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Abstract—With the rise of deep learning (DL), our world
braces for artificial intelligence (AI) in every edge device, creating
an urgent need for edge-Al SoCs. This SoC hardware needs to
support high throughput, reliable and secure AI processing at
ultra-low power (ULP), with a very short time to market. With
its strong legacy in edge solutions and open processing platforms,
the EU is well-positioned to become a leader in this SoC market.
However, this requires Al edge processing to become at least 100
times more energy-efficient, while offering sufficient flexibility
and scalability to deal with AI as a fast-moving target. Since the
design space of these complex SoCs is huge, advanced tooling is
needed to make their design tractable. The CONVOLVE project
(currently in Inital stage) addresses these roadblocks. It takes
a holistic approach with innovations at all levels of the design
hierarchy. Starting with an overview of SOTA DL processing
support and our project methodology, this paper presents 8
important design choices largely impacting the energy efficiency
and flexibility of DL hardware. Finding good solutions is key to
making smart-edge computing a reality.

Index Terms—ULP, dynamic DL, edge-Al, SoC, memristor,
approximate computing, DSE, compiler stack.

I. INTRODUCTION

As the world braces for smart applications powered by Al
in almost every edge device, there is an urgent need for ultra-
low-power (ULP) edge-Al System-on-Chips (SoC) or Smart
Edge Processor (SEP) that offloads the computing closer to
the source of data generation to address the limitations (e.g.,
latency, bandwidth, privacy) of cloud computing. Based on
current projections, the SEP market is expected to grow about
40% per year, beyond 70 Billion USD by 2026. In contrast
to cloud computing, edge-Al hardware is far more energy-
constrained. Hence, low-cost application-specific ULP SoCs
are needed to make the edge intelligent. The strong ULP
requirements can only be achieved by combining innovations
from all levels of the design stack, from AI deep learning
models, compilers, architecture, and micro-architecture, to
circuits and devices, as we have proposed in our project
CONVOLVE [1]. Innovations in CONVOLVE include ULP
memristive circuits, exploiting Computing-in-Memory (CIM)
and approximate computing, more advanced DL models,
online learning, exploiting dynamism and reconfiguration at
DL-, Architecture- and Circuit-levels, while rethinking the
whole compiler stack. This results in extremely complex edge
systems. Therefore, a single framework is needed that ties the
innovations from the different levels together to fast design
and design-space-exploration (DSE). Hence, we define the
main objectives as follows: (1) Achieve 100x improvement in
energy efficiency compared to state-of-the-art COTS solutions.
(2) Reduce design time by 10x to be able to quickly implement
an ULP edge-Al processor combining innovations from the
different levels of stack for a given application. To understand

how we can accomplish the key objectives, we present this
paper with the following contributions:

e Summary of state-of-the-art low-power microprocessors
for deep learning applications (Sec.II).

o« CONVOLVE three-pillar design methodology that in-
cludes design-space exploration and compilation flow that
reduces the design time by 10X (Sec.III).

« Key design choices to be considered for improving energy
efficiency by a factor of 100X (Sec.IV).

II. STATE-OF-THE-ART (SOTA) EDGE-AI PROCESSING

Edge-AlI applications require high-performance and flexible
SoCs to efficiently map a diverse set of workloads. Hetero-
geneous multi-core SoCs can provide such duality by utiliz-
ing highly energy-efficient specialized hardware accelerators,
possibly supporting different operand precisions. In order to
judge the SotA for Edge-Al processing recent SoCs (includ-
ing several from CONVOLVE partners) and ULP processing
approaches are presented.

TinyVers - embedding MRAM: TinyVers [2] (see Fig. 1)
integrates a highly flexible-precision scalable digital accelera-
tor, with a RISC-V core, a power management unit and an eM-
RAM, to provide a complete standalone edge-Al solution. The
accelerator supports diverse Al layer types from Deep neural
networks (NNs) (CNN, FC, TCN, GAN, AE) to traditional ML
models like SVM at INT2/4/8 precisions. Fabricated in 22nm
FDX, it provides 0.8-17 TOPS/W with power consumption
ranging from 1.7 W in deep sleep to sub-mW when running
real Al workloads.

< 3.2mm
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DIANA - mixed-signal, mixed-precision: DIANA [3]
(Fig. 1) extends the idea of heterogeneity by combining
an ULP analog in-memory core (AIMC) with a precision-
scalable digital NN accelerator, an optimized shared-memory
subsystem, and a RISC-V host processor to achieve SotA
end-to-end inference at the edge. The SoC achieves peak
energy efficiencies of 600 TOPS/W (7bit I, ternary W, 6bit
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Figure 2. Block diagram of the BrainTTA SoC. The AXI-interconnect forms
the border between the RISC-V host and the flexible TTA Al accelerator.

O) for the AIMC and 14 TOPS/W (8bit I/W/O) for the
digital accelerator. When end-to-end ResNet20/CIFAR-10 and
ResNet18/ImageNet classification workloads are mapped on
the chip, 7 TOPS/W and 5.5 TOPS/W efficiencies are reported
at system level respectively.

BrainTTA - Flexible AI support: A popular method to
achieve extremely high energy efficiency is to perform ag-
gressive quantization i.e., reduce operand bit widths to as low
as a single bit. However, this may not always be optimal in
terms of accuracy. Thus, a typical edge-Al workload consists
of various precision levels and layer dimensions. BrainTTA
[4] is able to efficiently map various typical Al workloads,
because of its inherent flexible datapath from the Transport-
Triggered Architecture (TTA). As illustrated in Fig. 2, the SoC
consists of a RISC-V processor and a TTA-based accelerator.
The accelerator is fully-programmable and is supported by a
C-compiler, which greatly simplifies mapping various Al (and
other) workloads. BrainTTA, fabricated in 22nm FDX, has a
peak energy efficiency of 29/15/2 TOPS/W (binary, ternary,
and 8-bit precision) and a throughput of 614/307/77 GOPS.

Digital CIM, SRAM-based: Computing-in-Memory (CIM)
has been proposed as a paradigm capable of overcoming the
memory-wall problem of traditional computing architectures,
where the input vector and weight matrix multiplication (i.e.
MAC operations), is carried in the analog or digital domain
within the memory sub-array. CIM can be realized using
standard SRAM as well as emerging non-volatile memory.
Digital MAC operation in SRAM-based CIM is performed
by modifying the memory macro to add the required logic
components such as a multiplier, shift logic, and accumu-
lator unit in the periphery. A digital CIM [5], shown in
Fig. 3, using 12T bitcell supporting wide-range dynamic
voltage-frequency scaling (0.5V-0.9V) and flexible precision
(4-b and 8-b) MAC operations has an area efficiency of
221 TOPS/mm? (4b), 55 TOPS/mm? (8b), and energy
efficiency of 254 TOPS/W (4b) and 63 TOPS/W (8b).

Analog CIM, RRAM-based: Resistive memories store ana-
log values in the form of resistances, however, the surrounding
data communication remains digital. Quantization of analog
output to digital data streams is done using an Analog-to-
Digital Converter (ADC); it largely determines the overall
efficiency of the architectures. NeuRRAM architecture, which
is a 48-core RRAM-based CIM hardware, proposes a variable
computation bit-precision while performing ADC at low power
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Figure 3. Overall architecture of SRAM-based Digital CIM macro. [5].

consumption and compact-area footprint, and achieves the
energy efficiency of around 40 TOPS/W [6]. Furthermore, a
195.7 TOPS/W is reported using RRAM-based CIM macro
supporting 8b-input and 8b-weight MAC operations as shown
in Fig. 4 [7]. This architecture includes an asymmetric group-
modulated input scheme to reduce the computing latency as
well as a weighted current-to-voltage signal stacking converter
for the MAC operations.

Kraken, SoC with SNN and ANN accelerators: Kraken [8]
(Fig. 5) is an example for an ultra-low-power heterogeneous
SoC fabricated in 22nm and combines a 32-bit RISC-V
host core, 1 MiB of scratchpad L2 SRAM memory, and an
autonomous /O subsystem with three programmable, power-
gateable accelerators: (1) A 1.8 TOp/s/W parallel general-
purpose compute cluster with 8 RISC-V cores sharing 128 KiB
of L1 scratchpad memory. The RISC-V cores support hard-
ware loops, SIMD sub-byte dot-product integer operations
with mixed-precision capabilities, MAC with concurrent data
load (MAC-LD), and floating-point capabilities for energy-
efficient digital signal processing. (2) 1.1 TSyOp/s/W ac-
celerator called Sparse Neural Engine (SNE) targets spiking
convolutional layers with 4-bit 3x3 filter and 8-bit leaky-
integrate and fire (LIF) neuron states. (3) Completely Unrolled
Ternary Inference Engine (CUTIE) [9] is a 1036 TOp/s/W
Ternary Neural Network (TNN) accelerator.

uBrain/THOR, Digital SNN: A fundamentally different ap-
proach to improving energy efficiency is one of neuromorphic
devices, which takes inspiration from the brain and research
spiking neural networks (SNNs) both at the algorithmic and
the hardware implementation fronts. A key difference between
artificial neural networks (ANNs) and SNNs is the stateful
nature of spiking neurons, compared to the statefulness of
the ReLU functions and the fact that SNNs communicate by
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Figure 4. RRAM-based CIM chip and its NeuRRAM embedding [6].
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passing a 1-bit message or spike, thus, resulting in sparse
operation. Good examples of Digital SNNs are pBrain [10]
(Fig. 6 and THOR [11]. pBrain addresses extreme low power
while THOR aims at higher performance.

Summary: Fig. 7 shows the energy efficiency of many
neuromorphic chips, including above ones. We conclude: 1)
ANN chips are more mature, approaching an energy-efficiency
close to 1 fJ/Op; however this requires complete unrolling
(CUTIE) or AIMC (DIANA); both have their issues (see Sec.
IV); 2) Although SNNs have high potential, and our brain as
"proof-of-concept’, their chips are (only) in the pJ/Op range;
3) Flexibility has its price: SoCs like BrainTTA suffer at least
one-order in energy efficiency. We conclude that CONVOLVE
should 1) beat the fJ/Op barrier, while being flexible enough
to deal with future NN, and 2) unleash the potential of SNNs.
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Figure 7. Energy-efficiency of SOTA edge-Al pProcessors.

III. CONVOLVE METHODOLOGY

CONVOLVE (convolve.eu) proposes a novel three-pillar
design methodology, on which relies its four key objectives:
(1) Achieve 100X energy efficiency, (2) Reduce design time
by 10X, (3) Guarantee hardware security and reliability and
(4) Enable smart edge applications, as shown in Fig. 8. The
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Figure 8. Three-pillar design methodology of CONVOLVE.

first pillar: ULP blocks focuses on exploitation of different
hardware acceleration possibilities at microarchitecture, circuit
and device level; the second pillar Smart and dynamic appli-
cation models focuses on capturing the dynamic application
behaviour efficiently; and the third pillar Architecture and de-
sign tools efficiently bridges the first two pillars by generating
system architecture and mapping of application models to the
vast amount of hardware acceleration possibilities. Each pillar
covers different levels of the design stack leading to various
design choices, discussed in Sec. IV.

CONVOLVE'’s design flow starts from a given application
suite, selects in a very short time the optimal SoC config-
uration, implements and verifies it, and compile algorithms
for the generated hardware, as shown in Fig. 9. The goal is
to automatically generate the optimal processing system for
any given edge-Al application, based on ULP building blocks
and their code generation, including the building blocks for
hardware security. The application use-cases and scenarios are
analyzed for understanding application dynamism that will
define the dynamic NN model and the learning strategies
needed. An efficient, transparent and security-aware compila-
tion flow built within the MLIR [12] framework will be used
to generate code for the heterogeneous set of ULP building
blocks. A fully automated framework for DSE and hardware
generation will be developed based on the ZigZag ML per-
formance estimation model [13]. The DSE framework uses as
input performance models at Core- and SoC-level. (1) Core-
Level Modeling: We model each accelerator’s architecture,
including its run-time configurability, which enables rapid cost
estimation for the design space of mapping a wide range of ML
workloads onto each individual accelerator. In this way, the
vast combinatorial space of hardware, algorithm, and mapping
can be separately/jointly explored in a fast manner. (2) SoC-
Level Modeling: At this level, we model and estimate the
cost of end-to-end mapping one or multiple ML workloads
onto the SoC system. This requires modeling not only each
core/accelerator’s own attributes and mapping each operator
of an ML algorithm one at a time, but also the intercon-
nection between the cores/accelerators and fine-grained data
dependencies between operators. This allows early-stage DSE
of graph lowering and optimization, workload-core allocation,
and inter-/intra-core scheduling in parallel with workload, HW
and compiler development, and give feedback to other stages.

IV. CONVOLVE DESIGN SPACE

The design space for edge-Al systems is huge; we treat 8
key design choices, partitioned over the 3 CONVOLVE pillars.
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Figure 9. CONVOLVE's fast design flow showing different steps in generation
of fully integrated and optimized SoC from application specification.

A. Pillar: Smart and dynamic application models

ANN vs SNN: Many edge applications require constant
monitoring of data streams on a tiny power budget; e.g.,
acoustic scene analysis, speech denoising, and keyword spot-
ting. Current solutions typically use ANNs, namely recurrent
neural networks (RNNSs), that process their input frame by
frame. This is very inefficient because it does not exploit input
sparsity, thereby disabling edge-based computing. Use of the
cloud has it’s own problems, like added latency, energy cost
and privacy issues; solutions are urgently needed.

Compared to RNNs, brain-inspired SNNs are still relatively
immature. However, they offer compelling features. In SNNs,
neurons communicate through events, so-called spikes, that
are sparse in time [14]. This increases the information content
of each message passing between neurons, promising more
energy-efficient computation and communication: no inputs,
no spike propagation. This event-driven model may be a better
fit for the continuous processing of sparse real-world data.

Beyond the sparsity of network activity, the connectivity
between layers of neurons can itself be sparse, further reducing
the memory footprint required to store the connectivity matrix
and impacting silicon area and system cost as well as the
energy cost of moving data. This structural sparsity can also
be the target of biologically-inspired learning rules, termed
structural plasticity, permitting the creation and destruction
of inter-neural connections. This is again a significant area
of research in the project. From an implementation point of
view, managing sparse connectivity matrices is challenging.
Its hardware support is a major area for future innovations in
the CONVOLVE project that emphasizes on the co-design of
models and accelerators and seeks opportunities to combine
the best of the ANN and SNN worlds.

Online vs Offline learning: Stateful networks like RNNs
and SNNs require back-propagation through time (BPTT) to
achieve high accuracy. However, BPTT is extremely costly.
Recent innovations allow SNNs to be optimized without
BPTT [15], thereby enabling end-to-end training on otherwise
prohibitively long sequences and paving the way for real-time
on-chip learning.

Such online continual learning is essential for edge-Al sys-
tems allowing them to seamlessly adapt to different users, en-
vironments, or task requirements. Online adaptation may even
bestow self-healing by providing robustness to component or
sensor drift over the system’s lifetime. To address these points,
within CONVOLVE we will develop new algorithms for online
self-supervised learning in continuous time that dispense with
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Figure 10. CONVOLVE gray-box compiler uses a semi-automatic compi-
lation flow where static-analyses and expert developers collaborate to obtain
peak-performance when running large NNs on HW accelerators.

or at least minimize back-propagation requirements through
time and space, and are robust against catastrophic forgetting.

Static vs. Dynamic NNs: Many NN models have been
developed and have demonstrated excellent performance in
many domains. However, they are often extremely compute de-
manding. Approaches to reducing their processing complexity
include model compression and response approximation. They
reduce the model size by injecting sparsity, adding collabora-
tive layers or designing tiny architectures. Recently, dynamic
neural networks (DynNNs) were introduced to make the
processing complexity at the inference stage input-dependent.
The idea behind DynNNs is borrowed from biological NNs
which adapt the neural pathways to the stimulus in order to
speed up decision-making.

The most straightforward implementation of DynNNs is
through early exit [16]. It applies internal classifiers to make
quick decisions for easy inputs, without using the full-fledged
network. A response is returned if the internal classifier is
sufficiently confident; otherwise, the example is passed to a
subsequent internal classifier. Other studies made input de-
pendence possible through attention mechanisms which allow
focusing on the most important parts of the input data: 1)
gating functions that remove the least salient components (eg.
channels of an image); 2) runtime parameter adaptation that
aims at altering the architecture’s intrinsic characteristics (e.g.,
network width or depth) given the input’s features; and 3)
dynamic activation functions that activate neurons according
to the relevance of the input, thus increasing the representation
power of models. For a review of DynNNs see [16].

CONVOLVE develops efficient DynNNs for smart low-
resource processors, extend the multi-criterion network archi-
tecture search to include DynNNs, and adapt recent compres-
sion techniques, like pruning-at-initialisation [17].

B. Pillar: Architecture and design tools

Black-box vs. Grey-box compiler: To effectively map
complex NNs to the heterogeneous CONVOLVE hardware,
our compiler must scale to large applications while ensuring
a code quality that matches handwritten kernels developed by
domain-expert programmers. While typical black-box compil-
ers such as LLVM [18] offer a generic performance baseline,
NN are increasingly targeted via domain-specific frameworks
such as MLIR [12] or TVM [19]. These can significantly
improve performance and targetability by rigidly adding do-
main knowledge within a fixed-function stack. However, their
overspecialization hurts targetability of new applications to
new hardware.

Authorized licensed use limited to: TU Delft Library. Downloaded on June 22,2023 at 09:27:42 UTC from IEEE Xplore. Restrictions apply.
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Figure 11. CONVOLVE CGRA fabric executes multiple kernels in parallel
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The CONVOLVE compiler (Fig. 10) extends MLIR to offer
a generic grey-box approach: a novel theory of constraints and
opportunities will guide static analysers and expert developers
to symbiotically work towards optimal hardware mappings in
support of the fast-evolving CONVOLVE hardware ecosystem,
by embedding knowledge throughout program transformation,
while preserving key invariants.

Based on powerful static analysis, exploiting the opportu-
nities exposed by the applications’ characteristics, such as the
degree of parallelism, reduced precision, code layout, algo-
rithmic structure, or a limited input domain, and satisfying the
constraints imposed by the execution environment, like latency
requirements, timing and security guarantees, the accuracy of
the target, or performance penalties of a complex control flow,
the compiler customizes the application and automatically
generates optimized code, tailored for the target architecture.
In addition, we offer domain-expert developers efficient access
to the compiler internals to specialize code optimization and
application-to-accelerator mapping for each use case.

Application specific HW, Static vs. Dynamic: DL is
a fast-moving field, with rapidly changing network design
and optimization parameters, like pruning and quantization
strategy, number and types of network layers, data reuse, and
exploited network dynamism. FPGAs are very flexible, but
have high area, energy and performance penalties. On top,
their SoC integration is rather difficult. GPUs offer a more
cost-efficient alternative, however, their somewhat hardwired
datapath limits accelerator utilization and hence they deliver
sub-optimal performance for certain kernels. Static architec-
tures with fixed function accelerators offer high efficiency, but
can not offer the required flexibility.

A Coarse-Grained Reconfigurable Architecture (CGRA)
forms an interesting compromise. It consists of an array
of processing elements or functional units (FUs) that are
interconnected through a (reconfigurable) switching fabric or
network-on-chip (NoC). Similar to FPGAs, there are (coarse-
grained) specialized DSP blocks and local memories (LM) to
increase the energy efficiency, but its reconfiguration overhead
is much lower. CGRAs cover a wide range of reconfigurable
architectures, as shown in [20].

CONVOLVE uses the Blocks CGRA template [21]; see Fig.
11. Its template consists of a reconfigurable instruction and
data network with programmable FUs. The physical fabric can
be configured to execute multiple application-specific proces-
sors (i.e., virtual cores) in parallel. These virtual processors
execute multiple operations/cycle, like in VLIWSs. In addtion
Blocks supports flexible SIMD execution by broadcasting

the same instruction to multiple FUs over the reconfigurable
instruction network. Complex instructions are supported via
specialized FUs (SFUs). To accommodate changing work-
loads, the fabric can be (partially) reconfigured on a kernel-
level granularity with a tolerable reconfiguration penalty [22].
The fabric contains support for zero-overhead loops to enable
spatial computation where the instruction stream remains
static. Leakage power of unused FUs is taken care off by
advanced power management.

To summarize, the use of CGRAs has several advantages:
(1) they support highly parallel calculations, (2) have good
area and energy efficiency, due to coarse granularity, (3)
energy-efficiency is increased due to the static interconnect
(configured per kernel) and spatial computation, (4) and they
are flexible, supporting the fast-moving NN area. Its reconfig-
urability allows extension towards DynNN support.

C. Pillar: ULP blocks

Analog vs Digital computing: Current ANN/SNN com-
pute architectures can be classified into whether they can be
implemented using fully synthesizable logic using standard-
cell library (i.e., all-digital) and custom-designed using
analog/mixed-signal design techniques. Despite SotA analog
and mixed-signal architectures offer the lowest energy con-
sumption, digital implementations dominate the commercial
solutions due severe limitations of analog/mixed-signal: 1)
poor reliability as their performance is easily affected by
noise induced by process, temperature, and voltage variations
and hence require a complex calibration process; 2) poor
technology portability as they need to be re-designed when
porting the design to a different technology node; and 3)
poor scalability as larger designs cannot be easily built using
powerful design automation tools available for digital designs.
To tackle these limitations, innovating across the entire design
hierarchy is essential. As shown in [6], from a reconfigurable
dataflow architecture, an energy- and area-efficient voltage-
mode neuron circuit, to a series of algorithm-hardware co-
optimization techniques needs to be applied to demonstrate
a simultaneous improvement in efficiency, flexibility, and
accuracy of analog/mixed-signal designs.

In-memory vs. Classical computing: Moore’s law has
enabled the traditional multi-level cache based CPUs to deliver
better performance for successive generations. However, the
big distance between main memory and compute units leads
to high energy consumption and calls for a different approach:
Computing-in-Memory.

CIM integrates computation and storage of data within the
same physical location. CIM can be realized using different
emerging memristive technologies such as Resistive Random
Access Memory (RRAM), Phase Changing Memory (PCM)
and Magnetic RAM (MRAM) as well as conventional memory
technologies such as SRAM, DRAM and Ferroelectric FETs.
In-memory computing using emerging memrisitve devices
benefits from their non-volatile nature and their practically
zero leakage compared to their conventional memory technol-
ogy counterparts. Table I presents a qualitative comparison of
traditional CPUs and CIMs using different memory technolo-
gies. CONVOLVE explores ultra-low power implementation of
domain-specific analog and digital CIM flavors using different
memory technologies as well as Coarse-Grained Reconfig-
urable Arrays (CGRA).
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DESIGN METRICS FOR VON-NEUMANN AND CIM ARCHITECTURES USING

Table I

VARIOUS MEMORY TECHNOLOGIES (DATA OBTAINED FROM [23])

Comparison Conventional CIM digital CIM analog ‘ CIM analog
metric CPU SRAM SRAM memristive
Technology CMOS CMOS CMOS RRAM
Architecture von-N non von-N @ Onj\l}m @ on—Ig:: m
Operation mode Digital Digital Analog Analog
Design effort Easy Easy Complex Complex
Resolution High High Low Low
Volatility Yes Yes Yes No
Endurance High High High Low
Scalability medium medium medium high
Write energy ~fJ ~fJ ~f7 ~pJ
Write latency ~Ins ~Ins Ins ~10ns
Compute energy efficiency ~GOPS/W 10’s GOPS/W ~TOPS/W ~TOPS/W

Exact vs. Approximate computation: Diminishing energy-
efficiency gains from semiconductor scaling as per Moore’s
law and continued increase in compute requirements, as
evident from the latest NNs, like GPT3 and Transformers,
force researchers to look for newer computing paradigms.
Approximate Computing (AxC), which trades off accuracy for
improved energy efficiency, emerges as a potential alternative
owing to the error-resilient characteristics of modern ML
workloads. Most AxC techniques can be classified into three
broad categories: 1) timing approximation, wherein the circuit
is operated at a lower supply voltage without reducing the
corresponding operational frequency, resulting in efficiency
improvements for added timing errors, 2) functional approx-
imation, wherein the logic functionality of the circuit is
modified to trade off quality for added efficiency, e.g., netlist
modification, boolean rewriting, precision-scaling, etc. and
3) cross-level approximation where approximation knobs at
logic-, structural- and physical level are leveraged.

AxC has been widely adopted for ML. Among all the
different approximations being investigated for DL, precision-
scaling has emerged as a success story. DL models often
tolerate very aggressive precision scaling. It provides very
high gains by reducing both compute as well as off-chip
traffic in memory. For training, different data formats like
16-bit floats (FP16), BFloat, DLFloat, etc. have been adopted
for activation and weights. For inference, varying fixed-point
formats are adopted, scaling down to ternary or binary bit
widths. Accuracy lost due to approximations are regained
using quantization-aware training (QAT); see [24] for a survey.

Another widely adopted approximation technique is pruning
which forces weight values in a NN to zero, thereby introduc-
ing sparsity. Studies have proposed the combination of weight
pruning with precision scaling to achieve higher energy effi-
ciency for NN inference. Pruning introduces irregularities in
compute and memory access patterns; hence, specialized archi-
tectures with sparsity support have been proposed. Motivated
by the promising returns proposed by the close synergy of AxC
and ML, CONVOLVE aims to explore novel AxC techniques
to obtain extremely energy-efficient edge-Al pprocessors.

V. SUMMARY

CONVOLVE aims at 100X improvement in energy effi-
ciency and 10X in design-time. We outlined the SotA for
edge-Al processing, the CONVOLVE automated design flow,
and treated 8 important design choices supporting above goals.
Major conclusions are: 1) In the short term, ANNs are to be
favored above SNNs; 2) Although SNNs have favorable prop-
erties, inspired by our brain, they require more research; 3)
Online learning requires rethinking back-propagation through
time and space; 4) Dynamic NNs will become dominant in

low-power edge computing; 5) Quick and easy adaptation
requires a Grey-box compiler that can deal with new acceler-
ators comprehensively; 5) Architectures should support more
dynamism, e.g., by using 2-step code generation (i.e., Code
— Virtual cores — Physical architecture); 6) The ML field is
moving quickly and therefore requires flexible architectures; 7)
CIM is promising but requires adapting the memory periphery;
8) Analog computing has a high potential for energy savings
but is too inflexible in the short term; since NNs do not
fit spatially yet, time-sharing and reconfiguration flexibility
are key. CONVOLVE aims at unleasing above potential by
a holistic approach, rethinking the full design stack.
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