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Wingman-based Estimation and Guidance for a
Sensorless PN-Guided Pursuer

Robert Fonod, Member, IEEE and Tal Shima, Senior Member, IEEE

Abstract—A novel wingman-based estimation and guidance
concept is proposed for a sensorless pursuer. The pursuer is
guided towards a maneuvering aerial target using proportional
navigation (PN) guidance law. The wingman is assumed to
acquire bearings-only measurements of the target and to accu-
rately track the wingman-pursuer relative position. The pursuer-
target relative states, needed for the pursuer guidance law
implementation, are estimated from the available data to the
wingman. The proposed state estimator is implemented using
extended Kalman filter equations and transformed wingman’s
measurements into the moving pursuer frame. Analytical ob-
servability analysis of the proposed wingman-based measuring
concept suggests an optimal wingman trajectory in terms of
the wingman-pursuer relative geometry. The resulting wingman
trajectory ensures maximum observability of the pursuer–target
line-of-sight (LOS) angle, which is a crucial parameter needed
for the PN guidance law implementation. The resulting trajectory
can be directly related to the well-known LOS guidance concept.
Monte Carlo simulation results validate the analytical findings
and demonstrate the potential of the proposed concept.

Index Terms—Observability, PN guidance law, state estimation,
optimal trajectory, extended Kalman filter.

I. INTRODUCTION

MODERN air defense systems, such as aircraft defending
missiles or anti-ballistic missiles, are equipped with

highly sophisticated sensors and on-board computers. As pay-
loads, these equipment place significant requirements on the
missile’s weight, power, cost, and volume. In most cases, the
re-usability of these valued equipment is not possible due to
the fact that they cease to exist after the end of the engagement.

In this paper, we propose a new estimation and guidance
concept for a pursuing missile which does not require any
target-tracking sensors nor a powerful on-board guidance
computer. This concept relies on the availability of a single
wingman vehicle, equipped with suitable sensors and on-board
computing power. The wingman only guides the pursuing
missile to the aerial target, but is not actively engaged in the
interception. The missile’s guidance law is computed in the
wingman’s on-board computer and is transmitted to the missile
for execution. This enables to design a defender missile with
reduced complexity, weight, cost, and footprint. Moreover,
precious wingman components, such as sensor suites and on-
board computers, can be saved and reused for future engage-
ments. Thanks to the wingman’s re-usability, implementation
of more advanced and computationally demanding guidance
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and estimation algorithm may be possible, while maintaining
or even minimizing the overall engagement costs.

Practical guidance laws require estimation and filtering
of various missile-target states. Observability of unmeasured
states represents a fundamental issue in state estimation.
Different guidance laws pose different requirements on the
accuracy of the relative state estimates. Therefore, in this
paper, we will focus only on one guidance law for the missile,
namely the proportional navigation (PN) guidance law. Many
air/surface-to-air/surface missile-target engagements, as well
as space applications (including rendezvous), employ some
version of PN guidance law. This guidance law can provide
satisfactory interception against a non-maneuvering or weakly
maneuvering targets. Moreover, the PN guidance law is also
popular because of its robustness, ease of implementation,
and simplicity [1]. Under certain conditions and simplifying
assumptions, the PN guidance law is an optimal guidance
strategy minimizing the terminal miss distance [2].

Target-tracking and observability-enhancing guidance sys-
tems in homing missiles that use bearings-only measurements
have been comprehensively studied in the past [3]–[7]. How-
ever, to the best of the authors knowledge, no such study
has been done for a PN-guided sensorless missile aided by
a wingman vehicle having bearings only measurements. For
this reason, the main contributions of this paper are as follows.
First, a wingman-based target tracking estimator is developed
to estimate the missile–target kinematic variables which are
needed for a proper implementation of the sensorless missile’s
PN guidance law. Second, a novel observability metrics for
the missile-target range and line-of-sight (LOS) angle are
derived analytically. This is achieved by transforming the
wingman’s bearings-only measurements into the missile frame
and subsequently computing, using analytical linearization,
the variances of the resulting pseudo-measurements. Insights
gained from these metrics suggest that the wingman trajectory,
which aims at maximizing the PN-guided missile’s homing
performance, should be designed such that the wingman
maintains its position on the extended missile-target LOS line.

The remainder of this paper is organized as follows. The
next section presents the mathematical models and assump-
tions of the wingman-missile-target engagement. The target
tracking estimator is presented in Sec. III, followed by the
analytical observability metrics derivation in Sec. IV. Trajec-
tory implications of the wingman are discussed in Sec. V.
Simulation results are presented in Sec. VI, followed by
concluding remarks.

Notations: In this paper, bold italic face denotes vectors
and matrices; (·)T stands for transposition; I represents an
identity matrix with appropriate dimensions; Rn represents the
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set of n dimensional real vectors; N the set of natural numbers
(including {0}); and N (µ,Σ) denotes, in general, the density
function of a non-degenerate multivariate normal distribution
with a mean vector µ and covariance matrix Σ.

II. ENGAGEMENT

This section presents the kinematics, dynamics, and timeline
of the considered engagement. The wingman’s measurement
model is introduced alongside with the missile’s guidance law.
The underlying assumptions are also discussed.

A. Kinematics and Dynamics

Consider a planar engagement scenario shown in Fig. 1,
where a sensorless homing missile M pursues a maneuvering
aerial target T with a help of a wingman vehicle W . For
brevity, in the rest of the paper, the homing missile is referred
to as missile or pursuer, the wingman vehicle as wingman,
and the aerial target as target.

λm

γm

γt

VtVm
at

am

λw
γw

Vw

rm

M

T

aw

rwr

λ

W

OI XI

YI

LOSw

LOSm

Fig. 1. Planar engagement geometry.

In Fig. 1, the Cartesian inertial reference frame is denoted
by XI–OI–YI . The speed, normal acceleration, and flight-
path angle are given by V , a, and γ; subscript m, w, and
t denotes the missile, wingman, and target, respectively. The
range between the wingman-missile (W–M ), missile-target
(M–T ), and wingman-target (W–T ) are denoted as r, rm,
and rw, respectively. The angle between the missile-to-target
LOS (LOSm) and the XI axis is denoted as λm. Similarly,
the angle between LOSw and the XI axis is denoted as λw,
whereas the angle between the missile-to-wingman LOS and
the XI axis is denoted as λ. All angles are measured in a
counter-clockwise direction from the positive XI axis.

All three vehicles are assumed to be skid-to-turn roll-
stabilized. Additionally, assuming M , W , and T being point-
masses and neglecting the effects of gravity, the M–T and
the W–T engagement kinematics can be expressed in polar
coordinates (ri, λi), i ∈ {m,w}, as follows1

ṙi = −Vi cos(γi − λi)− Vt cos(γt + λi) , Vr,i, (1a)

λ̇i =
−Vi sin(γi − λi) + Vt sin(γt + λi)

ri
,
Vλ,i
ri

, (1b)

1For sake of clarity, the notation of time-dependency (t) of some variables
is omitted whenever the context is clear. Subscript “t” always refers to the
target vehicle.

where Vr,i is the relative velocity along, and Vλ,i normal, to
LOSi. It is assumed that ri(0) > 0 and |λi(0)| ≤ π/2.

During the endgame, all vehicles are assumed to fly at con-
stant speeds and to perform lateral maneuvers only, therefore

γ̇v = av/Vv, (2a)

V̇v = 0, (2b)

where v ∈ {m,w, t}. In addition, first-order maneuver dynam-
ics is considered for all vehicles, i.e.,

ȧv = (uv − av)/τv. (3)

In (3), uv is the vehicle’s piece-wise continuous acceleration
command and τv > 0 is the time constant of the vehicle’s dy-
namics. We also assume that all vehicles have maneuverability
limitations defined as

|uv| ≤ amaxv , (4)

where amaxv > 0 is the vehicle’s maximal lateral acceleration.

B. Timeline

We denote the running time as t. The engagement starts
at t = t0 , 0 with ṙm(t0) < 0. The endgame terminates at
t = tf , where tf is the M–T interception time defined as

tf , arg inf
t>0

(rm(t)ṙm(t) = 0) . (5)

The interception time tf allows to define the non-negative
missile-to-target time-to-go tgo as

tgo ,

{
tf − t, t ≤ tf
0, t > tf

(6)

At t = tf , the M–T range, rm(tf ), is minimal and will be
referred to as “miss distance” or compactly as “miss”.

Since the exact value of tf is hard to compute, a common
approximation of tgo is

tgo ≈ −rm/Vr,m, Vr,m < 0, (7)

where Vr,m is given in (1a). Note, (7) is valid provided
the engagement is very close to the collision course. For
larger heading errors, more accurate time-to-go approxima-
tions should be considered, see for instance [8], [9] and
references therein.

C. Wingman’s Measurement Model

For the wingman–missile team, we assume that only the
wingman is equipped with sensors that are able to track the
target motion. Particularly, we assume that the wingman is
equipped with an IR sensor, measuring the wingman–target
LOS angle λw. These measurements, zk, k ∈ N, are assumed
to be acquired at discrete-time instances t = tk , kT , where
Ts > 0 is a fixed measurement sampling period. Additionally,
the measurements are assumed to be contaminated by a zero-
mean white Gaussian noise sequence, vλw;k, k ∈ N, having
a time-invariant standard deviation σλ,w > 0. Based on the
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above assumptions, the physical measurement model of the
wingman’s sensor measurements is

zk = λw;k + vλw;k, vλw;k ∼ N (0, σ2
λ,w), (8)

where λw;k is the LOS angle λw at t = tk, i.e., λw;k ,
λw(tk). Henceforth, the subscript k, separated by a semicolon
if necessary, will denote the discrete-time tk.

D. Missile’s Guidance Law

Most of the guidance laws are implemented using the
kinematics and dynamics variables. For the M–T engagement,
these variables can be lumped into the following state vector

xm ,
[
rm λm γt at Vt

]T
. (9)

The acceleration command um normal to the velocity vector
of a PN-guided missile can be expressed using the state vector
xm and the known flight-related parameters of the missile (γm
and Vm) as follows

um(xm) = N ′
Vc,mλ̇m

cos(γm − λm)
, (10)

where N ′ is the effective navigation gain, normally having an
integer value of 3, 4, or 5, and Vc,m is the M–T closing
velocity defined as Vc,m , −Vr,m. (Similarly, the W–T
closing velocity is defined as Vc,w , −Vr,w.) Variables λ̇m
and Vr,m are given in (1). The term cos(γm−λm) in the
denominator of (10) accounts for the LOS-to-body frame
transformation.

E. Assumptions

Figure 2 summarizes the missile-target engagement dynam-
ics in a block diagram form. It also includes the role of the
wingman and the information flow between the vehicles.

Missile - Target

Dynamics & Kinematics

Missile 
Guidance Law

Wingman
Guidance Law Wingman - Target

Miss

NoiseWingman

Target 
Maneuver

Sensorless Missile

+ +

Noise Corrupted Measurement Wingman - Target  LOS Angle

INS data (optional)

Communication 
Link

State 
Estimator

Fig. 2. Block diagram of the engagement dynamics.

In this paper, we adopt the following assumptions on the
W–M kinematics, inertial sensors, and communications:

Assumption 1: The flight-related parameters, such as flight-
path angle, lateral acceleration, and speed, of the wingman and
the missile are available to the wingman to very high accuracy.
This is a common assumption and can be accomplished
by installing an inertial navigation system (INS) on both
the wingman and the missile, and transmitting the missile’s
parameters (γm, am, and Vm) to the wingman.

Assumption 2: The wingman-missile relative distance (r
and λ) is known accurately to the wingman (via some navi-
gation system installed on the wingman).

Assumption 3: The missile’s acceleration command um
is computed in the wingman’s on-board computer and is
transmitted to the missile with zero lag. This minimizes the
W–M communication overhead as, instead of all kinematic
variables needed for the missile guidance law implementation,
only um is transmitted to the missile.

Assumption 4: The missile and the wingman are launched
simultaneously from the same location, i.e., r(t0) ≈ 0. To
avoid wingman–target clash (rw = 0), the wingman shall
fly behind the missile at all times (rw > rm). This can be
ensured by maintaining Vc,w/Vc,m < 1. This requirement
naturally implies a set of feasible and infeasible W–M relative
geometries, see Fig. 3 for illustration.

Assumption 5: The target acceleration at(t) is viewed as a
random process with unknown statistics.

rm
rw

r

Feasible geometries

(rw > rm)

Infeasible geometries

(rw < rm)

W

M

T

Fig. 3. Feasible vs. infeasible W–M geometries for a given r and rm.

Remark 1. Given um, accurate missile modeling, and accu-
rate W–M relative position information (r, λ), the missile’s
flight-related parameters (γm, am, and Vm) can be directly
estimated by the wingman. Consequently, the assumption on
the availability of the INS for the missile, as discussed in
Assumption 1, can be dropped.

III. ESTIMATOR DESIGN

The missile’s state vector xm needs to be estimated from
the available data to the wingman. In this section, we will
design a relatively simple target tracking estimator which can
be run on the wingman.

A. Wingman’s Measurements Expressed Using M–T Variables

Consider the engagement geometry depicted in Fig. 1 and
the assumption that the relative position between W and M
is know accurately to W . Let φ denote the W–M relative
position (r, λ). Then, using the trigonometric law of cosines,
the LOS angle λw can be expressed as a function of xm and
φ, i.e.,

λw = hw (xm,φ) , λ

+s

[
π − cos−1

(
r2
m − r2 − r2

w

2rrw

)]
.

(11)

Here, the W–T range, rw, can be also expressed as a function
of xm and φ, that is

rw = gw (xm,φ) ,
√
r2 + r2

m + 2rrm cos (λm − λ). (12)

Note that in (11) and (12), the values of rm, λm, r, and λ are
substituted with corresponding entries from xm and φ.
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In (11), s stands for a sign function, which depends on the
relative geometry between M and W , defined as

s ,

 1, λw > λ,
−1, λw < λ,

0, otherwise.
(13)

Finally, the physical measurement model of the wingman
(8) can be related to xm;k , xm(tk) and φk , (r(tk), λ(tk))
as follows

zk = hw (xm;k,φk) + vw;k. (14)

As will be shown next, the model of (14) allows the wingman
to run an estimator on its own and to compute an estimate of
xm;k using φk and z1:k , {z1, z2, . . . , zk}.

B. Target Maneuver Model Considerations

Since the target dynamics and target maneuver command ut
are rarely known in reality, an assumption must be established
on the target maneuver model, i.e., on at(t), in order to design
a target tracking estimator.

In this paper, we adopt the Singer’s exponentially correlated
acceleration (ECA) model [10]. The ECA model is widely
used for miscellaneous maneuvering target tracking problems.
It suggests that maneuvers (turns, evasive maneuvers, and
accelerations due to atmospheric disturbances), acting on
constant-velocity moving targets, can be viewed as perturba-
tions of the constant velocity trajectories and represented as
random accelerations correlated in time.

To proceed, the ECA model assumes that the target accel-
eration at(t) is a scalar stochastic process with the following,
exponentially decaying, autocorrelation function

Catat(τ) , E [at(t+ τ)at(t)] = σ2
t e
−α|τ |, (15)

where σ2
t is the instantaneous variance of the target accelera-

tion and α > 0 is the reciprocal of the time constant of the tar-
get acceleration autocorrelation [11]. For example, α ' 1/60
for a lazy turn, α ' 1/20 for an evasive maneuver, and α ' 1
for atmospheric turbulence [10]. According to Singer [10], to
provide satisfactory representation of the target’s instantaneous
maneuver characteristics, σt shall be chosen as follows:

σt = Ψamaxt , (16)

where amaxt is the target’s maximal lateral acceleration and
Ψ =

√
(1− P0 + 4Pmax)/3. Here, Pmax stands for the

probability of the target accelerating at ±amaxt and P0 for
the probability of the target not maneuvering. Since amaxt ,
P0, and Pmax are rarely available in practice, Ψ is often used
as the tuning parameter of the filter.

The process at(t), characterized by (15), can be represented
by a linear time-invariant system as follows [11]

ȧt(t) = −αat(t) + wt(t), (17)

where wt(t) is a zero-mean, stationary, white Gaussian pro-
cess, with the following autocorrelation function

Cwtwt(τ) = 2ασ2
t δ(τ), (18)

with δ(τ) being the Dirac delta function.

Using (1), (2), and (17), the equations of motion (EOM) for
the estimator design become

ẋm = f(xm) +Gwt, (19)

where

f(xm) ,
[
Vr,m Vλ,m/rm at/Vt −αat 0

]T
(20)

and G ,
[
0 0 0 1 0

]T
. The expressions for Vr,m and

Vλ,m are given in (1).

Remark 2. Other target maneuver models might be more
appropriate in specific situations, see [12] for a good survey
on target maneuvering models. For instance, if the target is
assumed to perform optimal evasive maneuvers, which are
known to have a “bang–bang” structure against a PN-guided
missile [13], such maneuvers may be better described by a
shaping filter [14], [15]. However, due to Assumption 5, the
ECA model presented in this section is considered to be a
good approximation to many random processes with unknown
statistics.

C. Discretization

The discrete-time version of (19) can be written as

xm;k = fdk−1(xm;k−1) +wt;k, (21)

where fdk−1(·) is a vector function obtained by integrating (19)
from tk−1 to tk with initial condition xm(tk−1) = xm;k−1

and setting wt(τ) to zero for τ ∈ 〈tk−1, tk〉. In (21), wt;k
represents a vector valued zero-mean white noise sequence
which relates to the scalar continuous-time process wt(t) as
follows

wt;k =

tk∫
tk−1

e(tk−τ)Fk−1Gwt(τ)dτ, (22)

where Fk−1 is the Jacobian matrix associated with (20) and
evaluated at xm;k−1, i.e.,

Fk−1 ,
∂f(xm)

∂xm

∣∣∣∣
xm=xm;k−1

=


0 F12 F13 0 F15

F21 F22 F23 0 F25

0 0 0 1/Vt −at/V 2
t

0 0 0 −α 0
0 0 0 0 0


∣∣∣∣∣∣∣∣∣∣
xm=xm;k−1

(23)

where

F12 = Vt sin(γt + λm)− Vm sin(γm − λm)

F13 = Vt sin(γt + λm)

F15 = − cos(γt + λm)

F21 = 1
r2m

[Vm sin(γm − λm)− Vt sin(γt + λm)]

F22 = 1
rm

[Vm cos(γm − λm) + Vt cos(γt + λm)]

F23 = 1
rm
Vt cos(γt + λm)

F25 = 1
rm

sin(γt+λm)
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It is assumed that Fk−1 is fixed during the time interval
(tk−1, tk〉. With the zero-mean and white assumption on wt(t),
it follows that wt;k satisfies

E[wt;k] = 0, E[wt;kw
T
t;j ] = Qkδk,j , (24)

where δk,j is the Kronecker delta (δk,j = 1 if k = j, else
δk,j = 0) and Qk is the covariance matrix of wt;k. The
covariance matrix can be derived as [11]

Qk , cov(wt;k)

= 2ασ2
t

tk∫
tk−1

e(tk−τ)Fk−1Θe(tk−τ)FTk−1dτ,
(25)

where Θ , GGT . If the exponential terms in (25) are
replaced by their 1st-order Taylor series approximations, i.e.,

e(tk−τ)Fk−1 ≈ I + (tk − τ)Fk−1,

e(tk−τ)FTk−1 ≈ I + (tk − τ)F Tk−1,

then the integral in (25) can be easily solved and Qk approx-
imated by

Qk ≈ 2ασ2
t Td

×
[
Θ +

Td
2

(
Fk−1Θ+ΘF Tk−1

)
+
T 2
d

3
Fk−1ΘF

T
k−1

]
,

(26)

where Td , tk − tk−1 is the discretization sampling time.
In this paper, we assume that Td = Ts, where Ts is the
measurement sampling time, see Section II-C.

D. Filtering Equations

The system (21) and the measurement (14) equations are
nonlinear. Thus, a suitable estimation technique must be
considered. In this paper, we will employ an extended Kalman
filter (EKF) based approach to obtain an approximate solution
to the optimal filtering problem of finding E [xm;k|z1:k]. Other
sub-optimal estimation techniques, such as unscented Kalman
filter (UKF) or particle filter can be considered. We expect
similar trends in the estimation performance, as all these filters
have comparable characteristics for similar application [16].

Assuming that at time t0 = 0, an initial estimate, x̂m;0|0,
of the missile state xm;0 is available, satisfying

x̂m;0|0 ∼ N
(
xm;0,P0|0

)
, (27)

where P0|0 is the covariance matrix of the initial estimation
error (xm;0−x̂m;0|0), then the filtering process can be divided
into two steps of time propagation (TP) and measurement
update (MU).

TP: The a posteriori state estimate x̂m;k−1|k−1 is time-
propagated from tk−1 to tk using

x̂m;k|k−1 = fdk−1(x̂m;k−1|k−1), (28)

where fdk−1(·) was defined shortly after (21). The a posteriori
covariance matrix Pk−1|k−1 is propagated using

Pk|k−1 = eFk−1TdPk−1|k−1e
FTk−1Td +Qk, (29)

where Qk is given in (26) and Fk−1 is the Jacobian matrix
(23) evaluated at xm = x̂m;k−1|k−1.

MU: If the measurement zk becomes available at time tk,
the a priori state estimate x̂m;k|k−1 is updated using

x̂m;k|k = x̂m;k|k−1 +Kk

[
zk − hw(x̂m;k|k−1,φk)

]
, (30)

where hw(·, ·) was defined in (11) and Kk is the Kalman gain
computed as

Kk = Pk|k−1H
T
k

(
HkPk|k−1H

T
k +R

)−1
. (31)

In (31), R stands for the variance of the measurement noise
vk, i.e., R = σ2

λ,w, and Hk is the Jacobian of the measurement
model (11), derived as

Hk ,
∂hw(xm,φ)

∂xm

∣∣∣∣
xm=x̂m;k|k−1, φ=φk

=
[
H1 H2 0 0 0

]∣∣
xm=x̂m;k|k−1, φ=φk

,

(32)

with H1 and H2 being defined as

H1 = +s
r
√
|cos2(λ− λm)− 1|
g2
w

(
x̂m;k|k−1,φk

) ,

H2 = s
rrm sin(2λ− 2λm) + 2r2

m sin(λ− λm)

2g2
w

(
x̂m;k|k−1,φk

)√
|cos2(λ− λm)− 1|

,

where gw(·, ·) and s were defined in (12) and (13), respec-
tively. The values of rm, r, λm, and λ in H1 and H2 are
substituted with corresponding entries from x̂m;k|k−1 and φk.
The a priori covariance matrix Pk|k−1 is updated as

Pk|k = Pk|k−1 −KkHkPk|k−1. (33)

Note that to compute (30) and (32), the sign function s,
defined in (13), needs to be evaluated. It requires the knowl-
edge of λw;k. This angle is not precisely known, but is
directly measured, see (8). Thus, for practical implementation
purposes, λw;k in (13) can be replaced by zk or, better yet, by
its a priori estimate λ̂w;k|k−1 = hw(x̂m;k|k−1,φk).

Remark 3. To compute an estimate of xm;k using the missile
own-ship LOS angle measurements, only slight modifications
to the above equations are necessary. The indirect mea-
surement model hw(·, ·) in (30) is replaced by h(xm) ,
λm, the measurement Jacobian Hk simplifies to Hk =[
0 1 0 0 0

]
, and R in (31) is set to R = σ2

λ,m, where
σ2
λ,m is the variance of the missile’s sensor noise.

Remark 4. The proposed wingman-based estimation scheme
can be extended with a little extra effort to a multiple
wingman-based measuring scheme. This can be accomplished
by transforming all measurements from the wingmans’ to the
missile’s moving frame and fusing them similarly as in [17].

IV. OBSERVABILITY ANALYSIS

In this section, we will analytically study the accuracy of the
wingman-based estimation concept developed in the previous
section.
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A. Observability Metrics Derivation

The estimation accuracy of at, γt, and Vt is mainly driven
by the availability of an accurate target maneuver model, and
the actual target maneuvers. Moreover, as will be discussed
in the next section, the accuracy of these parameters is not
very crucial for the implementation of the PN guidance law
of (10). Therefore, the focus of this section will be only on
the observability of λm and rm.

We will investigate the observability of λm and rm from
a geometric perspective. Consider the engagement geometry
depicted in Fig. 1. From the law of cosines, the M–T range
can be expressed as

rm = gm(rw, λw,φ) ,
√
r2 + r2

w − 2rrw cos ∆λ, (34)

where ∆λ is defined as the difference between the W–M and
W–T LOS angles, i.e.,

∆λ , λ− λw. (35)

Inserting rm of (34) in the expression of rw given in (12), we
can easily isolate λm as follows

λm = hm(rw, λw,φ) , λ+ cos−1

(
r − rw cos ∆λ

gm (rw, λw,φ)

)
. (36)

The above expressions of rm and λm will form the baseline
for the subsequent observability analysis.

To proceed, we need to take into account the stochastic
nature of the measurements and the state estimate. Consider
that, at time step k, rw in (34) and (36) is replaced by its a
priori state estimate, i.e.,

r̂w;k = gw
(
x̂m;k|k−1,φk

)
= rw;k + vrw;k. (37)

In this context, r̂w;k is viewed as a random variable, where
vrw;k is assumed to be a zero-mean random process with a
time-varying variance σ2

r,w;k. Note that expression (37) is the
same as the one used at the MU stage of the EKF, see hw(·, ·)
in (30) and (32). In both cases, rw;k is evaluated using the a
priori state estimate x̂m;k|k−1 and the definition of gw(·, ·)
given in (12). Consequently, the accuracy of r̂w;k will be
driven by the filter’s performance, i.e., σ2

r,w;k is essentially
a function of Pk|k−1.

For observability analysis purposes, λw in (34) and (36)
is replaced by the wingman’s noise-corrupted measurement
zk = λw;k + vλw;k. Consider that the accuracy of r̂w;k and
zk is quantified by their standard deviations σr,w;k and σλ,w,
respectively, then

λ†m;k = hm (r̂w;k, zk,φk) , (38a)

r†m;k = gm (r̂w;k, zk,φk) , (38b)

can be viewed as pseudomeasurements of λm;k and rm;k,
respectively.

Next, the accuracy of the above pseudomeasurements will
be analyzed. Because r̂w;k in (38) is expressed using the a pri-
ori state estimate x̂m;k|k−1, the two random processes of vrw;k

and vλw;k are mutually independent, i.e., E [vrw;k, vλw;k] = 0.

Therefore, the associated variance of the LOS angle pseu-
domeasurement, λ†m;k, can be exactly computed, as

σ2
λ,m;k =

∫
R2

[
(hm(r̂w;k, zk,φk)− µλ,m;k)

2

× fr(vrw)fλ(vλw)
]

dvrwdvλw ,

(39)

where µλ,m;k is the mean value of λ†m;k,

µλ,m;k=

∫
R2

hm(r̂w;k, zk,φk)fr(vrw)fλ(vλw)dvrwdvλw , (40)

and fr(·) and fλ(·) are two scalar Gaussian density functions
with zero means and variances σ2

r,w;k and σ2
λ,w, respectively.

In a similar manner, the variance of r†m;k, denoted as σ2
r,m;k ,

can be computed using the relations above with hm(·, ·, ·)→
gm(·, ·, ·).

Unfortunately, the integrals in (39) and (40) are not trivial to
compute. Hence, in this paper, we will attempt to solve these
integrals by the analytical linearization (AL) technique [18].
The AL, also used in the EKF algorithm derivation, aims at
obtaining the variance of the transformed random variable(s)
using linearization of the underlying nonlinear function and
evaluating at expected values. Thus, the variance of the M–T
LOS angle pseudomeasurement, λ†m;k, obtained using the AL
method, becomes

σ2
λ,m;k ≈ σ2

r,w;k

(
∂hm(r̂w, z,φk)

∂r̂w

)2
∣∣∣∣∣
r̂w=E[r̂w;k], z=E[zk]

+σ2
λ,w

(
∂hm(r̂w, z,φk)

∂z

)2
∣∣∣∣∣
r̂w=E[r̂w;k], z=E[zk]

= σ2
r,w;k

(
r sin ∆λ

g2
m(rw, λw,φ)

)2

+ σ2
λ,w

(
rrw cos ∆λ − r2

w

g2
m(rw, λw,φ)

)2

.

(41)
Similarly, using AL, the variance of the M–T range pseu-
domeasurement, r†m;k, becomes

σ2
r,m;k ≈ σ2

r,w;k

(
∂gm(r̂w, z,φk)

∂r̂w

)2
∣∣∣∣∣
r̂w=E[r̂w;k], z=E[zk]

+σ2
λ,w

(
∂gm(r̂w, z,φk)

∂z

)2
∣∣∣∣∣
r̂w=E[r̂w;k], z=E[zk]

= σ2
r,w;k

(
r cos ∆λ − rw
gm(rw, λw,φ)

)2

+ σ2
λ,w

(
rrw sin ∆λ

gm(rw, λw,φ)

)2

.

(42)
The analytical expressions of (41) and (42) provide powerful
means to analyze the observability of λm and rm as a function
of the W–M relative geometry.

B. Observability Metrics’ Verification and Analysis

The AL method is often criticized to give inaccurate results.
Therefore, we will verify the analytical results of (41) and
(42) using a Monte Carlo (MC) statistical method. Unlike
AL, the MC method does not yield an explicit solution
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for the variance of the transformed random variable(s), but
instead uses sufficiently large number of realizations of the
random variable(s) to numerically approximate the underlying
distribution. This method reassembles the unscented transfor-
mation used in the UKF. Here, instead of using only few
“sigma points”, a large number, N , of realizations is generated
from the prior distribution of r̂w;k ∼ N (rw;k, σ

2
r,w;k) and

zk ∼ N (λw;k, σ
2
λ,w), which are then propagated through the

nonlinear functions hm(·, ·, ·) and gm(·, ·, ·), and the sample
variances are computed:

σ2
λ,m;k ≈

1

N − 1

N∑
i=1

λ†(i)m;k −
1

N

N∑
j=1

λ
†(j)
m;k

2

, (43a)

σ2
r,m;k ≈

1

N − 1

N∑
i=1

r†(i)m;k −
1

N

N∑
j=1

r
†(j)
m;k

2

, (43b)

where the superscript "i" denotes the ith realization of the
pseudomeasurement λ†m;k or r†m;k.

Without loss of generality, for the subsequent analysis, we
will assume that σr,w;k is constant, i.e., σr,w;k = σr,w for all
k ∈ N and that rw > 0. The constant σr,w assumption can be
viewed as a worst-case uncertainty for rw, i.e., σr,w;k ≤ σr,w,
∀k ∈ N. The normalized values of σλ,m and σr,m are depicted
in Fig. 4 for different W–M angle separations ∆λ and ranges
r. The obtained results are normalized by σλ,w = 0.001 and
σr,w = rw/100 to better appreciate the relative uncertainty
change with respect to these reference uncertainties. The W–
M range, r, is made dimensionless by rw. For the MC method,
a total number of N = 1, 000, 000 points were generated for
each ∆λ and r/rw combination, see the circles in Fig. 4. It can
be observed that the AL method very closely matches with the
MC method. To reflect on Assumption 4, the infeasible W–M
relative geometries are depicted as filled circles. These regions
represent unfavourable W–M geometries when, for a given
∆λ, the wingman is closer to the target than the missile (rw <
rm). Note that the trends depicted in Fig. 4 are particular for
the considered values of σλ,w and σr,w in this analysis.

It can be observed from Fig. 4, that if the position of the
missile and the wingman coincide, i.e., r = 0 ⇒ r/rw = 0,
the estimation accuracy of λm will be purely driven by the
accuracy of the wingman’s measurements σλ,w and σr,m =
σr,w for any ∆λ. This is obvious as this case is identical
to a missile having own-ship measurements with accuracy of
σλ,w. However, if the wingman and the missile are apart,
i.e., r/rw > 0, a contradictory behavior in the estimation
accuracy of the M–T kinematic variables (range rm and
LOS angle λm) can be observed for |∆λ| → 0. While for
∆λ = 0, the observability of the M–T line-of-sight angle
λm is maximized, the observability of the M–T range rm is
minimized. Similarly, increasing |∆λ|, opposing trends can
be observed for σλ,m vs. σr,m. Increasing r/rw leads to
improving accuracy of rm w.r.t. the accuracy of rw. This trend
can be explained by the fact that increasing r/rw means that
the missile is approaching the target and the accurately known
W–M relative position (r, λ) has an improving effect on the
M–T range estimate as the accuracy of the approximation
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Fig. 4. Effect of W–M relative geometry on the M–T range and LOS angle
accuracy

rm ≈ r sin(λ− λw) becomes more and more valid. Note that
both r and λ are assumed to be known and λw is directly
measured.

Figure 4 presents a rather static grasp of the underlying
observability issue. Next, we will attempt to address some dy-
namical aspects of the considered engagement scenario. Based
on Assumption 4, we have rm(t0) = rw(t0) at the beginning
of the engagement, thus r(t0) = 0. In a perfect interception
scenario, rm(tf ) = 0. This implies r(tf ) = rw(tf ) > 0.
Considering Assumption 4 again, it becomes evident that
r(t)/rw(t) is continuous and monotonously increasing from
0 to 1 on the interval t ∈ 〈t0, tf 〉, hence takes values
exclusively in the closed interval 〈0, 1〉. This insight enables us
to parameterize (41) and (42) for all, feasible and infeasible,
engagement trajectories by considering (rw > 0)

− π/2 ≤ ∆λ ≤ π/2, 0 ≤ r/rw < 1. (44)

Next, we are only interested in the feasible LOS separation
angles ∆λ which minimize σ2

λ,m and σ2
r,m, respectively, for a

given ratio r/rw. This can be mathematically formulated as:

∆min
λ (r/rw) = argmin

|∆λ|≤∆̄λ

{
σ2
j,m

}
, j ∈ {λ, r}. (45)

where ∆̄λ = cos−1 (r/rw) is the maximal feasible LOS
separation angle for a given r/rw ratio. The resulting angles
∆min
λ for 0 ≤ r/rw < 1 are depicted in Fig. 5. Absolute

value is used for the y-axis as σ2
λ,m and σ2

r,m are symmetric
functions around ∆λ = 0 [deg], see Fig. 4. Note that the limit
case r/rw = 1 yields to singularity issues in (41) and (42) and
is also not relevant from observability perspective as r/rw = 1
occurs only at the end of the engagement when rm(tf ) = 0,
therefore r/rw = 1 is considered only as a limit in Fig. 5.
Again, the results obtained by the AL method are verified by
the MC method using (43).

It becomes evident from Fig. 5 that simultaneous minimiza-
tion of uncertainties associated with both λm and rm is not
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Fig. 5. LOS separation angles ∆λ minimizing uncertainties in the M–T
range and LOS angle.

possible. Moreover, keeping ∆λ close to zero will on one
hand minimize σ2

λ,m for all 0 ≤ r/rw < 1, but on the other
hand will maximize σ2

r,m, see the lower subfigure in Fig. 4
for ∆λ = 0 [deg].

Remark 5. Further research is needed to fully understand the
practical implications of the observed variations of σr,m and
of σλ,m w.r.t. that of ∆λ and/or r/rw.

V. WINGMAN TRAJECTORY IMPLICATIONS

Based on the preceding observability analysis, possible
wingman trajectory implications are discussed in this section.

A. Wingman Trajectory Implications for a PN-Guided Missile

The trajectory of the missile is predetermined by the em-
ployed PN guidance law (10), therefore the focus of this
section will be on the remaining degree of freedom, which is
the choice of the wingman’s trajectory. The resulting wingman
trajectory should maximize the missile’s homing performance.

To implement the PN guidance law (10), only the missile-
target LOS angle rate λ̇m and the closing velocity Vc,m shall
be provided. The closing velocity is typically assumed to be
constant throughout the endgame and can be easily computed
using the estimated state x̂m. However, absence of an accurate
estimate on Vc,m, in general, does not significantly affect the
homing performance of a PN-guided missile.

On the other hand, an effective implementation of the PN
guidance law requires accurate information on the LOS rate
λ̇m [19]. In a typical one-on-one M–T engagement, this
is accomplished by directly measuring the LOS angle λm
or the LOS angle rate λ̇m. Therefore, in such a scenario,
the estimation accuracy of the LOS angle (rate) is directly
governed by the accuracy of the sensor(s) measurements.
However, in the proposed wingman-based estimation scheme,
only the LOS angle λw of the W–T engagement is measured.
The accuracy of the λw measurement is only indirectly related
to the M–T LOS angle (rate), see λm and λw in (36).

Direct knowledge on the target acceleration at is not re-
quired for the PN guidance law implementation, but at must be
included in xm to enable estimation of γt, which is, together
with Vt, essential for estimating rm and λm, see (1).

Based on the above discussion, it might seem natural for
the wingman to try to maximize the observability of the M–
T LOS angle λm, as this is the most critical variable for the
PN guidance law implementation. Figure 5 clearly suggests
that in order to maximize the observability of λm, the relative

LOS separation ∆λ must be kept zero throughout the entire
engagement. This leads to a straightforward formulation of
the wingman’s trajectory, which is to maintain ∆λ zero at all
times, i.e.,

∆λ(t) = 0, ∀t ∈ 〈t0, tf 〉. (46)

B. Wingman’s Guidance Law Implementation

Consider the desired wingman trajectory described in terms
of (46) and the simplified engagement geometry depicted
in Fig. 6. It becomes evident that the wingman’s guidance
problem can be related to the well known LOS guidance
concept in a three-body engagement. Its basic principle is
to keep a pursuer on the LOS connecting a target and a
(stationary) launch platform. In our case, the missile can be
conceptually regarded as the moving launch platform and the
wingman tries to maintain its position on the extended M–T
LOS line. This guidance problem can be also considered in
the framework of the target-attacker-defender problem [20],
[21], which is another three-point problem, where a defender
missile aids a target to negate the threat from an attacking
missile.

λ
λw

T

rw

W

LOSw∆λ

M

r

Fig. 6. Three-point guidance problem visualization.

The mechanization of the “classical” three-point LOS guid-
ance problem is commonly achieved by implementing either
command to LOS (CLOS) or beam rider LOS (BR-LOS)
guidance law [19]. The physical implementation of BR-LOS
is conceptually not feasible due to geometrical constraints
resulting from Assumption 4 (wingman flying behind the
missile). In a conventional CLOS guidance, the launcher com-
putes the guidance command and sends it to the pursuer for
execution. In our case, the “pursuer” computes the guidance
command and also executes it itself. While the CLOS guidance
law is conceptually feasible, it was devised for a stationary
launch platform. A CLOS guidance problem with a mov-
ing/maneuvering launch platform was studied in [21], where
a defender missile implemented a LOS guidance concept to
maintain its position on the LOS connecting the targeted
aircraft with the homing missile. Nevertheless, the CLOS-
based guidance law implementation would require accurate
knowledge of r, ṙ, λm, λ̇m, and λ̈m. The approach presented
in [21], in addition, would require the knowledge of at.
Although, most of these variables are assumed to be known
(r), estimated (λm and at), or can be obtained by numerical
differentiation (ṙ, λ̇m, and λ̈m), we did not select CLOS
as a candidate for solving our guidance problem formulated
by (46). This is because λm is not directly measured in
the proposed concept and, as discussed in Section IV, its
estimation accuracy is determined by the actual wingman
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trajectory. Therefore, the accuracy of λm, λ̇m, and λ̈m may
severely limit the wingman’s ability to accurately maintain the
extended M–T LOS line, thus limit the homing performance
of the missile.

Ideally, the wingman’s guidance law should not directly
depend on λm or on any of its derivatives. Perhaps the
simplest mechanization of the wingman’s guidance law is
by employing a discrete-time proportional-integral-derivative
(PID) controller to minimize the error represented by the
LOS separation angle ∆λ = λ − λw. The discrete-time
implementation of such a PID-based LOS (PLOS) guidance
strategy takes the following structure:

uw;k = Kp∆̂λ;k +KiT
k∑
j=0

∆̂λ;j +Kd
∆̂λ;k − ∆̂λ;k−1

T
, (47)

where uw;k is the wingman’s commanded lateral acceleration
at time tk, T = tk − tk−1 is the discretization step, Kp, Ki,
Kd are the PID controller’s tuning parameters [22], and ∆̂λ;k

is the estimate of ∆λ;k = λk − λw;k. If T = Ts, then the
wingman measurement zk or the state estimate x̂m;k|k can be
used to compute ∆̂λ;k as follows

∆̂λ;k = λk − zk, or ∆̂λ;k = λk − hw(x̂m;k|k,φk), (48)

where hw(·, ·) was defined in (11). In (48), the use of hw(·, ·)
is preferred over zk, as it reduces sensitivity of ∆̂λ;k to noise.

The PID algorithm of (47) can be written in a recursive
form

uw;k = uw;k−1 +K1∆̂λ;k −K2∆̂λ;k−1 +K3∆̂λ;k−2, (49)

with K1 = Kp + KiT + Kd/T , K2 = Kp + 2Kd/T , and
K3 = Kd/T . This form of the wingman’s guidance law
facilitates its on-board implementation. A proper tuning of
the PID parameters is important, because a relatively small
deviation of ∆λ from zero leads to a significant deterioration
in the estimation accuracy of λm, especially at the end of the
engagement, see the upper subplot of Fig. 4. Note that (47)
or (49) requires only the availability of λk and not rk. Hence
Assumption 2 can be slightly relaxed for the proposed PLOS
wingman guidance strategy implementation.

Remark 6. The wingman is expected to fly behind the missile
on the extended W–T LOS line. If the wingman does not “see”
the target because it is shadowed by the missile then, it knows,
with some angular error, at which angle the target is w.r.t. the
wingman. This angular error will be smaller as the missile
approaches the target.

C. Other Missile Guidance Laws and Their Implications

The preceding developments assumed PN guidance law
for the missile. Obviously, other missile guidance strategies
might lead to different (optimal) trajectory implications for the
wingman. For instance, the optimal guidance law [23] or the
impact time/angle guidance law [24], [25] require an accurate
estimation of the time-to-go (tgo) variable. The estimation
accuracy of tgo is highly dependent on the M–T range (rm)
estimate accuracy, see the typical tgo approximation in (7).

The W–M engagement parametrization (44) enables to
pose the following weighted optimization problem

∆?
λ (r/rw, ε) = argmin

−π2≤∆λ≤π2

{
εσ2
λ,m + (1− ε)σ2

r,m

}
, (50)

where σ2
λ,m and σ2

r,m are given in (41) and (42), 0 ≤ ε ≤ 1 is
a weight factor trading the uncertainty between λm and rm,
and ∆?

λ is the optimal LOS angle between W and M which
minimizes the weighted uncertainty for a given ε and r/rw.
The physical interpretation of ε can be difficult due to the
fact that σ2

λ,m and σ2
r,m might operate at different magnitudes.

Therefore, proper scaling shall be introduced in (50).
By an adequate choice of ε in (50), an optimal wingman

trajectory (parameterized in terms of r/rw and ∆?
λ) can be

obtained, which reflects the estimation accuracy needs for
rm and/or λm. These accuracy needs shall be driven by the
employed missile guidance strategy and its implementation
requirements. The resulting trajectory should then serve as a
baseline for the wingman’s guidance law derivation, which is
out of scope of this paper.

Remark 7. More sophisticated wingman guidance algorithms
might require the availability of the W–T state vector xw,
defined in a similar manner as xm, i.e.,

xw ,
[
rw λw γt at Vt

]T
. (51)

An estimate of xw can be easily obtained either by running
a separate estimator for the W–T engagement, or by using
x̂m;k|k and the following relations

r̂w;k = gw(x̂m;k|k,φk), λ̂w;k = hw(x̂m;k|k,φk). (52)

Estimates on γt, at, and Vt are contained in x̂m;k|k, see (9).

VI. SIMULATION RESULTS

In this section, numerical simulations are introduced to
demonstrate the closed-loop (estimator in the guidance loop)
performance of the proposed wingman-based sensorless mis-
sile guidance concept. The effect of different wingman guid-
ance strategies and measurement accuracies on the missile
homing performance are also presented.

A. Engagement Scenario and Parameters

For all simulations, the missile and the wingman are
launched simultaneously from the same initial location. The
initial horizontal separation of the target from the wingman–
missile team is 5 [km] in the positive XI direction. The
missile and the target are flying with the same constant speed
Vm = Vt = 500 [m/s] and have first-order lateral dynamics
with identical time constants τm = τt = 0.2 [s]. The wingman
is assumed to fly at a lower speed of Vw = 400 [m/s] and to
have time constant τw = 0.05 [s]. The maximal maneuverabil-
ity of the target, missile, and the wingman is amaxt = 5 [g0],
amaxm = 15 [g0], and amaxw = 30 [g0], respectively. Here,
g0 = 9.80665 [m/s2] represents the standard acceleration due
to gravity.

The parameters of the PID-based LOS guidance law were
fine tuned to Kp = 105, Kd = 5 ·106, and Ki = 10. Both, the
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estimation and guidance loops run at identical sampling rates
of 100 [Hz]. The ECA model parameters are set to α = 1/5
and Ψ =

√
5/3. The latter corresponds to Pmax = 1 and P0 =

0, see (16). At each run, the filter’s initial state is randomly
sampled as

x̂m;0|0 ∼ N (xm;0,P0|0)

where xm;0 is the true initial state vector defined in (9) and

P0|0 = diag
{

502 (π/180)2 (π/180)2 (5g0)2 252
}

is the initial estimation error covariance matrix of the filter.

B. Sample Run Simulations

Before turning to a statistical MC evaluation, first four
sample run examples are presented. In all cases, the wingman
(if engaged) acquires bearings-only measurements of the target
with σλ,w = 1 [mrad] accuracy. The missile’s navigation
constant is N ′ = 4 and the initial flight path angle of the
target is γt;0 = 15 [deg]. Both the missile and the wingman
are initially on a perfect collision course with the target, i.e.,

γj;0 = sin−1(Vt sin(γt;0 + λj;0)/Vj) + λj;0, j ∈ {m,w}.

To emulate a realistic interception scenario [26], at first the
target applies a constant maneuver turn at ut = 5 [g0] and
then, one second before the estimated end of the engagement
(tgo = 1), a maneuver direction switch occurs to the opposite
side, i.e., ut = −5 [g0]. Different missile–wingman guidance
strategies combinations are demonstrated in Figs. 7–10.
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Fig. 7. Missile guided using its own-ship LOS angle measurements.

In Fig. 7, a classical one-on-one scenario is considered,
i.e., without the wingman being engaged, where the missile
acquires own-ship LOS angle measurements and runs an
estimator on its own, designed as described in Remark 3. As
expected, a relatively small miss distances is achieved in this
case. This is because the accuracy of the M–T LOS angle
estimate is directly governed by the accuracy of the missile’s
own sensory measurements, which in this example were set
to σλ,m = 1 [mrad].
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Fig. 8. Sensorless missile guided by the Wingman which employs PLOS
guidance law.
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Fig. 9. Sensorless missile guided by the Wingman which employs PN
guidance law with N ′ = 3.

The second example, depicted in Fig. 8, considers a sen-
sorless missile being guided by the wingman. The wingman
employs the suggested PID-based LOS guidance law of Sec-
tion V. Thanks to the wingman’s agility and its measurements
accuracy (σλ,w = 1 [mrad]), the LOS separation angle ∆λ

is kept close to zero throughout the entire engagement (see
the overlaid dotted lines in Fig. 8). The resulting miss is only
slightly larger than in the case of the missile having own-ship
measurements with the same accuracy.

Fig. 9 demonstrates a case when the W–M relative ge-
ometry is similar to that of Fig. 8, but the separation angle
∆λ is not kept zero throughout the engagement. Here, the
wingman employs a PN guidance law (10) with N ′ = 3. The
wingman’s lateral acceleration command is computed with
respect to the W–T LOS and the variables needed for its
computation are either assumed to be known (γw), are part of
the estimated state x̂m, or can be calculated using (52). The
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Fig. 10. Sensorless missile guided by the Wingman which performs a single
direction maneuver at 5 [g0].

obtained M–T miss is inferior to the preceding two cases.
This result emphasizes the importance of ∆λ being zeroed by
the wingman, see the upper plot in Fig. 4 for non-zero ∆λ

angles.
The last example considers a scenario where the wingman

performs an acceleration maneuver of 5 [g0] to the opposite
side of the target’s flight direction. The obtained trajectories
are shown in Fig. 10. The results indicate very poor homing
performance of the sensorless missile. This might come as a
consequence of poor M–T relative state estimate. Notice that
the relative W–M geometry does not follow any of the two
optimal relative geometries suggested by Fig. 5.

C. Monte Carlo Simulation Results

The four missile–wingman guidance strategy combinations
from the previous subsection are further evaluated here us-
ing an extensive Monte Carlo campaign. Furthermore, two
different levels of noise intensities are investigated, namely
σλ ∈ {0.1, 1} [mrad]. A set of 1,000 MC simulations is run
for each case. For each run, the target’s initial flight path angle
is drawn uniformly from the closed interval 〈0, 20〉 [deg]. The
initial flight path angles of the missile and the target have a
2 [deg] heading error from the perfect collision course. These
heading errors are uniformly distributed. The target’s 5 [g0]
maneuver direction switch occurs uniformly between zero and
two seconds before the end of the engagement. The missile’s
navigation gain is selected uniformly from {3, 4, 5}.

Figure 11 presents the empirical cumulative distribution
function (CDF) of the M–T miss distance for each considered
case. Table I compiles the obtained results in terms of the
warhead lethal range ensuring a 95% kill probability (CDFs’
cross point values with the dotted horizontal line in Fig. 11).
The obtained MC results reaffirm the sample run results of
Figs. 7-10. The results are also in line with the wingman
guidance law implications discussed in Sec. V, i.e., the “best”
wingman guidance strategy to maximize the sensorless missile
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Fig. 11. CDF of the missile-target miss distance for each considered case.

homing performance is to employ the suggested PLOS guid-
ance. It is interesting to observe that, in order for the wingman-
missile team to achieve similar homing performance as in the
traditional one-on-one engagement, the wingman shall have an
order of magnitude better LOS measurements.

Sensor accuracy M only W-PLOS W-PN W-SIDE
σλ = 10−4 [rad] 4.71 6.19 20.15 71.78
σλ = 10−3 [rad] 6.06 11.33 39.97 68.91

TABLE I
MISSILE’S HOMING PERFORMANCE IN 95% OF RUNS (IN METERS)

VII. CONCLUDING REMARKS

A novel wingman-based estimation and guidance concept
for a sensorless PN-guided homing missile was proposed.
This concept is based on a wingman vehicle that tracks the
target’s motion using bearings-only measurements and guides
the pursuing missile into collision with a maneuvering aerial
target. Only the wingman is assumed to be equipped with
sensors that allow to track the target motion and the relative
position between the missile and the wingman. The proposed
concept enables reduction of weight, on-board computational
requirements, and costs for a pursuing missile.

Observability analysis of the wingman-based estimation
concept suggests that, in order to achieve maximum observ-
ability of the missile–target LOS angle (known to be crucial
for a PN-guided missile), the wingman shall fly at a predefined
trajectory with respect to the missile. This resulting trajectory
can be related to the well-known LOS guidance concept.
Implementation aspects of the resulting three-point guidance
problem were discussed in the framework of the proposed
missile-wingman-target scenario.

Monte Carlo simulation results verified the analytical find-
ings and revealed that, the wingman, when employing the
suggested PID-based LOS guidance law, shall have an order
of magnitude better bearings-only measurements in order
to achieve similar homing performance as the conventional
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own-ship measurement approach. Different wingman trajec-
tories might lead to better range observability due to rotating
wingman-target LOS, however, simulation results revealed that
they significantly deteriorate the homing accuracy of a PN-
guided missile, which is less sensitive to range errors.

In this work, only the PN-guided missile was analyzed.
Other missile guidance laws may be more sensitive to estima-
tion errors in other kinematic variables, and hence different
guidance strategies for the wingman shall be considered. The
homing accuracy of the sensorless missile could be further
improved by introducing additional sensors for the wingman
vehicle, such as radar measuring the wingman–target range.
Furthermore, the proposed approach could be extended to a
shoot-look-shoot strategy where, based on the kill assessment
of the missile, the wingman could be actively engaged in the
pursuit.
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