
Control and data-acquisition of a
heater/temperature sensor

For performance evaluation of vaporizing
liquidmicro-thrusters

G. Breysens
Marjolein Rebers

Version 1, June 2019

Control and data-acquisition of a
heater/temperature sensor

For performance evaluation of vaporizing
liquid micro-thrusters

by

G. Breysens
Marjolein Rebers

For the bachelor graduation project
at Delft University of Technology.

Figure on titlepage: thruster with water inlet and pressure sensors

Supervisor/Project Proposer Henk van Zeijl
Supervisor Brahim el Mansouri
Chairman Jaap Hoekstra
Jury Borbála Hunyadi
Jury Anton Montagne

Abstract

The goal of this bachelor thesis is to develop a control system that controls the temperature of a microthruster.
This system also needs to acquire data for research. The microthruster contains a resistor that is used both as
a heater and as a sensor. To facilitate the acquisition of data and the testing of the control system, a lab setup
with a Keithley 2450 SourceMeter power supply was used. LabVIEW was used to control the power supply
and to execute the control algorithms. The final system consists of a microcontroller that runs the control
algorithms based on proportional-integral-derivative (PID) control developed in this thesis. The PID values
can be adapted with use of the graphical user interface (GUI). A read-out circuit and current supply will be
part of the integrated system. These circuits will be developed by other groups that are part of this bachelor
project.

iii

Preface

This thesis was written in context of the Bachelor Graduation Project. The project was proposed by dr. ing.
Henk van Zeijl with the goal to design a data-acquisition/control system for the research of microthrusters.
We would like to express our gratitude to our supervisors dr. ing. Henk van Zeijl and ir. Brahim el Mansouri,
and the designer of the thrusters Alisher Kurmanbay. We would like to thank ir. Anton Montagne, dr.ir. Chris
Verhoeven, dr. Angelo Cervone, ing. Xavier van Rijnsoever and dr. Riccardo Ferrari for their time and helpful
advice. We would also like to thank dr.ir. Ger de Graaf and dr.ir. Chris Verhoeven for lending us equipment.
Finally, we would like to thank Koen Lam, Mirza Mrahorović, Coen Straathof and Rijk van Wijk for cooperating
in this project.

G. Breysens & Marjolein Rebers
Delft, June 2019

v

Acronyms and software

Acronyms

ADC Analog to Digital Converter
API Application Programming Interface
ASCII American Standard Code for Information Interchange
CPHA Clock PHAse
CPOL Clock POLarity
DAC Digital to Analog Converter
DMA Direct Memory Access
GUI Graphical User Interface
LSB Least Significant Bit
MCU Micro Controller Unit
MEMS MicroElectroMechanical Systems
MSB Most Significant Bit
OS Overshoot
PID Proportional Integral Derivative
RX Received data
SCPI Standard Commands for Programmable Instruments
SPI Serial Peripheral Interface
SSE Steady State Error
TX Transmit data
UART Universal Asynchronous Receiver Transmitter
UI User Interface
VI Virtual Instrument
VISA Virtual Instrument Software Architecture
VLM Vaporizing Liquid Thrusters

Software
The used software can be found in Table 1.

Table 1: Software that was used during this thesis.

NI LabVIEW 2018
systems engineering software for applications that require test, measurement,
and control with rapid access to hardware and data insights

STM32CUBEIDE 1.0.0
C/C++ development platform with configuration, code generation, code
compilation, and debug features for STM32 microcontrollers

MATLAB R2018B numerical analysis environment
FLIR R&D software thermal analysis software package for FLIR R&D cameras
DinoCapture 2.0 microscope imaging software for Windows

vii

Contents

1 Introduction 1
2 Program of Requirements 5
3 Theoretical model 7

3.1 Resistance. 7
3.2 Thermal dynamics . 7

4 Control 9
4.1 PID control . 9
4.2 Control loop . 10

5 Systemwith lab equipment 13
5.1 Setup . 13
5.2 LabVIEW . 14

6 Measuredmodel 17
6.1 System model . 17
6.2 Resistance control . 19

7 Systemwithmicrocontroller 21
7.1 Overview . 21
7.2 Microcontroller . 21
7.3 Communication Protocol . 21
7.4 State diagram . 24
7.5 User interface . 25
7.6 Testing . 25

8 Conclusion and discussion 29
A IR-camera 33
B AdditionalMCU testing results 35

B.1 Measurement pulses . 35
B.2 Timing requirement supply group . 35

C Code 37
C.1 MCU code . 37

C.1.1 App . 37
C.1.2 Receive. 44
C.1.3 Send . 46
C.1.4 Control. 48

C.2 MATLAB code . 53
C.2.1 Plot results LabVIEW . 53
C.2.2 MCU control . 54

ix

1
Introduction

Pico- and nanosatellites have increased in popularity over the years [1]. In 2018, 244 nanosatellites were
launched and it is predicted that in 2023 already 703 nanosatellites will be launched [2]. Nanosatellites can
be used in a wide variety of fields, such as space debris removal [3], formation flying [4] or swarm missions [5].
They are lightweight and low-cost, but usually lack propulsion capability. There is still much research to be
done into the micro-propulsion system for these satellites. The need for further development of these systems
is also mentioned in the technology roadmap set by NASA [6]. MEMS (micro electromechanical systems)can
play an important role in the creation of micro-propulsion systems. With systems used in space it is very
important to know that they work correctly because changes are not easily made, therefore it is important
to have system that can be used for testing. The background information, state-of-the-art analysis, project
objective and task division of project is the same for all the sub-parts of the project [7, 8].

Background information
Micro-propulsion systems have many different variations based on their working principle, ranging from
solar sails, cold gas propulsion systems, electric propulsion systems and chemical propulsion systems [9].
These types have different efficiency and size. This project focuses on the resistojet thruster, which falls in
the category of electric propulsion systems. There are in general two main types of microresistojets: the
vaporizing liquid microthruster (VLM) and low-pressure microresistojet (LPM) [10]. In this project, we work
with a VLM that is part of a research project [11].

A VLM generally consists of a resistive heating element and a liquid channel, as shown in Figure 1.1.
Thrust is delivered by heating a gas or liquid, accelerating it through a nozzle and expelling it into space. In
our case, the propellant that will be tested is water. When the water starts to boil after the resistor heats it up,
bubbles appear inside the channel. These bubbles are a change in state of water and form a layer of thermal
insulation and affect the heat transfer from the heater to the channel. This in turn affects the temperature
of the resistive element and the pressure in the channel. Therefore, the amount of steam generated tends
to oscillate without control. As the thrust is dependent on the mass flow rate [12], unwanted variations in
the temperature and pressure can therefore lead to a fluctuating thrust. Furthermore, uncontrolled heating
could even cause thermal runaway and this would destroy the device. Controlling the temperature of the
heater element is thus of very high importance. The control can be done with feedback because the resistive
heater is also a sensor.

Figure 1.1: Schematic cross-section of the thruster taken from [12]

1

2 1. Introduction

State-of-the-art analysis
Small satellites like CubeSats have several constraints that form a limitation in the design, e.g. its mass, di-
mensions, available power and propulsion [13]. Hence, there is a need for high performance, highly minia-
turized and integrated micro-propulsion systems that meet these constraints [14].

Tummala and Dutta compared different micro-propulsion systems for CubeSats [15]. Their research
shows that resistojets provide a relatively low specific impulse, have the highest average thrust-to-power ra-
tio compared to other electric propulsion systems and can deliver a thrust between 0.1 mN and about 50 mN.
This relatively low thrust can also be seen in the microresistojet propulsion concepts of Cervone, Zandbergen,
Guerrieri, De Athayde Costa e Silva, Krusharev, and Zeijl [16]. In this work, Cervone, Zandbergen, Guerrieri,
De Athayde Costa e Silva, Krusharev, and Zeijl state that the presented concepts have the most potential in
nanosatellite applications where a thrust between 0.5 mN and 10 mN is required. Due to their relatively low
thrust, resistojets are also used on larger satellites for attitude control [15].

When the thrust is controlled in magnitude and direction, it could make a big difference in the use of
micro-propulsion systems [16].

A possible solution to control the thrust is by trying to reduce bubble forming. The transient behavior of
bubble formation on micro-resistors is an active field of study [17]. Tsai and Lin have observed that the tem-
perature of the heater rises with the increase of bubble size to reach a new equilibrium temperature, because
it is believed that the heat dissipation path from the microresistor surface to the liquid is partially blocked by
the vapor bubble. Several experiments have also been performed on microheaters to better understand the
boiling process [18]. In this project an attempt will be made to control the temperature of the microheater
and therefore the bubbling process can be researched.

Project objective
In an attempt to stabilize the temperature, we have defined the following goals for the project:

1. To acquire data about the temperature of the heating element during dynamic liquid/vapor phenomenon.

2. To control the temperature of the heating element in an effort to reduce bubble forming.

To achieve these goals, we implement the required hardware and software compatible with multiple resisto-
jets. These resistojets have pressure sensors integrated that create additional information about the system.

The microthruster is supposed to work in space on nanosatellites. However, this project is part of a re-
search project on manufacturing microthrusters. Therefore, we assume that our system is only going to work
on earth as a first prototype. Phenomena such as space radiation, high pressure and extreme temperature
variations will be omitted and constraints such as limited space, limited power and extreme robustness will
not be given priority in the design. This simplifies the design while providing valuable information to reach
the objectives of the project.

The project can be considered a success if the following deliverables are accomplished.

1. Design and implementation of circuitry for real-time data acquisition from a heater array and from
multiple EPCOS pressure sensors and control of the resistance.

2. Design of front end data acquisition software.

3. Implementation of a control algorithm for temperature

The results obtained from this project enable researchers to further investigate the effect of the bubble
forming in microthrusters.

Task division of project
In order to reach the objectives of the project, the project is divided into subgroups.

The temperature of the heater device is affected by supplying an electric input signal to the heater. The ac-
curacy of this input signal determines the precision of the temperature which can be set. This is the challenge
of the first subgroup: the supply group.

Implementing a feedback system poses some challenges, as there is no model available of the microthruster.
Furthermore, effects such as the heat dissipation and stochastic bubble forming make modelling even more

3

complex. Nonetheless, the need for an adequate feedback system is of uttermost importance for controlling
the temperature. This is the focus of another subgroup: the control group.

Providing reliable input to the feedback system means that the resistance of the heater element should
be read out accurately. The temperature dependency makes this a challenging task. Therefore, another sub-
group is formed which tackles this challenge: the read-out subgroup.

A high level overview of the system is given in Figure 1.2. To summarize, the following three subgroups
are formed.

• Control: responsible for the control of the system.

• Read-out: responsible for the hardware read-out circuitry.

• Supply: responsible for the supply for the heater.

MicrothrusterPower supply Readout

Control

Figure 1.2: Overview of the subgroups

Technical analysis
Although the control of a microheater system has been done before [19]. This is a special case because the re-
sistance is at the same time the heater and sensor. The control system should also be able to control thrusters
with different resistances. Another reason why this project is special, is because the water in the thruster
causes bubbles, which make the system more difficult to control.

Document structure
To get a better understanding of the thruster information about the theoretical model is first given. Then, the
control type will be explained. Thereafter, the system with lab equipment will that is used for measurements
will be elaborated on. With these measurements, a model is derived. At last the implementation of the system
with use of the microcontroller will be explained and the test results will be reported.

2
Program of Requirements

In this chapter the requirements for the total system will be given, The requirements that are focused on by
the control will be highlighted.

Program of requirements entire system
The system which that ought to be build should control the temperature of the heater element in a resistojet
and provide temperature and pressure readings. The Key Performance Indicators (KPI) are listed below and
identified whether they are a mandatory requirement (MR) or trade-off requirement (ToR).

1. Functional

(a) The read-out must have an accuracy of +/- 1 ◦C. [MR]

(b) The temperature must be within +/- 10 ◦C of the set-point. [MR]

(c) Two EPCOS pressure sensors per truster need to be read out. [MR]

(d) The resistor must be used as the heater. [MR]

(e) The resistor must be used as the sensor. [MR]

(f) The measurement needs to be a 4-probe measurement. [MR]

(g) The system must have front-end data acquisition software. [MR]

(h) The system should preferably read out an array of three thrusters. [ToR]

2. Ecological embedding in the environment

(a) The maximum temperature should not exceed 300 ◦C. [MR]

(b) A maximum voltage needs to be limited to 40 V. [MR]

3. System requirements

(a) The circuit has to be portable. [MR]

(b) The system should not use more than 10 W. [ToR]

(c) The system should be able to be connected to different loads (i.e. thrusters)
ranging from 100 to 1000Ω. [ToR]

4. Development of manufacturing methodologies

(a) The system should preferably be implemented on a PCB. [ToR]

Program of requirements Control subsystem
For the control subsystem the main focus is on requirement 1b, 1c, 1g, 1h,2a, 2b and 3c. Besides the require-
ments, there are assumptions made about the timing:

Assumptions

1. A sampling frequency of 100 Hz is enough to see the bubbling effect.

5

3
Theoretical model

In this chapter, more information about the theoretical model of the thruster will be given. First, the relation
of the resistance to temperature will be examined. Secondly, the thermal dynamics will be studied.

3.1. Resistance
The resistance temperature coefficient α describes the relative change of the resistance R that is associated
with a given change in temperature dT . This relation is defined by Equation 3.1.

dR

R
=αdT (3.1)

Because the thruster is used in the temperature region in which the temperature coefficient does not change,
the resistance can be calculated according to Equation 3.2 [20].

R(T) = R(T0)[1+α(T −T0)] (3.2)

Where

• R(T0) = resistance at temperature T0

• α= temperature coefficient of the resistance (0.0024 K−1 for the thrusters)

• T = temperature

Because the resistance is linearly dependent on the temperature, the resistance can be used as a sensor. Since
the resistance is dependent on the temperature, the VI characteristic becomes non-ohmic. When the resistor
has a constant current as input, it heats up due to power dissipation. This results in a higher resistance
and thus a higher voltage. Because the current stays constant, the power increases because the resistance
increases as the thruster heats up. This is called the thermal runaway effect. This effect stops when the
heating up and cooling down are in balance.
Given that the temperature needs to be controlled within a range of 10 ◦C and the resistance of the thruster
is between 150-1000 Ω, the maximum deviation of the resistance can be calculated with Equation 3.3 to be
3.6Ω.

dR =αR(T0)dT (3.3)

3.2. Thermal dynamics
The heat transfer from a body to the ambient is proportional to the temperature difference between the body
and the ambient as shown in Equation 3.4:

F = h As (T (t)−Ta) (3.4)

where

• F = heat transfer

• h = heat transfer coefficient

• As = surface area

7

8 3. Theoretical model

• T (t) = body temperature at time t

• Ta = ambient temperature

When heat is lost to the ambient, the temperature drop in the body can be described by Equation 3.5:

ρcpV
dT

d t
=−F (3.5)

where

• ρ = density

• cp = specific heat

• V = body volume

The following equation can be derived using the thermal energy balance of the system [21]. Equating Equa-
tion 3.4 and Equation 3.5 for the heat transfer gives us Equation 3.6.

ρcpV
dT

d t
=−h As (T (t)−Ta) (3.6)

This can be rewritten as
dT

d t
+ 1

τ
T = 1

τ
Ta (3.7)

with

τ= ρcpV

h As

This equation models a first-order LTI system. An electric equivalent with power input is described by Equa-
tion 3.8

CT
dTT

d t
=− 1

RTa
(TT −Ta)+ IV (3.8)

where

• IV = power

• TT = resistor temperature

• Ta = ambient temperature

• RTa = thermal resistance between environment and resistor

• CT = thermal capacitance of resistor

• t = time

Rewriting using ∆T = TT −Ta and using the fact that Ta is approximately constant leads to the following
equation.

RTaCT
d∆T

d t
+∆T = RTa IV (3.9)

The above equation shows that the system dynamics are described by a first-order differential equation with
time constant τ = RTaCT . The system shows the behaviour of a low-pass filter. This time constant can be
determined from measurements.

Although the first-order approximation can work, the real system is more complicated because of envi-
ronmental effects such as the heat capacity of water and the casing of the thruster, and the phase change
when heating. This makes the system non-linear. To take into account more effects, a second-order model
provides a more accurate description.

4
Control

In this chapter, PID control will be explained. This is a closed-loop negative feedback control method. PID
control was chosen instead of bang-bang control, because it is more efficient due to less power use and be-
cause it is more accurate and gives less oscillations.

4.1. PID control
PID control is a commonly used control strategy. The PID equation can be expressed in the time-domain as
follows [22]:

u(t) = Kp e(t)+Ki

∫ t

0
e(t)+Kd

de(t)

d t
(4.1)

where

• u(t) = output of the controller

• e(t) = error at time t

• Kp , Ki and Kd are the proportional, integral and derivative constants respectively

Equation 4.1 is represented in the Laplace domain as follows.

C (s) = U (s)

E(s)
= Kp + Ki

s
+Kd s

The controller will be digital because digital controllers are insensitive to environmental factors such as tem-
perature, they are flexible and it makes it easy to implement multiple functions.

To find the discrete form of PID control, the first-order bilinear transform s = 2
T

1−z−1

1+z−1 is used [23]. This results
in Equation 4.2.

u[k] = ae[k]+be[k −1]+ ce[k −2]+u[k −1] (4.2)

• u[k] = signal

• e[k] = error

• a = Kp + Ts Ki
2 + Kd

Ts

• b =−Kp + Ts Ki
2 − Kd

Ts

• c = Kd
Ts

• Ts = sample time

Table 4.1 shows the effects that increasing the PID constants has on the rise time, settling time, overshoot,
and steady-state error.

Table 4.1: Performance effects of tuning. The parameters that are effected are the rise time Tr , the settling time Ts , the overshoot OS,
and the steady-state error SSE.

Effect on performance
Tr Ts OS SSE

Kp Decrease Small change Increase Decrease
Ki Decrease Increase Increase Eliminate
Kd Small change Decrease Decrease Small change

9

10 4. Control

4.2. Control loop
Figure 4.1 shows a typical control system where

• r = setpoint

• e = error

• y = output

• ym = measured output

Controller System

Disturbances

u

Measurements

r e y
−

ym

Figure 4.1: Generic control system

The control system has a temperature setpoint, which is converted to an equivalent resistance setpoint. The
resistance control works with a PI controller. A derivative term is not used because it makes the system more
sensitive to noise and stochastic effects, such as the bubbling effect when the water is boiled.
Two options exist to control the resistance. The PID controller could either control current or power. Because
a model has been made with the relation of power to the temperature/resistance, power control is preferred.
When the PI controller controls the amount of power that the system will deliver, this power needs to be
converted to an equivalent current output. To convert the power to current, the voltage and current mea-
surements and Equation 4.3 are used, the new resistance of the thruster can be calculated and fed back to
form a negative feedback loop. Figure 4.2 shows a block diagram of the temperature to resistance conversion,
the control loop and the heater with measurements.

Isupply =
√

PspVmeas

Imeas
(4.3)

Where:

• Isuppl y = send current to the supply

• Psp = power setpoint

• Vmeas = measured voltage

• Imeas = measured current

4.2. Control loop 11

Figure 4.2: Temperature control using power

5
System with lab equipment

To get more information about the thruster without having the final system ready, a measurement setup with
lab equipment was made. The measurements can be used to make a model of the thruster and to implement
a control system. In this chapter, the setup is explained.

5.1. Setup
An overview of the set-up can be seen in Figure 5.1. For the test setup, the Keithley 2450 SourceMeter was

meter

source

thruster

water

Computer

IR-camera microscope camera

Figure 5.1: Set-up with lab equipment

used . The Keithley is useful because it has two source ports and two sense ports. This means it is suited for
a 4-wire measurement. The Keithley can also deliver power up to 20 W. The power envelope of the Keithley
describes that a current amplitude of 1 A can be achieved when the amplitude of the voltage is smaller than
20 V. A voltage amplitude of 200 V can be achieved when the amplitude of the current is smaller than 100 mA.
The maximum amount of samples per second is 3000 for a 4.5-digit resolution measurement, and 59 for a
6.5-digit resolution measurement. This is not feasible when the measured data is sent to a remote interface
[24].
For the SCPI (standard commands for programmable instruments) commands, a USB cable is used (this
cable could be replaced with a GPIB cable). The information about the commands was found in the reference
manual [25]. An Ethernet cable is also connected for the use of the virtual front panel as shown in Figure 5.2.

13

14 5. System with lab equipment

Figure 5.2: Virtual Front Panel

Microscope camera The DinoCapture microscope camera is used to observe the bubbling process in the
thruster. An image from the camera can be seen in Figure 5.3. The figure shows the heating resistor sur-
rounded by water that starts to boil. On the left side of the picture, the nozzle can be seen.

Figure 5.3: Bubbling process in microthruster

IR-camera The FLIR IR-camera is used to measure the temperature of the thruster. This camera will be
used to verify the temperature control. We used the FLIR SC305 to perform thermal imaging. The SC305
can supply 16-bit 320 x 240 images at a maximum rate of 60 Hz via an Ethernet connection. Images from the
camera can be seen in Appendix A.

5.2. LabVIEW
Multiple LabVIEW VIs (virtual instruments) were made to communicate with the Keithley. The VIs have a GUI
and can be exported as an .exe file. All programs work in a similar manner. After initializing the communica-
tion, the commands are sent via VISA (virtual instrument software architecture). First, a start current is sent.
Next, a loop starts. In this loop the measurement data is acquired and appended to a .csv file. What happens
in the loop is dependent on the chosen functionality. The result is a measurement that has a frequency of
approximately 10 Hz. This is much slower than of the Keithley itself. The main delay is in the communication
with LabVIEW.

Power control The user can input a power setpoint in the GUI. LabVIEW calculates the necessary current
to deliver to the thruster to reach this power by using the measured resistance.

Resistance control For resistance control, a PI controller is used to control the power, which is then con-
verted to a current setpoint. The PI controller is implemented using Equation 4.2.

5.2. LabVIEW 15

Figure 5.4 shows the power and resistance control GUIs in LabVIEW. The saved data can be plotted by MAT-
LAB. The code that was used for this can be found in Subsection C.2.1.

(a) Power control GUI (b) Resistance control GUI

Figure 5.4: LabVIEW GUIs

6
Measured model

In this chapter, a model is made from the measurements that were acquired using the Keithley 2450 SourceMe-
ter.

6.1. System model
A system model has been made for a thruster with resistance of 188Ω.

Dry system
To derive a model of the thermal dynamics, the step response data of the system is recorded where the input
is a power setpoint and the resistance response is measured. A first-order transfer function is shown below,
where K is the DC gain and τ is the time constant of the system.

P (s) = K

τs +1

[
A−2

]
(6.1)

To determine this transfer function, the step response of the system has to be measured.

Figure 6.1: Dry system response for 1 W input with R0 = 188Ω

We will consider the output of the system to be the deviation∆R from the resistance at room temperature.
The time constant is the time it takes for the system to achieve 63% of its total change. Figure 6.2 shows only
the resistance response of the system for a 1 W step input.

17

18 6. Measured model

Figure 6.2: First-order model derivation

Using this response, we find that the DC gain is K = 496Ω−395.4902Ω
1W = 100.5098 A−2 and τ = 28.8105s.

Therefore, the system is described by the following transfer function.

P (s) = 100.5098

28.8105s +1

[
A−2

]
(6.2)

Figure 6.3 compares the measurements with the first-order model. The model does not provide a good fit
(55.37 %). The reason for this is that the first-order model does not take into account the leakage effects to
the environment.

Figure 6.3: First-order model verification (55.37 % fit). The black plot shows the measured data and the red plot shows the simulated
output of the first-order model.

6.2. Resistance control 19

To take into account the leakage effects, a second-order model can be found. Using the System Identifi-
cation toolbox in MATLAB, the following transfer function of the second-order model was found.

P (s) = 6.565s +0.1001

s2 +0.1006s +0.001019

[
A−2

]
(6.3)

This model provides a good fit (94.63 %). Figure 6.4 shows the measured data and the simulated output using
the second-order model.

Figure 6.4: Second-order model verification (94.63 % fit). The black plot shows the measured data and the blue plot shows the simulated
output of the second-order model.

Wet system

Figure 6.5 shows the response of the system in water when a power step of 1 W is applied. The rise curve is
similar to the dry system.

6.2. Resistance control

To design the controller, several problems have to be taken into account. While this thesis only focuses on the
control of one thruster, the next step would be to control an array of thrusters. It is possible to make models of
all the thrusters, but this would be very time consuming. It is better to design one controller that will work on
a variety of thrusters. It was found that a PI controller with Kp = 1.71 and Ki = 1.81 worked well. Various other
Kp and Ki can be used, but it is essential that the magnitude of a and b as calculated in Equation 4.2 don’t
become too large, as the system will start to display oscillations. Figure 6.6 shows the measurement results of
using resistance control with different setpoints.

20 6. Measured model

Figure 6.5: Wet system response for 1 W input with R0 = 186Ω

Figure 6.6: Resistance control measurements with different setpoints 195Ω, 200Ω, 210Ω and 200Ω were used in this order as the set-
points. R0 = 186Ω

7
System with microcontroller

In this chapter, the overview of microcontroller implementation of the control system will be given. With this
implementation the sourcemeter is replaced by the supply circuit [7], read-out circuit [8] and microcontroller.
The choice of the MCU (microcontroller) will be explained. The details of the communication protocol and
control loop implementation will be given.

7.1. Overview
An overview of the total system with MCU is given in Figure 7.1. The voltage and current are used in the
control loop to calculate the resistance and power. The pressure measurements are not used to control the
system. The communication signals will be explained in Section 7.3. The microscope camera and IR-camera
are not synchronized with the MCU and are used with the same programs as in Section 5.1. The controller is
very flexible because the PID values can be changed by commands from the computer.

7.2. Microcontroller
The control is done on a MCU, because this makes it more flexible to change the control parameters, the
setpoint and thruster type, than with the use of analog components. The MCU chip STM32f767zi was chosen
because it could be used with floating-point libraries, which simplifies the implementation of the control.
Moreover, the MCU has a high clock speed and the STM32F7 series has a HAL driver that provides an API
(Application Programming Interface) with simple functions for communication. The MCU can also send
and receive data in three different ways: blocking mode, interrupts (non-blocking) and DMA (direct memory
access, non-blocking). For testing and debugging the NUCLEO board is used.
STM32 CUBE IDE is used to write and debug the code. It has a separate interface for device configuration,
writing the code and debugging.

7.3. Communication Protocol
For communication, UART (universal asynchronous receiver transmitter) and SPI (serial peripheral inter-
face) are used. The UART serial communication with the computer is convenient because it can go over the
same cable that powers the MCU. The SPI protocol is necessary because the used DAC and ADC can only
communicate over SPI.

SPI
SPI is a full duplex communication protocol that uses four signals as shown in Table 7.1. In the communica-
tion between two devices, there is a master and a slave device. The master device sends out the clock and the
slave select. One master devices can have multiple slaves. In the application, the MCU is the master and the
read-out and supply devices are slaves.

Table 7.1: SPI signals

CLK Clock
MISO Master In Slave Out
MOSI Master Out Slave In
NSS Slave Select

21

22 7. System with microcontroller

16-bit
ADC
for V

NSS

data_adc[8]

set-point/
sync

calculations
&

Control

SPI

data_adc[8]

 UART

calculations
&

datalog

MCU

camera
(USB)

IR-camera
(Ethernet)

Computer

MISO

CLK

16-bit
ADC
for I

NSS SPI

MISO

CLK

16-bit
ADC
for

pressure
NSS SPI

MISO

CLK

16-bit
ADC
for

pressure
NSS SPI

MISO

CLK

NSS

CLK

MOSI

new/meas
cur SPI

16-bit
DAC

for supply

UART

set-point
&

sync

RX

RX

TX

TX

new cur

Figure 7.1: Overview system with MCU

ADC The information about the SPI settings for the 16-bit ADC (analog to digital converter) as shown in
Table 7.2 were found in the datasheet [26]. Because the MCU only needs to receive from the ADC, the master
is set as receive-only. This means that the MOSI is not used.
The data is received in two’s complement format. This results in a range of Vref −VLSB to −Vref.
The clock speed is lower than the maximum of the ADC, is because a higher clock speed makes and long ca-
bles the system more susceptible for noise. The speed is also limited by to a time delay of 6 ns due to a digital
isolator.
The software slave-select is used instead of the hardware, because the hardware slave-select stays low after
finishing communication. Although all the ADC masters have the same configuration and are used in block-
ing mode, the choice was made not to use one master with multiple slaves. This made it possible to test the
non-blocking mode settings. The non-blocking mode settings are not used because they gave timing issues
due to the continuous clock and software slave select.

7.3. Communication Protocol 23

Table 7.2: ADC Settings

ADC MCU
Max SPI frequency 100 Mhz 12.5 Mhz
Min sync high 710 ns -
CPOL 1 1
CPHA 1 1

16-bit 16-bit
MSB-first MSB-first

DAC The information about the SPI settings for the 16-bit DAC (digital to analog converter) as shown in
Table 7.3 were found in the datasheet [27]. Because the MCU only needs to transmit to the DAC, the master
is set as transmit-only. This means that the MISO is not used. The clock speed is lower than the maximum of
the DAC, is because a higher clock speed and the long cables makes the system more susceptible for noise.
The speed is also limited by a time delay of 6 ns due to a digital isolator. Because of the constant frequency
of 1 kHz, the minimal sync high time is always met. The master is again used in blocking mode due to the
software slave select.

Table 7.3: DAC Settings

DAC MCU
Max SPI frequency 30 MHz 12.5 Mhz
Min sync high 12 ns -
CPOL 0 0
CPHA 1 1

24-bit 3x8-bit
MSB-first MSB-first

The data that needs to be sent has to be in the correct format. Before every 16 bits of data, 8 bits of zeros need
to be sent, resulting in a total of 24 bits, see Table 7.4. After the data has the right format, it is sent to the DAC.

Table 7.4: Send format DAC

0000 0000 b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

UART
UART is a full duplex asynchronous communication protocol. The data will be sent in packages of 8-bit.
Because this happens asynchronously, a start and stop sequence needs to be sent with each package. The
signals needed for this protocol can be found in Table 7.5. The RX from the computer is connected to the TX
of the MCU, and the TX from the computer is connected to the RX of the MCU. The speed is 115200 bits/s

UART uses interrupt mode on the MCU, because it is non-blocking. On the computer, the program Putty

Table 7.5: UART signals

RX Receive data
TX Transmit data

was first used to send and receive. This program can log the data to a file, and this file can be read out with
MATLAB. Because Putty sends everything that is typed in the terminal in ASCII , the received data needs to
be converted from ASCII to integers on the MCU. Therefore the choice was made to use MATLAB to send
and receive. The data can be sent as integers.

24 7. System with microcontroller

7.4. State diagram
The state diagram can be seen in Figure 7.2. To get a constant sampling frequency, a timer of 1 kHz is used.
With this constant frequency, the time vector can be made on the computer without sending timing informa-
tion along each sample. There are three states. During the off and operation states, it is checked if a signal is
received from the computer and if the states needs to be changed. The blue led on the board is on when the
device is in the operation state. The code can be found in Section C.1.

init usrData = 'r'off

usrData = 'x'

operation

Figure 7.2: State diagram

Initialization
During the Initialization state, the UART starts receiving usrData. The output of the DAC is also set to zero to
make sure that there is no unknown current coming from the current supply.

Off
During the off state, different commands can be received. To change the type of control, the command needs
to start with ’t’. For PID power control the integer ’0’ needs to be sent, a ’1’ needs to be sent for PID resistance
control and a ’2’ for a current sweep and a ’3’ for power with calculation. To change the setpoint, the com-
mand needs to start with an ’s’. There are two kinds of setpoints: a power setpoint and a resistance setpoint.
Because both the setpoints are sent as floats, the same function on the MCU can be used. For the power
setpoint, the ’double’ 64-bit in MATLAB is converted to a ’single’ 32-bit and this is set in an array of 4 bytes.
These bytes are then sent. On the MCU, the array is converted back to a float. For the resistance setpoint, first
a calculation is done from the start resistance and temperature setpoint to a resistance setpoint, with use of
Equation 3.2. This ’double’ is transmitted in the same way as the power setpoint. The values used for the PID
control can be changed when the command starts with ’p’, ’i’ or ’d’. These values are also sent as floats.
When the command ’r’ is sent, the a,b,c values from Equation 4.2 are calculated and the device goes to the
operation state.

Operation
During the operation state it is checked if the next state needs to be the off state (the command ’x’ has been
sent) and if the setpoint is changed (command ’s’ and the new setpoint has been sent). Then it depends on
the type of control which function is executed.

Power control PID During power control, the data from the ADCs are first received. Then, the new value
that needs to be sent to the DAC is calculated. This is calculated using information from the read-out system.
The 16-bit data is converted to a float voltage and current. From this, the power, error and new current are
calculated. A voltage limit is created by setting the output current to zero when the voltage becomes higher
than 40 V. The current value output from the PID control is converted to a 16-bit integer that can be sent to
the DAC. Before this conversion, there is a check on overflow and a check on a negative number. If the ’float’
new current creates an overflow, the highest possible 16-bit value is sent. If the new current is negative, a zero
will be sent. This is due to the fact that a negative current will not cool down the system (the system would
heat up).
The data from the ADCs and the new current are sent to the computer. The data that will be sent can be seen
in Figure 7.3. The green arrow is the starting point with correct synchronization. The red arrows are wrong
starting points, if the computer starts receiving on one of this points, the data is shifted and the wrong plots
will be made. There are different ways to synchronize the data. One way is to send a synchronization signal
with every 8 bytes to indicate where the begin is. This is not feasible because the data can get any value and

7.5. User interface 25

there is no sequence that can work as the synchronization signal. Therefore MATLAB start reading right after
it has sent the ’r’ signal to indicate that is ready to receive.
The new current is sent to the DAC and every 1 ms, the loop starts again.

data_adc[0]
Voltage

data_adc[1]
Voltage

data_adc[2]
Current

data_adc[3]
Current

data_adc[4]
Pressure 1

data_adc[5]
Pressure 1

data_adc[6]
Pressure 2

data_adc[7]
Pressure 2

data_adc[8]
New current

data_adc[9]
New current

Figure 7.3: Synchronization UART

Power calculated To get a constant power, the current can also be calculated directly with Equation 4.3. The
values are measured and sent in the same way as power control PID, only the calculation of the new current
uses the power current relation.

Current sweep The current sweep can be used to verify the starting resistance. After 1 ms the new current
is increased with 1 bit.

Resistance control PID During resistance control, there is a change that the control sets the current to 0 A.
When this happens, the resistance can not be calculated any more because there are no voltages over the
ADCs. Therefore, a measurement current is sent periodically. The ADCs start measuring, the new current
and the data transmit to the computer and DAC are done in a similar way as power control. After the new
current (the heating current) is sent, it waits 9 ms in which the resistance can heat up or cool down. After
that, the constant measurement current is sent and the ADCs begin measuring again. Due to the heating
time, the sampling time in this control mode is 100 Hz.

Resistance control During resistance control, a new output power value is determined by PID control. This
power setpoint is followed by the power calculated function.

7.5. User interface
The MATLAB code is split into sections: open com, send data, receive data, close com, save data and plot
data. The received data that is plotted are: measured voltage, measured current send to DAC. The calculated
data that is plotted are: power, resistance and temperature. This code can be found in Subsection C.2.2.
To get a UI, the app designer from MATLAB is used. The app has less options than the script (the data can
not be seen and only the voltage and current are plotted). The UI can be seen in Figure 7.4.

7.6. Testing
Different tests were performed to ensure that the subsystems work. At the end, tests were done with the total
system.

Communication
The SPI communication is first tested by checking the communication signals from Table 7.1 on the oscil-
loscope. Then, a known positive signal was put on the input of one of the ADCs. The received data was
forwarded to the DAC and the output of the DAC was shown on the oscilloscope.

The transmit to the MCU via UART was first tested with the program Putty and the debug option in the
CUBEIDE. With help of breakpoints it is checked that the data that is received is the same as the data trans-
mitted. With MATLAB, the same tests were done.
Transmission from the MCU to the computer was tested by sending a known periodic data signal, and plot-
ting the received data.

26 7. System with microcontroller

Figure 7.4: User interface MATLAB

Timing of the system
The timing is checked with help of the oscilloscope. To verify if the 1 ms timer works, the oscilloscope is used
to determine the difference between the NSS. In Figure 7.5a, the NSS of the first ADC (begin of state machine
loop) can be seen. It is concluded that the timer of 1 ms works.

(a) NSS first ADC 1 ms timer (b) Output DAC resistance timing

Figure 7.5: Test timing

To verify if the timing for resistance control works, the output of the DAC was displayed on the oscilloscope. In
Figure 7.5b, instead of real control values, the heating current is set to 0xFFFF and the measurement current
to 0x0F00. In Section B.1 the result of the timing during resistance control in the total system can be seen.
The measurement to determine the settling time for the supply subgroup are explained in Section B.2.

Integration of total system
During the measurements of the total system, the IR-camera and microscope-camera were not connected.
The received values from the pressure sensor were transmitted back to the computer. Because the pressure
sensor was not connected, the received value stayed zero. The total system is dry-tested in all modes on a

7.6. Testing 27

thruster of 735Ω. During the dry tests with the total system, there are sometimes spikes in the voltage mea-
surement that are not expected. These spikes are not filtered because with water measurements a stochastic
bubbling effect is expected and a filter would also filter this effect from the measurement data.
In Figure 7.6a an example of a power PID control measurement can be seen. An example of the same power
setpoint by calculation can be seen in Figure 7.6b. These measurement are done with multiple power set-
points. There are small differences between the setpoint and the steady-state value, this is due to the floating-
point calculations.

0 1 2 3 4 5 6 7 8 9 10

time [s]

0

0.02

0.04

0.06

0.08

0.1

0.12

[W
]

0

0.02

0.04

0.06

0.08

0.1

0.12

[A
]

Power and supply current

Power

Supply current

(a) PID, P = 0.1, I = 0.01,D = 0

0 1 2 3 4 5 6 7 8 9 10

time [s]

0

0.02

0.04

0.06

0.08

0.1

0.12

[W
]

0

0.02

0.04

0.06

0.08

0.1

0.12

[A
]

Power and supply current

Power

Supply current

(b) Calculated

Figure 7.6: 0.1 W control in two different ways, R0 = 735Ω

In Figure 7.7a an example of a current sweep is given, the difference between the current sent to the supply
and the measured current can be seen. In Figure 7.7b the resistance during this sweep can be seen.

0 1 2 3 4 5 6 7 8 9 10

time [s]

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

[A
]

Current

Measured current

Supply current

(a) Sweep current

0 1 2 3 4 5 6 7 8 9 10

time [s]

0

100

200

300

400

500

600

700

800

900

1000

[O
h
m

]

0

0.02

0.04

0.06

0.08

0.1

0.12

[A
]

Resistance and supply current

Resistance

Supply current

(b) Resistance during current sweep

Figure 7.7: Current sweep

In Figure 7.8a, the temperature control to a setpoint of 30 ◦C with control via direct PID control can be
seen. In Figure 7.8b the temperature control to a setpoint of 30 ◦C with power control can be seen. Although
the PID values are not optimal, it can be seen that the control reacts on a difference in resistance/temperature.

28 7. System with microcontroller

0 5 10 15 20 25 30

time [s]

0

5

10

15

20

25

30

35

40

45

50

d
e
g
re

e
 c

e
lc

iu
s

0

0.02

0.04

0.06

0.08

0.1

0.12
[A

]
Temperature

Temperature

Controlled current

(a) Resistance control via current output, P = 0.01, I =
0.00001,D = 0

0 5 10 15 20 25 30

time [s]

0

5

10

15

20

25

30

35

40

45

50

d
e
g
re

e
 c

e
lc

iu
s

0

0.02

0.04

0.06

0.08

0.1

0.12

[A
]

Temperature

Temperature

Controlled current

(b) Resistance control via power setpoint, P = 0.1, I =
0.0001,D = 0

Figure 7.8: 30 ◦C control in two different ways, R0 = 735Ω

8
Conclusion and discussion

For different thrusters and different PID values, the oscillation and rise time differ. The PID constants can be
altered for both the Keithley and the MCU system to allow the control within 10 ◦C of the setpoint for various
thrusters (Requirement 1b, Requirement 3c). For both systems, the data can be saved and reloaded for later
research. The system can not read out an array of three thrusters (Requirement 1h).

System with lab equipment The resistance control with the Keithley 2450 SourceMeter has been tested and
it was able to control a thruster within 10 ◦C in a dry or wet environment. This system can not read out the
pressure sensors (Requirement 1c). The LabVIEW VIs can be used as frond-end data acquisition software
(Requirement 1g). The maximum temperature is limited by setting a limit to the temperature setpoint in the
VI (Requirement 2a). The voltage limit is set by sending a voltage limit command (Requirement 2b).

System with MCU For the MCU system, it has not been tested if the temperature stays within 10 ◦C of the
setpoint.
There are SPI channels reserved for the read-out of two pressure sensor and the data is sent back to the com-
puter, this has not been tested with the sensors connected (Requirement 1c).
The MATLAB app can be used as frond-end data acquisition software for the system with MCU (Requirement
1g).
In the MATLAB code there is a limit of the temperature setpoint (Requirement 2a).
The output current is set to zero on the MCU when the measured voltage becomes too large (Requirement
2b).

Future work In the future, more measurements could be done for testing the system. The pressure sensors
could be connected and read out. The system could be adapted for newer versions of the read-out circuit. For
the different thrusters, research could be done on the PID values and the output of the system. Because of the
strong variation of the process parameters such as the transfer resistance and heat capacitance, an adaptive
control system would be required to achieve better performance. The system could be expanded to read out
an array of three thrusters.
We recommend replacing the pressure sensors in the system to one with a higher temperature range and
higher pressure range.

29

Bibliography

[1] J. Bouwmeester and J. Guo, “Survey of worldwide pico- and nanosatellite missions, distributions and
subsystem technology”, Acta Astronautica, vol. 67, no. 7, pp. 854–862, 2010, ISSN: 0094-5765. DOI: https:
//doi.org/10.1016/j.actaastro.2010.06.004. [Online]. Available:http://www.sciencedirect.
com/science/article/pii/S0094576510001955.

[2] E. Kulu, Nanosats database. [Online]. Available: www.nanosats.eu.

[3] M. A. Silva, M. Shan, A. Cervone, and E. Gill, “Fuzzy control allocation of microthrusters for space debris
removal using cubesats”, Engineering Applications of Artificial Intelligence, vol. 81, pp. 145–156, 2019,
ISSN: 0952-1976. DOI: https://doi.org/10.1016/j.engappai.2019.02.008. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0952197619300314.

[4] E. Gill, P. Sundaramoorthy, J. Bouwmeester, B. Zandbergen, and R. Reinhard, “Formation flying within
a constellation of nano-satellites: The qb50 mission”, Acta Astronautica, vol. 82, no. 1, pp. 110–117,
2013, 6th International Workshop on Satellite Constellation and Formation Flying, ISSN: 0094-5765.
DOI: https://doi.org/10.1016/j.actaastro.2012.04.029. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0094576512001440.

[5] L. Felicetti and F. Santoni, “Nanosatellite swarm missions in low earth orbit using laser propulsion”,
Aerospace Science and Technology, vol. 27, no. 1, pp. 179–187, 2013, ISSN: 1270-9638. DOI: https://
doi.org/10.1016/j.ast.2012.08.005. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1270963812001253.

[6] “Nasa technology roadmaps”, TA 2: In-Space Propulsion Technologies, 2015.

[7] K. Lam and M. Mrahorović, “Design and implementation of a power supply for mems vaporizing liquid
microthrusters”, (to appear), 2019.

[8] C. Straathof and R. van Wijk, “Measuring device for controlling a vaporising microthruster”, (to appear),
2019.

[9] K. Lemmer, “Propulsion for cubesats”, Acta Astronautica, vol. 134, pp. 231–243, 2017, ISSN: 0094-5765.
DOI: https://doi.org/10.1016/j.actaastro.2017.01.048. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0094576516308840.

[10] M. A. Silva, D. C. Guerrieri, A. Cervone, and E. Gill, “A review of mems micropropulsion technologies
for cubesats and pocketqubes”, Acta Astronautica, vol. 143, pp. 234–243, 2018, ISSN: 0094-5765. DOI:
https://doi.org/10.1016/j.actaastro.2017.11.049. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0094576517304290.

[11] A. Kurmanbay, “Design, fabrication, and characterization of mems based micro heater for vaporizing
liquid microthruster”, (to appear), 2019.

[12] M. A. Silva, D. C. Guerrieri, H. van Zeijl, A. Cervone, and E. Gill, “Vaporizing liquid microthrusters with
integrated heaters and temperature measurement”, Sensors and Actuators A: Physical, vol. 265, pp. 261–
274, 2017, ISSN: 0924-4247. DOI: https://doi.org/10.1016/j.sna.2017.07.032. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S0924424717306490.

[13] D. Selva and D. Krejci, “A survey and assessment of the capabilities of cubesats for earth observation”,
Acta Astronautica, vol. 74, pp. 50–68, 2012, ISSN: 0094-5765. DOI: https://doi.org/10.1016/
j.actaastro.2011.12.014. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0094576511003742.

[14] A. Cervone, B. Zandbergen, J. Bouwmester, and J. Guo, “Micro-propulsion research; challenges to-
wards future nano-satellite projects”, Leonardo Times, 2013. [Online]. Available: http://resolver.
tudelft.nl/uuid:c1757611-8f73-4061-a573-d748aaa36b23.

[15] A. Tummala and A. Dutta, “An overview of cube-satellite propulsion technologies and trends”, Aerospace,
vol. 4, Dec. 2017. DOI: 10.3390/aerospace4040058.

31

https://doi.org/https://doi.org/10.1016/j.actaastro.2010.06.004
https://doi.org/https://doi.org/10.1016/j.actaastro.2010.06.004
http://www.sciencedirect.com/science/article/pii/S0094576510001955
http://www.sciencedirect.com/science/article/pii/S0094576510001955
www.nanosats.eu
https://doi.org/https://doi.org/10.1016/j.engappai.2019.02.008
http://www.sciencedirect.com/science/article/pii/S0952197619300314
https://doi.org/https://doi.org/10.1016/j.actaastro.2012.04.029
http://www.sciencedirect.com/science/article/pii/S0094576512001440
http://www.sciencedirect.com/science/article/pii/S0094576512001440
https://doi.org/https://doi.org/10.1016/j.ast.2012.08.005
https://doi.org/https://doi.org/10.1016/j.ast.2012.08.005
http://www.sciencedirect.com/science/article/pii/S1270963812001253
http://www.sciencedirect.com/science/article/pii/S1270963812001253
https://doi.org/https://doi.org/10.1016/j.actaastro.2017.01.048
http://www.sciencedirect.com/science/article/pii/S0094576516308840
http://www.sciencedirect.com/science/article/pii/S0094576516308840
https://doi.org/https://doi.org/10.1016/j.actaastro.2017.11.049
http://www.sciencedirect.com/science/article/pii/S0094576517304290
http://www.sciencedirect.com/science/article/pii/S0094576517304290
https://doi.org/https://doi.org/10.1016/j.sna.2017.07.032
http://www.sciencedirect.com/science/article/pii/S0924424717306490
https://doi.org/https://doi.org/10.1016/j.actaastro.2011.12.014
https://doi.org/https://doi.org/10.1016/j.actaastro.2011.12.014
http://www.sciencedirect.com/science/article/pii/S0094576511003742
http://www.sciencedirect.com/science/article/pii/S0094576511003742
http://resolver.tudelft.nl/uuid:c1757611-8f73-4061-a573-d748aaa36b23
http://resolver.tudelft.nl/uuid:c1757611-8f73-4061-a573-d748aaa36b23
https://doi.org/10.3390/aerospace4040058

32 Bibliography

[16] A. Cervone, B. Zandbergen, D. C. Guerrieri, M. De Athayde Costa e Silva, I. Krusharev, and H. van Zeijl,
“Green micro-resistojet research at delft university of technology: New options for cubesat propulsion”,
CEAS Space Journal, vol. 9, no. 1, pp. 111–125, Mar. 2017, ISSN: 1868-2510. DOI: 10.1007/s12567-016-
0135-3. [Online]. Available: https://doi.org/10.1007/s12567-016-0135-3.

[17] J. Tsai and L. Lin, “Transient thermal bubble formation on polysilicon micro-resisters”, Journal of Heat
Transfer, vol. 124, pp. 375–382, 2002. DOI: 10.1115/1.1445136.

[18] K. T. Wen-Jei Yang, “Overview of boiling on microstructures - macro bubbles from micro heaters”, Mi-
croscale Thermophysical Engineering, vol. 4, no. 1, pp. 7–24, 2000. DOI: 10.1080/108939500199600.
eprint: https://doi.org/10.1080/108939500199600. [Online]. Available: https://doi.org/10.
1080/108939500199600.

[19] M. Chambers, “Design and fabrication of a microheater control system”, PhD thesis, University of Utah,
2006. [Online]. Available: https://my.ece.utah.edu/~mchamber/final-report.pdf.

[20] J. Kuo, L. Yu, and E. Meng, “Micromachined thermal flow sensors—a review”, Micromachines, pp. 550–
573, 2012. [Online]. Available: https://www.mdpi.com/2072-666X/3/3/550.

[21] M. Kutz, Temperature control. John Wiley & Sons, Inc, 1986.

[22] G. Franklin, J. Powell, and A. Emami-Naeini, Feedback control of dynamic systems. Pearson, 2015, pp. 216–
228.

[23] M. Kondratiuk, L. Ambroziak, E. Pawluszewicz, and J. Janczak, “Discrete pid algorithm with non-uniform
sampling – practical implementation in control system”, AIP Conference Proceedings, vol. 2029, no. 1,
p. 020 029, 2018. DOI: 10.1063/1.5066491. [Online]. Available: https://aip.scitation.org/doi/
abs/10.1063/1.5066491.

[24] 2450 sourcemeter smu instrument datasheet, Keithley, a Tektronix Company. [Online]. Available: https:
//www.tek.com/sites/default/files/media/media/resources/1KW- 60904- 0_2450_
DataSheet_0.pdf.

[25] 2450 sourcemeter smu instrument reference manual, 2450-901-01, Rev.B, Keithley, a Tektronix Com-
pany, 2013, ch. 5-1, 6-1. [Online]. Available:https://smt.at/wp-content/uploads/smt-handbuch-
keithley-2450-englisch.pdf.

[26] 1 msps 16-bit differential input sar adc, MCP33131D-10, Microchip Technology Inc., 2018. [Online].
Available: http://www.farnell.com/datasheets/2608040.pdf.

[27] 16-bit vout nanodac, AD5061, Rev.C, Analog Devices, 2017. [Online]. Available: http://www.farnell.
com/datasheets/2250565.pdf.

https://doi.org/10.1007/s12567-016-0135-3
https://doi.org/10.1007/s12567-016-0135-3
https://doi.org/10.1007/s12567-016-0135-3
https://doi.org/10.1115/1.1445136
https://doi.org/10.1080/108939500199600
https://doi.org/10.1080/108939500199600
https://doi.org/10.1080/108939500199600
https://doi.org/10.1080/108939500199600
https://my.ece.utah.edu/~mchamber/final-report.pdf
https://www.mdpi.com/2072-666X/3/3/550
https://doi.org/10.1063/1.5066491
https://aip.scitation.org/doi/abs/10.1063/1.5066491
https://aip.scitation.org/doi/abs/10.1063/1.5066491
https://www.tek.com/sites/default/files/media/media/resources/1KW-60904-0_2450_DataSheet_0.pdf
https://www.tek.com/sites/default/files/media/media/resources/1KW-60904-0_2450_DataSheet_0.pdf
https://www.tek.com/sites/default/files/media/media/resources/1KW-60904-0_2450_DataSheet_0.pdf
https://smt.at/wp-content/uploads/smt-handbuch-keithley-2450-englisch.pdf
https://smt.at/wp-content/uploads/smt-handbuch-keithley-2450-englisch.pdf
http://www.farnell.com/datasheets/2608040.pdf
http://www.farnell.com/datasheets/2250565.pdf
http://www.farnell.com/datasheets/2250565.pdf

A
IR-camera

Figure A.1: IR-camera on three thrusters. The middle thruster is heated

33

34 A. IR-camera

Figure A.2: IR-camera on three thrusters. The system is cooling down

B
Additional MCU testing results

In this appendix additional MCU testing results can be found.

B.1. Measurement pulses
In Figure B.1 the measured and supply heating current can be seen during a resistance control measurement.
The measured current does not follow the supply heating current because during the measurement, the mea-
surement current is supplied. In Figure B.2 it can be seen that the measured current follows the supplied
current during the measurement.

0 5 10 15 20 25 30

time [s]

0

0.02

0.04

0.06

0.08

0.1

0.12

[A
]

Current

Measured current

Heating current

Figure B.1: Supplied and received current

B.2. Timing requirement supply group
In Figure B.3, the difference between the NSS signal from the DAC and the NSS signal of the first ADC. By
measuring the delay between these two signals, the maximal settling time of the supply can be found. The
maximum settling time is 24µs

35

36 B. Additional MCU testing results

0 1 2 3 4 5 6 7 8 9 10

time [s]

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

[A
]

Current

Measured current

Supplied current

Figure B.2: Currents during power control with PID

Figure B.3: Channel 1: NSS of the first ADC, channel 2: NSS of the DAC

C
Code

In this appendix the MCU and MATLAB code can be found.

C.1. MCU code
The code used on the MCU stands in this section.

C.1.1. App

1 /*
2 * app . h
3 *
4 * Created on : 15 jun . 2019
5 * Author : Marjolein Rebers
6 */
7

8 # i fndef INC_APP_H_
9 #define INC_APP_H_

10

11 // includes
12 #include "main . h"
13 #include " getdata . h"
14 #include "senddata . h"
15 #include " calcon . h"
16 #include "main . h"
17 #include " spi . h"
18 #include "tim . h"
19 #include " usart . h"
20 #include " gpio . h"
21

22 // Defines
23 #define BUF_SIZE 20
24 #define HEARTBEAT_MAX_CNT 200
25 #define CONTROL_MAX_CNT0 10
26 #define CONTROL_MAX_CNT1 9
27

28

29 // typedefs and s t r u c t s
30 typedef s t r u c t s_command {
31 uint16_t len ;
32 uint8_t data [BUF_SIZE] ;
33 }t_command ;
34

35 // Statemachine
36 enum t _ s t a t e {
37 off , opperation , error
38 } ;

37

38 C. Code

39

40 // I n i t i a l i z e the application and the hardware
41 void init_app () ;
42

43 // Run the app
44 void run_app () ;
45

46 // uart handle for in ISR
47 void uart_recv_handle (UART_HandleTypeDef * huart) ;
48

49 #endif /* INC_APP_H_ */

1 /*
2 * app . c
3 *
4 * Created on : 15 jun . 2019
5 * Author : Marjolein Rebers
6 */
7

8 // Includes
9 #include "app . h"

10

11

12

13 // Variables
14 // Communication data
15 t_command intData ;
16 t_command usrData ;
17 uint8_t usrDataRdy ;
18

19 // Heartbeat
20 uint16_t heartbeatCnt = 0x0 ;
21

22 // Current data
23 uint8_t s t a r t _ c u r [2] = { 0 } ;
24 uint8_t meas_cur [2] = { 0x00 , 0 x0f } ;
25

26 //known buffer used for t e s t i n g uart
27 // uint8_t data [8] = { 1 , 1 , 1 , 2 , 0 , 3 , 0 ,4 } ;
28

29 // Control
30 uint8_t type = 0 ;
31 uint8_t controlCnt0 = 0x0 ;
32 uint8_t controlCnt1 = 0x0 ;
33 uint8_t data [1 0] = { 0 } ;
34 f l o a t sp = 0 ;
35 f l o a t Kp = 0 ;
36 f l o a t Ki = 0 ;
37 f l o a t Kd = 0 ;
38 f l o a t a = 0 ;
39 f l o a t b = 0 ;
40 f l o a t c = 0 ;
41 f l o a t Ts = 0 . 0 0 1 ;
42

43

44

C.1. MCU code 39

45 // SysTick counters
46 uint32_t sysTick = 0 ;
47 uint32_t prevTick = 0 ;
48

49 // Statemachine
50 enum t _ s t a t e s t a t e = o f f ;
51

52 // Satemachine functions
53 void o f f _ s t a t e () ;
54 void opperation_state () ;
55 void e r r o r _ s t a t e () ;
56

57 // Control functions
58 void PowerControl () ;
59 void ResistanceControlPID () ;
60 void ResistanceControl () ;
61 void CurrentSweep () ;
62 void PIDPowerControl () ;
63

64 // I n i t i a l i z e the application and the hardware
65 void init_app () {
66 i n t i ;
67

68 // Stop timer during debug
69 DBGMCU−>APB1FZ | = (DBGMCU_APB1_FZ_DBG_TIM3_STOP) ;
70

71 // S t a r t with 0 A
72 send_data_dac (start_cur , 2) ;
73

74 // Set s y s t i c k to 1 KHz
75 i f (HAL_GetTickFreq () != HAL_TICK_FREQ_1KHZ) {
76 HAL_SetTickFreq (HAL_TICK_FREQ_1KHZ) ;
77 }
78

79 // set a l l the command data to zero
80 for (i = 0 ; i < BUF_SIZE ; i ++) {
81 intData . data [i] = 0x0 ;
82 usrData . data [i] = 0x0 ;
83 }
84 intData . len = 0x0 ;
85 usrData . len = 0x0 ;
86 usrDataRdy = 0x0 ;
87

88 // s t a r t a data request
89 HAL_UART_Receive_IT(&huart3 , intData . data , BUF_SIZE) ;
90 }
91

92 // Run the app
93 void run_app () {
94 i n t i ;
95

96 // Get current sysTick count
97 sysTick = HAL_GetTick () ;
98

99 // Check i f the sysTick count i s increased
100 i f (prevTick != sysTick) {

40 C. Code

101 // Set previous sysTick to the current sysTick
102 prevTick = sysTick ;
103

104 // Check i f we are have new data
105 i f (HAL_UART_GetState(&huart3) != HAL_UART_STATE_BUSY_RX) {
106 // check i f we f i l l e d the entire buffer
107 i f (intData . len == 0) {
108 intData . len = BUF_SIZE ;
109 }
110

111 // copy the data to a l o c a l buffer
112 for (i = 0 ; i < intData . len ; i ++) {
113 usrData . data [i] = intData . data [i] ;
114 intData . data [i] = 0x0 ;
115 }
116 usrData . len = intData . len ;
117 intData . len = 0x0 ;
118 usrDataRdy = 0x1 ;
119

120 // s t a r t a new data request
121 HAL_UART_Receive_IT(&huart3 , intData . data , BUF_SIZE) ;
122 }
123

124 // Toggle LED 1 as heart beat
125 i f (heartbeatCnt == HEARTBEAT_MAX_CNT) {
126 HAL_GPIO_TogglePin (LED1_GPIO_Port , LED1_Pin) ;
127 heartbeatCnt = 0x0 ;
128 } e lse {
129 heartbeatCnt += 0x1 ;
130 }
131

132 // Switch through the s t a t e machine
133 switch (s t a t e) {
134 case o f f :
135 o f f _ s t a t e () ;
136 break ;
137 case opperation :
138 opperation_state () ;
139 break ;
140 case error :
141 e r r o r _ s t a t e () ;
142 break ;
143 }
144 }
145 }
146

147 // Uart handler for custom data length
148 void uart_recv_handle (UART_HandleTypeDef * huart) {
149 huart−>pRxBuffPtr−−;
150 uint8_t tmp0 = * huart−>pRxBuffPtr ;
151 huart−>pRxBuffPtr−−;
152 uint8_t tmp1 = * huart−>pRxBuffPtr ;
153 huart−>pRxBuffPtr ++;
154 huart−>pRxBuffPtr ++;
155

156 // check for l i n e end character

C.1. MCU code 41

157 i f (tmp0 == ’ \n ’ && tmp1 == ’ \ r ’) {
158 uint16_t index = huart−>RxXferSize − huart−>RxXferCount − 2 ;
159 intData . len = index ;
160 HAL_UART_AbortReceive (huart) ;
161 }
162 }
163

164 // Statemachine functions
165 void o f f _ s t a t e () {
166 // Set s t a t e LEDs
167 HAL_GPIO_WritePin (LED2_GPIO_Port , LED2_Pin , 0x0) ;
168 HAL_GPIO_WritePin (LED3_GPIO_Port , LED3_Pin , 0x0) ;
169 send_data_dac (start_cur , 2) ;
170 resetcalcvalue () ;
171

172 // Process the communication data
173 i f (usrDataRdy == 0x1) {
174 i f (usrData . data [0] == ’ r ’ | | usrData . data [0] == ’R ’) {
175 a = calc_a (Kp, Ki , Kd, Ts) ;
176 b = calc_b (Kp, Ki , Kd, Ts) ;
177 c = calc_c (Kd, Ts) ;
178 s t a t e = opperation ;
179 } e lse i f ((usrData . data [0] == ’E ’ | | usrData . data [0] == ’ e ’)
180 && usrData . data [1] == ’ r ’ && usrData . data [2] == ’ r ’)

{
181 s t a t e = error ;
182 } e lse i f (usrData . data [0] == ’ S ’ | | usrData . data [0] == ’ s ’) {
183 sp = * (f l o a t *) ((usrData . data + 1)) ;
184 } e lse i f (usrData . data [0] == ’T ’ | | usrData . data [0] == ’ t ’) {
185 type = usrData . data [1] ;
186 i f (type == 1) {
187 Ts = 0 . 0 1 ; }
188 else { Ts = 0 . 0 0 1 ; }
189 } e lse i f (usrData . data [0] == ’P ’ | | usrData . data [0] == ’p ’) {
190 Kp = * (f l o a t *) ((usrData . data + 1)) ;
191 } e lse i f (usrData . data [0] == ’ I ’ | | usrData . data [0] == ’ i ’) {
192 Ki = * (f l o a t *) ((usrData . data + 1)) ;
193 } e lse i f (usrData . data [0] == ’D’ | | usrData . data [0] == ’d ’) {
194 Kd = * (f l o a t *) ((usrData . data + 1)) ;
195 }
196 usrDataRdy = 0x0 ;
197

198 }
199

200 // Check for errors
201 // TODO: Error checking
202 }
203

204 void opperation_state () {
205 // Set s t a t e LEDs
206 HAL_GPIO_WritePin (LED2_GPIO_Port , LED2_Pin , 0x1) ;
207 HAL_GPIO_WritePin (LED3_GPIO_Port , LED3_Pin , 0x0) ;
208

209 // Process the communication data
210 i f (usrDataRdy == 0x1) {
211 i f (usrData . data [0] == ’ x ’ | | usrData . data [0] == ’X ’) {

42 C. Code

212 s t a t e = o f f ;
213 } e lse i f ((usrData . data [0] == ’E ’ | | usrData . data [0] == ’ e ’)
214 && usrData . data [1] == ’ r ’ && usrData . data [2] == ’ r ’)

{
215 s t a t e = error ;
216 } e lse i f (usrData . data [0] == ’ S ’ | | usrData . data [0] == ’ s ’) {
217 sp = * (f l o a t *) (&usrData . data +1) ;
218 }
219 usrDataRdy = 0x0 ;
220 }
221

222 // Run the c o n t r o l l e r
223 i f (type == 0) {
224 PIDPowerControl () ;
225 } e lse i f (type == 1) {
226 PowerControl () ;
227 } e lse i f (type == 2) {
228 CurrentSweep () ;
229 } e lse i f (type == 3) {
230 ResistanceControlPID () ;
231 } e lse {
232 ResistanceControl () ;
233 }
234

235

236 // Check for errors
237 // TODO: Error checking
238 }
239

240 void e r r o r _ s t a t e () {
241 // Set s t a t e LEDs
242 HAL_GPIO_WritePin (LED2_GPIO_Port , LED2_Pin , 0x0) ;
243 HAL_GPIO_WritePin (LED3_GPIO_Port , LED3_Pin , 0x1) ;
244

245 // Process the communication data
246 i f (usrDataRdy == 0x1) {
247 i f ((usrData . data [0] == ’ r ’ | | usrData . data [0] == ’R ’)
248 && usrData . data [1] == ’ s ’ && usrData . data [2] == ’ t ’)

{
249 init_app () ;
250 s t a t e = o f f ;
251 }
252 usrDataRdy = 0x0 ;
253 }
254 // Set output current to 0
255 send_data_dac (start_cur , 2) ;
256

257

258 }
259

260 void PowerControl () {
261 // Control and acquisit ion
262 get_data_adc (data) ;
263 calc_pow (sp , data) ;
264 send_data_com (data , 10) ;
265 send_data_dac (data , 10) ;

C.1. MCU code 43

266

267 }
268

269 void ResistanceControl () {
270 f l o a t psp ;
271 // Keep timing and execute the commands
272 i f (controlCnt0 == CONTROL_MAX_CNT0 && controlCnt1 == 0x0) {
273 // Control and acquisit ion
274 get_data_adc (data) ;
275 psp = calc_sppower (sp , data , a , b , c) ;
276 calc_pow (psp , data) ;
277 send_data_com (data , 10) ;
278 send_data_dac (data , 10) ;
279 // Add to the counters
280 controlCnt1 += 0x1 ;
281 } e lse i f (controlCnt0 == CONTROL_MAX_CNT0
282 && controlCnt1 ! = CONTROL_MAX_CNT1) {
283 // Add to the counters
284 controlCnt1 += 0x1 ;
285 }
286 else i f (controlCnt0 != CONTROL_MAX_CNT0
287 && controlCnt1 ! = CONTROL_MAX_CNT1) {
288 // Add to the counters
289 controlCnt0 += 0x1 ;
290 } e lse {
291 // Send data
292 send_data_dac (meas_cur , 2) ;
293 // Reset counters
294 controlCnt0 = 0x0 ;
295 controlCnt1 = 0x0 ;
296 }
297

298 }
299

300 void PIDPowerControl () {
301 // Control and acquisit ion
302 get_data_adc (data) ;
303 calc_control (type , sp , data , a , b , c) ;
304 send_data_com (data , 10) ;
305 send_data_dac (data , 10) ;
306 }
307

308 void ResistanceControlPID () {
309 // Keep timing and execute the commands
310 i f (controlCnt0 == CONTROL_MAX_CNT0 && controlCnt1 == 0x0) {
311 // Control and acquisit ion
312 get_data_adc (data) ;
313 calc_control (type , sp , data , a , b , c) ;
314 send_data_com (data , 10) ;
315 send_data_dac (data , 10) ;
316 // Add to the counters
317 controlCnt1 += 0x1 ;
318 } e lse i f (controlCnt0 == CONTROL_MAX_CNT0
319 && controlCnt1 != CONTROL_MAX_CNT1) {
320 // Add to the counters
321 controlCnt1 += 0x1 ;

44 C. Code

322 }
323 else i f (controlCnt0 != CONTROL_MAX_CNT0
324 && controlCnt1 != CONTROL_MAX_CNT1) {
325 // Add to the counters
326 controlCnt0 += 0x1 ;
327 } e lse {
328 // Send data
329 send_data_dac (meas_cur , 2) ;
330 // Reset counters
331 controlCnt0 = 0x0 ;
332 controlCnt1 = 0x0 ;
333 }
334

335 }
336

337 void CurrentSweep () {
338 // current sweep
339 get_data_adc (data) ;
340 cur_sweep (data) ;
341 send_data_com (data , 10) ;
342 send_data_dac (data , 10) ;
343 }

C.1.2. Receive

1 /*
2 * getdata . c
3 *
4 * Created on : May 30 , 2019
5 * Author : Marjolein Rebers
6 */
7

8 #include "main . h"
9 #include " spi . h"

10 #include " usart . h"
11 #include " gpio . h"
12

13 #include " stdio . h"
14 #include " s t d l i b . h"
15 #include "math . h"
16

17 #include " getdata . h"
18 #include "senddata . h"
19

20

21

22 i n t get_control_type (void) {
23 uint8_t type [2] = { 0 } ;
24 HAL_UART_Receive_IT(&huart3 , type , 2) ;
25 while (HAL_UART_GetState(&huart3) == HAL_UART_STATE_BUSY_RX)
26 {__NOP() ; }
27

28

29 return type [0] ;
30 }
31

32

C.1. MCU code 45

33

34 f l o a t get_set_point_matlab () {
35

36 uint8_t receivedSP [5]= { 0 } ;
37

38 f l o a t sp =0; // set−point
39

40

41

42 HAL_UART_Receive_IT(&huart3 , receivedSP , 5) ;
43 while (HAL_UART_GetState(&huart3) == HAL_UART_STATE_BUSY_RX)
44 {__NOP() ; }
45

46 //sp = ((receivedSP [3] < <24) | (receivedSP [2] < <16) | (receivedSP [1] < <8) |
receivedSP [0]) ;

47 sp = * (f l o a t *)&receivedSP ;
48

49

50 __NOP() ;
51

52 return (sp) ;
53

54

55 }
56

57

58

59 void get_data_adc (uint8_t * data) {
60

61 // Receive Voltage
62 HAL_GPIO_WritePin (NSS1_GPIO_Port , NSS1_Pin , GPIO_PIN_RESET) ; // NSS1 low
63 HAL_SPI_Receive(&hspi1 , data , 1 , 1) ;
64 HAL_GPIO_WritePin (NSS1_GPIO_Port , NSS1_Pin , GPIO_PIN_SET) ; // NSS1 high
65

66 // Receive Current
67 HAL_GPIO_WritePin (NSS3_GPIO_Port , NSS3_Pin , GPIO_PIN_RESET) ; // NSS3 low
68 HAL_SPI_Receive(&hspi3 , data +2 , 1 , 1) ;
69 HAL_GPIO_WritePin (NSS3_GPIO_Port , NSS3_Pin , GPIO_PIN_SET) ; // NSS3 high
70

71

72 // Receive Pressure 1
73 HAL_GPIO_WritePin (NSS4_GPIO_Port , NSS4_Pin , GPIO_PIN_RESET) ; // NSS4 low
74 HAL_SPI_Receive(&hspi4 , data +4 , 1 , 1) ;
75 HAL_GPIO_WritePin (NSS4_GPIO_Port , NSS4_Pin , GPIO_PIN_SET) ; // NSS4 high
76

77 // Receive Pressure 2
78 HAL_GPIO_WritePin (NSS6_GPIO_Port , NSS6_Pin , GPIO_PIN_RESET) ; // NSS6 low
79 HAL_SPI_Receive(&hspi6 , data +6 , 1 , 1) ;
80 HAL_GPIO_WritePin (NSS6_GPIO_Port , NSS6_Pin , GPIO_PIN_SET) ; // NSS6 high */
81

82 return ;
83 }

1 /*
2 * getdata . h
3 *

46 C. Code

4 * Created on : May 30 , 2019
5 * Author : Marjolein Rebers
6 */
7

8 # i fndef GETDATA_H_
9 #define GETDATA_H_

10

11 i n t get_control_type (void) ;
12

13 f l o a t get_set_point (void) ;
14

15 f l o a t get_set_point_matlab () ;
16

17 void get_data_adc (uint8_t * data) ;
18

19 void check_stop (void) ;
20

21 #endif /* GETDATA_H_ */

C.1.3. Send

1 /*
2 * senddata . c
3 *
4 * Created on : May 29 , 2019
5 * Author : Marjolein Rebers
6 */
7

8 #include "main . h"
9 #include " spi . h"

10 #include " usart . h"
11 #include " gpio . h"
12 #include " stdio . h"
13

14

15 void send_data_com (uint8_t * data , i n t length) {
16

17 while (HAL_UART_GetState(&huart3) == HAL_UART_STATE_BUSY_TX)
18 {__NOP() ; }
19

20 HAL_UART_Transmit_IT(&huart3 , data , length) ;
21

22

23

24 // Test synchronization with known periodic data
25 // data [3] = data [3] + 1 ;
26 // data [0] = data [0] + 1 ;
27

28

29 return ;
30 }
31

32 void send_data_dac (uint8_t * data , i n t length) {
33 //Use in main function : send_data_dac (new_cur) ;
34

35 uint8_t supply [3] = { 0x00 , 0x00 , 0x00 } ;
36

C.1. MCU code 47

37 i f (length ==2) {
38 supply [2] = data [0] ;
39 supply [1] = data [1] ;
40 }
41

42

43 else {
44 supply [2] = data [8] ;
45 supply [1] = data [9] ;
46 }
47

48 HAL_GPIO_WritePin (NSS2_GPIO_Port , NSS2_Pin , GPIO_PIN_RESET) ; // NSS2 low
49 HAL_SPI_Transmit(&hspi2 , supply , 3 , 1) ;
50 HAL_GPIO_WritePin (NSS2_GPIO_Port , NSS2_Pin , GPIO_PIN_SET) ; // NSS2 high
51

52 }
53

54

55 void transfer_data_adc_dac (uint8_t * senddata) {
56 //Use in main function : transfer_data_adc_dac (data_adc) ;
57

58

59 uint8_t supply [3] = { 0x00 , 0x00 , 0x00 } ;
60

61 senddata [0] = senddata [0] < <1;
62 senddata [1] = senddata [1] < <1;
63

64 supply [2] = senddata [0] ;
65 supply [1] = senddata [1] ;
66

67 HAL_GPIO_WritePin (NSS2_GPIO_Port , NSS2_Pin , GPIO_PIN_RESET) ; // NSS2 low
68 HAL_SPI_Transmit(&hspi2 , supply , 3 , 1) ;
69 HAL_GPIO_WritePin (NSS2_GPIO_Port , NSS2_Pin , GPIO_PIN_SET) ; // NSS2 high
70

71 }

1 /*
2 * senddata . h
3 *
4 * Created on : May 29 , 2019
5 * Author : Marjolein Rebers
6 */
7

8 # i fndef SENDDATA_H_
9 #define SENDDATA_H_

10

11 void send_data_com (uint8_t * data , i n t length) ;
12

13 // void send_data_dac (uint8_t * senddata) ;
14

15 void send_data_dac (uint8_t * data , i n t length) ;
16

17 void transfer_data_adc_dac (uint8_t * senddata) ;
18

19

20 #endif /* SENDDATA_H_ */

48 C. Code

C.1.4. Control

1 /*
2 * calcon . c
3 *
4 * Created on : May 30 , 2019
5 * Author : Marjolein Rebers
6 */
7

8 #include "main . h"
9

10 #include " stdio . h"
11 #include " s t d l i b . h"
12 #include "math . h"
13

14 #include " calcon . h"
15

16

17

18

19

20

21 s t a t i c f l o a t error_1 = 0 ;
22 s t a t i c f l o a t error_2 = 0 ;
23 s t a t i c f l o a t current = 100;
24 s t a t i c f l o a t psp = 0 ; //power set point
25 s t a t i c uint16_t sweep = 0 ;
26

27

28 void resetcalcvalue () {
29 error_1 = 0 ;
30 error_2 = 0 ;
31 current = 0 ;
32 psp = 0 ; //power set point
33 sweep = 0 ;
34 return ;
35 }
36

37

38 f l o a t calc_sppower (f l o a t sp , uint8_t * data , f l o a t a , f l o a t b , f l o a t c) {
39

40

41 f l o a t error ;
42 f l o a t change ;
43 f l o a t res ;
44

45 f l o a t voltage_meas ;
46 f l o a t current_meas ;
47

48 voltage_meas = calc_vol (data) ;
49 current_meas = calc_cur (data) ;
50

51 // calculate resistance
52 res = voltage_meas / current_meas ;
53 error = sp−res ;
54

55 // calculate change

C.1. MCU code 49

56 change = a* error + b* error_1+c * error_2 ;
57 psp = psp + change ;
58 error_2 = error_1 ;
59 error_1 = error ;
60

61

62 return psp ;
63 }
64

65

66 void calc_pow (f l o a t power , uint8_t * data) {
67 uint16_t new_cur ;
68 f l o a t res ;
69 f l o a t cur_transfer = (1 0 . 2 / 1 . 0 4 3) *pow(2 ,16) ;
70 f l o a t voltage_meas ;
71 f l o a t current_meas ;
72 f l o a t send_current ;
73

74

75

76 voltage_meas = calc_vol (data) ;
77 current_meas = calc_cur (data) ;
78

79 res = voltage_meas / current_meas ;
80 current = sqrt (power/ res) * cur_transfer ;
81

82 // overvoltage protection , undercurrent l i m i t
83 i f (voltage_meas >40 | | current < 0)
84 {
85 send_current =0;
86 current = 0 ;
87 }
88 //Check overflow
89 else i f (current >65535) {
90 send_current = 65535;
91 current = 65535;
92 }
93 else i f ((voltage_meas <0) | | (current_meas <0)) {
94 send_current = 65535;
95 }
96 else
97 {
98 send_current = current ;
99 }

100

101

102 new_cur = (uint16_t) (send_current) ;
103

104 data [8] = new_cur&0 x f f ;
105 data [9] = (new_cur>>8)&0 x f f ;
106

107 return ;
108

109

110 }
111

50 C. Code

112

113 void calc_control (i n t type , f l o a t sp , uint8_t * data , f l o a t a , f l o a t b , f l o a t c) {
114

115 uint16_t new_cur ;
116

117 // control
118 f l o a t error ;
119 f l o a t change ;
120 f l o a t power =0;
121

122

123 f l o a t cur_transfer = (1 0 . 2 / 1 . 0 4 3) *pow(2 ,16) ;
124 f l o a t voltage_meas ;
125 f l o a t current_meas ;
126 f l o a t send_current ;
127

128

129 voltage_meas = calc_vol (data) ;
130 current_meas = calc_cur (data) ;
131

132 f l o a t res ;
133

134 // calculate error
135 i f (type ==0) {
136 // calculate power
137 power = voltage_meas * current_meas ;
138 error = sp−power ;
139 }
140 else {
141 // calculate resistance
142 res = voltage_meas / current_meas ;
143 error = sp−res ;
144 }
145

146

147

148 // calculate change
149 change = a* error + b* error_1+c * error_2 ;
150 current = current + (change* cur_transfer) ;
151

152 error_2 = error_1 ;
153 error_1 = error ;
154

155

156

157

158 // overvoltage protection , undercurrent l i m i t
159 i f (voltage_meas >40 | | current < 0)
160 {
161 send_current =0;
162 current = 0 ;
163 }
164 //Check overflow
165 else i f (current >65535) {
166 send_current = 65535;
167 current = 65535;

C.1. MCU code 51

168 }
169 else
170 {
171 send_current = current ;
172 }
173

174

175 new_cur = (uint16_t) (send_current) ;
176

177 data [8] = new_cur&0 x f f ;
178 data [9] = (new_cur>>8)&0 x f f ;
179

180

181

182

183

184 return ;
185 }
186

187 f l o a t calc_vol (uint8_t * data) {
188

189 int16_t vol ;
190 f l o a t v r e f = 5 . 0 4 7 ;
191 f l o a t vsup = 20;
192 f l o a t heat_transfer = v r e f *15.4679/(pow(2 ,15)) ;
193 f l o a t voltage_meas ;
194

195 vol = (int16_t) ((data [1] << 8) | data [0]) ;
196

197 voltage_meas = vol * heat_transfer −0.01253*vsup ;
198

199 return voltage_meas ;
200

201

202 }
203

204 f l o a t calc_cur (uint8_t * data) {
205 f l o a t v r e f = 5 . 0 4 7 ;
206 int16_t cur ;
207 f l o a t shunt_transfer = v r e f / (1 0 . 2 * 4 . 8 3 *pow(2 ,15)) ;
208 f l o a t current_meas ;
209

210 cur = (int16_t) ((data [3] << 8) | data [2]) ;
211

212 current_meas = cur * shunt_transfer ;
213

214 return current_meas ;
215 }
216

217 void cur_sweep (uint8_t * data) {
218

219

220 //sweep = 0x0f00 ;
221 sweep = sweep+1;
222

223 i f (sweep>=65535) {

52 C. Code

224 sweep = 0x0000 ;
225 }
226

227

228 data [8] = sweep&0 x f f ;
229 data [9] = (sweep>>8)&0 x f f ;
230

231 }
232

233

234 f l o a t calc_a (f l o a t Kp, f l o a t Ki , f l o a t Kd, f l o a t Ts) {
235 f l o a t a ;
236 a = (Kp+Ts* Ki/2+Kd/Ts) ;
237 return a ;
238 }
239

240

241 f l o a t calc_b (f l o a t Kp, f l o a t Ki , f l o a t Kd, f l o a t Ts) {
242 f l o a t b ;
243 b = (−Kp+Ts* Ki/2−Kd/Ts) ;
244 return b ;
245 }
246

247 f l o a t calc_c (f l o a t Kd, f l o a t Ts) {
248 f l o a t c ;
249 c = (Kd/Ts) ;
250 return c ;
251 }

1 /*
2 * calcon . h
3 *
4 * Created on : May 30 , 2019
5 * Author : Marjolein Rebers
6 */
7

8 # i fndef CALCON_H_
9 #define CALCON_H_

10

11 // Function prototypes
12 void resetcalcvalue () ;
13

14 f l o a t calc_sppower (f l o a t sp , uint8_t * data , f l o a t a , f l o a t b , f l o a t c) ;
15

16 void calc_pow (f l o a t sp , uint8_t * data) ;
17

18 void calc_control (i n t type , f l o a t spres , uint8_t * data , f l o a t a , f l o a t b , f l o a t c) ;
19

20 f l o a t calc_vol (uint8_t * data) ;
21

22 f l o a t calc_cur (uint8_t * data) ;
23

24 void cur_sweep (uint8_t * data) ;
25

26 f l o a t calc_a (f l o a t Kp, f l o a t Ki , f l o a t Kd, f l o a t Ts) ;
27

C.2.MATLAB code 53

28 f l o a t calc_b (f l o a t Kp, f l o a t Ki , f l o a t Kd, f l o a t Ts) ;
29

30 f l o a t calc_c (f l o a t Kd, f l o a t Ts) ;
31

32 #endif /* CALCON_H_ */

C.2. MATLAB code
The MATLAB code can be found in this section.

C.2.1. Plot results LabVIEW

1 clear a l l ; close a l l ; c l c ;
2

3 %% Set constants
4 R0 =191;
5 T0 = 20;
6 alpha = 0.0025;
7

8 %% Create r i g h t format
9 A = readtable (’Measurements\ f i l e . t x t ’) ;

10 current = A (: , 2) ;
11 curr = table2array (current) ;
12 voltage = A (: , 1) ;
13 v o l t = table2array (voltage) ;
14 time = A (: , 3) ;
15 time = table2array (time) ;
16

17

18 %% Calculate resistance , temperature , power
19 R = v o l t . / curr ;
20 T = (((R/R0)−1)/alpha) +T0 ;
21 P = curr . * v o l t ;
22 s t = time (end) / length (time) ;
23 f = 1/ s t
24 %% Plot
25 subplot (3 , 1 , 1)
26 t i t l e (’ Current and Voltage ’)
27 xlabel (’ time [s] ’)
28 yyaxis l e f t
29 plot (time , curr)
30 ylabel (’ Current [A] ’)
31 ylim ([0 , 5 E−2])
32 yyaxis r i g h t
33 plot (time , v o l t)
34 ylabel (’ Voltage [V] ’)
35

36 subplot (3 , 1 , 2)
37 t i t l e (’ Resistance and temperature ’)
38 xlabel (’ time [s] ’)
39 yyaxis l e f t
40 plot (time , R)
41 ylabel (’ Resistance [Ohm] ’)
42 yyaxis r i g h t
43 plot (time , T)
44 ylabel (’ Temperature [degree cel c i u s] ’)
45

54 C. Code

46 subplot (3 , 1 , 3)
47 plot (time , P) ;
48 xlabel (’ time [s] ’)
49 ylabel (’Power [W] ’)
50 t i t l e (’Power ’)

C.2.2. MCU control

1 close a l l ; c lear a l l ; c l c ;
2

3 %% begin values
4

5 % time
6 times = 10; %time in seconds
7

8

9 %plot
10 R0 = 735; %resistance at T0
11 T0 = 20;
12 alpha = 0.0024;
13

14 %% Open com
15 s = s e r i a l (’COM5’) ;
16 set (s , ’ BaudRate ’ ,115200) ;
17 fopen (s)
18

19 %% send type
20 type = 1 ; %0 = power PID , 1 = Powercalc , 2 = currentsweep , 3 = resistancePID 4=

resistance
21 f p r i n t f (s , [’ t ’ , char (type) , 13]) % 13 = ’/ r ’ and creates end of l i n e with standard

’/n ’ that i s send
22 pause (0 . 0 0 1) ;
23

24 %% send setpoint
25 i f (type <= 2)
26 sp = 0 . 1 ;
27 dt = 0 . 0 0 1 ;
28 Kp = 0 . 0 1 ;
29 Ki = 0 . 1 ;
30 else
31 Kp = 0 . 0 1 ;
32 Ki = 0.00001;
33 SPT = 30;%set point of temperature
34 sp = single (R0 * (1 + alpha * (SPT − T0))) ;
35 dt = 0 . 0 1 ;
36 end
37

38

39 sp = single (sp) ;
40 sp = typecast (sp , ’ uint8 ’) ;
41 f p r i n t f (s , [’ s ’ , char (sp (1)) , char (sp (2)) , char (sp (3)) , char (sp (4)) , 13])
42 pause (0 . 0 0 1) ;
43

44 %% send Kp
45

46 Kp = singl e (Kp) ;
47 Kp = typecast (Kp, ’ uint8 ’) ;

C.2.MATLAB code 55

48 f p r i n t f (s , [’p ’ , char (Kp(1)) , char (Kp(2)) , char (Kp(3)) , char (Kp(4)) , 13])
49 pause (0 . 0 0 1) ;
50

51 %% send Ki
52 Ki = si ngl e (Ki) ;
53 Ki = typecast (Ki , ’ uint8 ’) ;
54 f p r i n t f (s , [’ i ’ , char (Ki (1)) , char (Ki (2)) , char (Ki (3)) , char (Ki (4)) , 13])
55 pause (0 . 0 0 1) ;
56

57 %% send Kd
58 Kd = 0 ;
59 Kd = singl e (Kd) ;
60 Kd = typecast (Kd, ’ uint8 ’) ;
61 f p r i n t f (s , [’d ’ , char (Kd(1)) , char (Kd(2)) , char (Kd(3)) , char (Kd(4)) , 13])
62 pause (0 . 0 0 1) ;
63

64 %% read
65

66 % send sync/ s t a r t s ignal
67 f p r i n t f (s , [’ r ’ , 13])
68

69 %%
70 samples = times / dt ;
71 for j = 1 : samples
72 for i =1:5
73 data = uint8 (fread (s , 2)) ;
74 dataint (i) = (typecast (uint8 (data) , ’ int16 ’)) ;
75

76 end
77 voltage (j) = dataint (1) ;
78 current (j) = dataint (2) ;
79 pressure1 (j) = dataint (3) ;
80 pressure2 (j) = dataint (4) ;
81 send_dac (j) = dataint (5) ;
82

83 end
84

85 %%
86 % send e x i t / o f f s ignal
87 f p r i n t f (s , [’ x ’ , 13])
88

89 %% close com
90 f c l o s e (s)
91 delete (s)
92 clear s
93

94 %% save matlab workspace
95 save (’ measure . mat ’ , ’ voltage ’ , ’ current ’ , ’ send_dac ’ , ’ dt ’ , ’ sp ’ , ’Kp ’ , ’ Ki ’ , ’Kd ’

) ;
96

97

98 %% Plot
99 V_sup = 14;

100 v r e f = 5 . 0 4 7 ;
101 shunt_transfer = v r e f /(50*2^15) ;
102 heat_transfer = v r e f *16.155/(2^15) ; %old measurements

56 C. Code

103 %heat_transfer = v r e f *15.4679/(2^15) ;
104 cur_transfer = 1.043/(10*2^16) ;
105 %vol = double (voltage) * heat_transfer −0.01253*V_sup ;
106 vol = double (voltage) * heat_transfer −0.089654*V_sup ; %old measurments
107 cur = double (current) * shunt_transfer ;
108 cur_dac = double (typecast (int16 (send_dac) , ’ uint16 ’)) * cur_transfer ;
109

110

111

112 p l o t f a c t o r = 10; %reduces points in plot , t h i s enables to save plots without error
113

114 vol = vol (1 : p l o t f a c t o r : end) ;
115 cur = cur (1 : p l o t f a c t o r : end) ;
116 cur_dac = cur_dac (1 : p l o t f a c t o r : end) ;
117

118 pow = vol . * cur ;
119 res = vol . / cur ;
120 temp = (((res . / R0)−1) . / alpha) +T0 ;
121

122

123 t = [0 : dt * p l o t f a c t o r : (length (vol)−1)* dt * p l o t f a c t o r] ;
124

125

126

127 plot (t , vol)
128 t i t l e (’ Voltage ’)
129 xlabel (’ time [s] ’)
130 ylabel (’ [V] ’)
131

132 f i g u r e
133 plot (t , cur)
134 t i t l e (’ Current ’)
135 xlabel (’ time [s] ’)
136 ylabel (’ [A] ’)
137 hold on
138 ylim ([0 , 0 . 1 2])
139 plot (t , cur_dac)
140

141

142 f i g u r e
143 plot (t , vol)
144 t i t l e (’Measured voltage and current ’)
145 xlabel (’ time [s] ’)
146 yyaxis l e f t
147 ylabel (’ [V] ’)
148 hold on
149 yyaxis r i g h t
150 ylim ([0 , 0 . 1 2])
151 ylabel (’ [A] ’)
152 plot (t , cur)
153 legend (’ Voltage ’ , ’ Current ’)
154

155 f i g u r e
156 plot (t , pow)
157 t i t l e (’Power and supply current ’)
158 xlabel (’ time [s] ’)

C.2.MATLAB code 57

159 yyaxis l e f t
160 %ylim ([0 , 0 . 1 2])
161 ylabel (’ [W] ’)
162 hold on
163 yyaxis r i g h t
164 ylim ([0 , 0 . 1 2])
165 ylabel (’ [A] ’)
166 plot (t , cur_dac)
167 legend (’Power ’ , ’ Supply current ’)
168

169

170

171 f i g u r e
172 plot (t , res)
173 t i t l e (’ Resistance and temperature ’)
174 xlabel (’ time [s] ’)
175 yyaxis l e f t
176 ylim ([0 , 1 0 0 0])
177 ylabel (’ [Ohm] ’)
178 hold on
179 yyaxis r i g h t
180 ylabel (’ [A] ’)
181 plot (t , cur_dac)
182 ylim ([0 , 0 . 1 2])
183 legend (’ Resistance ’ , ’ Temperature ’)
184

185 f i g u r e
186 yyaxis l e f t
187 plot (t , temp)
188 t i t l e (’ Temperature ’)
189 xlabel (’ time [s] ’)
190 ylim ([0 , 5 0])
191 ylabel (’ degree cel c i u s ’)
192 hold on
193 yyaxis r i g h t
194 ylim ([0 , 0 . 1 2])
195 ylabel (’ [A] ’)
196 plot (t , cur_dac)
197 legend (’ Temperature ’ , ’ Controlled current ’)

	Introduction
	Program of Requirements
	Theoretical model
	Resistance
	Thermal dynamics

	Control
	PID control
	Control loop

	System with lab equipment
	Setup
	LabVIEW

	Measured model
	System model
	Resistance control

	System with microcontroller
	Overview
	Microcontroller
	Communication Protocol
	State diagram
	User interface
	Testing

	Conclusion and discussion
	IR-camera
	Additional MCU testing results
	Measurement pulses
	Timing requirement supply group

	Code
	MCU code
	App
	Receive
	Send
	Control

	MATLAB code
	Plot results LabVIEW
	MCU control

