project ion ( data_meas : x r . DataArray , shots , anc_qubi ts ) :
syndrome_proj = data_meas . data [ : , : −1 ] ^ data_meas . data [ : , 1 : ]
syndrome_proj = xr . DataArray (

data=syndrome_proj ,
dims =[ ” shot ” , ” anc_qubi t ” ] ,
coords=dic t ( shot=shots , anc_qubi t=anc_qubi ts ) ,

)
return syndrome_proj

C.2.2. Probability Estimations
import numpy as np
import xar ray as xr
from i t e r t o o l s import product

from numba import n j i t , prange
from numba import vec to r i ze , f l o a t 64

from . i nd i ces import index

# ===== Est imate <di > and <d id j > =====
def es t imate_d i ( de fec t_mat r i x : x r . DataArray ) :

num_shots = np . s ize ( de fec t_mat r i x . data , ax is =0)
avg_di_array = np .sum( de fec t_mat r i x . data , ax is =0) / num_shots
return avg_di_array

def es t imate_d id j_s low ( de fec t_mat r i x : x r . DataArray , num_rounds , num_anc ) :
num_shots = np . s ize ( de fec t_mat r i x . data , ax is =0)
avg_d id j_ar ray = np . zeros ( ( num_rounds**2 , num_anc**2) )
for shot in range ( num_shots ) :

avg_d id j_ar ray += np . kron (
de fec t_mat r i x . data [ shot , : , : ] , de fec t_mat r i x . data [ shot , : , : ]

)
avg_d id j_ar ray = avg_d id j_ar ray / num_shots
avg_d id j_ar ray = avg_d id j_ar ray . reshape ( num_rounds , num_rounds , num_anc , num_anc )
return avg_d id j_ar ray

@nj i t ( fastmath=True , p a r a l l e l =False )
def tensor_prod (A, B, out ) :

for i in prange (A . shape [ 0 ] ) :
for j in range (B . shape [ 0 ] ) :

for k in range (A . shape [ 1 ] ) :
for l in range (B . shape [ 1 ] ) :

out [ i , j , k , l ] = A [ i , k ] * B[ j , l ]
return out

@nj i t ( p a r a l l e l =True )
def es t ima te_d id j ( de fec t_mat r ix , out , num_shots , num_rounds , num_anc ) :

for shot in prange ( num_shots ) :
ou t_ f l oa t64 = np . empty (

( num_rounds , num_rounds , num_anc , num_anc ) , dtype=np . f l o a t 64
)
out += tensor_prod ( de fec t_mat r i x [ shot ] , de fec t_mat r i x [ shot ] , ou t_ f l oa t64 )

return out / num_shots

# ===== Est imate p r o b a b i l i t i e s =====
def prob_bulk_edge ( edge , avg_di_array , avg_d id j_ar ray ) :

i , j = edge
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round_i , anc_i = i
round_j , anc_j = j

d i = avg_di_array [ round_i , anc_i ]
d j = avg_di_array [ round_j , anc_j ]
d i d j = avg_d id j_ar ray [ round_i , round_j , anc_i , anc_j ]

num = d i d j − d i * d j
denom = 1 − 2 * d i − 2 * d j + 4 * d i d j

i f num / denom > 1 / 4 :
f r a c = 1 / 4
pr in t ( ” negat ive�number�in�sq r t . ” )

else :
f r a c = num / denom

return 1 / 2 − np . sq r t (1 / 4 − f r a c )

def adjacency_set (
node , num_rounds , num_anc , exclude_edge=None , inc lude_spacet ime=False

) :
” ” ”

| ( i −1)
( i −num_rounds ) − i − ( i +num_rounds )

| ( i +1)
” ” ”
round_i , anc_i = node
ad j_se t = [

( node , ( round_i − 1 , anc_i ) ) ,
( node , ( round_i + 1 , anc_i ) ) ,
( node , ( round_i , anc_i − 1 ) ) ,
( node , ( round_i , anc_i + 1 ) ) ,

]
i f anc_i == 0:

ad j_se t . remove ( ( node , ( round_i , anc_i − 1 ) ) )
ad j_se t . append ( ” boundary ” )
i f (

( inc lude_spacet ime == True )
and ( round_i != 0)
and ( round_i != num_rounds − 1)

) :
ad j_se t . append ( ( node , ( round_i − 1 , anc_i + 1 ) ) ) # X4

i f anc_i == num_anc − 1:
ad j_se t . remove ( ( node , ( round_i , anc_i + 1 ) ) )
ad j_se t . append ( ” boundary ” )
i f (

( inc lude_spacet ime == True )
and ( round_i != num_rounds − 2)
and ( round_i != num_rounds − 1)

) :
ad j_se t . append ( ( node , ( round_i + 1 , anc_i − 1 ) ) ) # Z2

i f round_i == 0:
ad j_se t . remove ( ( node , ( round_i − 1 , anc_i ) ) )

i f round_i == num_rounds − 1:
ad j_se t . remove ( ( node , ( round_i + 1 , anc_i ) ) )

i f exclude_edge == None :
pass

else :
ad j_se t . remove ( exclude_edge )

return ad j_se t

def odd_permuations ( dim ) :
i t e r = product ( [ 0 , 1 ] , repeat=dim )
b _ l i s t = [ b for b in i t e r i f sum( b ) % 2 == 1]
return b _ l i s t
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def prob_boundary_edge (
node , avg_di_array , avg_did j_ar ray , num_rounds , num_anc , inc lude_spacet ime

) :
round_i , anc_i = node
d i = avg_di_array [ round_i , anc_i ]

asser t anc_i == 0 or anc_i == num_anc − 1 , ”Node�i s�not�a�boundary�node . ”

adjacent_edges = adjacency_set (
node , num_rounds , num_anc , ” boundary ” , inc lude_spacet ime

)
prob_adj_edges = np . zeros ( len ( adjacent_edges ) )
for e in range ( len ( adjacent_edges ) ) :

prob_adj_edges [ e ] = prob_bulk_edge (
adjacent_edges [ e ] , avg_di_array , avg_d id j_ar ray

)

q i _ e f f = 0
b _ l i s t = odd_permuations ( len ( adjacent_edges ) )
for b in b _ l i s t :

prod = 1
for j in range ( len ( adjacent_edges ) ) :

prod *= ( prob_adj_edges [ j ] ** b [ j ] ) * (
(1 − prob_adj_edges [ j ] ) ** (1 − b [ j ] )

)
q i _ e f f += prod

return ( d i − q i _ e f f ) / (1 − 2 * q i _ e f f )

@vectorize ( [ f l o a t 64 ( f l oa t64 , f l o a t 64 ) ] )
def g (p , q ) :

return p * (1 − q ) + (1 − p ) * q

# ===== P r o b a b i l i t i e s i n Array =====
def edge_prob_array ( avg_di_array , avg_did j_ar ray , num_rounds , num_anc ) :

” ” ”
r e tu rns mat r i x w i th p i j elements
” ” ”
prob_array = np . zeros ( ( num_anc * num_rounds , num_anc * num_rounds ) )
for round_i in range ( num_rounds ) :

for anc_i in range ( num_anc ) :
for round_j in range ( num_rounds ) :

for anc_j in range ( num_anc ) :
i = index ( round_i , anc_i , num_rounds )
j = index ( round_j , anc_j , num_rounds )
prob_array [ i ] [ j ] = prob_bulk_edge (

( ( round_i , anc_i ) , ( round_j , anc_j ) ) ,
avg_di_array ,
avg_did j_ar ray ,

)

np . f i l l _ d i a g o n a l ( prob_array , 0)
return prob_array

def bound_prob_array_adj (
avg_di_array , avg_did j_ar ray , num_rounds , num_anc , inc lude_spacet ime=False

) :
” ” ”
r e tu rns vec to r w i th piB elements using only ad jacent nodes
” ” ”
prob_array = np . zeros ( ( num_rounds , num_anc ) )
for round_i in range ( num_rounds ) :

for anc_i in range ( num_anc ) :
i f ( anc_i == 0) or ( anc_i == num_anc − 1 ) :

i = index ( round_i , anc_i , num_rounds )
prob_array [ round_i ] [ anc_i ] = prob_boundary_edge (

( round_i , anc_i ) ,
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avg_di_array ,
avg_did j_ar ray ,
num_rounds ,
num_anc ,
include_spacet ime ,

)
else :

pass
return prob_array

def bound_prob_array_al l ( avg_di_array , p i j _a r r ay , num_rounds , num_anc ) :
” ” ”
r e tu rns ar ray w i th piB elements using google f unc t i on S14 , S15
” ” ”
np . f i l l _ d i a g o n a l ( p i j _a r r ay , 0)
q i e_e f f = np . zeros ( np . shape ( p i j _ a r r a y ) [ 0 ] )

q i e_e f f = g . reduce ( p i j _a r r ay , ax is =0)

q i e_e f f = np . reshape ( q ie_e f f , ( num_anc , num_rounds ) )
q i e_e f f = q i e_e f f . T

piB = ( avg_di_array − q i e_e f f ) / (1 − 2 * q i e_e f f )

return piB

C.2.3. Indices
def index ( round , a n c i l l a , num_rounds ) :

return round + num_rounds * a n c i l l a

def i ndex_ inv ( index , num_rounds ) :
round = index % num_rounds
a n c i l l a = index / / num_rounds
return round , a n c i l l a

def edge_ l i s t s ( num_rounds , num_anc , inc lude_spacet ime=False ) :
space_edges = [ ]
time_edges = [ ]
bound_edges = [ ]
space_time_edges = [ ]

for round_i in range ( num_rounds ) :
for anc_i in range ( num_anc ) :

# space edges
i f anc_i != num_anc − 1:

space_edges . append ( ( ( round_i , anc_i ) , ( round_i , anc_i + 1 ) ) )

# t ime edges
i f round_i != num_rounds − 1:

time_edges . append ( ( ( round_i , anc_i ) , ( round_i + 1 , anc_i ) ) )

# boundary edges
i f ( anc_i == 0) or ( anc_i == num_anc − 1 ) :

bound_edges . append ( ( round_i , anc_i ) )
for anc in range (1 , num_anc ) :

i f anc%2==0:
for round in range ( num_rounds −1) :

space_time_edges . append ( ( ( round+1 ,anc ) , ( round , anc −1) ) )
else :

for round in range ( num_rounds −1) :
space_time_edges . append ( ( ( round , anc ) , ( round+1 ,anc −1) ) )

i f inc lude_spacet ime==True :
return space_edges , time_edges , bound_edges , space_time_edges

else :
return space_edges , time_edges , bound_edges
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C.3. Statistics
C.3.1. Bootstrap
import numpy as np
from decoder . es t ima t ions import est imate_di , es t ima te_d id j , edge_prob_array
from decoder . es t ima t ions import bound_prob_array_adj , bound_prob_array_al l

def boots t rap_s td_bu lk ( de fec t_mat r ix , num_resamples , num_shots , num_rounds , num_anc ) :
sample_size = num_shots
boo t s t r ap_p i j = np . zeros (

( num_resamples , num_rounds * num_anc , num_rounds * num_anc )
)

for b in range ( num_resamples ) :
sample_indices = np . random . choice ( num_shots , s ize=sample_size , rep lace=True )
sample_def_mat = de fec t_mat r i x [ sample_indices ]

avg_di_array = es t imate_d i ( sample_def_mat )
ou t_ f l oa t64 = np . zeros (

( num_rounds , num_rounds , num_anc , num_anc ) , dtype=np . f l o a t 64
)
avg_d id j_ar ray = es t ima te_d id j (

sample_def_mat . data , ou t_ f loa t64 , sample_size , num_rounds , num_anc
)

boo t s t r ap_p i j [ b ] = edge_prob_array (
avg_di_array , avg_did j_ar ray , num_rounds , num_anc

)

return np .mean( boo t s t r ap_p i j , ax is =0) , np . s td ( boo t s t r ap_p i j , ax is =0)

def bootstrap_std_bound_adj (
de fec t_mat r ix ,
num_resamples ,
num_shots ,
num_rounds ,
num_anc ,
inc lude_spacet ime=False ,

) :
sample_size = num_shots
boots t rap_p iB = np . zeros ( ( num_resamples , num_rounds , num_anc ) )

for b in range ( num_resamples ) :
sample_indices = np . random . choice ( num_shots , s ize=sample_size , rep lace=True )
sample_def_mat = de fec t_mat r i x [ sample_indices ]

avg_di_array = es t imate_d i ( sample_def_mat )
ou t_ f l oa t64 = np . zeros (

( num_rounds , num_rounds , num_anc , num_anc ) , dtype=np . f l o a t 64
)
avg_d id j_ar ray = es t ima te_d id j (

sample_def_mat . data , ou t_ f loa t64 , sample_size , num_rounds , num_anc
)

boots t rap_p iB [ b ] = bound_prob_array_adj (
avg_di_array , avg_did j_ar ray , num_rounds , num_anc , inc lude_spacet ime

)

return np .mean( bootst rap_piB , ax is =0) , np . s td ( bootst rap_piB , ax is =0)

def boots t rap_std_bound_a l l (
de fec t_mat r ix , num_resamples , num_shots , num_rounds , num_anc

) :
sample_size = num_shots
boots t rap_p iB = np . zeros ( ( num_resamples , num_rounds , num_anc ) )

for b in range ( num_resamples ) :
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sample_indices = np . random . choice ( num_shots , s ize=sample_size , rep lace=True )
sample_def_mat = de fec t_mat r i x [ sample_indices ]

avg_di_array = es t imate_d i ( sample_def_mat )
ou t_ f l oa t64 = np . zeros (

( num_rounds , num_rounds , num_anc , num_anc ) , dtype=np . f l o a t 64
)
avg_d id j_ar ray = es t ima te_d id j (

sample_def_mat . data , ou t_ f loa t64 , sample_size , num_rounds , num_anc
)
p i j _ a r r a y = edge_prob_array ( avg_di_array , avg_did j_ar ray , num_rounds , num_anc )

boots t rap_p iB [ b ] = bound_prob_array_al l (
avg_di_array , p i j _a r r ay , num_rounds , num_anc

)

return np .mean( bootst rap_piB , ax is =0) , np . s td ( bootst rap_piB , ax is =0)

C.3.2. Delta Method
import numpy as np

# ===== Del ta Method − Bulk edge =====
def covar iance_matr ix_bu lk ( d i , d j , d i d j ) :

cov_matr ix = np . ar ray (
[

[ d i − d i **2 , d i d j − d i * dj , d i d j * (1 − d i ) ] ,
[ d i d j − d i * dj , d j − d j **2 , d i d j * (1 − d j ) ] ,
[ d i d j * (1 − d i ) , d i d j * (1 − d j ) , d i d j − d i d j **2] ,

]
)
return cov_matr ix

def grad ien t_bu lk ( x , y , z ) :
denom = np . sq r t ( ( 1 − 2 * x ) * (1 − 2 * y ) ) * (1 − 2 * x − 2 * y + 4 * z ) ** (3 / 2)
grad = (

np . ar ray (
[

( y − 2 * y**2 + 4 * y * z − 2 * z ) ,
( x − 2 * x**2 + 4 * x * z − 2 * z ) ,
(1 − 2 * x ) * (1 − 2 * y ) ,

]
)
/ denom

)
return grad

def del ta_var iance_bulk_edge ( edge , avg_di_array , avg_did j_ar ray , num_shots ) :
i , j = edge
round_i , anc_i = i
round_j , anc_j = j

d i = avg_di_array [ round_i , anc_i ]
d j = avg_di_array [ round_j , anc_j ]
d i d j = avg_d id j_ar ray [ round_i , round_j , anc_i , anc_j ]

grad = grad ien t_bu lk ( d i , d j , d i d j )
cov_matr ix = covar iance_matr ix_bu lk ( d i , d j , d i d j )

var_normal = ( grad @ cov_matr ix ) @ grad
var_pe = var_normal / num_shots

return var_pe

C.3.3. Approximation Formulas
import numpy as np
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from decoder . i nd i ces import index

def google_std_bulk_edge_S19 ( edge , avg_di_array , p i j _ma t r i x , num_shots , num_rounds ) :
i , j = edge
round_i , anc_i = i
round_j , anc_j = j

x i = avg_di_array [ round_i , anc_i ]
x j = avg_di_array [ round_j , anc_j ]
p i j = p i j _ma t r i x [ index ( round_i , anc_i , num_rounds ) ] [

index ( round_j , anc_j , num_rounds )
]

f r a c = ( x i * x j * (1 − x i ) * (1 − x j ) ) / ( ( 1 − 2 * x i ) ** 2 * (1 − 2 * x j ) ** 2)

return np . sq r t ( p i j * (1 − p i j ) + f r a c ) / np . sq r t ( num_shots )

def google_std_bulk_edge_S20 ( edge , avg_di_array , p i j _ma t r i x , num_shots , num_rounds ) :
i , j = edge
round_i , anc_i = i
round_j , anc_j = j

x i = avg_di_array [ round_i , anc_i ]
x j = avg_di_array [ round_j , anc_j ]
p i j = p i j _ma t r i x [ index ( round_i , anc_i , num_rounds ) ] [

index ( round_j , anc_j , num_rounds )
]

f r a c = x i * x j / ( ( 1 − 2 * x i ) ** 2 * (1 − 2 * x j ) ** 2)

return np . sq r t ( p i j + f r a c ) / np . sq r t ( num_shots )

C.3.4. Absolute Error
import numpy as np

from decoder . es t ima t ions import est imate_di , es t ima te_d id j
from decoder . es t ima t ions import (

edge_prob_array ,
bound_prob_array_adj ,
bound_prob_array_al l ,

)
from decoder . i nd i ces import index

def t o t a l _ d i f f _ space ( prob_array , p_error , num_rounds ) :
” ” ”
i npu t : prob_array = prob mat r i x o f bu lk edges wi th dims ( num_rounds*num_anc , num_rounds*num_anc ) .
” ” ”
p_est = np . diag ( prob_array , k=num_rounds )
return np . abs ( p_est − p_er ro r )

def t o t a l _ d i f f _ t i m e ( prob_array , p_error , num_rounds ) :
” ” ”
i npu t : prob_array = prob mat r i x o f bu lk edges wi th dims ( num_rounds*num_anc , num_rounds*num_anc ) .
” ” ”
p_est = np . diag ( prob_array , k=1)
p_est = np . de le te ( p_est , np . s_ [ num_rounds − 1 : : num_rounds ] )
return np . abs ( p_est − p_er ro r )

def t o t a l _d i f f _bound ( prob_array , p_error , num_anc ) :
” ” ”
i npu t : prob_array = prob mat r i x o f boundary edges wi th dims ( num_rounds , num_anc ) .
” ” ”
p_est = prob_array [ : , : : num_anc − 1]
return np . abs ( p_est − p_er ro r )
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def t o t a l _d i f f _ space t ime ( ) :
# what w i l l be p_er ro r ? You can ’ t i n i t i a l i s e c i r c u i t _ l e v e l noise wi th a ce r t a i n p_st = x .
return

def average_d i f fe rences ( defec t_mat r ix , p_error , num_shots , num_rounds , num_anc ) :
p_data , p_anc i l l a = p_er ro r
avg_di_array = es t imate_d i ( de fec t_mat r i x )

ou t_ f l oa t64 = np . zeros ( ( num_rounds , num_rounds , num_anc , num_anc ) , dtype=np . f l o a t 64 )
avg_d id j_ar ray = es t ima te_d id j (

de fec t_mat r i x . data , ou t_ f loa t64 , num_shots , num_rounds , num_anc
)

p i j _ a r r a y = edge_prob_array ( avg_di_array , avg_did j_ar ray , num_rounds , num_anc )
p iB_ar ray_ad j = bound_prob_array_adj (

avg_di_array , avg_did j_ar ray , num_rounds , num_anc
)
p iB_a r ray_a l l = bound_prob_array_al l ( avg_di_array , p i j _a r r ay , num_rounds , num_anc )

avg_di f f_space = np .mean( t o t a l _ d i f f _ s pace ( p i j _a r r ay , p_data , num_rounds ) )
avg_d i f f _ t ime = np .mean( t o t a l _ d i f f _ t i m e ( p i j _a r r ay , p_anc i l l a , num_rounds ) )
avg_di f f_bound_adj = np .mean( t o t a l _d i f f _bound ( piB_array_adj , p_data , num_anc ) )
avg_d i f f_bound_a l l = np .mean( t o t a l _d i f f _bound ( p iB_ar ray_a l l , p_data , num_anc ) )

return avg_di f f_space , avg_d i f f_ t ime , avg_di f f_bound_adj , avg_d i f f_bound_a l l

def func (N, a , b ) :
return a * N**b

# ===== Di f fe rence over N =====
def average_di f ference_over_N (

defec t_mat r ix , p_error , N_min , N_max, num_rounds , num_anc
) :

num_edge_types = 4
N_range = np . logspace ( np . log10 (N_min ) , np . log10 (N_max) , 20 , dtype= i n t )
t o t a l _ d i f f e r e n ce_a r r a y = np . zeros ( ( len ( N_range ) , num_edge_types ) )
for i in range ( len ( N_range ) ) :

pr in t ( N_range [ i ] )
t o t a l _ d i f f e r en ce_a r r a y [ i ] = average_d i f fe rences (

defec t_mat r ix , p_error , N_range [ i ] , num_rounds , num_anc
)

return N_range , t o t a l _ d i f f e r e n ce_a r r a y

# ===== Di f fe rence over p =====
def average_di f ference_over_p (

b ig_defec t_mat r i x , p_range , num_edge_types , num_shots , num_rounds , num_anc
) :

” ” ”
Inpu t : b ig_de fec t_mat r i x w i th dims [ p _ l i s t , NUM_SHOTS, NUM_ROUNDS, NUM_ANC]
” ” ”

t o t a l _ d i f f e r e n ce_a r r a y = np . zeros ( ( len ( p_range ) , num_edge_types ) )

for i in range ( len ( p_range ) ) :
pr in t ( p_range [ i ] )
p_er ro r = ( p_range [ i ] , p_range [ i ] )
t o t a l _ d i f f e r en ce_a r r a y [ i ] = average_d i f fe rences (

b ig_de fec t_mat r i x [ i ] , p_error , num_shots , num_rounds , num_anc
)

return t o t a l _ d i f f e r en ce_a r r a y

C.3.5. Standard Deviations
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import numpy as np
import ma t p l o t l i b . pyp lo t as p l t

from decoder . es t ima t ions import est imate_di , es t ima te_d id j , edge_prob_array
from decoder . i nd i ces import index

from . google import google_std_bulk_edge_S19 , google_std_bulk_edge_S20
from . delta_method import del ta_var iance_bulk_edge

# ===== Std over N =====
def prob_edge ( edge , p i j _ma t r i x , num_rounds ) :

i , j = edge
round_i , anc_i = i
round_j , anc_j = j

return p i j _ma t r i x [ index ( round_i , anc_i , num_rounds ) ] [
index ( round_j , anc_j , num_rounds )

]

def std_over_N ( edge_ l i s t , de fec t_mat r ix , N_min , N_max, num_steps , num_rounds , num_anc ) :
N_range = np . logspace ( np . log10 (N_min ) , np . log10 (N_max) , num_steps , dtype= i n t )
delta_var_space_edge = np . zeros ( ( num_steps , len ( edge_ l i s t ) ) )
google_var_space_edgeS19 = np . zeros ( ( num_steps , len ( edge_ l i s t ) ) )
google_var_space_edgeS20 = np . zeros ( ( num_steps , len ( edge_ l i s t ) ) )

for n in range ( len ( N_range ) ) :
pr in t ( n )
avg_di_array = es t imate_d i ( de fec t_mat r i x [ : N_range [ n ] ] )
ou t_ f l oa t64 = np . zeros (

( num_rounds , num_rounds , num_anc , num_anc ) , dtype=np . f l o a t 64
)
avg_d id j_ar ray = es t ima te_d id j (

de fec t_mat r i x . data [ : N_range [ n ] ] ,
ou t_ f loa t64 ,
N_range [ n ] ,
num_rounds ,
num_anc ,

)
p i j _ma t r i x = edge_prob_array ( avg_di_array , avg_did j_ar ray , num_rounds , num_anc )
for e in range ( len ( edge_ l i s t ) ) :

google_var_space_edgeS19 [ n ] [ e ] = (
google_std_bulk_edge_S19 (

edge_ l i s t [ e ] , avg_di_array , p i j _ma t r i x , N_range [ n ] , num_rounds
)
** 2

)
google_var_space_edgeS20 [ n ] [ e ] = (

google_std_bulk_edge_S20 (
edge_ l i s t [ e ] , avg_di_array , p i j _ma t r i x , N_range [ n ] , num_rounds

)
** 2

)
delta_var_space_edge [ n ] [ e ] = del ta_var iance_bulk_edge (

edge_ l i s t [ e ] , avg_di_array , avg_did j_ar ray , N_range [ n ]
)

del ta_std_over_N = np . sq r t ( np .mean( delta_var_space_edge , ax is =1) )
google_std_over_NS19 = np . sq r t ( np .mean( google_var_space_edgeS19 , ax is =1) )
google_std_over_NS20 = np . sq r t ( np .mean( google_var_space_edgeS20 , ax is =1) )

return N_range , del ta_std_over_N , google_std_over_NS19 , google_std_over_NS20

# ===== Std over p =====
def std_over_p ( edge_ l i s t , b ig_defec t_mat r i x , p_range , num_shots , num_rounds , num_anc ) :

num_steps = len ( p_range )
delta_var_space_edge = np . zeros ( ( num_steps , len ( edge_ l i s t ) ) )
google_var_space_edgeS19 = np . zeros ( ( num_steps , len ( edge_ l i s t ) ) )
google_var_space_edgeS20 = np . zeros ( ( num_steps , len ( edge_ l i s t ) ) )

for p in range ( num_steps ) :
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avg_di_array = es t imate_d i ( b ig_de fec t_mat r i x [ p ] )
ou t_ f l oa t64 = np . zeros (

( num_rounds , num_rounds , num_anc , num_anc ) , dtype=np . f l o a t 64
)
avg_d id j_ar ray = es t ima te_d id j (

b ig_de fec t_mat r i x [ p ] . data , ou t_ f loa t64 , num_shots , num_rounds , num_anc
)
p i j _ma t r i x = edge_prob_array ( avg_di_array , avg_did j_ar ray , num_rounds , num_anc )
for e in range ( len ( edge_ l i s t ) ) :

google_var_space_edgeS19 [ p ] [ e ] = (
google_std_bulk_edge_S19 (

edge_ l i s t [ e ] , avg_di_array , p i j _ma t r i x , num_shots , num_rounds
)
** 2

)
google_var_space_edgeS20 [ p ] [ e ] = (

google_std_bulk_edge_S20 (
edge_ l i s t [ e ] , avg_di_array , p i j _ma t r i x , num_shots , num_rounds

)
** 2

)
delta_var_space_edge [ p ] [ e ] = del ta_var iance_bulk_edge (

edge_ l i s t [ e ] , avg_di_array , avg_did j_ar ray , num_shots
)

de l ta_std_over_p = np . sq r t ( np .mean( delta_var_space_edge , ax is =1) )
google_std_over_pS19 = np . sq r t ( np .mean( google_var_space_edgeS19 , ax is =1) )
google_std_over_pS20 = np . sq r t ( np .mean( google_var_space_edgeS20 , ax is =1) )

return del ta_std_over_p , google_std_over_pS19 , google_std_over_pS20
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