Construction robotics 2030
Motivation
Start from reviewing ISARC papers

• What are people concerning in the field of construction robotics field?
• ISARC
 - International Symposium for Automation and Robotics in Construction
 - Held by IAARC (International Association for Automation and Robotics in Construction)
 - From 1984; 2012 in Eindhoven
 - 3000+ papers in 30 years
Problem and objectives

- Lack of an overview of the whole picture of the technical innovations in construction robotics
- Lack of an exploration of the possible future of construction robotic technologies

- **state of the art** of the technical innovations' application
- **future landscapes** of technologies in construction robotics.

Main research question:
In the Dutch construction industry, **what technologies are available to enhance the robotics level** and **what are the possible futures of technical innovations in construction robotics in 2030?**
Research question

• In the Dutch construction industry, what technologies are available to enhance the robotics level and what are the possible futures of technical innovations in construction robotics in 2030?
Limitation

• Tasks:
 - limited time
 - select two tasks to study in detail

• Technologies:
Research process

Step 1: Identification of technologies and tasks in construction robotics

Step 2: Current technologies applied in the selected tasks

Step 3: Future of the current application
Step 1:
Identify the tasks and technologies in construction robotics
Method

- Systematic literature review;
- ISARC papers as the main resource;
- 572 papers from 2012 to 2016;
- 255 papers are about specific technologies' application
- Groups of the papers according to the tasks they contribute to and technologies they use:

<table>
<thead>
<tr>
<th>Task</th>
<th>CPS/IoT</th>
<th>RFID</th>
<th>A&R</th>
<th>MD</th>
<th>AM</th>
<th>PLM</th>
<th>HCI</th>
<th>S&A</th>
<th>BIM</th>
<th>VR</th>
<th>CC</th>
<th>BD</th>
<th>MC</th>
<th>SM</th>
<th>LS</th>
<th>other</th>
<th>Number *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earthwork</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Reinforcement</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Paving</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Concrete distribution</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Concrete finishing</td>
<td>0</td>
</tr>
<tr>
<td>Welding</td>
<td>0</td>
</tr>
<tr>
<td>Coating</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Assembly</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Interior finishing</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Masonry</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Surveying and monitoring</td>
<td>9</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Logistics</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Site planning and management</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Safety</td>
<td>7</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>15</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Quality control</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Process management</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>9</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Identified tasks

16 construction tasks

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>First type: directly related to the physical production</td>
<td>Earthwork, Reinforcement, Paving, Concrete distribution, Concrete finishing, Welding, Coating, Assembly, Interior finishing, Masonry</td>
</tr>
<tr>
<td>Second type: related to the construction process</td>
<td>Surveying and monitoring, Logistics, Site planning and management, Safety, Quality control, Process management</td>
</tr>
</tbody>
</table>
Identified technologies

<table>
<thead>
<tr>
<th>Technology</th>
<th>Abb.</th>
<th>Icon</th>
<th>Technology</th>
<th>Abb.</th>
<th>Icon</th>
<th>Technology</th>
<th>Abb.</th>
<th>Icon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet of Things</td>
<td>IoT</td>
<td></td>
<td>Human-Computer/Robot Interaction</td>
<td>HCI</td>
<td></td>
<td>Simulation and Algorithm</td>
<td>S&A</td>
<td></td>
</tr>
<tr>
<td>Additive Manufacturing</td>
<td>AM</td>
<td></td>
<td>Laser Scanning and Photogrammetry</td>
<td>L&P</td>
<td></td>
<td>Cloud Computing</td>
<td>CC</td>
<td></td>
</tr>
<tr>
<td>Modularisation and Prefabrication</td>
<td>M&P</td>
<td></td>
<td>Virtual Reality /Augmented Reality</td>
<td>VR</td>
<td></td>
<td>Big Data</td>
<td>BD</td>
<td></td>
</tr>
<tr>
<td>Automation and Robot</td>
<td>A&R</td>
<td></td>
<td>Building Information Modelling</td>
<td>BIM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Step 2: Current technologies
Current technologies: construction assembly

<table>
<thead>
<tr>
<th></th>
<th>Identifying</th>
<th>Conveying</th>
<th>Connecting</th>
<th>Inspecting</th>
</tr>
</thead>
<tbody>
<tr>
<td>IoT</td>
<td></td>
</tr>
<tr>
<td>A&R</td>
<td></td>
</tr>
<tr>
<td>HCI/HRI</td>
<td></td>
</tr>
<tr>
<td>L&P</td>
<td></td>
</tr>
<tr>
<td>VR/AR</td>
<td></td>
</tr>
<tr>
<td>BIM</td>
<td></td>
</tr>
<tr>
<td>S&A</td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td></td>
</tr>
<tr>
<td>BD</td>
<td></td>
</tr>
</tbody>
</table>

- **Not employed**
- **Under research**
- **Limitedly employed**
- **Employed**
- **Widely employed**
<table>
<thead>
<tr>
<th>Techs</th>
<th>Safety training</th>
<th>Safety planning</th>
<th>Hazards alarming</th>
<th>Proximity detection</th>
<th>Gesture monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>IoT</td>
<td>![WiFi icon]</td>
<td>![WiFi icon]</td>
<td>![WiFi icon]</td>
<td>![WiFi icon]</td>
<td>![WiFi icon]</td>
</tr>
<tr>
<td>HCI/HR</td>
<td>![Human icon]</td>
<td>![Human icon]</td>
<td>![Human icon]</td>
<td>![Human icon]</td>
<td>![Human icon]</td>
</tr>
<tr>
<td>L&P</td>
<td>![Laptop icon]</td>
<td>![Laptop icon]</td>
<td>![Laptop icon]</td>
<td>![Laptop icon]</td>
<td>![Laptop icon]</td>
</tr>
<tr>
<td>VR/AR</td>
<td>![VR/AR icon]</td>
<td>![VR/AR icon]</td>
<td>![VR/AR icon]</td>
<td>![VR/AR icon]</td>
<td>![VR/AR icon]</td>
</tr>
<tr>
<td>BIM</td>
<td>![BIM icon]</td>
<td>![BIM icon]</td>
<td>![BIM icon]</td>
<td>![BIM icon]</td>
<td>![BIM icon]</td>
</tr>
<tr>
<td>CC</td>
<td>![Cloud icon]</td>
<td>![Cloud icon]</td>
<td>![Cloud icon]</td>
<td>![Cloud icon]</td>
<td>![Cloud icon]</td>
</tr>
<tr>
<td>BD</td>
<td>![BD icon]</td>
<td>![BD icon]</td>
<td>![BD icon]</td>
<td>![BD icon]</td>
<td>![BD icon]</td>
</tr>
</tbody>
</table>

- **Not employed**
- **Under research**
- **Limitedly employed**
- **Employed**
- **Widely employed**
Step 3:
Future study
Sub questions and Research methods

• Sub question 3: What are the possible landscapes of construction robotic technologies in the Netherlands in 2030?
 - scenario planning based method
Future studies - factors identifying
Future studies—scenario planning

- Political
 - Labor rights

- Social
 - Availability of employees
 - Regional growth
 - Industry integration and globalization
 - Monopolization

- Economic

- Technical
 - Artificial intelligence
 - Additive manufacturing
 - Energy supply & carbon emission

- Environmental
Future studies—scenario planning

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Impact</th>
<th>Predictability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor right (LR)</td>
<td>3.6</td>
<td>3.8</td>
</tr>
<tr>
<td>Artificial intelligence (AI)</td>
<td>5.6</td>
<td>2.8</td>
</tr>
<tr>
<td>Additive manufacturing (AM)</td>
<td>5</td>
<td>3.6</td>
</tr>
<tr>
<td>Energy supply & carbon emission (EC)</td>
<td>3.4</td>
<td>3</td>
</tr>
<tr>
<td>Availability of employees (AE)</td>
<td>3</td>
<td>3.8</td>
</tr>
<tr>
<td>Regional growth (RG)</td>
<td>2.8</td>
<td>7</td>
</tr>
<tr>
<td>Integration of construction (IC)</td>
<td>5.2</td>
<td>3.4</td>
</tr>
<tr>
<td>Monopolization (MO)</td>
<td>3.6</td>
<td>4.6</td>
</tr>
</tbody>
</table>

![Graph showing predictability and impact of various scenarios](image)
Future studies – scenario planning

• Artificial Intelligence

• Integration of the construction industry
 - construction industry: highly fragmented;
 - product level: uniqueness of each project;
 - process level: process of each product is different;
 - market level: thousands of contractors on market;
 - the manufacturing industry: standard product > standard process > fewer suppliers;
 - integration of the construction industry: working more like the manufacturing industry.
Scenario planning – Matrix

- **INTRODUCTION**
 - **LOW INTEGRATION**
 - **SMART TIMES**
 - Scenario 2
 - **STATE OF THE ART**
 - **LOW AI**
 - **HIGH INTEGRATION**
 - **PARADISE**
 - Scenario 3
 - **LEGEND**
 - Scenario 1
 - **WHERE WE ARE**
 - **WHERE we WERE**

- **HIGH AI**
 - **SMART TIMES**
 - Scenario 2
 - **PARADISE**
 - Scenario 3
 - **STATE OF THE ART**
 - **LEGEND**
 - Scenario 1
Scenario 1

- Brandization and standardization in small and simple buildings;
- Large buildings: higher level of prefabrication;
- Market and process integration: fewer and bigger players;
- Most of the works have been moved into factories, but human workers still dominant the onsite works;
- Globally-distributed massive production is introduced into the construction industry.
Scenario 2

- AI-supported highly automatic onsite construction process;
- Wide application of robots and the reduced demands for labors;
- Information technologies dominate the construction;
- Many small companies survive;
- Construction robotics is applied in maintenance and renovation projects.
Scenario 3

- Highly automatic building process, high standard level of the construction industry;
- Customization as a popular business model;
- Medium monopolization;
- Localized production.
Evolvement of technologies

Drivers
Efficiency enhancement, demands, ...

A specific technology

Barriers
Technically not fully developed, Not ideal financial feasibility, ...

Scenarios
Scenario 1
Scenario 2

Laser Scanning and Photogrammetry
Laser scanning and photogrammetry are employed to build a digital model in short time, assisting inspection works. They are also employed to monitor the assembly process.

Proximity Detection
IoT helps to monitor and locate the on-site objects in real time, detecting the possible collisions between them.

Big Data
Big data is used to analyze the pattern of accidents, helping to improve the safety performance of future projects.

Cloud Computing
Cloud computing assists the information sharing in the construction process.

Simulation
Using the information from BIM, the construction activities could be simulated before they actually start, to identify the hazards in the process.

Internet of Things
By scanning the tags attached to the on-site objects, they could be included into the IoT, which could be employed to locate and track them.

Bottom-Up System
Bottom-up system enables the assembly works to be executed on the ground level, then lifted by jacks, avoiding aloft works. No heavy equipment is needed.

Swarm Robots
Swarm robots have replaced the single-task robots, handling the on-site construction assignments, under AI’s control.
Scenario 3

Laser Scanning and Photogrammetry
Laser scanning and Photogrammetry are employed to build digital models in short time, reducing inspection works. They are also employed to monitor the assembly process.

Big Data
Big data is used to analyze the pattern of accidents, helping to improve the safety performance of future projects.

Proximity Detection
IoT helps to monitor and locate the on-site objects in real time, detecting the possible collisions between them.

Simulation
Using the information from BIM, the construction activities could be simulated before they actually start, to identify the hazards in the process.

Cloud Computing
Cloud computing assists to share information for the construction process.

Internet of Things
By scanning the tags attached to the on-site objects, they could be included into the IoT, which could be employed to locate and trace them.

Swarm Robots
Swarm robots replace the single-task robots, handling the on-site construction assignments, under AI's control.

Construction Factory
On-site Construction Factory provides an indoor environment for the construction activities, enabling more robotic technologies to be applied.
Overlap

- Scenario 1 vs Scenario 2&3
- Technologies related to human intervention decrease;
- CF most used in Scenario 1 and Bottom-up system most used in Scenario 2.
- Cloud computing is applied in Scenario 2 and 3.
- Overlap: wireless sensing, BIM, robots, laser scanning
- In scenario 2&3: evolve to the direction of swarm robots.
- Similar with the situation in assembly;
- Technologies related to human intervention decrease;
- Cloud computing is applied in Scenario 2 and 3.
- Overlap: wireless sensing, BIM, Virtual prototyping
Thanks and questions